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Calculus with Applications is a thorough, application-oriented text for students majoring in
business, management, economics, or the life or social sciences. In addition to its clear
exposition, this text consistently connects the mathematics to career and everyday-life
situations. A prerequisite of two years of high school algebra is assumed. A renewed focus on
quick and effective assessments, new applications and exercises, as well as other new learning
tools make this 10th edition an even richer learning resource for students.

Our Approach
Our main goal is to present applied calculus in a concise and meaningful way so that students
can understand the full picture of the concepts they are learning and apply it to real-life
situations. This is done through a variety of ways.

Focus on Applications Making this course meaningful to students is critical to their suc-
cess. Applications of the mathematics are integrated throughout the text in the exposition, the
examples, the exercise sets, and the supplementary resources. Calculus with Applications
presents students with a myriad of opportunities to relate what they’re learning to career situ-
ations through the Apply It questions, the applied examples, and the Extended Applications.
To get a sense of the breadth of applications presented, look at the Index of Applications in
the back of the book or the extended list of sources of real-world data on www.pearsonhighered
.com/mathstatsresources.

Pedagogy to Support Students Students need careful explanations of the mathematics
along with examples presented in a clear and consistent manner. Additionally students and
instructors should have a means to assess the basic prerequisite skills. This can now be done
with the Prerequisite Skills Diagnostic Test located just before Chapter R. In addition, the stu-
dents need a mechanism to check their understanding as they go and resources to help them
remediate if necessary. Calculus with Applications has this support built into the pedagogy of
the text through fully developed and annotated examples, Your Turn exercises, For Review
references, and supplementary material.

Beyond the Textbook Students today take advantage of a variety of resources and delivery
methods for instruction. As such, we have developed a robust MyMathLab course for Calcu-
lus with Applications. MyMathLab has a well-established and well-documented track record
of helping students succeed in mathematics. The MyMathLab online course for Calculus with
Applications contains over 2000 exercises to challenge students and provides help when they
need it. Students who learn best by seeing and hearing can view section- and example-level
videos within MyMathLab or on the book-specific DVD-Rom. These and other resources are
available to students as a unified and reliable tool for their success.

New to the Tenth Edition
Based on the authors’ experience in the classroom along with feedback from many
instructors across the country, the focus of this revision is to improve the clarity of the
presentation and provide students with more opportunities to learn, practice, and apply
what they’ve learned on their own. This is done in both the presentation of the content and
in new features added to the text.

ix
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New and Revised Content
• Chapter R The flow of the material was improved by reordering some exercises and
examples. Exercises were added to Section R.1 (on performing algebraic operations) and
Section R.5 (on solving inequalities).

• Chapter 1 Changes in the presentation were made throughout to increase clarity, includ-
ing adding some examples and rewriting others. Terminology in Section 1.2 was adjusted
to be more consistent with usage in economics.

• Chapter 2 The material in Section 2.1 on the Dow Jones Average was updated. Material
on even and odd functions was added. Material on identifying the degree of a polynomial
has been rewritten as an example to better highlight the concept. The discussion of the Rule
of 70 and the Rule of 72 was improved. A new Extended Application on Power Functions
has been added. 

• Chapter 3 In Section 3.1, the introduction of limits was completely revised. The opening
discussion and example were transformed into a series of examples that progress through
different limit scenarios: a function defined at the limit, a function undefined at the limit (a
hole in the graph), a function defined at the limit but with a different value than the limit (a
piecewise function), and then finally, finding a limit when one does not exist. New figures
were added to illustrate the different scenarios. In Section 3.2 the definition and example of
continuity has been revised using a simple process to test for continuity. The opening dis-
cussion of Section 3.5, showing how to sketch the graph of the derivative given the graph
of the original function, was rewritten as an example.

• Chapter 4 The introduction to the chain rule was rewritten as an example in Section 4.3.
Exercise topics were revised to cover subjects such as worldwide Internet users, online
learning, and the Gateway arch.

• Chapter 5 In Section 5.1 the definition of increasing/decreasing functions has been moved
to the beginning of the chapter, followed by the discussion of using derivatives to determine
where the function increases and decreases. The determination of where a function is
increasing or decreasing is divided into three examples: when the critical numbers are found
by setting the derivative equal to zero, when the critical numbers are found by determining
where the derivative is undefined, and when the function has no critical numbers.

• Chapter 6 Changes in the presentation were made throughout to increase clarity and
exercise sets were rearranged to improve progression and parity.

• Chapter 7 The social sciences category of exercises was added to Section 7.1, including
the topics of bachelor’s degrees and the number of females earning degrees in dentistry.
Color was added to the introduction and first example of substitution in Section 7.2 to
enable students to follow the substitution more easily. 

• Chapter 8 In addition to exercises based on real data being updated, examples in this
chapter were changed for pedagogical reasons.

• Chapter 9 Graphs generated by Maple™ were added to Examples 2 and 4 in Section 9.3
to assist students in visualizing the concept of relative extrema. Material covering utility
functions was added to Section 9.4. Many of the figures of three-dimensional surfaces were
improved to make them clearer and more attractive.

• Chapter 10 The notation in Section 10.1 was changed to improve clarity. Additionally,
exercises and examples in this section were modified to emphasize checking that solutions
satisfy the original differential equation.

PREFACEx



• Chapter 11 In Section 11.2, an example on how to calculate the probability within one
standard deviation of the mean (which is required in many of the exercises) was added. The
Social Sciences category was added to the exercise set, with exercises on calculating the
median, expected value, and standard deviation. Topics include the time it takes to learn a
task and the age of users of a social network.

• Chapter 12 Examples were added on calculating depreciation with a geometric sequence
and illustrating how to find the sum of a geometric sequence when the sequence is written
in summation notation, similar to several of the exercises in Section 12.1. A new example,
and corresponding exercises, was added to 12.4, illustrating how to solve a problem first
using algebra and then using a geometric series. Four basic exercises finding the Taylor
series were added to the beginning of the exercise set in Section 12.5, and five exercises
that require l’Hôpital’s rule were added to Section 12.7.

• Chapter 13 Material was added to Section 13.1 to clarify the meaning of the sine and
cosine. Example 7, along with related exercises, were added which explore where the
trigonometric functions take on specific values.

Prerequisite Skills Diagnostic Test
The Prerequisite Skills Diagnostic Test gives students and instructors a means to assess the
basic prerequisite skills needed to be successful in this course. In addition, the answers to
the test include references to specific content in Chapter R as applicable so students can
zero in on where they need improvement. Solutions to the questions in this test are in
Appendix A. 

More Applications and Exercises
This text is used in large part because of the enormous amounts of real data used in examples and
exercises throughout the text. This 10th edition will not disappoint in this area. We have added or
updated nearly 20% of the applications and 37% of the examples throughout the text and added
or updated over 340 exercises.

Reference Tables for Exercises
The answers to odd-numbered exercises in the back of the textbook now contain a table
referring students to a specific example in the section for help with most exercises. For the
review exercises, the table refers to the section in the chapter where the topic of that exercise
is first discussed.

Annotated Instructor’s Edition
The annotated instructor’s edition is filled with valuable teaching tips in the margins for those
instructors who are new to teaching this course. In addition, answers to most exercises are
provided directly on the exercise set page to make assigning and checking homework easier.
In addition, answers to most exercises are provided directly on the exercise set page along
with + symbol next to the most challenging exercises to make assigning and checking
homework easier.

PREFACE xi



New to MyMathLab
Available now with Calculus with Applications are the following resources within
MyMathLab that will benefit students in this course.

• “Getting Ready for Applied Calculus” chapter covers basic prerequisite
skills 

• Personalized Homework allows you to create homework assignments
based on the results of student assessments

• Videos with extensive section coverage

• Hundreds more assignable exercises than the previous edition of the text

• Application labels within exercise sets (e.g., “Bus/Econ”) make it easy for
you to find types of applications appropriate to your students

• Additional graphing calculator and Excel spreadsheet help

A detailed description of the overall capabilities of MyMathLab is provided
on page xvii. 

PREFACExii

Source Lines
Sources for the exercises are now written in an abbreviated format within the actual exercise
so that students immediately see that the problem comes from, or pulls data from, actual
research or industry. The complete references are available at www.pearsonhighered.com/
mathstatresources as well as on page S-1.

Other New Features
We have worked hard to meet the needs of today’s students through this revision. In addition to
the new content and resources listed above, there are many new features to this 10th edition
including new and enhanced examples, Your Turn exercises, the inclusion of and instruction
for new technology, and new and updated Extended Applications. You can view these new
features in context in the following Quick Walk-Through of Calculus with Applications, 10e.

www.pearsonhighered.com/mathstatresources
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A Quick Walk-Through of Calculus with Applications, 10e

The Derivative

3.1 Limits

3.2 Continuity

3.3 Rates of Change

3.4 Definition of the Derivative

3.5 Graphical Differentiation

Chapter 3 Review

Extended Application: A Model for 
Drugs Administered Intravenously

The population of the United States has been increasing

since 1790, when the first census was taken. Over the

past few decades, the population has not only been

increasing, but the level of diversity has also been

increasing.This fact is important to school districts,

businesses, and government officials. Using examples in

the third section of this chapter, we explore two rates of 

change related to the increase in minority population. In

the first example, we calculate an average rate of change;

in the second, we calculate the rate of change at a

particular time.This latter rate is an example of a

derivative, the subject of this chapter.

3

We will answer this question in Example 1 using graphical differentiation.

In the previous section, we estimated the derivative at various points of a graph by esti-

mating the slope of the tangent line at those points. We will now extend this process to

show how to sketch the graph of the derivative given the graph of the original function.

This is important because, in many applications, a graph is all we have, and it is easier to

find the derivative graphically than to find a formula that fits the graph and take the deriva-

tive of that formula.

Production of Landscape Mulch
In Figure 45(a), the graph shows total production (TP), measured in cubic yards of land-

scape mulch per week, as a function of labor used, measured in workers hired by a small

business. The graph in Figure 45(b) shows the marginal production curve , which is

the derivative of the total production function. Verify that the graph of the marginal produc-

tion curve is the graph of the derivative of the total production curve (TP).1MPL2

1MPL2

Graphical Differentiation
Given a graph of the production function, how can we find the graph of
the marginal production function?

APPLY IT 

3.5

EXAMPLE  1

Teaching Tip: Graphical differentiation

gets students to focus on the concept of

the derivative rather than the mechanics.

This topic is difficult for many students

because there are no formulas to rely on.

One must thoroughly understand what’s

going on to do anything. On the other

hand, we have seen students who are

weak in algebra but who possess a good

intuitive grasp of geometry find this

topic quite simple.

Cubic yards
per week

2000

800

1200

1600

0

400

85 Labor
MPL

Cubic yards
per worker

10000

8000

0

5000

85 Labor

TP

(a)

(b)

FIGURE 45

SOLUTION Let q refer to the quantity of labor. We begin by choosing a point where esti-

mating the derivative of TP is simple. Observe that when q � 8, TP has a horizontal tan-

gent line, so its derivative is 0. This explains why the graph of equals 0 when q � 8.

Now, observe in Figure 45(a) that when q � 8, the tangent lines of TP have positive

slope and the slope is steepest when q � 5. This means that the derivative should be posi-

tive for q � 8 and largest when q � 5. Verify that the graph of has this property.

Finally, as Figure 45(a) shows, the tangent lines of TP have negative slope when q � 8,

so its derivative, represented by the graph of , should also be negative there. Verify that

the graph of , in Figure 45(b), has this property as well.MPL

MPL

MPL

MPL

APPLY IT 

Chapter Opener
Each chapter opens with a quick introduction that
relates to an application presented in the chapter.
In addition, a section-level table of contents is
included.

Apply It
An Apply It question, typically at the start of a
section, asks students to consider how to solve a
real-life situation related to the math they are
about to learn. The Apply It question is answered
in an application within the section or the exercise
set. (“Apply It” was labeled “Think About It” in
the previous edition.) 

NEW! 
Teaching Tips

Teaching Tips are provided in the margins of
the Annotated Instructor’s Edition for those who
are new to teaching this course. In addition,
answers to most exercises are provided directly
on the exercise set page making it easier to
assign and check homework.

Apply It 
continued

The solution to the Apply It question often falls
in the body of the text where it can be seen in
context with the mathematics.
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Remember that when you graph the derivative, you are graphing the slope of 

the original function. Do not confuse the slope of the original function with the 

y-value of the original function. In fact, the slope of the original function is equal

to the y-value of its derivative.

Sometimes the original function is not smooth or even continuous, so the graph of the

derivative may also be discontinuous.

Graphing a Derivative

Sketch the graph of the derivative of the function shown in Figure 49.

SOLUTION Notice that when the slope is 1, and when the slope is

At the derivative does not exist due to the sharp corner in the graph. The

derivative also does not exist at because the function is discontinuous there. Using

this information, the graph of on is shown in Figure 50.x , 0f r 1x 2
x 5 0

x 5 22,21.
22 , x , 0,x , 22,

EXAMPLE  3

CAUTION

–2

f '(x)

2 4 6–6 –2–4 x

2

FIGURE 51

–2

f(x)

2 4 6–6 –4 –2 x

2

FIGURE 49

–2

f '(x)

2 4 6–6 –2–4 x

2

FIGURE 50

For the derivative is positive. If you draw a tangent line at you should

find that the slope of this line is roughly 1. As x approaches 0 from the right, the derivative

becomes larger and larger. As x approaches infinity, the tangent lines become more and

more horizontal, so the derivative approaches 0. The resulting sketch of the graph of

is shown in Figure 51. TRY YOUR TURN 2y 5 f r 1x 2

x 5 1,x . 0,

Caution
Caution boxes provide students with a quick
“heads-up” to common difficulties and errors. 

NEW! 
Coverage of Technology
Material on graphing calculators or Microsoft Excel™
is now set off to make it easier for instructors to  use
this material or not. All of the figures depicting graph-
ing calculator screens have been redrawn to create a more
accurate depiction of the math. In addition, this edition
references and provides students with a transition to
the new MathPrint™ operating system of the TI-84
Plus through the technology notes, a new appendix,
and the Graphing Calculator and Excel Spreadsheet
Manual. 

NEW! 
Enhanced Examples
Most learning from a textbook takes place within the
examples of the text. The authors have taken advantage
of this by adding more detailed annotations to the
already well-developed examples to guide students
through new concepts and skills. 

One way to support the result in Example 5 is to plot on a graphing

calculator with a small value of h. Figure 39 shows a graphing calculator screen of

where f is the function and which

was just found to be the derivative of f. The two functions, plotted on the window 

by appear virtually identical. If had been used, the two functions would be

indistinguishable.

Derivative

Let Find 

SOLUTION

Step 1

Step 2

Find a common denominator.

Simplify the numerator.

Step 3

Invert and multiply.

Step 4

 5 lim
hl0

 
24

x 1x 1 h 2

 f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h

 5
24

x 1x 1 h 2

 5
24h

x 1x 1 h 2
. 1

h

 
f 1x 1 h 2 2 f 1x 2

h
5

24h

x 1x 1 h 2

h

 5
24h

x 1x 1 h 2

 5
4x 2 4x 2 4h

x 1x 1 h 2

 5
4x 2 4 1x 1 h 2

x 1x 1 h 2

 f 1x 1 h 2 2 f 1x 2 5
4

x 1 h
2

4
x

f 1x 1 h 2 5
4

x 1 h

f r 1x 2 .f 1x 2 5
4
x

 .

h 5 0.0130, 30 4,

322, 2 4
y 5 6x2 1 4,f 1x 2 5 2x3 1 4x,y 5 3f 1x 1 0.1 2 2 f 1x 2 4 /0.1,

3f 1x 1 h 2 2 f 1x 2 4 /h

EXAMPLE  6
�2 2

30

0

y � 6x2 � 4x

y �
f (x � 0.1) � f(x)

0.1

FIGURE 39

TECHNOLOGY NOTE

FOR REVIEW
In Section 1.1, we saw that the

equation of a line can be found

with the point-slope form 

if the 

slope m and the coordinates 

of a point on the line are

known. Use the point-slope form

to find the equation of the line

with slope 3 that goes through 

the point 

Let 

Then

 y 5 3x 1 7.

 y 2 4 5 3x 1 3

 y 2 4 5 3 1x 2 121 2 2

 y 2 y1 5 m 1x 2 x1 2

m 5 3, x1 5 21, y1 5 4.
121, 4 2 .

1x1, y1 2

y 2 y1 5 m 1x 2 x1 2 ,

NEW! 
“Your Turn” Exercises

The Your Turn exercises, following selected
examples, provide students with an easy way to
quickly stop and check their understanding of the
skill or concept being presented. Answers are
provided at the end of the section’s exercises.

For Review
For Review boxes are provided in the margin as appropriate,
giving students just-in-time help with skills they should already
know but may have forgotten. For Review comments sometimes
include an explanation while others refer students back to earlier
parts of the book for a more thorough review.

�

�

�

�

�

YOUR TURN 2 Sketch the
graph of the derivative of the
function .g 1 x 2

g x

x



xv

Exercises 
Skill-based problems are followed by 
application exercises, which are grouped by
subject with subheads indicating the specific topic
(e.g. Business and Economics).

Writing exercises, labeled with
provide students with an opportunity to
explain important mathematical ideas.

Technology exercises are labeled with

for graphing calculator and           for spreadsheet. 

Connection exercises integrate topics presented in
different sections or chapters and are indicated 
with

Exercises that are particularly challenging are
denoted with + in the Annotated Instructor’s Edi-
tion only.  

.

Use the definition of the derivative to find the derivative of the
following.

55. 56.

In Exercises 57 and 58, find the derivative of the function at
the given point (a) by approximating the definition of the
derivative with small values of h and (b) by using a graphing
calculator to zoom in on the function until it appears to be a
straight line, and then finding the slope of that line.

57. 58.

Sketch the graph of the derivative for each function shown.

59.

60.

61. Let f and g be differentiable functions such that

where . Determine

(Choose one of the following.) Source: Society of Actuaries.

a. 0 b.

c. d. e.

Business and Economics

62. Revenue Waverly Products has found that its revenue is

related to advertising expenditures by the function

c 1 dc 2 df' 10 2 2 g' 10 2

cf' 10 2 2 dg' 10 2

f' 10 2 2 g' 10 2

lim
xl`

 
cf 1x 2 2 dg 1x 2

f 1x 2 2 g 1x 2
.

c 2  d

lim
xl`

 g 1x 2 5 d

lim
xl`

 f 1x 2 5 c

f 1x 2 5 xln x; x0 5 2f 1x 2 5 1 ln x 2x; x0 5 3

y 5 5x2 2 6x 1 7y 5 4x2 1 3x 2 2

63. Cost Analysis A company charges $1.50 per lb when a certain

chemical is bought in lots of 125 lb or less, with a price per

pound of $1.35 if more than 125 lb are purchased. Let 

represent the cost of x lb. Find the cost for the following num-

bers of pounds.

a. 100 b. 125 c. 140 d. Graph 

e. Where is C discontinuous?

Find the average cost per pound if the following number of

pounds are bought.

f. 100 g. 125 h. 140

Find and interpret the marginal cost (that is, the instantaneous

rate of change of the cost) for the following numbers of

pounds.

i. 100 j. 140

64. Marginal Analysis Suppose the profit (in cents) from selling x
lb of potatoes is given by

Find the average rate of change in profit from selling each of

the following amounts.

a. 6 lb to 7 lb b. 6 lb to 6.5 lb c. 6 lb to 6.1 lb

Find the marginal profit (that is, the instantaneous rate of

change of the profit) from selling the following amounts.

d. 6 lb e. 20 lb f. 30 lb

g. What is the domain of x?

h. Is it possible for the marginal profit to be negative here?

What does this mean?

i. Find the average profit function. (Recall that average profit

is given by total profit divided by the number produced, or

)

j. Find the marginal average profit function (that is, the func-

tion giving the instantaneous rate of change of the average

profit function).

k. Is it possible for the marginal average profit to vary here?

What does this mean?

l. Discuss whether this function describes a realistic situation.

65. Average Cost The graph on the next page shows the total

cost to produce x tons of cement. (Recall that average

cost is given by total cost divided by the number produced, or

)

1 1 2 21 2

C 1x 2 5 C 1x 2 /x.

C 1x 2

P 1x 2 5 P 1x 2 /x.

P 1x 2 5 15x 1 25x2.

y 5 C 1x 2 .

C 1x 2

–2

f(x)

2 4–4 6–6 –2 x

2

–2

f(x)

2 4 6–6 –2–4
x

2

APPLICATIONS

a. Find the average rate of change per year of the total amount

in the account for the first five years of the investment (from

t � 0 to t � 5).

b. Find the average rate of change per year of the total amount

in the account for the second five years of the investment

(from t � 5 to t � 10).

c. Estimate the instantaneous rate of change for t � 5.

30. Sales The graph shows annual sales (in thousands of dollars) of

a Nintendo game at a particular store. Find the average annual

rate of change in sales for the following changes in years.
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Time (in years)

a. 1 to 4 b. 4 to 7 c. 7 to 12

d. What do your answers for parts a–c tell you about the sales

of this product?

e. Give an example of another product that might have such a

sales curve.

31. Gasoline Prices In 2008, the price of gasoline in the United

States inexplicably spiked and then dropped. The average

monthly price (in cents) per gallon of unleaded regular

gasoline for 2008 is shown in the following chart. Find the

average rate of change per month in the average price per

gallon for each time period. Source: U.S. Energy Information
Administration.

a. From January to July (the peak)

b. From July to December

c. From January to December

Find the approximate average rate of change in the trust fund

for each time period.

a. From 2000 to 2008 (the peak)

b. From 2008 to 2018

Life Sciences
33. Flu Epidemic Epidemiologists in College Station, Texas,

estimate that t days after the flu begins to spread in town, the

percent of the population infected by the flu is approximated by

for 

a. Find the average rate of change of p with respect to t over

the interval from 1 to 4 days.

b. Find and interpret the instantaneous rate of change of p with

respect to t at 

34. World Population Growth The future size of the world popu-

lation depends on how soon it reaches replacement-level fer-

tility, the point at which each woman bears on average about

2.1 children. The graph shows projections for reaching that

t 5 3.

0 # t # 5.

p 1 t 2 5 t2 1 t
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32. Medicare Trust Fund The graph shows the money remaining

in the Medicare Trust Fund at the end of the fiscal year. Soucrce:
Social Security Administration.
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Find the average rate of change for each function over the given
interval.

1. between and 

2. between and 

3. between and 

4. between and 

5. between and 

6. between and 

7. between and 

8. between and 

Suppose the position of an object moving in a straight line is
given by Find the instantaneous velocity at 
each time.

9. 10.

Suppose the position of an object moving in a straight line is
given by Find the instantaneous velocity
at each time.

11. t 5 2 12. t 5 3

Suppose the position of an object moving in a straight line is
given by Find the instantaneous velocity at 
each time.

13. 14.

Find the instantaneous rate of change for each function at the
given value.

15. at 

16. at 

17. at 

18. at 

Use the formula for instantaneous rate of change, approximating
the limit by using smaller and smaller values of h, to find the
instantaneous rate of change for each function at the given value.

19. at 20. at 

21. at 22. at 

23. Explain the difference between the average rate of change of y
as x changes from a to b, and the instantaneous rate of change

of y at 

24. If the instantaneous rate of change of with respect to x is

positive when , is f increasing or decreasing there?

APPLICATIONS
Business and Economics

25. Profit Suppose that the total profit in hundreds of dollars from

selling x items is given by

P 1x 2 5 2x2 2 5x 1 6.

x 5 1
f 1x 2

x 5 a.

x 5 3f 1x 2 5 xln xx 5 2f 1x 2 5 xln x

x 5 3f 1x 2 5 xxx 5 2f 1x 2 5 xx

x 5 0F 1x 2 5 x2 1 2

t 5 21g 1 t 2 5 1 2 t2

t 5 2s 1 t 2 5 24t2 2 6

x 5 0f 1x 2 5 x2 1 2x

t 5 4t 5 1

s 1 t 2 5 t3 1 2t 1 9.

s 1 t 2 5 5t 2 2 2t 2 7.

t 5 1t 5 6

s 1 t 2 5 t 2 1 5t 1 2.

x 5 4x 5 2y 5 ln x

x 5 0x 5 22y 5 ex

x 5 2x 5 1y 5 "3x 2 2

x 5 4x 5 1y 5 "x

x 5 4x 5 21y 5 2x3 2 4x2 1 6x

x 5 1x 5 22y 5 23x3 1 2x2 2 4x 1 1

x 5 6x 5 2y 5 24x2 2 6

x 5 3x 5 1y 5 x2 1 2x

Find the average rate of change of profit for the following changes

in x.

a. 2 to 4 b. 2 to 3

c. Find and interpret the instantaneous rate of change of profit

with respect to the number of items produced when

(This number is called the marginal profit at

d. Find the marginal profit at 

26. Revenue The revenue (in thousands of dollars) from produc-

ing x units of an item is

a. Find the average rate of change of revenue when production

is increased from 1000 to 1001 units.

b. Find and interpret the instantaneous rate of change of rev-

enue with respect to the number of items produced when

1000 units are produced. (This number is called the mar-
ginal revenue at )

c. Find the additional revenue if production is increased from

1000 to 1001 units.

d. Compare your answers for parts a and c. What do you find?

How do these answers compare with your answer to part b?

27. Demand Suppose customers in a hardware store are willing to

buy boxes of nails at p dollars per box, as given by

a. Find the average rate of change of demand for a change in

price from $2 to $3.

b. Find and interpret the instantaneous rate of change of

demand when the price is $2.

c. Find the instantaneous rate of change of demand when the

price is $3.

d. As the price is increased from $2 to $3, how is demand

changing? Is the change to be expected? Explain.

28. Interest If $1000 is invested in an account that pays 5% com-

pounded annually, the total amount, , in the account after 

t years is 

.

a. Find the average rate of change per year of the total amount

in the account for the first five years of the investment (from

t � 0 to t � 5).

b. Find the average rate of change per year of the total amount

in the account for the second five years of the investment

(from t � 5 to t � 10).

c. Estimate the instantaneous rate of change for t � 5.

29. Interest If $1000 is invested in an account that pays 5% com-

pounded continuously, the total amount, , in the account

after t years is

.A 1 t 2 5 1000e0.05t

A 1 t 2

A 1 t 2 5 1000 1 1.05 2 t

A 1 t 2

N 1p 2 5 80 2 5p2, 1 # p # 4.

N 1p 2

x 5 1000.

R 1x 2 5 10x 2 0.002x2.

x 5 4.

x 5 2. 2
x 5 2.

3.3 EXERCISES�
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End-of-Chapter Summary 
End-of-Chapter Summary provides students
with a quick summary of the key ideas of the
chapter followed by a list of key definitions,
terms, and examples.

In this chapter we introduced the ideas of limit and continuity of
functions and then used these ideas to explore calculus. We saw
that the difference quotient can represent

• the average rate of change,

• the slope of the secant line, and

• the average velocity.

We saw that the derivative can represent

• the instantaneous rate of change,

• the slope of the tangent line, and

• the instantaneous velocity.

SUMMARY

3 CHAPTER REVIEW

Extended Applications
Extended Applications are provided now at the
end of every chapter as in-depth applied exercises
to help stimulate student interest. These activities
can be completed individually or as a group pro-
ject.

Chapter Review Exercises 
Chapter Review Exercises have been slightly
reorganized so that the Concept Check exercises
fall within the Chapter Review Exercises. This
provides students with a more complete review of
both the skills and the concepts they should have
mastered in this chapter. These exercises in their
entirety provide a comprehensive review for a
chapter-level exam.

A MODEL FOR DRUGS ADMINISTERED INTRAVENOUSLY

E X T E N D E D APPLICATION

When a drug is

administered

intravenously it

enters the bloodstream imme-

diately, producing an immedi-

ate effect for the patient. The

drug can be either given as a

single rapid injection or given

at a constant drip rate. The lat-

ter is commonly referred to as

an intravenous (IV) infusion.

Common drugs administered

intravenously include mor-

phine for pain, diazepam (or

Valium) to control a seizure,

and digoxin for heart failure.

SINGLE RAPID INJECTION
With a single rapid injection, the amount of drug in the blood-

stream reaches its peak immediately and then the body eliminates

the drug exponentially. The larger the amount of drug there is in

the body, the faster the body eliminates it. If a lesser amount of

drug is in the body, it is eliminated more slowly.

Since the half-life of this drug is 4 hours,

Therefore, the model is

A(t) � 35e�0.17t.

The graph of A(t) is given in Figure 55.

k 5 2 

ln 2

4
 < 2 0.17.
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Limit of a Function Let f be a function and let a and L be real numbers. If

1. as x takes values closer and closer (but not equal) to a on both sides of a, the corresponding val-

ues of get closer and closer (and perhaps equal) to L; and

2. the value of can be made as close to L as desired by taking values of x close enough to a;

then L is the limit of as x approaches a, written

Existence of Limits The limit of f as x approaches a may not exist.

1. If becomes infinitely large in magnitude (positive or negative) as x approaches the number

a from either side, we write or In either case, the limit does

not exist.

2. If becomes infinitely large in magnitude (positive) as x approaches a from one side and infi-

nitely large in magnitude (negative) as x approaches a from the other side, then does

not exist.

lim
xla 

f 1x 2
f 1x 2

lim
xla 

f 1x 2 5 2`.lim
xla 

f 1x 2 5 `

f 1x 2

lim
xla 

f 1 x 2 5 L.

f 1x 2

f 1x 2

f 1x 2

We also learned how to estimate the value of the derivative using

graphical differentiation. In the next chapter, we will take a closer

look at the definition of the derivative to develop a set of rules to

quickly and easily calculate the derivative of a wide range of

functions without the need to directly apply the definition of the

derivative each time.

Determine whether each of the following statements is true or
false, and explain why.

1. The limit of a product is the product of the limits when each

of the limits exists.

2. The limit of a function may not exist at a point even though

the function is defined there.

3. If a rational function has a polynomial in the denominator of

higher degree than the polynomial in the numerator, then the

limit at infinity must equal zero.

4. If the limit of a function exists at a point, then the function is

continuous there.

5. A polynomial function is continuous everywhere.

6. A rational function is continuous everywhere.

7. The derivative gives the average rate of change of a function.

8. The derivative gives the instantaneous rate of change of a

function.

9. The instantaneous rate of change is a limit.

10. The derivative is a function.

11. The slope of the tangent line gives the average rate of change.

12. The derivative of a function exists wherever the function is

continuous.

13. Is a derivative always a limit? Is a limit always a derivative?

Explain.

14. Is every continuous function differentiable? Is every

differentiable function continuous? Explain.

15. Describe how to tell when a function is discontinuous at the

real number 

16. Give two applications of the derivative

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
 .

x 5 a.

Decide whether the limits in Exercises 17–34 exist. If a limit
exists, find its value.

17. a. b. c. d. 

18. a. b. c. d. 

19. a. b. c. d. f 14 2lim
xl4

f 1x 2lim
xl41

f 1x 2lim
xl42

f 1x 2

g 121 2lim
xl21

g 1x 2lim
xl211

g 1x 2lim
xl212

g 1x 2

f 123 2lim
xl23

f 1x 2lim
xl231

f 1x 2lim
xl232

f 1x 2

KEY TERMS

3.1
limit

limit from the left/right

one-/two-sided limit

piecewise function

limit at infinity

3.2
continuous

discontinuous

removable discontinuity

continuous on an open/closed 

interval

continuous from the right/left

Intermediate Value Theorem

3.3
average rate of change

difference quotient

instantaneous rate of change 

velocity

3.4
secant line

tangent line

slope of the curve

derivative

differentiable

differentiation

To understand the concepts presented in this chapter, you should know the meaning and use of the following terms.
For easy reference, the section in the chapter where a word (or expression) was first used is provided.

REVIEW EXERCISES

CONCEPT CHECK

PRACTICE AND EXPLORATIONS
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Media Resources www.mymathlab.com

MyMathLab® Online Course (access code required)
www.mymathlab.com
MyMathLab delivers proven results in helping individual students succeed. 

• MyMathLab has a consistently positive impact on the quality of learning in higher
education math instruction. MyMathLab can be successfully implemented in any 
environment—lab-based, hybrid, fully online, traditional—and demonstrates the 
quantifiable difference that integrated usage has on student retention, subsequent 
success, and overall achievement.

• MyMathLab’s comprehensive online gradebook automatically tracks your students’
results on tests, quizzes, homework, and in the study plan. You can use the gradebook
to quickly intervene if your students have trouble, or to provide positive feedback on 
a job well done. The data within MyMathLab is easily exported to a variety of spread-
sheet programs, such as Microsoft Excel. You can determine which points of data you
want to export, and then analyze the results to determine success.

Video Lectures on DVD-ROM with Optional Captioning

• Complete set of digitized videos, with extensive section
coverage, for student use at home or on campus

• Ideal for distance learning or supplemental instruction

• ISBN 0-321-74612-0 / 978-0-321-74612-2

Supplementary Content 

• Additional Extended Applications

• Comprehensive source list

• Available at the Downloadable Student Resources site,
www.pearsonhighered.com/mathstatsresources, and to
qualified instructors within MyMathLab or through the
Pearson Instructor Resource Center, 
www.pearsonhighered.com/irc

Supplements
STUDENT RESOURCES INSTRUCTOR RESOURCES

Annotated Instructor’s Edition

• Numerous teaching tips

• Includes all the answers, usually on the same page as
the exercises, for quick reference

• ISBN 0-321-73329-0 / 978-0-321-73329-0

• More challenging exercises are indicated with a + symbol

Instructor’s Resource Guide and Solutions Manual
(download only)

• Provides complete solutions to all exercises, two
versions of a pre-test and final exam, and teaching
tips.

• Authored by Elka Block and Frank Purcell

• Available to qualified instructors within MyMathLab or
through the Pearson Instructor Resource Center,
www.pearsonhighered.com/irc

PowerPoint Lecture Presentation

• Newly revised and greatly improved

• Classroom presentation slides are geared specifically to
the sequence and philosophy of this textbook.

• Includes lecture content and key graphics from the book

• Available to qualified instructors within MyMathLab or
through the Pearson Instructor Resource Center,
www.pearsonhighered.com/irc

• Authored by Dr. Sharda K. Gudehithly, Wilbur Wright
College

Student Edition

• ISBN 0-321-74900-6 / 978-0-321-74900-0

Student’s Solutions Manual

• Provides detailed solutions to all odd-numbered text
exercises and sample chapter tests with answers.

• Authored by Elka Block and Frank Purcell

• ISBN 0-321-75790-4 / 978-0-321-75790-6

Graphing Calculator and Excel Spreadsheet Manual

• Provides instructions and keystroke operations for the
TI-83/84 Plus, the TI-84 Plus with the new operating
system featuring MathPrint™, and the TI-89 as well as
for the Excel spreadsheet program. 

• Authored by GEX Publishing Services

• ISBN 0-321-70966-7 / 978-0-321-70966-0

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc
www.pearsonhighered.com/mathstatsresources
www.mymathlab.com
www.mymathlab.com


PREFACExviii

MyMathLab provides engaging experiences that personalize, stimulate, and measure learning
for each student. 

• Tutorial Exercises: The homework and practice exercises in MyMathLab and MyStat-
Lab are correlated to the exercises in the textbook, and they regenerate algorithmically
to give students unlimited opportunity for practice and mastery. The software offers
immediate, helpful feedback when students enter incorrect answers. 

• Multimedia Learning Aids: Exercises include guided solutions, sample problems,
animations, videos, and eText clips for extra help at point-of-use. 

• Expert Tutoring: Although many students describe the whole of MyMathLab as “like
having your own personal tutor,” students using MyMathLab and MyStatLab do have
access to live tutoring from Pearson, from qualified math and statistics instructors who
provide tutoring sessions for students via MyMathLab and MyStatLab. 

And, MyMathLab comes from a trusted partner with educational expertise and an eye on
the future. 

Knowing that you are using a Pearson product means knowing that you are using qual-
ity content. That means that our eTexts are accurate, that our assessment tools work,
and that our questions are error-free. And whether you are just getting started with
MyMathLab, or have a question along the way, we’re here to help you learn about our
technologies and how to incorporate them into your course.

To learn more about how MyMathLab combines proven learning applications with powerful
assessment, visit www.mymathlab.com or contact your Pearson representative.

MathXL® Online Course (access code required)
www.mathxl.com

MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab is
MathXL plus a learning management system.) With MathXL, instructors can: 

• Create, edit, and assign online homework and tests using algorithmically generated
exercises correlated at the objective level to the textbook. 

• Create and assign their own online exercises and import TestGen tests for added flexi-
bility. 

• Maintain records of all student work tracked in MathXL’s online gradebook. 

With MathXL, students can:

• Take chapter tests in MathXL and receive personalized study plans and/or personalized
homework assignments based on their test results. 

• Use the study plan and/or the homework to link directly to tutorial exercises for the
objectives they need to study. 

• Access supplemental animations and video clips directly from selected exercises. 

MathXL is available to qualified adopters. For more information, visit our website at
www.mathxl.com, or contact your Pearson representative.

InterAct Math Tutorial Website
www.interactmath.com

Get practice and tutorial help online! This interactive tutorial website provides algorithmically
generated practice exercises that correlate directly to the exercises in the textbook. Students
can retry an exercise as many times as they would like with new values each time for unlimited
practice and mastery. Every exercise is accompanied by an interactive guided solution that
provides helpful feedback for incorrect answers, and students can view a worked-out sample
problem that guides them through an exercise similar to the one in which they’re working.

www.mymathlab.com
www.mathxl.com
www.mathxl.com
www.interactmath.com
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Dear Student,
Hello! The fact that you’re reading this preface is good news. One of the keys to suc-
cess in a math class is to read the book. Another is to answer all the questions correctly
on your professor’s tests. You’ve already started doing the first; doing the second may
be more of a challenge, but by reading this book and working out the exercises, you’ll
be in a much stronger position to ace the tests. One last essential key to success is to go
to class and actively participate.

You’ll be happy to discover that we’ve provided the answers to the odd-numbered
exercises in the back of the book. As you begin the exercises, you may be tempted to
immediately look up the answer in the back of the book, and then figure out how to get
that answer. It is an easy solution that has a consequence—you won’t learn to do the
exercises without that extra hint. Then, when you take a test, you will be forced to
answer the questions without knowing what the answer is. Believe us, this is a lot
harder! The learning comes from figuring out the exercises. Once you have an answer,
look in the back and see if your answer agrees with ours. If it does, you’re on the right
path. If it doesn’t, try to figure out what you did wrong. Once you’ve discovered your
error, continue to work out more exercises to master the concept and skill.

Equations are a mathematician’s way of expressing ideas in concise shorthand. The prob-
lem in reading mathematics is unpacking the shorthand. One useful technique is to read
with paper and pencil in hand so you can work out calculations as you go along. When
you are baffled, and you wonder, “How did they get that result?” try doing the calculation
yourself and see what you get. You’ll be amazed (or at least mildly satisfied) at how often
that answers your question. Remember, math is not a spectator sport. You don’t learn
math by passively reading it or watching your professor. You learn mathematics by doing
mathematics.

Finally, if there is anything you would like to see changed in the book, feel free to write to
us at matrng@hofstra.edu or npritchey@ysu.edu. We’re constantly trying to make this
book even better. If you’d like to know more about us, we have Web sites that we invite
you to visit: http://people.hofstra.edu/rgreenwell and http://people.ysu.edu/~npritchey.

Marge Lial

Ray Greenwell

Nate Ritchey

http://people.hofstra.edu/rgreenwell
http://people.ysu.edu/~npritchey


Prerequisite Skills Diagnostic Test
Below is a very brief test to help you recognize which, if any, prerequisite skills you may
need to remediate in order to be successful in this course. After completing the test,
check your answers in the back of the book. In addition to the answers, we have also pro-
vided the solutions to these problems in Appendix A. These solutions should help remind
you how to solve the problems. For problems 5-26, the answers are followed by refer-
ences to sections within Chapter R where you can find guidance on how to solve the
problem and/or additional instruction. Addressing any weak prerequisite skills now will
make a positive impact on your success as you progress through this course.

1. What percent of 50 is 10?

2. Simplify 

3. Let x be the number of apples and y be the number of oranges. Write the following state-
ment as an algebraic equation: “The total number of apples and oranges is 75.”

4. Let s be the number of students and p be the number of professors. Write the following
statement as an algebraic equation: “There are at least four times as many students as
professors.”

5. Solve for k: 

6. Solve for x: 

7. Write in interval notation: 

8. Using the variable x, write the following interval as an inequality: 

9. Solve for y: 

10. Solve for 

11. Carry out the operations and simplify: 

12. Multiply out and simplify 

13. Multiply out and simplify 

14. Factor .

15. Factor 3x2 2 x 2 10.

3pq 1 6p2q 1 9pq2

1a 2 2b 2 2.

1x2 2 2x 1 3 2  1x 1 1 2 .

1 5y2 2 6y 2 4 2 2 2 1 3y2 2 5y 1 1 2 .

p: 
2

3
1 5p 2 3 2 .

3

4
12p 1 1 2 .

5 1 y 2 2 2 1 1 # 7y 1 8.

12`, 23 4.

22 , x # 5.

5

8
x 1

1

16
x 5

11

16
1 x.

7k 1 8 5 24 1 3 2 k 2 .

13

7
2

2

5
.

xxii



16. Perform the operation and simplify: 

17. Perform the operation and simplify: 

18. Solve for x: 

19. Solve for z: 

20. Simplify 

21. Simplify 

22. Simplify as a single term without negative exponents: 

23. Factor 

24. Simplify .

25. Rationalize the denominator: .

26. Simplify . "y2 2 10y 1 25

2

4 2"10

"3 64b6

1x2 1 1 221/2 1x 1 2 2 1 3 1x2 1 1 2 1/2.

k21 2 m21.

41/4 1p2/3q21/3 221

421/4 p4/3q4/3 .

421 1x2y3 2 2

x22y5 .

8z

z 1 3
# 2.

3x2 1 4x 5 1.

x 1 3

x2 2 1
 1

2

x2 1 x
.

a2 2 6a

a2 2 4
. a 2 2

a
.

PREREQUISITE SKILLS DIAGNOSTIC TEST xxiii
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R.1 Polynomials

R.2 Factoring

R.3 Rational Expressions

R.4 Equations

R.5 Inequalities

R.6 Exponents

R.7 Radicals

In this chapter, we will review the most important topics in

algebra. Knowing algebra is a fundamental prerequisite to

success in higher mathematics.This algebra reference is

designed for self-study; study it all at once or refer to it

when needed throughout the course. Since this is a review,

answers to all exercises are given in the answer section at

the back of the book.

R-1

Algebra ReferenceR
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Polynomials
An expression such as is a term; the number 9 is the coefficient, p is the variable, and
4 is the exponent. The expression means while means and so on.
Terms having the same variable and the same exponent, such as and are like
terms. Terms that do not have both the same variable and the same exponent, such as 
and are unlike terms.

A polynomial is a term or a finite sum of terms in which all variables have whole num-
ber exponents, and no variables appear in denominators. Examples of polynomials include

Order of Operations Algebra is a language, and you must be familiar with its rules
to correctly interpret algebraic statements. The following order of operations have been
agreed upon through centuries of usage.

• Expressions in parentheses are calculated first, working from the inside out. The
numerator and denominator of a fraction are treated as expressions in parentheses.

• Powers are performed next, going from left to right.

• Multiplication and division are performed next, going from left to right.

• Addition and subtraction are performed last, going from left to right.

For example, in the expression suppose x has the value of 2. We
would evaluate this as follows:

Evaluate 3 raised to a power.

Perform the multiplication.

Evaluate the power.

In the expression suppose x has the value of 2. We would evaluate this as follows:

Evaluate the numerator and the denominator.

Simplify the fraction.

Adding and Subtracting Polynomials The following properties of real num-
bers are useful for performing operations on polynomials.

 5 2

22 1 3 12 2 1 6

2 1 6
5

16

8

x2 1 3x 1 6

x 1 6
,

 5 1444

 5 1 38 2 2
 5 1 54 1 6 2 22 2 2
 5 1 6 1 9 2 1 3 12 2 2 22 2 2

1 6 12 1 1 2 2 1 3 12 2 2 22 2 2 5 1 6 1 3 2 2 1 3 12 2 2 22 2 2

1 6 1x 1 1 2 2 1 3x 2 22 2 2,

5x4 1 2x3 1 6x,  8m3 1 9m2n 2 6mn2 1 3n3,  10p,  and  29.

m4,
m2

23x4,9x4
p . p,p2p . p . p . p,p4

9p4

R.1

Properties of Real Numbers
For all real numbers a, b, and c:

1. Commutative properties

2. Associative properties

3. Distributive propertya 1b 1 c 2 5 ab 1 ac.

1ab 2c 5 a 1bc 2 ;
1a 1 b 2 1 c 5 a 1 1b 1 c 2 ;
ab 5 ba;
a 1 b 5 b 1 a;

Evaluate the expression in the 
innermost parentheses.

Perform the addition and 
subtraction from left to right.

CHAPTER R Algebra ReferenceR-2



R.1 Polynomials R-3

Properties of Real Numbers

(a) Commutative property of addition

(b) Commutative property of multiplication

(c) Associative property of multiplication

(d) Distributive property

One use of the distributive property is to add or subtract polynomials. Only like terms
may be added or subtracted. For example,

and

but the polynomial cannot be further simplified. To subtract polynomials, we use
the facts that and In the next example, we
show how to add and subtract polynomials.

Adding and Subtracting Polynomials

Add or subtract as indicated.

(a)

SOLUTION Combine like terms.

(b)

SOLUTION Multiply each polynomial by the coefficient in front of the polynomial,
and then combine terms as before.

(c)

SOLUTION Distributing the minus sign and combining like terms yields

TRY YOUR TURN 1

Multiplying Polynomials The distributive property is also used to multiply
polynomials, along with the fact that For example,

Multiplying Polynomials

Multiply.

(a)

SOLUTION Using the distributive property yields

 5 48x2 2 32x.

 8x 1 6x 2 4 2 5 8x 16x 2 2 8x 14 2

8x 1 6x 2 4 2

x . x 5 x1 . x1 5 x111 5 x2  and  x2 . x5 5 x215 5 x7.

am . an 5 am1n.

 5 25x2 2 5x 1 6.

 12x2 2 11x 1 8 2 1 127x2 1 6x 2 2 2

12x2 2 11x 1 8 2 2 17x2 2 6x 1 2 2

 5 28x4 1 3x3 1 6x2 2 33x 2 3

 5 28x4 1 12x3 2 18x2 2 24 2 9x3 1 24x2 2 33x 1 21

2 124x4 1 6x3 2 9x2 2 12 2 1 3 123x3 1 8x2 2 11x 1 7 2

2 124x4 1 6x3 2 9x2 2 12 2 1 3 123x3 1 8x2 2 11x 1 7 2

 5 11x3 1 x2 2 3x 1 8

 5 18x3 1 3x3 2 1 124x2 1 5x2 2 1 16x 2 9x 2 1 8

 18x3 2 4x2 1 6x 2 1 13x3 1 5x2 2 9x 1 8 2

18x3 2 4x2 1 6x 2 1 13x3 1 5x2 2 9x 1 8 2

2 1a 2 b 2 5 2a 1 b.2 1a 1 b 2 5 2a 2 b
8y4 1 2y5

22m2 1 8m2 5 122 1 8 2m2 5 6m2,

12y4 1 6y4 5 1 12 1 6 2y4 5 18y4,

3 1x 1 4 2 5 3x 1 12

17x 2x 5 7 1x . x 2 5 7x2

x . 3 5 3x

2 1 x 5 x 1 2

EXAMPLE  1

EXAMPLE  2

YOUR TURN 1 Perform the
operation 3(x2 � 4x � 5) �
4(3x2 � 5x � 7).

EXAMPLE  3
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(b)

SOLUTION Using the distributive property yields

(c)

SOLUTION Multiplying the first two polynomials and then multiplying their product
by the third polynomial yields

. TRY YOUR TURN 2

A binomial is a polynomial with exactly two terms, such as or When
two binomials are multiplied, the FOIL method (First, Outer, Inner, Last) is used as a
memory aid.

Multiplying Polynomials

Find using the FOIL method.

SOLUTION

F O I L

Multiplying Polynomials

Find 

SOLUTION Write as Then multiply the
first two factors using FOIL.

Now multiply this last result by using the distributive property, as in Example 3(b).

Combine like terms.

Notice in the first part of Example 5, when we multiplied by itself, that the
product of the square of a binomial is the square of the first term, plus twice the prod-
uct of the two terms, , plus the square of the last term,  125k 2 2.12 2 12k 2 125m 2

12k 22,
12k 2 5m 2

 5 8k3 2 60k2m 1 150km2 2 125m3

 5 8k 3 2 20k 2m 2 40k 2m 1 100km2 1 50km2 2 125m3

5 4k 2 12k 2 5m 2 2 20km 12k 2 5m 2 1 25m2 12k 2 5m 2
14k 2 2 20km 1 25m2 2 12k 2 5m 2

12k 2 5m 2

 5 4k2 2 20km 1 25m2

12k 2 5m 2 12k 2 5m 2 5 4k2 2 10km 2 10km 1 25m2

12k 2 5m 2 12k 2 5m 2 12k 2 5m 2 .12k 2 5m 2 3
12k 2 5m 2 3.

5 2m2 1 3m 2 20

 5 2m2 1 8m 2 5m 2 20

 12m 2 5 2 1m 1 4 2 5 12m 2 1m 2 1 12m 2 14 2 1 125 2 1m 2 1 125 2 14 2

12m 2 5 2 1m 1 4 2

m 1 n.2x 1 1

 5 x3 1 x2 2 14x 2 24

 5 x3 1 5x2 1 6x 2 4x2 2 20x 2 24

 5 1x2 1 5x 1 6 2 1x 2 4 2
 5 1x2 1 2x 1 3x 1 6 2 1x 2 4 2
 5 3 1x 1 2 2 1x 1 3 2 4 1x 2 4 2

1x   1 2 2 1x 1 3 2 1x 2 4 2

1x 1 2 2 1x 1 3 2 1x 2 4 2

 5 3p3 1 13p2 2 13p 1 2.

 5 3p3 1 15p2 2 3p 2 2p2 2 10p 1 2

 5 3p 1  p2 2 1 3p 1 5p 2 1 3p 121 2 2 2 1  p2 2 2 2 1 5p 2 2 2 121 2
 5 3p 1p2 1 5p 2 1 2 2 2 1p2 1 5p 2 1 2
1 3p 2 2 2 1p2 1 5p 2 1 2

1 3p 2 2 2 1p2 1 5p 2 1 2

CHAPTER R Algebra ReferenceR-4

EXAMPLE  4

EXAMPLE  5

YOUR TURN 2 Perform the
operation (3y � 2)(4y2 � 2y � 5).



R.1 EXERCISES

R.2 Factoring R-5

Avoid the common error of writing As the first step of
Example 5 shows, the square of a binomial has three terms, so

Furthermore, higher powers of a binomial also result in more than two terms.
For example, verify by multiplication that

Remember, for any value of 

1 x 1 y 2 n u xn 1 yn.

n 2 1,

1 x 1 y 2 3 5 x3 1 3x2y 1 3xy2 1 y3.

1 x 1 y 2 2 5 x2 1 2xy 1 y2.

1 x 1 y 2 2 5 x2 1 y2.

Perform the indicated operations.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. a
3

4
 r 2

2

3
 sb a

5

4
 r 1

1

3
 sb

a
2

5
 y 1

1

8
 zb  a

3

5
 y 1

1

2
 zb

16m 1 5 2 16m 2 5 2

12 2 3x 2 12 1 3x 2

19k 1 q 2 12k 2 q 2

1 3t 2 2y 2 1 3t 1 5y 2
6x 122x3 1 5x 1 6 2
29m 12m2 1 3m 2 1 2
0.5 1 5r2 1 3.2r 2 6 2 2 1 1.7r2 2 2r 2 1.5 2

10.613x2 2 4.215x 1 0.892 2 2 0.47 12x2 2 3x 1 5 2
2 13r2 1 4r 1 2 2 2 3 12r2 1 4r 2 5 2
26 12q2 1 4q 2 3 2 1 4 12q2 1 7q 2 3 2

124y2 2 3y 1 8 2 2 12y2 2 6y 2 2 2

12x2 2 6x 1 11 2 1 123x2 1 7x 2 2 2

YOUR TURN ANSWERS 

1. 2. 12y3 1 2y2 2 19y 2 102 9x2 1 8x 1 13

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. 1 3x 1 y 2 3
1x 2 2y 2 3
12a 2 4b 2 2
1x 1 2 2 2
1x 2 1 2 1x 1 2 2 1x 2 3 2

1x 1 1 2 1x 1 2 2 1x 1 3 2

1 r 1 2s 2 3t 2 12r 2 2s 1 t 2

1x 1 y 1 z 2 1 3x 2 2y 2 z 2

1k 1 2 2 112k3 2 3k2 1 k 1 1 2

12m 1 1 2 14m2 2 2m 1 1 2

1 3p 1 2 2 1 5p2 1 p 2 4 2

13p 2 1 2 19p2 1 3p 1 1 2

Multiplication of polynomials relies on the distributive property. The reverse process,
where a polynomial is written as a product of other polynomials, is called factoring. For
example, one way to factor the number 18 is to write it as the product both 9 and 2 are
factors of 18. Usually, only integers are used as factors of integers. The number 18 can also
be written with three integer factors as 

The Greatest Common Factor To factor the algebraic expression 
first note that both 15m and 45 are divisible by 15; and By the
distributive property,

Both 15 and are factors of Since 15 divides into both terms of
(and is the largest number that will do so), 15 is the greatest common factor for15m 1 45

15m 1 45.m 1 3

15m 1 45 5 15 . m 1 15 . 3 5 15 1m 1 3 2 .

45 5 15 . 3.15m 5 15 . m
15m 1 45,

2 . 3 . 3.

9 . 2;

FactoringR.2

CAUTION
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the polynomial The process of writing as is often called
factoring out the greatest common factor.

Factoring

Factor out the greatest common factor.

(a)

SOLUTION Both 12p and 18q are divisible by 6. Therefore,

(b)

SOLUTION Each of these terms is divisible by x.

TRY YOUR TURN 1

One can always check factorization by finding the product of the factors and comparing
it to the original expression.

When factoring out the greatest common factor in an expression like be
careful to remember the 1 in the second term.

, .

Factoring Trinomials A polynomial that has no greatest common factor (other than 1)
may still be factorable. For example, the polynomial can be factored as

To see that this is correct, find the product you should get
A polynomial such as this with three terms is called a trinomial. To factor the

trinomial where the coefficient of is 1, we use FOIL backwards.

Factoring a Trinomial

Factor 

SOLUTION Since the coefficient of is 1, factor by finding two numbers whose product is
15 and whose sum is 8. Since the constant and the middle term are positive, the numbers must
both be positive. Begin by listing all pairs of positive integers having a product of 15.As you do
this, also form the sum of each pair of numbers.

Products Sums

The numbers 5 and 3 have a product of 15 and a sum of 8. Thus, factors as

The answer also can be written as 

If the coefficient of the squared term is not 1, work as shown below.

Factoring a Trinomial

Factor 

SOLUTION The possible factors of are 4x and x or 2x and 2x; the possible factors of
are and y or 5y and Try various combinations of these factors until one

works (if, indeed, any work). For example, try the product

 5 4x2 1 19xy 2 5y2

 1x 1 5y 2 14x 2 y 2 5 4x2 2 xy 1 20xy 2 5y2

1x 1 5y 2 14x 2 y 2 .
2y.25y25y2

4x2

4x2 1 8xy 2 5y2.

1y 1 3 2 1y 1 5 2 .

y2 1 8y 1 15 5 1y 1 5 2 1y 1 3 2 .

y2 1 8y 1 15

 5 1 3 5 8 5 ? 3 5 15

 15 1 1 5 16 15 . 1 5 15

y2

y2 1 8y 1 15.

x2x2 1 5x 1 6,
x2 1 5x 1 6.

1x 1 2 2 1x 1 3 2 ;1x 1 2 2 1x 1 3 2 .
x2 1 5x 1 6

not x 1 2x 22x2 1 x 5 2x2 1 1x 5 x 1 2x 1 1 2

2x2 1 x,

 5 x 1 8x2 2 9x 1 15 2  or  1 8x2 2 9x 1 15 2x
 8x3 2 9x2 1 15x 5 1 8x2 2 . x 2 1 9x 2 . x 1 15 . x

8x3 2 9x2 1 15x

12p 2 18q 5 6 . 2p 2 6 . 3q 5 6 12p 2 3q 2 .

12p 2 18q

15 1m 1 3 215m 1 4515m 1 45.

EXAMPLE  1

EXAMPLE  2

YOUR TURN 1 Factor
4z4 1 4z3 1 18z2.

EXAMPLE  3

CAUTION
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This product is not correct, so try another combination.

Since this combination gives the correct polynomial,

TRY YOUR TURN 2

Special Factorizations Four special factorizations occur so often that they are
listed here for future reference.

Special Factorizations
Difference of two squares

Perfect square

Difference of two cubes

Sum of two cubes

A polynomial that cannot be factored is called a prime polynomial.

Factoring Polynomials

Factor each polynomial, if possible.

(a)

(b) is a prime polynomial.

(c) Perfect square

(d) Perfect square

(e)

(f)

(g)

(h)

In factoring, always look for a common factor first. Since has a com-
mon factor of 4,

It would be incomplete to factor it as

,

since each factor can be factored still further. To factor means to factor com-
pletely, so that each polynomial factor is prime.

36x2 2 4y2 5 1 6x 1 2y 2 1 6x 2 2y 2

36x2 2 4y2 5 4 1 9x2 2 y2 2 5 4 1 3x 1 y 2 1 3x 2 y 2 .

36x2 2 4y2

Difference of
two squares

p4 2 1 5 1p2 1 1 2 1p2 2 1 2 5 1p2 1 1 2 1p 1 1 2 1p 2 1 2

Difference of
two cubes

8k3 2 27z3 5 12k 2 3 2 13z 2 3 5 12k 2 3z 2 14k2 1 6kz 1 9z2 2

Sum of two
cubes

m3 1 125 5 m3 1 53 5 1m 1 5 2 1m2 2 5m 1 25 2

Difference of
two cubesy3 2 8 5 y3 2 23 5 1 y 2 2 2 1 y2 1 2y 1 4 2

9y2 2 24yz 1 16z2 5 13y 2 4z 2 2
x2 1 12x 1 36 5 1x 1 6 2 2
x2 1 36

Difference of
two squares

64p2 2 49q2 5 18p 2 2 2 17q 2 2 5 18p 1 7q 2 18p 2 7q 2

x3 1 y3 5 1x 1 y 2 1x2 2 xy 1 y2 2
x3 2 y3 5 1x 2 y 2 1x2 1 xy 1 y2 2
x2 1 2xy 1 y2 5 1x 1 y 2 2
x2 2 y2 5 1x 1 y 2 1x 2 y 2

4x2 1 8xy 2 5y2 5 12x 2 y 2 12x 1 5y 2 .

 5 4x2 1 8xy 2 5y2

 12x 2 y 2 12x 1 5y 2 5 4x2 1 10xy 2 2xy 2 5y2

EXAMPLE  4

Factor each polynomial. If a polynomial cannot be factored,
write prime. Factor out the greatest common factor as necessary.

1.

2. 3y3 1 24y2 1 9y

7a3 1 14a2

3.

4.

5.

6. x2 1 4x 2 5

m2 2 5m 2 14

60m4 2 120m3n 1 50m2n2

13p4q2 2 39p3q 1 26p2q2

YOUR TURN 2 Factor
6a2 1 5ab 2 4b2.

R.2 EXERCISES

CAUTION
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Rational ExpressionsR.3
Many algebraic fractions are rational expressions, which are quotients of polynomials
with nonzero denominators. Examples include

Next, we summarize properties for working with rational expressions.

Properties of Rational Expressions
For all mathematical expressions P, Q, R, and S, with and :

Fundamental property

Addition

Subtraction

Multiplication

Division

When writing a rational expression in lowest terms, we may need to use the fact 

that For example,

Reducing Rational Expressions

Write each rational expression in lowest terms, that is, reduce the expression as much as possible.

(a)

Factor both the numerator and denominator in order to identify any common factors, which
have a quotient of 1. The answer could also be written as 2x 1 4.

8x 1 16

4
5

8 1x 1 2 2
4

5
4 . 2 1x 1 2 2

4
5 2 1x 1 2 2

x4

3x
5

1x4

3x
5

1

3
. x4

x
5

1

3
. x421 5

1

3
 x3.

am

an 5 am2n.

P

Q
4

R

S
5

P

Q
. S

R
 1R 2 0 2

P

Q
. R

S
5

PR

QS

P

Q
2

R

Q
5

P 2 R

Q

P

Q
1

R

Q
5

P 1 R

Q

P

Q
5

PS

QS

S 2 0Q 2 0

8

x 2 1
 ,  

3x2 1 4x

5x 2 6
 ,  and  

2y 1 1

y2  .

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. 3m3 1 12m2 1 9m

6a2 2 48a 2 120

21m2 1 13mn 1 2n2

15y2 1 y 2 2

3a2 1 10a 1 7

3x2 1 4x 2 7

y2 2 4yz 2 21z2

s2 1 2st 2 35t2

a2 2 6ab 1 5b2

b2 2 8b 1 7

z2 1 9z 1 20 18.

19.

20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. 16a4 2 81b4x4 2 y4

3m3 1 37527r3 2 64s3

a3 2 2169p2 2 24p 1 16

s2 2 10st 1 25t2z2 1 14zy 1 49y2

9x2 1 6410x2 2 160

9m2 2 25x2 2 64

24x4 1 36x3y 2 60x2y2

24a4 1 10a3b 2 4a2b2

4a2 1 10a 1 6

YOUR TURN ANSWERS 

1. 2. 12a 2 b 2 1 3a 1 4b 22z2 12z2 1 2z 1 9 2

EXAMPLE  1
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(b)

The answer cannot be further reduced. TRY YOUR TURN 1

One of the most common errors in algebra involves incorrect use of the fundamental
property of rational expressions. Only common factors may be divided or “can-
celed.” It is essential to factor rational expressions before writing them in lowest
terms. In Example 1(b), for instance, it is not correct to “cancel” (or cancel k, or
divide 12 by because the additions and subtraction must be performed first.
Here they cannot be performed, so it is not possible to divide. After factoring, how-
ever, the fundamental property can be used to write the expression in lowest terms.

Combining Rational Expressions

Perform each operation.

(a)

SOLUTION Factor where possible, then multiply numerators and denominators and
reduce to lowest terms.

(b)

SOLUTION Factor where possible. 

(c)

SOLUTION Use the division property of rational expressions.

Invert and multiply.

Factor and reduce to lowest terms.

(d)

SOLUTION As shown in the list of properties, to subtract two rational expressions that
have the same denominators, subtract the numerators while keeping the same denominator.

4

5k
2

11

5k
5

4 2 11

5k
5 2 

7

5k

4

5k
2

11

5k

5
9 1 p 2 4 2

6 . 2
. 6 . 3

5 1 p 2 4 2
5

27

10

9p 2 36

12
. 18

5 1p 2 4 2

9p 2 36

12
4

5 1p 2 4 2
18

5
m 1m 1 2 2 1m 1 3 2

1m 1 3 2 1m 1 2 2 1m 1 1 2
5

m

m 1 1

1m 1 2 2 1m 1 3 2
m 1 3

. m
1m 1 2 2 1m 1 1 2

m2 1 5m 1 6

m 1 3
. m

m2 1 3m 1 2

 5
3 . 6 . 3 1 y 1 3 2

6 . 5 1 y 1 3 2  
5

3 . 3

5
5

9

5

 5
3 . 18 1 y 1 3 2
6 . 5 1 y 1 3 2

 
3y 1 9

6
. 18

5y 1 15
5

3 1 y 1 3 2
6

. 18

5 1 y 1 3 2

3y 1 9

6
. 18

5y 1 15

23)
k2

k2 1 7k 1 12

k2 1 2k 2 3
5
1k 1 4 2 1k 1 32

1k 2 1 2 1k 1 32
5

k 1 4

k 2 1

EXAMPLE  2

YOUR TURN 1 Write 
in lowest terms

z2 1 5z 1 6

2z2 1 7z 1 3
.

CAUTION
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(e)

SOLUTION These three fractions cannot be added until their denominators are the
same. A common denominator into which p, 2p, and 3p all divide is 6p. Note that 12p
is also a common denominator, but 6p is the least common denominator. Use the fun-
damental property to rewrite each rational expression with a denominator of 6p.

(f)

SOLUTION To find the least common denominator, we first factor each denominator.
Then we change each fraction so they all have the same denominator, being careful to
multiply only by quotients that equal 1.

Because the numerator cannot be factored further, we leave our answer in this form. We
could also multiply out the denominator, but factored form is usually more useful.

TRY YOUR TURN 2

 5
22 12x2 1 6x 1 1 2

1x 1 2 2 1x 1 3 2 1x 2 4 2

 5
24x2 2 12x 2 2

1x 1 2 2 1x 1 3 2 1x 2 4 2

 5
1x2 2 3x 2 4 2 2 1 5x2 1 9x 2 2 2

1x 1 2 2 1x 1 3 2 1x 2 4 2

 5
x 1 1

1x 1 2 2 1x 1 3 2
. 1 x 2 4 2

1 x 2 4 2
2

5x 2 1
1x 1 3 2 1x 2 4 2

. 1 x 1 2 2

1 x 1 2 2

 5
x 1 1

1x 1 2 2 1x 1 3 2
2

5x 2 1
1x 1 3 2 1x 2 4 2

x 1 1

x2 1 5x 1 6
2

5x 2 1

x2 2 x 2 12

x 1 1

x2 1 5x 1 6
2

5x 2 1

x2 2 x 2 12

 5
71

6p

 5
42 1 27 1 2

6p

 5
42

6p
1

27

6p
1

2

6p

 
7
p

1
9

2p
1

1

3p
5

6 . 7

6 . p
1

3 . 9

3 . 2p
1

2 . 1

2 . 3p

7
p

1
9

2p
1

1

3p

YOUR TURN 2 Perform each
of the following operations. 

(a)

(b)
a 2 3

a2 1 3a 1 2
1

5a

a2 2 4
.

z2 1 5z 1 6

2z2 2 5z 2 3
. 2z2 2 z 2 1

z2 1 2z 2 3
 .

Write each rational expression in lowest terms.

1. 2.

3. 4.

5. 6.

7. 8.
r2 2 r 2 6

r2 1 r 2 12

m2 2 4m 1 4

m2 1 m 2 6

36y2 1 72y

9y

4x3 2 8x2

4x2

2 1 t 2 15 2
1 t 2 15 2 1 t 1 2 2

8k 1 16

9k 1 18

25p3

10p2

5v2

35v

9. 10.

11. 12.

Perform the indicated operations.

13. 14.

15. 16.
a 2 3

16
4

a 2 3

32

3a 1 3b

4c
. 12

5 1a 1 b 2

15p3

9p2 4
6p

10p2

9k2

25
. 5

3k

6y2 1 11y 1 4

3y2 1 7y 1 4

m4 2 16

4m2 2 16

z2 2 5z 1 6

z2 2 4

3x2 1 3x 2 6

x2 2 4

R.3 EXERCISES
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YOUR TURN ANSWERS 

1.

2a.

2b. 6 1a2 1 1 2 / 3 1a 2 2 2 1a 1 2 2 1a 1 1 2 4

1 z 1 2 2 / 1 z 2 3 2

1 z 1 2 2 / 12z 1 1 2

Linear Equations Equations that can be written in the form where a
and b are real numbers, with are linear equations. Examples of linear equations
include and Equations that are not linear include
absolute value equations such as The following properties are used to solve linear
equations.

Properties of Equality
For all real numbers a, b, and c:

1. If then Addition property of equality
(The same number may be added 
to both sides of an equation.)

2. If then Multiplication property of equality
(Both sides of an equation may be
multiplied by the same number.)

Solving Linear Equations

Solve the following equations.

(a)

SOLUTION The goal is to isolate the variable. Using the addition property of equality
yields

or x 5 5.x 2 2 1 2 5 3 1 2,

x 2 2 5 3

ac 5 bc.a 5 b,

a 1 c 5 b 1 c.a 5 b,

0 x 0 5 4.
23p 1 5 5 28.8x 5 4,5y 1 9 5 16,

a 2 0,
ax 1 b 5 0,

EquationsR.4

17.

18.

19.

20.

21.

22.

23.

24.

25. 26.

27. 28.

29. 30.
5

2r 1 3
2

2

r

1

m 2 1
1

2

m

1

6m
1

2

5m
1

4

m

6

5y
2

3

2

3

p
1

1

2

a 1 1

2
2

a 2 1

2

4n2 1 4n 2 3

6n2 2 n 2 15
. 8n2 1 32n 1 30

4n2 1 16n 1 15

2m2 2 5m 2 12

m2 2 10m 1 24
4

4m2 2 9

m2 2 9m 1 18

m2 1 3m 1 2

m2 1 5m 1 4
4

m2 1 5m 1 6

m2 1 10m 1 24

k2 1 4k 2 12

k2 1 10k 1 24
. k2 1 k 2 12

k2 2 9

6r 2 18

9r2 1 6r 2 24
. 12r 2 16

4r 2 12

4a 1 12

2a 2 10
4

a2 2 9

a2 2 a 2 20

9y 2 18

6y 1 12
. 3y 1 6

15y 2 30

2k 2 16

6
4

4k 2 32

3
31.

32.

33.

34.

35.

36.

37.

38.
5x 1 2

x2 2 1
1

3

x2 1 x
2

1

x2 2 x

2

a 1 2
1

1

a
1

a 2 1

a2 1 2a

4m

3m2 1 7m 2 6
2

m

3m2 2 14m 1 8

3k

2k2 1 3k 2 2
2

2k

2k2 2 7k 1 3

y

y2 1 2y 2 3
2

1

y2 1 4y 1 3

4

x2 1 4x 1 3
1

3

x2 2 x 2 2

2

5 1k 2 2 2
1

3

4 1k 2 2 2

8

3 1a 2 1 2
1

2

a 2 1

EXAMPLE  1
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(b)

SOLUTION Using the multiplication property of equality yields

or

The following example shows how these properties are used to solve linear equations.
The goal is to isolate the variable. The solutions should always be checked by substitution
in the original equation.

Solving a Linear Equation

Solve 

SOLUTION

Distributive property

Combine like terms.

Add to both sides.

Add to both sides.

Multiply both sides by 

Check by substituting in the original equation. The left side becomes and
the right side becomes Verify that both of these expressions sim-
plify to  TRY YOUR TURN 1

Quadratic Equations An equation with 2 as the highest exponent of the variable
is a quadratic equation. A quadratic equation has the form where a,
b, and c are real numbers and A quadratic equation written in the form

is said to be in standard form.
The simplest way to solve a quadratic equation, but one that is not always applicable, is

by factoring. This method depends on the zero-factor property.

Zero-Factor Property
If a and b are real numbers, with then either

or (or both).

Solving a Quadratic Equation

Solve 

SOLUTION First write the equation in standard form.

Now factor to get

By the zero-factor property, the product can equal 0 if and only if

Solve each of these equations separately to find that the solutions are and Check
these solutions by substituting them in the original equation. TRY YOUR TURN 2

23 /2.1 /3

3r 2 1 5 0  or  2r 1 3 5 0.

13r 2 1 2 12r 1 3 2

13r 2 1 2 12r 1 3 2 5 0.

6r2 1 7r 2 3

6r2 1 7r 2 3 5 0

6r2 1 7r 5 3.

b 5 0a 5 0

ab 5 0,

ax2 1 bx 1 c 5 0
a 2 0.

ax2 1 bx 1 c 5 0,

17 /5.
3 11 /5 2 1 2 32 2 3 11 /5 2 4.

2 11 /5 2 2 5 1 8

1
5 . x 5

1

5

23 5x 5 1

3x 5x 1 3 5 4

 2x 1 3 5 23x 1 4

 2x 2 5 1 8 5 3x 1 4 2 6x

2x 2 5 1 8 5 3x 1 2 12 2 3x 2 .

x 5 6.2 . x

2
5 2 . 3,

x

2
5 3

EXAMPLE  2

YOUR TURN 2 Solve
2m2 1 7m 5 15.

EXAMPLE  3

YOUR TURN 1 Solve
3x 2 7 5 4 1 5x 1 2 2 2 7x.
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Remember, the zero-factor property requires that the product of two (or more)
factors be equal to zero, not some other quantity. It would be incorrect to use the
zero-factor property with an equation in the form for
example.

If a quadratic equation cannot be solved easily by factoring, use the quadratic formula.
(The derivation of the quadratic formula is given in most algebra books.)

Quadratic Formula
The solutions of the quadratic equation where are given by

.

Quadratic Formula

Solve by the quadratic formula.

SOLUTION The equation is already in standard form (it has 0 alone on one side of the
equal sign), so the values of a, b, and c from the quadratic formula are easily identified. The
coefficient of the squared term gives the value of a; here, Also, and

(Be careful to use the correct signs.) Substitute these values into the quadratic
formula.

The sign represents the two solutions of the equation. To find both of the solutions, first
use and then use 

The two solutions are 5 and

Notice in the quadratic formula that the square root is added to or subtracted
from the value of before dividing by 2a.

Quadratic Formula

Solve 

SOLUTION First, add on both sides of the equal sign in order to get the equation in
standard form.

Now identify the letters a, b, and c. Here and Substitute these num-
bers into the quadratic formula.

c 5 1.b 5 24,a 5 1,

x2 2 4x 1 1 5 0

24x

x2 1 1 5 4x.

2b

21.

x 5
4 1 6

2
5

10

2
5 5  or  x 5

4 2 6

2
5

22

2
5 21

2.1
6

"16 1 20 5"36 5 6 x 5
4 6 6

2

124 2 2 5 124 2 124 2 5 16 x 5
4 6 "16 1 20

2

a 5 1, b 5 24, c 5 25 x 5
2 124 2 6 "124 2 2 2 4 11 2 125 2

2 11 2

c 5 25.
b 5 24a 5 1.

x2 2 4x 2 5 5 0

x 5
2b 6"b2 2 4ac

 2a

a 2 0,ax2 1 bx 1 c 5 0,

1 x 1 3 2 1 x 2 1 2 5 4,

EXAMPLE  4

EXAMPLE  5

CAUTION

CAUTION
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Simplify the solutions by writing as Substituting 
for gives

Factor 

Reduce to lowest terms.

The two solutions are and 
The exact values of the solutions are and The key on a calculator

gives decimal approximations of these solutions (to the nearest thousandth):

* 

TRY YOUR TURN 3

NOTE Sometimes the quadratic formula will give a result with a negative number under the
radical sign, such as A solution of this type is a complex number. Since this text
deals only with real numbers, such solutions cannot be used.

Equations with Fractions When an equation includes fractions, first eliminate
all denominators by multiplying both sides of the equation by a common denominator, a
number that can be divided (with no remainder) by each denominator in the equation. When
an equation involves fractions with variable denominators, it is necessary to check all
solutions in the original equation to be sure that no solution will lead to a zero denominator.

Solving Rational Equations

Solve each equation.

(a)

SOLUTION The denominators are 10, 15, 20, and 5. Each of these numbers can be
divided into 60, so 60 is a common denominator. Multiply both sides of the equation by
60 and use the distributive property. (If a common denominator cannot be found easily,
all the denominators in the problem can be multiplied together to produce one.)

Multiply by the common denominator.

Distributive property

 6r 2 8 5 9r 2 12

 60a
r

10
b 2 60a

2

15
b 5 60a

3r

20
b 2 60a

1

5
b

 60a
r

10
2

2

15
b 5 60a

3r

20
2

1

5
b

 
r

10
2

2

15
5

3r

20
2

1

5

r

10
2

2

15
5

3r

20
2

1

5

3 6 !25.

 2 2 "3 < 2 2 1.732 5 0.268

 2 1 "3 < 2 1 1.732 5 3.732

" 2 2 "3.2 1 "3
2 2 "3.2 1 "3

 5 2 6 "3.

4 6 2"3. 5
2 12 6 "3 2

2

 x 5
4 6 2"3

2

!12
2"3"4 . 3 5 "4 ."3 5 2"3."12

 5
4 6 "12

2

 5
4 6 "16 2 4

2

 x 5
2 124 2 6 "124 2 2 2 4 11 2 11 2

2 11 2

*The symbol means “is approximately equal to.”<

YOUR TURN 3 Solve
z2 1 6 5 8z.

EXAMPLE  6
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Add and 8 to both sides.

Multiply each side by 

Check by substituting into the original equation.

(b)

SOLUTION Begin by multiplying both sides of the equation by to get 
This equation could be solved by using the quadratic formula with 
and Another method that works well for the type of quadratic equation in 
which is shown below. 

Add 

Multiply by 

Take square roots.

Verify that there are two solutions, and 

(c)

SOLUTION Factor as The least common denominator for all the
fractions is Multiplying both sides by gives the following:

Distributive property

Add rearrange terms.

Multiply by 

Factor.

or

Verify that the solutions are  and TRY YOUR TURN 4

It is possible to get, as a solution of a rational equation, a number that makes one
or more of the denominators in the original equation equal to zero. That number
is not a solution, so it is necessary to check all potential solutions of rational
equations. These introduced solutions are called extraneous solutions.

Solving a Rational Equation

Solve 
2

x 2 3
1

1
x

5
6

x 1x 2 3 2
 .

21.4 /3

k 5 21 k 5
4

3

k 1 1 5 0 3k 2 4 5 0

 1 3k 2 4 2 1k 1 1 2 5 0

21. 3k2 2 k 2 4 5 0

2k; 2 3k2 1 k 1 4 5 0

 2k 1 4 2 3k2 5 k

 2 1k 1 2 2 2 3k 1k 2 5 k

k 1 k 1 2 2 . a
2

k
2

3k

k 1 2
b 5 k 1 k 1 2 2 . k

k2 1 2k

k 1k 1 2 2k 1k 1 2 2 .
k 1k 1 2 2 .k2 1 2k

2

k
2

3k

k 1 2
5

k

k2 1 2k

1 /2.21 /2

 6
1

2
5 x

1
12 . 

1

4
5 x2

12x2. 3 5 12x2

 3 2 12x2 5 0

b 5 0
c 5 3.

b 5 0,a 5 212,
3 2 12x2 5 0.x2

3

x2 2 12 5 0

2 
1
3 . r 5

4

3

 23r 5 24

 6r 2 8 1 129r 2 1 8 5 9r 2 12 1 129r 2 1 8

29r

YOUR TURN 4 Solve

1

x2 2 4
1

2

x 2 2
5

1

x
.

EXAMPLE  7

CAUTION
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SOLUTION The common denominator is Multiply both sides by and
solve the resulting equation.

Checking this potential solution by substitution in the original equation shows that 3 makes two
denominators 0. Thus, 3 cannot be a solution, so there is no solution for this equation.

 x 5 3

 3x 5 9

 2x 1 x 2 3 5 6

 x 1x 2 3 2 . a
2

x 2 3
1

1
x
b 5 x 1x 2 3 2 . c

6

x 1x 2 3 2
d

x 1x 2 3 2x 1x 2 3 2 .

Solve each equation.

1. 2.

3. 4.

5.

6.

7.

8.

Solve each equation by factoring or by using the quadratic for-
mula. If the solutions involve square roots, give both the exact
solutions and the approximate solutions to three decimal places.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Solve each equation.

27.
3x 2 2

7
5

x 1 2

5

5m2 1 5m 5 03k2 1 k 5 6

2x2 2 7x 1 30 5 02r2 2 7r 1 5 5 0

5x2 2 8x 1 2 5 0k2 2 10k 5 220

p2 1 p 2 1 5 02m2 2 4m 5 3

3x2 2 5x 1 1 5 012y2 2 48y 5 0

z 12z 1 7 2 5 44x2 2 36 5 0

m 1m 2 7 2 5 21012x2 2 5x 5 2

2k2 2 k 5 10m2 5 14m 2 49

x2 5 3 1 2xx2 1 5x 1 6 5 0

4 32p 2 13 2 p 2 1 5 4 5 27p 2 2

2 33m 2 2 1 3 2 m 2 2 4 4 5 6m 2 4

5 1a 1 3 2 1 4a 2 5 5 2 12a 2 4 2
3r 1 2 2 5 1r 1 1 2 5 6r 1 4

2

3
 k 2 k 1

3

8
5

1

2
0.2m 2 0.5 5 0.1m 1 0.7

5x 1 2 5 8 2 3x2x 1 8 5 x 2 4
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
4

2x2 1 3x 2 9
1

2

2x2 2 x 2 3
5

3

x2 1 4x 1 3

2

x2 2 2x 2 3
1

5

x2 2 x 2 6
5

1

x2 1 3x 1 2

5

b 1 5
2

4

b2 1 2b
5

6

b2 1 7b 1 10

5

a
1

27

a 1 1
5

a2 2 2a 1 4

a2 1 a

1

x 2 2
2

3x

x 2 1
5

2x 1 1

x2 2 3x 1 2

2y

y 2 1
5

5

y
1

10 2 8y

y2 2 y

2m

m 2 2
2

6

m
5

12

m2 2 2m

5

p 2 2
2

7

p 1 2
5

12

p2 2 4

4

x 2 3
2

8

2x 1 5
1

3

x 2 3
5 0

x

3
2 7 5 6 2

3x

4

YOUR TURN ANSWERS 

1. 2.

3. 4. 21, 244 6 "10

3 /2, 2523 /2

InequalitiesR.5
To write that one number is greater than or less than another number, we use the following
symbols.

Inequality Symbols
means is less than means is less than or equal to
means is greater than means is greater than or equal to$.

#,

R.4 EXERCISES



R.5 Inequalities R-17

Linear Inequalities An equation states that two expressions are equal; an inequality
states that they are unequal. A linear inequality is an inequality that can be simplified to the
form (Properties introduced in this section are given only for but they are equally
valid for or Linear inequalities are solved with the following properties.$.)., #,

,,ax , b.

Properties of Inequality
For all real numbers a, b, and c:

1. If then 

2. If and if then 

3. If and if then ac . bc.c , 0,a , b

ac , bc.c . 0,a , b

a 1 c , b 1 c.a , b,

Pay careful attention to property 3; it says that if both sides of an inequality are multiplied
by a negative number, the direction of the inequality symbol must be reversed.

Solving a Linear Inequality

Solve 

SOLUTION Use the properties of inequality.

Add to both sides.

Remember that adding the same number to both sides never changes the direction of the
inequality symbol.

Add to both sides.

Multiply both sides by Since is negative, change the direction of the inequality
symbol. 

TRY YOUR TURN 1

It is a common error to forget to reverse the direction of the inequality sign when
multiplying or dividing by a negative number. For example, to solve 
we must multiply by on both sides and reverse the inequality symbol to
get 

The solution in Example 1 represents an interval on the number line. Interval
notation often is used for writing intervals. With interval notation, is written as

This is an example of a half-open interval, since one endpoint, is included.
The open interval corresponds to with neither endpoint included. The
closed interval includes both endpoints and corresponds to 

The graph of an interval shows all points on a number line that correspond to the num-
bers in the interval. To graph the interval for example, use a solid circle at

since is part of the solution. To show that the solution includes all real numbers
greater than or equal to draw a heavy arrow pointing to the right (the positive direc-
tion). See Figure 1.

23 /5,
23 /523 /5,

323 /5, ` 2 ,

2 # x # 5.32, 5 4
2 , x , 5,12, 5 2

23 /5,323 /5, ` 2 .
y $ 23 /5

y $ 23 /5

x $ 23.
21 /4

24x # 12,

 y # 2 

3

5

2  
1

5
125y 2 #2

1

5
 1 3 2

21 /521 /5.

 25y # 3

22y 23y 1 122y2 # 3 1 2y 1 122y2

 23y # 3 1 2y

24 4 2 3y 1 124 2 # 7 1 2y 1 124 2

4 2 3y # 7 1 2y.

EXAMPLE  1

FIGURE 1

–1 0 13
5

–

YOUR TURN 1 Solve
3z 2 2 . 5z 1 7.

CAUTION
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Graphing a Linear Inequality

Solve Graph the solution.

SOLUTION The inequality says that is between and 20.
Solve this inequality with an extension of the properties given above. Work as follows, first
adding to each part.

Now multiply each part by 

A graph of the solution is given in Figure 2; here open circles are used to show that 
and 5 are not part of the graph.* 

Quadratic Inequalities A quadratic inequality has the form 
(or or or The highest exponent is 2. The next few examples show how to solve
quadratic inequalities.

Solving a Quadratic Inequality

Solve the quadratic inequality 

SOLUTION Write the inequality with 0 on one side, as This inequality
is solved with values of x that make negative The quantity 
changes from positive to negative or from negative to positive at the points where it equals 0.
For this reason, first solve the equation 

or

Locating and 4 on a number line, as shown in Figure 3, determines three intervals A, B,
and C. Decide which intervals include numbers that make negative by substi-
tuting any number from each interval in the polynomial. For example,

choose from interval A: 

choose 0 from interval B:

choose 5 from interval C:

Only numbers in interval B satisfy the given inequality, so the solution is A graph
of this solution is shown in Figure 4. TRY YOUR TURN 2

Solving a Polynomial Inequality

Solve the inequality 

SOLUTION This is not a quadratic inequality because of the term, but we solve it in a
similar way by first factoring the polynomial.

Factor out the common factor.

Factor the quadratic. 5 x 1x 2 1 2 1x 1 3 2
x3 1 2x2 2 3x 5 x 1x2 1 2x 2 3 2

x3

x3 1 2x2 2 3x $ 0.

123, 4 2 .

52 2 5 2 12 5 8 . 0.

02 2 0 2 12 5 212 * 0;

124 2 2 2 124 2 2 12 5 8 . 0;24

x2 2 x 2 12
23

x 5 23x 5 4

 1x 2 4 2 1x 1 3 2 5 0

 x2 2 x 2 12 5 0

x2 2 x 2 12 5 0.

x2 2 x 2 121, 0 2 .x2 2 x 2 12
x2 2 x 2 12 , 0.

x2 2 x , 12.

$).#,,,
1 c . 0ax2 1 bx

27 /3

2 

7

3
, m , 5

1 /3.

27 , 3m , 15

22 1 1252 , 5 1 3m 1 1252 , 20 1 1252

25

225 1 3m22 , 5 1 3m , 20

22 , 5 1 3m , 20.

EXAMPLE  2

EXAMPLE  3

EXAMPLE  4

*Some textbooks use brackets in place of solid circles for the graph of a closed interval, and parentheses in place
of open circles for the graph of an open interval.

–5 0 57
3

–

FIGURE 2 

–3 4

A B C

FIGURE 3 

–3 0 4

FIGURE 4 

YOUR TURN 2 Solve
3y2 # 16y 1 12.
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Now solve the corresponding equation.

These three solutions determine four intervals on the number line:
and Substitute a number from each interval into the original inequality to

determine that the solution consists of the numbers between and 0 (including the end-
points) and all numbers that are greater than or equal to 1. See Figure 5. In interval notation,
the solution is

* 

Inequalities with Fractions Inequalities with fractions are solved in a similar
manner as quadratic inequalities.

Solving a Rational Inequality

Solve 

SOLUTION First solve the corresponding equation.

The solution, determines the intervals on the number line where the fraction may
change from greater than 1 to less than 1. This change also may occur on either side of a
number that makes the denominator equal 0. Here, the x-value that makes the denominator
0 is Test each of the three intervals determined by the numbers 0 and 3.

For choose 

For choose

For choose

The symbol means “is not greater than or equal to.” Testing the endpoints 0 and 3 shows
that the solution is , as shown in Figure 6.

A common error is to try to solve the inequality in Example 5 by multiplying 
both sides by x. The reason this is wrong is that we don’t know in the beginning
whether x is positive or negative. If x is negative, the would change to 
according to the third property of inequality listed at the beginning of this
section.

#$

12`, 0 2  <  33, ` 2
4

 4: 
2 14 2 2 3

4
5

5

4
# 1.1 3, ` 2 , 

 1: 
2 1 1 2 2 3

1
5 21 4 1.10, 3 2 , 

 21: 
2 121 2 2 3

21
5 5 # 1.12`, 0 2 , 

x 5 0.

x 5 3,

 x 5 3

 2x 2 3 5 x

 
2x 2 3

x
5 1

2x 2 3
x

$ 1.

323, 0 4 < 31, ` 2 .

23
11, ` 2 .10, 1 2 ,

123, 0 2 ,12`, 23 2 ,

x 5 1  x 5 2 3

x 5 0 or x 2 1 5 0 or x 1 3 5 0

x 1x 2 1 2 1x 1 3 2 5 0

EXAMPLE  5

*The symbol indicates the union of two sets, which includes all elements in either set.<

–3 0 1

FIGURE 5 

0 3

FIGURE 6 

CAUTION
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Solving a Rational Inequality

Solve 

SOLUTION We first solve the corresponding equation.

Multiply both sides by x.

Use the zero-factor property.

Setting the denominator equal to 0 gives so the intervals of interest are 
and Testing a number from each region in the original inequality

and checking the endpoints, we find the solution is

as shown in Figure 7.

Remember to solve the equation formed by setting the denominator equal to zero.
Any number that makes the denominator zero always creates two intervals on the
number line. For instance, in Example 6, substituting makes the denomina-
tor of the rational inequality equal to 0, so we know that there may be a sign
change from one side of 0 to the other (as was indeed the case).

Solving a Rational Inequality

Solve 

SOLUTION Solve the corresponding equation.

Multiply by .

Get 0 on one side.

Multiply by .

Factor.

Now set the denominator equal to 0 and solve that equation. 

The intervals determined by the three (different) solutions are 
and Testing a number from each interval in the given inequality shows that

the solution is

as shown in Figure 8. For this example, none of the endpoints are part of the solution because
and make the denominator zero and  produces an equality.

TRY YOUR TURN 3

x 5 24x 5 23x 5 3

12`, 24 2 < 123, 3 2 < 13, ` 2 ,

13, ` 2 .123, 3 2 ,
124, 23 2 ,12`, 24 2 ,

x 5 3  or  x 5 23

 1x 2 3 2 1x 1 3 2 5 0

 x2 2 9 5 0

x 5 24  or  x 5 3

 0 5 1x 1 4 2 1x 2 3 2

1
3 0 5 x2 1 x 2 12

 0 5 3x2 1 3x 2 36

x2 2 9 x2 2 3x 5 4x2 2 36

 
x2 2 3x

x2 2 9
5 4

x2 2 3x

x2 2 9
, 4.

x 5 0

12`, 21 4 < 10, 1 4,

1 1, ` 2 .10, 1 2 ,121, 0 2 ,
12`, 21 2 ,x 5 0,

 x 5 1  or  x 5 21

 1x 2 1 2 1x 1 1 2 5 0

 
1x 2 1 2 1x 1 1 2

x
5 0

1x 2 1 2 1x 1 1 2
x

# 0.

EXAMPLE  6

EXAMPLE  7

–1 0 1

FIGURE 7 

YOUR TURN 3 Solve

k2 2 35

k
$ 2.

–3–4 0 3

FIGURE 8 

CAUTION
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Write each expression in interval notation. Graph each interval.

1. 2.

3. 4.

5. 6.

Using the variable x, write each interval as an inequality.

7. 8.

9. 10.

11.

12.

13.

14.

Solve each inequality and graph the solution.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24. 21 #
5y 1 2

3
# 4

22 ,
1 2 3k

4
# 4

8 # 3r 1 1 # 13

211 , y 2 7 , 21

x 1 5 1x 1 1 2 . 4 12 2 x 2 1 x

3p 2 1 , 6p 1 2 1p 2 1 2
22 13y 2 8 2 $ 5 14y 2 2 2
m 2 1 3m 2 2 2 1 6 , 7m 2 19

6k 2 4 , 3k 2 1

6p 1 7 # 19

0 3

0 4–4

0 8

–2 0 6

13, ` 212`, 21 4

34, 10 2327, 23 4

6 # x29 . x

22 # x # 31 # x , 2

x $ 23x , 4

YOUR TURN ANSWERS 

1. 2. 3. 3 2 5, 0 2 < 37,` 232 2 /3, 6 4z ,2 9 /2

25.

26.

Solve each quadratic inequality. Graph each solution.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

Solve each inequality.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.
a2 1 2a

a2 2 4
# 2

z2 1 z

z2 2 1
$ 3

8

p2 1 2p
. 1

2x

x2 2 x 2 6
$ 0

5

p 1 1
.

12

p 1 1

2k

k 2 3
#

4

k 2 3

a 1 2

3 1 2a
# 5

2y 1 3

y 2 5
# 1

a 2 5

a 1 2
, 21

k 2 1

k 1 2
. 1

r 1 1

r 2 1
. 0

m 2 3

m 1 5
# 0

3x3 2 9x2 2 12x . 02x3 2 14x2 1 12x , 0

x3 1 7x2 1 12x # 0x3 2 4x $ 0

p2 2 16p . 09 2 x2 # 0

3a2 1 a . 103x2 1 2x . 1

10r2 1 r # 2x2 2 4x $ 5

2k2 2 7k 2 15 # 0x2 2 16 . 0

2k2 1 7k 2 4 . 0y2 2 3y 1 2 , 0

1 t 1 6 2 1 t 2 1 2 $ 01m 2 3 2 1m 1 5 2 , 0

8

3
 1z 2 4 2 #

2

9
 13z 1 2 2

3

5
 12p 1 3 2 $

1

10
 15p 1 1 2

Integer Exponents Recall that while and so on. In this
section, a more general meaning is given to the symbol an.

a3 5 a . a . a,a2 5 a . a,

ExponentsR.6

Definition of Exponent
If n is a natural number, then

,

where a appears as a factor n times.

an 5 a ? a ? a ?  P ? a

R.5 EXERCISES
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In the expression the power n is the exponent and a is the base. This definition can be
extended by defining for zero and negative integer values of n.an

an,

Zero and Negative Exponents
If a is any nonzero real number, and if n is a positive integer, then

.a0 5 1  and  a2n 5
1
an  

(The symbol is meaningless.)

Exponents

(a)

(b)

(c)

(d)

(e)

The following properties follow from the definitions of exponents given above.

a
3

4
b

21

5
1

13 /4 2 1
5

1

3 /4
5

4

3

921 5
1

91 5
1

9

322 5
1

32 5
1

9

129 2 0 5 1

60 5 1

00

EXAMPLE  1

Properties of Exponents
For any integers m and n, and any real numbers a and b for which the following exist:

1. 4.

2. 5.

3. 1 am 2n 5 amn

a
a
b
b

m

5
am

bm

am

an 5 am2n

1 ab 2m 5 am ? bmam ? an 5 am1n

Note that if n is an even integer, but if n is an odd integer.12a 2n 5 2an12a 2n 5 an

Simplifying Exponential Expressions

Use the properties of exponents to simplify each expression. Leave answers with positive
exponents. Assume that all variables represent positive real numbers.

(a) (or 282,475,249) Property 1

(b) (or 43,046,721) Property 2

(c) Property 2

(d) Properties 3 and 4

(e) Property 4

(f) Properties 3 and 5

(g) Property 2
a23b5

a4b27 5
b521272

a421232
5

b517

a413 5
b12

a7

a
x2

y3b
6

5
1x2 2 6

1 y3 2 6
5

x2 
#
 6

y3 
#
 6 5

x12

y18

13x 24 5 34 . x4 5 81x4

12m3 24 5 24 . 1m3 2 4 5 16m12

r9

r17 5 r9217 5 r28 5
1

r8

914

96 5 91426 5 98

74 . 76 5 7 416 5 710

EXAMPLE  2
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(h)

(i) Definition of 

Invert and multiply.

Factor.

Simplify.
TRY YOUR TURN 1

If Example 2(e) were written the properties of exponents would not apply.
When no parentheses are used, the exponent refers only to the factor closest to it.
Also notice in Examples 2(c), 2(g), 2(h), and 2(i) that a negative exponent does
not indicate a negative number.

Roots For even values of n and nonnegative values of a, the expression is defined to
be the positive nth root of a or the principal nth root of a. For example, denotes the
positive second root, or square root, of a, while is the positive fourth root of a. When n
is odd, there is only one nth root, which has the same sign as a. For example, the cube
root of a, has the same sign as a. By definition, if then On a calculator, a
number is raised to a power using a key labeled or For example, to take the fourth
root of 6 on a TI-84 Plus calculator, enter to get the result 1.56508458.

Calculations with Exponents

(a) since 11 is positive and 

(b) since 

(c)

(d)

(e)

(f)

(g)

(h) is not a real number.

Rational Exponents In the following definition, the domain of an exponent is extended
to include all rational numbers.

Definition of 
For all real numbers a for which the indicated roots exist, and for any rational number 

.am/n 5 1 a1/n 2m

m /n,
am/n

1249 2 1/2
1281/7 5 2

1232 2 1/5 5 22

271/3 5 3

641/6 5 2

2561/4 5 4

54 5 625.6251/4 5 5,

112 5 121.1211/2 5 11,

6 � 1 1 /4 2
�.yx,xy,

bn 5 a.b 5 a1/n,
a1/3,

a1/4
a1/2
a1/n

3x4,

 5
x 1 y

xy

 5
1y 2 x 2 1  y 1 x 2

x2y2
. xy

y 2 x

 5
y2 2 x2

x2y2
. xy

y 2 x

Get common denominators and
combine terms.

 5

y2 2 x2

x2y2

y 2 x

xy

a2n 
x22 2 y22

x21 2 y21 5

1

x2 2
1

y2

1
x

2
1
y

p21 1 q21 5
1
p

1
1
q

5
1
p

. q

q
1

1
q

. p

p
5

q

pq
1

p

pq
5

p 1 q

pq

YOUR TURN 1
Simplify

a
y2z24

y23z4b
22

.

EXAMPLE  3

CAUTION
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Calculations with Exponents

(a)

(b)

(c)

(d)

NOTE could also be evaluated as but this is more difficult to perform without a
calculator because it involves squaring 27 and then taking the cube root of this large number.
On the other hand, when we evaluate it as we know that the cube root of 27 is 3 with-
out using a calculator, and squaring 3 is easy.

All the properties for integer exponents given in this section also apply to any rational
exponent on a nonnegative real-number base.

Simplifying Exponential Expressions

(a)

(b)

(c)

In calculus, it is often necessary to factor expressions involving fractional exponents.

Simplifying Exponential Expressions

Factor out the smallest power of the variable, assuming all variables represent positive real
numbers.

(a)

SOLUTION The smallest exponent is Factoring out yields 

Check this result by multiplying by 

(b)

SOLUTION The smallest exponent here is Since 3 is a common numerical factor,
factor out .

Check by multiplying. The factored form can be written without negative exponents as

(c)

SOLUTION There is a common factor of 2. Also, and have a
common factor. Always factor out the quantity to the smallest exponent. Here

so the common factor is and the factored form is

TRY YOUR TURN 2

2 13x 2 1 221/2 3 1x2 1 5 2 1 13x 2 1 2x 4 5 2 13x 2 1 221/2 14x2 2 x 1 5 2 .

2 13x 2 1 221/221 /2 , 1 /2,

13x 2 1 2 1/213x 2 1 221/2
1x2 1 5 2 1 3x 2 1 221/2 12 2 1 1 3x 2 1 2 1/2 12x 2

3 13x 2 2 2
x3  .

9x22 2 6x23 5 3x23 1 3x2221232 2 2x2321232 2 5 3x23 1 3x 2 2 2

3x23
23.

9x22 2 6x23

4 1 3m.m1/2

5 m1/2 14 1 3m 2 .
5 m1/2 14m1/221/2 1 3m3/221/2 24m1/2 1 3m3/2

m1/21 /2.

4m1/2 1 3m3/2

a
m7n22

m25n2b
1/4

5 a
m721252

n221222 b
1/4

5 a
m12

n4 b
1/4

5
1m12 2 1/4

1n4 2 1/4 5
m12/4

n4/4 5
m3

n

m2/3 1m7/3 1 2m1/3 2 5 m2/317/3 1 2m2/311/3 5 m3 1 2m

y1/3y5/3

y3 5
y1/315/3

y3 5
y2

y3 5 y223 5 y21 5
1
y

1271/3 2 2,

1272 2 1/3,272/3

253/2 5 1251/2 2 3 5 53 5 125

644/3 5 1641/3 24 5 44 5 256

322/5 5 1 321/5 2 2 5 22 5 4

272/3 5 1271/3 2 2 5 32 5 9

EXAMPLE  4

EXAMPLE  5

EXAMPLE  6

YOUR TURN 2 Factor
5z1/3 1 4z22/3.
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Evaluate each expression. Write all answers without exponents.

1. 2.

3. 4.

5. 6.

7. 8.

Simplify each expression. Assume that all variables represent pos-
itive real numbers. Write answers with only positive exponents.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

Simplify each expression, writing the answer as a single term
without negative exponents.

21. 22.

23. 24.

25. 26.

Write each number without exponents.

27. 28.

29. 30. 21252/3322/5

271/31211/2

1x . y21 2 y22 2221x21 2 y21 221

a
m

3
b

21

1 a
n

2
b

222n21 2 2m21

m 1 n2

b22 2 aa21 1 b21

a
c3

7d22b
22

a
a21

b2 b
23

522m2y22

52m21y22

321 . x . y2

x24 . y5

13z2 221

z5

14k21 2 2

2k25

y10 . y24

y6

x4 . x3

x5

a
7212 . 73

728 b
21108 . 10210

104 . 102

89 . 827

823

422

4

a
4

3
b

23

a
1

6
b

22

2 12322 22 123 222

a2
3

4
b

0

5 
0

324822
31. 32.

33. 34.

35. 36.

Simplify each expression. Write all answers with only positive
exponents. Assume that all variables represent positive real
numbers.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Factor each expression.

51.

52.

53.

54.

55.

56. 14x2 1 1 2 2 12x 2 1 221/2 1 16x 14x2 1 1 2 12x 2 1 2 1/2

x 12x 1 5 2 2 1x2 2 4 221/2 1 2 1x2 2 4 2 1/2 12x 1 5 2
9 16x 1 2 2 1/2 1 3 19x 2 1 2 16x 1 2 221/2

10x3 1x2 2 1 221/2 2 5x 1x2 2 1 2 1/2

6x 1x3 1 7 2 2 2 6x2 13x2 1 5 2 1x3 1 7 2
3x3 1x2 1 3x 2 2 2 15x 1x2 1 3x 2 2

m7/3 . n22/5 . p3/8

m22/3 . n3/5 . p25/8
k23/5 . h21/3 . t2/5

k21/5 . h22/3 . t1/5

x3/2 . y4/5 . z23/4

x5/3 . y26/5 . z1/2
a4/3 . b1/2

a2/3 . b23/2

8p23 . 14p2 222

p25

3k2 . 14k23 221

41/2 . k7/2

123/4 . 125/4 . y22

1221 . 1y23 222

721/3 . 7r23

72/3 . 1r22 2 2

a
a27b21

b24a2 b
1/3

a
x6y23

x22y5b
1/2

325/2 . 33/2

37/2 . 329/2
49/4 . 427/4

4210/4

272/3 . 2721/332/3 . 34/3

a
121

100
b

23/2
a

27

64
b

21/3
62521/4824/3

a
64

27
b

1/3
a

36

144
b

1/2

YOUR TURN ANSWERS 

1. 2. z22/3 1 5z 1 4 2z16 /y10

We have defined as the positive or principal nth root of a for appropriate values of a and n.
An alternative notation for uses radicals.a1/n

a1/n

RadicalsR.7

Radicals
If n is an even natural number and or n is an odd natural number, then

.a1/n 5 "n a

a . 0,

R.6 EXERCISES
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The symbol is a radical sign, the number a is the radicand, and n is the index of
the radical. The familiar symbol is used instead of

Radical Calculations

(a)

(b)

(c)

(d)

With written as the expression also can be written using radicals.

or

The following properties of radicals depend on the definitions and properties of
exponents.

Properties of Radicals
For all real numbers a and b and natural numbers m and n such that and are real
numbers:

1. 4.

2. 5.

3.

Property 3 can be used to simplify certain radicals. For example, since 

To some extent, simplification is in the eye of the beholder, and might be considered
as simple as In this textbook, we will consider an expression to be simpler when we
have removed as many factors as possible from under the radical.

Radical Calculations

(a)

(b)

(c)

(d)

(e)

(f)

(g) TRY YOUR TURN 1"x5 ."3 x5 5 x5/2 . x5/3 5 x5/215/3 5 x25/6 5 "6 x25 5 x4 "6 x

 5 2 1 3 2"2 2 5 14 2"2 5 214"2

 5 2"9 ."2 2 5"16 ."2

 2"18 2 5"32 5 2"9 . 2 2 5"16 . 2

"288m5 5 "144 . m4 . 2m 5 12m2"2m

"3 54 5 "3 27 . 2 5 "3 27 ."3 2 5 3"3 2

 "2 ."18 5 "2 . 18 5 "36 5 6

"128 5 "64 . 2 5 8"2

"1000 5 "100 . 10 5 "100 ."10 5 10"10

4"3.
"48

"48 5 "16 . 3 5 "16 ."3 5 4"3.

48 5 16 . 3,

"n a ?"n b 5"n ab

#m "n a 5"
mn

a"n an 5 b 0 a 0
a

if n is even

if n is odd

"n a

"n b
5
Å

n a
b
  1 b u 0 21"n a 2n 5 a

"n b"n a

am/n 5 "n amam/n 5 1"n a 2m

am/n"n a,a1/n

Å
6 64

729
5

2

3

"3 1000 5 10

"5 232 5 22

4"16 5 161/4 5 2

!2 a.!a
"n  

EXAMPLE  1

EXAMPLE  2

YOUR TURN 1
Simplify "28x9y5.
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When simplifying a square root, keep in mind that is nonnegative by definition.
Also, is not x, but the absolute value of x, defined as

For example, It is correct, however, to simplify We
need not write because is always nonnegative.

Simplifying by Factoring

Simplify 

SOLUTION Factor the polynomial as Then by property 2 of
radicals and the definition of absolute value,

Avoid the common error of writing as We must add
and before taking the square root. For example, ,

not This idea applies as well to higher roots. For
example, in general, 

Also, 

Rationalizing Denominators The next example shows how to rationalize (remove
all radicals from) the denominator in an expression containing radicals.

Rationalizing Denominators

Simplify each expression by rationalizing the denominator.

(a)

SOLUTION To rationalize the denominator, multiply by (or 1) so that the
denominator of the product is a rational number.

(b)

SOLUTION Here, we need a perfect cube under the radical sign to rationalize the

denominator. Multiplying by gives

2

"3 x
. "

3 x2

"3 x2
5

2"3 x2

"3 x3
5

2"3 x2

x
 .

"3 x2 /"3 x2

2

"3 x

"3 . "3 5 "9 5 3
4

"3
. "3

"3
5

4"3

3

"3 /"3

4

"3

 "a 1 b u "a 1 "b.

"4 a4 1 b4 u "4 a4 1 "4 b4.

"3 a3 1 b3 u "3 a3 1 "3 b3,

!16 1 !9 5 4 1 3 5 7.
!25 5 5!16 1 9 5b2a2

"a2 1 "b2."a2 1 b2

"1m 2 2 2 2 5 0m 2 2 0 5 bm 2 2

2 1m 2 2 2 5 2 2 m

if m 2 2 $ 0

if m 2 2 , 0.

m2 2 4m 1 4 5 1m 2 2 22.
"m2 2 4m 1 4.

x2|x2|
"x4 5 x2."125 2 2 5 025 0 5 5.

0 x 0 5 bx if x $ 0

2x if x , 0.

0 x 0 ,"x2
"x

EXAMPLE  3

EXAMPLE  4

CAUTION
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(c)

SOLUTION The best approach here is to multiply both numerator and denominator by
the number The expressions and are conjugates,* and their
product is Thus,

Sometimes it is advantageous to rationalize the numerator of a rational expression. The
following example arises in calculus when evaluating a limit.

Rationalizing Numerators

Rationalize each numerator.

(a) .

SOLUTION Multiply the numerator and denominator by the conjugate of the numera-
tor,

(b)

SOLUTION Multiply the numerator and denominator by the conjugate of the numera-
tor,

 5
2x

6 1 x 2 2"3 1x 1 3 2

 
"3 1 "x 1 3

"3 2 "x 1 3
. "3 2 "x 1 3

"3 2 "x 1 3
5

3 2 1x 1 3 2

3 2 2"3 "x 1 3 1 1x 1 3 2

!3 2 !x 1 3.

"3 1 "x 1 3

"3 2 "x 1 3

 5
1

"x 1 3

 5
x 2 9

1x 2 9 2 1"x 1 3 2

1 a 2 b 2 1 a 1 b 2 5 a2 2 b2 
"x 2 3

x 2 9
. "x 1 3

"x 1 3
5

1"x 2 2 2 32 

1x 2 9 2 1"x 1 3 2

"x 1 3.

"x 2 3

x 2 9

1

1 2 "2
5

1 11 1 "2 2

11 2 "2 2 11 1 "2 2
5

1 1 "2

1 2 2
5 21 2 "2.

12 2 1 !2 22 5 1 2 2 5 21.
1 2 !21 1 !21 1 !2.

1

1 2 "2

*If a and b are real numbers, the conjugate of is .a 2 ba 1 b

EXAMPLE  5

YOUR TURN 2 Rationalize the
denominator in

5

"x 2 "y
.

Simplify each expression by removing as many factors as possi-
ble from under the radical. Assume that all variables represent
positive real numbers.

1. 2.

3. 4. "50"5 23125

"4 1296"3 125

5. 6.

7. 8.

9.

10.

11. 4"7 2 "28 1 "343

4"3 2 5"12 1 3"75

7"2 2 8"18 1 4"72

"2 ."32"27 ."3

"32y5"2000

R.7 EXERCISES

TRY YOUR TURN 2
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12.

13.

14.

15. 16.

17. 18.

19.

20.

21.

22.

Simplify each root, if possible.

23.

24.

25.

26.

Rationalize each denominator. Assume that all radicands repre-
sent positive real numbers.

27. 28.

29. 30.
4

"8

23

"12

5

"10

5

"7

"9k2 1 h2

"4 2 25z2

"9y2 1 30y 1 25

"16 2 8x 1 x2

"b3 ."4 b3

"a ."3 a

"p7q3 2 "p5q9 1 "p9q

"a3b5 2 2"a7b3 1 "a3b9

"4 x8y7z11"3 128x3y8z9

"160r7s9t12"2x3y2z4

2"3 5 2 4"3 40 1 3"3 135

"3 2 2 "3 16 1 2"3 54

3"28 2 4"63 1 "112 31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Rationalize each numerator. Assume that all radicands repre-
sent positive real numbers.

41. 42.

43. 44.
"p 2 "p 2 2

"p

"x 1 "x 1 1

"x 2 "x 1 1

3 2 "3

6

1 1 "2

2

"p 1 "p2 2 1

"p 2 "p2 2 1

"x 1 "x 1 1

"x 2 "x 1 1

"z 2 1

"z 2 "5

y 2 5

"y 2 "5

5

"m 2 "5

1

"r 2 "3

"5

"5 1 "2

6

2 1 "2

5

2 2 "6

3

1 2 "2

YOUR TURN ANSWERS 

1. 2. 5 1"x 1 "y 2 / 1x 2 y 22x4y2"7xy
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Linear Functions

1.1 Slopes and Equations of Lines

1.2 Linear Functions and Applications

1.3 The Least Squares Line

Chapter 1 Review

Extended Application:
Using Extrapolation to 
Predict Life Expectancy

Over short time intervals, many changes in the economy

are well modeled by linear functions. In an exercise in the

first section of this chapter, we will examine a linear model

that predicts the number of cellular telephone users in the

United States. Such predictions are important tools for

cellular telephone company executives and planners.

1

1



CHAPTER 1 Linear Functions2

In Example 14 of this section, we will answer these questions using the equation of a line.

There are many everyday situations in which two quantities are related. For example, if
a bank account pays 6% simple interest per year, then the interest I that a deposit of P dol-
lars would earn in one year is given by

The formula describes the relationship between interest and the amount of money
deposited.

Using this formula, we see, for example, that if then and if
then These corresponding pairs of numbers can be written as ordered pairs,

and whose order is important. The first number denotes the value of P
and the second number the value of I.

Ordered pairs are graphed with the perpendicular number lines of a Cartesian coordi-
nate system, shown in Figure 1.* The horizontal number line, or x-axis, represents the
first components of the ordered pairs, while the vertical or y-axis represents the second
components. The point where the number lines cross is the zero point on both lines; this
point is called the origin.

Each point on the xy-plane corresponds to an ordered pair of numbers, where the 
x-value is written first. From now on, we will refer to the point corresponding to the ordered
pair as “the point ”

Locate the point on the coordinate system by starting at the origin and counting
2 units to the left on the horizontal axis and 4 units upward, parallel to the vertical axis. This
point is shown in Figure 1, along with several other sample points. The number is the
x-coordinate and the number 4 is the y-coordinate of the point

The x-axis and y-axis divide the plane into four parts, or quadrants. For example,
quadrant I includes all those points whose x- and y-coordinates are both positive. The quad-
rants are numbered as shown in Figure 1. The points on the axes themselves belong to no
quadrant. The set of points corresponding to the ordered pairs of an equation is the graph
of the equation.

The x- and y-values of the points where the graph of an equation crosses the axes are
called the x-intercept and y-intercept, respectively.** See Figure 2.
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1x, y 2 .1x, y 2

1200, 12 2 ,1 100, 6 2
I 5 $12.

P 5 $200,I 5 $6,P 5 $100,

I 5 0.06P

I 5 0.06 . P,  or  I 5 0.06P.

Before using mathematics to solve a real-world problem, we must usually set up a
mathematical model, a mathematical description of the situation. In this chapter
we look at some mathematics of linear models, which are used for data whose 

graphs can be approximated by straight lines. Linear models have an immense number of 
applications, because even when the underlying phenomenon is not linear, a linear model 
often provides an approximation that is sufficiently accurate and much simpler to use.

Slopes and Equations of Lines
How fast has tuition at public colleges been increasing in recent years,
and how well can we predict tuition in the future?

1.1
APPLY IT 

*The name “Cartesian” honors René Descartes (1596 –1650), one of the greatest mathematicians of the seven-
teenth century. According to legend, Descartes was lying in bed when he noticed an insect crawling on the ceiling
and realized that if he could determine the distance from the bug to each of two perpendicular walls, he could
describe its position at any given moment. The same idea can be used to locate a point in a plane.
**Some people prefer to define the intercepts as ordered pairs, rather than as numbers.



Slope of a Line An important characteristic of a straight line is its slope, a number
that represents the “steepness” of the line. To see how slope is defined, look at the line in
Figure 3. The line goes through the points and The
difference in the two x-values,

in this example, is called the change in x. The symbol (read “delta x”) is used to repre-
sent the change in x. In the same way, represents the change in y. In our example,

These symbols, and are used in the following definition of slope.Dy,Dx

 5 29.

 5 24 2 5

 Dy 5 y2 2 y1

Dy
Dx

x2 2 x1 5 2 2 123 2 5 5

1x2 , y2 
2 5 12, 24 2 .1x1 , y1 

2 5 123, 5 2
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Slope of a Line
The slope of a line is defined as the vertical change (the “rise”) over the horizontal
change (the “run”) as one travels along the line. In symbols, taking two different points

and on the line, the slope is

,

where x1 2 x2 .

m 5
Change in y

Change in x
5
Dy

Dx
5

y2 2 y1

x2 2 x1
 

1x2 , y2 
21x1 , y1 

2

By this definition, the slope of the line in Figure 3 is

The slope of a line tells how fast y changes for each unit of change in x.

NOTE Using similar triangles, it can be shown that the slope of a line is independent of the
choice of points on the line. That is, the same slope will be obtained for any choice of two dif-
ferent points on the line.

m 5
Dy

Dx
5

24 2 5

2 2 123 2
5 2 

9

5
 .

(–3, 5)

(2, –4)

y

x

Δx = 2 –  (–3)
     = 5

Δy = –4 – 5
     = –9



Slope

Find the slope of the line through each pair of points.

(a) and 

SOLUTION Let and Use the definition of slope.

(b) and 

SOLUTION Let and Then

Lines with zero slope are horizontal (parallel to the x-axis).

(c) and 

SOLUTION Let and Then

which is undefined. This happens when the line is vertical (parallel to the y-axis).
TRY YOUR TURN 1

The phrase “no slope” should be avoided; specify instead whether the slope is
zero or undefined.

In finding the slope of the line in Example 1(a), we could have let 
and In that case,

the same answer as before. The order in which coordinates are subtracted does not matter,
as long as it is done consistently.

Figure 4 shows examples of lines with different slopes. Lines with positive slopes go up
from left to right, while lines with negative slopes go down from left to right.

It might help you to compare slope with the percent grade of a hill. If a sign says a hill has a
10% grade uphill, this means the slope is 0.10, or so the hill rises 1 foot for every 10 feet
horizontally.A 15% grade downhill means the slope is

Equations of a Line An equation in two first-degree variables, such as 5 20,
has a line as its graph, so it is called a linear equation. In the rest of this section, we
consider various forms of the equation of a line.

Suppose a line has a slope and -intercept . This means that it goes through the point
. If is any other point on the line, then the definition of slope tells us that

We can simplify this equation by multiplying both sides by and adding to both
sides. The result is

which we call the slope-intercept form of a line. This is the most common form for writing
the equation of a line.

y 5 mx 1 b,

bx
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y 2 b

x 2 0
.

1x, y 210, b 2
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1x2 , y2 
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2 2 2
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0
 ,

1x2 , y2 
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5
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27
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2 5 122, 23 2 .1x1 , y1 
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EXAMPLE  1

YOUR TURN 1 Find the slope
of the line through (1, 5) and (4, 6).

m = –3 m = 4

m = 1m = –1

m = 0

m = –

Undefined slope
y

x

1
3

m = 1
5

FIGURE 4

FOR REVIEW
For review on solving a linear
equation, see Section R.4.

CAUTION



When we say that y is proportional to x.

Equation of a Line

Find an equation in slope-intercept form for each line.

(a) Through with slope 

SOLUTION We recognize as the -intercept because it’s the point with 0 as its
-coordinate, so The slope is , so Substituting these values into

gives

(b) With -intercept 7 and -intercept 2

SOLUTION Notice that . To find , use the definition of slope after writing the 
-intercept as (because the -coordinate is 0 where the line crosses the -axis)

and the -intercept as .

Substituting these values into , we have

TRY YOUR TURN 2

Finding the Slope

Find the slope of the line whose equation is 

SOLUTION To find the slope, solve the equation for .

Subtract 3x from both sides.

Divide both sides by �4.

The coefficient of is , which is the slope of the line. Notice that this is the same
line as in Example 2 (a). TRY YOUR TURN 3

The slope-intercept form of the equation of a line involves the slope and the y-intercept.
Sometimes, however, the slope of a line is known, together with one point (perhaps not the
y-intercept) that the line goes through. The point-slope form of the equation of a line is used
to find the equation in this case. Let be any fixed point on the line, and let 
represent any other point on the line. If m is the slope of the line, then by the definition of
slope,

or

Multiply both sides by x 2 x1.y 2 y1 5 m 1x 2 x1 
2 .

y 2 y1

x 2 x1
5 m,

1x, y 21x1 , y1 
2

3 /4x

 y 5
3

4
x 2 3

 24y 5 23x 1 12

3x 2 4y 5 12

y

3x 2 4y 5 12.

y 5 2
2

7
x 1 2.

y 5 mx 1 b

m 5
0 2 2

7 2 0
5 2

2

7

10, 2 2y
xy1 7, 0 2x

mb 5 2

yx

y 5
3

4
x 2 3.

y 5 mx 1 b
m 5 3 /4.3 /4b 5 23.x

y10, 23 2
3 /410, 23 2

b 5 0,
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Slope-Intercept Form
If a line has slope m and y-intercept b, then the equation of the line in slope-intercept
form is

.y 5 mx 1 b

EXAMPLE  2

EXAMPLE  3

YOUR TURN 2 Find the equa-
tion of the line with x-intercept �4
and y-intercept 6.

YOUR TURN 3 Find the slope
of the line whose equation is
8x 1 3y 5 5.



Point-Slope Form

Find an equation of the line that passes through the point and has slope 

SOLUTION Use the point-slope form.

Multiply both sides by 4.

Distribute.

Combine constants.

Divide both sides by 4.

The equation of the same line can be given in many forms. To avoid confusion, the lin-
ear equations used in the rest of this section will be written in slope-intercept form,

which is often the most useful form.
The point-slope form also can be useful to find an equation of a line if we know two dif-

ferent points that the line goes through, as in the next example.

Using Point-Slope Form to Find an Equation

Find an equation of the line through and 

SOLUTION Begin by using the definition of slope to find the slope of the line that passes
through the given points.

Either or can be used in the point-slope form with If
then

Multiply both sides by .

Distributive property

Add to both sides.

Divide by to put in slope-intercept form.

Check that the same result is found if  TRY YOUR TURN 41x1 , y1 
2 5 1210, 22 2 .

5 y 5
2

5
 x 1 2

20 5y 5 2x 1 10

 5y 2 20 5 2x 2 10

5 5y 2 20 5 2 1x 2 5 2

y1 5 4, m 5 2
5 , x1 5 5 y 2 4 5

2

5
 1x 2 5 2

 y 2 y1 5 m 1x 2 x1 
2

1x1 , y1 
2 5 15, 4 2 ,

2/5.m 51210, 22 215, 4 2

Slope 5 m 5
22 2 4

210 2 5
5

26

215
5

2

5

1210, 22 2 .15, 4 2

y 5 mx 1 b,

 y 5
5

4
 x 2

43

4

 4y 5 5x 2 43

 4y 1 28 5 5x 2 15

 4y 1 28 5 5 1x 2 3 2

 y 1 7 5
5

4
 1x 2 3 2

y1 5 27, m 5 5
4 , x1 5 3 y 2 127 2 5

5
4

 1x 2 3 2

 y 2 y1 5 m 1x 2 x1 
2

m 5 5 /4.13, 27 2
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EXAMPLE  4

EXAMPLE  5

Point-Slope Form
If a line has slope m and passes through the point then an equation of the line is
given by

,

the point-slope form of the equation of a line.

y 2 y1 5 m 1 x 2 x1 
2

1x1 , y1 
2 ,

YOUR TURN 4 Find the
equation of  the line through (2, 9)
and (5, 3). Put your answer in slope-
intercept form.

FOR REVIEW
See Section R.4 for details on
eliminating denominators in an
equation.



Horizontal Line

Find an equation of the line through and 

SOLUTION Find the slope.

Choose, say, as 

Plotting the given ordered pairs and drawing a line through the points show that the equa-
tion represents a horizontal line. See Figure 5(a). Every horizontal line has a slope of
zero and an equation of the form where k is the y-value of all ordered pairs on the line.y 5 k,

y 5 24

 y 5 24

0 1 x 2 8 2 5 0 y 1 4 5 0

y1 5 24, m 5 0, x1 5 8 y 2 124 2 5 0 1x 2 8 2  
 y 2 y1 5 m 1x 2 x1 

2

1x1 , y1 
2 .18, 24 2

m 5
24 2 124 2

22 2 8
5

0

210
5 0

122, 24 2 .18, 24 2
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EXAMPLE  7 Vertical Line

Find an equation of the line through and 

SOLUTION The slope of the line is

which is undefined. Since both ordered pairs have x-coordinate 4, the equation is 
Because the slope is undefined, the equation of this line cannot be written in the slope-
intercept form.

Again, plotting the given ordered pairs and drawing a line through them show that the
graph of is a vertical line. See Figure 5(b).x 5 4

x 5 4.

m 5
26 2 3

4 2 4
5

29

0
 ,

14, 26 2 .14, 3 2

EXAMPLE  6

(8, –4)(–2, –4)

y = –4

2

 –2

–8 8

y

x

FIGURE 5

–4 2

2

–2

–4

–6

y

x = 4

(4, –6)

(4, 3)

x

(a) (b)

Slope of Horizontal and Vertical Lines
The slope of a horizontal line is 0.

The slope of a vertical line is undefined.



The different forms of linear equations discussed in this section are summarized below.
The slope-intercept and point-slope forms are equivalent ways to express the equation of a
nonvertical line. The slope-intercept form is simpler for a final answer, but you may find the
point-slope form easier to use when you know the slope of a line and a point through which
the line passes. The slope-intercept form is often considered the standard form. Any line that
is not vertical has a unique slope-intercept form but can have many point-slope forms for its
equation.

CHAPTER 1 Linear Functions8

Equations of Lines
Equation Description

Slope-intercept form: slope m, y-intercept b

Point-slope form: slope m, line passes through 

Vertical line: x-intercept k, no y-intercept (except when ),
undefined slope

Horizontal line: y-intercept k, no x-intercept (except when
slope 0k 5 0),

y 5 k

k 5 0x 5 k

1x1 , y1 
2y 2 y1 5 m 1 x 2 x 1 

2

y 5 mx 1 b

Parallel and Perpendicular Lines One application of slope involves deciding
whether two lines are parallel, which means that they never intersect. Since two parallel 
lines are equally “steep,” they should have the same slope. Also, two lines with the same
“steepness” are parallel.

Parallel Lines
Two lines are parallel if and only if they have the same slope, or if they are both vertical.

Parallel Line

Find the equation of the line that passes through the point and is parallel to the line

SOLUTION The slope of can be found by writing the equation in slope-
intercept form.

This result shows that the slope is Since the lines are parallel, is also the slope
of the line whose equation we want. This line passes through Substituting

and into the point-slope form gives

TRY YOUR TURN 5

 y 5 2
2

5
 x 1

31

5
.

 y 5 2
2

5
 x 1

6

5
1 5

 y 2 5 5 2
2

5
 1x 2 3 2 5 2

2

5
 x 1

6

5

 y 2 y1 5 m 1x 2 x1 
2

y1 5 5x1 5 3,m 5 22 /5,
13, 5 2 .

22 /522 /5.

Subtract 2x from both sides

and divide both sides by 5.
 y 5 2 

2

5
 x 1

4

5

 2x 1 5y 5 4

2x 1 5y 5 4

2x 1 5y 5 4.
13, 5 2

EXAMPLE  8

YOUR TURN 5 Find the equa-
tion of the line that passes through
the point (4, 5) and is parallel to the
line Put your answer
in slope-intercept form.

3x 2 6y 5 7. Multiply 5 by to get a

common denominator.

5 /5



As already mentioned, two nonvertical lines are parallel if and only if they have the same
slope. Two lines having slopes with a product of are perpendicular. A proof of this fact,
which depends on similar triangles from geometry, is given as Exercise 43 in this section.

21
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Perpendicular Lines
Two lines are perpendicular if and only if the product of their slopes is or if one is
vertical and the other horizontal.

21,

Perpendicular Line

Find the equation of the line passing through the point (3, 7) and perpendicular to the line
having the equation 

SOLUTION To find the slope, write in slope-intercept form:

The slope is 5. Since the lines are perpendicular, if line L has slope m, then

Now substitute and into the point-slope form.

TRY YOUR TURN 6

The next example uses the equation of a line to analyze real-world data. In this example,
we are looking at how one variable changes over time. To simplify the arithmetic, we will
rescale the variable representing time, although computers and calculators have made
rescaling less important than in the past. Here it allows us to work with smaller numbers,
and, as you will see, find the y-intercept of the line more easily. We will use rescaling on
many examples throughout this book. When we do, it is important to be consistent.

Prevalence of Cigarette Smoking

In recent years, the percentage of the U.S. population age 18 and older who smoke has
decreased at a roughly constant rate, from 24.1% in 1998 to 20.6% in 2008. Source: Centers
for Disease Control and Prevention.

(a) Find the equation describing this linear relationship.

SOLUTION Let represent time in years, with representing 1990. With this
rescaling, the year 1998 corresponds to and the year 2008 corresponds to

Let represent the percentage of the population who smoke.
The two ordered pairs representing the given information are then (8, 24.1) and (18, 20.6).
The slope of the line through these points is

This means that, on average, the percentage of the adult population who smoke is
decreasing by about 0.35% per year.

m 5
20.6 2 24.1

18 2 8
5

23.5

10
5 20.35.

yt 5 2008 2 1990 5 18.
t 5 8

t 5 0t

y 5 2
1

5
x 1

38

5

Add 7 to both sides and get a

common denominator.y 5 2
1

5
x 1

3

5
1 7 . 5

5

y 2 7 5 2
1

5
x 1

3

5

y 2 7 5 2
1

5
 1x 2 3 2

y1 5 7x1 5 3,m 5 21 /5,

 m 5 2
1

5
 .

 5m 5 21

y 5 5x 2 4.

5x 2 y 5 4

5x 2 y 5 4.
L

EXAMPLE  9

YOUR TURN 6 Find the
equation  of the line passing through
the point (3, 2) and perpendicular to
the line having the equation
2x 1 3y 5 4.

EXAMPLE  10



Using in the point-slope form, and choosing , gives
the required equation.

We could have  used the other point (18, 20.6) and found the same answer. Instead,
we’ll use this to check our answer by observing that which
agrees with the -value at 

(b) One objective of Healthy People 2010 (a campaign of the U.S. Department of Health
and Human Services) was to reduce the percentage of U.S. adults who smoke to 12% or
less by the year 2010. If this decline in smoking continued at the same rate, did they
meet this objective?

SOLUTION Using the same rescaling, corresponds to the year 2010. Substitut-
ing this value into the above equation gives 

Continuing at this rate, an estimated 19.9% of the adult population  still smoked in
2010, and the objective of Healthy People 2010 was not met.

Notice that if the formula from part (b) of Example 10 is valid for all nonnegative ,
then eventually becomes 0:

Subtract 26.9 from both sides.

Divide both sides by

which indicates that 77 years from 1990 (in the year 2067), 0% of the U.S. adult population
will smoke. Of course, it is still possible that in 2067 there will be adults who smoke; the
trend of recent years may not continue. Most equations are valid for some specific set of
numbers. It is highly speculative to extrapolate beyond those values.

On the other hand, people in business and government often need to make some
prediction about what will happen in the future, so a tentative conclusion based on past
trends may be better than no conclusion at all. There are also circumstances, particu-
larly in the physical sciences, in which theoretical reasons imply that the trend will
continue.

Graph of a Line We can graph the linear equation defined by by finding
several ordered pairs that satisfy the equation. For example, if then 
giving the ordered pair Also, 
among many others, satisfy the equation.

To graph we begin by locating the ordered pairs obtained above, as shown
in Figure 6(a). All the points of this graph appear to lie on a straight line, as in Figure 6(b).
This straight line is the graph of 

It can be shown that every equation of the form has a straight line as its
graph, assuming a and b are not both 0. Although just two points are needed to determine a
line, it is a good idea to plot a third point as a check. It is often convenient to use the x- and
y-intercepts as the two points, as in the following example.

ax 1 by 5 c
y 5 x 1 1.

y 5 x 1 1,

123, 22 2 ,125, 24 2 ,122, 21 2 ,14, 5 2 ,10, 1 2 ,12, 3 2 .
y 5 2 1 1 5 3,x 5 2,

y 5 x 1 1

20.35. t 5
226.9

20.35
5 76.857 <  77*,

20.35 t 5 226.9 

20.35 t 1 26.9 5 0

y
t

y 5 20.35 120 2 1 26.9 5 19.9.

t 5 20

t 5 18.y
20.35 1 18 2 1 26.9 5 20.6,

y 5 20.35 t 1 26.9

y 2 24.1 5 20.35 t 1 2.8

y 2 24.1 5 20.35 1 t 2 8 2

1 t1, y1 2 5 1 8, 24.1 2m 5 20.35
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*The symbol means “is approximately equal to.”<

y

x

(0, 1)

(2, 3)

(4, 5)

(–2, –1)

(–3, –2)

(–5, –4)

y

x

y = x + 1

2

4

2 4

(a)

(b)
FIGURE 6



Not every line has two distinct intercepts; the graph in the next example does not cross
the x-axis, and so it has no x-intercept.

Graph of a Horizontal Line

Graph 

SOLUTION The equation or equivalently, always gives the same 
y-value, for any value of x. Therefore, no value of x will make so the graph has
no x-intercept. As we saw in Example 6, the graph of such an equation is a horizontal line
parallel to the x-axis. In this case the y-intercept is  as shown in Figure 8.

The graph in Example 12 has only one intercept. Another type of linear equation with
coinciding intercepts is graphed in Example 13.

Graph of a Line Through the Origin

Graph 

SOLUTION Begin by looking for the x-intercept. If then

Let 

Divide both sides by 

We have the ordered pair Starting with gives exactly the same ordered pair,
Two points are needed to determine a straight line, and the intercepts have led to

only one point. To get a second point, we choose some other value of x (or y). For example,
if then

Let 

giving the ordered pair These two ordered pairs, and were used to
get the graph shown in Figure 9.

12, 26 2 ,10, 0 212, 26 2 .

x 5 2.y 5 23x 5 23 12 2 5 26,
x 5 2,

10, 0 2 .
x 5 010, 0 2 .

23. 0 5 x.

y 5 0. 0 5 23x

 y 5 23x

y 5 0,

y 5 23x.

23,

y 5 0,23,
y 5 0x 2 3,y 5 23,

y 5 23.
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EXAMPLE  12

y

x

(0, 6)

(2, 3)

(4, 0)

FIGURE 7

y

x

3x + 2y = 12

4

6

(a) (b)

EXAMPLE  13

y

x2–2

y = –3

FIGURE 8

y

x(0, 0)

(2, –6)

–3

2

y = –3x

FIGURE 9

Graph of a Line

Graph 

SOLUTION To find the y-intercept, let 

Divide both sides by 

Similarly, find the x-intercept by letting which gives Verify that when 
the result is These three points are plotted in Figure 7(a). A line is drawn through
them in Figure 7(b).

y 5 3.
x 5 2,x 5 4.y 5 0,

 y 5 6

2. 2y 5 12

 3 10 2 1 2y 5 12

x 5 0.

3x 1 2y 5 12.

EXAMPLE  11
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Linear equations allow us to set up simple mathematical models for real-life situations.
In almost every case, linear (or any other reasonably simple) equations provide only
approximations to real-world situations. Nevertheless, these are often remarkably useful
approximations.

Tuition

The table on the left lists the average annual cost (in dollars) of tuition and fees at public
four-year colleges for selected years. Source: The College Board.

(a) Plot the cost of public colleges by letting correspond to 2000. Are the data
exactly linear? Could the data be approximated by a linear equation?

SOLUTION The data is plotted in Figure 10(a) in a figure known as a scatterplot.
Although it is not exactly linear, it is approximately linear and could be approximated
by a linear equation.

t 5 0

EXAMPLE  14

Year Tuition and Fees

2000 3508
2001 3766
2002 4098
2003 4645
2004 5126
2005 5492
2006 5804
2007 6191
2008 6591
2009 7020

Cost of Public College

x

Year

420 6 8 10

$2,000

$0

$4,000

$6,000

T
ui

tio
n 

an
d 

Fe
es $8,000

y

FIGURE 10
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8000

0

(a) (b)

(b) Use the points (0, 3508) and (9, 7020) to determine an equation that models the 
data.

SOLUTION We first find the slope of the line as follows:

We have rounded to four digits, noting that we cannot expect more accuracy in our answer
than in our data, which is accurate to four digits. Using the slope-intercept form of the
line, , with and , gives

A graphing calculator plot of this line and the data points are shown in Figure 10(b). Notice that the
points closely fit the line. More details on how to construct this graphing calculator plot are given at
the end of this example.

(c) Discuss the accuracy of using this equation to estimate the cost of public colleges in the
year 2030.

SOLUTION The year 2030 corresponds to the year for which the equation pre-
dicts a cost of

, or $15, 214.y 5 390.2 1 30 2 1 3508 5 15, 214

t 5 30,

y 5 390.2t 1 3508.

b 5 3508m 5 390.2y 5 mt 1 b

m 5
7020 2 3508

9 2 0
5

3512

9
 <  390.2.

APPLY IT 

TECHNOLOGY NOTE
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The year 2030 is many years in the future, however. Many factors could affect the tuition,
and the actual figure for 2030 could turn out to be very different from our prediction.

You can plot data with a TI-84 Plus graphing calculator using the following steps.

1. Store the data in lists.

2. Define the stat plot.

3. Turn off (unless you also want to graph a function).

4. Turn on the plot you want to display.

5. Define the viewing window.

6. Display the graph.

Consult the calculator’s instruction booklet or the Graphing Calculator and Excel Spreadsheet
Manual, available with this book, for specific instructions. See the calculator-generated graph in
Figure 10(b), which includes the points and line from Example 14. Notice how the line closely
approximates the data.

Y 5 functions

1.1 EXERCISES
Find the slope of each line.

1. Through and 

2. Through and 

3. Through and 

4. Through and 

5. 6.

7. 8.

9. 10. The x-axis

11. 12.

13. A line parallel to

14. A line perpendicular to 

In Exercises 15–24, find an equation in slope-intercept form for
each line. 

15. Through 

16. Through 

17. Through 

18. Through with undefined slope

19. Through and 

20. Through and 

21. Through and 

22. Through and 

23. Through and 

24. Through and 10, 3 2121, 3 2

128, 6 2128, 4 2

12 /3, 5 /2 2122, 3 /4 2

1 1 /4, 22 212 /3, 1 /2 2

14, 3 218, 21 2

11, 3 214, 2 2

128, 1 2 ,

m 5 0125, 27 2 ,

m 5 2112, 4 2 ,

m 5 2211, 3 2 ,

8x 5 2y 2 5

6x 2 3y 5 12

y 5 26y 5 8

x 5 5

4x 1 7y 5 15x 2 9y 5 11

y 5 3x 2 2y 5 x

122, 5 211, 5 2

18, 27 218, 4 2

11, 3 215, 24 2

121, 2 214, 5 2

In Exercises 25–34, find an equation for each line in the form 
ax � by � c, where a, b, and c are integers with no factor com-
mon to all three and .

25. x-intercept 26, y-intercept 

26. x-intercept y-intercept 4

27. Vertical, through 

28. Horizontal, through 

29. Through parallel to

30. Through parallel to 

31. Through perpendicular to 

32. Through perpendicular to 

33. The line with y-intercept 4 and perpendicular to 

34. The line with x-intercept and perpendicular to 

35. Do the points and lie on the same
line? Explain why or why not. (Hint: Find the slopes between
the points.)

36. Find k so that the line through and is

a. parallel to 

b. perpendicular to 

37. Use slopes to show that the quadrilateral with vertices at 
and is a parallelogram.

38. Use slopes to show that the square with vertices at 
and has diagonals that are perpen-

dicular.
122, 21 214, 21 2 ,14, 5 2 ,

122, 5 2 ,

12, 1 2127 /2, 4 2 ,125 /2, 2 2 ,
11, 3 2 ,

5x 2 2y 5 21.

2x 1 3y 5 6,

1k, 2 214, 21 2

1218, 212 212, 0 2 ,14, 3 2 ,

2x 2 y 5 422 /3

x 1 5y 5 7

2x 2 3y 5 5122, 6 2 ,

x 1 y 5 413, 24 2 ,

2x 2 y 5 2412, 25 2 ,

3x 1 2y 5 13124, 6 2 ,

18, 7 2

126, 5 2
22,

23

a # 0
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For the lines in Exercises 39 and 40, which of the following 
is closest to the slope of the line? (a) 1 (b) 2 (c) 3 (d) 21
(e) 22 (f) 

39.

40.

In Exercises 41 and 42, estimate the slope of the lines.

41.

42. y

x

2

2

y

x2

–2

y

x2

2

y

x
2

2

23
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43. To show that two perpendicular lines, neither of which is ver-
tical, have slopes with a product of go through the fol-
lowing steps. Let line have equation and
let have equation with and
Assume that and are perpendicular, and use right trian-
gle MPN shown in the figure. Prove each of the following
statements.

a. MQ has length 

b. QN has length 

c. Triangles MPQ and PNQ are similar.

d. and m1 m2 5 21m1 /1 5 1 / 12m2 
2

2m2 .

m1 .

L2L1

m2 , 0.m1 . 0y 5 m2 x 1 b2 ,L2

y 5 m1 x 1 b1 ,L1

21,

x

y

0

P Q

N

M

1

L2

L1

44. Consider the equation 

a. Show that this equation represents a line by writing it in the
form 

b. Find the - and -intercepts of this line.

c. Explain in your own words why the equation in this exercise
is known as the intercept form of a line.

Graph each equation.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

APPLICATIONS
Business and Economics

61. Sales The sales of a small company were $27,000 in its sec-
ond year of operation and $63,000 in its fifth year. Let y repre-
sent sales in the xth year of operation. Assume that the data can
be approximated by a straight line.

a. Find the slope of the sales line, and give an equation for the
line in the form 

b. Use your answer from part a to find out how many years
must pass before the sales surpass $100,000.

y 5 mx 1 b.

3x 2 5y 5 0x 1 4y 5 0

y 5 25xy 5 2x

y 1 8 5 0x 1 5 5 0

x 5 4y 5 22

5y 1 6x 5 113y 2 7x 5 221

3x 2 y 5 292x 2 3y 5 12

y 5 26x 1 12y 5 24x 1 9

y 5 4x 1 5y 5 x 2 1

yx

y 5 mx 1 b.

x

a
1

y

b
5 1.



62. Use of Cellular Telephones The following table shows the
subscribership of cellular telephones in the United States 
(in millions) for even-numbered years between 2000 and 2008.
Source: Time Almanac 2010.

1.1 Slopes and Equations of Lines 15

b. What is the target heart rate zone for a 20-year-old?

c. What is the target heart rate zone for a 40-year-old?

d. Two women in an aerobics class stop to take their pulse and
are surprised to find that they have the same pulse. One
woman is 36 years older than the other and is working at the
upper limit of her target heart rate zone. The younger
woman is working at the lower limit of her target heart rate
zone. What are the ages of the two women, and what is their
pulse?

e. Run for 10 minutes, take your pulse, and see if it is in your tar-
get heart rate zone. (After all, this is listed as an exercise!)

66. Ponies Trotting A 1991 study found that the peak vertical
force on a trotting Shetland pony increased linearly with the
pony’s speed, and that when the force reached a critical level,
the pony switched from a trot to a gallop. For one pony, the
critical force was 1.16 times its body weight. It experienced a
force of 0.75 times its body weight at a speed of 2 meters per
second and a force of 0.93 times its body weight at 3 meters
per second. At what speed did the pony switch from a trot to a
gallop? Source: Science.

67. Life Expectancy Some scientists believe there is a limit to how
long humans can live. One supporting argument is that during
the last century, life expectancy from age 65 has increased more
slowly than life expectancy from birth, so eventually these two
will be equal, at which point, according to these scientists, life
expectancy should increase no further. In 1900, life expectancy
at birth was 46 yr, and life expectancy at age 65 was 76 yr. In
2004, these figures had risen to 77.8 and 83.7, respectively. In
both cases, the increase in life expectancy has been linear.
Using these assumptions and the data given, find the maximum
life expectancy for humans. Source: Science.

Social  Sciences

68. Child Mortality Rate The mortality rate for children under 
5 years of age around the world has been declining in a roughly
linear fashion in recent years. The rate per 1000 live births was 90
in 1990 and 65 in 2008. Source: World Health Organization. 

a. Determine a linear equation that approximates the mortality
rate in terms of time , where represents the number of
years since 1900.

b. If this trend continues, in what year will the mortality rate
first drop to 50 or below per 1000 live births?

69. Health Insurance The percentage of adults in the United
States without health insurance increased at a roughly linear
rate from 1999, when it was 17.2%, to 2008, when it was
20.3%. Source: The New York Times.

a. Determine a linear equation that approximates the percentage
of adults in the United States without health insurance  in
terms of time , where represents the number of years since
1990.

b. If this trend were to continue, in what year would the percent-
age of adults without health insurance be at least 25%?

70. Marriage The following table lists the U.S. median age at
first marriage for men and women. The age at which both
groups marry for the first time seems to be increasing at a
roughly linear rate in recent decades. Let t correspond to the
number of years since 1980. Source: U.S. Census Bureau.

tt

tt

a. Plot the data by letting correspond to 2000. Discuss
how well the data fit a straight line.

b. Determine a linear equation that approximates the number
of subscribers using the points (0, 109.48) and (8, 270.33).

c. Repeat part b using the points (2, 140.77) and (8, 270.33).

d. Discuss why your answers to parts b and c are similar but
not identical.

e. Using your equations from parts b and c, approximate the
number of cellular phone subscribers in the year 2007. Com-
pare your result with the actual value of 255.40 million.

63. Consumer Price Index The Consumer Price Index (CPI) is a
measure of the change in the cost of goods over time. The
index was 100 for the three-year period centered on 1983. For
simplicity, we will assume that the CPI was exactly 100 in
1983. Then the CPI of 215.3 in 2008 indicates that an item that
cost $1.00 in 1983 would cost $2.15 in 2008. The CPI has been
increasing approximately linearly over the last few decades.
Source: Time Almanac 2010. 

a. Use this information to determine an equation for the CPI in
terms of , which represents the years since 1980.

b. Based on the answer to part a, what was the predicted value
of the CPI in 2000? Compare this estimate with the actual
CPI of 172.2.

c. Describe the rate at which the annual CPI is changing.

Life Sciences

64. HIV Infection The time interval between a person’s initial
infection with HIV and that person’s eventual development 
of AIDS symptoms is an important issue. The method of
infection with HIV affects the time interval before AIDS
develops. One study of HIV patients who were infected by
intravenous drug use found that 17% of the patients had AIDS
after 4 years, and 33% had developed the disease after 7 years.
The relationship between the time interval and the percentage
of patients with AIDS can be modeled accurately with a linear
equation. Source: Epidemiologic Review.

a. Write a linear equation that models this data,
using the ordered pairs and 

b. Use your equation from part a to predict the number of years
before half of these patients will have AIDS.

65. Exercise Heart Rate To achieve the maximum benefit for the
heart when exercising, your heart rate (in beats per minute)
should be in the target heart rate zone. The lower limit of this
zone is found by taking 70% of the difference between 220 and
your age. The upper limit is found by using 85%. Source:
Physical Fitness.

a. Find formulas for the upper and lower limits (u and l) as lin-
ear equations involving the age x.

1 7, 0.33 2 .14, 0.17 2
y 5 mt 1 b

t

t 5 0

Year 2000 2002 2004 2006 2008

Subscribers 109.48 140.77 182.14 233.04 270.33
(in millions)



a. Find a linear equation that approximates the data for men,
using the data for the years 1980 and 2005.

b. Repeat part a using the data for women.

c. Which group seems to have the faster increase in median
age at first marriage?

d. In what year will the men’s median age at first marriage
reach 30?

e. When the men’s median age at first marriage is 30, what will
the median age be for women?

71. Immigration In 1950, there were 249,187 immigrants admit-
ted to the United States. In 2008, the number was 1,107,126.
Source: 2008 Yearbook of Immigration Statistics.

a. Assuming that the change in immigration is  linear, write an
equation expressing the number of immigrants, , in terms of

the number of years after 1900.

b. Use your result in part a to predict the number of immigrants
admitted to the United States in 2015.

c. Considering the value of the -intercept in your answer to
part a, discuss the validity of using this equation to model the
number of immigrants throughout the entire 20th century.

Physical  Sciences

72. Global Warming In 1990, the Intergovernmental Panel on
Climate Change predicted that the average temperature on
Earth would rise per decade in the absence of interna-
tional controls on greenhouse emissions. Let t measure the
time in years since 1970, when the average global temperature
was Source: Science News.

a. Find a linear equation giving the average global temperature
in degrees Celsius in terms of t, the number of years since
1970.

b. Scientists have estimated that the sea level will rise by 65 cm if
the average global temperature rises to According to
your answer to part a, when would this occur?

73. Galactic Distance The table lists the distances (in megaparsecs
where and velocities (in kilo-
meters per second) of four galaxies moving rapidly away from
Earth. Source: Astronomical Methods and Calculations, and
Fundamental Astronomy.

1 megaparsec < 3.1 3 1019 km 2

19°C.

15°C.

0.3°C

y

t,
y
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a. Plot the data points letting x represent distance and y repre-
sent velocity. Do the points lie in an approximately linear
pattern?

b. Write a linear equation to model this data, using the
ordered pair 

c. The galaxy Hydra has a velocity of 60,000 km per sec. Use
your equation to approximate how far away it is from Earth.

d. The value of m in the equation is called the Hubble constant.
The Hubble constant can be used to estimate the age of the
universe A (in years) using the formula

Approximate A using your value of m.

General Interest

74. News/Talk Radio From 2001 to 2007, the number of stations
carrying news/talk radio increased at a roughly linear rate, from
1139 in 2001 to 1370 in 2007. Source: State of the Media.

a. Find a linear equation expressing the number of stations carry-
ing news/talk radio, , in terms of the years since 2000.

b. Use your answer from part a to predict the number of sta-
tions carrying news/talk radio in 2008. Compare with the
actual number of 2046. Discuss how the linear trend from
2001 to 2007 might have changed in 2008.

75. Tuition The table lists the annual cost (in dollars) of tuition
and fees at private four-year colleges for selected years. (See
Example 14.) Source: The College Board.

t,y

A 5
9.5 3 1011

m
 .

1520, 40,000 2 .
y 5 mx

Year 1980 1985 1990 1995 2000 2005

Men 24.7 25.5 26.1 26.9 26.8 27.1

Women 22.0 23.3 23.9 24.5 25.1 25.3

Age at First Marriage

a. Sketch a graph of the data. Do the data appear to lie roughly
along a straight line?

b. Let correspond to the year 2000. Use the points 
(0, 16,072) and (9, 26,273) to determine a linear equation
that models the data. What does the slope of the graph of the
equation indicate?

c. Discuss the accuracy of using this equation to estimate the
cost of private college in 2025.

t 5 0

2000 16,072
2002 18,060
2004 20,045
2006 22,308
2008 25,177
2009 26,273

Year Tuition and Fees

Virga 15 1600

Ursa Minor 200 15,000

Corona Borealis 290 24,000

Bootes 520 40,000

Galaxy Distance Velocity

YOUR TURN ANSWERS 

1. 2.

3. 4.

5. 6. y 5 1 3 /2 2x 2 5 /2y 5 1 1 /2 2x 1 3

y 5 2 2x 1 132 8 /3

y 5 1 3 /2 2x 1 61 /3
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In Example 6 in this section, this question will be answered using a linear function.

As we saw in the previous section, many situations involve two variables related by a linear
equation. For such a relationship, when we express the variable y in terms of x, we say that y is
a linear function of x. This means that for any allowed value of x (the independent variable),
we can use the equation to find the corresponding value of y (the dependent variable). Exam-
ples of equations defining linear functions include and 
which can be written as Equations in the form where k is a con-
stant, do not define linear functions. All other linear equations define linear functions.

f(x) Notation Letters such as f, g, or h are often used to name functions. For exam-
ple, f might be used to name the function defined by

To show that this function is named f, it is common to replace y with (read “f of x”) to get

By choosing 2 as a value of x, becomes written

The corresponding ordered pair is In a similar manner,

and so on.

Function Notation

Let Find and g (b).

SOLUTION To find substitute 3 for x.

Similarly,

and

TRY YOUR TURN 1

We summarize the discussion below.

g 1b 2 5 24b 1 5.

g 122 2 5 24 122 2 1 5 5 8 1 5 5 13,

g 10 2 5 24 10 2 1 5 5 0 1 5 5 5,

g 13 2 5 24 13 2 1 5 5 212 1 5 5 27

g 13 2 ,
g 122 2 ,g 10 2 ,g 1 3 2 ,g 1x 2 5 24x 1 5.

f 124 2 5 5 2 3 124 2 5 17,  f 10 2 5 5,  f 126 2 5 23,

12, 21 2 .

f 12 2 5 21.

5 2 3 . 2 5 5 2 6 5 21,f 1x 2

f 1 x 2 5 5 2 3x.

f 1x 2

y 5 5 2 3x.

x 5 k,y 5 12 /3 2x 2 17 /3 2 .
2x 2 3y 5 7,y 5 25,y 5 2x 1 3,

Linear Function
A relationship f defined by

,

for real numbers m and b, is a linear function.

y 5 f 1 x 2 5 mx 1 b

Supply and Demand Linear functions are often good choices for supply and
demand curves. Typically, as the price of an item increases, consumers are less likely to buy
an increasingly expensive item, and so the demand for the item decreases. On the other

YOUR TURN 1
Calculate g 125 2 .

Linear Functions and Applications
How many units must be sold for a firm to break even?

1.2
APPLY IT 

EXAMPLE  1



hand, as the price of an item increases, producers are more likely to see a profit in selling
the item, and so the supply of the item increases. The increase in the quantity supplied and
decrease in the quantity demanded can eventually result in a surplus, which causes the price
to fall. These countervailing trends tend to move the price, as well as the quantity supplied
and demanded toward an equilibrium value.

For example, during the late 1980s and early 1990s, the consumer demand for cranber-
ries (and all of their healthy benefits) soared. The quantity demanded surpassed the quantity
supplied, causing a shortage, and cranberry prices rose dramatically. As prices increased,
growers wanted to increase their profits, so they planted more acres of cranberries. Unfortu-
nately, cranberries take 3 to 5 years from planting until they can first be harvested. As grow-
ers waited and prices increased, consumer demand decreased. When the cranberries were
finally harvested, the supply overwhelmed the demand and a huge surplus occurred, caus-
ing the price of cranberries to drop in the late 1990s. Source: Agricultural Marketing
Resource Center. Other factors were involved in this situation, but the relationship
between price, supply, and demand was nonetheless typical. 

Although economists consider price to be the independent variable, they have the unfor-
tunate habit of plotting price, usually denoted by p, on the vertical axis, while everyone else
graphs the independent variable on the horizontal axis. This custom was started by the Eng-
lish economist Alfred Marshall (1842–1924). In order to abide by this custom, we will
write p, the price, as a function of q, the quantity produced, and plot p on the vertical axis.
But remember, it is really price that determines how much consumers demand and produc-
ers supply, not the other way around.

Supply and demand functions are not necessarily linear, the simplest kind of function.
Yet most functions are approximately linear if a small enough piece of the graph is taken,
allowing applied mathematicians to often use linear functions for simplicity. That approach
will be taken in this chapter.

Supply and Demand

Suppose that Greg Tobin, manager of a giant supermarket chain, has studied the supply and
demand for watermelons. He has noticed that the demand increases as the price decreases.
He has determined that the quantity (in thousands) demanded weekly, q, and the price (in
dollars) per watermelon, p, are related by the linear function

. Demand function

(a) Find the quantity demanded at a price of $5.25 per watermelon and at a price of $3.75
per watermelon.

SOLUTION To find the quantity demanded at a price of $5.25 per watermelon, replace
p in the demand function with 5.25 and solve for q.

Subtract 9 from both sides.

Divide both sides by �0.75.

Thus, at a price of $5.25, the quantity demanded is 5000 watermelons.

Similarly, replace p with 3.75 to find the demand when the price is $3.75. Verify that
this leads to . When the price is lowered from $5.25 to $3.75 per watermelon, the
quantity demanded increases from 5000 to 7000 watermelons.

(b) Greg also noticed that the quantity of watermelons supplied decreased as the price
decreased. Price p and supply q are related by the linear function

Supply function

Find the quantity supplied at a price of $5.25 per watermelon and at a price of $3.00 per
watermelon.

p 5 S 1q 2 5 0.75q.

q 5 7

 5 5 q

23.75 5 20.75q

 5.25 5 9 2 0.75q

p 5 D 1q 2 5 9 2 0.75q

CHAPTER 1 Linear Functions18
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SOLUTION Substitute 5.25 for p in the supply function, , to find that q 5 7,
so the quantity supplied is 7000 watermelons. Similarly, replacing p with 3 in the supply
equation gives a quantity supplied of 4000 watermelons. If the price decreases from
$5.25 to $3.00 per watermelon, the quantity supplied also decreases, from 7000 to 4000
watermelons.

(c) Graph both functions on the same axes.

SOLUTION The results of part (a) are written as the ordered pairs (5, 5.25) and (7, 3.75).
The line through those points is the graph of the demand function, , shown
in red in Figure 11(a). We used the ordered pairs (7, 5.25) and (4, 3) from the work in part
(b) to graph the supply function, , shown in blue in Figure 11(a).

TRY YOUR TURN 2

A calculator-generated graph of the lines representing the supply and demand functions in Example 2
is shown in Figure 11(b). To get this graph, the equation of each line, using x and y instead of q and
p, was entered, along with an appropriate window. A special menu choice gives the coordinates of
the intersection point, as shown at the bottom of the graph.

NOTE Not all supply and demand problems will have the same scale on both axes. It helps
to consider the intercepts of both the supply graph and the demand graph to decide what scale
to use. For example, in Figure 11, the y-intercept of the demand function is 9, so the scale
should allow values from 0 to at least 9 on the vertical axis. The x-intercept of the demand
function is 12, so the values on the x-axis must go from 0 to 12.

As shown in the graphs of Figure 11, both the supply graph and the demand graph pass
through the point (6, 4.5). If the price of a watermelon is more than $4.50, the quantity sup-
plied will exceed the quantity demanded and there will be a surplus of watermelons. At a
price less than $4.50, the quantity demanded will exceed the quantity supplied and there
will be a shortage of watermelons. Only at a price of $4.50 will quantity demanded and
supplied be equal. For this reason, $4.50 is called the equilibrium price. When the price is
$4.50, quantity demanded and supplied both equal 6000 watermelons, the equilibrium
quantity. In general, the equilibrium price of the commodity is the price found at the point
where the supply and demand graphs for that commodity intersect. The equilibrium
quantity is the quantity demanded and supplied at that same point. Figure 12 illustrates a
general supply and demand situation.

Equilibrium Quantity

Use algebra to find the equilibrium quantity and price for the watermelons in Example 2.

SOLUTION The equilibrium quantity is found when the prices from both supply and
demand are equal. Set the two expressions for p equal to each other and solve.

Add 0.75q to both sides.

The equilibrium quantity is 6000 watermelons, the same answer found earlier.
The equilibrium price can be found by plugging the value of into either the

demand or the supply function. Using the demand function,

The equilibrium price is $4.50, as we found earlier. Check your work by also plugging
into the supply function. TRY YOUR TURN 3q 5 6

p 5 D16 2 5 9 2 0.75 16 2 5 4.5.

q 5 6

 6 5 q

 9 5 1.5q

9 2 0.75q 5 0.75q

p 5 0.75q

p 5 9 2 0.75q

p 5 0.75q

FIGURE 11
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FIGURE 12

EXAMPLE  3

YOUR TURN 3 Repeat
Example 3 using the demand equation

and the supply
equation .S 1q 2 5 0.4q
D 1q 2 5 10 2 0.85q

(b)

YOUR TURN 2 Find the quan-
tity of watermelon demanded and
supplied at a price of $3.30 per
watermelon.
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You may prefer to find the equilibrium quantity by solving the equation with your calculator. Or, if
your calculator has a TABLE feature, you can use it to find the value of q that makes the two expres-
sions equal.

Another important issue is how, in practice, the equations of the supply and demand
functions can be found. Data need to be collected, and if they lie perfectly along a line, then
the equation can easily be found with any two points. What usually happens, however, is
that the data are scattered, and there is no line that goes through all the points. In this case
we must find a line that approximates the linear trend of the data as closely as possible
(assuming the points lie approximately along a line) as in Example 14 in the previous sec-
tion. This is usually done by the method of least squares, also referred to as linear regres-
sion. We will discuss this method in Section 1.3.

Cost Analysis The cost of manufacturing an item commonly consists of two parts.
The first is a fixed cost for designing the product, setting up a factory, training workers, and
so on. Within broad limits, the fixed cost is constant for a particular product and does not
change as more items are made. The second part is a cost per item for labor, materials,
packing, shipping, and so on. The total value of this second cost does depend on the num-
ber of items made.

Cost Analysis

A small company decides to produce video games. The owners find that the fixed cost for
creating the game is $5000, after which they must spend $12 to produce each individual
copy of the game. Find a formula for the cost as a linear function of , the number of
games produced.

SOLUTION Notice that , since $5000 must be spent even if no games are
produced. Also, and In
general,

because every time increases by 1, the cost should increase by $12. The number 12 is also
the slope of the graph of the cost function; the slope gives us the cost to produce one addi-
tional item.

In economics, marginal cost is the rate of change of cost at a level of production
x and is equal to the slope of the cost function at x. It approximates the cost of producing
one additional item. In fact, some books define the marginal cost to be the cost of producing
one additional item. With linear functions, these two definitions are equivalent, and the mar-
ginal cost, which is equal to the slope of the cost function, is constant. For instance, in the
video game example, the marginal cost of each game is $12. For other types of functions,
these two definitions are only approximately equal. Marginal cost is important to manage-
ment in making decisions in areas such as cost control, pricing, and production planning.

The work in Example 4 can be generalized. Suppose the total cost to make x items is
given by the linear cost function The fixed cost is found by letting :

thus, the fixed cost is b dollars. The additional cost of each additional item, the marginal
cost, is m, the slope of the line C 1x 2 5 mx 1 b.

C 10 2 5 m . 0 1 b 5 b;

x 5 0C 1x 2 5 mx 1 b.

C 1x 2

x

C 1x 2 5 5000 1 12x,

C 12 2 5 5000 1 2 .  12 5  5024.C 1 1 2 5 5000 1 12 5 5012,
C 10 2 5 5000

xC 1x 2
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Cost Function

The marginal cost to make x batches of a prescription medication is $10 per batch, while
the cost to produce 100 batches is $1500. Find the cost function given that it is linear.

SOLUTION Since the cost function is linear, it can be expressed in the form
The marginal cost is $10 per batch, which gives the value for m. Using

and in the point-slope form of the line gives

Add 1500 to both sides.

The cost function is given by where the fixed cost is $500.
TRY YOUR TURN 4

Break-Even Analysis The revenue from selling x units of an item is the
product of the price per unit p and the number of units sold (demand) x, so that

The corresponding profit is the difference between revenue and cost That is,

A company can make a profit only if the revenue received from its customers exceeds the
cost of producing and selling its goods and services. The number of units at which revenue
just equals cost is the break-even quantity; the corresponding ordered pair gives the
break-even point.

Break-Even Analysis

A firm producing poultry feed finds that the total cost in dollars of producing and sell-
ing x units is given by

Management plans to charge $24 per unit for the feed.

(a) How many units must be sold for the firm to break even?

SOLUTION The firm will break even (no profit and no loss) as long as revenue just equals
cost, or From the given information, since and

Substituting for and in the equation gives

from which The firm breaks even by selling 25 units, which is the break-even
quantity. The graphs of and are shown in Figure 13.R 1x 2 5 24xC 1x 2 5 20x 1 100

x 5 25.

24x 5 20x 1 100,

R 1x 2 5 C 1x 2C 1x 2R 1x 2

R 1x 2 5 24x.

p 5 $24,R 1x 2 5 pxR 1x 2 5 C 1x 2 .

C 1x 2 5 20x 1 100.

C 1x 2

P 1x 2 5 R 1x 2 2 C 1x 2 .

C 1x 2 .R 1x 2P 1x 2

R 1x 2 5 px.

R 1x 2

C 1x 2 5 10x 1 500,

C 1x 2 5 10x 1 500.

C 1x 2 2 1500 5 10x 2 1000

C 1x 2 2 1500 5 10 1x 2 100 2

C 1x 2 5 1500x 5 100
C 1x 2 5 mx 1 b.

C 1x 2 ,

1.2 Linear Functions and Applications 21

Linear Cost Function
In a cost function of the form the m represents the marginal cost and b
the fixed cost. Conversely, if the fixed cost of producing an item is b and the marginal
cost is m, then the linear cost function for producing x items is C 1x 2 5 mx 1 b.C 1x 2

C 1x 2 5 mx 1 b,

EXAMPLE  5

YOUR TURN 4 Repeat Exam-
ple 5, using a marginal cost of $15
per batch and a cost of $1930 to 
produce 80 batches.

EXAMPLE  6

x

Units of feed

Profit

Break-even pointLoss

(25, 600)

R(x) = 24x

C(x) = 20x + 100

105 15 20 3025 35 40 45 50

1000

$

900
800
700
600
500
400
300
200
100

0

FIGURE 13

APPLY IT 
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The break-even point (where is shown on the graph. If the company sells more
than 25 units (if it makes a profit. If it sells fewer than 25 units, it loses money.

(b) What is the profit if 100 units of feed are sold?

SOLUTION Use the formula for profit 

Then The firm will make a profit of $300 from the
sale of 100 units of feed.

(c) How many units must be sold to produce a profit of $900?

SOLUTION Let in the equation and solve for x.

Sales of 250 units will produce $900 profit. TRY YOUR TURN 5

Temperature One of the most common linear relationships found in everyday situa-
tions deals with temperature. Recall that water freezes at Fahrenheit and Celsius,
while it boils at Fahrenheit and Celsius.* The ordered pairs and

are graphed in Figure 14 on axes showing Fahrenheit (F) as a function of Cel-
sius (C). The line joining them is the graph of the function.
1 100, 212 2

10, 32 2100°212°
0°32°

 x 5 250

 1000 5 4x

 900 5 4x 2 100

P 1x 2 5 4x 2 100P 1x 2 5 900

P 1100 2 5 4 1100 2 2 100 5 300.

 5 4x 2 100

 5 24x 2 120x 1 100 2
 P 1x 2 5 R 1x 2 2 C 1x 2

P 1x 2 .

x . 25),
x 5 25)

YOUR TURN 5 Repeat Exam-
ple 6(c), using a cost function

a charge of
$58 per unit, and a profit of $8030.
C 1 x 2 5 35x 1 250,

50 100 150 C

200

F

150

100

50
(0, 32)

(100, 212)

0

FIGURE 14

*Gabriel Fahrenheit (1686–1736), a German physicist, invented his scale with representing the temperature of
an equal mixture of ice and ammonium chloride (a type of salt), and as the temperature of the human body. 
(It is often said, erroneously, that Fahrenheit set as the temperature of the human body. Fahrenheit’s own
words are quoted in A History of the Thermometer and Its Use in Meteorology by W. E. Knowles, Middleton: The
Johns Hopkins Press, 1966, p. 75.) The Swedish astronomer Anders Celsius (1701–1744) set and as the
freezing and boiling points of water.

100°0°

100°
96°

0°

EXAMPLE  7 Temperature

Derive an equation relating F and C.

SOLUTION To derive the required linear equation, first find the slope using the given
ordered pairs, and 

m 5
212 2 32

100 2 0
5

9

5

1100, 212 2 .10, 32 2
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The F-intercept of the graph is 32, so by the slope-intercept form, the equation of the line is

With simple algebra this equation can be rewritten to give C in terms of F:

C 5
5

9
 1F 2 32 2 .

F 5
9

5
  C 1 32.

1.2 EXERCISES
For Exercises 1–10, let f (x) � 7 � 5x and g(x) � 2x � 3. Find
the following.

1. f (2) 2. f (4)

3. f (23) 4. f (21)

5. g (1.5) 6. g (2.5)

7. g (21/2) 8. g (23/4)

9. f (t) 10. g (k2)

In Exercises 11–14, decide whether the statement is true or
false.

11. To find the x-intercept of the graph of a linear function, we
solve and to find the y-intercept, we evaluate

12. The graph of is a vertical line.

13. The slope of the graph of a linear function cannot be
undefined.

14. The graph of is a straight line that passes through
the origin.

15. Describe what fixed costs and marginal costs mean to a
company.

16. In a few sentences, explain why the price of a commodity not
already at its equilibrium price should move in that direction.

17. Explain why a linear function may not be adequate for describ-
ing the supply and demand functions.

18. In your own words, describe the break-even quantity, how to
find it, and what it indicates.

Write a linear cost function for each situation. Identify all vari-
ables used.

19. A Lake Tahoe resort charges a snowboard rental fee of $10
plus $2.25 per hour.

20. An Internet site for downloading music charges a $10 registra-
tion fee plus 99 cents per downloaded song.

21. A parking garage charges 2 dollars plus 75 cents per half-hour.

22. For a one-day rental, a car rental firm charges $44 plus 
28 cents per mile.

f 1x 2 5 ax

f 1x 2 5 25

f 10 2 .
y 5 f 1x 2 5 0,

Assume that each situation can be expressed as a linear cost
function. Find the cost function in each case.

23. Fixed cost: $100; 50 items cost $1600 to produce.

24. Fixed cost: $35; 8 items cost $395 to produce.

25. Marginal cost: $75; 50 items cost $4300 to produce.

26. Marginal cost: $120; 700 items cost $96,500 to produce.

APPLICATIONS
Business and Economics

27. Supply and Demand Suppose that the demand and price for
a certain model of a youth wristwatch are related by

where p is the price (in dollars) and q is the quantity demanded
(in hundreds). Find the price at each level of demand.

a. 0 watches b. 400 watches c. 800 watches

Find the quantity demanded for the watch at each price.

d. $8 e. $10 f. $12

g. Graph .

Suppose the price and supply of the watch are related by

where p is the price (in dollars) and q is the quantity supplied
(in hundreds) of watches. Find the quantity supplied at each
price.

h. $0 i. $10 j. $20

k. Graph on the same axis used for part g.

l. Find the equilibrium quantity and the equilibrium price.

28. Supply and Demand Suppose that the demand and price for
strawberries are related by

,

where p is the price (in dollars) and q is the quantity demanded
(in hundreds of quarts). Find the price at each level of demand.

a. 0 quarts b. 400 quarts c. 840 quarts

p 5 D 1q 2 5 5 2 0.25q

p 5 0.75q

p 5 S 1q 2 5 0.75q,

p 5 16 2 1.25q

p 5 D 1q 2 5 16 2 1.25q,



Find the quantity demanded for the strawberries at each price.

d. $4.50 e. $3.25 f. $2.40

g. Graph .

Suppose the price and supply of strawberries are related by

where p is the price (in dollars) and q is the quantity supplied
(in hundreds of quarts) of strawberries. Find the quantity
supplied at each price.

h. $0 i. $2 j. $4.50

k. Graph on the same axis used for part g.

l. Find the equilibrium quantity and the equilibrium price.

29. Supply and Demand Let the supply and demand functions
for butter pecan ice cream be given by

where p is the price in dollars and q is the number of 10-gallon
tubs.

a. Graph these on the same axes.

b. Find the equilibrium quantity and the equilibrium price.
(Hint: The way to divide by a fraction is to multiply by its
reciprocal.)

30. Supply and Demand Let the supply and demand functions
for sugar be given by

where p is the price per pound and q is the quantity in thou-
sands of pounds.

a. Graph these on the same axes.

b. Find the equilibrium quantity and the equilibrium price.

31. Supply and Demand Suppose that the supply function for
honey is , where is the price in
dollars for an 8-oz container and is the quantity in barrels.
Suppose also that the equilibrium price is $4.50 and the
demand is 2 barrels when the price is $6.10. Find an equation
for the demand function, assuming it is linear.

32. Supply and Demand Suppose that the supply function for
walnuts is , where is the price in
dollars per pound and is the quantity in bushels. Suppose also
that the equilibrium price is $5.85, and the demand is 4 bushels
when the price is $7.60. Find an equation for the demand
function, assuming it is linear.

33. T-Shirt Cost Joanne Wendelken sells silk-screened T-shirts at
community festivals and crafts fairs. Her marginal cost to pro-
duce one T-shirt is $3.50. Her total cost to produce 60 T-shirts
is $300, and she sells them for $9 each.

a. Find the linear cost function for Joanne’s T-shirt production.

b. How many T-shirts must she produce and sell in order to
break even?

c. How many T-shirts must she produce and sell to make a
profit of $500?

q
pp 5 S 1q 2 5 0.25q 1 3.6

q
pp 5 S 1q 2 5 0.3q 1 2.7

 p 5 D 1q 2 5 22q 1 3.2,

 p 5 S 1q 2 5 1.4q 2 0.6  and

p 5 S 1q 2 5
2

5
 q  and  p 5 D 1q 2 5 100 2

2

5
 q,

p 5 0.75q

p 5 S 1q 2 5 0.25q,

p 5 5 2 0.25q
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34. Publishing Costs Alfred Juarez owns a small publishing
house specializing in Latin American poetry. His fixed cost to
produce a typical poetry volume is $525, and his total cost to
produce 1000 copies of the book is $2675. His books sell for
$4.95 each.

a. Find the linear cost function for Alfred’s book production.

b. How many poetry books must he produce and sell in order
to break even?

c. How many books must he produce and sell to make a profit
of $1000?

35. Marginal Cost of Coffee The manager of a restaurant found
that the cost to produce 100 cups of coffee is $11.02, while the
cost to produce 400 cups is $40.12. Assume the cost is a
linear function of x, the number of cups produced.

a. Find a formula for 

b. What is the fixed cost?

c. Find the total cost of producing 1000 cups.

d. Find the total cost of producing 1001 cups.

e. Find the marginal cost of the 1001st cup.

f. What is the marginal cost of any cup and what does this
mean to the manager?

36. Marginal Cost of a New Plant In deciding whether to set up
a new manufacturing plant, company analysts have decided
that a linear function is a reasonable estimation for the total
cost in dollars to produce x items. They estimate the cost
to produce 10,000 items as $547,500, and the cost to produce
50,000 items as $737,500.

a. Find a formula for 

b. Find the fixed cost.

c. Find the total cost to produce 100,000 items.

d. Find the marginal cost of the items to be produced in this
plant and what does this mean to the manager?

37. Break-Even Analysis Producing x units of tacos costs
revenue is where and

are in dollars.

a. What is the break-even quantity?

b. What is the profit from 100 units?

c. How many units will produce a profit of $500?

38. Break-Even Analysis To produce x units of a religious medal
costs The revenue is Both

and are in dollars.

a. Find the break-even quantity.

b. Find the profit from 250 units.

c. Find the number of units that must be produced for a profit
of $130.

Break-Even Analysis You are the manager of a firm. You are
considering the manufacture of a new product, so you ask the
accounting department for cost estimates and the sales depart-
ment for sales estimates. After you receive the data, you must
decide whether to go ahead with production of the new prod-
uct. Analyze the data in Exercises 39–42 (find a break-even

R 1x 2C 1x 2
R 1x 2 5 25x.C 1x 2 5 12x 1 39.

R 1x 2
C 1x 2R 1x 2 5 15x,C 1x 2 5 5x 1 20;

C 1x 2 .

C 1x 2

C 1x 2 .

C 1x 2



quantity) and then decide what you would do in each case.
Also write the profit function.

39. no more than 38 units can
be sold.

40. no more than 400 units
can be sold.

41. (Hint: What does a negative
break-even quantity mean?)

42.

43. Break-Even Analysis Suppose that the fixed cost for a prod-
uct is $400 and the break-even quantity is 80. Find the mar-
ginal profit (the slope of the linear profit function).

44. Break-Even Analysis Suppose that the fixed cost for a prod-
uct is $650 and the break-even quantity is 25. Find the mar-
ginal profit (the slope of the linear profit function).

Physical  Sciences

45. Temperature Use the formula for conversion between
Fahrenheit and Celsius derived in Example 7 to convert each
temperature.

a. to Celsius

b. to Celsius

c. to Fahrenheit

46. Body Temperature You may have heard that the average tem-
perature of the human body is Recent experiments show
that the actual figure is closer to . The figure of 98.6 comes
from experiments done by Carl Wunderlich in 1868. But

98.2°
98.6°.

50°C

220°F

58°F

R 1x 2 5 900xC 1x 2 5 1000x 1 5000;

R 1x 2 5 60xC 1x 2 5 70x 1 500;

R 1x 2 5 250x;C 1x 2 5 105x 1 6000;

R 1x 2 5 105x;C 1x 2 5 85x 1 900;

1.3 The Least Squares Line 25

Wunderlich measured the temperatures in degrees Celsius and
rounded the average to the nearest degree, giving as the
average temperature. Source: Science News.

a. What is the Fahrenheit equivalent of ?

b. Given that Wunderlich rounded to the nearest degree Cel-
sius, his experiments tell us that the actual average human
body temperature is somewhere between and 
Find what this range corresponds to in degrees Fahrenheit.

47. Temperature Find the temperature at which the Celsius and
Fahrenheit temperatures are numerically equal.

General Interest

48. Education Cost The 2009–2010 budget for the California
State University system  projected a fixed cost of $486,000 at
each of five off-campus centers, plus a marginal cost of $1140
per student. Source: California State University.

a. Find a formula for the cost at each center, , as a linear
function of , the number of students.

b. The budget projected 500 students at each center. Calculate
the total cost at each center.

c. Suppose, due to budget cuts, that each center is limited to $1
million. What is the maximum number of students that each
center can then support?

x
C 1x 2

37.5°C.36.5°C

37°C

37°C

The Least Squares Line
How has the accidental death rate in the United States changed over time?

1.3
APPLY IT 

In Example 1 in this section, we show how to answer such questions using the method of
least squares.

We use past data to find trends and to make tentative predictions about the future. The
only assumption we make is that the data are related linearly—that is, if we plot pairs of data,
the resulting points will lie close to some line. This method cannot give exact answers. The
best we can expect is that, if we are careful, we will get a reasonable approximation.

The table lists the number of accidental deaths per 100,000 people in the United States
through the past century. Source: National Center for Health Statistics. If you were a man-
ager at an insurance company, these data could be very important. You might need to make
some predictions about how much you will pay out next year in accidental death benefits, and
even a very tentative prediction based on past trends is better than no prediction at all.

The first step is to draw a scatterplot, as we have done in Figure 15 on the next page. Notice
that the points lie approximately along a line, which means that a linear function may give a
good approximation of the data. If we select two points and find the line that passes through
them, as we did in Section 1.1, we will get a different line for each pair of points, and in some
cases the lines will be very different. We want to draw one line that is simultaneously close to all
the points on the graph, but many such lines are possible, depending upon how we define the
phrase “simultaneously close to all the points.” How do we decide on the best possible line?
Before going on, you might want to try drawing the line you think is best on Figure 15.

Year Death Rate

1910 84.4
1920 71.2
1930 80.5
1940 73.4
1950 60.3
1960 52.1
1970 56.2
1980 46.5
1990 36.9
2000 34.0

YOUR TURN ANSWERS 

1. 25 2. 7600 and 4400

3. 8000 watermelons and $3.20 per watermelon

4. 5. 360C 1x 2 5 15x 1 730

Accidental Death Rate



The line used most often in applications is that in which the sum of the squares of the
vertical distances from the data points to the line is as small as possible. Such a line is called
the least squares line. The least squares line for the data in Figure 15 is drawn in Figure 16.
How does the line compare with the one you drew on Figure 15? It may not be exactly the
same, but should appear similar.

In Figure 16, the vertical distances from the points to the line are indicated by 
and so on, up through (read “d-sub-one, d-sub-two, d-sub-three,” and so on). For n
points, corresponding to the n pairs of data, the least squares line is found by minimizing
the sum 

We often use summation notation to write the sum of a list of numbers. The Greek let-
ter sigma, , is used to indicate “the sum of.” For example, we write the sum

where n is the number of data points, as

Similarly, means and so on.

Note that which is not the same as squaring
When we square we write it as 

For the least squares line, the sum of the distances we are to minimize,
is written as

To calculate the distances, we let be the actual data
points and we let the least squares line be We use Y in the equation instead of
y to distinguish the predicted values (Y ) from the y-value of the given data points. The pre-
dicted value of Y at is and the distance, , between the actual y-value 
and the predicted value Y1 is

Likewise,

and

The sum to be minimized becomes

where are known and m and b are to be found.1x1, y1 2 , 1x2, y2 2 , ) , 1xn, yn 2

 5 g 1mx 1 b 2 y 22,
gd2 5 1mx1 1 b 2 y1 2 2 1 1mx2 1 b 2 y2 2 2 1 ) 1 1mxn 1 b 2 yn 2 2

dn 5 0Yn 2 yn 0 5 0mxn 1 b 2 yn 0 .

d2 5 0Y2 2 y2 0 5 0mx2 1 b 2 y2 0 ,

d1 5 0Y1 2 y1 0 5 0mx1 1 b 2 y1 0 .

y1d1Y1 5 mx1 1 b,x1

Y 5 mx 1 b.
1x1, y1 2 , 1x2, y2 2 , . . . , 1xn, yn 2

d2
1 1 d2

2 1 . . . 1 d2
n 5 gd2.

d2
1 1 d2

2 1 . . . 1 d2
n,

1 gx 2 2.gx,gx.
gx2 means x2

1 1 x2
2 1 . . . 1 x2

n,

x1y1 1 x2y2 1 . . . 1 xnyn,gxy

x1 1 x2 1 .  .  . 1 xn 5 gx.

x1 1 x2 1 . . . 1 xn,
g

1d1 
2 2 1 1d2 

2 2 1 1d3 
2 2 1 .  .  . 1 1dn 

2 2.

d10

d2 ,d1 ,
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CAUTION



The method of minimizing this sum requires advanced techniques and is not given here.
To obtain the equation for the least squares line, a system of equations must be solved, pro-
ducing the following formulas for determining the slope m and y-intercept b.*

1.3 The Least Squares Line 27

Least Squares Line
The least squares line that gives the best fit to the data points

has slope m and y-intercept b given by

.m 5
n 1 �xy 2 2 1 �x 2 1 �y 2

n 1 �x2 2 2 1 �x 2 2
and b 5

�y 2 m 1 �x 2
n

1x1 , y1 
2 , 1x2 , y2 

2 , * , 1xn , yn 
2

Y 5 mx 1 b

*See Exercise 9 at the end of this section.

EXAMPLE  1 Least Squares Line

Calculate the least squares line for the accidental death rate data.

SOLUTION

To find the least squares line for the given data, we first find the required sums. To reduce
the size of the numbers, we rescale the year data. Let x represent the years since 1900, so
that, for example, corresponds to the year 1910. Let y represent the death rate. We
then calculate the values in the xy, x2, and y2 columns and find their totals. (The column
headed y2 will be used later.) Note that the number of data points is n 5 10.

x 5 10

x y xy

10 84.4 844 100 7123.36
20 71.2 1424 400 5069.44
30 80.5 2415 900 6480.25
40 73.4 2936 1600 5387.56
50 60.3 3015 2500 3636.09
60 52.1 3126 3600 2714.41
70 56.2 3934 4900 3158.44
80 46.5 3720 6400 2162.25
90 36.9 3321 8100 1361.61

100 34.0 3400 10,000 1156.00

550 595.5 28,135 38,500 38,249.41Sy2 5Sx2 5Sxy 5Sy 5Sx 5

y2x2

Least Squares Calculations

Putting the column totals into the formula for the slope m, we get

Formula for m

Substitute from the table.

Multiply.

Subtract.

 5 20.5596970 < 20.560.

 5
246,175

82,500

 5
281,350 2 327,525

385,000 2 302,500

 5
10 128,135 2 2 1550 2 1 595.5 2

10 138,500 2 2 1550 2 2

m 5
n 1Sxy 2 2 1Sx 2 1Sy 2

n 1Sx2 2 2 1Sx 2 2

Method 1
Calculating by Hand

APPLY IT 



Method 2
Graphing Calculator
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The significance of m is that the death rate per 100,000 people is tending to drop (because
of the negative) at a rate of 0.560 per year.

Now substitute the value of m and the column totals in the formula for b:

Formula for b

Substitute.

Multiply.

Substitute m and b into the least squares line, the least squares line that best
fits the 10 data points has equation

This gives a mathematical description of the relationship between the year and the number
of accidental deaths per 100,000 people. The equation can be used to predict y from a given
value of x, as we will show in Example 2. As we mentioned before, however, caution must
be exercised when using the least squares equation to predict data points that are far from
the range of points on which the equation was modeled.

In computing m and b, we rounded the final answer to three digits because the
original data were known only to three digits. It is important, however, not to
round any of the intermediate results (such as ) because round-off error may
have a detrimental effect on the accuracy of the answer. Similarly, it is important
not to use a rounded-off value of m when computing b.

The calculations for finding the least squares line are often tedious, even with the aid of a
calculator. Fortunately, many calculators can calculate the least squares line with just a few
keystrokes. For purposes of illustration, we will show how the least squares line in the pre-
vious example is found with a TI-84 Plus graphing calculator.

We begin by entering the data into the calculator. We will be using the first two lists,
called and Choosing the STAT menu, then choosing the fourth entry ClrList, we
enter to indicate the lists to be cleared. Now we press STAT again and choose the
first entry EDIT, which brings up the blank lists. As before, we will only use the last two
digits of the year, putting the numbers in We put the death rate in giving the two
screens shown in Figure 17.

L2,L1.

L2,L1,
L2.L1

gx2

Y 5 20.560x 1 90.3.

Y 5 mx 1 b;

 5
903.33335

10
5 90.333335 < 90.3

 5
595.5 2 12307.83335 2

10

 5
595.5 2 120.559697 2 1550 2

10

b 5
�y 2 m 1 �x 2

n

10
20
30
40
50
60
70

84.4
71.2
80.5
73.4
60.3
52.1
56.2

- - - - - -

L25(84.4, 71.2, 8...

L1 L3 2L2

FIGURE 17

Quit the editor, press STAT again, and choose CALC instead of EDIT. Then choose
item 4 LinReg(ax1b) to get the values of a (the slope) and b (the y-intercept) for the
least squares line, as shown in Figure 18. With a and b rounded to three decimal places, the
least squares line is A graph of the data points and the line is shown
in Figure 19.

Y 5 20.560x 1 90.3.

50
60
70
80
90
100
- - - - - -

60 .3
52.1
56.2
46.5
36.9
34
- - - - - -

L1(11)5

L1 L3 1L2

CAUTION



Method 3
Spreadsheet
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LinReg
y5ax1b
a5-.5596969697
b590.33333333

FIGURE 18

0 100

100

0

FIGURE 19

For more details on finding the least squares line with a graphing calculator, see the
Graphing Calculator and Excel Spreadsheet Manual available with this book.
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FIGURE 20

Least Squares Line

What do we predict the accidental death rate to be in 2012?

SOLUTION Use the least squares line equation given above with .

The accidental death rate in 2012 is predicted to be about 27.6 per 100,000 population. In
this case, we will have to wait until the 2012 data become available to see how accurate our
prediction is. We have observed, however, that the accidental death rate began to go up 
after 2000 and was 40.6 per 100,000 population in 2006. This illustrates the danger of
extrapolating beyond the data.

Least Squares Line

In what year is the death rate predicted to drop below 26 per 100,000 population?

 5 27.6

 5 20.56 1 112 2 1 90.3

Y 5 20.560x 1 90.3

x 5 112

EXAMPLE  2

EXAMPLE  3

YOUR TURN 1 Repeat Exam-
ple 1, deleting the last pair of data
(100, 34.0) and changing the second
to last pair to (90, 40.2).

Many computer spreadsheet programs can also find the least squares line. Figure 20 shows
the scatterplot and least squares line for the accidental death rate data using an Excel
spreadsheet. The scatterplot was found using the Marked Scatter chart from the Gallery and
the line was found using the Add Trendline command under the Chart menu. For details,
see the Graphing Calculator and Excel Spreadsheet Manual available with this book.

TRY YOUR TURN 1 



SOLUTION Let in the equation above and solve for x.

Subtract 90.3 from both sides.

Divide both sides by .

This corresponds to the year 2015 (115 years after 1900), when our equation predicts the
death rate to be per 100,000 population.

Correlation Although the least squares line can always be found, it may not be a good
model. For example, if the data points are widely scattered, no straight line will model the
data accurately. One measure of how well the original data fits a straight line is the correla-
tion coefficient, denoted by , which can be calculated by the following formula.r

20.560 1 115 2 1 90.3 5 25.9

20.560 x 5 115

 264.3 5 20.560x

 26 5 20.560x 1 90.3

Y 5 26
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Correlation Coefficient

r 5
n 1 gxy 2 2 1 gx 2 1 gy 2

"n 1 gx2 2 2 1 gx 2 2 ?"n 1 gy2 2 2 1 gy 2 2

Although the expression for r looks daunting, remember that each of the summations, 
and so on, are just the totals from a table like the one we prepared for the data on

accidental deaths. Also, with a calculator, the arithmetic is no problem! Furthermore, statis-
tics software and many calculators can calculate the correlation coefficient for you.

The correlation coefficient measures the strength of the linear relationship between two
variables. It was developed by statistics pioneer Karl Pearson (1857–1936). The correlation
coefficient r is between 1 and or is equal to 1 or Values of exactly 1 or indicate
that the data points lie exactly on the least squares line. If the least squares line has a
positive slope; gives a negative slope. If there is no linear correlation
between the data points (but some nonlinear function might provide an excellent fit for the
data). A correlation coefficient of zero may also indicate that the data fit a horizontal line.
To investigate what is happening, it is always helpful to sketch a scatterplot of the data.
Some scatterplots that correspond to these values of r are shown in Figure 21.

r 5 0,r 5 21
r 5 1,

2121.21

gxy,gy,
gx,

r close to 1 r close to –1 r close to 0 r close to 0

FIGURE 21

A value of r close to 1 or indicates the presence of a linear relationship. The exact
value of r necessary to conclude that there is a linear relationship depends upon n, the num-
ber of data points, as well as how confident we want to be of our conclusion. For details,
consult a text on statistics.*

21

*For example, see Introductory Statistics, 8th edition, by Neil A. Weiss, Boston, Mass.: Pearson, 2008.



Method 3
Spreadsheet 

Method 2
Graphing Calculator
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EXAMPLE  4

FIGURE 22

Correlation Coefficient

Find for the data on accidental death rates in Example 1.

SOLUTION

From the table in Example 1,

, , , ,

, and .

Substituting these values into the formula for gives

Formula for r

Substitute.

Multiply.

Subtract.

Take square roots and multiply.

This is a high correlation, which agrees with our observation that the data fit a line quite
well.

Most calculators that give the least squares line will also give the correlation coefficient. To
do this on the TI-84 Plus, press the second function CATALOG and go down the list to the
entry DiagnosticOn. Press ENTER at that point, then press STAT, CALC, and choose
item 4 to get the display in Figure 22. The result is the same as we got by hand. The com-
mand DiagnosticOn need only be entered once, and the correlation coefficient will
always appear in the future.

 5 20.9629005849 < 20.963.

 5
246,175

47,954.06787

 5
246,175

"82,500 ."27,873.85

 5
281,350 2 327,525

"385,000 2 302,500 ."382,494.1 2 354,620.25

 5
10 128,135 22 1550 2 1 595.5 2

"10 138,500 2 2 1550 2 2 ."10 138,249.41 2 2 1 595.5 2 2

r 5
n 1Sxy 22 1Sx 2 1Sy 2

"n 1Sx2 22 1Sx 2 2 ."n 1Sy2 22 1Sy 2 2

r

n 5 10Sy2 5 38,249.41

Sx2 5 38,500Sxy 5 28,135Sy 5 595.5Sx 5 550

r

Many computer spreadsheet programs have a built-in command to find the correlation
coefficient. For example, in Excel, use the command “5 CORREL(A1:A10,B1:B10)” to
find the correlation of the 10 data points stored in columns A and B. For more details, see
the Graphing Calculator and Excel Spreadsheet Manual available with this text.

The square of the correlation coefficient gives the fraction of the variation in that is
explained by the linear relationship between and . Consider Example 4, where

This means that 92.7% of the variation in is explained by the
linear relationship found earlier in Example 1. The remaining 7.3% comes from the scatter-
ing of the points about the line.

yr2 5 120.963 2 2 5 0.927.
yx

y

YOUR TURN 2 Repeat Exam-
ple 4, deleting the last pair of data
(100, 34.0) and changing the second
to last pair to (90, 40.2).

Method 1
Calculating by Hand

LinReg
y5ax1b
a5-.5596969697
b590.33333333
r25.9271775365
r5-.962900585

TRY YOUR TURN 2 



Average Expenditure per Pupil Versus Test Scores

Many states and school districts debate whether or not increasing the amount of money
spent per student will guarantee academic success. The following scatterplot shows the
average eighth grade reading score on the National Assessment of Education Progress
(NAEP) for the 50 states and the District of Columbia in 2007 plotted against the average
expenditure per pupil in 2007. Explore how the correlation coefficient is affected by the
inclusion of the District of Columbia, which spent $14,324 per pupil and had a NAEP score
of 241. Source: U.S. Census Bureau and National Center for Education Statistics.
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EXAMPLE  5

FIGURE 23

SOLUTION A spreadsheet was used to create a plot of the points shown in Figure 23.
Washington D.C. corresponds  to the red point in the lower right, which is noticeably sepa-
rate from all the other points. Using the original data, the correlation coefficient when
Washington D.C. is included is 0.1981, indicating that there is not a strong linear correla-
tion. Excluding Washington D.C. raises the correlation coefficient to 0.3745, which is a
somewhat stronger indication of a linear correlation. This illustrates that one extreme data
point that is separate from the others, known as an outlier, can have a strong effect on the
correlation coefficient.

Even if the correlation between average expenditure per pupil and reading score in
Example 5 was high, this would not prove that spending more per pupil causes high reading
scores. To prove this would require further research. It is a common statistical fallacy to
assume that correlation implies causation. Perhaps the correlation is due to a third underly-
ing variable. In Example 5, perhaps states with wealthier families spend more per pupil,
and the students read better because wealthier families have greater access to reading mate-
rial. Determining the truth requires careful research methods that are beyond the scope of
this textbook.

1.3 EXERCISES
1. Suppose a positive linear correlation is found between two

quantities. Does this mean that one of the quantities increasing
causes the other to increase? If not, what does it mean?

2. Given a set of points, the least squares line formed by letting x
be the independent variable will not necessarily be the same as
the least squares line formed by letting y be the independent
variable. Give an example to show why this is true.

3. For the following table of data,
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a. draw a scatterplot.

b. calculate the correlation coefficient.

x 1 2 3 4 5 6 7 8 9 10

y 0 0.5 1 2 2.5 3 3 4 4.5 5



a. Calculate the least squares line and the correlation
coefficient.

b. Sketch a graph of the data.

c. Comparing your answers to parts a and b, does a correlation
coefficient of 0 mean that there is no relationship between
the and values? Would some curve other than a line fit
the data better? Explain.

9. The formulas for the least squares line were found by solving
the system of equations

Solve the above system for b and m to show that

APPLICATIONS
Business and Economics

10. Consumer Durable Goods The total value of consumer durable
goods has grown at an approximately linear rate in recent
years. The annual data for the years 2002 through 2008 can be
summarized as follows, where represents the years since
2000 and the total value of consumer durable goods in
trillions of dollars. Source: Bureau of Economic Analysis.

a. Find an equation for the least squares line.

b. Use your result from part a to predict the total value of con-
sumer durable goods in the year 2015.

c. If this growth continues linearly, in what year will the total
value of consumer durable goods first reach at least 6 tril-
lion dollars?

d. Find and interpret the correlation coefficient.

11. Decrease in Banks The number of banks in the United States
has been dropping steadily since 1984, and the trend in recent
years has been roughly linear. The annual data for the years
1999 through 2008 can be summarized as follows, where x
represents the years since 1990 and the number of banks, in
thousands, in the United States. Source: FDIC.

a. Find an equation for the least squares line.

b. Use your result from part a to predict the number of U.S.
banks in the year 2020.

c. If this trend continues linearly, in what year will the number
of U.S. banks drop below 6000?

d. Find and interpret the correlation coefficient.

12. Digital Cable Subscribers The number of subscribers to dig-
ital cable television has been growing steadily, as shown by the

gxy 5  1810.095gy2 5  603.60324gy 5  77.564

gx2 5  5605gx 5  235n 5 10

y

gxy 5  147.1399gy2 5  116.3396gy 5  28.4269

gx2 5  203 gx 5  35 n 5 7

y
x

b 5
gy 2 m 1 gx 2

n
.

m 5
n 1 gxy 2 2 1 gx 2 1 gy 2

n 1 gx2 2 2 1 gx 2 2
and

1 gx 2b 1 1 gx2 2m 5 gxy.

 nb 1 1 gx 2m 5 gy

yx

c. calculate the least squares line and graph it on the 
scatterplot.

d. predict the y-value when x is 11.

The following problem is reprinted from the November 1989
Actuarial Examination on Applied Statistical Methods. Source:
Society of Actuaries.

4. You are given
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Determine the coefficient of determination for the regres-
sion of Y on X. Choose one of the following. (Note: The coef-
ficient of determination is defined as the square of the
correlation coefficient.)

a. 0.3 b. 0.4 c. 0.5 d. 0.6 e. 0.7

5. Consider the following table of data.

r2,

a. Calculate the least squares line and the correlation
coefficient.

b. Repeat part a, but this time delete the last point.

c. Draw a graph of the data, and use it to explain the dramatic
difference between the answers to parts a and b.

6. Consider the following table of data.

a. Calculate the least squares line and the correlation
coefficient.

b. Repeat part a, but this time delete the last point.

c. Draw a graph of the data, and use it to explain the dramatic
difference between the answers to parts a and b.

7. Consider the following table of data.

a. Calculate the  correlation coefficient.

b. Sketch a graph of the data.

c. Based on how closely the data fits a straight line, is your
answer to part a surprising? Discuss the extent to which the
correlation coefficient describes how well the data fit a hori-
zontal line.

8. Consider the following table of data.

X 6.8 7.0 7.1 7.2 7.4

Y 0.8 1.2 0.9 0.9 1.5

x 1 1 2 2 9

y 1 2 1 2 9

x 1 2 3 4 9

y 1 2 3 4 �20

x 1 2 3 4

y 1 1 1 1.1

x 0 1 2 3 4

y 4 1 0 1 4



following table. Source: National Cable and Telecommuni-
cations Association.
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2000 17.3
2001 17.1
2002 16.8
2003 16.6
2004 16.9
2005 16.9
2006 16.5
2007 16.1

Year Sales

a. Find an equation for the least squares line, letting x equal the
number of years since 2000.

b. Based on your answer to part a, at approximately what rate is
the number of subscribers to digital cable television growing
per year?

c. Use your result from part a to predict the number of digital
cable subscribers in the year 2012.

d. If this trend continues linearly, in what year will the number of
digital cable subscribers first exceed 70 million?

e. Find and interpret the correlation coefficient.

13. Consumer Credit The total amount of consumer credit has been
increasing steadily in recent years. The following table gives the
total U.S. outstanding consumer credit. Source: Federal Reserve.

a. Find an equation for the least squares line, letting x equal the
number of years since 2000.

b. Based on your answer to part a, at approximately what rate is
the consumer credit growing per year?

c. Use your result from part a to predict the amount of consumer
credit in the year 2015.

d. If this trend continues linearly, in what year will the total debt
first exceed $4000 billion?

e. Find and interpret the correlation coefficient.

14. New Car Sales New car sales have increased at a roughly lin-
ear rate. Sales, in millions of vehicles, from 2000 to 2007, are
given in the table below. Source: National Automobile Dealers
Association. Let x represent the number of years since 2000.

a. Find the equation of the least squares line and the correlation
coefficient.

b. Find the equation of the least squares line using only the
data for every other year starting with 2000, 2002, and so
on. Find the correlation coefficient.

c. Compare your results for parts a and b. What do you find?
Why do you think this happens?

15. Air Fares In 2006, for passengers who made early reserva-
tions, American Airlines offered lower prices on one-way fares
from New York to various cities. Fourteen of the cities are
listed in the following table, with the distances from New York
to the cities included. Source: American Airlines.

a. Plot the data. Do the data points lie in a linear pattern?

b. Find the correlation coefficient. Combining this with your
answer to part a, does the cost of a ticket tend to go up with
the distance flown?

c. Find the equation of the least squares line, and use it to find
the approximate marginal cost per mile to fly.

d. For similar data in a January 2000 New York Times ad, the
equation of the least squares line was
Source: The New York Times. Use this information and your
answer to part b to compare the cost of flying American Air-
lines for these two time periods.

e. Identify the outlier in the scatterplot. Discuss the reason why
there would be a difference in price to this city.

Y 5 113 1 0.0243x.

Distance (x) Price ( y)
City (miles) (dollars)

Boston 206 95

Chicago 802 138

Denver 1771 228

Kansas City 1198 209

Little Rock 1238 269

Los Angeles 2786 309

Minneapolis 1207 202

Nashville 892 217

Phoenix 2411 109

Portland 2885 434

Reno 2705 399

St. Louis 948 206

San Diego 2762 239

Seattle 2815 329

Life Sciences

16. Bird Eggs The average length and width of various bird eggs
are given in the following table. Source: National Council of
Teachers of Mathematics.

Year 2000 2002 2004 2006 2008

Customers 
8.5 19.3 25.4 32.6 40.4(in millions)

Year 2004 2005 2006 2007 2008

Consumer credit
2219.5 2319.8 2415.0 2551.9 2592.1(in billions 

of dollars)



88.6 20.0

71.6 16.0

93.3 19.8

84.3 18.4

80.6 17.1

75.2 15.5

69.7 14.7

82.0 17.1

69.4 15.4

83.3 16.2

79.6 15.0

82.6 17.2

80.6 16.0

83.5 17.0

76.3 14.4

Temperature (x) Chirps Per Second ( y)°F
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Bird Name Width (cm) Length (cm)

Canada goose 5.8 8.6

Robin 1.5 1.9

Turtledove 2.3 3.1

Hummingbird 1.0 1.0

Raven 3.3 5.0

Number of Chimps Percentage of
in Hunting Party Successful Hunts

1 20

2 30

3 28

4 42

5 40

6 58

7 45

8 62

9 65

10 63

12 75

13 75

14 78

15 75

16 82

a. Plot the points, putting the length on the y-axis and the width
on the x-axis. Do the data appear to be linear?

b. Find the least squares line, and plot it on the same graph as
the data.

c. Suppose there are birds with eggs even smaller than those of
hummingbirds. Would the equation found in part b continue
to make sense for all positive widths, no matter how small?
Explain.

d. Find the correlation coefficient.

17. Size of Hunting Parties In the 1960s, the famous researcher
Jane Goodall observed that chimpanzees hunt and eat meat as
part of their regular diet. Sometimes chimpanzees hunt alone,
while other times they form hunting parties. The following table
summarizes research on chimpanzee hunting parties, giving the
size of the hunting party and the percentage of successful hunts.
Source: American Scientist and Mathematics Teacher.

a. Plot the data. Do the data points lie in a linear pattern?

b. Find the correlation coefficient. Combining this with your
answer to part a, does the percentage of successful hunts
tend to increase with the size of the hunting party?

c. Find the equation of the least squares line, and graph it on
your scatterplot.

18. Crickets Chirping Biologists have observed a linear relation-
ship between the temperature and the frequency with which a
cricket chirps. The following data were measured for the
striped ground cricket. Source: The Song of Insects. 

a. Find the equation for the least squares line for the data.

b. Use the results of part a to determine how many chirps per
second you would expect to hear from the striped ground
cricket if the temperature were 

c. Use the results of part a to determine what the temperature is
when the striped ground crickets are chirping at a rate of 18
times per sec.

d. Find the correlation coefficient.

Social  Sciences

19. Pupil-Teacher Ratios The following table gives the national
average pupil-teacher ratio in public schools over selected
years. Source: National Center for Education Statistics.

73°F.

1990 17.4
1994 17.7
1998 16.9
2002 16.2
2006 15.8

Year Ratio

a. Find the equation for the least squares line. Let x correspond
to the number of years since 1990 and let y correspond to the
average number of pupils per 1 teacher.

b. Use your answer from part a to predict the pupil-teacher
ratio in 2020. Does this seem realistic?

c. Calculate and interpret the correlation coefficient.



20. Poverty Levels The following table lists how poverty level
income cutoffs (in dollars) for a family of four have changed
over time. Source: U.S. Census Bureau.
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1980 8414

1985 10,989

1990 13,359

1995 15,569

2000 17,604

2005 19,961

2008 22,207

Year Income

59 66

62 71

66 72

68 73

71 75

67 63

70 63

71 67

73 66

75 66

Height Ideal Partner’s Height

a. Find an equation for the least squares line. Let x be the math
SAT and y be the placement test score.

b. Use your answer from part a to predict the mathematics
placement test score for a student with a math SAT score of
420.

c. Use your answer from part a to predict the mathematics place-
ment test score for a student with a math SAT score of 620.

d. Calculate the correlation coefficient.

e. Based on your answer to part d, what can you conclude about
the relationship between a student’s math SAT and mathe-
matics placement test score?

Physical  Sciences

23. Length of a Pendulum Grandfather clocks use pendulums to
keep accurate time. The relationship between the length of a pen-
dulum L and the time T for one complete oscillation can be deter-
mined from the data in the table.* Source: Gary Rockswold.

a. Find the regression line and correlation coefficient for this
data. What strange phenomenon do you observe?

b. The first five data pairs are for female students and the sec-
ond five for male students. Find the regression line and cor-
relation coefficient for each set of data.

c. Plot all the data on one graph, using different types of points
to distinguish the data for the males and for the females.
Using this plot and the results from part b, explain the
strange phenomenon that you observed in part a.

22. SAT Scores At Hofstra University, all students take the math
SAT before entrance, and most students take a mathematics
placement test before registration. Recently, one professor

1.0 1.11

1.5 1.36

2.0 1.57

2.5 1.76

3.0 1.92

3.5 2.08

4.0 2.22

L (ft) T (sec)

a. Plot the data from the table with L as the horizontal axis and
T as the vertical axis.

b. Find the least squares line equation and graph it simultaneously,
if possible, with the data points. Does it seem to fit the data?

c. Find the correlation coefficient and interpret it. Does it con-
firm your answer to part b?

24. Air Conditioning While shopping for an air conditioner,
Adam Bryer consulted the following table, which gives a
machine’s BTUs and the square footage that it would cool.(ft2)

Let x represent the year, with corresponding to 1980 and
y represent the income in thousands of dollars.

a. Plot the data. Do the data appear to lie along a straight line?

b. Calculate the correlation coefficient. Does your result agree
with your answer to part a?

c. Find the equation of the least squares line.

d. Use your answer from part c to predict the poverty level in
the year 2018.

21. Ideal Partner Height In an introductory statistics course at
Cornell University, 147 undergraduates were asked their own
height and the ideal height for their ideal spouse or partner. For
this exercise, we are including the data for only a representa-
tive sample of 10 of the students, as given in the following
table. All heights are in inches. Source: Chance.

x 5 0

collected the following data for 19 students in his Finite
Mathematics class:

Math Placement Math Placement Math Placement
SAT Test SAT Test SAT Test

540 20 580 8 440 10

510 16 680 15 520 11

490 10 560 8 620 11

560 8 560 13 680 8

470 12 500 14 550 8

600 11 470 10 620 7

540 10

*The actual relationship is L 5 0.81T 2, which is not a linear relationship.
This illustration that even if the relationship is not linear, a line can give a
good approximation.



a. Find the equation for the least squares line for the data.

b. To check the fit of the data to the line, use the results from
part a to find the BTUs required to cool a room of 150 
280 and 420 How well does the actual data agree
with the predicted values?

c. Suppose Adam’s room measures 230 Use the results
from part a to decide how many BTUs it requires. If air con-
ditioners are available only with the BTU choices in the
table, which would Adam choose?

d. Why do you think the table gives instead of which
would give the volume of the room?

General Interest 

25. Football The following data give the expected points for a
football team with first down and 10 yards to go from various
points on the field. Source: Operations Research. (Note:

.)gxy 5 399.16
gy2 5 91.927042,gy 5 20.668,gx2 5 33,250,gx 5 500,

ft3,ft2

ft2.

ft2.ft2,
ft2,
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150 5000

175 5500

215 6000

250 6500

280 7000

310 7500

350 8000

370 8500

420 9000

450 9500

ft2 (x) BTUs (y)

5 6.041

15 4.572

25 3.681

35 3.167

45 2.392

55 1.538

65 0.923

75 0.236

85 0.637

95 1.2452

2

1905 113.4 —

1915 111.9 —

1925 111.9 144

1935 109.7 135.6

1945 106.6 132

1955 105.7 125

1965 104.3 118

1975 103.7 117.48

1985 101.73 113.28

1995 101.11 113.28

2005 101.11 113.28

26. Athletic Records The table shows the men’s and women’s
outdoor world records (in seconds) in the 800-m run. Source:
Nature, Track and Field Athletics, Statistics in Sports, and
The World Almanac and Book of Facts.

Let x be the year, with x � 0 corresponding to 1900.

a. Find the equation for the least squares line for the men’s
record (y) in terms of the year (x).

b. Find the equation for the least squares line for the women’s
record.

c. Suppose the men’s and women’s records continue to improve
as predicted by the equations found in parts a and b. In what
year will the women’s record catch up with the men’s record?
Do you believe that will happen? Why or why not?

d. Calculate the correlation coefficient for both the men’s and
the women’s record. What do these numbers tell you?

e. Draw a plot of the data, and discuss to what extent a linear
function describes the trend in the data.

Yards from Goal (x) Expected Points ( y)

Year Men’s Record Women’s Record

a. Calculate the correlation coefficient. Does there appear to be
a linear correlation?

b. Find the equation of the least squares line.

c. Use your answer from part a to predict the expected points
when a team is at the 50-yd line.



27. Running If you think a marathon is a long race, consider the
Hardrock 100, a 100.5 mile running race held in southwestern
Colorado. The chart at right lists the times that the 2008 win-
ner, Kyle Skaggs, arrived at various mileage points along the
way. Source: www.run100s.com.
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0 0

2:19 11.5

3:43 18.9

5:36 27.8

7:05 32.8

7:30 36.0

8:30 43.9

10:36 51.5

11:56 58.4

15:14 71.8

17:49 80.9

18:58 85.2

20:50 91.3

23:23 100.5

Time
(hr:min) Miles

a. What was Skagg's average speed?

b. Graph the data, plotting time on the -axis and distance on
the -axis. You will need to convert the time from hours and
minutes into hours. Do the data appear to lie approximately
on a straight line?

c. Find the  equation for the least squares line, fitting distance
as a linear function of time.

d. Calculate the correlation coefficient. Does it indicate a good
fit of the least squares line to the data?

e. Based on your answer to part d, what is a good value for
Skagg’s average speed? Compare this with your answer to
part a. Which answer do you think is better? Explain your
reasoning.

y
x

In this chapter we studied linear functions, whose graphs are straight
lines. We developed the slope-intercept and point-slope formulas,
which can be used to find the equation of a line, given a point and the
slope or given two points. We saw that lines have many applications

in virtually every discipline. Lines are used through the rest of this
book, so fluency in their use is important. We concluded the chapter
by introducing the method of least squares, which is used to find an
equation of the line that best fits a given set of data.

SUMMARY

Slope of a Line The slope of a line is defined as the vertical change (the “rise”) over the horizontal change (the
“run”) as one travels along the line. In symbols, taking two different points and on
the line, the slope is

where .

Equations of Lines Equation Description

Slope intercept form: slope m and y-intercept b.

Point-slope form: slope m and line passes through .

Vertical line: x-intercept k, no y-intercept (except when ), undefined
slope.

y � k Horizontal line: y-intercept k, no x-intercept (except when ), slope 0.

Parallel Lines Two lines are parallel if and only if they have the same slope, or if they are both vertical.

Perpendicular Lines Two lines are perpendicular if and only if the product of their slopes is , or if one is vertical and the
other horizontal.

21

k 5 0

k 5 0x 5 k

1x1, y1 2y 2 y1 5 m 1x 2 x1 2

y 5 mx 1 b

x1 Z x2

m 5
y2 2 y1

x2 2 x1
,

1x2, y2 21x1, y1 2
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Linear Function A relationship f defined by

for real numbers m and b, is a linear function.

Linear Cost Function In a cost function of the form the m represents the marginal cost and b represents
the fixed cost.

Least Squares Line The least squares line that gives the best fit to the data points 
has slope m and y-intercept b given by the equations

Correlation Coefficient r 5
n 1 gxy 2 2 1 gx 2 1 gy 2

"n 1 gx2 2 2 1 gx 2 2  "n 1 gy2 2 2 1 gy 2 2

b 5
gy 2 m 1 gx 2

n

 m 5
n 1 gxy 2 2 1 gx 2 1 gy 2

n 1 gx2 2 2 1 gx 2 2

1xn, yn 2
1x1, y1 2 , 1x2, y2 2 , . . . ,Y 5 mx 1 b

C 1x 2 5 mx 1 b,

y 5 f 1x 2 5 mx 1 b,

KEY TERMS

mathematical model

1.1
ordered pair
Cartesian coordinate system
axes
origin
coordinates
quadrants
graph
intercepts

slope
linear equation
slope-intercept form
proportional
point-slope form
parallel
perpendicular
scatterplot

1.2
linear function

independent variable
dependent variable
surplus
shortage
equilibrium price
equilibrium quantity
fixed cost
marginal cost
linear cost function
revenue

profit
break-even quantity
break-even point

1.3
least squares line
summation notation
correlation coefficient 
outlier

To understand the concepts presented in this chapter, you should know the meaning and use of the following terms.
For easy reference, the section in the chapter where a word (or expression) was first used is provided.

Determine whether each statement is true or false, and explain
why.

1. A given line can have more than one slope.

2. The equation represents the equation of a line
with slope 4.

3. The line intersects the point (3, ).

4. The line that intersects the points (2, 3) and (2, 5) is a hori-
zontal line.

5. The line that intersects the points (4, 6) and (5, 6) is a hori-
zontal line.

6. The x-intercept of the line is 9.

7. The function represents a linear function.f 1x 2 5 px 1 4

y 5 8x 1 9

21y 5 22x 1 5

y 5 3x 1 4

8. The function represents a linear function.

9. The lines and are perpendicular.y 5 23x 1 8y 5 3x 1 17

f 1x 2 5 2x2 1 3

REVIEW EXERCISES

CONCEPT CHECK

10. The lines and are parallel.

11. A correlation coefficient of zero indicates a perfect fit with the
data.

12. It is not possible to get a correlation coefficient of for a
set of data.

13. What is marginal cost? Fixed cost?

14. What six quantities are needed to compute a correlation
coefficient?

21.5
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Find the slope for each line that has a slope.

15. Through and 

16. Through and 

17. Through the origin and 

18. Through the origin and 

19. 20.

21. 22.

23. 24.

Find an equation in the form for each line.

25. Through 

26. Through 

27. Through and 

28. Through and 

29. Through perpendicular to a line with undefined
slope

30. Through 

Find an equation for each line in the form where
a, b, and c are integers with no factor common to all three and

31. Through parallel to 

32. Through perpendicular to 

33. Through undefined slope

34. Through parallel to a line with undefined slope

35. Through parallel to 

36. Through perpendicular to 

Graph each linear equation defined as follows.

37. 38.

39. 40.

41. 42.

43. 44.

APPLICATIONS
Business and Economics

45. Profit To manufacture x thousand computer chips requires
fixed expenditures of $352 plus $42 per thousand chips. Receipts
from the sale of x thousand chips amount to $130 per thousand.

a. Write an expression for expenditures.

b. Write an expression for receipts.

c. For profit to be made, receipts must be greater than expendi-
tures. How many chips must be sold to produce a profit?

46. Supply and Demand The supply and demand for crabmeat
in a local fish store are related by the equations

and

Demand: p 5 D 1q 2 5 19 2 2q,

Supply: p 5 S 1q 2 5 6q 1 3

x 1 3y 5 0y 5 2x

y 5 1x 2 3 5 0

4x 1 6y 5 123x 2 5y 5 15

y 5 6 2 2xy 5 4x 1 3

y 5 22123, 5 2 ,

y 5 413, 25 2 ,

1 7, 26 2 ,

121, 4 2 ;

8x 1 5y 5 310, 5 2 ,

4x 2 2y 5 91 3, 24 2 ,

a # 0.

ax 1 by 5 c,

slope 5 0122, 5 2 ;

12, 210 2 ,

123, 4 212, 23 2

12, 25 2126, 3 2
slope 5 21/418, 0 2 ;

slope 5 2/315, 21 2 ;

y 5 mx 1 b

x 5 5yy 5 5x 1 4

3y 2 1 5 14y 1 4 5 9

4x 2 y 5 74x 1 3y 5 6

10, 7 2

111, 22 2

13, 23 214, 21 2

12, 12 2123, 7 2
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where p represents the price in dollars per pound and q repre-
sents the quantity of crabmeat in pounds per day. Find the quan-
tity supplied and demanded at each of the following prices.

a. $10 b. $15 c. $18

d. Graph both the supply and the demand functions on the
same axes.

e. Find the equilibrium price.

f. Find the equilibrium quantity.

47. Supply For a new diet pill, 60 pills will be supplied at a price
of $40, while 100 pills will be supplied at a price of $60. Write
a linear supply function for this product.

48. Demand The demand for the diet pills in Exercise 47 is 50
pills at a price of $47.50 and 80 pills at a price of $32.50.
Determine a linear demand function for these pills.

49. Supply and Demand Find the equilibrium price and quantity
for the diet pills in Exercises 47 and 48.

Cost In Exercises 50–53, find a linear cost function.

50. Eight units cost $300; fixed cost is $60.

51. Fixed cost is $2000; 36 units cost $8480.

52. Twelve units cost $445; 50 units cost $1585.

53. Thirty units cost $1500; 120 units cost $5640.

54. Break-Even Analysis The cost of producing x cartons of CDs
is dollars, where The CDs sell for
$400 per carton.

a. Find the break-even quantity.

b. What revenue will the company receive if it sells just that
number of cartons?

55. Break-Even Analysis The cost function for flavored coffee at
an upscale coffeehouse is given in dollars by 
where x is in pounds. The coffee sells for $7 per pound.

a. Find the break-even quantity.

b. What will the revenue be at that point?

56. U.S. Imports from China The United States is China’s largest
export market. Imports from China have grown from about
102 billion dollars in 2001 to 338 billion dollars in 2008. This
growth has been approximately linear. Use the given data pairs
to write a linear equation that describes this growth in imports
over the years. Let represent 2001 and represent
2008. Source: TradeStats ExpressTM.

57. U.S. Exports to China U.S. exports to China have grown
(although at a slower rate than imports) since 2001. In 2001,
about 19.1 billion dollars of goods were exported to China. By
2008, this amount had grown to 69.7 billion dollars. Write a
linear equation describing the number of exports each year,
with representing 2001 and representing 2008.
Source: TradeStats ExpressTM.

58. Median Income The U.S. Census Bureau reported that the
median income for all U.S. households in 2008 was
$50,303. In 1988, the median income (in 2008 dollars) was
$47,614. The median income is approximately linear and is
a function of time. Find a formula for the median income, I,
as a function of the year t, where t is the number of years
since 1900. Source: U.S Census Bureau.

t 5 8t 5 1

t 5 8t 5 1

C 1x 2 5 3x 1 160,

C 1x 2 5 200x 1 1000.C 1x 2



59. New Car Cost The average new car cost (in dollars) for selected
years from 1980 to 2005 is given in the table. Source: Chicago
Tribute and National Automobile Dealers Association.
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Belize 2818 75.4

Cambodia 2155 59.4

France 3602 80.4

India 2358 62.7

Mexico 3265 75.5

New Zealand 3235 79.8

Peru 2450 72.5

Sweden 3120 80.5

Tanzania 2010 53.7

United States 3826 78.7

a. Find a linear equation for the average new car cost in terms
of , the number of years since 1980, using the data for 1980
and 2005.

b. Repeat part a, using the data for 1995 and 2005.

c. Find the equation of the least squares line using all the data.

d. Use a graphing calculator to plot the data and the three lines
from parts a-c.

e. Discuss which of the three lines found in parts a–c best
describes the data, as well as to what extent a linear model
accurately describes the data.

f. Calculate the correlation coefficient.

Life Sciences

60. World Health In general, people tend to live longer in coun-
tries that have a greater supply of food. Listed below is the
2003–2005 daily calorie supply and 2005 life expectancy at
birth for 10 randomly selected countries. Source: Food and
Agriculture Organization.

x

found in an almanac or other reference. Is the result in general
agreement with the previous results?

61. Blood Sugar and Cholesterol Levels The following data
show the connection between blood sugar levels and choles-
terol levels for eight different patients.

For the data given in the preceding table, 
and

a. Find the equation of the least squares line.

b. Predict the cholesterol level for a person whose blood sugar
level is 190.

c. Find the correlation coefficient.

Social  Sciences

62. Beef Consumption The per capita consumption of beef in the
United States decreased from 115.7 lb in 1974 to 92.9 lb in 2007.
Assume a linear function describes the decrease. Write a linear
equation defining the function. Let t represent the number of
years since 1950 and y represent the number of pounds of
red meat consumed. Source: U.S. Department of Agriculture.

63. Marital Status More people are staying single longer in the
United States. In 1995, the number of never-married adults,
age 15 and over, was 55.0 million. By 2009, it was 72.1 million.
Assume the data increase linearly, and write an equation that
defines a linear function for this data. Let t represent the number
of years since 1990. Source: U.S. Census Bureau.

64. Poverty The following table gives the number of families
under the poverty level in the U.S. in recent years. Source:
U.S. Census Bureau.

gy2 5 336,155.
gx2 5 255,214,gxy 5 291,990,gy 5 1607,

gx 5 1394,

Country Calories (x) Life Expectancy ( y)

Blood Sugar Cholesterol 
Patient Level (x) Level ( y)

1 130 170

2 138 160

3 142 173

4 159 181

5 165 201

6 200 192

7 210 240

8 250 290

a. Find the correlation coefficient. Do the data seem to fit a
straight line?

b. Draw a scatterplot of the data. Combining this with your
results from part a, do the data seem to fit a straight line?

c. Find the equation of the least squares line.

d. Use your answer from part c to predict the life expectancy in
the United Kingdom, which has a daily calorie supply of 3426.
Compare your answer with the actual value of 79.0 years.

e. Briefly explain why countries with a higher daily calorie sup-
ply might tend to have a longer life expectancy. Is this trend
likely to continue to higher calorie levels? Do you think that
an American who eats 5000 calories a day is likely to live
longer than one who eats 3600 calories? Why or why not?

f. (For the ambitious!) Find the correlation coefficient and least
squares line using the data for a larger sample of countries, as

2000 6400
2001 6813
2002 7229
2003 7607
2004 7623
2005 7657
2006 7668
2007 7835
2008 8147

Families Below Poverty
Year Level (in thousands)

a. Find a linear equation for the number of families below
poverty level (in thousands) in terms of , the number of
years since 2000, using the data for 2000 and 2008.

x

Year 1980 1985 1990 1995 2000 2005

Cost 7500 12,000 16,000 20,450 24,900 28,400
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b. Repeat part a, using the data for 2004 and 2008.

c. Find the equation of the least squares line using all the data.
Then plot the data and the three lines from parts a–c on a
graphing calculator.

d. Discuss which of the three lines found in parts a–c best
describes the data, as well as to what extent a linear model
accurately describes the data.

e. Calculate the correlation coefficient.

65. Governors’ Salaries In general, the larger a state’s popula-
tion, the more the governor earns. Listed in the table below are
the estimated 2008 populations (in millions) and the salary of
the governor (in thousands of dollars) for eight randomly
selected states. Source: U.S. Census Bureau and Alaska
Department of Administration.

an almanac or other reference. Is the result in general agree-
ment with the previous results?

66. Movies A mathematician exploring the relationship between
ratings of movies, their year of release, and their length discov-
ered a paradox. Rather than list the data set of 100 movies in
the original research, we have created a sample of size 10 that
captures the properties of the original dataset. In the following
table, the rating is a score from 1 to 10, and the length is in
minutes. Source: Journal of Statistics Education.

2001 10 120
2003 5 85
2004 3 100
2004 6 105
2005 4 110
2005 8 115
2006 6 135
2007 2 105
2007 5 125
2008 6 130

Year Rating Length

a. Find the correlation coefficient between the years since 2000
and the length.

b. Find the correlation coefficient between the length and the
rating.

c. Given that you found a positive correlation between the year
and the length in part a, and a  positive correlation between the
length and the rating in part b, what would you expect about
the correlation between the year and the rating? Calculate this
correlation. Are you surprised?

d. Discuss the paradoxical result in part c. Write out in 
words what each correlation tells you. Try to explain what is
happening. You may want to look at a scatterplot between
the year and the rating, and consider which points on the
scatterplot represent movies of length no more than 110
minutes, and which represent movies of length 115 minutes
or more.

USING EXTRAPOLATION TO PREDICT LIFE EXPECTANCY

One reason for devel-
oping a mathemati-
cal model is to make

predictions. If your model is a
least squares line, you can pre-
dict the y-value corresponding
to some new x by substituting
this x into an equation of the
form (We use a
capital Y to remind us that
we’re getting a predicted value
rather than an actual data
value.) Data analysts distin-

Y 5 mx 1 b.

guish between two very different kinds of prediction, interpolation,
and extrapolation. An interpolation uses a new x inside the x range of
your original data. For example, if you have inflation data at 5-year
intervals from 1950 to 2000, estimating the rate of inflation in 1957
is an interpolation problem. But if you use the same data to estimate
what the inflation rate was in 1920, or what it will be in 2020, you
are extrapolating.

In general, interpolation is much safer than extrapolation,
because data that are approximately linear over a short interval
may be nonlinear over a larger interval. One way to detect nonlin-
earity is to look at residuals, which are the differences between the
actual data values and the values predicted by the line of best fit.
Here is a simple example:

E X T E N D E D APPLICATION

a. Find the correlation coefficient. Do the data seem to fit a
straight line?

b. Draw a scatterplot of the data. Compare this with your
answer from part a.

c. Find the equation for the least squares line.

d. Based on your answer to part c, how much does a governor’s
salary increase, on average, for each additional million in
population?

e. Use your answer from part c to predict the governor’s salary
in your state. Based on your answers from parts a and b,
would this prediction be very accurate? Compare with the
actual salary, as listed in an almanac or other reference.

f. (For the ambitious!) Find the correlation coefficient and
least squares line using the data for all 50 states, as found in

State AZ DE MD MA NY PA TN WY

Population (x) 6.50 0.88 5.54 6.45 19.30 12.39 5.92 0.53

Governor’s
95 133 150 141 179 170 160 105

Salary ( y)



The regression equation for the linear fit in Figure 24 is
Since the r-value for this regression line is 0.93,

our linear model fits the data very well. But we might notice that the pre-
dictions are a bit low at the ends and high in the middle. We can get a bet-
ter look at this pattern by plotting the residuals. To find them, we put each
value of the independent variable into the regression equation, calculate

Y 5 3.431 1 1.334x.
the predicted value Y, and subtract it from the actual y-value. The
residual plot is shown in Figure 25, with the vertical axis rescaled to
exaggerate the pattern. The residuals indicate that our data have a
nonlinear, U-shaped component that is not captured by the linear fit.
Extrapolating from this data set is probably not a good idea; our linear
prediction for the value of y when x is 10 may be much too low.

EXERCISES
The following table gives the life expectancy at birth of females born 
in the United States in various years from 1970 to 2005. Source:
National Center for Health Statistics.

5. Now look at the residuals as a fresh data set, and see if you can
sketch the graph of a smooth function that fits the residuals well.
How easy do you think it will be to predict the life expectancy at
birth of females born in 2015?

6. What will happen if you try linear regression on the residuals?
If you’re not sure, use your calculator or software to find the
regression equation for the residuals. Why does this result make
sense?

7. Since most of the females born in 1995 are still alive, how did the
Public Health Service come up with a life expectancy of 78.9
years for these women?

8. Go to the website WolframAlpha.com and enter: “linear fit
{1970,74.7}, {1975,76.6}, etc.,” putting in all the data from the
table. Discuss how the solution compares with the solutions pro-
vided by a graphing calculator and by Microsoft Excel.

DIRECTIONS FOR GROUP PROJECT
Assume that you and your group (3–5 students) are preparing 
a report for a local health agency that is interested in using linear regres-
sion to predict life expectancy. Using the questions above as a guide, write
a report that addresses the spirit of each question and any issues related to
that question. The report should be mathematically sound, grammatically
correct, and professionally crafted. Provide recommendations as to
whether the health agency should proceed with the linear equation or
whether it should seek other means of making such predictions.

2
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FIGURE 25
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1970 74.7

1975 76.6

1980 77.4

1985 78.2

1990 78.8

1995 78.9

2000 79.3

2005 79.9

Life Expectancy
Year of Birth (years)

1. Find an equation for the least squares line for these data, using
year of birth as the independent variable.

2. Use your regression equation to guess a value for the life
expectancy of females born in 1900.

3. Compare your answer with the actual life expectancy for females
born in 1900, which was 48.3 years. Are you surprised?

4. Find the life expectancy predicted by your regression equation for
each year in the table, and subtract it from the actual value in the
second column. This gives you a table of residuals. Plot your
residuals as points on a graph.

10

0 2 4 6

y

x

FIGURE 24



Nonlinear Functions
2.1 Properties of Functions

2.2 Quadratic Functions;Translation
and Reflection

2.3 Polynomial and Rational Functions

2.4 Exponential Functions

2.5 Logarithmic Functions

2.6 Applications: Growth and Decay;
Mathematics of Finance

Chapter 2 Review

Extended Application: Power Functions

There are fourteen mountain peaks over 8000 meters on

the Earth’s surface. At these altitudes climbers face the

challenge of “thin air,” since atmospheric pressure is about

one third of the pressure at sea level. An exercise in

Section 4 of this chapter shows how the change in

atmospheric pressure with altitude can be modeled with

an exponential function.

44
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igure 1 below shows the average price of gold for each year in the last few decades.
Source: finfacts.ie.The graph is not a straight line and illustrates a function that,
unlike those studied in Chapter 1, is nonlinear. Linear functions are simple to study,

and they can be used to approximate many functions over short intervals. But most
functions exhibit behavior that, in the long run, does not follow a straight line. In this
chapter we will study some of the most common nonlinear functions.

APPLY IT

Properties of Functions
How has the world's use of different energy sources changed over time?
We will analyze this question in Exercise 78 in this section, after developing the concept of
nonlinear functions.

As we saw in Chapter 1, the linear cost function for video games
is related to the number of items produced. The number of games produced is the indepen-
dent variable and the total cost is the dependent variable because it depends on the number
produced. When a specific number of games (say 1000) is substituted for x, the cost 
has one specific value Because of this, the variable is said to be
a function of x.

C 1x 21 12 . 1000 1 5000 2 .
C 1x 2

C 1x 2 5 12x 1 5000

2.1

2.1 Properties of Functions 45

FIGURE 1

Function
A function is a rule that assigns to each element from one set exactly one element from
another set.

In most cases in this book, the “rule” mentioned in the box is expressed as an equation,
such as and each set mentioned in the definition will ordinarily be
the real numbers or some subset of the reals. When an equation is given for a function, we
say that the equation defines the function. Whenever x and y are used in this book to define
a function, x represents the independent variable and y the dependent variable. Of course,
letters other than x and y could be used and are often more meaningful. For example, if the
independent variable represents the number of items sold for $4 each and the dependent
variable represents revenue, we might write R 5 4s.

C 1x 2 5 12x 1 5000,
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The independent variable in a function can take on any value within a specified set of
values called the domain.

Domain and Range
The set of all possible values of the independent variable in a function is called the
domain of the function, and the resulting set of possible values of the dependent 
variable is called the range.

FIGURE 2
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An important function to investors around the world is the Dow Jones industrial aver-
age, a performance measure of the stock market. Figure 2 shows how this average varied
over the year 2009. Source: Yahoo! Finance. Let us label this function where y
is the Dow Jones industrial average and x is the time in days from the beginning of 2009.
Notice that the function increases and decreases during the year, so it is not linear, although
a linear function could be used as a very rough approximation. Such a function, whose
graph is not a straight line, is called a nonlinear function.

The concepts you learned in the section on linear functions apply to this and other non-
linear functions as well. The independent variable here is x, the time in days; the dependent
variable is y, the average at any time. The domain is or
corresponds to the beginning of the day on January 1, and corresponds to the end
of the day on December 31. By looking for the lowest and highest values of the function,
we estimate the range to be approximately or As
with linear functions, the domain is mapped along the horizontal axis and the range along
the vertical axis.

We do not have a formula for (If we had possessed such a formula at the begin-
ning of 2009, we could have made a lot of money!) Instead, we can use the graph to esti-
mate values of the function. To estimate for example, we draw a vertical line from
January 10, as shown in Figure 3(a). The y-coordinate seems to be roughly 8600, so we esti-
mate Similarly, if we wanted to solve the equation we would
look for points on the graph that have a y-coordinate of 7000. As Figure 3(b) shows, this
occurs at two points. The first time is around February 27 (the 58th day of the year), and the
last time is around March 11 (the 70th day of the year). Thus when 
and 

This function can also be given as a table. The table in the margin shows the value of
the function for several values of x.

Notice from the table that The stock market was closed for the
first day of 2009, so the Dow Jones average did not change. This illustrates an important

f 10 2 5 f 1 1 2 5 8772.25.

x 5 70.
x 5 58f 1x 2 5 7000

f 1x 2 5 7000,f 1 10 2 < 8600.

f 1 10 2 ,

f 1x 2 .

36500, 10,500 4.5y 1 6500 # y # 10,5006,

x 5 365
30, 365 4; x 5 05x 1 0 # x # 3656,

y 5 f 1x 2 ,

0 8772.25
1 8772.25
2 9034.69
3 9034.69
4 9034.69
5 8952.89
6 9015.10
7 8769.70

Dow Jones Industrial
Average

Day Close 1 y 21 x 2
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property of functions: Several different values of the independent variable can have the
same value for the dependent variable. On the other hand, we cannot have several different
y-values corresponding to the same value of x; if we did, this would not be a function.

What is We do not know. When the stock market closed on January 5, the Dow
Jones industrial average was 8952.89. The closing value the following day was 9015.10.
We do not know what happened in between, although this information is recorded by the
New York Stock Exchange. 

Functions arise in numerous applications, and an understanding of them is critical for
understanding calculus. The following example shows some of the ways functions can be
represented and will help you in determining whether a relationship between two variables
is a function or not.

Functions

Which of the following are functions?

(a)

f 1 5.5 2?

EXAMPLE  1

FIGURE 3
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(b)

SOLUTION Figure 4 shows that an x-value of 28 corresponds to two y-values, 19 and
27. In a function, each x must correspond to exactly one y, so this correspondence is not
a function.

(b) The key on a calculator

SOLUTION This correspondence between input and output is a function because the
calculator produces just one (one y-value) for each x-value entered. Notice also thatx2

x2

FIGURE 4
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two x-values, such as 3 and produce the same y-value of 9, but this does not violate
the definition of a function.

(c)

23,

SOLUTION Since at least one x-value corresponds to more than one y-value, this table
does not define a function.

(d) The set of ordered pairs with first elements mothers and second elements their children

SOLUTION Here the mother is the independent variable and the child is the dependent
variable. For a given mother, there may be several children, so this correspondence is
not a function.

(e) The set of ordered pairs with first elements children and second elements their birth
mothers

SOLUTION In this case the child is the independent variable and the mother is the
dependent variable. Since each child has only one birth mother, this is a function.

Functions

Decide whether each equation or graph represents a function. (Assume that x represents the
independent variable here, an assumption we shall make throughout this book.) Give the
domain and range of any functions.

(a)

SOLUTION For a given value of x, calculating produces exactly one value of y.
(For example, if then so Since
one value of the independent variable leads to exactly one value of the dependent variable,

meets the definition of a function.
Because x can take on any real-number value, the domain of this function is the set

of all real numbers. Finding the range is more difficult. One way to find it would be to
ask what possible values of y could come out of this function. Notice that the value of y
is 11 minus a quantity that is always 0 or positive, since can never be negative.
There is no limit to how large can be, so the range is 

Another way to find the range would be to examine the graph. Figure 5(a) shows a
graphing calculator view of this function, and we can see that the function takes on
y-values of 11 or less. The calculator cannot tell us, however, whether the function con-
tinues to go down past the viewing window, or turns back up. To find out, we need to
study this type of function more carefully, as we will do in the next section.

(b)

SOLUTION Suppose Then becomes from which or
, as illustrated in Figure 5(b). Since one value of the independent variable can

lead to two values of the dependent variable, does not represent a function.

(c)

SOLUTION No matter what the value of x, the value of y is always 7. This is
indeed a function; it assigns exactly one element, 7, to each value of x. Such a func-
tion is known as a constant function. The domain is the set of all real numbers, and
the range is the set Its graph is the horizontal line that intersects the y-axis 
at , as shown in Figure 5(c). Every constant function has a horizontal line for
its graph.

y 5 7
576.

y 5 7

y2 5 x
y 5 22

y 5 2y2 5 4,y2 5 xx 5 4.

y2 5 x

12`, 11 4.4x2
4x2

y 5 11 2 4x2

2185.)f 127 2 5y 5 11 2 4 127 2 2 5 2185,x 5 27,
11 2 4x2

y 5 11 2 4x2

x 1 1 2 2 3 3

y 3 5 8 282523

EXAMPLE  2

10–1 2 3 4 5

–3

–2

–1

1

2

3

x

y

y2 = x

(4, 2)

(4, –2)

(b)

–10 –8 –6 –4 –2 20 4 6 8 10

–4

–2

2

4

6

8

10

x

y

y = 7

(c)

5

15

(a)

FIGURE 5
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(d) The graph in Figure 5(d).

SOLUTION For each value of x, there is only one value of y. For example, the point
on the graph shows that Therefore, the graph represents a func-

tion. From the graph, we see that the values of x go from to 4, so the domain is
By looking at the values of y, we see that the range is [0, 3].

The following agreement on domains is customary.

321, 4 4.
21

f 121 2 5 3.121, 3 2

–2 –1 210 3 4 5

1

2

3

x

y

(d)

FIGURE 5

Agreement on Domains
Unless otherwise stated, assume that the domain of all functions defined by an equation
is the largest set of real numbers that are meaningful replacements for the independent
variable.

For example, suppose

Any real number can be used for x except which makes the denominator equal 0.
By the agreement on domains, the domain of this function is the set of all real numbers
except which we denote or *

When finding the domain of a function, there are two operations to avoid:
(1) dividing by zero; and (2) taking the square root (or any even root) of a
negative number. Later sections will present other functions, such as logarithms,
which require further restrictions on the domain. For now, just remember these
two restrictions on the domain.

Domain and Range

Find the domain and range for each function defined as follows.

(a)

SOLUTION Any number may be squared, so the domain is the set of all real numbers,
written Since for every value of x, the range is 

(b) with the domain specified as 

SOLUTION With the domain specified, the range is the set of values found by applying the
function to the domain. Since and 
the range is The graph of the set of ordered pairs is shown in Figure 6.

(c)

SOLUTION For y to be a real number, must be nonnegative. This happens only

when or making the domain The range is because

is always nonnegative.

(d)

SOLUTION The domain includes only those values of x satisfying 
Using the methods for solving a quadratic inequality produces the domain

As in part (c), the range is 30, ` 2 .

12`, 24 4 < 33 /2, ` 2 .

5x 2 12 $ 0.2x2 1

y 5 "2x2 1 5x 2 12

"6 2 x

30, ` 212`, 6 4.6 $ x,6 2 x $ 0,

6 2 x

y 5 "6 2 x

50, 1, 46.
f 12 2 5 4,f 122 2 5f 10 2 5 0, f 121 2 5 f 1 1 2 5 1,

522, 21, 0, 1, 26.y 5 x2,

30, ` 2 .x2 $ 012`, ` 2 .

f 1x 2 5 x2

12`, 3 /2 2 < 1 3 /2, ` 2 .5x 1 x 2 3 /26, 5x 2 3 /26,3 /2,

x 5 3 /2,

y 5
24x

2x 2 3
 .

*The union of sets A and B, written is defined as the set of all elements in A or B or both.A < B,

EXAMPLE  3

–2 –1 1 20 x

y

1
(–1, 1) (1, 1)

(0, 0)

(–2, 4) (2, 4)

2

3

4

FIGURE 6

CAUTION

FOR REVIEW
Section R.5 demonstrates the
method for solving a quadratic
inequality. To solve 

factor the
quadratic to get

Setting
each factor equal to 0 gives

or leading to
the intervals 

and Testing
a number from each interval
shows that the solution is
12` , 24 4 < 33 /2, ` 2 .

33 /2, ` 2 .324, 3 /2 4,
12` , 24 4,

x 5 24,x 5 3 /2

1 2x 2 3 2 1 x 1 4 2 $ 0.

5x 2 12 $ 0,2x2 1



(e)

SOLUTION Since the denominator cannot be zero, and The domain is

Because the numerator can never be zero, The denominator can take on any real
number except for 0, allowing y to take on any value except for 0, so the range is

TRY YOUR TURN 1

To understand how a function works, think of a function f as a machine—for example, a
calculator or computer—that takes an input x from the domain and uses it to produce an
output (which represents the y-value), as shown in Figure 7. In the Dow Jones exam-
ple, when we put 4 into the machine, we get out 9034.69, since f 14 2 5 9034.69.

f 1x 2

12`, 0 2 < 10, ` 2 .

y 2 0.

12`, 23 2 < 123, 3 2 < 1 3, ` 2 .

x 2 23.x 2 3

y 5
2

x2 2 9
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Domain
X

Range
Y

fx f(x)

FIGURE 7

Evaluating Functions

Let Find the following.

(a)

SOLUTION Replace x with 3.

(b)

SOLUTION Replace x with a to get 

This replacement of one variable with another is important in later chapters.

(c)

SOLUTION Replace x with the expression x 1 h and simplify.

(d)

SOLUTION Replace x with and simplify.

(e) Find all values of x such that 

SOLUTION Set equal to and then add 12 to both sides to make one side
equal to 0.

 2x2 1 4x 1 7 5 0

 2x2 1 4x 2 5 5 212

212,g 1x 2
g 1x 2 5 212.

ga
2
r
b 5 2a

2
r
b

2

1 4a
2
r
b 2 5 5 2 

4

r2 1
8
r

2 5

2 /r

ga
2
r
b

 5 2x2 2 2xh 2 h2 1 4x 1 4h 2 5

 5 2 1x2 1 2xh 1 h2 2 1 4 1x 1 h 2 2 5

 g 1x 1 h 2 5 2 1x 1 h 2 2 1 4 1x 1 h 2 2 5

g 1x 1 h 2

g 1a 2 5 2a2 1 4 a 2 5.

g 1a 2

g 13 2 5 232 1 4 . 3 2 5 5 29 1 12 2 5 5 22

g 1 3 2
g 1x 2 5 2x2 1 4x 2 5.

EXAMPLE  4

YOUR TURN 1 Find the
domain and range for the function

y 5
1

"x2 2 4
.
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This equation does not factor, but can be solved with the quadratic formula, which says
that if where then

In this case, with and we have

TRY YOUR TURN 2

We can verify the results of parts (a) and (e) of the previous example using a graphing calculator. In
Figure 8(a), after graphing we have used the “value” feature on the TI-84
Plus to support our answer from part (a). In Figure 8(b) we have used the “intersect” feature to find
the intersection of and The result is which is one of our two
answers to part (e). The graph clearly shows that there is another answer on the opposite side of the
y-axis.

Notice from Example 4(c) that is not the same as which
equals There is a significant difference between applying a
function to the quantity and applying a function to x and adding h after-
ward.

If you tend to get confused when replacing x with as in Example 4(c), you might
try replacing the x in the original function with a box, like this:

Then, to compute just enter into the box:

and proceed as in Example 4(c).
Notice in the Dow Jones example that to find the value of the function for a given value

of x, we drew a vertical line from the value of x and found where it intersected the graph. If
a graph is to represent a function, each value of x from the domain must lead to exactly one
value of y. In the graph in Figure 9, the domain value leads to two y-values, and
Since the given x-value corresponds to two different y-values, this is not the graph of a func-
tion. This example suggests the vertical line test for the graph of a function.

y2 .y1x1

b 2 5x 1 hb
2

1 4ax 1 hb 5 2ax 1 hga

x 1 hg 1x 1 h 2 ,

b 2 5b
2

1 4ab 5 2aga

x 1 h,

x 1 h
2x2 1 4x 2 5 1 h.

g 1x 2 1 h,g 1x 1 h 2

x 5 5.3166248,y 5 212.y 5 g 1x 2

f 1x 2 5 2x2 1 4x 2 5,

 < 21.317  or  5.317.

 5 2 6 "11

 5
24 6 "44

22

 x 5
24 6 "16 2 4 121 27

2 121 2

c 5 7,b 5 4,a 5 21,

x 5
2b 6 "b2 2 4ac

2a
 .

a 2 0,ax2 1 bx 1 c 5 0,

YOUR TURN 2 Given the
function 
find each of the following.
(a) (b) All values of x
such that f 1x 2 5 25.

f 1 x 1 h 2

f 1 x 2 5 2x2 2 3x 2 4,

10

5

(a)

10

5

(b)

FIGURE 8

0 xx1

(x1, y2)

(x1, y1)y1

y2

y

FIGURE 9

Vertical Line Test
If a vertical line intersects a graph in more than one point, the graph is not the graph of
a function.

A graph represents a function if and only if every vertical line intersects the graph in no
more than one point.

Vertical Line Test

Use the vertical line test to determine which of the graphs in Example 2 represent functions.

SOLUTION Every vertical line intersects the graphs in Figure 5(a), (c), and (d) in at most
one point, so these are the graphs of functions. It is possible for a vertical line to intersect
the graph in Figure 5(b) twice, so this is not a function.

EXAMPLE  5

CAUTION

TECHNOLOGY NOTE
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A function f is called an even function if This means that the graph is
symmetric about the y-axis, so the left side is a mirror image of the right side. The function
f is called an odd function if This means that the graph is symmetric
about the origin, so the left side of the graph can be found by rotating the right side by 
about the origin.

Even and Odd Functions

Determine whether each of the following functions is even, odd, or neither.

(a)

SOLUTION Calculate so the function is
even. Its graph, shown in Figure 10(a), is symmetric about the y-axis.

(b)

SOLUTION Calculate so the function is odd.

Its graph, shown in Figure 10(b), is symmetric about the origin. You can see this by turning
the book upside down and observing that the graph looks the same.

(c)

SOLUTION Calculate which is equal neither to
nor to So the function is neither even nor odd. Its graph, shown in Figure 10(c),

has no symmetry.
2f 1x 2 .f 1x 2

f 12x 2 5 12x 24 2 4 12x 2 3 5 x4 1 4x3,

f 1x 2 5 x4 2 4x3

f 12x 2 5
12x 2

12x 2 2 1 1
5

2x

x2 1 1
5 2f 1x 2 ,

f 1x 2 5
x

x2 1 1

f 12x 2 5 12x 24 2 12x 2 2 5 x4 2 x2 5 f 1x 2 ,
f 1x 2 5 x4 2 x2

180°
f 12x 2 5 2f 1x 2 .

f 12x 2 5 f 1x 2 .

EXAMPLE  6

FOR REVIEW
Recall from Sec. R.6 that

if n is an even inte-
ger, and if n is an
odd integer.

12a 2 n 5 2an

12a 2 n 5 an

x

y

(a)

–1 10

1

2

x

y

(b)

–1–2–3 1 2 30

–1

1

1
2

1
2

–

x

y

(c)

–2 4–1 31 20
–10

–20

–30

10

20

30

FIGURE 10

Delivery Charges

An overnight delivery service charges $25 for a package weighing up to 2 lb. For each
additional pound, or portion thereof, there is an additional charge of $3. Let repre-
sent the cost to send a package weighing w lb. Graph for w in the interval 10, 6 4.D 1w 2

D 1w 2

EXAMPLE  7

0 w

y = D(w)

Pounds

D
ol

la
rs

10

20

30

40

631 42 5

FIGURE 11
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SOLUTION For w in the interval the shipping cost is For w in the
shipping cost is For w in the shipping cost is 
and so on. The graph is shown in Figure 11.

The function discussed in Example 7 is called a step function. Many real-life situations
are best modeled by step functions. Additional examples are given in the exercises.

In Chapter 1 you saw several examples of linear models. In Example 8, we use a qua-
dratic equation to model the area of a lot.

Area

A fence is to be built against a brick wall to form a rectangular lot, as shown in Figure 12.
Only three sides of the fence need to be built, because the wall forms the fourth side. The
contractor will use 200 m of fencing. Let the length of the wall be l and the width w, as
shown in Figure 12.

(a) Find the area of the lot as a function of the length l.

SOLUTION The area formula for a rectangle is or

We want the area as a function of the length only, so we must eliminate the width.
We use the fact that the total amount of fencing is the sum of the three sections, one
length and two widths, so Solve this for w:

Subtract l from both sides.

Divide both sides by 2.

Substituting this into the formula for area gives

(b) Find the domain of the function in part (a).

SOLUTION The length cannot be negative, so Similarly, the width cannot be neg-
ative, so from which we find Therefore, the domain is 

(c) Sketch a graph of the function in part (a).

SOLUTION The result from a graphing calculator is shown in Figure 13. Notice that at
the endpoints of the domain, when and the area is 0. This makes sense:
If the length or width is 0, the area will be 0 as well. In between, as the length increases
from 0 to 100 m, the area gets larger, and seems to reach a peak of when

After that, the area gets smaller as the length continues to increase because
the width is becoming smaller.

In the next section, we will study this type of function in more detail and determine
exactly where the maximum occurs.

l 5 100 m.
5000 m2

l 5 200,l 5 0

30, 200 4.l # 200.100 2 l /2 $ 0,
l $ 0.

A 5 l 1 100 2 l /2 2 .

 100 2 l /2 5 w.
 200 2 l 5 2w

200 5 l 1 2w

200 5 l 1 2w.

A 5 lw.

area 5 length 3 width,

y 5 28 1 3 5 31,1 3, 4 4,y 5 25 1 3 5 28.
12, 3 4,y 5 25.10, 2 4,

EXAMPLE  8

w

l

Fencing

Brick wall
Rectangular

lot

FIGURE 12

0 200

5000

0

A 5 l(100 2 l/2)

FIGURE 13

2.1 EXERCISES
Which of the following rules define y as a function of x?

1. 2.

4

17

82

23

6

93

14

27

X Y X Y
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3. 4.

5. 6.

7. 8.

List the ordered pairs obtained from each equation, given { 2,
1, 0, 1, 2, 3} as the domain. Graph each set of ordered pairs.

Give the range.

9. 10.

11. 12.

13. 14.

15. 16.

Give the domain of each function defined as follows.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

Give the domain and the range of each function. Where arrows
are drawn, assume the function continues in the indicated
direction.

33. y

x

6

0

–2

–5

f 1x 2 5
Å

x2

3 2 x

f 1x 2 5
1

"3x2 1 2x 2 1

f 1x 2 5 "15x2 1 x 2 2f 1x 2 5 "x2 2 4x 2 5

f 1x 2 5 2 

Å
5

x2 1 36
f 1x 2 5 2 

Å
2

x2 2 16

f 1x 2 5
28

x2 2 36
f 1x 2 5

2

1 2 x2

f 1x 2 5 1 3x 1 5 2 1/2f 1x 2 5 1x 2 3 2 1/2

f 1x 2 5 0 3x 2 6 0f 1x 2 5 "4 2 x2

f 1x 2 5 1x 1 3 2 2f 1x 2 5 x4

f 1x 2 5 2x 1 3f 1x 2 5 2x

y 5 24x2y 5 x2

y 5 1x 2 2 2 1x 1 2 2y 5 x 1x 1 2 2

6x 2 y 5 212y 2 x 5 5

y 5 23x 1 9y 5 2x 1 3

2
2

x 5 y2 1 4x 5 0 y 0

y 5 "xy 5 x3 1 2

34.

35.

36.

In Exercises 37–40, give the domain and range. Then, use each
graph to find (a) f ( 2), (b) f(0), (c) f(1/2), and (d) any values of
x such that f(x) 1.

37. y

x

4

2

0 2 4–2

5
2

x

y

9

3

2 6–2

y

x

12

3

2–2

y

x

4

0–5

x y
3 9
2 4
1 1
0 0

1
4
923

22
21

x y
9 3
4 2
1 1
0 0
1
4
9 23

22
21
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38.

39.

40.

For each function, find (a) f(4), (b) f( 1/2), (c) f(a), (d) f(2/m),
and (e) any values of x such that f(x) 1.

41. 42.

43.

44.

Let and to find the
following values.

45. 46.

47. 48.

49. 50.

For each function defined as follows, find (a) 
(b) and (c) 

51. 52. f 1x 2 5 x2 2 3f 1x 2 5 2x 1 1

3f 1x 1 h 2 2 f 1x 2 4 /h.f 1x 1 h 2 2 f 1x 2 ,
f 1x 1 h 2 ,

ga2 

5
z
bga

3

q
b

g 1 z 2 p 2g 1 r 1 h 2
f 12 2 r 2f 1 t 1 1 2

g 1x 2 5 x2 2 2x 1 5f 1x 2 5 6x2 2 2

f 1x 2 5 d x 2 4

2x 1 1
  if x 2 2

1

2

10   if x 5 2
1

2

f 1x 2 5 d2x 1 1

x 2 4
  if x 2 4

7   if x 5 4

f 1x 2 5 1x 1 3 2 1x 2 4 2f 1x 2 5 3x2 2 4x 1 1

5
2

y

x

4

2

0 2 4–2

y

x

4

2

0 2 4–2 –1

y

x

4

2

0 2 3 4–2 –1 1

53. 54.

55. 56.

Decide whether each graph represents a function.

57. 58.

59. 60.

61. 62.

Classify each of the functions in Exercises 63–70 as even, odd,
or neither.

63. 64.

65. 66.

67. 68.

69. 70.

APPLICATIONS
Business and Economics

71. Saw Rental A chain-saw rental firm charges $28 per day or
fraction of a day to rent a saw, plus a fixed fee of $8 for re-
sharpening the blade. Let represent the cost of renting a
saw for x days. Find the following.

a. b. c.

d. e. f.

g. What does it cost to rent a saw for days?

h. A portion of the graph of is shown here. Explain
how the graph could be continued. 

i. What is the independent variable?

j. What is the dependent variable?

k. Is S a linear function? Explain. 

l. Write a sentence or two explaining 
what part f and its answer represent. 

m. We have left out of the graph. Discuss why it should
or shouldn’t be included. If it were included, how would you
define S 10 2?

x 5 0

y 5 S 1x 2
4 

9
10

Sa4 

1

10
bS 14 2Sa3 

1

2
b

Sa1 

1

4
bS 1 1 2Sa

1

2
b

S 1x 2

f 1x 2 5 0 x 2 2 0f 1x 2 5
x

x2 2 9

f 1x 2 5 x3 1 xf 1x 2 5
1

x2 1 4

f 1x 2 5 x2 2 3f 1x 2 5 2x2

f 1x 2 5 5xf 1x 2 5 3x

yy

x

yy

x

yy

x

yy

x

yy

x

yy

x

f 1x 2 5 2 

1

x2f 1x 2 5
1

x

f 1x 2 5 24x2 1 3x 1 2f 1x 2 5 2x2 2 4x 2 5

S(x)

x

92

64

36

210 3

C
os

t

Number of days
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72. Rental Car Cost The cost to rent a mid-size car is $54 per day
or fraction of a day. If the car is picked up in Pittsburgh and
dropped off in Cleveland, there is a fixed $44 drop-off charge.
Let represent the cost of renting the car for x days, taking
it from Pittsburgh to Cleveland. Find the following.

a. b. c. d.

e. Find the cost of renting the car for 2.4 days.

f. Graph 

g. Is C a function? Explain.

h. Is C a linear function? Explain.

i. What is the independent variable?

j. What is the dependent variable?

73. Attorney Fees According to Massachusetts state law, the max-
imum amount of a jury award that attorneys can receive is:

40% of the first $150,000, 

33.3% of the next $150,000, 

30% of the next $200,000, and 

24% of anything over $500,000. 

Let f(x) represent the maximum amount of money that an attor-
ney in Massachusetts can receive for a jury award of size x.
Find each of the following, and describe in a sentence what the
answer tells you. Source: The New Yorker.

a. f (250,000) b. f (350,000) c. f (550,000)

d. Sketch a graph of 

74. Tax Rates In New York state in 2010, the income tax rates for
a single person were as follows:

4% of the first $8000 earned,

4.5% of the next $3000 earned,

5.25% of the next $2000 earned,

5.9% of the next $7000 earned,

6.85% of the next $180,000 earned,

7.85% of the next $300,000 earned, and

8.97% of any amount earned over $500,000.

Let f (x) represent the amount of tax owed on an income of x
dollars. Find each of the following, and explain in a sentence
what the answer tells you. Source: New York State.

a. f (10,000)

b. f (12,000)

c. f (18,000)

d. Sketch a graph of f (x).

Life Sciences

75. Whales Diving The figure in the next column shows the depth
of a diving sperm whale as a function of time, as recorded by

f 1x 2 .

y 5 C 1x 2 .

Ca1 

5

8
bC 1 1 2C 1 9 /10 2C 1 3 /4 2

C 1x 2

researchers at the Woods Hole Oceanographic Institution in
Massachusetts. Source: Peter Tyack, Woods Hole Oceano-
graphic Institution.
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400
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Find the depth of the whale at the following times.

a. 17 hours and 37 minutes

b. 17 hours and 39 minutes

76. Metabolic Rate The basal metabolic rate for
large anteaters is given by

where x is the anteater’s weight in kilograms.* Source:
Wildlife Feeding and Nutrition.

a. Find the basal metabolic rate for anteaters with the follow-
ing weights.

i. 5 kg ii. 25 kg

b. Suppose the anteater’s weight is given in pounds rather than
kilograms. Given that find a function

giving the anteater’s weight in kilograms if z is
the animal’s weight in pounds.

c. Write the basal metabolic rate as a function of the weight in
pounds in the form by calculating f(g(z)).

77. Swimming Energy The energy expenditure for
animals swimming at the surface of the water is given by

where x is the animal’s weight in grams. Source: Wildlife
Feeding and Nutrition.

a. Find the energy for the following animals swimming at the
surface of the water.

i. A muskrat weighing 800 g

ii. A sea otter weighing 20,000 g

b. Suppose the animal’s weight is given in kilograms rather
than grams. Given that find a function

giving the animal’s weight in grams if z is the ani-
mal’s weight in kilograms.

c. Write the energy expenditure as a function of the weight in
kilograms in the form by calculating f (g(z)).y 5 azb

x 5 g 1 z 2
1 kg 5 1000 g,

y 5 f 1x 2 5 0.01x0.88,

(in kcal /km)

y 5 azb

x 5 g 1 z 2
1 lb 5 0.454 kg,

y 5 f 1x 2 5 19.7x0.753,

(in kcal /day)

*Technically, kilograms are a measure of mass, not weight. Weight is a
measure of the force of gravity, which varies with the distance from the
center of Earth. For objects on the surface of Earth, weight and mass are
often used interchangeably, and we will do so in this text.
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GENERAL INTEREST

78. APPLY IT Energy Consumption Over the last century, the
world has shifted from using high-carbon sources of energy
such as wood to lower carbon fuels such as oil and natural gas,
as shown in the figure. Source: The New York Times. The rise
in carbon emissions during this time has caused concern
because of its suspected contribution to global warming.

79. Perimeter A rectangular field is to have an area of 

a. Write the perimeter, P, of the field as a function of the width, w.

b. Find the domain of the function in part a.

c. Use a graphing calculator to sketch the graph of the function
in part a. 

d. Describe what the graph found in part c tells you about how
the perimeter of the field varies with the width. 

80. Area A rectangular field is to have a perimeter of 6000 ft.

a. Write the area, A, of the field as a function of the width, w. 

b. Find the domain of the function in part a.

c. Use a graphing calculator to sketch the graph of the function
in part a. 

d. Describe what the graph found in part c tells you about how
the area of the field varies with the width. 

500 m2.
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a. In what year were the percent of wood and coal use equal?
What was the percent of each used in that year?

b. In what year were the percent of oil and coal use equal?
What was the percent of each used in that year?

YOUR TURN ANSWERS 

1.
2. (a) (b) 1 and 1 /22x2 1 4xh 1 2h2 2 3x 2 3h 2 4

12`, 22 2 < 12, ` 2 , 10, ` 2

Quadratic Functions; Translation
and Reflection
How much should a company charge for its seminars? When Power and
Money, Inc., charges $600 for a seminar on management techniques, it
attracts 1000 people. For each $20 decrease in the fee, an additional 100
people will attend the seminar.The managers wonder how much to
charge for the seminar to maximize their revenue.

2.2

APPLY IT 

In Example 6 in this section we will see how knowledge of quadratic functions will help
provide an answer to the question above.

A linear function is defined by

for real numbers a and b. In a quadratic function the independent variable is squared. A
quadratic function is an especially good model for many situations with a maximum or a
minimum function value. Quadratic functions also may be used to describe supply and
demand curves; cost, revenue, and profit; as well as other quantities. Next to linear func-
tions, they are the simplest type of function, and well worth studying thoroughly.

f 1x 2 5 ax 1 b,

FOR REVIEW
In this section you will need to
know how to solve a quadratic
equation by factoring and by the
quadratic formula, which are
covered in Sections R.2 and R.4.
Factoring is usually easiest;
when a polynomial is set equal
to zero and factored, then a solu-
tion is found by setting any one
factor equal to zero. But factor-
ing is not always possible. The
quadratic formula will provide
the solution to any quadratic
equation.

Quadratic Function
A quadratic function is defined by

where a, b, and c are real numbers, with a 2 0.

f 1 x 2 5 ax2 1 bx 1 c,
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The simplest quadratic function has with and This
function describes situations where the dependent variable y is proportional to the square of
the independent variable x. The graph of this function is shown in Figure 14. This graph is
called a parabola. Every quadratic function has a parabola as its graph. The lowest
(or highest) point on a parabola is the vertex of the parabola. The vertex of the parabola in
Figure 14 is 

If the graph in Figure 14 were folded in half along the y-axis, the two halves of the
parabola would match exactly. This means that the graph of a quadratic function is symmet-
ric with respect to a vertical line through the vertex; this line is the axis of the parabola.

There are many real-world instances of parabolas. For example, cross sections of spot-
light reflectors or radar dishes form parabolas. Also, a projectile thrown in the air follows a
parabolic path. For such applications, we need to study more complicated quadratic func-
tions than as in the next several examples.

Graphing a Quadratic Function

Graph 

SOLUTION Each value of y will be 4 less than the corresponding value of y in The
graph of has the same shape as that of but is 4 units lower. See
Figure 15. The vertex of the parabola (on this parabola, the lowest point) is at The
x-intercepts can be found by letting to get

from which and are the x-intercepts. The axis of the parabola is the vertical
line 

Example 1 suggests that the effect of c in is to lower the graph if c is
negative and to raise the graph if c is positive. This is true for any function; the movement
up or down is referred to as a vertical translation of the function.

Graphing Quadratic Functions

Graph with and 

SOLUTION Figure 16 shows all four functions plotted on the same axes. We see that since
a is negative, the graph opens downward. When a is between �1 and 1 (that is, when

the graph is wider than the original graph, because the values of y are smaller 
in magnitude. On the other hand, when a is greater than 1 or less than �1, the graph is
steeper.

Example 2 shows that the sign of a in determines whether the parabola
opens upward or downward. Multiplying by a negative number flips the graph of f
upside down. This is called a vertical reflection of the graph. The magnitude of a deter-
mines how steeply the graph increases or decreases.

Graphing Quadratic Functions

Graph for 0, and 

SOLUTION Figure 17 shows all three functions on the same axes. Notice that since the
number is subtracted before the squaring occurs, the graph does not move up or down but
instead moves left or right. Evaluating at gives the same result as
evaluating at Therefore, when we subtract the positive number 3 from x,
the graph shifts 3 units to the right, so the vertex is at Similarly, when we subtract1 3, 0 2 .

x 5 0.f 1x 2 5 x2
x 5 3f 1x 2 5 1x 2 3 2 2

24.h 5 3,y 5 1x 2 h 2 2

f 1x 2
ax2 1 bx 1 c

a 5 20.5),

a 5 24.a 5 22,a 5 21,a 5 20.5,y 5 ax2

ax2 1 bx 1 c

x 5 0.
x 5 22x 5 2

0 5 x2 2 4,

y 5 0
10, 24 2 .

y 5 x2y 5 x2 2 4
y 5 x2.

y 5 x2 2 4.

y 5 x2,

10, 0 2 .

c 5 0.b 5 0,a 5 1,f 1x 2 5 x2,

EXAMPLE  1

FIGURE 14

y = x2

–4 –3 –2 –1 2 31 40 x
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FIGURE 15

EXAMPLE  2

EXAMPLE  3

FIGURE 16

–4 –3 –2 –1

–4

2 31 40 x

y

4

8

16

12 y = x2 – 4

–4 –2 2 40 x

y

–2

–4

–6

–8

–10

–12

–14

y = –0.5x2

y = –2x2 y = –4x2

y = –x2



Method 2
The Quadratic Formula

Method 1
Completing the Square 
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the negative number from x—in other words, when the function becomes 
graph shifts to the left 4 units.

The left or right shift of the graph illustrated in Figure 17 is called a horizontal trans-
lation of the function.

If a quadratic equation is given in the form we can identify the transla-
tions and any vertical reflection by rewriting it in the form

In this form, we can identify the vertex as A quadratic equation not given in this
form can be converted by a process called completing the square. The next example illus-
trates the process.

Graphing a Quadratic Function

Graph 

SOLUTION To begin, factor from the x-terms so the coefficient of is 1:

Next, we make the expression inside the parentheses a perfect square by adding the square
of one-half of the coefficient of x, which is . Since there is a factor of �3 out-
side the parentheses, we are actually adding . To make sure that the value of the
function is not changed, we must also add to the function. Actually, we are simply
adding , and not changing the function. To summarize our steps,

Factor out

Add and subtract times

the coefficient of

. Factor and combine terms.

The function is now in the form y � a(x � h)2 � k. Since h � and k � , the
graph is the graph of the parabola y � x2 translated unit to the left and units
upward. This puts the vertex at ( , ). Since a � �3 is negative, the graph will be
flipped upside down. The 3 will cause the parabola to be stretched vertically by a factor of 3.
These results are shown in Figure 18.

Instead of completing the square to find the vertex of the graph of a quadratic function
given in the form we can develop a formula for the vertex. By the qua-
dratic formula, if where then

Notice that this is the same as

x 5
2b

2a
6
"b2 2 4ac

2a
5

2b

2a
6 Q,

x 5
2b 6 "b2 2 4ac

2a
 .

a 2 0,ax2 1 bx 1 c 5 0,
y 5 ax2 1 bx 1 c,

4 /321 /3
4 /31 /3

4 /321 /3

 5 23ax 1
1

3
b

2

1
4

3

x 2 2.1 1
2

23 5 23ax2 1
2

3
 x 1

1

9
b 1 1 1 3a

1

9
b

23. y 5 23ax2 1
2

3
 xb 1 1

23 . 1 1
9 2 1 3 . 1 1

9 2 5 0
3 . 1 1

9 2
23 . 1 1

9 2
1 1

2
. 2

3 2 2 5 1
9

y 5 23ax2 1
2

3
xb 1 1.

x223

y 5 23x2 2 2x 1 1.

1h, k 2 .

y 5 a 1 x 2 h 2 2 1 k.

ax2 1 bx 1 c,

1x 1 4 2 2 — the
f 1x 2 524

EXAMPLE  4

FIGURE 17
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Another situation that may arise is the absence of any x-intercepts, as in the next example.

Graphing a Quadratic Function

Graph 

SOLUTION This does not appear to factor, so we’ll try the quadratic formula.

As soon as we see the negative value under the square root sign, we know the solutions are
complex numbers. Therefore, there are no x-intercepts. Nevertheless, the vertex is still at

Substituting this into the equation gives

The y-intercept is at which is 2 units to the right of the parabola’s axis Using
the symmetry of the figure, we can also plot the mirror image of this point on the opposite
side of the parabola’s axis: at (2 units to the left of the axis), y is also equal to 6. Plot-
ting the vertex, the y-intercept, and the point gives the graph in Figure 19.

We now return to the question with which we started this section.

Management Science

When Power and Money, Inc., charges $600 for a seminar on management techniques, it
attracts 1000 people. For each $20 decrease in the fee, an additional 100 people will attend
the seminar. The managers are wondering how much to charge for the seminar to maximize
their revenue.

SOLUTION Let x be the number of $20 decreases in the price. Then the price charged per
person will be

and the number of people in the seminar will be

Number of people 5 1000 1 100x.

Price per person 5 600 2 20x,

124, 6 2
x 5 24

x 5 22.10, 6 2 ,

y 5 122 2 2 1 4 122 2 1 6 5 2.

x 5
2b

2a
5

24

2
5 22.

 5
24 6 "42 2 4 1 1 2 1 6 2

2 1 1 2
5

24 6 "28

2

a 5 1, b 5 4, c 5 6 x 5
2b 6 "b2 2 4ac

2a

y 5 x2 1 4x 1 6.

YOUR TURN 1 For the func-
tion 
(a) complete the square, (b) find the
y-intercept, (c) find the x-intercepts,
(d) find the vertex, and (e) sketch
the graph.

y 5 2x2 2 6x 2 1,

EXAMPLE  5

FIGURE 19

0 x

y

y = x2 + 4x + 62
(–2, 2)

(–4, 6) (0, 6)

4

6

8

EXAMPLE  6

where Since a parabola is symmetric with respect to its axis, the
vertex is halfway between its two roots. Halfway between and

is Once we have the x-coordinate of the vertex, we can
easily find the y-coordinate by substituting the x-coordinate into the original equation. For
the function in this example, use the quadratic formula to verify that the x-intercepts are at

and and the vertex is at The y-intercept (where ) is 1.
The graph is in Figure 18.

x 5 0121 /3, 4 /3 2 .x 5 1 /3,x 5 21

x 5 2b / 12a 2 .x 5 2b / 12a 2 2 Q
2b / 12a 2 1 Qx 5

Q 5 "b2 2 4ac / 12a 2 .

Graph of the Quadratic Function
The graph of the quadratic function has its vertex at

The graph opens upward if and downward if a , 0.a . 0

a
2b
2a

 , f a
2b
2a
bb.

f 1x 2 5 ax2 1 bx 1 c

APPLY IT 

TRY YOUR TURN 1
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The total revenue, is given by the product of the price and the number of people
attending, or

We see by the negative in the -term that this defines a parabola opening downward, so the
maximum revenue is at the vertex. The x-coordinate of the vertex is

The y-coordinate is then

Therefore, the maximum revenue is $800,000, which is achieved by charging 
per person. TRY YOUR TURN 2

Notice in this last example that the maximum revenue was achieved by charging less
than the current price of $600, which was more than made up for by the increase in sales.
This is typical of many applications. Mathematics is a powerful tool for solving such prob-
lems, since the answer is not always what one might have guessed intuitively.

To solve problems such as Example 6, notice the following:

1. The key step after reading and understanding the problem is identifying a useful variable.

2. Revenue is always price times the number sold.

3. The expressions for the price and for the number of people are both linear functions of x.

4. We know the constant term in each linear function because we know what happens
when 

5. We know how much both the price and the number of people change each time x
increases by 1, which gives us the slope of each linear function.

6. The maximum or minimum of a quadratic function occurs at its vertex.

The concept of maximizing or minimizing a function is important in calculus, as we shall
see in future chapters.

In the next example, we show how the calculation of profit can involve a quadratic
function.

Profit

A deli owner has found that his revenue from producing x pounds of vegetable cream cheese
is given by while the cost in dollars is given by 

(a) Find the minimum break-even quantity.

C 1x 2 5 5x 1 100.R 1x 2 5 2x2 1 30x,

x 5 0.

600 2 20 1 10 2 5 $400
600 2 20x 5

 5 800,000.

 y 5 600,000 1 40,000 1 10 2 2 2000 1 102 2

x 5
2b

2a
5

240,000

2 122000 2
5 10.

x2

 5 600,000 1 40,000x 2 2000x2.

 R 1x 2 5 1 600 2 20x 2 1 1000 1 100x 2

R 1x 2 ,

YOUR TURN 2 Solve Exam-
ple 6 with the following changes: a
$1650 price attracts 900 people, and
each $40 decrease in the price
attracts an additional 80 people.

EXAMPLE  7

FIGURE 20
5 15 25 35 45 55

20
60

100
140
180
220
260

x

y

C(x) = 5x + 100

R(x) = –x2 + 30x

SOLUTION Notice from the graph in Figure 20 that the revenue function is a parabola
opening downward and the cost function is a linear function that crosses the revenue
function at two points. To find the minimum break-even quantity, we find where the two
functions are equal.

Subtract from both sides.

Factor.

The two graphs cross when and The minimum break-even point is at
The deli owner must sell at least 5 lb of cream cheese to break even.x 5 5.

x 5 20.x 5 5

 5 1x 2 5 2 1x 2 20 2
2x2 1 30x 0 5 x2 2 25x 1 100

 2x2 1 30x 5 5x 1 100

 R 1x 2 5 C 1x 2
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(b) Find the maximum revenue.

SOLUTION By factoring the revenue function, 
we can see that it has two roots, and The maximum is at the vertex,
which has a value of x halfway between the two roots, or (Alternatively, we
could use the formula The maximum revenue is

or $225.

(c) Find the maximum profit.

SOLUTION The profit is the difference between the revenue and the cost, or

This is just the negative of the expression factored in part (a), where we found the roots to
be and The value of x at the vertex is halfway between these two roots, or

(Alternatively, we could use the formula
The value of the function here is

It is clear that this is a maximum, not only from Figure 20, but also
because the profit function is a quadratic with a negative -term. A maximum profit of
$56.25 is achieved by selling 12.5 lb of cream cheese. TRY YOUR TURN 3

Below and on the next page, we provide guidelines for sketching graphs that involve
translations and reflections.

x2
100 5 56.25.

P 1 12.5 2 5 212.52 1 25 1 12.5 2 212.5.)225 / 122 2 5

x 5 2b / 12a 2 5x 5 1 5 1 20 2 /2 5 12.5.
x 5 20.x 5 5

 5 2x2 1 25x 2 100.

 5 12x2 1 30x 2 2 1 5x 1 100 2
 P 1x 2 5 R 1x 2 2 C 1x 2

225,30 1 15 2 52152 1R 1 15 2  5

230 / 122 2 5 15.)x 5 2b / 12a 2  5
x 5 15.

x 5 30.x 5 0
x 12x 1 30 2 ,R 1x 2 5 2x2 1 30x 5

YOUR TURN 3 Suppose the
revenue in dollars is given by

and the cost is
given by Find
(a) the minimum break-even quan-
tity, (b) the maximum revenue, and
(c) the maximum profit.

C 1 x 2 5 8x 1 192.
R 1 x 2 5 2x2 1 40x

Translations and Reflections of Functions
Let f be any function, and let h and k be positive constants (Figure 21).

The graph of is the graph of translated upward by an amount k (Figure 22).y 5 f 1x 2y 5 f 1x 2 1 k

The graph of is the graph of translated downward by an amount k (Figure 23).

The graph of is the graph of translated to the right by an amount h (Figure 24).

The graph of is the graph of translated to the left by an amount h (Figure 25).y 5 f 1x 2y 5 f 1x 1 h 2
y 5 f 1x 2y 5 f 1x 2 h 2
y 5 f 1x 2y 5 f 1x 2 2 k

x

y

y = f(x)

x

y

k

y = f(x) + k

x
h

y

y = f(x + h)

x

y

k

y = f(x) – k

x
h

y

y = f(x – h)

FIGURE 21

FIGURE 23 FIGURE 24 FIGURE 25

FIGURE 22
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Notice in Figure 27 another type of reflection, known as a horizontal reflection. Multi-
plying x or by a constant a, to get or does not change the
general appearance of the graph, except to compress or stretch it. When a is negative, it
also causes a reflection, as shown in the last two figures in the summary for Also
see Exercises 39–42 in this section.

Translations and Reflections of a Graph

Graph 

SOLUTION Begin with the simplest possible function, then add each variation in turn.
Start with the graph of As Figure 28 reveals, this is just one-half of the graph
of lying on its side.

Now add another component of the original function, the negative in front of the x, giv-
ing This is a horizontal reflection of the graph, as shown in
Figure 29. Next, include the 4 under the square root sign. To get into the form

or we need to factor out the negative: 
Now the 4 is subtracted, so this function is a translation to the right of the function

by 4 units, as Figure 30 indicates.f 1x 2 5 "2x

"4 2 x 5 "2 1x 2 4 2 .f 1x 1 h 2 ,f 1x 2 h 2
4 2 x

f 1x 2 5 "xf 1x 2 5 "2x.

f 1x 2 5 x2
f 1x 2 5 "x.

f 1x 2 5 2 "4 2 x 1 3.

a 5 21.

y 5 a . f 1x 2y 5 f 1ax 2f 1x 2

Translations and Reflections of Functions
The graph of is the graph of reflected vertically across the x-axis, that is, turned upside down (Figure 26).
The graph of is the graph of reflected horizontally across the y-axis, that is, its mirror image (Figure 27).y 5 f 1x 2y 5 f 12x 2

y 5 f 1x 2y 5 2f 1x 2

FIGURE 26 FIGURE 27

x

y

y = f(–x)

x

y y = – f(x)

0 x

y

f(x) =     4 – x

2

4

4–4 –2 2–2

–4

0 x

y

4

4–4 –2 2

2

–2

–4 f(x) =     – x

0 x

y

4

4–4 –2 2

2

–2

–4 f(x) =      x

FIGURE 28 FIGURE 29 FIGURE 30

FIGURE 31

EXAMPLE  8

0 x

y

4

4–4 –2 2

2

–2

–4 f(x) = –    4 – x + 3

(a)

0 x

y

4

4–4 –2 2

2

–2

–4 f(x) = –    4 – x

�5 5

3.1

�3.1

f(x) � ��4 � x � 3

(b)

The effect of the negative in front of the radical is a vertical reflection, as in Figure 31,
which shows the graph of Finally, adding the constant 3 raises the
entire graph by 3 units, giving the graph of in Figure 32(a).2 "4 2 x 1 3f 1x 2 5

f 1x 2 5 2 "4 2 x.

FIGURE 32
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2.2 EXERCISES
1. How does the value of a affect the graph of Discuss

the case for and for 

2. How does the value of a affect the graph of if 

In Exercises 3–8, match the correct graph A–F to the function
without using your calculator. Then, if you have a graphing cal-
culator, use it to check your answers. Each graph in this group
shows x and y in 

3. 4.

5. 6.

7. 8. y 5 2 1x 1 3 2 2 1 2y 5 2 1 3 2 x 2 2 1 2

y 5 1x 1 3 2 2 1 2y 5 1x 2 3 2 2 1 2

y 5 1x 2 3 2 2y 5 x2 2 3

3210, 10 4.

a # 0?y 5 ax2

0 # a # 1.a $ 1
y 5 ax2?

Given the following graph, sketch by hand the graph of the
function described, giving the new coordinates for the three
points labeled on the original graph.

210 10

10

210

210 10

10

210

210 10

10

210

210 10

10

210

210 10

10

210

210 10

10

210

Complete the square and determine the vertex for each of the
following.

9. 10.

11. 12.

In Exercises 13–24, graph each parabola and give its vertex,
axis, x-intercepts, and y-intercept.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. f 1x 2 5
3

2
 x2 2 x 2 4f 1x 2 5 22 x2 1 16x 2 21

f 1x 2 5
1

2
 x2 1 6x 1 24f 1x 2 5 2x2 2 4x 1 5

f 1x 2 5 2x2 1 6x 2 6f 1x 2 5 2x2 1 8x 2 8

y 5 23x2 2 6x 1 4y 5 22x2 2 12x 2 16

y 5 x2 1 4x 2 5y 5 x2 1 5x 1 6

y 5 25x2 2 8x 1 3y 5 22x2 1 8x 2 9

y 5 4x2 2 20x 2 7y 5 3x2 1 9x 1 5

210 10

10

210

210 10

10

210

210 10

10

210

210 10

10

210

210 10

10

210

210 10

10

210

y

x

0 (5, 0)

(–1, 4)

(–3, –2)

If you viewed a graphing calculator image such as Figure 32(b), you might think the function contin-
ues to go up and to the right. By realizing that is the vertex of the sideways parabola, we see
that this is the rightmost point on the graph. Another approach is to find the domain of f by setting

from which we conclude that This demonstrates the importance of knowing
the algebraic techniques in order to interpret a graphing calculator image correctly.

x # 4.4 2 x $ 0,

14, 3 2

23. 24.

In Exercises 25–30, follow the directions for Exercises 3–8.

25. 26.

27. 28.

29. 30. y 5 2 "x 2 2 2 4y 5 2 "x 1 2 2 4

y 5 "2x 2 2 2 4y 5 "2x 1 2 2 4

y 5 "x 2 2 2 4y 5 "x 1 2 2 4

f 1x 2 5 2 

1

2
 x2 2 x 2

7

2
f 1x 2 5

1

3
 x2 2

8

3
 x 1

1

3

(A) (B)

(C) (D)

(E) (F)

(A) (B)

(C) (D)

(E) (F)

31. 32.

33. 34. y 5 f 12 2 x 2 1 2y 5 f 12x 2
y 5 f 1x 2 2 2 1 2y 5 2f 1x 2

TECHNOLOGY NOTE
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Use the ideas in this section to graph each function without a
calculator.

35. 36.

37. 38.

Using the graph of in Figure 21, show the graph of 
where a satisfies the given condition.

39. 40.

41. 42.

Using the graph of in Figure 21, show the graph of 
where a satisfies the given condition.

43. 44.

45. 46.

47. If r is an x-intercept of the graph of what is an
x-intercept of the graph of each of the following?

a. b.
c.

48. If b is the y-intercept of the graph of what is the
y-intercept of the graph of each of the following?

a. b.
c.

APPLICATIONS
Business and Economics

Profit In Exercises 49–52, let be the cost to produce x
batches of widgets, and let be the revenue in thousands of
dollars. For each exercise, (a) graph both functions, (b) find the
minimum break-even quantity, (c) find the maximum revenue,
and (d) find the maximum profit.

49.

50.

51.

52.

53. Maximizing Revenue The revenue of a charter bus company
depends on the number of unsold seats. If the revenue is
given by

where x is the number of unsold seats, find the maximum rev-
enue and the number of unsold seats that corresponds to maxi-
mum revenue.

54. Maximizing Revenue A charter flight charges a fare of $200
per person plus $4 per person for each unsold seat on the plane.
The plane holds 100 passengers. Let x represent the number of
unsold seats.

a. Find an expression for the total revenue received for the
flight (Hint: Multiply the number of people flying,

by the price per ticket.)

b. Graph the expression from part a.

100 2 x,
R 1x 2 .

R 1x 2 5 8000 1 70x 2 x2,

R 1x 2

R 1x 2 5 24x2 1 36x, C 1x 2 5 16x 1 24

R 1x 2 5 2 

4

5
 x2 1 10x, C 1x 2 5 2x 1 15

R 1x 2 5 2 

x2

2
1 5x, C 1x 2 5

3

2
 x 1 3

R 1x 2 5 2x2 1 8x, C 1x 2 5 2x 1 5

R 1x 2
C 1x 2

y 5 2f 12x 2
y 5 f 12x 2y 5 2f 1x 2

y 5 f 1x 2 ,

y 5 2f 12x 2
y 5 f 12x 2y 5 2f 1x 2

y 5 f 1x 2 ,
a , 2121 , a , 0

1 , a0 , a , 1

a f 1x 2f 1x 2

a , 2121 , a , 0

1 , a0 , a , 1

f 1ax 2f 1x 2

f 1x 2 5 2 "2 2 x 1 2f 1x 2 5 2 "2 2 x 2 2

f 1x 2 5 "x 1 2 2 3f 1x 2 5 "x 2 2 1 2

c. Find the number of unsold seats that will produce the maxi-
mum revenue.

d. What is the maximum revenue?

e. Some managers might be concerned about the empty seats,
arguing that it doesn’t make economic sense to leave any
seats empty. Write a few sentences explaining why this is
not necessarily so.

55. Maximizing Revenue The demand for a certain type of cos-
metic is given by

where p is the price in dollars when x units are demanded.

a. Find the revenue that would be obtained at a price p.
(Hint:

b. Graph the revenue function 

c. Find the price that will produce maximum revenue.

d. What is the maximum revenue?

56. Revenue The manager of a peach orchard is trying to decide
when to arrange for picking the peaches. If they are picked
now, the average yield per tree will be 100 lb, which can be
sold for 80¢ per pound. Past experience shows that the yield
per tree will increase about 5 lb per week, while the price will
decrease about 4¢ per pound per week.

a. Let x represent the number of weeks that the manager
should wait. Find the income per pound.

b. Find the number of pounds per tree.

c. Find the total revenue from a tree.

d. When should the peaches be picked in order to produce
maximum revenue?

e. What is the maximum revenue?

57. Income The manager of an 80-unit apartment complex is try-
ing to decide what rent to charge. Experience has shown that at
a rent of $800, all the units will be full. On the average, one
additional unit will remain vacant for each $25 increase in rent.

a. Let x represent the number of $25 increases. Find an expres-
sion for the rent for each apartment.

b. Find an expression for the number of apartments rented.

c. Find an expression for the total revenue from all rented
apartments.

d. What value of x leads to maximum revenue?

e. What is the maximum revenue?

58. Advertising A study done by an advertising agency reveals that
when x thousands of dollars are spent on advertising, it results
in a sales increase in thousands of dollars given by the function

a. Find the increase in sales when no money is spent on
advertising.

b. Find the increase in sales when $10,000 is spent on
advertising.

c. Sketch the graph of without a calculator.S 1x 2

S 1x 2 5 2 

1

4
 1x 2 10 2 2 1 40, for 0 # x # 10.

R 1x 2 .

Revenue 5 Demand 3 Price)
R 1x 2

p 5 500 2 x,
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Life Sciences

59. Length of Life According to recent data from the Teachers In-
surance and Annuity Association (TIAA), the survival function
for life after 65 is approximately given by

where x is measured in decades. This function gives the proba-
bility that an individual who reaches the age of 65 will live at
least x decades (10x years) longer. Source: Ralph DeMarr.

a. Find the median length of life for people who reach 65, that
is, the age for which the survival rate is 0.50.

b. Find the age beyond which virtually nobody lives. (There
are, of course, exceptions.)

60. Tooth Length The length (in mm) of the mesiodistal crown of
the first molar for human fetuses can be approximated by

where t is the number of weeks since conception. Source:
American Journal of Physical Anthropology.

a. What does this formula predict for the length at 14 weeks?
24 weeks?

b. What does this formula predict for the maximum length, and
when does that occur? Explain why the formula does not
make sense past that time.

61. Splenic Artery Resistance Blood flow to the fetal spleen is of
research interest because several diseases are associated with
increased resistance in the splenic artery (the artery that goes
to the spleen). Researchers have found that the index of 
splenic artery resistance in the fetus can be described by the
function

where x is the number of weeks of gestation. Source: Ameri-
can Journal of Obstetrics and Gynecology.

a. At how many weeks is the splenic artery resistance a maxi-
mum?

b. What is the maximum splenic artery resistance?

c. At how many weeks is the splenic artery resistance equal to
0, according to this formula? Is your answer reasonable for
this function? Explain.

62. Cancer From 1975 to 2007, the age-adjusted incidence rate of
invasive lung and bronchial cancer among women can be
closely approximated by

where t is the number of years since 1975. Source: National
Cancer Institute. Based on this model, in what year did the
incidence rate reach a maximum? On what years was the rate
increasing? Decreasing?

Social  Sciences

63. Age of Marriage The following table gives the median age at
their first marriage of women in the United States for some
selected years. Source: U.S. Census Bureau.

f 1 t 2 5 20.040194t2 1 2.1493t 1 23.921,

y 5 0.057x 2 0.001x2,

L 1 t 2 5 20.01t2 1 0.788t 2 7.048,

S 1x 2 5 1 2 0.058x 2 0.076x2,

a. Plot the data using x � 40 for 1940, and so on.

b. Would a linear or quadratic function best model this data?
Explain.

c. If your graphing calculator has a regression feature, find the
quadratic function that best fits the data. Graph this function on
the same calculator window as the data. (On a TI-84 Plus cal-
culator, press the STAT key, and then select the CALC menu.
QuadReg is item 5. The command QuadReg L1,L2,Y1
finds the quadratic regression equation for the data in and 
and stores the function in 

d. Find a quadratic function defined by 
that models the data using (60, 20.3) as the vertex and then
choosing as a second point to determine the
value of a.

e. Graph the function from part d on the same calculator win-
dow as the data and function from part c. Do the graphs of
the two functions differ by much?

64. Gender Ratio The number of males per 100 females, age 65 or
over, in the United States for some recent years is shown in the
following table. Source: The New York Times 2010 Almanac.

1 100, 25.1 2

ka 1x 2 h 2 2 1f 1x 2  5

Y1 .)
L2L1

1960 82.8
1970 72.1
1980 67.6
1990 67.2
2000 70.0
2007 72.9

Males per
Year 100 Females

a. Plot the data, letting x be the years since 1900.

b. Would a linear or quadratic function best model this data? Explain.

c. If your graphing calculator has a quadratic regression feature,
find the quadratic function that best fits the data. Graph this
function on the same calculator window as the data. (See
Exercise 63(c).)

d. Choose the lowest point in the table above as the vertex and
(60, 82.8) as a second point to find a quadratic function
defined by that models the data.

e. Graph the function from part d on the same calculator win-
dow as the data and function from part c. Do the graphs of
the two functions differ by much?

f. Predict the number of males per 100 females in 2004 using
the two functions from parts c and d, and compare with the
actual figure of 71.7.

f 1x 2 5 a 1x 2 h 2 2 1 k

Year Age

1940 21.5

1950 20.3

1960 20.3

1970 20.8

1980 22.0

1990 23.9

2000 25.1
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65. Accident Rate According to data from the National Highway
Traffic Safety Administration, the accident rate as a function of the
age of the driver in years x can be approximated by the function

for Find the age at which the accident rate is a
minimum and the minimum rate. Source: Ralph DeMarr.

Physical  Sciences

66. Maximizing the Height of an Object If an object is thrown
upward with an initial velocity of then its height
after t seconds is given by

a. Find the maximum height attained by the object.

b. Find the number of seconds it takes the object to hit the ground.

67. Stopping Distance According to data from the National Traffic
Safety Institute, the stopping distance y in feet of a car traveling
x mph can be described by the equation 

Source: National Traffic Safety Institute.

a. Find the stopping distance for a car traveling 25 mph.

b. How fast can you drive if you need to be certain of stopping
within 150 ft?

General Interest

68. Maximizing Area Glenview Community College wants to con-
struct a rectangular parking lot on land bordered on one side by
a highway. It has 380 ft of fencing to use along the other three
sides. What should be the dimensions of the lot if the enclosed

1.06657x.
y 5 0.056057x2 1

h 5 32t 2 16t2.

32 ft /second,

16 # x # 85.

f 1x 2 5 60.0 2 2.28x 1 0.0232x2

YOUR TURN ANSWERS 

1. (a)  (b)

(c) (d) (3/2, 11/2)

(e) 

2. Charge $1050 for a maximum revenue of $2,205,000.
3. (a) 8 (b) $400 (c) $64

–1 1 2

–4

8

y

x

y = 2x2 – 6x – 1

21 3 6 "11 2 /2

21y 5 2 1x 2 3 /2 2 2 2 11 /2

Polynomial and Rational Functions
How does the revenue collected by the government vary with the tax
rate?

2.3
APPLY IT 

In Exercises 48–50 in this section, we will explore this question using polynomial and
rational functions.

Polynomial Functions Earlier, we discussed linear and quadratic functions and
their graphs. Both of these functions are special types of polynomial functions.

Polynomial Function
A polynomial function of degree n, where n is a nonnegative integer, is defined by

,

where and are real numbers, called coefficients, with The
number is called the leading coefficient.an

an 2 0.a0an , an21 , * , a1 ,

f 1 x 2 5 an xn 1 an21  xn21 1P1 a1x 1 a0

For a polynomial function takes the form

a linear function. A linear function, therefore, is a polynomial function of degree 1. (Note,
however, that a linear function of the form for a real number is a polynomiala0f 1x 2 5 a0

f 1x 2 5 a1 x 1 a0 ,

n 5 1,

area is to be a maximum? (Hint: Let x represent the width of the
lot, and let represent the length.)

69. Maximizing Area What would be the maximum area that
could be enclosed by the college’s 380 ft of fencing if it
decided to close the entrance by enclosing all four sides of the
lot? (See Exercise 68.)

In Exercises 70 and 71, draw a sketch of the arch or culvert on
coordinate axes, with the horizontal and vertical axes through
the vertex of the parabola. Use the given information to label
points on the parabola. Then give the equation of the parabola
and answer the question.

70. Parabolic Arch An arch is shaped like a parabola. It is 30 m
wide at the base and 15 m high. How wide is the arch 10 m
from the ground?

71. Parabolic Culvert A culvert is shaped like a parabola, 18 ft across
the top and 12 ft deep. How wide is the culvert 8 ft from the top?

380 2 2x
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function of degree 0, the constant function.) A polynomial function of degree 2 is a qua-
dratic function.

Accurate graphs of polynomial functions of degree 3 or higher require methods of cal-
culus to be discussed later. Meanwhile, a graphing calculator is useful for obtaining such
graphs, but care must be taken in choosing a viewing window that captures the significant
behavior of the function.

The simplest polynomial functions of higher degree are those of the form 
Such a function is known as a power function. Figure 33 below shows the graphs of

and as well as tables of their values. These functions are simple
enough that they can be drawn by hand by plotting a few points and connecting them with a
smooth curve. An important property of all polynomials is that their graphs are smooth curves.

The graphs of and shown in Figure 34 along with tables of their
values, can be sketched in a similar manner. These graphs have symmetry about the y-axis,
as does the graph of for a nonzero real number a. As with the graph of

the value of a in affects the direction of the graph. When 
the graph has the same general appearance as the graph of However, if 
the graph is reflected vertically. Notice that and are odd functions,
while and are even functions.f 1x 2 5 x6f 1x 2 5 x4

f 1x 2 5 x5f 1x 2 5 x3
a , 0,f 1x 2 5 xn.
a . 0,f 1x 2 5 axnf 1x 2 5 ax2,

f 1x 2 5 ax2

f 1x 2 5 x6,f 1x 2 5 x4

f1x 2 5 x5,f 1x 2 5 x3

f 1x 2 5 xn.

FIGURE 33

0 x

f(x)

f(x) = x3

f(x) = x5

–2 2–1 1–2

2

4

6

8

–4

–6

–8

FIGURE 34

x x

2 8 1.5 7.6
1 1 1 1
0 0 0 0
1 1 1 1
2 8 1.5 7.6

2222
2222

f 1x 2f 1x 2
f 1 x 2 5 x5f 1 x 2 5 x3

x x

2 16 1.5 11.4
1 1 1 1
0 0 0 0
1 1 1 1
2 16 1.5 11.4

22
22

f 1x 2f 1 x 2

f 1 x 2 5 x6f 1 x 2 5 x4

Translations and Reflections

Graph 

SOLUTION Using the principles of translation and reflection from the previous section,
we recognize that this is similar to the graph of but reflected vertically (because of
the negative in front of and with its center moved 2 units to the right and 3 units
up. The result is shown in Figure 35. TRY YOUR TURN 1

1x 2 2 2 3),
y 5 x3,

f 1x 2 5 2 1x 2 2 2 3 1 3.

x

f(x)

f(x) = x4

f(x) = x6

2–1 1–2

5

10

15

EXAMPLE  1

YOUR TURN 1 Graph
f 1 x 2 5 64 2 x6.

0 x

y
14
12
10
8
6
4

1 5–1 2 3 4

2

–4
–6

f(x) = –(x – 2)3 + 3

FIGURE 35
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A polynomial of degree 3, such as that in the previous example and in the next, is
known as a cubic polynomial. A polynomial of degree 4, such as that in Example 3, is
known as a quartic polynomial.

Graphing a Polynomial

Graph 

SOLUTION Figure 36 shows the function graphed on the x- and y-intervals and
In this view, it appears similar to a parabola opening downward. Zooming out to

by we see in Figure 37 that the graph goes upward as x gets large. There are
also two turning points near and (In a later chapter, we will introduce
another term for such turning points: relative extrema.) By zooming in with the graphing
calculator, we can find these turning points to be at approximately and

21.08866 2 .10.90825,
10.09175, 1.08866 2

x 5 1.x 5 0
328, 8 4,321, 2 4

322, 2 4.
320.5, 0.6 4

f 1x 2 5 8x3 2 12x2 1 2x 1 1.

EXAMPLE  2

20.5 0.6

2

22

y 5 8x3 2 12x2 1 2x 1 1

21 2

8

28

y 5 8x3 2 12x2 1 2x 1 1

FIGURE 36 FIGURE 37

Zooming out still further, we see the function on by in Figure 38.
From this viewpoint, we don’t see the turning points at all, and the graph seems similar in
shape to that of This is an important point: when x is large in magnitude, either pos-
itive or negative, behaves a lot like because the other terms are
small in comparison with the cubic term. So this viewpoint tells us something useful about the
function, but it is less useful than the previous graph for determining the turning points.

After the previous example, you may wonder how to be sure you have the viewing win-
dow that exhibits all the important properties of a function. We will find an answer to this
question in later chapters using the techniques of calculus. Meanwhile, let us consider one
more example to get a better idea of what polynomials look like.

Graphing a Polynomial

Graph 

SOLUTION Figure 39 shows a graphing calculator view on by If you
have a graphing calculator, we recommend that you experiment with various viewpoints
and verify for yourself that this viewpoint captures the important behavior of the function.
Notice that it has three turning points. Notice also that as gets large, the graph turns
downward. This is because as becomes large, the -term dominates the other terms,
which are small in comparison, and the -term has a negative coefficient.

As suggested by the graphs above, the domain of a polynomial function is the set of all
real numbers. The range of a polynomial function of odd degree is also the set of all real
numbers. Some typical graphs of polynomial functions of odd and even degree are shown in
Figure 40 on the next page. The first two graphs suggest that for every polynomial function
f of odd degree, there is at least one real value of x for which Such a value of x is
called a real zero of f ; these values are also the x-intercepts of the graph.

f 1x 2 5 0.

x4
x40 x 0

0 x 0

3250, 50 4.323, 5 4
f 1x 2 5 23x4 1 14x3 2 54x 1 3.

8x3,8x3 2 12x2 1 2x 1 1
y 5 x3.

32300, 300 43210, 10 4

210 10

300

2300

y 5 8x3 2 12x2 1 2x 1 1

FIGURE 38

EXAMPLE  3

23 5

50

250

y 5 23x4 1 14x3 2 54x 1 3

FIGURE 39

TECHNOLOGY 

TECHNOLOGY 
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Identifying the Degree of a Polynomial

Identify the degree of the polynomial in each of the figures, and give the sign ( or ) for
the leading coefficient.

(a) Figure 41(a)

SOLUTION Notice that the polynomial has a range . This must be a polynomial of even
degree, because if the highest power of x is an odd power, the polynomial can take on all real
numbers, positive and negative. Notice also that the polynomial becomes a large positive num-
ber as x gets large in magnitude, either positive or negative, so the leading coefficient must be
positive. Finally, notice that it has three turning points. Observe from the previous examples
that a polynomial of degree n has at most turning points. In a later chapter, we will use
calculus to see why this is true. So the polynomial graphed in Figure 41(a) might be degree 4,
although it could also be of degree 6, 8, etc. We can’t be sure from the graph alone.

(b) Figure 41(b)

SOLUTION Because the range is this must be a polynomial of odd degree.
Notice also that the polynomial becomes a large negative number as x becomes a large pos-
itive number, so the leading coefficient must be negative. Finally, notice that it has four
turning points, so it might be degree 5, although it could also be of degree 7, 9, etc.

12`, ` 2 ,

n 2 1

3k, ` 2

21

x

y

Degree 3;
three real zeros

x

y

Degree 6;
four real zeros

y

x

Degree 3;
one real zero

FIGURE 40

EXAMPLE  4

x

y

k

(a)

x

y

(b)

FIGURE 41

Properties of Polynomial Functions
1. A polynomial function of degree n can have at most turning points. Conversely, if

the graph of a polynomial function has n turning points, it must have degree at least 

2. In the graph of a polynomial function of even degree, both ends go up or both ends go
down. For a polynomial function of odd degree, one end goes up and one end goes down.

3. If the graph goes up as x becomes a large positive number, the leading coefficient
must be positive. If the graph goes down as x becomes a large positive number, the
leading coefficient is negative.

n 1 1.
n 2 1
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Rational Functions Many situations require mathematical models that are quotients.
A common model for such situations is a rational function.

Rational Function
A rational function is defined by

where and are polynomial functions and q 1x 2 2 0.q 1x 2p 1x 2

f 1x 2 5
p 1x 2
q 1x 2

 ,

Since any values of x such that are excluded from the domain, a rational function
often has a graph with one or more breaks.

Graphing a Rational Function

Graph 

SOLUTION This function is undefined for since 0 is not allowed as the denominator
of a fraction. For this reason, the graph of this function will not intersect the vertical line

which is the y-axis. Since x can take on any value except 0, the values of x can
approach 0 as closely as desired from either side of 0.
x 5 0,

x 5 0,

y 5
1
x

 .

q 1x 2 5 0

EXAMPLE  5

approaches
b

x 0.01 0.1 0.2 0.5

100 10 5 2

a
gets larger and larger.0 y 0

21002102522y 5
1
x

20.0120.120.220.5

0.x

Values of 1/x for Small x

x 1 4 10 100

1 0.25 0.1 0.012120.2520.120.01y 5
1
x

21242102100

Values of 1/x for Large |x|

The table above suggests that as x gets closer and closer to 0, gets larger and larger.
This is true in general: as the denominator gets smaller, the fraction gets larger. Thus, the
graph of the function approaches the vertical line (the y-axis) without ever touching it.

As gets larger and larger, gets closer and closer to 0, as shown in the table
below. This is also true in general: as the denominator gets larger, the fraction gets smaller.

y 5 1 /x0 x 0
x 5 0

0 y 0

y

x

4

2

–2

–4

2 4

–2–4

0

y = –1x

FIGURE 42
The graph of the function approaches the horizontal line (the x-axis). The informa-
tion from both tables supports the graph in Figure 42.

In Example 5, the vertical line and the horizontal line are asymptotes,
defined as follows.

y 5 0x 5 0

y 5 0

Asymptotes
If a function gets larger and larger in magnitude without bound as x approaches the
number k, then the line is a vertical asymptote.

If the values of y approach a number k as gets larger and larger, the line 
is a horizontal asymptote.

y 5 k0 x 0
x 5 k
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There is an easy way to find any vertical asymptotes of a rational function. First, find
the roots of the denominator. If a number k makes the denominator 0 but does not make the
numerator 0, then the line is a vertical asymptote. If, however, a number k makes
both the  denominator and the numerator 0, then further investigation will be necessary, as
we will see in the next example. In the next chapter we will show another way to find
asymptotes using the concept of a limit.

Graphing a Rational Function

Graph the following rational functions:

(a)

SOLUTION The value x � �1 makes the denominator 0, and so �1 is not in the domain
of this function. Note that the value x � �1 also makes the numerator 0. In fact, if we fac-
tor the numerator and simplify the function, we get

The graph of this function, therefore, is the graph of y � x � 2 with a hole at x � �1, as
shown in Figure 43.

(b)

SOLUTION The value makes the denominator 0, but not the numerator, so the line
is a vertical asymptote. To find a horizontal asymptote, let x get larger and larger,

so that because the 2 is very small compared with 3x. Similarly, for x very
large, Therefore, This
means that the line is a horizontal asymptote. (A more precise way of approaching
this idea will be seen in the next chapter when limits at infinity are discussed.)

The intercepts should also be noted. When the y-intercept is . To
make a fraction 0, the numerator must be 0; so to make it is necessary that

Solve this for x to get (the x-intercept). We can also use these val-
ues to determine where the function is positive and where it is negative. Using the tech-
niques described in Chapter R, verify that the function is negative on and
positive on With this information, the two asymptotes to guide
us, and the fact that there are only two intercepts, we suspect the graph is as shown in
Figure 44. A graphing calculator can support this. TRY YOUR TURN 2

Rational functions occur often in practical applications. In many situations involving
environmental pollution, much of the pollutant can be removed from the air or water at a
fairly reasonable cost, but the last small part of the pollutant can be very expensive to
remove. Cost as a function of the percentage of pollutant removed from the environment
can be calculated for various percentages of removal, with a curve fitted through the result-
ing data points. This curve then leads to a mathematical model of the situation. Rational
functions are often a good choice for these cost-benefit models because they rise rapidly as
they approach a vertical asymptote.

Cost-Benefit Analysis

Suppose a cost-benefit model is given by

y 5
18x

106 2 x
 ,

12`, 22 2 < 122 /3, ` 2 .
122, 22 /3 2

x 5 22 /33x 1 2 5 0.
y 5 0,

y 5 2 /4 5 1 /2x 5 0,

y 5 3 /2
y 5 1 3x 1 2 2 / 12x 1 4 2 < 1 3x 2 / 12x 2 5 3 /2.2x 1 4 < 2x.

3x 1 2 < 3x
x 5 22

x 5 22

y 5
3x 1 2

2x 1 4
.

y 5
x2 1 3x 1 2

x 1 1
5
1x 1 2 2 1x 1 1 2

1x 1 1 2
5 x 1 2 for x 2 21.

y 5
x2 1 3x 1 2

x 1 1
 .

x 5 k

EXAMPLE  6
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–3
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1
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x

 x2 + 3x + 2
x + 1

y =

FIGURE 43

y

x

x = –2 –4

4

–4 0

y = –3
2

3x + 2
2x + 4y =

FIGURE 44

YOUR TURN 2

Graph y 5
4x 2 6

x 2 3
.

EXAMPLE  7
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where y is the cost (in thousands of dollars) of removing x percent of a certain pollutant. The
domain of x is the set of all numbers from 0 to 100 inclusive; any amount of pollutant from 0%
to 100% can be removed. Find the cost to remove the following amounts of the pollutant:
100%, 95%, 90%, and 80%. Graph the function.

SOLUTION Removal of 100% of the pollutant would cost

or $300,000. Check that 95% of the pollutant can be removed for $155,000, 90% for
$101,000, and 80% for $55,000. Using these points, as well as others obtained from the
function, gives the graph shown in Figure 45.

y 5
18 1 100 2

106 2 100
5 300,

(90, 101)

(95, 155)

(80, 55)

C
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t (
in

 th
ou
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 r
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Percent of pollutant

300

200

100

302010 40 50 60 70 80 90100

106
0

(100, 300)

x = 106
y =

18x
106 – x

y

x

FIGURE 45

If a cost function has the form where x is the number of items pro-
duced, m is the marginal cost per item and b is the fixed cost, then the average cost per
item is given by

Notice that this is a rational function with a vertical asymptote at and a horizontal
asymptote at The vertical asymptote reflects the fact that, as the number of items
produced approaches 0, the average cost per item becomes infinitely large, because the
fixed costs are spread over fewer and fewer items. The horizontal asymptote shows that, as
the number of items becomes large, the fixed costs are spread over more and more items, so
most of the average cost per item is the marginal cost to produce each item. This is another
example of how asymptotes give important information in real applications.

y 5 m.
x 5 0

C 1x 2 5
C 1x 2

x
5

mx 1 b
x

 .

C 1x 2 5 mx 1 b,

2.3 EXERCISES
1. Explain how translations and reflections can be used to graph

2. Describe an asymptote, and explain when a rational function will
have (a) a vertical asymptote and (b) a horizontal asymptote.

y 5 2 1x 2 1 24 1 2.
Use the principles of the previous section with the graphs of this
section to sketch a graph of the given function.

3. 4.

5. 6. f 1x 2 5 2 1x 2 1 24 1 2f 1x 2 5 2 1x 1 3 24 1 1

f 1x 2 5 1x 1 1 2 3 2 2f 1x 2 5 1x 2 2 2 3 1 3
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7. 8.

9. 10.

11. 12.

13.

14.

15.

In Exercises 16–20, match the correct graph A–E to the func-
tion without using your calculator. Then, after you have
answered all of them, if you have a graphing calculator, use
your calculator to check your answers. Each graph in this
group is plotted on by Hint: Consider the
asymptotes. (If you try graphing these graphs in Connected
mode rather than Dot mode, you will see some lines that are not
part of the graph, but the result of the calculator connecting
disconnected parts of the graph.)

326, 6 4.326, 6 4

y 5 2x5 1 4x4 1 x3 2 16x2 1 12x 1 5

y 5 0.7x5 2 2.5x4 2 x3 1 8x2 1 x 1 2

y 5 2x4 1 2x3 1 10x 1 15

y 5 x4 1 4x3 2 20y 5 x4 2 5x2 1 7

y 5 2x3 1 4x 1 5y 5 2x3 2 4x2 1 x 1 6

y 5 2x3 1 4x2 1 3x 2 8y 5 x3 2 7x 2 9

16. 17.

18. 19.

20.

Each of the following is the graph of a polynomial function.
Give the possible values for the degree of the polynomial, and
give the sign or for the leading coefficient.

21.

22. y

x3210–1

1.5

1

0.5

y

x3210–1

0.5

–0.5

1

2 211

y 5
2x2 1 3

x3 2 1

y 5
22x2 2 3

x2 1 1
y 5

22x2 2 3

x2 2 1

y 5
2x2 1 3

x2 1 1
y 5

2x2 1 3

x2 2 1

26 6

50

250

26 6

50

250

26 6

50

250

26 6

50

250

26 6

50

250

26 6

50

250

26 6

50

250

26 6

6

26

26 6

6

26

26 6

6

26

26 6

6

26

26 6

6

26

26 6

50

250

26 6

50

250

In Exercises 7–15, match the correct graph A–I to the function with-
out using your calculator. Then, after you have answered all of them,
if you have a graphing calculator, use your calculator to check
your answers. Each graph is plotted on by 3250, 50 4.326, 6 4

(A) (B)

(A) (B)

(C) (D)

(E)

(C) (D)

(E) (F)

(G) (H)

(I)
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23.

24.

25.

26.

Find any horizontal and vertical asymptotes and any holes that
may exist for each rational function. Draw the graph of each
function, including any x- and y-intercepts.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36. y 5
6 2 3x

4x 1 12
y 5

3 2 2x

4x 1 20

y 5
x 2 4

x 1 1
y 5

x 1 1

x 2 4

y 5
4x

3 2 2x
y 5

2x

x 2 3

y 5
8

5 2 3x
y 5

2

3 1 2x

y 5
21

x 1 3
y 5

24

x 1 2

y

x

4

2

–2

–4

–6

0 1 2–1

y

x321 40–1–2–3

10
5

–10

–20

y

x

y

x321 40–1–2–3

50

–50

–100

37. 38.

39. 40.

41. Write an equation that defines a rational function with a verti-
cal asymptote at and a horizontal asymptote at 

42. Write an equation that defines a rational function with a verti-
cal asymptote at and a horizontal asymptote at 

43. Consider the polynomial functions defined by 
and

a. What is the value of 

b. For what values, other than 1, is 

c. Verify that 

d. Based on your answer from part c, what do you think is the
factored form of Verify your answer by multiplying it
out and comparing with 

e. Using your answer from part d, what is the factored form of

f. Based on what you have learned in this exercise, fill in the
blank: If f is a polynomial and for some number
a, then one factor of the polynomial is 
__________________.

44. Consider the function defined by 

Source: The Mathematics Teacher.

a. Graph the function on by From your graph,
estimate how many x-intercepts the function has and what
their values are.

b. Now graph the function on by 
and on by From your graphs, esti-
mate how many x-intercepts the function has and what their
values are.

c. From your results in parts a and b, what advice would you give
a friend on using a graphing calculator to find x-intercepts?

45. Consider the function defined by

Source: The Mathematics Teacher.

a. Graph the function on by From your
graph, estimate how many vertical asymptotes the function
has and where they are located.

b. Now graph the function on by and
on by From your graphs, estimate
how many vertical asymptotes the function has and where
they are located.

c. From your results in parts a and b, what advice would you
give a friend on using a graphing calculator to find vertical
asymptotes?

321000, 1000 4.31.4, 1.5 4
3210, 10 4321.5, 21.4 4

323, 3 4.323.4, 3.4 4

f 1x 2 5
1

x5 2 2x3 2 3x2 1 6
 .

321025, 1025 4.31.4, 1.5 4
321024, 1024 4321.5, 21.4 4

326, 6 4.326, 6 4

f 1x 2 5
x7 2 4x5 2 3x4 1 4x3 1 12x2 2 12

x7 .

f 1a 2 5 0

h 1x 2?

g 1x 2 .
g 1x 2?

g 121 2 5 g 1 1 2 5 g 122 2 5 0.

f 1x 2 5 0?

f 1 1 2?

3x3 1 6x2 2 3x 2 6.h 1x 2 5

g 1x 2 5 x3 1 2x2 2 x 2 2,1x 2 1 2 1x 2 2 2 1x 1 3 2 ,
f 1x 2 5

y 5 0.x 5 22

y 5 2.x 5 1

y 5
9 2 6x 1 x2

3 2 x
y 5

x2 1 7x 1 12

x 1 4

y 5
22x 1 5

x 1 3
y 5

2x 2 4

3x 1 6
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APPLICATIONS
Business and Economics

46. Average Cost Suppose the average cost per unit in dol-
lars, to produce x units of yogurt is given by

a. Find and 

b. Which of the intervals and would be a more
reasonable domain for Why?

c. Give the equations of any asymptotes. Find any intercepts.

d. Graph 

47. Cost Analysis In a recent year, the cost per ton, y, to build an
oil tanker of x thousand deadweight tons was approximated by

for 

a. Find and 

b. Find any asymptotes.

c. Find any intercepts.

d. Graph 

APPLY IT Tax Rates Exercises 48–50 refer to the Laffer
curve, originated by the economist Arthur Laffer. An idealized
version of this curve is shown here. According to this curve,
decreasing a tax rate, say from percent to percent on the
graph, can actually lead to an increase in government revenue.
The theory is that people will work harder and earn more
money if they are taxed at a lower rate, so the government ends
up with more revenue than it would at a higher tax rate. All
economists agree on the endpoints—0 revenue at tax rates of
both 0% and 100%—but there is much disagreement on the
location of the tax rate that produces the maximum revenue.x1

x1x2

y 5 C 1x 2 .

C 1400 2 .C 1 300 2 ,C 1200 2 ,C 1 100 2 ,C 1 50 2 ,C 125 2 ,

x . 0.

C 1x 2 5
220,000

x 1 475

y 5 C 1x 2 .

C?
30, ` 210, ` 2

C 1 100 2 .C 1 75 2 ,C 1 50 2 ,C 120 2 ,C 1 10 2 ,

C 1x 2 5
600

x 1 20
.

C 1x 2 ,

49. Find the equations of two quadratic functions that could describe
the Laffer curve by having zeros at and Give the
first a maximum of 100 and the second a maximum of 250, then
multiply them together to get a new Laffer curve with a maxi-
mum of 25,000. Plot the resulting function.

50. An economist might argue that the models in the two previous
exercises are unrealistic because they predict that a tax rate of
50% gives the maximum revenue, while the actual value is
probably less than 50%. Consider the function

where y is government revenue in millions of dollars from a tax
rate of x percent, where Source: Dana Lee Ling.

a. Graph the function, and discuss whether the shape of the
graph is appropriate.

b. Use a graphing calculator to find the tax rate that produces the
maximum revenue. What is the maximum revenue?

51. Cost-Benefit Model Suppose a cost-benefit model is given by

where y is the cost in thousands of dollars of removing x per-
cent of a given pollutant.

a. Find the cost of removing each percent of pollutants: 50%;
70%; 80%; 90%; 95%; 98%; 99%.

b. Is it possible, according to this function, to remove all the
pollutant?

c. Graph the function.

52. Cost-Benefit Model Suppose a cost-benefit model is given by

where y is the cost in thousands of dollars of removing x per-
cent of a certain pollutant.

a. Find the cost of removing each percent of pollutants: 0%;
50%; 80%; 90%; 95%; 99%; 100%.

b. Graph the function.

Life Sciences

53. Contact Lenses The strength of a contact lens is given in units
known as diopters, as well as in mm of arc. The following is
taken from a chart used by optometrists to convert diopters to
mm of arc. Source: Bausch & Lomb.

y 5
6.5x

102 2 x
 ,

y 5
6.7x

100 2 x
 ,

0 # x # 100.

y 5
300x 2 3x2

5x 1 100
 ,

x 5 100.x 5 0

y

x

Tax rate (percent)

0 x1 2x 100

Maximum
revenue

48. A function that might describe the entire Laffer curve is

where y is government revenue in hundreds of thousands of
dollars from a tax rate of x percent, with the function valid for

Find the revenue from the following tax rates.

a. 10% b. 40% c. 50% d. 80%

e. Graph the function.

0 # x # 100.

y 5 x 1 100 2 x 2 1x2 1 500 2 ,

36.000 9.37

36.125 9.34

36.250 9.31

36.375 9.27

36.500 9.24

36.625 9.21

36.750 9.18

36.875 9.15

37.000 9.12

Diopters mm of Arc
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a. Notice that as the diopters increase, the mm of arc decrease.
Find a value of k so the function gives a,
the mm of arc, as a function of d, the strength in diopters.
(Round k to the nearest integer. For a more accurate answer,
average all the values of k given by each pair of data.)

b. An optometrist wants to order 40.50 diopter lenses for a
patient. The manufacturer needs to know the strength in mm
of arc. What is the strength in mm of arc?

54. Cardiac Output A technique for measuring cardiac output
depends on the concentration of a dye after a known amount is
injected into a vein near the heart. In a normal heart, the con-
centration of the dye at time x (in seconds) is given by the
function

a. Graph on by 

b. In your graph from part a, notice that the function initially
increases. Considering the form of do you think it can
keep increasing forever? Explain.

c. Write a short paragraph about the extent to which the concen-
tration of dye might be described by the function 

55. Alcohol Concentration The polynomial function

gives the approximate blood alcohol concentration in a 170-lb
woman x hours after drinking 2 oz of alcohol on an empty
stomach, for x in the interval Source: Medical Aspects
of Alcohol Determination in Biological Specimens.

a. Graph on 

b. Using the graph from part a, estimate the time of maximum
alcohol concentration.

c. In many states, a person is legally drunk if the blood alcohol
concentration exceeds 0.08%. Use the graph from part a to
estimate the period in which this 170-lb woman is legally drunk.

56. Medical School For the years 1998 to 2009, the number of appli-
cants to U.S. medical schools can be closely approximated by

A 1 t 2 5 26.7615t4 1 114.7t3 2 240.1t2 2 2129t 1 40,966,

0 # x # 5.A 1x 2

30, 5 4.

A 1x 2 5 0.003631x3 2 0.03746x2 1 0.1012x 1 0.009

g 1x 2 .

g 1x 2 ,

30, 20 4.30, 6 4g 1x 2

g 1x 2 5 20.006x4 1 0.140x3 2 0.053x2 1 1.79x.

k /da 5 f 1d 2  5

where t is the number of years since 1998. Source: Associa-
tion of American Medical Colleges.

a. Graph the number of applicants on 

b. Based on the graph in part a, during what years did the num-
ber of medical school applicants increase? 

57. Population Biology The function

is used in population models to give the size of the next gener-
ation in terms of the current generation Source:
Models in Ecology.

a. What is a reasonable domain for this function, considering
what x represents?

b. Graph this function for 

c. Graph this function for and 

d. What is the effect of making b larger?

58. Growth Model The function

is used in biology to give the growth rate of a population in the
presence of a quantity x of food. This is called Michaelis-
Menten kinetics. Source: Mathematical Models in Biology.

a. What is a reasonable domain for this function, considering
what x represents?

b. Graph this function for and 

c. Show that is a horizontal asymptote.

d. What do you think K represents?

e. Show that A represents the quantity of food for which the
growth rate is half of its maximum.

59. Brain Mass The mass (in grams) of the human brain during
the last trimester of gestation and the first two years after birth
can be approximated by the function

where c is the circumference of the head in centimeters. Source:
Early Human Development.

a. Find the approximate mass of brains with a head circumfer-
ence of 30, 40, or 50 cm.

b. Clearly the formula is invalid for any values of c yielding
negative values of w. For what values of c is this true?

c. Use a graphing calculator to sketch this graph on the interval

d. Suppose an infant brain has mass of 700 g. Use features on a
graphing calculator to find what the circumference of the
head is expected to be.

20 # c # 50.

m 1 c 2 5
c3

100
2

1500

c
 ,

y 5 K

A 5 2.K 5 5

f 1x 2 5
Kx

A 1 x

b 5 2.l 5 a 5 1

l 5 a 5 b 5 1.

1x 2 .1f 1x 2 2

f 1x 2 5
lx

1 1 1ax 2 b

0 # t # 11.
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a. Plot the points from the table using 0 for 1960, and so on. 

b. Use the quadratic regression feature of a graphing calculator
to get a quadratic function that approximates the data. Graph
the function on the same window as the scatterplot. 

c. Use cubic regression to get a cubic function that approxi-
mates the data. Graph the function on the same window as
the scatterplot. 

d. Which of the two functions in part b and c appears to be a
better fit for the data? Explain your reasoning. 

Physical  Sciences

61. Length of a Pendulum A simple pendulum swings back and
forth in regular time intervals. Grandfather clocks use pendu-
lums to keep accurate time. The relationship between the
length of a pendulum L and the period (time) T for one com-
plete oscillation can be expressed by the function 
where k is a constant and n is a positive integer to be deter-
mined. The data below were taken for different lengths of
pendulums.* Source: Gary Rockswold.

L 5 kTn,

c. Use the best-fitting function from part a to predict the period
of a pendulum having a length of 5 ft. 

d. If the length of pendulum doubles, what happens to the period?

e. If you have a graphing calculator or computer program with
a quadratic regression feature, use it to find a quadratic func-
tion that approximately fits the data. How does this answer
compare with the answer to part b? 

62. Coal Consumption The table gives U.S. coal consumption for
selected years. Source: U.S. Department of Energy.

1966 733,000

1970 477,400

1980 376,300

1990 540,930

1995 750,696

2000 857,664

2005 906,993

Year Enrollment

1950 494.1

1960 398.1

1970 523.2

1980 702.7

1985 818.0

1990 902.9

1995 962.1

2000 1084.1

2005 1128.3

Millions of
Year Short Tons

1.11 1.0

1.36 1.5

1.57 2.0

1.76 2.5

1.92 3.0

2.08 3.5

2.22 4.0

T (sec) L (ft)

a. Draw a scatterplot, letting represent 1950. 

b. Use the quadratic regression feature of a graphing calculator
to get a quadratic function that approximates the data. 

c. Graph the function from part b on the same window as the
scatterplot. 

d. Use cubic regression to get a cubic function that approximates
the data.

e. Graph the cubic function from part d on the same window as
the scatterplot. 

f. Which of the two functions in parts b and d appears to be a
better fit for the data? Explain your reasoning.

x 5 0

YOUR TURN ANSWERS 

1.

2.

–2 2 4 6

–20

40

20

y

x

4x – 6
x – 3

y =

–1 1

80

20

40

60

f(x)

x

f(x) = 64 – x6

Social  Sciences

60. Head Start The enrollment in Head Start for some recent years is
included in the table. Source: Administration for Children &
Families.

*See Exercise 23, Section 1.3.

a. Find the value of k for 2, and 3, using the data for the
4-ft pendulum. 

b. Use a graphing calculator to plot the data in the table and to
graph the function for the three values of k (and
their corresponding values of n) found in part a. Which
function best fits the data? 

L 5 kTn

n 5 1,
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Later in this section, in Examples 5 and 6, we will see that the answers to these questions
depend on exponential functions.

In earlier sections we discussed functions involving expressions such as 
or where the variable or variable expression is the base of an exponential expression,
and the exponent is a constant. In an exponential function, the variable is in the exponent
and the base is a constant.

x21,
12x 1 1 2 3,x2,

Exponential Functions
How much interest will an investment earn? What is the oxygen
consumption of yearling salmon?

2.4
APPLY IT 

Exponential Function
An exponential function with base a is defined as

f 1 x 2 5 ax, where a + 0 and a u 1.

(If the function is the constant function 
Exponential functions may be the single most important type of functions used in prac-

tical applications. They are used to describe growth and decay, which are important ideas in
management, social science, and biology.

Figure 46 shows a graph of the exponential function defined by You could
plot such a curve by hand by noting that and

and then drawing a smooth curve through the points (0, 1),
(1, 2), and (2, 4). This graph is typical of the graphs of exponential functions of the form

where The y-intercept is (0, 1). Notice that as x gets larger and larger, the
function also gets larger. As x gets more and more negative, the function becomes smaller
and smaller, approaching but never reaching 0. Therefore, the x-axis is a horizontal asymp-
tote, but the function only approaches the left side of the asymptote. In contrast, rational
functions approach both the left and right sides of the asymptote. The graph suggests that
the domain is the set of all real numbers and the range is the set of all positive numbers.

Graphing an Exponential Function

Graph 

SOLUTION The graph, shown in Figure 47, is the horizontal reflection of the graph of
given in Figure 46. Since this graph is typical of the

graphs of exponential functions of the form where The domain includes
all real numbers and the range includes all positive numbers. The y-intercept is (0, 1). Notice
that this function, with is decreasing over its domain.

In the definition of an exponential function, notice that the base a is restricted to posi-
tive values, with negative or zero bases not allowed. For example, the function 
could not include such numbers as or in the domain because the y-values
would not be real numbers. The resulting graph would be at best a series of separate points
having little practical use.

Graphing an Exponential Function

Graph 

SOLUTION The graph of is the vertical reflection of the graph of so this
is a decreasing function. (Notice that is not the same as In we raise 2 to
the x power and then take the negative.) The 3 indicates that the graph should be translated

22x,122 2x.22x
y 5 2x,y 5 22x

f 1x 2 5 22x 1 3.

x 5 1 /4x 5 1 /2
y 5 124 2x

1 1 /2 2x,22x 5f 1x 2 5

0 , a , 1.y 5 ax
22x 5 1 /2x 5 1 1 /2 2x,f 1x 2 5 2x

f 1x 2 5 22x.

a . 1.y 5 ax,

121, 1 /2 2 ,122, 1 /4 2 ,22 5 4,
21 5 2,20 5 1,221 5 1 /2,222 5 1 /4,

f 1x 2 5 2x.

f 1x 2 5 1.)a 5 1,

FOR REVIEW
To review the properties of expo-
nents used in this section, see
Section R.6.

–4 –2 2 40 x

y

2

4

6

8

y = 2x

FIGURE 46

FOR REVIEW
Recall from Section 2.2 that the
graph of is the reflection
of the graph of about the 
y-axis.

f 1x 2
f 12x 2

EXAMPLE  1

EXAMPLE  2

FIGURE 47

–4 –2 2 40 x

y

2

4

6

8

y = 2–x
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vertically 3 units, as compared to the graph of Since would have y-
intercept this function has y-intercept which is up 3 units. For negative
values of x, the graph approaches the line which is a horizontal asymptote. The
graph is shown in Figure 48.

Exponential Equations In Figures 46 and 47, which are typical graphs of expo-
nential functions, a given value of x leads to exactly one value of Because of this, an
equation with a variable in the exponent, called an exponential equation, often can be
solved using the following property.

ax.

y 5 3,
10, 2 2 ,10, 21 2 ,

y 5 22xy 5 22x.f(x)

x

y = 3

8

–5

–2

f(x) = –2  + 3x

30

FIGURE 48
If and then x 5 y.ax 5 ay,a 2 1,a . 0,

The value is excluded, since for example, even though To solve 
using this property, work as follows.

Solving Exponential Equations

(a) Solve 

SOLUTION First rewrite both sides of the equation so the bases are the same. Since
and 

Multiply exponents.

(b) Solve 

SOLUTION Since the bases must be the same, write 32 as and 128 as giving

Multiply exponents.

Now use the property from above to get

Verify this solution in the original equation. TRY YOUR TURN 1

Compound Interest The calculation of compound interest is an important applica-
tion of exponential functions. The cost of borrowing money or the return on an investment
is called interest. The amount borrowed or invested is the principal, P. The rate of inter-
est r is given as a percent per year, and t is the time, measured in years.

 x 5
26

3
 .

 3x 5 26

 10x 2 5 5 7x 1 21

 210x25 5 27x121.

 125 2 2x21 5 127 2x13

 322x21 5 128x13

27,25

322x21 5 128x13.

 x 5
3

2
.

 2x 5 3

 32x 5 33

 1 32 2x 5 33

 9x 5 27

27 5 33,9 5 32

9x 5 27.

 x 5
7

3

 3x 5 7

 23x 5 27

23x 5 272 2 3.12 5 13,a 5 1

EXAMPLE  3

YOUR TURN 1 Solve
25x/2 5 125x1 3.

FOR REVIEW
Recall from Section R.6 that
1am 2n 5 amn.
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Simple Interest
The product of the principal P, rate r, and time t gives simple interest, I:

.I 5 Prt

With compound interest, interest is charged (or paid) on interest as well as on the prin-
cipal. To find a formula for compound interest, first suppose that P dollars, the principal, is
deposited at a rate of interest r per year. The interest earned during the first year is found
using the formula for simple interest.

At the end of one year, the amount on deposit will be the sum of the original principal and
the interest earned, or

(1)

If the deposit earns compound interest, the interest earned during the second year is found
from the total amount on deposit at the end of the first year. Thus, the interest earned during
the second year (again found by the formula for simple interest), is

(2)

so the total amount on deposit at the end of the second year is the sum of amounts from (1)
and (2) above, or

In the same way, the total amount on deposit at the end of three years is

After t years, the total amount on deposit, called the compound amount, is 
When interest is compounded more than once a year, the compound interest formula is

adjusted. For example, if interest is to be paid quarterly (four times a year), of the inter-
est rate is used each time interest is calculated, so the rate becomes and the number of
compounding periods in t years becomes 4t. Generalizing from this idea gives the follow-
ing formula.

r /4,
1 /4

P 1 1 1 r 2 t.

P 1 1 1 r 2 3.

P 1 1 1 r 2 1 P 1 1 1 r 2r 5 P 1 1 1 r 2 1 1 1 r 2 5 P 1 1 1 r 22.

3P 1 1 1 r 2 4 1 r 2 1 1 2 5 P 1 1 1 r 2r,

P 1 Pr 5 P 1 1 1 r 2 .

First-year interest 5 P . r . 1 5 Pr.

Compound Amount
If P dollars is invested at a yearly rate of interest r per year, compounded m times per
year for t years, the compound amount is

A 5 Pa1 1
r
m
b

tm

 dollars.

Compound Interest

Inga Moffitt invests a bonus of $9000 at 6% annual interest compounded semiannually for
4 years. How much interest will she earn?

SOLUTION Use the formula for compound interest with and

Use a calculator.

The investment plus the interest is $11,400.93. The interest amounts to 
TRY YOUR TURN 2$9000 5 $2400.93.

$11,400.93 2

 < 11,400.93
 5 9000 1 1.03 2 8

 5 9000a1 1
0.06

2
b

4122

 A 5 Pa1 1
r
m
b

tm
t 5 4.

m 5 2,r 5 0.06,P 5 9000,

EXAMPLE  4

YOUR TURN 2 Find the interest
earned on $4400 at 3.25% interest
compounded quarterly for 5 years.
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NOTE When using a calculator to compute the compound interest, store each partial result in 
the calculator and avoid rounding off until the final answer.

The Number e Perhaps the single most useful base for an exponential function is the num-
ber e, an irrational number that occurs often in practical applications. The famous Swiss math-
ematician Leonhard Euler (pronounced “oiler”) (1707–1783) was the first person known to
have referred to this number as e, and the notation has continued to this day. To see how the
number e occurs in an application, begin with the formula for compound interest,

Suppose that a lucky investment produces annual interest of 100%, so that 
Suppose also that you can deposit only $1 at this rate, and for only one year. Then 
and Substituting these values into the formula for compound interest gives

As interest is compounded more and more often, m gets larger and the value of this expres-
sion will increase. For example, if (interest is compounded annually),

so that your $1 becomes $2 in one year. Using a graphing calculator, we produced Figure 49
(where m is represented by X and by to see what happens as m becomes
larger and larger. A spreadsheet can also be used to produce this table.

The table suggests that as m increases, the value of gets closer and closer
to a fixed number, called e. As we shall see in the next chapter, this is an example of a limit.

1 1 1 1 /m 2m

Y1)1 1 1 1 /m 2m

a1 1
1
m
b

m

5 a1 1
1

1
b

1

5 21 5 2,

m 5 1

Pa1 1
r
m
b

t1m2

5 1a1 1
1
m
b

11m2

5 a1 1
1
m
b

m

.

t 5 1.
P 5 1

r 5 1.00 5 1.

Pa1 1
r
m
b

tm

.

Definition of e
As m becomes larger and larger, becomes closer and closer to the number e,

whose approximate value is 2.718281828.

a1 1
1
m
b

m

1
8
50
100
1000
10000

2
2.5658
2.6916
2.7048
2.7169
2.7181
2.7183

X5100000

X Y1

100000

FIGURE 49

The value of e is approximated here to 9 decimal places. Euler approximated e to 18
decimal places. Many calculators give values of usually with a key labeled Some
require two keys, either INV LN or 2nd LN. (We will define in the next section.) In
Figure 50, the functions and are graphed for comparison. Notice
that is between and because e is between 2 and 3. For the graphs show that

All three functions have y-intercept It is difficult to see from the
graph, but when 

The number e is often used as the base in an exponential equation because it provides a
good model for many natural, as well as economic, phenomena. In the exercises for this
section, we will look at several examples of such applications.

Continuous Compounding In economics, the formula for continuous com-
pounding is a good example of an exponential growth function. Recall the formula for
compound amount

A 5 Pa1 1
r
m
b

tm

,

x , 0.3x , ex , 2x
10, 1 2 .3x . ex . 2x.

x . 0,3x,2xex
y 5 3xy 5 ex,y 5 2x,

ln x
ex.ex,y

x

y = 2

8

2

4

6

–1 0 321

y = e

y = 3x

x

x

FIGURE 50
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where m is the number of times annually that interest is compounded. As m becomes larger
and larger, the compound amount also becomes larger but not without bound. Recall that as
m becomes larger and larger, becomes closer and closer to e. Similarly,

becomes closer and closer to e. Let us rearrange the formula for compound amount to take
advantage of this fact.

This last expression becomes closer and closer to as m becomes larger and larger,
which describes what happens when interest is compounded continuously. Essentially,
the number of times annually that interest is compounded becomes infinitely large. We
thus have the following formula for the compound amount when interest is compounded
continuously.

Pert

 
m
r

. rt 5 tm 5 P c a1 1
1

1m /r 2
b

m/r
d

rt

 5 Pa1 1
1

1m /r 2
b

tm

 A 5 Pa1 1
r
m
b

tm

a1 1
1

1m /r 2
b

m/r

1 1 1 1 /m 2m

Continuous Compounding
If a deposit of P dollars is invested at a rate of interest r compounded continuously for
t years, the compound amount is

dollars.A 5 Pert

Continuous Compound Interest

If $600 is invested in an account earning 2.75% compounded continuously, how much
would be in the account after 5 years?

SOLUTION In the formula for continuous compounding, let and 
to get

or $688.44. TRY YOUR TURN 3

In situations that involve growth or decay of a population, the size of the population at a
given time t often is determined by an exponential function of t. The next example illus-
trates a typical application of this kind.

Oxygen Consumption

Biologists studying salmon have found that the oxygen consumption of yearling salmon (in
appropriate units) increases exponentially with the speed of swimming according to the
function defined by

where x is the speed in feet per second. Find the following.

(a) The oxygen consumption when the fish are still

f 1x 2 5 100e0.6x,

A 5 600e 510.02752 < 688.44,

0.0275
r 5t 5 5,P 5 600,

EXAMPLE  5

YOUR TURN 3 Find the
amount after 4 years if $800 is
invested in an account earning
3.15% compounded continuously.

EXAMPLE  6

APPLY IT 

APPLY IT 
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SOLUTION When the fish are still, their speed is 0. Substitute 0 for x:

When the fish are still, their oxygen consumption is 100 units.

(b) The oxygen consumption at a speed of 2 ft per second

SOLUTION Find as follows.

At a speed of 2 ft per second, oxygen consumption is about 332 units rounded to the nearest
integer. Because the function is only an approximation of the real situation, further accu-
racy is not realistic.

Food Surplus

A magazine article argued that the cause of the obesity epidemic in the United States is the
decreasing cost of food (in real terms) due to the increasing surplus of food. Source: The New
York Times Magazine. As one piece of evidence, the following table was provided, which we
have updated, showing U.S. corn production (in billions of bushels) for selected years.

f 12 2 5 100e10.62122 5 100e1.2 < 332

f 12 2

e0 5 1 5 100 . 1 5 100.

 f 10 2 5 100e10.62102 5 100e0

FOR REVIEW
Refer to the discussion on linear
regression in Section 1.3. A simi-
lar process is used to fit data
points to other types of functions.
Many of the functions in this
chapter’s applications were deter-
mined in this way, including that
given in Example 6.

EXAMPLE  7

1930 1.757

1940 2.207

1950 2.764

1960 3.907

1970 4.152

1980 6.639

1990 7.934

2000 9.968

2005 11.112

Production
Year (billions of bushels)

(a) Plot the data. Does the production appear to grow linearly or exponentially?

SOLUTION Figure 51 shows a graphing calculator plot of the data, which suggests that
corn production is growing exponentially.

(b) Find an exponential function in the form of that models this data,
where x is the year and is the production of corn. Use the data for 1930 and 2005.

SOLUTION Since we have Using we have

Divide by

Take the root.

Thus Figure 52 shows that this function fits the data well.

(c) Determine the expected annual percentage increase in corn production during this time period.

SOLUTION Since a is 1.0249, the production of corn each year is 1.0249 times its value
the previous year, for a rate of increase of per year.0.0249 5 2.49%

p 1x 2 5 1.757 1 1.0249 2x21930.

 < 1.0249.

75tha 5 a
11.112

1.757
b

1/75

1.757. a75 5
11.112

1.757

p 12005 2 5 1.757a200521930 5 1.757a75 5 11.112

x 5 2005,p0 5 1.757.p 1 1930 2 5 p0 a0 5 p0 ,

p 1x 2
p 1x 2 5 p0 ax21930

1920 2010

12

0

FIGURE 51

1920 2010

12

0

y 5 1.757(1.0249)x21930

FIGURE 52
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(d) Graph p and estimate the year when corn production will be double what it was in 2005.

SOLUTION Figure 53 shows the graphs of and on the
same coordinate axes. (Note that the scale in Figure 53 is different than the scale in Fig-
ures 51 and 52 so that larger values of x and are visible.) Their graphs intersect at
approximately 2033, which is thus the year when corn production will be double its
2005 level. In the next section, we will see another way to solve such problems that
does not require the use of a graphing calculator.

Another way to check whether an exponential function fits the data is to see if points
whose x-coordinates are equally spaced have y-coordinates with a constant ratio. This must
be true for an exponential function because if then and

so

This last expression is constant if is constant, that is, if the x-coordinates are
equally spaced.

In the previous example, all data points but the last have x-coordinates 10 years apart,
so we can compare the ratios of corn production for any of these first pairs of years. Here
are the ratios for 1930–1940 and for 1990–2000:

These ratios are identical to 3 decimal places, so an exponential function fits the data very
well. Not all ratios are this close; using the values at 1970 and 1980, we have

From Figure 52, we can see that this is because the 1970 value is below the exponential
curve and the 1980 value is above the curve.

Another way to find an exponential function that fits a set of data is to use a graphing calculator or
computer program with an exponential regression feature. This fits an exponential function through a
set of points using the least squares method, introduced in Section 1.3 for fitting a line through a set
of points. On a TI-84 Plus, for example, enter the year into the list L1 and the corn production into
L2. For simplicity, subtract 1930 from each year, so that 1930 corresponds to Selecting
ExpReg from the STAT CALC menu yields which is close to the function we
found in Example 7(b).

1.728 1 1.0254 2x,y 5
x 5 0.

1.599.
6.639 /4.152 5

9.968

7.934
5 1.256

2.207

1.757
5 1.256

x2 2 x1

f 1x2 
2

f 1x1 
2 5

a . bx2

a . bx1
5 bx22x1.

a . bx2,f 1x2 
2 5

f 1x1 
2 5 a . bx1f 1x 2 5 a . bx,

p 1x 2

y 5 2 . 11.112 5 22.224p 1x 2

1920 2050

24

0

Intersection
X�2033.1738 Y�22.224

y � 1.757(1.0249)x�1930

y � 22.224

FIGURE 53

TECHNOLOGY NOTE
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2.4 EXERCISES
A ream of 20-lb paper contains 500 sheets and is about 2 in.
high. Suppose you take one sheet, fold it in half, then fold it in
half again, continuing in this way as long as possible. Source:
The AMATYC Review.

1. Complete the table.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

Graph each of the following.

29. 30.

31. 32.

33. In our definition of exponential function, we ruled out negative
values of a. The author of a textbook on mathematical econom-
ics, however, obtained a “graph” of by plotting the
following points and drawing a smooth curve through them.

y 5 122 2x

y 5 4e2x/2 2 1y 5 23e22x 1 2

y 5 22ex 2 3y 5 5ex 1 2

ex215x16 5 127x 5 9x21x

8x2

5 2x145x21x 5 1

2x224x 5 a
1

16
b

x24

52 0x 0 5
1

25

2 0x 0 5 8e2x 5 1 e4 2x13

1 e3 222x 5 e2x1516x13 5 642x25

Number of Folds 1 2 3 4 5 10 50

Layers of Paper
**

2. After folding 50 times (if this were possible), what would be
the height (in miles) of the folded paper?

For Exercises 3–11, match the correct graph A–F to the func-
tion without using your calculator. Notice that there are more
functions than graphs; some of the functions are equivalent.
After you have answered all of them, use a graphing calculator
to check your answers. Each graph in this group is plotted on
the window by 

3. 4.

5. 6.

7. 8.

9. 10.

11. y 5 3x21

y 5 22 1 32xy 5 2 2 32x

y 5 a
1

3
b

x

y 5 3 1 3 2x

y 5 3x11y 5 a
1

3
b

12x

y 5 32xy 5 3x

324, 4 4.322, 2 4

22 2

4

24

22 2

4

24

22 2

4

24

22 2

4

24

�2 2

4

�4

22 2

4

24

12. In Exercises 3–11, there were more formulas for functions
than there were graphs. Explain how this is possible.

Solve each equation.

13. 14.

15. 16.

17. 18. 25x 5 125x124x 5 8x11

ex 5
1

e53x 5
1

81

4x 5 642x 5 32

x 0 1 2 3

y 1 4 282221 /21 /421 /81 /16

21222324

The graph oscillates very neatly from positive to negative val-
ues of y. Comment on this approach. (This exercise shows the
dangers of point plotting when drawing graphs.)

34. Explain why the exponential equation cannot be solved
using the method described in Example 3.

35. Explain why when but 
when 

36. A friend claims that as x becomes large, the expression 
gets closer and closer to 1, and 1 raised to any power is still 1.
Therefore, gets closer and closer to 1 as x
gets larger. Use a graphing calculator to graph f on

How might you use this graph to explain to the
friend why does not approach 1 as x becomes large?
What does it approach?

APPLICATIONS
Business and Economics

37. Interest Find the interest earned on $10,000 invested for 5 years
at 4% interest compounded as follows.

a. Annually b. Semiannually (twice a year)

c. Quarterly d. Monthly e. Continuously

38. Interest Suppose $26,000 is borrowed for 4 years at 6% inter-
est. Find the interest paid over this period if the interest is com-
pounded as follows.

a. Annually b. Semiannually

c. Quarterly d. Monthly e. Continuously

39. Interest Ron Hampton needs to choose between two investments:
One pays 6% compounded annually, and the other pays 
compounded monthly. If he plans to invest $18,000 for years,
which investment should he choose? How much extra interest will
he earn by making the better choice?

2
5.9%

f 1x 2
0.1 # x # 50.

f 1x 2 5 1 1 1 1 /x 2x

1 1 1 /x

x , 0.
3x , ex , 2xx . 0,3x . ex . 2x

4x 5 6

(A) (B)

(C) (D)

(E) (F)
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40. Interest Find the interest rate required for an investment of
$5000 to grow to $7500 in 5 years if interest is compounded as
follows.

a. Annually b. Quarterly

41. Inflation Assuming continuous compounding, what will it
cost to buy a $10 item in 3 years at the following inflation
rates?

a. 3% b. 4% c. 5%

42. Interest Ali Williams invests a $25,000 inheritance in a fund
paying 5.5% per year compounded continuously. What will be
the amount on deposit after each time period?

a. 1 year b. 5 years c. 10 years

43. Interest Leigh Jacks plans to invest $500 into a money mar-
ket account. Find the interest rate that is needed for the money
to grow to $1200 in 14 years if the interest is compounded
quarterly.

44. Interest Kristi Perez puts $10,500 into an account to save
money to buy a car in 12 years. She expects the car of her
dreams to cost $30,000 by then. Find the interest rate that is nec-
essary if the interest is computed using the following methods.

a. Compounded quarterly b. Compounded continuously

45. Inflation If money loses value at the rate of 8% per year, the
value of $1 in t years is given by

a. Use a calculator to help complete the following table.

y 5 1 1 2 0.08 2 t 5 10.92 2 t.

b. Use the function to approximate world population in 2000.
(The actual 2000 population was about 6115 million.)

c. Estimate world population in the year 2015.

48. Growth of Bacteria Salmonella bacteria, found on almost all
chicken and eggs, grow rapidly in a nice warm place. If just a
few hundred bacteria are left on the cutting board when a
chicken is cut up, and they get into the potato salad, the pop-
ulation begins compounding. Suppose the number present in
the potato salad after x hours is given by

a. If the potato salad is left out on the table, how many bacteria
are present 1 hour later?

b. How many were present initially?

c. How often do the bacteria double?

d. How quickly will the number of bacteria increase to 32,000? 

49. Minority Population According to the U.S. Census Bureau,
the United States is becoming more diverse. Based on U.S.
Census population projections for 2000 to 2050, the projected
Hispanic population (in millions) can be modeled by the expo-
nential function

h(t) � 37.79(1.021)t,

where t � 0 corresponds to 2000 and 0 � t � 50. Source:
U.S. Census Bureau.

a. Find the projected Hispanic population for 2005. Compare
this to the actual value of 42.69 million.

b. The U.S. Asian population is also growing exponentially,
and the projected Asian population (in millions) can be
modeled by the exponential function

a(t) � 11.14(1.023)t,

where t � 0 corresponds to 2000 and 0 � t � 50. Find the
projected Asian population for 2005, and compare this to the
actual value of 12.69 million.

c. Determine the expected annual percentage increase for His-
panics and for Asians. Which minority population, Hispanic
or Asian, is growing at a faster rate?

d. The U.S. black population is growing at a linear rate, and the
projected black population (in millions) can be modeled by
the linear function

b(t) � 0.5116t � 35.43,

where t � 0 corresponds to 2000 and 0 � t � 50. Find the
projected black population for 2005 and compare this pro-
jection to the actual value of 37.91 million.

e. Graph the projected population function for Hispanics and
estimate when the Hispanic population will be double its
actual value for 2005. Then do the same for the Asian and
black populations. Comment on the accuracy of these num-
bers.

50. Physician Demand The demand for physicians is expected
to increase in the future, as shown in the table on the
following page. Source: Association of American Medical
Colleges.

f 1x 2 5 500 . 23x.

t 0 1 2 3 4 5 6 7 8 9 10

y 1 0.66 0.43

b. Graph 

c. Suppose a house costs $165,000 today. Use the results of
part a to estimate the cost of a similar house in 10 years.

d. Find the cost of a $50 textbook in 8 years.

46. Interest On January 1, 2000, Jack deposited $1000 into Bank
X to earn interest at the rate of j per annum compounded semi-
annually. On January 1, 2005, he transferred his account to
Bank Y to earn interest at the rate of k per annum compounded
quarterly. On January 1, 2008, the balance at Bank Y was
$1990.76. If Jack could have earned interest at the rate of k per
annum compounded quarterly from January 1, 2000, through
January 1, 2008, his balance would have been $2203.76.
Which of the following represents the ratio Source:
Society of Actuaries.

a. 1.25 b. 1.30 c. 1.35 d. 1.40 e. 1.45

Life Sciences

47. Population Growth Since 1960, the growth in world population
(in millions) closely fits the exponential function defined by

where t is the number of years since 1960. Source: United
Nations.

a. World population was about 3686 million in 1970. How
closely does the function approximate this value?

A 1 t 2 5 3100e0.0166t,

k /j?

y 5 10.92 2 t.
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a. Plot the data, letting correspond to 2000. Does fitting
an exponential curve to the data seem reasonable?

b. Use the data for 2006 and 2015 to find a function of the form
that goes through these two points.

c. Use your function from part c to predict the demand for
physicians in 2020 and 2025. How well do these predictions
fit the data?

d. If you have a graphing calculator or computer program with
an exponential regression feature, use it to find an exponential
function that approximately fits the data. How does this answer
compare with the answer to part b?

Physical  Sciences

51. Carbon Dioxide The table gives the estimated global carbon
dioxide (CO2) emissions from fossil-fuel burning, cement pro-
duction, and gas flaring over the last century. The CO2 esti-
mates are expressed in millions of metric tons. Source: U.S.
Department of Energy.

f 1x 2 5 Cekt

t 5 0

a. How much will be present in 6 months? 

b. How long will it take to reduce the substance to 8 g?

53. Atmospheric Pressure The atmospheric pressure (in milli-
bars) at a given altitude (in meters) is listed in the table.
Source: Elements of Meteorology.

Altitude Pressure

1900 534

1910 819

1920 932

1930 1053

1940 1299

1950 1630

1960 2577

1970 4076

1980 5330

1990 6143

2000 6672

Year CO2 Emissions
(millions of metric tons)

Year Demand for Physicians
(in thousands)

1985 386 0.275

1989 486 1.2

1993 Pentium 3.1

1997 Pentium II 7.5

1999 Pentium III 9.5

2000 Pentium 4 42

2005 Pentium D 291

2007 Penryn 820

2009 Nehalem 1900

Year Chip Transistors
(in millions)

a. Plot the data, letting correspond to 1900. Do the
emissions appear to grow linearly or exponentially?

b. Find an exponential function in the form of 
that fits this data at 1900 and 2000, where x is the num-
ber of years since 1900 and is the CO2 emissions.

c. Approximate the average annual percentage increase in CO2

emissions during this time period.

d. Graph and estimate the first year when emissions will
be at least double what they were in 2000.

52. Radioactive Decay Suppose the quantity (in grams) of a radio-
active substance present at time t is

where t is measured in months.
Q 1 t 2 5 1000 1 520.3t 2 ,

f 1x 2

f 1x 2

f 1x 2 5 f0a
x

x 5 0

0 1013

1000 899

2000 795

3000 701

4000 617

5000 541

6000 472

7000 411

8000 357

9000 308

10,000 265

a. Find functions of the form and
that fit the data at and 

where P is the pressure and x is the altitude.

b. Plot the data in the table and graph the three functions found
in part a. Which function best fits the data?

c. Use the best-fitting function from part b to predict pressure
at 1500 m and 11,000 m. Compare your answers to the true
values of 846 millibars and 227 millibars, respectively.

d. If you have a graphing calculator or computer program with
an exponential regression feature, use it to find an exponen-
tial function that approximately fits the data. How does this
answer compare with the answer to part b?

54. Computer Chips The power of personal computers has in-
creased dramatically as a result of the ability to place an
increasing number of transistors on a single processor chip.
The following table lists the number of transistors on some
popular computer chips made by Intel. Source: Intel.

x 5 10,000,x 5 01 / 1ax 1 b 2P 5
P 5 mx 1 b,P 5 aekx,

a. Let t be the year, where corresponds to 1985, and y be
the number of transistors (in millions). Find functions of the
form and that fit the data
at 1985 and 2009.

y 5 abty 5 at2 1 b,y 5 mt 1 b,

t 5 0

2006 680.5

2015 758.6

2020 805.8

2025 859.3
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b. Use a graphing calculator to plot the data in the table and to
graph the three functions found in part a. Which function
best fits the data?

c. Use the best-fitting function from part b to predict the num-
ber of transistors on a chip in the year 2015.

d. If you have a graphing calculator or computer program with
an exponential regression feature, use it to find an exponential
function that approximately fits the data. How does this answer
compare with the answer to part b?

e. In 1965 Gordon Moore wrote a paper predicting how the
power of computer chips would grow in the future. Moore’s law
says that the number of transistors that can be put on a chip
doubles roughly every 18 months. Discuss the extent to which
the data in this exercise confirms or refutes Moore’s law.

55. Wind Energy The following table gives the total world wind
energy capacity (in megawatts) in recent years. Source: World
Wind Energy Association.

a. Let t be the number of years since 2000, and C the capacity (in
MW). Find functions of the form 
and that fit the data at 2001 and 2009.

b. Use a graphing calculator to plot the data in the table and to
graph the three functions found in part a. Which function
best fits the data?

c. If you have a graphing calculator or computer program 
with an exponential regression feature, use it to find an
exponential function that approximately fits the data in the
table. How does this answer compare with the answer to
part b?

d. Using the three functions from part b and the function from
part c, predict the total world wind capacity in 2010. Compare
these with the World Wind Energy Association’s prediction of
203,500.

C 5 abt
C 5 at2 1 b,C 5 mt 1 b,

Year Capacity (MW)

2001 24,322

2002 31,181

2003 39,295

2004 47,693

2005 58,024

2006 74,122

2007 93,930

2008 120,903

2009 159,213

YOUR TURN ANSWERS 

1. 9/2 2. $772.97

3. $907.43

2

Logarithmic Functions
With an inflation rate averaging 5% per year, how long will it take for
prices to double?

2.5
APPLY IT 

The number of years it will take for prices to double under given conditions is called
the doubling time. For $1 to double (become $2) in t years, assuming 5% annual com-
pounding, means that

becomes

or

This equation would be easier to solve if the variable were not in the exponent. Loga-
rithms are defined for just this purpose. In Example 8, we will use logarithms to answer the
question posed above.

2 5 1 1.05 2 t.

2 5 1a1 1
0.05

1
b

11t2

A 5 Pa1 1
r
m
b

mt
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(Read as “y is the logarithm of x to the base a.”) For example, the exponential
statement can be translated into the logarithmic statement Also, in the
problem discussed above, can be rewritten with this definition as 
A logarithm is an exponent: is the exponent used with the base a to get x.

Equivalent Expressions

This example shows the same statements written in both exponential and logarithmic
forms.

Exponential Form Logarithmic Form

(a)

(b)

(c)

(d)

(e)

(f) TRY YOUR TURN 1

Evaluating Logarithms

Evaluate each of the following logarithms.

(a)

SOLUTION We seek a number x such that Since we conclude that

(b)

SOLUTION We seek a number x such that Since is positive for all real num-
bers x, we conclude that is undefined. (Actually, can be defined if we
use complex numbers, but in this textbook, we restrict ourselves to  real numbers.)

(c)

SOLUTION We know that and so and 
Therefore, must be somewhere between 2 and 3. We will find a more accurate
answer in Example 4. TRY YOUR TURN 2

Logarithmic Functions For a given positive value of x, the definition of loga-
rithm leads to exactly one value of y, so defines the logarithmic function of base
a (the base a must be positive, with a 2 1).

y 5 loga x

log5 80
log5 125 5 3.log5 25 5 253 5 125,52 5 25

log5 80

log2 128 2log2 128 2
2x2x 5 28.

log2 128 2

log4 64 5 3.
43 5 64,4x 5 64.

log4 64

loge 1 5 0e0 5 1

log2 1 1 /16 2 5 24224 5 1 /16

log4 1 1 /64 2 5 23423 5 1 /64

log10 100,000 5 5105 5 100,000

log1/5 25 5 2211 /5 222 5 25

log3 9 5 232 5 9

loga x
t 5 log1.05 2.1 1.05 2 t 5 2

4 5 log2 16.24 5 16
y 5 loga x

Logarithm
For and 

.y 5 loga x  means  ay 5 x

x . 0,a 2 1,a . 0,

EXAMPLE  1

YOUR TURN 1 Write the
equation in logarith-
mic form.

522 5 1 /25

EXAMPLE  2

YOUR TURN 2
Evaluate log3 1 1 /81 2 .

Logarithmic Function
If and then the logarithmic function of base a is defined by

for x . 0.

f 1 x 2 5 loga x

a 2 1,a . 0
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The graphs of the exponential function with and the logarithmic function with
are shown in Figure 54. The graphs show that while

Thus, and Also, and In fact,
for any number m, if then Functions related in this way are called
inverse functions of each other. The graphs also show that the domain of the exponential
function (the set of real numbers) is the range of the logarithmic function. Also, the range of
the exponential function (the set of positive real numbers) is the domain of the logarithmic
function. Every logarithmic function is the inverse of some exponential function. This means
that we can graph logarithmic functions by rewriting them as exponential functions using the
definition of logarithm. The graphs in Figure 54 show a characteristic of a pair of inverse
functions: their graphs are mirror images about the line Therefore, since exponential
functions go through the point (0, 1), logarithmic functions go through the point (1, 0). Notice
that because the exponential function has the x-axis as a horizontal asymptote, the logarithmic
function has the y-axis as a vertical asymptote. A more complete discussion of inverse func-
tions is given in most standard intermediate algebra and college algebra books.

The graph of is typical of logarithms with bases When the
graph is the vertical reflection of the logarithm graph in Figure 54. Because logarithms with
bases less than 1 are rarely used, we will not explore them here.

The domain of consists of all In other words, you cannot take the
logarithm of zero or a negative number. This also means that in a function such as

the domain is given by or 

Properties of Logarithms The usefulness of logarithmic functions depends in
large part on the following properties of logarithms.

x . 2.x 2 2 . 0,g 1x 2 5 loga 
1x 2 2 2 ,

x . 0.loga x

0 , a , 1,a . 1.log2 x

y 5 x.

g 1p 2 5 m.f 1m 2 5 p,
g 14 2 5 2.f 12 2 5 4g 1 8 2 5 3.f 1 3 2 5 8g 1 8 2 5 log2 8 5 3.

f 1 3 2 5 23 5 8,g 1x 2 5 log2 x
f 1x 2 5 2xy

x

f x x
y x

g x  x

FIGURE 54

Properties of Logarithms
Let x and y be any positive real numbers and r be any real number. Let a be a positive
real number, Then

a.

b.

c.
d.
e.
f. loga a

r 5 r.

loga 1 5 0
loga a 5 1
loga x

r 5 r loga x

loga 
x
y
5 log a x 2 loga y

loga xy 5 loga x 1 loga y

a 2 1.

To prove property (a), let and Then, by the definition of loga-
rithm,

Hence,

By a property of exponents, so

Now use the definition of logarithm to write

Since and 

loga xy 5 loga x 1 loga y.

n 5 loga y,m 5 loga x

loga xy 5 m 1 n.

am1n 5 xy.

aman 5 am1n,

aman 5 xy.

am 5 x  and  an 5 y.

n 5 loga y.m 5 loga x

CAUTION
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Proofs of properties (b) and (c) are left for the exercises. Properties (d) and (e) depend on
the definition of a logarithm. Property (f) follows from properties (c) and (d).

Properties of Logarithms

If all the following variable expressions represent positive numbers, then for 
the statements in (a)–(c) are true.

(a)

(b)

(c) TRY YOUR TURN 3

Evaluating Logarithms The invention of logarithms is credited to John Napier
(1550–1617), who first called logarithms “artificial numbers.” Later he joined the Greek
words logos (ratio) and arithmos (number) to form the word used today. The development
of logarithms was motivated by a need for faster computation. Tables of logarithms and
slide rule devices were developed by Napier, Henry Briggs (1561–1631), Edmund Gunter
(1581–1626), and others.

For many years logarithms were used primarily to assist in involved calculations. Cur-
rent technology has made this use of logarithms obsolete, but logarithmic functions play an
important role in many applications of mathematics. Since our number system has base 10,
logarithms to base 10 were most convenient for numerical calculations and so base 10 log-
arithms were called common logarithms. Common logarithms are still useful in other
applications. For simplicity,

.

Most practical applications of logarithms use the number e as base. (Recall that to 7
decimal places, Logarithms to base e are called natural logarithms, and

(read “el-en x”). A graph of is given in Figure 55.

NOTE Keep in mind that ln x is a logarithmic function. Therefore, all of the properties of logarithms
given previously are valid when a is replaced with e and is replaced with ln.

Although common logarithms may seem more “natural” than logarithms to base e,
there are several good reasons for using natural logarithms instead. The most important rea-
son is discussed later, in the section on Derivatives of Logarithmic Functions.

A calculator can be used to find both common and natural logarithms. For example,
using a calculator and 4 decimal places, we get the following values.

Notice that logarithms of numbers less than 1 are negative when the base is greater than 1.
A look at the graph of or will show why.

Sometimes it is convenient to use logarithms to bases other than 10 or e. For example,
some computer science applications use base 2. In such cases, the following theorem is
useful for converting from one base to another.

y 5 ln xy 5 log2 x

ln 2.34 5 0.8502,

log 2.34 5 0.3692,  log 594 5 2.7738,  and  log 0.0028 5 22.5528.

loge

f 1x 2 5 ln x

loge x is abbreviated ln x

e 5 2.7182818.)

log10 x is abbreviated log x

loga 1 9x5 2 5 loga 9 1 loga 1x5 2 5 loga 9 1 5 . loga x

loga 
x2 2 4x
x 1 6

5 loga 
1x2 2 4x 2 2 loga 1x 1 6 2

loga x 1 loga 1x 2 1 2 5 loga x 1x 2 1 2

a 2 1,a . 0,

EXAMPLE  3

YOUR TURN 3 Write the
expression as a sum,
difference, or product of simpler
logarithms.

loga 1 x2 /y3 2

f(x)

x

f(x) = ln x

0
82 64

2

–2

FIGURE 55

Change-of-Base Theorem for Logarithms
If x is any positive number and if a and b are positive real numbers, then

.loga x 5
logb x

logb a
 

b 2 1,a 2 1,

ln 594 5 6.3869, ln 0.0028 5 25.8781.and
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To prove this result, use the definition of logarithm to write as or
(for positive x and positive a, Now take base b logarithms of both sides

of this last equation.

Solve for

If the base b is equal to e, then by the change-of-base theorem,

Using ln x for gives the special case of the theorem using natural logarithms.loge x

loga x 5
loge x

loge a
 .

loga x. loga x 5
logb x

logb a

loga x
r 5 r loga x logb x 5 1 loga x 2 1 logb a 2 ,

 logb x 5 logb a
loga x

a 2 1).x 5 aloga x
x 5 ayy 5 loga x

For any positive numbers a and x, 

.loga x 5
ln x
ln a

 

a 2 1,

The change-of-base theorem for logarithms is useful when graphing on a
graphing calculator for a base a other than e or 10. For example, to graph let

The change-of-base theorem is also needed when using a calculator to eval-
uate a logarithm with a base a other than e or 10. 

Evaluating Logarithms

Evaluate 

SOLUTION As we saw in Example 2, this number is between 2 and 3. Using the second
form of the change-of-base theorem for logarithms with and gives 

To check, use a calculator to verify that TRY YOUR TURN 4

As mentioned earlier, when using a calculator, do not round off intermediate
results. Keep all numbers in the calculator until you have the final answer. 
In Example 4, we showed the rounded intermediate values of ln 80 and ln 5, 
but we used the unrounded quantities when doing the division.

Logarithmic Equations Equations involving logarithms are often solved by using
the fact that exponential functions and logarithmic functions are inverses, so a logarithmic
equation can be rewritten (with the definition of logarithm) as an exponential equation. In other
cases, the properties of logarithms may be useful in simplifying a logarithmic equation.

Solving Logarithmic Equations

Solve each equation.

(a) logx 
8

27
5 3

5 2.723 < 80.

log5 80 5
ln 80

ln 5
<  

4.3820

1.6094
< 2.723.

a 5 5x 5 80

log5 80.

y 5 ln x / ln 2.
y 5 log2 x,

y 5 loga x

EXAMPLE  4

YOUR TURN 4
Evaluate log3 50.

EXAMPLE  5

CAUTION
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SOLUTION Using the definition of logarithm, write the expression in exponential
form. To solve for x, take the cube root on both sides.

(b)

SOLUTION In exponential form, the given statement becomes

(c)

SOLUTION By a property of logarithms,

so the original equation becomes

Now write this equation in exponential form, and solve.

Solve this equation.

Multiply both sides by x�1.

(d)

SOLUTION Similar to part (c), we have

Since the logarithm base is 10, this means that

Subtract 10 from both sides.

Factor.

This leads to two solutions: and But notice that is not a valid value
for x in the original equation, since the logarithm of a negative number is undefined.
The only solution is, therefore, TRY YOUR TURN 5

It is important to check solutions when solving equations involving logarithms
because , where is an expression in , has domain given by u . 0.xuloga u

x 5 5.

22x 5 22.x 5 5

1x 2 5 2 1x 1 2 2 5 0.

x2 2 3x 2 10 5 0

101 5 10 x 1x 2 3 2 5 10

log x 1 log 1x 2 3 2 5 log 3x 1x 2 3 2 4 5 1.

log x 1 log 1x 2 3 2 5 1

 x 5 2
 2x 5 22

 x 5 2x 2 2

 x 5 2 1x 2 1 2

 
x

x 2 1
1x 2 1 2 5 2 1x 2 1 2

 
x

x 2 1
5 21 5 2

log2 
x

x 2 1
5 1.

log2 x 2 log2 1x 2 1 2 5 log2 
x

x 2 1
,

log2 x 2 log2 1x 2 1 2 5 1

 32 5 x.

 25 5 x

 141/2 2 5 5 x

 45/2 5 x

log4 x 5
5

2

 x 5
2

3

 x3 5
8

27

YOUR TURN 5 Solve for x:
log2 x 1 log2 1 x 1 2 2 5 3.

CAUTION
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Exponential Equations In the previous section exponential equations like
were solved by writing each side of the equation as a power of 3. That method

cannot be used to solve an equation such as however, since 5 cannot easily be writ-
ten as a power of 3. Such equations can be solved approximately with a graphing calcula-
tor, but an algebraic method is also useful, particularly when the equation involves
variables such as a and b rather than just numbers such as 3 and 5. A general method for
solving these equations is shown in the following example.

Solving Exponential Equations

Solve each equation.

(a)

SOLUTION Taking natural logarithms (logarithms to any base could be used) on both
sides gives

(b)

SOLUTION Taking natural logarithms on both sides gives

Subtract from both sides.

Factor x.

Divide both sides by .

Use a calculator to evaluate the logarithms, then divide, to get

(c)

SOLUTION

Divide both sides by

Take natural logarithms on both sides.

TRY YOUR TURN 6

Just as can be written as a base e logarithm, any exponential function can
be written as an exponential function with base e. For example, there exists a real number k
such that

Raising both sides to the power x gives

2x 5 ekx,

2 5 ek.

y 5 axloga x

 x 5
ln 1.8

0.01
< 58.779

ln eu 5 u 0.01x 5 ln 1.8

 ln e0.01x 5 ln 1.8

5. e0.01x 5
9

5
5 1.8

5e0.01x 5 9

x <
1.3863

2 1 1.0986 2 2 1.3863
< 1.710.

2 ln 3 2 ln 4 x 5
ln 4

2 ln 3 2 ln 4
.

 12 ln 3 2 ln 4 2x 5 ln 4

1 ln 4 2x 12 ln 3 2x 2 1 ln 4 2x 5 ln 4

 12 ln 3 2x 5 1 ln 4 2x 1 ln 4

ln ur 5 r ln u 2x ln 3 5 1 x 1 1 2  ln 4

 ln 32x 5 ln 4x11

32x 5 4x11

 x 5
ln 5

ln 3
 < 1.465

ln ur 5 r ln u x ln 3 5 ln 5

 ln 3x 5 ln 5

3x 5 5

3x 5 5,
1 1 /3 2x 5 81

EXAMPLE  6

YOUR TURN 6 Solve for x:
2x11 5 3x.
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so that powers of 2 can be found by evaluating appropriate powers of e. To find the neces-
sary number k, solve the equation for k by first taking logarithms on both sides.

Thus, In the section on Derivatives of Exponential Functions, we will see why
this change of base is useful. A general statement can be drawn from this example.

k 5 ln 2.

ln e 5 1 ln 2 5 k

 ln 2 5 k ln e

 ln 2 5 ln ek

 2 5 ek

2 5 ek

Change-of-Base Theorem for Exponentials
For every positive real number a,

.ax 5 e 1ln a2 x

Another way to see why the change-of-base theorem for exponentials is true is to first
observe that Combining this with the fact that we have 

Change-of-Base-Theorem

(a) Write using base e rather than base 7.

SOLUTION According to the change-of-base theorem,

Using a calculator to evaluate ln 7, we could also approximate this as 

(b) Approximate the function as for some base a.

SOLUTION We do not need the change-of-base theorem here. Just use the fact that

where we have used a calculator to approximate TRY YOUR TURN 7

Doubling Time

Complete the solution of the problem posed at the beginning of this section.

SOLUTION Recall that if prices will double after t years at an inflation rate of 5%, com-
pounded annually, t is given by the equation

We solve this equation by first taking natural logarithms on both sides.

It will take about 14 years for prices to double.

The problem solved in Example 8 can be generalized for the compound interest
equation

A 5 P 1 1 1 r 2 t.

 t 5
ln 2

ln 1.05
< 14.2

ln xr 5 r ln x ln 2 5 t ln 1.05

 ln 2 5 ln 1 1.05 2 t

2 5 1 1.05 2 t.

e2.

e2x 5 1 e2 2x < 7.389x,

f 1x 2 5 axf 1x 2 5 e2x

e1.9459x.

7x 5 e1ln 72x.

7x

1 eln a 2x 5 ax.
e1ln a2x 5eab 5 1 ea 2 b,eln a 5 a.

EXAMPLE  7

YOUR TURN 7 Approximate
in the form ax.e0.025x

EXAMPLE  8

APPLY IT 
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Solving for t as in Example 8 (with and gives the doubling time in years as

If r is small, as Figure 56 shows, so that

Notice from Figure 56 that the actual value of r is larger than causing the above
formula to give a doubling time that is too small. By changing 0.693 to 0.70, the formula
becomes reasonably accurate for By increasing the numerator further to
0.72, the formula becomes reasonably accurate for This leads to two useful
rules for estimating the doubling time. The rule of 70 says that for the value
of gives a good approximation of t. The rule of 72 says that for
the value of approximates t quite well.

Figure 57 shows the three functions and
graphed on the same axes. Observe how close to each other they are. In an exer-

cise we will ask you to explore the relationship between these functions further.
y 5 72 /100r

y 5 70 /100r,y 5 ln 2 / ln 1 1 1 r 2 ,
72 /100r

0.05 # r # 0.12,70/100r
0.001 # r , 0.05,

0.05 # r , 0.12.
0.001 # r , 0.05.

ln 1 1 1 r 2 ,

t 5
ln 2

ln 1 1 1 r 2
<

ln 2
r
<  

0.693
r

.

ln 1 1 1 r 2 < r,

t 5
ln 2

ln 1 1 1 r 2
.

P 5 1)A 5 2
0.5

0.1

0.20.1 0.3 0.4
0

0.5

0.2

0.3

0.4

y

x

y = ln(1 + r)

y = r

FIGURE 56
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y

r

70
100r

y =

72
100r

y =

ln 2
ln (1 + r)y =

FIGURE 57

Rules of 70 and 72

Approximate the years to double at an interest rate of 6% using first the rule of 70, then the
rule of 72.

SOLUTION By the rule of 70, money will double at 6% interest after

years.
Using the rule of 72 gives

years doubling time. Since a more precise answer is given by

the rule of 72 gives a better approximation than the rule of 70. This agrees with the statement
that the rule of 72 works well for values of r where since falls
into this category.

r 5 0.060.05 # r # 0.12,

ln 2

ln 1 1 1 r 2
5

ln 2

ln 1 1.06 2
<

0.693

0.058
< 11.9,

72

100r
5

72

6
5 12

70

100r
5

70

100 10.06 2
5

70

6
5 11.67 aor 11 

2

3
b

EXAMPLE  9
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Index of Diversity

One measure of the diversity of the species in an ecological community is given by the
index of diversity H, where

and are the proportions of a sample belonging to each of n species found in the
sample. Source: Statistical Ecology. For example, in a community with two species, where there
are 90 of one species and 10 of the other, and with

Verify that if there are 60 of one species and 40 of the other. As the propor-
tions of n species get closer to each, the index of diversity increases to a maximum of
ln n.

1 /n
H < 0.673

H 5 2 30.9 ln 0.9 1 0.1 ln 0.1 4 < 0.325.

P2 5 10 /100 5 0.1,P1 5 90 /100 5 0.9

PnP1 , P2 , . . . ,

H 5 2 3P1 ln P1 1 P2 ln P2 1 ) 1 Pn ln Pn 4,

EXAMPLE  10

2.5 EXERCISES
Write each exponential equation in logarithmic form.

1. 2.

3. 4.

5. 6.

Write each logarithmic equation in exponential form.

7. 8.

9. 10.

11. 12.

Evaluate each logarithm without using a calculator.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. Is the “logarithm to the base 3 of 4” written as or 

26. Write a few sentences describing the relationship between 
and 

Use the properties of logarithms to write each expression as a
sum, difference, or product of simpler logarithms. For example,

.

27. 28.

29. 30.

31. 32. ln 
9 "3 5

"4 3
ln 

3 "5

"3 6

log7 
15p

7y
log3 

3p

5k

log9 14m 2log5 
1 3k 2

log2 1 !3x 2 5 1
2 log2 3 1 log2 x

ln x.
ex

log3 4?log4 3

ln 1ln e5/3

ln e3ln e

log8 Å
4 1

2
log2 Å

3 1

4

log3 
1

81
log2 

1

16

log3 27log4 64

log9 81log8 64

log 0.001 5 23log 100,000 5 5

log2 
1

8
5 23ln 

1

e
5 21

log3 81 5 4log2 32 5 5

a
5

4
b

22

5
16

25
322 5

1

9

27 5 12834 5 81

72 5 4953 5 125

Suppose and Use the properties of loga-
rithms to find the following.

33. 34.

35. 36.

Use natural logarithms to evaluate each logarithm to the near-
est thousandth.

37. 38.

39. 40.

Solve each equation in Exercises 41–64. Round decimal answers
to four decimal places.

41. 42.

43. 44.

45. 46.

47.

48.

49.

50.

51.

52.

53.

54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

Write each expression using base e rather than base 10.

65. 66. 10x2

10x11

1.5 1 1.05 2x 5 2 1 1.01 2x5 10.10 2x 5 4 10.12 2x
2x11 5 6x213x11 5 5x

e2y 5 15ek21 5 6

5x 5 122x 5 6

ln 1x 1 1 2 2 ln x 5 1ln x 1 ln 3x 5 21

ln 1 5x 1 4 2 5 2

log2 
1x2 2 1 2 2 log2 

1x 1 1 2 5 2

log3 
1x2 1 17 2 2 log3 

1x 1 5 2 5 1

log3 
1x 2 2 2 1 log3 

1x 1 6 2 5 2

log 1x 1 5 2 1 log 1x 1 2 2 5 1

log9 m 2 log9 
1m 2 4 2 5 22

log4 x 2 log4 
1x 1 3 2 5 21

log5 
1 9x 2 4 2 5 1

log4 
1 5x 1 1 2 5 2logr 5 5

1

2

logy 8 5
3

4
log8 16 5 z

log9 27 5 mlogx 36 5 22

log2.8 0.12log1.2 0.95

log12 210log5 30

logb 
1 9b2 2logb 

1 72b 2

logb 18logb 32

logb 3 5 c.logb 2 5 a
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Approximate each expression in the form without using e.

67. 68.

Find the domain of each function.

69. 70.

71. Lucky Larry was faced with solving

Larry just dropped the logs and proceeded:

Although Lucky Larry is wrong in dropping the logs, his pro-
cedure will always give the correct answer to an equation of
the form

where A and B are any two expressions in x. Prove that this last
equation leads to the equation which is what you
get when you drop the logs. Source: The AMATYC Review.

72. Find all errors in the following calculation.

73. Prove: 

74. Prove: 

APPLICATIONS
Business and Economics

75. Inflation Assuming annual compounding, find the time it
would take for the general level of prices in the economy to
double at the following annual inflation rates.

a. 3% b. 6% c. 8%

d. Check your answers using either the rule of 70 or the rule of
72, whichever applies.

76. Interest Mary Klingman invests $15,000 in an account pay-
ing 7% per year compounded annually.

a. How many years are required for the compound amount to
at least double? (Note that interest is only paid at the end of
each year.)

b. In how many years will the amount at least triple?

c. Check your answer to part a using either the rule of 70 or the
rule of 72, whichever applies.

77. Interest Leigh Jacks plans to invest $500 into a money mar-
ket account. Find the interest rate that is needed for the money
to grow to $1200 in 14 years if the interest is compounded con-
tinuously. (Compare with Exercise 43 in the previous section.)

loga x
r 5 r loga x.

loga a
x

y
b 5 loga x 2 loga y.

 5 2 1 log x 1 100 2
 5 2 1 log x 1 log 2 2

 1 log 1x 1 2 2 22 5 2 log 1x 1 2 2

A 2 B 5 0,

log A 2 log B 5 0,

 x 5 2.

 2x 1 2 5 0

 12x 1 1 2 2 1 3x 2 1 2 5 0

log 12x 1 1 2 2 log 1 3x 2 1 2 5 0.

f 1x 2 5 ln 1x2 2 9 2f 1x 2 5 log 1 5 2 x 2

e24xe3x

ax

79. Pay Increases You are offered two jobs starting July 1, 2013.
Humongous Enterprises offers you $45,000 a year to start,
with a raise of 4% every July 1. At Crabapple Inc. you start at
$30,000, with an annual increase of 6% every July 1. On July 1
of what year would the job at Crabapple Inc. pay more than
the job at Humongous Enterprises? Use the algebra of loga-
rithms to solve this problem, and support your answer by
using a graphing calculator to see where the two salary func-
tions intersect.

Life Sciences

80. Insect Species An article in Science stated that the number of
insect species of a given mass is proportional to where
m is the mass in grams. Source: Science. A graph accompany-
ing the article shows the common logarithm of the mass on the
horizontal axis and the common logarithm of the number of
species on the vertical axis. Explain why the graph is a straight
line. What is the slope of the line?

Index of Diversity For Exercises 81–83, refer to Example 10.

81. Suppose a sample of a small community shows two species
with 50 individuals each.

a. Find the index of diversity H.

b. What is the maximum value of the index of diversity for two
species?

c. Does your answer for part a equal ln 2? Explain why.

82. A virgin forest in northwestern Pennsylvania has 4 species of
large trees with the following proportions of each: hem-
lock, 0.521; beech, 0.324; birch, 0.081; maple, 0.074. Find the
index of diversity H.

83. Find the value of the index of diversity for populations with n
species and of each if

a. b. 

c. Verify that your answers for parts a and b equal ln 3 and ln 4,
respectively.

84. Allometric Growth The allometric formula is used to describe
a wide variety of growth patterns. It says that where
x and y are variables, and n and m are constants. For example,
the famous biologist J. S. Huxley used this formula to relate
the weight of the large claw of the fiddler crab to the weight of
the body without the claw. Source: Problems of Relative Growth.
Show that if x and y are given by the allometric formula, then

y 5 nxm,

n 5 4.n 5 3;

1 /n

m20.6,

r 0.001 0.02 0.05 0.08 0.12

72 /100r

70 /100r

1 ln 2 2 / ln 1 1 1 r 2

78. Rule of 72 Complete the following table, and use the results
to discuss when the rule of 70 gives a better approximation for
the doubling time, and when the rule of 72 gives a better
approximation.
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85. Drug Concentration When a pharmaceutical drug is injected
into the bloodstream, its concentration at time t can be approxi-
mated by where is the concentration at

Suppose the drug is ineffective below a concentration 
and harmful above a concentration Then it can be shown
that the drug should be given at intervals of time T, where

Source: Applications of Calculus to Medicine.

A certain drug is harmful at a concentration five times the
concentration below which it is ineffective. At noon an injection
of the drug results in a concentration of 2 mg per liter of blood.
Three hours later the concentration is down to 1 mg per liter.
How often should the drug be given?

The graph for Exercise 86 is plotted on a logarithmic scale where
differences between successive measurements are not always the
same. Data that do not plot in a linear pattern on the usual
Cartesian axes often form a linear pattern when plotted on a log-
arithmic scale. Notice that on the horizontal scale, the distance
from 5 to 10 is not the same as the distance from 10 to 15, and so
on. This is characteristic of a graph drawn on logarithmic scales.

86. Metabolism Rate The accompanying graph shows the basal
metabolism rate (in cm3 of oxygen per gram per hour) for mar-
supial carnivores, which include the Tasmanian devil. This rate
is inversely proportional to body mass raised to the power 0.25.
Source: The Quarterly Review of Biology.

T 5
1

k
 ln 

C2

C1

 .

C2 .
C1t 5 0.

C0C 1 t 2 5 C0 e2kt,

a. Estimate the metabolism rate for a marsupial carnivore with
body mass of 10 g. Do the same for one with body mass of
1000 g.

b. Verify that if the relationship between x and y is of the form
then there will be a linear relationship between ln x

and ln y. (Hint: Apply ln to both sides of 

c. If a function of the form contains the points
and then values for a and b can be found

by dividing by solving the resulting
equation for b, and putting the result back into either
equation to solve for a. Use this procedure and the results
from part a to find an equation of the form that
gives the basal metabolism rate as a function of body
mass.

d. Use the result of part c to predict the basal metabolism rate
of a marsupial carnivore whose body mass is 100 g.

87. Minority Population The U.S. Census Bureau has reported
that the United States is becoming more diverse. In Exercise
49 of the previous section, the projected Hispanic population
(in millions) was modeled by the exponential function 

h (t) � 37.79 (1.021)t

where t � 0 corresponds to 2000 and 0 � t � 50. Source: U.S.
Census Bureau.

a. Estimate in what year the Hispanic population will double
the 2005 population of 42.69 million. Use the algebra of
logarithms to solve this problem.

b. The projected U.S. Asian population (in millions) was mod-
eled by the exponential function

h (t) � 11.14 (1.023)t,

where t � 0 corresponds to 2000 and 0 � t � 50.  Estimate
in what year the Asian population will double the 2005 pop-
ulation of 12.69 million.

Social  Sciences

88. Evolution of Languages The number of years since two
independently evolving languages split off from a common
ancestral language is approximated by

where r is the proportion of the words from the ancestral
language that are common to both languages now. Find the
following.

a. N (0.9) b. N (0.5) c. N (0.3)

d. How many years have elapsed since the split if 70% of the
words of the ancestral language are common to both lan-
guages today?

e. If two languages split off from a common ancestral language
about 1000 years ago, find r.

N 1 r 2 5 25000 ln r,

N 1 r 2

y 5 axb

y2 5 ax2 

b
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Physical  Sciences

89. Communications Channel According to the Shannon-Hartley
theorem, the capacity of a communications channel in bits per
second is given by

where B is the frequency bandwidth of the channel in hertz and
is its signal-to-noise ratio. Source: Scientific American. It

is physically impossible to exceed this limit. Solve the equa-
tion for the signal-to-noise ratio 

For Exercises 90–93, recall that log x represents the common
(base 10) logarithm of x.

90. Intensity of Sound The loudness of sounds is measured in a unit
called a decibel. To do this, a very faint sound, called the thresh-
old sound, is assigned an intensity If a particular sound has
intensity I, then the decibel rating of this louder sound is

Find the decibel ratings of the following sounds having inten-
sities as given. Round answers to the nearest whole number.

a. Whisper, 

b. Busy street, 

c. Heavy truck, 20 m away, 

d. Rock music concert, 

e. Jetliner at takeoff, 

f. In a noise ordinance instituted in Stamford, Connecticut, the
threshold sound was defined as 0.0002 microbars. Source:
The New York Times. Use this definition to express the
sound levels in parts c and d in microbars.

91. Intensity of Sound A story on the National Public Radio pro-
gram All Things Considered, discussed a proposal to lower the
noise limit in Austin, Texas, from 85 decibels to 75 decibels. A
manager for a restaurant was quoted as saying, “If you cut from
85 to 75, . . . you’re basically cutting the sound down in half.”
Is this correct? If not, to what fraction of its original level is the
sound being cut? Source: National Public Radio.

92. Earthquake Intensity The magnitude of an earthquake, mea-
sured on the Richter scale, is given by

where I is the amplitude registered on a seismograph located
100 km from the epicenter of the earthquake, and is the
amplitude of a certain small size earthquake. Find the Richter
scale ratings of earthquakes with the following amplitudes.

a. b. 

c. On June 15, 1999, the city of Puebla in central Mexico was
shaken by an earthquake that measured 6.7 on the Richter
scale. Express this reading in terms of Source: Exploring
Colonial Mexico.

I0 .

100,000,000I01,000,000I0

I0

R 1 I 2 5 log 
I

I0

,

I0

109,000,000,000,000I0

895,000,000,000I0

1,200,000,000I0

9,500,000I0

115I0

10 log 
I

I0

 .

I0.

s /n.

s /n

C 5 B log2 a
s

n
1 1b,

d. On September 19, 1985, Mexico’s largest recent earthquake,
measuring 8.1 on the Richter scale, killed about 10,000 peo-
ple. Express the magnitude of an 8.1 reading in terms of 
Source: History.com.

e. Compare your answers to parts c and d. How much greater
was the force of the 1985 earthquake than the 1999 earth-
quake?

f. The relationship between the energy E of an earthquake and
the magnitude on the Richter scale is given by

where is the energy of a certain small earthquake. Com-
pare the energies of the 1999 and 1985 earthquakes.

g. According to a newspaper article, “Scientists say such an
earthquake of magnitude 7.5 could release 15 times as much
energy as the magnitude 6.7 trembler that struck the North-
ridge section of Los Angeles” in 1994. Source: The New
York Times. Using the formula from part f, verify this quote
by computing the magnitude of an earthquake with 15 times
the energy of a magnitude 6.7 earthquake.

93. Acidity of a Solution A common measure for the acidity of
a solution is its pH. It is defined by where

measures the concentration of hydrogen ions in the
solution. The pH of pure water is 7. Solutions that are more
acidic than pure water have a lower pH, while solutions
that are less acidic (referred to as basic solutions) have a
higher pH.

a. Acid rain sometimes has a pH as low as 4. How much
greater is the concentration of hydrogen ions in such rain
than in pure water?

b. A typical mixture of laundry soap and water for washing
clothes has a pH of about 11, while black coffee has a pH of
about 5. How much greater is the concentration of hydrogen
ions in black coffee than in the laundry mixture?

94. Music Theory A music theorist associates the fundamental fre-
quency of a pitch f with a real number defined by

Source: Science.

a. Standard concert pitch for an A is 440 cycles per second.
Find the associated value of p.

b. An A one octave higher than standard concert pitch is 880
cycles per second. Find the associated value of p.

p 5 69 1 12 log2 1f /440 2 .

H1

pH 5 2log 3H1 4,

E0

R 1E 2 5
2

3
 log a

E

E0

 b,

I0 .

YOUR TURN ANSWERS 

1. 2.

3. 4. 3.561

5. 2 6.

7. 1.0253x

1 ln 2 2 / ln 1 3 /2 2 < 1.7095.

2 loga x 23 loga y

24log5 1 1 /25 2 5 22



CHAPTER 2 Nonlinear Functions102

This question, which will be answered in Example 7, is one of many situations that occur in
biology, economics, and the social sciences, in which a quantity changes at a rate propor-
tional to the amount of the quantity present.

In cases such as continuous compounding described above, the amount present at time
t is a function of t, called the exponential growth and decay function. (The derivation of
this equation is presented in a later section on Differential Equations.)

Applications: Growth and Decay;
Mathematics of Finance
What interest rate will cause $5000 to grow to $7250 in 6 years if
money is compounded continuously?

2.6

APPLY IT 

Exponential Growth and Decay Function
Let be the amount or number of some quantity present at time The quantity is
said to grow or decay exponentially if for some constant k, the amount present at time t
is given by

y 5 y0e
kt.

t 5 0.y0

If then k is called the growth constant; if then k is called the decay con-
stant. A common example is the growth of bacteria in a culture. The more bacteria present,
the faster the population increases.

Yeast Production

Yeast in a sugar solution is growing at a rate such that 1 g becomes 1.5 g after 20 hours.
Find the growth function, assuming exponential growth.

SOLUTION The values of and k in the exponential growth function must be
found. Since is the amount present at time To find k, substitute 

and into the equation.

Now take natural logarithms on both sides and use the power rule for logarithms and the
fact that 

Take of both sides.

Divide both sides by .

k � 0.02 (to the nearest hundredth)

The exponential growth function is y � e0.02t, where y is the number of grams of yeast pre-
sent after t hours. TRY YOUR TURN 1

The decline of a population or decay of a substance may also be described by the expo-
nential growth function. In this case the decay constant k is negative, since an increase in
time leads to a decrease in the quantity present. Radioactive substances provide a good
example of exponential decay. By definition, the half-life of a radioactive substance is the
time it takes for exactly half of the initial quantity to decay.

20 
ln 1.5

20
5 k

ln ex 5 x ln 1.5 5 20k

ln ln 1.5 5 ln e20k

 1.5 5 e20k

ln e 5 1.

 1.5 5 1ek1202

 y 5 y0 ekt

y0 5 1t 5 20,
y 5 1.5,y0 5 1.t 5 0,y0

y 5 y0 ekty0

k , 0,k . 0,

EXAMPLE  1

YOUR TURN 1 Find the
growth function if 5 g grows expo-
nentially to 18 g after 16 hours.
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Carbon Dating

Carbon-14 is a radioactive form of carbon that is found in all living plants and animals.
After a plant or animal dies, the carbon-14 disintegrates. Scientists determine the age of the
remains by comparing its carbon-14 with the amount found in living plants and animals.
The amount of carbon-14 present after t years is given by the exponential equation

with 

(a) Find the half-life of carbon-14.

SOLUTION Let and 

Divide by .

Take of both sides.

Multiply by .

The half-life is 5600 years.

(b) Charcoal from an ancient fire pit on Java had the amount of carbon-14 found in a
living sample of wood of the same size. Estimate the age of the charcoal.

SOLUTION Let and 

The charcoal is about 11,200 years old. TRY YOUR TURN 2

 t 5 11,200

 2 

5600

ln 2
  ln 

1

4
5 t

 ln 
1

4
5 2

ln 2

5600
t

 ln 
1

4
5 ln e231ln 22/56004 t

 
1

4
5 e231ln 22/56004t

 
1

4
 A0 5 A0 e231ln 22/56004t

k 5 2 3 1 ln 2 2 /5600 4.A 1 t 2 5 1 1 /4 2A0

1 /4

 5600 5 t

ln 1 5 0 2  
5600

ln 2
12ln 2 2 5 t

ln xy 5 ln x 2 ln y 2 

5600

ln 2
1 ln 1 2 ln 2 2 5 t

2  

5600
ln 2

  2  
5600

ln 2
  ln 

1

2
5 t

ln ex 5 x ln 
1

2
5 2 

ln 2
5600

 t

ln ln 
1

2
5 ln e231ln 22/56004 t

A0  
1

2
5 e231ln 22/56004 t

 
1

2
  A0 5 A0 e231ln 22/56004t

k 5 2 3 1 ln 2 2 /5600 4.A 1 t 2 5 1 1 /2 2A0

k 5 2 3 1 ln 2 2 /5600 4.

A 1 t 2 5 A0 ekt,

EXAMPLE  2

YOUR TURN 2 Estimate the
age of a sample with 1/10 the
amount of carbon-14 as a live
sample.
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By following the steps in Example 2, we get the general equation giving the half-life T
in terms of the decay constant k as

For example, the decay constant for potassium-40, where t is in billions of years, is approx-
imately �0.5545 so its half-life is

We can rewrite the growth and decay function as

where This is sometimes a helpful way to look at an exponential growth or decay
function.

Radioactive Decay

Rewrite the function for radioactive decay of carbon-14 in the form

SOLUTION From the previous example, we have

This last expression shows clearly that every time t increases by 5600 years, the amount of
carbon-14 decreases by a factor of

Effective Rate We could use a calculator to see that $1 at 8% interest (per year)
compounded semiannually is or $1.0816. The actual increase of
$0.0816 is 8.16% rather than the 8% that would be earned with interest compounded annu-
ally. To distinguish between these two amounts, 8% (the annual interest rate) is called the
nominal or stated interest rate, and 8.16% is called the effective interest rate. We will con-
tinue to use r to designate the stated rate and we will use for the effective rate.rE

1 1 1.04 2 2 5 1.0816

1 /2.

 5 A0 22t/5600 5 A0 1221 2 t/5600 5 A0 a
1

2
b

t/5600

.

 5 A0 
1 eln 2 22t/5600

 A 1 t 2 5 A0 ekt 5 A0 e231ln 22/56004 t

A 1 t 2 5 A0 af1t2.

a 5 ek.

y 5 y0 ekt 5 y0 
1 ek 2 t 5 y0 at,

 < 1.25 billion years.

 T 5 2
ln 2

120.5545 2

T 5 2 

ln 2

k
 .

EXAMPLE  3

Effective Rate for Compound Interest
If r is the annual stated rate of interest and m is the number of compounding periods per
year, the effective rate of interest is

.rE 5 a1 1
r
m
b

m

2 1

Effective rate is sometimes called annual yield.
With continuous compounding, $1 at 8% for 1 year becomes 

The increase is 8.33% rather than 8%, so a stated interest rate of 8% produces an effective
rate of 8.33%.

e0.08 < 1.0833.1 1 2e110.082 5

Effective Rate for Continuous Compounding
If interest is compounded continuously at an annual stated rate of r, the effective rate of
interest is

.rE 5 er 2 1
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Effective Rate

Find the effective rate corresponding to each stated rate.

(a) 6% compounded quarterly

SOLUTION Using the formula, we get

The effective rate is 6.14%.

(b) 6% compounded continuously

SOLUTION The formula for continuous compounding gives

so the effective rate is 6.18%. TRY YOUR TURN 3

The formula for interest compounded m times a year, has five
variables: A, P, r, m, and t. If the values of any four are known, then the value of the fifth
can be found.

Interest

Meghan Moreau has received a bonus of $25,000. She invests it in an account earning 7.2%
compounded quarterly. Find how long it will take for her $25,000 investment to grow to
$40,000.

SOLUTION Here P � $25,000, r � 0.072, and m � 4. We also know the amount she
wishes to end up with, A � $40,000.  Substitute these values into the compound interest
formula and solve for time, t.

Divide both sides by 25,000.

Take of both sides.

Divide both sides by 4 1.018.

Note that the interest is calculated quarterly and is added only at the end of each quarter.
Therefore, we need to round up to the nearest quarter. She will have $40,000 in 6.75
years. TRY YOUR TURN 4

When calculating the time it takes for an investment to grow, take into account
that interest is added only at the end of each compounding period. In Example 5,
interest is added quarterly. At the end of the second quarter of the sixth year 
(t � 6.5), she will have only $39,754.13, but at the end of the third quarter 
of that year (t � 6.75), she will have $40,469.70.

If A, the amount of money we wish to end up with, is given as well as r, m, and t, then P can
be found using the formula for compounded interest. Here P is the amount that should be
deposited today to produce A dollars in t years. The amount P is called the present value of
A dollars.

ln t 5
ln 1.6

4 ln 1.018
< 6.586

 ln 1.6 5 4t . ln 1.018

ln ln 1.6 5 ln 1 1.018 24t

 1.6 5 1.0184t

 40,000 5 25,000 1 1.018 24t

40,000 5 25,000 a1 1
0.072

4
b

4t

A 5 P 1 1 1 r /m 2 tm,

e0.06 2 1 < 0.0618,

a1 1
0.06

4
b

4

2 1 5 1 1.015 24 2 1 < 0.0614.

YOUR TURN 3 Find the effec-
tive rate corresponding to each
stated rate. (a) 4.25% compounded
monthly (b) 3.75% compounded
continuously.

EXAMPLE  4

EXAMPLE  5

YOUR TURN 4 Find the time
needed for $30,000 to grow to
$50,000 when invested in an
account that pays 3.15% com-
pounded quarterly.

CAUTION
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Present Value

Tom Shaffer has a balloon payment of $100,000 due in 3 years. What is the present value of
that amount if the money earns interest at 4% annually?

SOLUTION Here P in the compound interest formula is unknown, with
and Substitute the known values into the formula to get

Solve for P, using a calculator to find

The present value of $100,000 in 3 years at 4% per year is $88,889.64.

In general, to find the present value for an interest rate r compounded m times per year
for t years, solve the equation

for the variable P. To find the present value for an interest rate r compounded continuously
for t years, solve the equation

for the variable P.

Continuous Compound Interest

Find the interest rate that will cause $5000 to grow to $7250 in 6 years if the money is com-
pounded continuously.

SOLUTION Use the formula for continuous compounding, with
and Solve first for then for r.

Divide by .

Take of both sides.

The required interest rate is 6.19%. TRY YOUR TURN 5

Limited Growth Functions The exponential growth functions discussed so far
all continued to grow without bound. More realistically, many populations grow exponen-
tially for a while, but then the growth is slowed by some external constraint that eventually
limits the growth. For example, an animal population may grow to the point where its habi-
tat can no longer support the population and the growth rate begins to dwindle until a stable
population size is reached. Models that reflect this pattern are called limited growth func-
tions. The next example discusses a function of this type that occurs in industry.

Employee Turnover

Assembly-line operations tend to have a high turnover of employees, forcing companies to
spend much time and effort in training new workers. It has been found that a worker new to
a task on the line will produce items according to the function defined by

P 1x 2 5 25 2 25e20.3x,

 r < 0.0619

 r 5
ln 1.45

6

ln ex 5 x ln 1.45 5 6r

ln ln 1.45 5 ln e6r

5000 1.45 5 e6r

 7250 5 5000e6r

 A 5 Pert

ert,t 5 6.P 5 5000,
A 5 7250,A 5 Pert,

A 5 Pert

A 5 Pa1 1
r
m
b

tm

P 5
100,000
1 1.04 2 3

< 88,889.64

1 1.04 2 3.100,000 5 P 1 1.04 2 3.
m 5 1.t 5 3,r 5 0.04,

A 5 100,000,

EXAMPLE  6

YOUR TURN 5 Find the inter-
est rate that will cause $3200 to
grow to $4500 in 7 years if the
money is compounded continuously.

EXAMPLE  7

EXAMPLE  8

APPLY IT 
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where items are produced by the worker on day x.

(a) What happens to the number of items a worker can produce as x gets larger and larger?

SOLUTION As x gets larger, becomes closer to 0, so approaches 25. This
represents the limit on the number of items a worker can produce in a day. Note that this
limit represents a horizontal asymptote on the graph of P, shown in Figure 58.

(b) How many days will it take for a new worker to produce at least 20 items in a day?

SOLUTION Let and solve for x.

Now take natural logarithms of both sides and use properties of logarithms.

This means that 5 days are not quite enough; on the fifth day, a new worker produces
items. It takes 6 days, and on the sixth day, a new

worker produces items.

Graphs such as the one in Figure 58 are called learning curves. According to such a
graph, a new worker tends to learn quickly at first; then learning tapers off and approaches
some upper limit. This is characteristic of the learning of certain types of skills involving
the repetitive performance of the same task.

P 1 6 2 5 25 2 25e20.3152 < 20.9
P 1 5 2 5 25 2 25e20.3152 < 19.4

 x 5
ln 0.2

20.3
< 5.4

ln eu 5 u ln 0.2 5 20.3x

 ln 0.2 5 ln e20.3x

 0.2 5 e20.3x

 25 5 225e20.3x

 20 5 25 2 25e20.3x

 P 1x 2 5 25 2 25e20.3x

P 1x 2 5 20

P 1x 2e20.3x

P 1x 2P x

x

P x e
x

FIGURE 58

2.6 EXERCISES
1. What is the difference between stated interest rate and effec-

tive interest rate?

2. In the exponential growth or decay function what
does represent? What does k represent?

3. In the exponential growth or decay function, explain the cir-
cumstances that cause k to be positive or negative.

4. What is meant by the half-life of a quantity?

5. Show that if a radioactive substance has a half-life of T, then
the corresponding constant k in the exponential decay function
is given by 

6. Show that if a radioactive substance has a half-life of T, then
the corresponding exponential decay function can be written as
y 5 y0 

1 1 /2 2 1t/T2.

k 5 2 1 ln 2 2 /T.

y0

y 5 y0 ekt,

APPLICATIONS
Business and Economics

Effective Rate Find the effective rate corresponding to each
nominal rate of interest.

7. 4% compounded quarterly

8. 6% compounded monthly

9. 8% compounded continuously

10. 5% compounded continuously

Present Value Find the present value of each amount.

11. $10,000 if interest is 6% compounded quarterly for 8 years

12. $45,678.93 if interest is 7.2% compounded monthly for 
11 months
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13. $7300 if interest is 5% compounded continuously for 3 years 

14. $25,000 if interest is 4.6% compounded continuously for 8 years

15. Effective Rate Tami Dreyfus bought a television set with
money borrowed from the bank at 9% interest compounded
semiannually. What effective interest rate did she pay?

16. Effective Rate A firm deposits some funds in a special account
at 6.2% compounded quarterly. What effective rate will they
earn?

17. Effective Rate Robin Kim deposits $7500 of lottery winnings
in an account paying 6% interest compounded monthly. What
effective rate does the account earn?

18. Present Value Frank Steed must make a balloon payment of
$20,000 in 4 years. Find the present value of the payment if it
includes annual interest of 6.5% compounded monthly. 

19. Present Value A company must pay a $307,000 settlement in
3 years.

a. What amount must be deposited now at 6% compounded
semiannually to have enough money for the settlement? 

b. How much interest will be earned? 

c. Suppose the company can deposit only $200,000 now. How
much more will be needed in 3 years? 

d. Suppose the company can deposit $200,000 now in an account
that pays interest continuously. What interest rate would they
need  to accumulate the entire $307,000 in 3 years?

20. Present Value A couple wants to have $40,000 in 5 years for a
down payment on a new house.

a. How much should they deposit today, at 6.4% compounded
quarterly, to have the required amount in 5 years?

b. How much interest will be earned? 

c. If they can deposit only $20,000 now, how much more will
they need to complete the $40,000 after 5 years? 

d. Suppose they can deposit $20,000 now in an account that
pays interest continuously. What interest rate would they
need  to accumulate the entire $40,000 in 5 years? 

21. Interest Christine O’Brien, who is self-employed, wants to
invest $60,000 in a pension plan. One investment offers 8%
compounded quarterly. Another offers 7.75% compounded con-
tinuously.

a. Which investment will earn the most interest in 5 years? 

b. How much more will the better plan earn?

c. What is the effective rate in each case? 

d. If Ms. O’Brien chooses the plan with continuous compound-
ing, how long will it take for her $60,000 to grow to
$80,000? 

e. How long will it take for her $60,000 to grow to at least
$80,000 if she chooses the plan with quarterly compound-
ing? (Be careful; interest is added to the account only every
quarter. See Example 5.) 

22. Interest Greg Tobin wishes to invest a $5000 bonus check
into a savings account that pays 6.3% interest. Find how many
years it will take for the $5000 to grow to at least $11,000 if
interest is compounded

a. quarterly. (Be careful; interest is added to the account only
every quarter. See Example 5.) 

b. continuously. 

23. Sales Sales of a new model of compact disc player are approx-
imated by the function where is
in appropriate units and x represents the number of years the
disc player has been on the market.

a. Find the sales during year 0.

b. In how many years will sales reach 500 units?

c. Will sales ever reach 1000 units?

d. Is there a limit on sales for this product? If so, what is it?

24. Sales Sales of a new model of digital camera are approximated by

where x represents the number of years that the digital camera
has been on the market, and represents sales in thousands
of dollars.

a. Find the sales in year 0.

b. When will sales reach $4,500,000?

c. Find the limit on sales.

Life Sciences

25. Population Growth The population of the world in the year
1650 was about 500 million, and in the year 2010 was 6756
million. Source: U.S. Census Bureau.

a. Assuming that the population of the world grows exponen-
tially, find the equation for the population in millions
in the year t.

b. Use your answer from part a to find the population of the
world in the year 1.

c. Is your answer to part b reasonable? What does this tell you
about how the population of the world grows?

26. Giardia When a person swallows giardia cysts, stomach acids
and pancreatic enzymes cause the cysts to release trophozoites,
which divide every 12 hours. Source: The New York Times.

a. Suppose the number of trophozoites at time is 
Write a function in the form giving the number
after t hours.

b. Write the function from part a in the form 

c. The article cited above said that a single trophozoite can
multiply to a million in just 10 days and a billion in 15 days.
Verify this fact.

27. Growth of Bacteria A culture contains 25,000 bacteria, with
the population increasing exponentially. The culture contains
40,000 bacteria after 10 hours.

a. Write a function in the form giving the number of
bacteria after t hours.

b. Write the function from part a in the form 

c. How long will it be until there are 60,000 bacteria?

28. Decrease in Bacteria When an antibiotic is introduced into a
culture of 50,000 bacteria, the number of bacteria decreases
exponentially. After 9 hours, there are only 20,000 bacteria.

y 5 y0a
t.

y 5 y0e
kt

y 5 y02
f1t2.

y 5 y0e
kt

y0.t 5 0

P 1 t 2

S 1x 2

S 1x 2 5 5000 2 4000e2x,

S 1x 2S 1x 2 5 1000 2 800e2x,



2.6 Applications: Growth and Decay; Mathematics of Finance 109

a. Write an exponential equation to express the growth func-
tion y in terms of time t in hours.

b. In how many hours will half the number of bacteria remain?

29. Growth of Bacteria The growth of bacteria in food products
makes it necessary to time-date some products (such as milk)
so that they will be sold and consumed before the bacteria
count is too high. Suppose for a certain product that the num-
ber of bacteria present is given by

under certain storage conditions, where t is time in days after
packing of the product and the value of is in millions.

a. If the product cannot be safely eaten after the bacteria count
reaches 3000 million, how long will this take?

b. If corresponds to January 1, what date should be placed
on the product?

30. Cancer Research An article on cancer treatment contains the
following statement: A 37% 5-year survival rate for women
with ovarian cancer yields an estimated annual mortality rate
of 0.1989. The authors of this article assume that the number
of survivors is described by the exponential decay function
given at the beginning of this section, where y is the number of
survivors and k is the mortality rate. Verify that the given sur-
vival rate leads to the given mortality rate. Source: American
Journal of Obstetrics and Gynecology.

31. Chromosomal Abnormality The graph below shows how the
risk of chromosomal abnormality in a child rises with the age
of the mother. Source: downsyndrome.about.com.

t 5 0

f 1 t 2

f 1 t 2 5 500e0.1t,

Repeat parts b and c using etc., until the interval
yields a larger value of k than the interval 

and then estimate what n should be.

Physical  Sciences

32. Carbon Dating Refer to Example 2. A sample from a refuse
deposit near the Strait of Magellan had 60% of the carbon-14
found in a contemporary living sample. How old was the
sample?

Half-Life Find the half-life of each radioactive substance. See
Example 2.

33. Plutonium-241; 

34. Radium-226; 

35. Half-Life The half-life of plutonium-241 is approximately
13 years.

a. How much of a sample weighing 4 g will remain after
100 years?

b. How much time is necessary for a sample weighing 4 g to
decay to 0.1 g?

36. Half-Life The half-life of radium-226 is approximately 1620 years.

a. How much of a sample weighing 4 g will remain after
100 years?

b. How much time is necessary for a sample weighing 4 g to
decay to 0.1 g?

37. Radioactive Decay 500 g of iodine-131 is decaying exponen-
tially. After 3 days 386 g of iodine-131 is left.

a. Write a function in the form giving the number of
grams of iodine-131 after t days.

b. Write the function from part a in the form 

c. Use your answer from part a to find the half-life of iodine-131.

38. Radioactive Decay 25 g of polonium-210 is decaying expo-
nentially. After 50 days 19.5 g of polonium-210 is left.

a. Write a function in the form giving the number of
grams of polonium-210 after t days.

b. Write the function from part a in the form 

c. Use your answer from part a to find the half-life of polo-
nium-210.

39. Nuclear Energy Nuclear energy derived from radioactive iso-
topes can be used to supply power to space vehicles. The out-
put of the radioactive power supply for a certain satellite is
given by the function where y is in watts and t
is the time in days.

a. How much power will be available at the end of 180 days?

b. How long will it take for the amount of power to be half of
its original strength?

c. Will the power ever be completely gone? Explain.

40. Botany A group of Tasmanian botanists have claimed that a
King’s holly shrub, the only one of its species in the world, is also
the oldest living plant. Using carbon-14 dating of charcoal found
along with fossilized leaf fragments, they arrived at an age of
43,000 years for the plant, whose exact location in southwest
Tasmania is being kept a secret. What percent of the original
carbon-14 in the charcoal was present? Source: Science.

y 5 40e20.004t,

y 5 y0a
t/50.

y 5 y0e
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y 5 y0 1 386 /500 2f1t2.

y 5 y0e
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A 1 t 2 5 A0 e20.00043t
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a. Read from the graph the risk of chromosomal abnormality
(per 1000) at ages 20, 35, 42, and 49.

b. Assuming the graph to be of the form find k using
and 

c. Still assuming the graph to be of the form find k
using and 

d. Based on your results from parts a–c, is it reasonable to
assume the graph is of the form Explain.

e. In situations such as parts a–c, where an exponential func-
tion does not fit because different data points give different
values for the growth constant k, it is often appropriate to
describe the data using an equation of the form 
Parts b and c show that results in a smaller constant
using the interval than using the interval 342, 49 4.320, 35 4

n 5 1
y 5 Cektn

.

y 5 Cekt?

t 5 49.t 5 42
y 5 Cekt,

t 5 35.t 5 20
y 5 Cekt,
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41. Decay of Radioactivity A large cloud of radioactive debris
from a nuclear explosion has floated over the Pacific North-
west, contaminating much of the hay supply. Consequently,
farmers in the area are concerned that the cows who eat this hay
will give contaminated milk. (The tolerance level for radioac-
tive iodine in milk is 0.) The percent of the initial amount of
radioactive iodine still present in the hay after t days is approxi-
mated by which is given by the mathematical model

a. Find the percent remaining after 4 days.

b. Find the percent remaining after 10 days.

c. Some scientists feel that the hay is safe after the percent of
radioactive iodine has declined to 10% of the original
amount. Solve the equation to find the num-
ber of days before the hay may be used.

d. Other scientists believe that the hay is not safe until the level
of radioactive iodine has declined to only 1% of the original
level. Find the number of days that this would take.

42. Chemical Dissolution The amount of chemical that will dis-
solve in a solution increases exponentially as the temperature
is increased. At , 10 g of the chemical dissolves, and at

, 11 g dissolves.10°C
0°C

10 5 100e20.1t

P 1 t 2 5 100e20.1t.

P 1 t 2 ,

a. Write an equation to express the amount of chemical dis-
solved, y, in terms of temperature, t, in degrees Celsius.

b. At what temperature will 15 g dissolve?

Newton’s Law of Cooling Newton’s law of cooling says that the
rate at which a body cools is proportional to the difference in
temperature between the body and an environment into which
it is introduced. This leads to an equation where the tempera-
ture of the body at time t after being introduced into an
environment having constant temperature is

where C and k are constants. Use this result in Exercises 43–45.

43. Find the temperature of an object when if 
and 

44. If and t is time in minutes, how long will it
take a hot cup of coffee to cool to a temperature of in a
room at 

45. If and and t is time in hours, how long will
it take a frozen pizza to thaw to in a room at 18°C?10°C

k 5 0.6C 5 214.6

20°C?
25°C

k 5 0.1,C 5 100,

k 5 0.6.C 5 5,
T0 5 18,t 5 9

f 1 t 2 5 T0 1 Ce2kt,

T0

f 1 t 2

YOUR TURN ANSWERS 

1. 2. 18,600 years old

3. (a) 4.33% (b) 3.82% 4. 16.5 years

5. 4.87%

y 5 5e0.08t

In this chapter we defined functions and studied some of their
properties. In particular, we studied several families of functions
including quadratic, polynomial, rational, exponential, and loga-
rithmic functions. By knowing the properties of a family of func-
tions, we can immediately apply that knowledge to any member of
the family we encounter, giving us valuable information about the

domain and the behavior of the function. Furthermore, this knowl-
edge can help us to choose an appropriate function for an applica-
tion. Exponential functions have so many important applications
that we highlighted some of them in the last section of the chapter.
In the next chapters, we see how calculus gives us even more infor-
mation about the behavior of functions.

SUMMARY

Function A function is a rule that assigns to each element from one set exactly one element from another set.

Domain and Range The set of all possible values of the independent variable in a function is called the domain of the
function, and the resulting set of possible values of the dependent variable is called the range.

Vertical Line Test A graph represents a function if and only if every vertical line intersects the graph in no more than
one point.

Quadratic Function A quadratic function is defined by 

where a, b, and c are real numbers, with a

Graph of a Quadratic Function The graph of the quadratic function is a parabola with its vertex at

.

The graph opens upward if a � 0 and downward if a � 0.

a
2b

2a
, f a

2b

2a
bb

f 1x 2 5 ax2 1 bx 1 c

2 0.

f 1x 2 5 ax2 1 bx 1 c,

2 CHAPTER REVIEW
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Polynomial Function A polynomial function of degree n, where n is a nonnegative integer, is defined by

,

where and are real numbers, called coefficients, with The number is
called the leading coefficient.

Properties of Polynomial 1. A polynomial function of degree n can have at most n � 1 turning points. Conversely,
Functions if the graph of a polynomial function has n turning points, it must have degree at least n � 1.

2. In the graph of a polynomial function of even degree, both ends go up or both ends go down. For a
polynomial function of odd degree, one end goes up and one end goes down.

3. If the graph goes up as x becomes large, the leading coefficient must be positive. If the graph goes
down as x becomes large, the leading coefficient is negative.

Rational Function A rational function is defined by

where p(x) and q(x) are polynomial functions and .

Asymptotes If a function gets larger and larger in magnitude without bound as x approaches the number k, then the
line x � k is a vertical asymptote.

If the values of y approach a number k as gets larger and larger, the line y � k is a 
horizontal asymptote.

Exponential Function An exponential function with base a is defined as
, where a � 0 and  .

Simple Interest If P dollars is invested at a yearly simple interest rate r per year for time t (in years), the interest I is
given by

I � Prt.

Math of Finance Formulas If P is the principal or present value, r is the annual interest rate, t is time in years, and m is the num-
ber of compounding periods per year:

a 2 1f 1x 2 5 ax

0 x 0

q 1x 2 2 0

f 1x 2 5
p 1x 2
q 1x 2

,

anan 2 0.a0an, an21, . . . , a1

f 1x 2 5 anx
n 1 an21x

n21 1 ) 1 a1x 1 a0

Compound amount

Effective rate rE 5 er 2 1rE 5 a1 1
r

m
b

m

2 1

A 5 PertA 5 Pa1 1
r

m
b

tm

Compounded m Times Compounded
per Year Continuously

Definition of e As m becomes larger and larger, becomes closer and closer to the number e, whose

approximate value is 2.718281828.

Logarithm For a � 0, and x � 0,
means

Logarithmic Function If a � 0 and then the logarithmic function of base a is defined by

,

for x � 0.

Properties of Logarithms Let x and y be any positive real numbers and r be any real number. Let a be a positive real number,
. Then

a.

b.

c.
d.
e.
f. .log a  a

r 5 r
log a  1 5 0
log a  a 5 1
log a  x

r 5 r log a  x

log a 
x

y
5 log a  x 2 log a  y

log a  xy 5 log a  x 1 log a  y
a 2 1

f 1x 2 5 log a x

a 2 1,

ay 5 x.y 5 log a x
a 2 1,

a1 1
1

m
b

m



CHAPTER 2 Nonlinear Functions112

Change-of-Base Theorem for If x is any positive number and if a and b are positive real numbers, , then
Logarithms

.

Change-of-Base Theorem for For every positive real number a
Exponentials .

Exponential Growth and Let be the amount or number of some quantity present at time t � 0. The quantity is said 
Decay Function to grow or decay exponentially if, for some constant k, the amount present at any time t is given by

.

Graphs of Basic Functions

y 5 y0e 
kt

y0

ax 5 e1ln a2x

log a  x 5
log b  x

log b  a
5

ln x

ln  a

b 2 1a 2 1,

yy

x0

y = x2

Quadratic

yy

x0

y = |x|

Absolute Value

yy

x0

y = –1x

Rational

yy

x0

y =      x

Square Root

yy

x0

1
y = a  , a > 1x

Exponential

yy

x0 1

y = log  x, a > 1a

Logarithmic

KEY TERMS

2.1
function
domain
range
constant function
vertical line test
even function
odd function
step function

2.2
quadratic function
parabola
vertex
axis
vertical translation
vertical reflection
horizontal translation
completing the square
horizontal reflection

2.3
polynomial function
degree
coefficient
leading coefficient
power function
cubic polynomial
quartic polynomial
turning point
real zero
rational function
vertical asymptote
horizontal asymptote
cost–benefit model
average cost

2.4
exponential function
exponential equation
interest

principal
rate of interest
time
simple interest
compound interest
compound amount
e
continuous compounding

2.5
doubling time
logarithm
logarithmic function
inverse function
properties of logarithms
common logarithms
natural logarithms
change-of-base theorem for
logarithms

logarithmic equation

change-of-base theorem for
exponentials

rule of 70
rule of 72
index of diversity

2.6
exponential growth and decay
function

growth constant
decay constant
half-life
nominal (stated) rate
effective rate
present value
limited growth function
learning curve

To understand the concepts presented in this chapter, you should know the meaning and use of the following terms.
For easy reference, the section in the chapter where a word (or expression) was first used is provided.
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Determine whether each of the following statements is true or
false, and explain why.

1. A linear function is an example of a polynomial function.

2. A rational function is an example of an exponential function.

3. The function is a quadratic function.

4. The function has a vertex at x � 3.

5. The function is an exponential function.

6. The function has a vertical asymptote at y � 6.

7. Since we can conclude that .

8. The domain of the function includes all real

numbers except x � 2.

9. The amount of money after two years if $2000 is invested in
an account that is compounded monthly with an annual rate

of 4% is dollars. 

10. 11.

12. 13.

14. 15.

16.

17. The function grows faster than the function
.

18. The half-life of a radioactive substance is the time required
for half of the initial quantity to decay.

19. What is a function? A linear function? A quadratic function? A
rational function?

20. How do you find a vertical asymptote? A horizontal asymptote?

21. What can you tell about the graph of a polynomial function of
degree n before you plot any points?

22. Describe in words what a logarithm is.

List the ordered pairs obtained from the following if the
domain of x for each exercise is 
Graph each set of ordered pairs. Give the range.

23. 24.

25. Let and Find the
following.

a. b. c. d. g 1 3m 2f 12k 2g 1 3 2f 122 2

g 1x 2 5 2x2 1 4x 1 1.f 1x 2 5 5x2 2 3

y 5
x

x2 1 1
y 5 12x 2 1 2 1x 1 1 2

523, 22, 21, 0, 1, 2, 36.

f 1x 2 5 ln  x
g 1x 2 5 ex

ln 4

ln 8
5 ln  4 2 ln  8

eln1222 5 22eln 2 5 2

log10  0 5 11 ln  3 24 5 4  ln  3

ln 1 5 1 7 2 5 ln  5 1 ln  7log1 
1 5 0

A 5 2000a1 1
4

12
b

24

f 1x 2 5
1

x2 2 4

log3  

1

9
5 22322 5

1

9

f 1x 2 5
1

x 2 6

g 1x 2 5 xp

f 1x 2 5 x2 2 6x 1 4

f 1x 2 5 3x2 2 75x 1 2

e. f. g.

h.

26. Let and Find the
following.

a. b. c. d.

e. f. g. 

h.

Find the domain of each function defined as follows.

27. 28.

29. 30.

Graph the following by hand.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Solve each equation.

51. 52.

53. 54.

Write each equation using logarithms.

55. 56.

57. 58.

Write each equation using exponents.

59. 60.

61. 62. log 3.21 5 0.50651ln 82.9 5 4.41763

log9 3 5
1

2
log2 32 5 5

101.07918 5 12e0.8 5 2.22554

51/2 5 "535 5 243

1

2
5 a

b

4
b

1/4
92y13 5 27y

a
9

16
b

x

5
3

4
2x12 5

1

8

y 5 2 2 ln x2y 5 2ln 1x 1 3 2

y 5 1 1 log3 xy 5 log2 
1x 2 1 2

y 5 a
1

2
b

x21

y 5 a
1

5
b

2x23

y 5 42x 1 3y 5 4x

f 1x 2 5
6x

x 1 2
f 1x 2 5

4x 2 2

3x 1 1

f 1x 2 5
2

3x 2 6
f 1x 2 5

8

x

y 5 2 1x 1 2 2 3 2 2y 5 2 1x 2 1 24 1 4

f 1x 2 5 1 2 x4f 1x 2 5 x3 2 3

y 5 3x2 2 9x 1 2y 5 2x2 1 4x 1 2

y 5 2 

1

4
 x2 1 x 1 2y 5 2x2 1 3x 2 1

y 5 ln 1x2 2 16 2y 5 ln 1x 1 7 2

y 5
"x 2 2

2x 1 3
y 5

3x 2 4

x

g 1x 1 h 2 2 g 1x 2
h

f 1x 1 h 2 2 f 1x 2
h

g 1x 1 h 2f 1x 1 h 2

g 12k 2f 1 3m 2g 12 2f 123 2

g 1x 2 5 3x2 1 4x 2 1.f 1x 2 5 2x2 1 5

g 1x 1 h 2 2 g 1x 2
h

f 1x 1 h 2 2 f 1x 2
h

g 1x 1 h 2f 1x 1 h 2

REVIEW EXERCISES

CONCEPT CHECK

PRACTICE AND EXPLORATIONS
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Evaluate each expression without using a calculator. Then sup-
port your work using a calculator and the change-of-base theo-
rem for logarithms.

63. 64.

65. 66.

Simplify each expression using the properties of logarithms.

67. 68.

69. 70.

Solve each equation. If necessary, round each answer to the
nearest thousandth.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81.

82.

83. Give the following properties of the exponential function

a. Domain b. Range c. y-intercept

d. Asymptote(s)

e. Increasing if a is 

f. Decreasing if a is 

84. Give the following properties of the logarithmic function

a. Domain b. Range c. x-intercept

d. Asymptote(s)

e. Increasing if a is 

f. Decreasing if a is 

85. Compare your answers for Exercises 83 and 84. What similari-
ties do you notice? What differences?

Business and Economics
86. Car Rental To rent a mid-size car from one agency costs $60

per day or fraction of a day. If you pick up the car in Boston
and drop it off in Utica, there is a fixed $40 charge. Let
represent the cost of renting the car for x days and taking it
from Boston to Utica. Find the following.

a. b. c.

d. e. 

f. Graph the function defined by for 0 , x # 5.y 5 C 1x 2

Ca2
1

9
bCa1

5

8
b

C 1 1 2Ca
9

10
bCa

3

4
b

C 1x 2

a 2 1.a . 0,f 1x 2 5 loga x;

a 2 1.a . 0,f 1x 2 5 ax;

log2 1 5m 2 2 2 2 log2 
1m 1 3 2 5 2

log 14p 1 1 2 1 log p 5 log 3

log3 
12x 1 5 2 5 5logk 64 5 6

a1 1
2p

5
b

2

5 3a1 1
m

3
b

5

5 15

e3x21 5 14e2522x 5 5

122k 5 9212m 5 7

3z22 5 116p 5 17

3 log4 r
2 2 2 log4 r4 log3 y 2 2 log3 x

log3 2y3 2 log3 8y2log5 3k 1 log5 7k3

log100 1000log4 8

log32 16log3 81

g. What is the independent variable? 

h. What is the dependent variable?

87. Pollution The cost to remove x percent of a pollutant is

in thousands of dollars. Find the cost of removing the follow-
ing percents of the pollutant.

a. 80% b. 50% c. 90%

d. Graph the function.

e. Can all of the pollutant be removed?

Interest Find the amount of interest earned by each deposit.

88. $6902 if interest is 6% compounded semiannually for 8 years

89. $2781.36 if interest is 4.8% compounded quarterly for 6 years

Interest Find the compound amount if $12,104 is invested at
6.2% compounded continuously for each period.

90. 2 years 91. 4 years

Interest Find the compound amounts for the following deposits
if interest is compounded continuously.

92. $1500 at 6% for 9 years

93. $12,000 at 5% for 8 years

94. How long will it take for $1000 deposited at 6% compounded
semiannually to double? To triple?

95. How long will it take for $2100 deposited at 4% compounded
quarterly to double? To triple?

Effective Rate Find the effective rate to the nearest hundredth
for each nominal interest rate.

96. 7% compounded quarterly

97. 6% compounded monthly

98. 5% compounded continuously

Present Value Find the present value of each amount.

99. $2000 if interest is 6% compounded annually for 5 years

100. $10,000 if interest is 8% compounded semiannually for
6 years

101. Interest To help pay for college expenses, Julie Davis borrowed
$10,000 at 7% interest compounded semiannually for 8 years.
How much will she owe at the end of the 8-year period?

102. Inflation How long will it take for $1 to triple at an annual
inflation rate of 8% compounded continuously?

103. Interest Find the interest rate needed for $6000 to grow to
$8000 in 3 years with continuous compounding.

104. Present Value Frank Steed wants to open a camera shop.
How much must he deposit now at 6% interest compounded
monthly to have $25,000 at the end of 3 years?

105. Revenue A concert promoter finds she can sell 1000 tickets at
$50 each. She will not sell the tickets for less than $50, but
she finds that for every $1 increase in the ticket price above
$50, she will sell 10 fewer tickets.

y 5
7x

100 2 x
 ,

APPLICATIONS
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a. Express n, the number of tickets sold, as a function of p, the
price.

b. Express R, the revenue, as a function of p, the price.

c. Find the domain of the function found in part b.

d. Express R, the revenue, as a function of n, the number sold.

e. Find the domain of the function found in part d.

f. Find the price that produces the maximum revenue.

g. Find the number of tickets sold that produces the maximum
revenue.

h. Find the maximum revenue.

i. Sketch the graph of the function found in part b.

j. Describe what the graph found in part i tells you about how
the revenue varies with price.

106. Cost Suppose the cost in dollars to produce x posters is given
by

a. Sketch a graph of 

b. Find a formula for the cost to produce
an additional poster when x posters are already produced.

c. Find a formula for the average cost per poster.

d. Find a formula for the change in the
average cost per poster when one additional poster is pro-
duced. (This quantity is approximately equal to the mar-
ginal average cost, which will be discussed in the chapter
on the derivative.)

107. Cost Suppose the cost in dollars to produce x hundreds of
nails is given by

a. Sketch a graph of 

b. Find a formula for the cost to produce
an additional hundred nails when x hundred are already
produced. (This quantity is approximately equal to the mar-
ginal cost.)

c. Find a formula for the average cost per hundred
nails.

d. Find a formula for the change in the
average cost per nail when one additional batch of 100
nails is produced. (This quantity is approximately equal to
the marginal average cost, which will be discussed in the
chapter on the derivative.)

108. Consumer Price Index The U.S. consumer price index (CPI,
or cost of living index) has risen over the years, as shown in
the table in the next column, using an index in which the aver-
age over the years 1982 to 1984 is set to 100. Source: Bureau
of Labor Statistics.

a. Letting t be the years since 1960, write an exponential func-
tion in the form that fits the data at 1960 and 2005. 

b. If your calculator has an exponential regression feature,
find the best fitting exponential function for the data.

y 5 at

A 1x 1 1 2 2 A 1x 2 ,

A 1x 2 ,

C 1x 1 1 2 2 C 1x 2 ,

C 1x 2 .

C 1x 2 5 x2 1 4x 1 7.

A 1x 1 1 2 2 A 1x 2 ,

A 1x 2 ,

C 1x 1 1 2 2 C 1x 2 ,

C 1x 2 .

C 1x 2 5
5x 1 3

x 1 1
 .

c. Use a graphing calculator to plot the answers to parts a and
b on the same axes as the data. Are the answers to parts a
and b close to each other?

d. If your calculator has a quadratic and cubic regression fea-
ture, find the best-fitting quadratic and cubic functions for
the data.

e. Use a graphing calculator to plot the answers to parts b and
d on the same window as the data. Discuss the extent to
which any one of these functions models the data better
than the others.

Life Sciences

109. Fever A certain viral infection causes a fever that typically
lasts 6 days. A model of the fever (in on day x, 
is

According to the model, on what day should the maximum
fever occur? What is the maximum fever?

110. Sunscreen An article in a medical journal says that a sun-
screen with a sun protection factor (SPF) of 2 provides
50% protection against ultraviolet B (UVB) radiation, an
SPF of 4 provides 75% protection, and an SPF of 8 pro-
vides 87.5% protection (which the article rounds to 87%).
Source: Family Practice.

a. 87.5% protection means that 87.5% of the UVB radiation
is screened out. Write as a fraction the amount of radiation
that is let in, and then describe how this fraction, in general,
relates to the SPF rating.

b. Plot UVB percent protection against x, where 

c. Based on your graph from part b, give an equation relating
UVB protection to SPF rating.

d. An SPF of 8 has double the chemical concentration of an
SPF 4. Find the increase in the percent protection.

e. An SPF of 30 has double the chemical concentration of an
SPF 15. Find the increase in the percent protection.

f. Based on your answers from parts d and e, what happens to
the increase in the percent protection as the SPF continues
to double?

1 /SPF.
x 51 y 2

F 1x 2 5 2 

2

3
 x2 1

14

3
 x 1 96.

1 # x # 6,°F)

Year CPI

1960 29.6

1970 38.8

1980 82.4

1990 130.7

1995 152.4

2000 172.2

2005 195.3
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111. HIV in Infants The following table lists the reported number
of cases of infants born in the United States with HIV in
recent years because their mother was infected.* Source:
Centers for Disease Control and Prevention.

114. Population Growth A population of 15,000 small deer in a
specific region has grown exponentially to 17,000 in 4 years.

a. Write an exponential equation to express the population
growth y in terms of time t in years.

b. At this rate, how long will it take for the population to
reach 45,000?

115. Population Growth In 1960 in an article in Science maga-
zine, H. Van Forester, P. M. Mora, and W. Amiot predicted that
world population would be infinite in the year 2026. Their pro-
jection was based on the rational function defined by

where gives population in year t. This function has pro-
vided a relatively good fit to the population until very
recently. Source: Science.

a. Estimate world population in 2010 using this function, and
compare it with the estimate of 6.909 billion. Source:
United Nations.

b. What does the function predict for world population in
2020? 2025?

c. Discuss why this function is not realistic, despite its good
fit to past data.

116. Intensity of Light The intensity of light (in appropriate units)
passing through water decreases exponentially with the depth
it penetrates beneath the surface according to the function

where x is the depth in meters. A certain water plant requires
light of an intensity of 1 unit. What is the greatest depth of
water in which it will grow?

117. Drug Concentration The concentration of a certain drug in
the bloodstream at time t (in minutes) is given by

Use a graphing calculator to find the maximum concentration
and the time when it occurs.

118. Glucose Concentration When glucose is infused into a person’s
bloodstream at a constant rate of c grams per minute, the glu-
cose is converted and removed from the bloodstream at a rate
proportional to the amount present. The amount of glucose in
grams in the bloodstream at time t (in minutes) is given by

where a is a positive constant. Assume 
and 

a. At what time is the amount of glucose a maximum? What is
the maximum amount of glucose in the bloodstream?

b. When is the amount of glucose in the bloodstream 0.1 g?

c. What happens to the amount of glucose in the bloodstream
after a very long time?

119. Species Biologists have long noticed a relationship between
the area of a piece of land and the number of species found
there. The following data shows a sample of the British Isles

a 5 1.3.
c 5 0.1,g0 5 0.08,

g 1 t 2 5
c

a
1 ag0 2

c

a
be2at,

c 1 t 2 5 e2t 2 e22t.

I 1x 2 5 10e20.3x,

p 1 t 2

p 1 t 2 5
1.79 3 1011

12026.87 2 t 2 0.99  ,

Year Cases

1995 295
1997 166
1999 109
2001 115
2003 94
2005 107
2007 79

*These data include only those infants born in the 25 states with confiden-
tial name-based HIV infection reporting.

a. Plot the data on a graphing calculator, letting corre-
spond to the year 1995.

b. Using the regression feature on your calculator, find a qua-
dratic, a cubic, and an exponential function that models
this data.

c. Plot the three functions with the data on the same coordi-
nate axes. Which function or functions best capture the
behavior of the data over the years plotted?

d. Find the number of cases predicted by all three functions
for 2015. Which of these are realistic? Explain.

112. Respiratory Rate Researchers have found that the 95th per-
centile (the value at which 95% of the data is at or below) for
respiratory rates (in breaths per minute) during the first 3 years
of infancy are given by

for awake infants and

for sleeping infants, where x is the age in months. Source:
Pediatrics.

a. What is the domain for each function?

b. For each respiratory rate, is the rate decreasing or increas-
ing over the first 3 years of life? (Hint: Is the graph of the
quadratic in the exponent opening upward or downward?
Where is the vertex?)

c. Verify your answer to part b using a graphing calculator.

d. For a 1-year-old infant in the 95th percentile, how much
higher is the waking respiratory rate than the sleeping res-
piratory rate?

113. Polar Bear Mass One formula for estimating the mass (in kg)
of a polar bear is given by

where g is the axillary girth in centimeters. It seems reasonable
that as girth increases, so does the mass. What is the largest girth
for which this formula gives a reasonable answer? What is the
predicted mass of a polar bear with this girth? Source: Wildlife
Management.

m 1g 2 5 e0.02 10.062g20.000165g2

,

y 5 101.7285820.0139928x10.00017646x2

y 5 101.8241120.0125995x10.00013401x2

t 5 0
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and how many vascular plants are found on each. Source:
Journal of Biogeography.

122. Planets The following table contains the average distance D
from the sun for the eight planets and their period P of revolu-
tion around the sun in years. Source: The Natural History of
the Universe.

Isle Area (km2) Species

Ailsa 0.8 75

Fair 5.2 174

Iona 9.1 388

Man 571.6 765

N. Ronaldsay 7.3 131

Skye 1735.3 594

Stronsay 35.2 62

Wight 380.7 1008

a. One common model for this relationship is logarithmic.
Using the logarithmic regression feature on a graphing cal-
culator, find a logarithmic function that best fits the data.

b. An alternative to the logarithmic model is a power func-
tion of the form Using the power regression
feature on a graphing calculator, find a power function
that best fits the data.

c. Graph both functions from parts a and b along with the
data. Give advantages and drawbacks of both models.

d. Use both functions to predict the number of species found
on the isle of Shetland, with an area of 984.2 km2. Com-
pare with the actual number of 421.

e. Describe one or more situations where being able to pre-
dict the number of species could be useful.

Physical  Sciences

120. Oil Production The production of an oil well has decreased
exponentially from 128,000 barrels per year 5 years ago to
100,000 barrels per year at present.

a. Letting represent the present time, write an exponen-
tial equation for production y in terms of time t in years.

b. Find the time it will take for production to fall to
70,000 barrels per year.

121. Dating Rocks Geologists sometimes measure the age of
rocks by using “atomic clocks.” By measuring the amounts of
potassium-40 and argon-40 in a rock, the age t of the speci-
men (in years) is found with the formula

where A and K, respectively, are the numbers of atoms of
argon-40 and potassium-40 in the specimen.

a. How old is a rock in which and 

b. The ratio for a sample of granite from New Hampshire
is 0.212. How old is the sample?

c. Let What happens to t as r gets larger? Smaller?A /K 5 r.

A /K

K . 0?A 5 0

t 5 1 1.26 3 109 2  

ln 31 1 8.33 1A /K 2 4
ln 2

 ,

t 5 0

S 5 b 1Ac 2 .

Planet Distance (D) Period (P)

Mercury 0.39 0.24

Venus 0.72 0.62

Earth 1 1

Mars 1.52 1.89

Jupiter 5.20 11.9

Saturn 9.54 29.5

Uranus 19.2 84.0

Neptune 30.1 164.8

The distances are given in astronomical units (A.U.); 1 A.U. is
the average distance from Earth to the sun. For example,
since Jupiter’s distance is 5.2 A.U., its distance from the sun
is 5.2 times farther than Earth’s.

a. Find functions of the form for 1.5, and 2
that fit the data at Neptune.

b. Use a graphing calculator to plot the data in the table and to
graph the three functions found in part a. Which function
best fits the data?

c. Use the best-fitting function from part b to predict the
period of Pluto (which was removed from the list of planets
in 2006), which has a distance from the sun of 39.5 A.U.
Compare your answer to the true value of 248.5 years.

d. If you have a graphing calculator or computer program
with a power regression feature, use it to find a power func-
tion (a function of the form that approximately
fits the data. How does this answer compare with the
answer to part b?

P 5 kDn)

n 5 1,P 5 kDn



POWER FUNCTIONS

In this chapter we have
seen several applica-
tions of power func-

tions, which have the
general form y � axb.
Power functions are so
named because the inde-
pendent variable is
raised to a power. (These
should not be confused
with exponential func-
tions, in which the inde-
pendent variable appears

in the power.) We explored some special cases of power functions,
such as b � 2 (a simple quadratic function) and b � 1/2 (a square
root function). But applications of power functions vary greatly and
are not limited to these special cases.

For example, in Exercise 86 in Section 2.5, we saw that the
basal metabolism rate of marsupial carnivores is a power function
of the body mass. In that exercise we also saw a way to verify that
empirical data can be modeled with a power function. By taking
the natural logarithm of both sides of the equation for a power
function,

(1)

we obtain the equation

ln y � ln a � b ln x. (2)

Letting Y � ln y, X � ln x, and A � ln a results in the linear equation

(3)

Plotting the logarithm of the original data reveals whether a
straight line approximates the data well. If it does, then a power
function is a good fit to the original data.

Here is another example. In an attempt to measure how the
pace of city life is related to the population of the city, two
researchers estimated the average speed of pedestrians in 15 cities
by measuring the mean time it took them to walk 50 feet. Their
results are shown in the table in the next column. Source: Nature.

Figure 59(a) shows the speed (stored in the list L2 on a TI-84
Plus) plotted against the population (stored in L1). The natural log-
arithm of the data was then calculated and stored using the com-
mands and A plot of the data in L3 and
L4 is shown in Figure 59(b). Notice that the data lie fairly closely
along a straight line, confirming that a power function is an appro-
priate model for the original data. (These calculations and plots
could also be carried out on a spreadsheet.)

A power function that best fits the data according to the least
squares principle of Section 1.3 is found with the TI-84 Plus com-
mand PwrReg L1,L2,Y1. The result is

(4)y 5 1.363x0.09799,

ln 1L2 2 l L4.ln 1L1 2 l L3

Y 5 A 1 bX.

y 5 axb,

with a correlation coefficient of r � 0.9081. (For more on the cor-
relation coefficient, see Section 1.3.) Because this value is close to
1, it indicates a good fit. Similarly, we can find a line that fits the
data in Figure 59(b) with the command LinReg(ax + b)L3,
L4,Y2. 

The result is

(5)Y 5 0.30985 1 0.09799X,

E X T E N D E D APPLICATION

Brno, Czechoslovakia 341,948 4.81

Prague, Czechoslovakia 1,092,759 5.88

Corte, Corsica 5491 3.31

Bastia, France 49,375 4.90

Munich, Germany 1,340,000 5.62

Psychro, Crete 365 2.67

Itea, Greece 2500 2.27

Iráklion, Greece 78,200 3.85

Athens, Greece 867,023 5.21

Safed, Israel 14,000 3.70

Dimona, Israel 23,700 3.27

Netanya, Israel 70,700 4.31

Jerusalem, Israel 304,500 4.42

New Haven, U.S.A. 138,000 4.39

Brooklyn, U.S.A. 2,602,000 5.05

Speed
City Population (x) (ft/sec) (y)

FIGURE 59
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again with r � 0.9081. The identical correlation coefficient is not a
surprise, since the two commands accomplish essentially the same
thing. Comparing Equations (4) and (5) with Equations (1), (2),
and (3), notice that b � 0.09799 in both Equations (4) and (5), and
that A � 0.30985 ln a � ln 1.363. (The slight difference is due
to rounding.) Equations (4) and (5) are plotted on the same window
as the data in Figure 60(a) and (b), respectively.

<

FIGURE 60

FIGURE 61

There are many more examples of data that fit a power func-
tion. Bohorquez et al. have found that the frequency of attacks in a
war is a power function of the number of people killed in the
attacks. Source: Nature. Amazingly, this holds true for a wide
variety of different wars, with the average value of the exponent as
b 2.5. For a fragmented, fluid enemy with more groups, the
value of b tends to be larger, and for a robust, stronger enemy with
fewer groups, the value of b tends to be smaller.* You will explore
other applications of power functions in the exercises.

EXERCISES
1. Gwartney et al. listed the following data relating the price of a

monthly cellular bill (in dollars) and the demand (in millions of
subscribers).† Source: Economics: Private and Public Choice.

<

119

These results raise numerous questions worth exploring. What
does this analysis tell you about the connection between the pace
of city life and the population of a city? What might be some rea-
sons for this connection?

A third example was considered in Review Exercise 119,
where we explored the relationship between the area of each of the
British isles and the number of species of vascular plants on the
isles. In Figure 61(a) we have plotted the complete set of data from
the original article (except for the Isle of Britain, whose area is so
large that it doesn’t fit on a graph that shows the other data in
detail). Source: Journal of Biogeography. In Figure 61(b) we have
plotted the natural logarithm of the data (again leaving out Britain).
Notice that despite the large amount of scatter in the data, there is a
linear trend. Figure 61(a) includes the best-fitting power function

(6)

while Figure 61 (b) includes the best-fitting line

(7)

(We have included the data for Britain in both of these calcula-
tions.) Notice as before that the exponent of the power function
equals the slope of the linear function, and that A � 4.836
ln a � ln 125.9. The correlation is 0.6917 for both, indicating that
there is a trend, but that the data is somewhat scattered about the
best-fitting curve or line.

<

Y 5 4.836 1 0.2088X.

y 5 125.9x0.2088,

*For a TED video on this phenomenon, see http://www.ted.com/talks/
sean_gourley_on_the_mathematics_of_war.html.
† The authors point out that these are actual prices and quantities annually
for 1988 to 1994. If they could assume that other demand determinants,
such as income, had remained constant during that period, this would give
an accurate measurement of the demand function.

2.1 123

3.5 107

5.3 92

7.6 79

11.0 73

16.0 63

24.1 56

Quantity Price
(in millions) (in dollars)

3,000,0000

6

0

(a)

150.5

2

0.5

(b)

2,2000

1,100

0

(a)

8�1

7

4

(b)

http://www.ted.com/talks/sean_gourley_on_the_mathematics_of_war.html
http://www.ted.com/talks/sean_gourley_on_the_mathematics_of_war.html


a. Using a graphing calculator, plot the natural logarithm of
the price against the natural logarithm of the quantity.
Does the relationship appear to be linear?

b. Find the best-fitting line to the natural logarithm of the
data, as plotted in part a. Plot this line on the same axes
as the data.

c. Plot the price against the quantity. What is different
about the trend in these data from the trend in Figures
59(a) and 61(a)? What does this tell you about the expo-
nent of the best-fitting power function for these data?
What conclusions can you make about how demand
varies with the price?

d. Find the best-fitting power function for the data plotted
in part c. Verify that this function is equivalent to the
least squares line through the logarithm of the data found
in part b.

2. For many years researchers thought that the basal metabolic
rate (BMR) in mammals was a power function of the mass,
with disagreement on whether the power was 0.67 or 0.75.
More recently, White et al. proposed that the power may vary
for mammals with different evolutionary lineages. Source:
Evolution. The following table shows a portion of their data
containing the natural logarithm of the mass (in grams) and
the natural logarithm of the BMR (in mL of oxygen per hour)
for 12 species from the genus Peromyscus, or deer mouse.

a. Plot ln(BMR) against ln(mass) using a graphing calcula-
tor. Does the relationship appear to be linear?

b. Find the least squares line for the data plotted in part a.
Plot the line on the same axes as the data.

c. Calculate the mass and BMR for each species, and then
find the best-fitting power function for these data. Plot
this function on the same axes as the mass and BMR
data.

d. What would you conclude about whether the deer mouse
BMR can be modeled as a power function of the mass?
What seems to be an approximate value of the power?

DIRECTIONS FOR GROUP PROJECT
Go to the section on “build your own tables” of the Human Devel-
opment Reports website at http://hdrstats.undp.org/en/buildtables.
Select a group of countries, as well as two indicators that you think
might be related by a power function. For example, you might
choose “GDP per capita” and “Population not using an improved
water source (%)” Click on “Display indicators in Row” and then
“Show results.” Then click on “Export to Excel.” From the Excel
spreadsheet, create a scatterplot of the original data, as well as a
scatterplot of the natural logarithm of the data. Find data for
which the natural logarithm is roughly a straight line, and find the
least squares line. Then convert this to a power function modeling
the original data. Present your results in a report, describing in
detail what your analysis tells you about the countries under con-
sideration and any other conclusions that you can make.

Species ln(mass) ln(BMR)

Peromyscus boylii 3.1442 3.9943

Peromyscus californicus 3.8618 3.9506

Peromyscus crinitus 2.7663 3.2237

Peromyscus eremicus 3.0681 3.4998

Peromyscus gossypinus 3.0681 3.6104

Peromyscus leucopus 3.1355 3.8111

Peromyscus maniculatus 3.0282 3.6835

Peromyscus megalops 4.1927 4.5075

Peromyscus oreas 3.2019 3.7729

Peromyscus polionotus 2.4849 3.0671

Peromyscus sitkensis 3.3439 3.8447

Peromyscus truei 3.5041 4.0378
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The Derivative
3.1 Limits

3.2 Continuity

3.3 Rates of Change

3.4 Definition of the Derivative

3.5 Graphical Differentiation

Chapter 3 Review

Extended Application: A Model for 
Drugs Administered Intravenously

The population of the United States has been increasing

since 1790, when the first census was taken. Over the

past few decades, the population has not only been

increasing, but the level of diversity has also been

increasing.This fact is important to school districts,

businesses, and government officials. Using examples in

the third section of this chapter, we explore two rates of 

change related to the increase in minority population. In

the first example, we calculate an average rate of change;

in the second, we calculate the rate of change at a

particular time.This latter rate is an example of a

derivative, the subject of this chapter.

3

121



We will find an answer to this question in Exercise 82 using the concept of limit.

The limit is one of the tools that we use to describe the behavior of a function as the
values of x approach, or become closer and closer to, some particular number.

Finding a Limit

What happens to when x is a number very close to (but not equal to) 2?

SOLUTION We can construct a table with x values getting closer and closer to 2 and find
the corresponding values of .f 1x 2

f 1x 2 5 x2
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The algebraic problems considered in earlier chapters dealt with static situations:

■ What is the revenue when 100 items are sold?

■ How much interest is earned in three years?

■ What is the equilibrium price?

Calculus, on the other hand, deals with dynamic situations:

■ At what rate is the demand for a product changing?

■ How fast is a car moving after 2 hours?

■ When does the growth of a population begin to slow down?

The techniques of calculus allow us to answer these questions, which deal with rates of
change.

The key idea underlying calculus is the concept of limit, so we will begin by studying
limits. 

APPLY IT

Limits
What happens to the demand of an essential commodity as its price
continues to increase?

3.1

EXAMPLE  1

x approaches 2 from left x approaches 2 from right

x 1.9 1.99 1.999 1.9999 2 2.0001 2.001 2.01 2.1

3.61 3.9601 3.996001 3.99960001 4 4.00040001 4.004001 4.0401 4.41

approaches 4 approaches 4f 1x 2f 1x 2

f 1 x 2

The table suggests that, as x gets closer and closer to 2 from either side, gets
closer and closer to 4. In fact, you can use a calculator to show the values of can be
made as close as you want to 4 by taking values of x close enough to 2. This is not surpris-
ing since the value of the function at . We can observe this fact by look-
ing at the graph , as shown in Figure 1. In such a case, we say “the limit of as x
approaches 2 is 4,” which is written as

TRY YOUR TURN 1
lim
xl2 

f 1x 2 5 4.

f 1x 2y 5 x2
x 5 2 is f 1x 2 5 4

f 1x 2
f 1x 2

YOUR TURN 1
Find .lim

xl1 
1x2 1 2 2

a

b



The phrase “x approaches 2 from the left” is written . Similarly, “x approaches 2
from the right” is written These expressions are used to write one-sided limits.
The limit from the left (as x approaches 2 from the negative direction) is written

and shown in red in Figure 1. The limit from the right (as x approaches 2 from the positive
direction) is written

and shown in blue in Figure 1. A two-sided limit, such as

exists only if both one-sided limits exist and are the same; that is, if approaches the same
number as x approaches a given number from either side.

Notice that does not mean to take negative values of x, nor does it

mean to choose values of x to the right of a and then move in the negative direction.
It means to use values less than a (x < a) that get closer and closer to a.

The previous example suggests the following informal definition.

Limit of a Function
Let f be a function and let a and L be real numbers. If

1. as x takes values closer and closer (but not equal) to a on both sides of a, the corre-
sponding values of get closer and closer (and perhaps equal) to L; and

2. the value of can be made as close to L as desired by taking values of x close
enough to a;

then L is the limit of as x approaches a, written

This definition is informal because the expressions “closer and closer to” and “as close
as desired” have not been defined. A more formal definition would be needed to prove the
rules for limits given later in this section.*

lim
xla 

f 1 x 2 5 L.

f 1x 2

f 1x 2
f 1x 2

lim
xla 2  f 1 x 2

f 1x 2

lim
xl2 

f 1x 2 5 4,

lim
xl21  

f 1x 2 5 4,

lim
xl22 

f 1x 2 5 4,

xl 21.
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y = f (x) = x2

20 x

4 (2, 4)

Limit is 4

y

FIGURE 1

CAUTION

*The limit is the key concept from which all the ideas of calculus flow. Calculus was independently discovered by
the English mathematician Isaac Newton (1642–1727) and the German mathematician Gottfried Wilhelm Leibniz
(1646–1716). For the next century, supporters of each accused the other of plagiarism, resulting in a lack of
communication between mathematicians in England and on the European continent. Neither Newton nor Leibniz
developed a mathematically rigorous definition of the limit (and we have no intention of doing so here). More than
100 years passed before the French mathematician Augustin-Louis Cauchy (1789–1857) accomplished this feat.



The definition of a limit describes what happens to when x is near, but not at, the
value a. It is not affected by how (or even whether) is defined. Also the definition
implies that the function values cannot approach two different numbers, so that if a limit
exists, it is unique. These ideas are illustrated in the following examples.

Finding a Limit

Find where 

SOLUTION
The function is undefined when x � 2 since the value x � 2 makes the denominator 0.
However, in determining the limit as x approaches 2 we are concerned only with the values
of when x is close to but not equal to 2. To determine if the limit exists, consider the
value of g at some numbers close to but not equal to 2, as shown in the following table.

g 1x 2

g 1x 2

g 1x 2 5
x3 2 2x2

x 2 2
 .lim

xl2 
g 1x 2 ,

f 1a 2
f 1x 2
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EXAMPLE  2

Method 1
Using a Table

Method 2
Using Algebra

x approaches 2 from left x approaches 2 from right

x 1.9 1.99 1.999 1.9999 2 2.0001 2.001 2.01 2.1

3.61 3.9601 3.996001 3.99960001 4.00040001 4.004001 4.0401 4.41

approaches 4 approaches 4f 1x 2f 1x 2

g 1 x 2

Notice that this table is almost identical to the previous table, except that g is undefined at
. This suggests that in spite of the fact that the function g does not

exist at .

A second approach to this limit is to analyze the function. By factoring the numerator, 

simplifies to 

, provided 

The graph of , as shown in Figure 2, is almost the same as the graph of , except
that it is undefined at (illustrated by the “hole” in the graph).x 5 2

y 5 x2g 1x 2

g 1x 2 5
x2 1x 2 2 2

x 2 2
5 x2

g 1x 2

x3 2 2x2 5 x2 1x 2 2 2 ,

x 5 2

lim
xl2 

g 1x 2 5 4,x 5 2

y = g(x)

20 x

4

Limit is 4

y

FIGURE 2

YOUR TURN 2

Find .lim
xl2 

x2 2 4

x 2 2

a

Undefined

Since we are looking at the limit as x approaches 2, we look at values of the function
for x close to but not equal to 2. Thus, the limit is

TRY YOUR TURN 2
lim
xl2 

g 1x 2 5 lim
xl2 

x2 5 4.

.x 2 2



We can use the TRACE feature on a graphing calculator to determine the limit. Figure 3 shows the
graph of the function in Example 2 drawn with a graphing calculator. Notice that the function has a
small gap at the point (2, 4), which agrees with our previous observation that the function is unde-
fined at x � 2, where the limit is 4. (Due to the limitations of the graphing calculator, this gap may
vanish when the viewing window is changed very slightly.)

The result after pressing the TRACE key is shown in Figure 4. The cursor is already located at 
x = 2; if it were not, we could use the right or left arrow key to move the cursor there. The calculator
does not give a y-value because the function is undefined at x � 2.  Moving the cursor back a step
gives x � 1.98, y � 3.92. Moving the cursor forward two steps gives x = 2.02, y � 4.09. It seems that
as x approaches 2, y approaches 4, or at least something close to 4. Zooming in on the point (2, 4)
(such as using the window [1.9, 2.1] by [3.9, 4.1]) allows the limit to be estimated more accurately
and helps ensure that the graph has no unexpected behavior very close to x � 2.

3.1 Limits 125

y = h(x)

–3 –2 –1 2 310 x

y

4 Limit is 4

(2, 1)

FIGURE 5

YOUR TURN 3
Find if

f 1x 2 5 e
2x 2 1

1

if x 2 3

if x 5 3.

lim
xl3 

f 1x 2

1 3

8

0

g(x) � 
x3 � 2x2

x � 2

FIGURE 3

1 3

8

0

Y1�(X3�2X2)/(X�2)

X�2 Y�

FIGURE 4

Finding a Limit

Determine for the function h defined by

SOLUTION A function defined by two or more cases is called a piecewise function. The
domain of h is all real numbers, and its graph is shown in Figure 5. Notice that ,
but when . To determine the limit as x approaches 2, we are concerned
only with the values of when x is close but not equal to 2. Once again, 

TRY YOUR TURN 3
lim
xl2 

h 1x 2 5 lim
xl2 

x2 5 4.

h 1x 2
x 2 2h 1x 2 5 x2

h 12 2 5 1

h 1x 2 5 e
x2,

1,

if x 2 2,

if x 5 2.

lim
xl2 

h 1x 2

EXAMPLE  3

TECHNOLOGY NOTE



Finding a Limit

Find , where 

.

SOLUTION The graph of the function is shown in Figure 6. A table with the values of
as x gets closer and closer to �2 is given below.f 1x 2

f 1x 2 5
3x 1 2

2x 1 4

lim
xl22 

f 1x 2
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EXAMPLE  4

x approaches �2 from left x approaches �2 from right

x �2.1 �2.01 �2.001 �2.0001 �1.9999 �1.999 �1.99 �1.9

21.5 201.5 2001.5 20,001.5 �19,998.5 �1998.5 �198.5 �18.5f 1 x 2

Both the graph and the table suggest that as x approaches �2 from the left, 
becomes larger and larger without bound. This happens because as x approaches �2, the
denominator approaches 0, while the numerator approaches �4, and �4 divided by a
smaller and smaller number becomes larger and larger. When this occurs, we say that “the
limit as x approaches �2 from the left is infinity,” and we write

Because is not a real number, the limit in this case does not exist. 
In the same way, the behavior of the function as x approaches �2 from the right is

indicated by writing 

since becomes more and more negative without bound. Since there is no real number
that approaches as x approaches �2 (from either side), nor does approach either

or , we simply say 

TRY YOUR TURN 4
lim

xl22
 
3x 1 2

2x 1 4
  does not exist.

2``

f 1x 2f 1x 2
f 1x 2

lim
xl221  f 1x 2 5 2`,

`

lim
xl222 f 1x 2 5 `.

f 1x 2

YOUR TURN 4

Find .lim
xl0 

2x 2 1
x

y

x

x = –2 –4

4

–4 0

y = –3
2

3x + 2
2x + 4y =

FIGURE 6

NOTE In general, if both the limit from the left and from the right approach `, so that
, the limit would not exist because ` is not a real number. It is customary, 

however, to give ` as the answer since it describes how the function is behaving near x � a.
Likewise, if � we give �` as the answer.2` ,lim

xla
 f 1 x 2

lim
xla

 f 1 x 2 5 `



We have shown three methods for determining limits: (1) using a table of numbers, (2)
using algebraic simplification, and (3) tracing the graph on a graphing calculator. Which
method you choose depends on the complexity of the function and the accuracy required by
the application. Algebraic simplification gives the exact answer, but it can be difficult or
even impossible to use in some situations. Calculating a table of numbers or tracing the
graph may be easier when the function is complicated, but be careful, because the results
could be inaccurate, inconclusive, or misleading. A graphing calculator does not tell us
what happens between or beyond the points that are plotted.

Finding a Limit

Find 

SOLUTION  

The function is not defined when When the definition of
absolute value says that , so When then

and Therefore,

and

Since the limits from the left and from the right are different, the limit does not exist.

A calculator graph of f is shown in Figure 7.
As x approaches 0 from the right, x is always positive and the corresponding value of

is 1, so

But as x approaches 0 from the left, x is always negative and the corresponding value of
is , so

As in the algebraic approach, the limits from the left and from the right are different, so the
limit does not exist.

The discussion up to this point can be summarized as follows.

Existence of Limits
The limit of f as x approaches a may not exist.

1. If becomes infinitely large in magnitude (positive or negative) as x
approaches the number a from either side, we write or

In either case, the limit does not exist.

2. If becomes infinitely large in magnitude (positive) as x approaches a from one
side and infinitely large in magnitude (negative) as x approaches a from the other
side, then does not exist.

3. If and and then does not exist.lim
xla 

f 1x 2L 2 M,lim
xla1 

f 1x 2 5 M,lim
xla2 

f 1x 2 5 L

lim
xla 

f 1x 2

f 1x 2

lim
xla 

f 1x 2 5 2`.
lim
xla 

f 1x 2 5 `
f 1x 2

lim
xl02 

f 1x 2 5 21.

21f 1x 2

lim
xl01 

f 1x 2 5 1.

f 1x 2

lim
xl02  

f 1x 2 5 21.lim
xl01 

f 1x 2 5 1

f 1x 2 5 0 x 0 /x 5 2x /x 5 21.0 x 0 5 2x
x , 0,f 1x 2 5 0 x 0 /x 5 x /x 5 1.0 x 0 5 x

x . 0,x 5 0.f 1x 2 5 0 x 0 /x

lim
xl0

 
0 x 0
x

 .
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EXAMPLE  5

Method 1
Algebraic Approach

Method 2
Graphing Calculator Approach

22 2

2

22

f(x) 5
⏐x⏐

x

FIGURE 7



Figure 8 illustrates these three facts.
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f(x)

x

y = f(x)

–1

1

2

3

4

–4–6 –2 10 2 4 5 6

–2

(–4, 3)

(–4, 2)

lim f(x) = 3.4,

even though f(0) = 2.

lim f(x) does

not exist lim f(x) = –∞, so the

limit does not exist

lim f(x) = 1, even though
   f(4) is not
   defined.

lim f(x) = 2

(6, 2)

(4, 1)

lim f(x) does not exist.

x      0←

x      –4←

x      –6←

x      4←

x      6←

x      3←

FIGURE 8

*This limit does not exist, for example, when and or when and k # 0.A 5 0k 5 1 /2,A , 0

Rules for Limits As shown by the preceding examples, tables and graphs can be used to
find limits. However, it is usually more efficient to use the rules for limits given below.
(Proofs of these rules require a formal definition of limit, which we have not given.)

Rules for Limits
Let a, A, and B be real numbers, and let f and g be functions such that

1. If k is a constant, then and

2.

(The limit of a sum or difference is the sum or difference of the limits.)

3.

(The limit of a product is the product of the limits.)

4.

(The limit of a quotient is the quotient of the limits, provided the limit of the
denominator is not zero.)

5. If is a polynomial, then 

6. For any real number k, provided this limit
exists.*

7. if for all 

8. For any real number 

9. For any real number b such that or 

if A . 0.lim
xla 

3logbf 1x 2 4 5 logb 3 lim
xla 

f 1x 2 4 5 logbA

1 , b,0 , b , 1

b . 0, lim
xla

bf1x2 5 b 3limxla
f1x24 5 bA.

x 2 a.f 1x 2 5 g 1x 2lim
xla 

f 1x 2 5 lim
xla 

g 1x 2

lim
xla 

3f 1x 2 4 k 5 3 lim
xla 

f 1x 2 4 k 5 Ak,

lim
xla 

p 1x 2 5 p 1a 2 .p 1x 2

lim
xla

 
f 1x 2
g 1x 2

5
lim
xla 

f 1x 2

lim
xla 

g 1x 2
5

A

B
 if B 2 0

lim
xla 

3f 1x 2 . g 1x 2 4 5 3 lim
xla 

f 1x 2 4 . 3 lim
xla 

g 1x 2 4 5 A . B

lim
xla 

3f 1x 2 6 g 1x 2 4 5 lim
xla 

f 1x 2 6 lim
xla 

g 1x 2 5 A 6 B

lim
xla 

3k . f 1x2 4 5 k . lim
xla 

f 1x2 5 k . A.lim
xla 

k 5 k

lim
xla 

f 1x 2 5 A  and  lim
xla 

g 1x 2 5 B.



This list may seem imposing, but these limit rules, once understood, agree with com-
mon sense. For example, Rule 3 says that if becomes close to A as x approaches a,
and if becomes close to B, then should become close to which
seems plausible.

Rules for Limits

Suppose and Use the limit rules to find the following
limits.

(a)

SOLUTION

Rule 2

Rule 1

(b)

SOLUTION  

Rule 4

Rule 6 and Rule 9

TRY YOUR TURN 5

Finding a Limit

Find

SOLUTION  

Rule 4

Rule 6

Rule 5

 5
5

2

 5
5

!4

 5
32 2 3 2 1

!3 1 1

1 !a 5 a1/2 2 5
lim
xl3

 1x2 2 x 2 1 2

" lim
xl3

 1x 1 1 2

 lim
xl3

 
x2 2 x 2 1

!x 1 1
5

lim
xl3

 1x2 2 x 2 1 2

lim
xl3

 !x 1 1

lim
xl3

 
x2 2 x 2 1

!x 1 1
 .

 <
9

1.38629
< 6.492

 5
32

ln 4

 5
3 lim
xl2

 f 1x 2 4 2

ln 3 lim
xl2

 g 1x 2 4

 lim
xl2

 
3f 1x 2 4 2

ln g 1x 2
5

lim
xl2

 3f 1x 2 4 2

lim
xl2

 ln g 1x 2

lim
xl2

 
3f 1x 2 4 2

ln g 1x 2

 5 23

 5 3 1 5 14 2

 5 lim
xl2

 f 1x 2 1 5 lim
xl2

 g 1x 2

 lim
xl2 

3
 
f 1x 2 1 5g 1x 2 4 5 lim

xl2
 f 1x 2 1 lim

xl2
 5g 1x 2

lim
xl2 

3f 1x 2 1 5g 1x 2 4

lim
xl2 

g 1x 2 5 4.lim
xl2  

f 1x 2 5 3

A . B,f 1x 2 . g 1x 2g 1x 2
f 1x 2
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EXAMPLE  6

EXAMPLE  7

YOUR TURN 5 Find

. lim
xl2 

3
 
f 1x 2 1 g 1x 2 42



As Examples 6 and 7 suggest, the rules for limits actually mean that many limits can be
found simply by evaluation. This process is valid for polynomials, rational functions, expo-
nential functions, logarithmic functions, and roots and powers, as long as this does not
involve an illegal operation, such as division by 0 or taking the logarithm of a negative
number. Division by 0 presents particular problems that can often be solved by algebraic
simplification, as the following example shows.

Finding a Limit

Find 

SOLUTION Rule 4 cannot be used here, since

The numerator also approaches 0 as x approaches 2, and is meaningless. For we
can, however, simplify the function by rewriting the fraction as

Now Rule 7 can be used.

TRY YOUR TURN 6

NOTE Mathematicians often refer to a limit that gives 0/0, as in Example 8, as an indetermi-
nate form. This means that when the numerator and denominator are polynomials, they must
have a common factor, which is why we factored the numerator in Example 8.

Finding a Limit

Find 

SOLUTION As the numerator approaches 0 and the denominator also approaches 0,
giving the meaningless expression In an expression such as this involving square
roots, rather than trying to factor, you may find it simpler to use algebra to rationalize the
numerator by multiplying both the numerator and the denominator by . This gives

if Now use the rules for limits.

TRY YOUR TURN 7

lim
xl4

 
!x 2 2

x 2 4
5 lim

xl4
 

1

!x 1 2
5

1

!4 1 2
5

1

2 1 2
5

1

4

x 2 4.

 5
x 2 4

1x 2 4 2 1 !x 1 2 2
5

1

!x 1 2

1 a 2 b 2 1 a 1 b 2 5 a2 2 b2
!x 2 2

x 2 4
. !x 1 2

!x 1 2
5

1 !x 2 2 2 22
  

1x 2 4 2 1 !x 1 2 2

"x 1 2

0 /0.
xl 4,

lim
xl4

 
!x 2 2

x 2 4
 .

lim
xl2

 
x2 1 x 2 6

x 2 2
5 lim

xl2
1x 1 3 2 5 2 1 3 5 5

x2 1 x 2 6

x 2 2
5
1x 1 3 2 1x 2 2 2

x 2 2
5 x 1 3.

x 2 2,0 /0

lim
xl2

1x 2 2 2 5 0.

lim
xl2

 
x2 1 x 2 6

x 2 2
 .
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EXAMPLE  8

EXAMPLE  9

YOUR TURN 6 Find

lim
xl23

 
x2 2 x 2 12

x 1 3
 .

YOUR TURN 7

Find lim
xl1

 
!x 2 1

x 2 1
 .



Simply because the expression in a limit is approaching as in Examples 8
and 9, does not mean that the limit is 0 or that the limit does not exist. For such a
limit, try to simplify the expression using the following principle: To calculate
the limit of as x approaches a, where you
should attempt to factor from both the numerator and the 
denominator.

Finding a Limit

Find 

SOLUTION

Again, Rule 4 cannot be used, since If the function can be
rewritten as

Then

by Rule 7. None of the rules can be used to find

but as x approaches 1, the denominator approaches 0 while the numerator stays at 1,
making the result larger and larger in magnitude. If both the numerator and
denominator are positive, so If the denominator is negative,

so Therefore,

does not exist.

Using the TABLE feature on a TI-84 Plus, we can produce the table of numbers shown in
Figure 9, where Y1 represents the function . Figure 10 shows a graphing
calculator view of the function on by The behavior of the function indi-
cates a vertical asymptote at with the limit approaching from the left and 
from the right, so 

does not exist.

Both the table and the graph can be easily generated using a spreadsheet. Consult the
Graphing Calculator and Excel Spreadsheet Manual, available with this text, for details.

lim
xl1

 
x2 2 2x 1 1
1x 2 1 2 3

5 lim
xl1

 
1

x 2 1

`2`x 5 1,
3210, 10 4.30, 2 4
y 5 1 / 1x 2 1 2

lim
xl1

 
x2 2 2x 1 1
1x 2 1 2 3

5  lim
xl1

 
1

x 2 1

lim
xl12

 1 / 1x 2 1 2 5 2`.

x , 1,lim
xl11

 1 / 1x 2 1 2 5 `.
x . 1,

lim
xl1

 
1

x 2 1
 ,

lim
xl1

 
x2 2 2x 1 1
1x 2 1 2 3

5  lim
xl1

 
1

x 2 1

x2 2 2x 1 1
1x 2 1 2 3

5
1x 2 1 2 2

1x 2 1 2 3
5

1

x 2 1
 .

x 2 1,lim
xl1

 1x 2 1 2 3 5 0.

lim
xl1

 
x2 2 2x 1 1
1x 2 1 2 3

 .

x 2 a
f 1 a 2 5 g 1 a 2 5 0,f 1 x 2 /g 1 x 2

0 /0,
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CAUTION

EXAMPLE  10

Method 1
Algebraic Approach

Method 2
Graphing Calculator Approach

.9

.99

.999

.9999
1.0001
1.001

-10
-100
-1000
-10000
10000
1000
10

X51.1

X Y1

1.1

FIGURE 9

0 2

10

210

y 5
1

x 2 1

FIGURE 10



CHAPTER 3 The Derivative132

0 10

10

�10

y �
1

x � 1

FIGURE 11

A graphing calculator can give a deceptive view of a function. Figure 11 shows
the result if we graph the previous function on by Near

the graph appears to be a steep line connecting the two pieces. The
graph in Figure 10 is more representative of the function near When
using a graphing calculator, you may need to experiment with the viewing win-
dow, guided by what you have learned about functions and limits, to get a good
picture of a function. On many calculators, extraneous lines connecting parts of
the graph can be avoided by using DOTmode rather than CONNECTEDmode.

NOTE Another way to understand the behavior of the function in the previous example near
is to recall from the section on Polynomial and Rational Functions that a rational func-

tion often has a vertical asymptote at a value of x where the denominator is 0, although it may
not if the numerator there is also 0. In this example, we see after simplifying that the function
has a vertical asymptote at because that would make the denominator of
equal to 0, while the numerator is 1.

Limits at Infinity Sometimes it is useful to examine the behavior of the values of
as x gets larger and larger (or more and more negative). The phrase “x approaches

infinity,” written , expresses the fact that x becomes larger without bound. Similarly,
the phrase “x approaches negative infinity” (symbolically, means that x becomes
more and more negative without bound (such as �10, �1000, �10,000, etc.). The next
example illustrates a limit at infinity. 

Oxygen Concentration

Suppose a small pond normally contains 12 units of dissolved oxygen in a fixed volume of
water. Suppose also that at time a quantity of organic waste is introduced into the
pond, with the oxygen concentration t weeks later given by 

As time goes on, what will be the ultimate concentration of oxygen? Will it return to 
12 units?

SOLUTION After 2 weeks, the pond contains

units of oxygen, and after 4 weeks, it contains

units. Choosing several values of t and finding the corresponding values of or using a
graphing calculator or computer, leads to the table and graph in Figure 12. 

f 1 t 2 ,

f 14 2 5
12 . 42 2 15 . 4 1 12

42 1 1
< 8.5

f 12 2 5
12 . 22 2 15 . 2 1 12

22 1 1
5

30

5
5 6

f 1 t 2 5
12t2 2 15t 1 12

t2 1 1
 .

t 5 0

x l 2`)
x l `

f 1x 2

1 / 1 x 2 1 2x 5 1

x 5 1

x 5 1.
x 5 1,

3210, 10 4.30, 10 4
CAUTION

EXAMPLE  11



The graph suggests that, as time goes on, the oxygen level gets closer and closer to the
original 12 units. If so, the line is a horizontal asymptote. The table suggests that

Thus, the oxygen concentration will approach 12, but it will never be exactly 12.

lim
tl`

 f 1 t 2 5 12.

y 5 12
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12

8

4

2
0

4 6 10 128

f(t)

t

212t  – 15t + 12
t  + 1

f(t) = 2

FIGURE 12

x f(x)
10 10.515

100 11.85
1000 11.985

10,000 11.9985
100,000 11.99985

As we saw in the previous example, limits at infinity or negative infinity, if they exist,
correspond to horizontal asymptotes of the graph of the function. In the previous chapter,
we saw one way to find horizontal asymptotes. We will now show a more precise way,
based upon some simple limits at infinity. The graphs of (in red) and

(in blue) shown in Figure 13, as well as the table there, indicate that
and suggesting the

following rule.

lim
xl2`

 1 /x2 5 0,lim
xl`

 1 /x2 5 0,lim
xl2`

 1 /x 5 0,lim
xl`

 1 /x 5 0,
g 1x 2 5 1 /x2

f 1x 2 5 1 /x

0 2 4

–2

y

x

f(x) = 1
x

2g(x) = 1
x

2

FIGURE 13

x

0.0001
0.01

1
1 1 1

10 0.1 0.01
100 0.01 0.0001

2121
20.1210

20.012100

1
x2

1
x

Limits at Infinity
For any positive real number n,

*lim
xl`

 
1
xn 5 0  and  lim

xl2`
 

1
xn 5 0.

*If x is negative, does not exist for certain values of n, so the second limit is undefined for those values of n.xn

(a) (b)



The rules for limits given earlier remain unchanged when a is replaced with or .
To evaluate the limit at infinity of a rational function, divide the numerator and denom-

inator by the largest power of the variable that appears in the denominator, here, and then
use these results. In the previous example, we find that

Now apply the limit rules and the fact that 

Rules 4 and 2

Rule 1

Limits at infinity

Limits at Infinity

Find each limit.

(a)

SOLUTION We can use the rule to find this limit by first dividing the 

numerator and denominator by x, as follows.

(b)

Here, the highest power of x in the denominator is which is used to divide each term
in the numerator and denominator.

x3,

lim
xl`

 
3x 1 2

4x3 2 1
5 lim

xl`
 

3 . 1

x2 1 2 . 1

x3

4 2
1

x3

5
0 1 0

4 2 0
5

0

4
5 0

lim
xl`

 
8x 1 6

3x 2 1
5 lim

xl`
 

8x
x

1
6
x

3x
x

2
1
x

5 lim
xl`

 

8 1 6 . 1
x

3 2
1
x

5
8 1 0
3 2 0

5
8

3

lim
xl`

 1 /xn 5 0

lim
xl`

 
8x 1 6

3x 2 1

 5
12 2 15 . 0 1 12 . 0

1 1 0
5 12.

 5

12 2 15a lim
tl`

 
1
t
b 1 12a lim

tl`
 
1
t 2b

1 1 lim
tl`

 
1
t 2

 5

lim
tl`

 12 2 lim
tl`

 15 . 1

t
1 lim

tl`
 12 . 1

t2

lim
tl`

 1 1 lim
tl`

 
1

t2

 

lim
tl`

a12 2 15 . 1

t
1 12 . 1

t2b

lim
tl`

a1 1
1

t2b

lim
tl`

 1 / tn 5 0.

 5 lim
tl`

 

12 2 15 . 1

t
1 12 . 1

t2

1 1
1

t2

.

 lim
tl`

 
12t2 2 15t 1 12

t2 1 1
5 lim

tl`
 

12t2

t 2 2
15t

t 2 1
12

t 2

t2

t 2 1
1

t 2

t2

2``
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EXAMPLE  12

FOR REVIEW
In Section 2.3, we saw a way
to find horizontal asymptotes by
considering the behavior of the
function as x (or t) gets large. For
large t, ,
because the t-term and the constant
term are small compared with the

-term when t is large. Similarly,
Thus, for large t,

Thusthefunction f has

a horizontal asymptote at y 5 12.

12t2

t2 5 12.

f 1 t 2 5
12t2 2 15t 1 12

t2 1 1
 <

t2 1 1 < t2.
t2

12t2 2 15t 1 12 < 12t2



(c)

The highest power of x in the denominator is x (to the first power). There is a higher power
of x in the numerator, but we don’t divide by this. Notice that the denominator approaches
4, while the numerator becomes infinitely large, so

(d)

The highest power of x in the denominator is The denominator approaches 3, while
the numerator becomes a negative number that is larger and larger in magnitude, so

TRY YOUR TURN 8

The method used in Example 12 is a useful way to rewrite expressions with fractions so
that the rules for limits at infinity can be used.

Finding Limits at Infinity
If for polynomials and and

can be found as follows.

1. Divide and by the highest power of x in .

2. Use the rules for limits, including the rules for limits at infinity,

to find the limit of the result from step 1.

For an alternate approach to finding limits at infinity, see Exercise 81.

lim
xl`

 
1
xn 5 0  and  lim

xl2`
 

1
xn 5 0,

q 1x 2q 1x 2p 1x 2

lim
xl`

 f 1x 2
lim

xl2`
 f 1x 2q 1x 2 2 0,q 1x 2 ,p 1x 2f 1x 2 5 p 1x 2 /q 1x 2 ,

lim
xl`

 
5x2 2 4x3

3x2 1 2x 2 1
5 2`.

x2.

lim
xl`

 
5x2 2 4x3

3x2 1 2x 2 1
5 lim

xl`
 

5 2 4x

3 1
2

x
2

1

x2

lim
xl`

 
3x2 1 2

4x 2 3
5 `.

lim
xl`

 
3x2 1 2

4x 2 3
5 lim

xl`
 

3x 1
2
x

4 2
3
x
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3.1 EXERCISES
In Exercises 1–4, choose the best answer for each limit.

1. If and then 

a. is 5. b. is 6.

c. does not exist. d. is infinite.

2. If but 

then 

a. is b. does not exist.

c. is infinite. d. is 1.

21.

lim
xl2

 f 1x 2
f 12 2 5 1,lim

xl22
 f 1x 2 5 lim

xl21
 f 1x 2 5 21,

lim
xl2

 f 1x 2lim
xl21

 f 1x 2 5 6,lim
xl22

 f 1x 2 5 5

3. If but does not exist, 

then 

a. does not exist. b. is 6.

c. is d. is 

4. If and then 

a. is b. is 

c. does not exist. d. is 1.

2`.`.

lim
xl1

 f 1x 2lim
xl11

 f 1x 2 5 2`,lim
xl12

 f 1x 2 5 2`

`.2`.

lim
xl4

 f 1x 2
f 14 2lim

xl42
 f 1x 2 5 lim

xl41
 f 1x 2 5 6,

YOUR TURN 8 Find

.lim
xl`

 
2x2 1 3x 2 4

6x2 2 5x 1 7
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Decide whether each limit exists. If a limit exists, estimate its
value.

5. a. b. lim
xl0

 f 1x 2lim
xl3

 f 1x 2

10. a. b. a 5 2a 5 1

f x

x

0 21–1–2 3

F(x)

x

4

2

6. a. b. lim
xl21

 F 1x 2lim
xl2

 F 1x 2

7. a. b. lim
xl2

 f 1x 2lim
xl0

 f 1x 2

8. a. b. lim
xl5

 g 1x 2lim
xl3

 g 1x 2

f x

x

g x

x

In Exercises 9 and 10, use the graph to find (i) 

(ii) (iii) and (iv) if it exists.

9. a. b. a 5 21a 5 22

f 1a 2lim
xla

 f 1x 2 ,lim
xla1

 f 1x 2 ,

lim
xla2

 f 1x 2 ,

0

f(x)
1

–1

–2 –1 1

x

Decide whether each limit exists. If a limit exists, find its value.
11. lim

xl`
 f 1x 2

12. lim
xl2`

 g 1x 2

13. Explain why in Exercise 6 exists, but in

Exercise 9 does not.

14. In Exercise 10, why does even though

15. Use the table of values to estimate lim
xl1

 f 1x 2 .

f 1 1 2 5 2?
lim
xl1

 f 1x 2 5 1,

lim
xl22

 f 1x 2lim
xl2

 F 1x 2

Complete the tables and use the results to find the indicated
limits.

16. If find lim
xl1

 f 1x 2 .f 1x 2 5 2x2 2 4x 1 7,

0

f(x)

1

–2

2

–2 1 2 3 x

0

f(x)

3

–2 4 x

0

g(x)

3

–3

6

–2 4 x

x 0.9 0.99 0.999 0.9999 1.0001 1.001 1.01 1.1

3.9 3.99 3.999 3.9999 4.0001 4.001 4.01 4.1f 1x 2

x 0.9 0.99 0.999 1.001 1.01 1.1

5.000002 5.000002f 1x 2
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17. If find lim
xl2

 k 1x 2 .k 1x 2 5
x3 2 2x 2 4

x 2 2
, 45. 46.

47. 48.

49. 50.

51. 52.

53. . Find .

54. . Find .

55.

a. Find . b. Find .

56.

a. Find . b. Find .

In Exercises 57–60, calculate the limit in the specified exercise,
using a table such as in Exercises 15–20. Verify your answer by
using a graphing calculator to zoom in on the point on the
graph.

57. Exercise 31 58. Exercise 32

59. Exercise 33 60. Exercise 34

61. Let 

a. Find 

b. Find the vertical asymptote of the graph of 

c. Compare your answers for parts a and b. What can you con-
clude?

62. Let 

a. Find 

b. Find the vertical asymptote of the graph of 

c. Compare your answers for parts a and b. Are they related?
How?

63. How can you tell that the graph in Figure 10 is more represen-
tative of the function than the graph in
Figure 11?

64. A friend who is confused about limits wonders why you inves-
tigate the value of a function closer and closer to a point,
instead of just finding the value of a function at the point. How
would you respond?

f 1x 2 5 1 / 1x 2 1 2

G 1x 2 .

lim
xl4

 G 1x 2 .

G 1x 2 5
26

1x 2 4 2 2
 .

F 1x 2 .

lim
xl22

 F 1x 2 .

F 1x 2 5
3x

1x 1 2 2 3
 .

lim
xl3

 g 1x 2lim
xl0

 g 1x 2

Let g 1x 2 5 •
5

x2 2 2

7

if x , 0

if 0 # x # 3 .

if x . 3

lim
xl5

 f 1x 2lim
xl3

 f 1x 2

Let f 1x 2 5 •
x 2 1

2

x 1 3

if x , 3

if 3 # x # 5 .

if x . 5

lim
xl22

 g 1x 2Let g 1x 2 5 e
0
1
2x2 2 3

if x 5 22

if x 2 22

lim
xl21

 f 1x 2Let f 1x 2 5 e
x3 1 2

5

if x 2 21

if x 5 21

lim
xl`

 
25x3 2 4x2 1 8

6x2 1 3x 1 2
lim
xl`

 
2x2 2 7x4

9x2 1 5x 2 6

lim
xl`

 
x4 2 x3 2 3x

7x2 1 9
lim
xl`

 
2x3 2 x 2 3

6x2 2 x 2 1

lim
xl`

 
2x2 2 1

3x4 1 2
lim
xl`

 
3x3 1 2x 2 1

2x4 2 3x3 2 2

lim
xl`

 
x2 1 2x 2 5

3x2 1 2
lim

xl2`
 

3x2 1 2x

2x2 2 2x 1 1

18. If find lim
xl21

 f 1x 2 .f 1x 2 5
2x3 1 3x2 2 4x 2 5

x 1 1
,

19. If find lim
xl1

 h 1x 2 .h 1x 2 5
"x 2 2

x 2 1
,

20. If find lim
xl3

 f 1x 2 .f 1x 2 5
"x 2 3

x 2 3
 ,

x 0.9 0.99 0.999 1.001 1.01 1.1

h 1x 2

x 2.9 2.99 2.999 3.001 3.01 3.1

f 1x 2

x 1.9 1.99 1.999 2.001 2.01 2.1

k 1x 2

x
f 1x 2

20.920.9920.99921.00121.0121.1

Let and Use the limit rules to

find each limit.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Use the properties of limits to help decide whether each limit
exists. If a limit exists, find its value.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44. lim
xl2`

 
8x 1 2

4x 2 5
lim
xl`

 
3x

7x 2 1

lim
hl0

 
1x 1 h 2 3 2 x3

h
lim
hl0

 
1x 1 h 2 2 2 x2

h

lim
xl36

 
!x 2 6

x 2 36
lim

xl25
 
!x 2 5

x 2 25

lim
xl0

 
21 / 1x 1 2 2 1 1 /2

x
lim
xl0

 
1 / 1x 1 3 2 2 1 /3

x

lim
xl5

 
x2 2 3x 2 10

x 2 5
lim

xl22
 
x2 2 x 2 6

x 1 2

lim
xl23

 
x2 2 9

x2 1 x 2 6
lim
xl1

 
5x2 2 7x 1 2

x2 2 1

lim
xl22

 
x2 2 4

x 1 2
lim
xl3

 
x2 2 9

x 2 3

lim
xl4

 
5g 1x 2 1 2

1 2 f 1x 2
lim
xl4

 
f 1x 2 1 g 1x 2

2g 1x 2

lim
xl4

31 1 f 1x 2 4 2lim
xl4

 2f1x2

lim
xl4

 "3 g 1x 2lim
xl4

 "f 1x 2

lim
xl4

 log3 f 1x 2lim
xl4

 
f 1x 2
g 1x 2

lim
xl4

3g 1x 2 . f 1x 2 4lim
xl4

3f 1x 2 2 g 1x 2 4

lim
xl4

 g 1x 2 5 27.lim
xl4

 f 1x 2 5 9



65. Use a graph of to answer the following questions.

a. Find 

b. Where does the function have a horizontal asymptote?

66. Use a graphing calculator to answer the following questions.

a. From a graph of what do you think is the value of
Support this by evaluating the function for

several large values of x.

b. Repeat part a, this time using the graph of 

c. Based on your results from parts a and b, what do you 
think is the value of where n is a positive

integer? Support this by experimenting with other positive
integers n.

67. Use a graph of to answer the following questions.

a. Find 

b. Where does the function ln x have a vertical asymptote?

68. Use a graphing calculator to answer the following questions.

a. From a graph of what do you think is the value
of Support this by evaluating the function for

several small values of x.

b. Repeat part a, this time using the graph of 

c. Based on your results from parts a and b, what do you think
is the value of where n is a positive integer?

Support this by experimenting with other positive integers n.

69. Explain in your own words why the rules for limits at infinity
should be true.

70. Explain in your own words what Rule 4 for limits means.

Find each of the following limits (a) by investigating values of
the function near the x-value where the limit is taken, and 
(b) using a graphing calculator to view the function near that
value of x.

71. 72.

73. 74.

Use a graphing calculator to graph the function. (a) Determine
the limit from the graph. (b) Explain how your answer could be
determined from the expression for 

75. 76.

77. 7 8 .

79.

80.

81. Explain why the following rules can be used to find
:

a. If the degree of is less than the degree of the
limit is 0.

q 1x 2 ,p 1x 2
lim
xl`

 3p 1x 2 /q 1x 2 4

lim
xl2`

 
1 1 1 5x1/3 1 2x5/3 2 3

x5

lim
xl`

 
1 1 1 5x1/3 1 2x5/3 2 3

x5

lim
xl`

 
"36x2 1 2x 1 7

3x
lim

xl2`
 
"36x2 1 2x 1 7

3x

lim
xl2`

 
"9x2 1 5

2x
lim
xl`

 
"9x2 1 5

2x

f 1x 2 .

lim
xl4

 
x3/2 2 8

x 1 x1/2 2 6
lim

xl21
 
x1/3 1 1

x 1 1

lim
xl2

 
x4 1 x 2 18

x2 2 4
lim
xl1

 
x4 1 4x3 2 9x2 1 7x 2 3

x 2 1

lim
xl01

 x 1 ln x 2n,

y 5 x 1 ln x 2 2.

lim
xl01

 x ln x?
y 5 x ln x,

lim
xl01

 ln x.

f 1x 2 5 ln x

lim
xl`

 xne2x,

y 5 x2e2x
 .

lim
xl`

 xe2x?
y 5 xe2x,

ex

lim
xl2`

 ex.

f 1x 2 5 ex
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b. If the degree of is equal to the degree of the
limit is where A and B are the leading coefficients of

and respectively.

c. If the degree of is greater than the degree of the
limit is or .

APPLICATIONS
Business and Economics

82. APPLY IT Consumer Demand When the price of an
essential commodity (such as gasoline) rises rapidly, consump-
tion drops slowly at first. If the price continues to rise, how-
ever, a “tipping” point may be reached, at which consumption
takes a sudden substantial drop. Suppose the accompanying
graph shows the consumption of gasoline, in millions of
gallons, in a certain area. We assume that the price is rising
rapidly. Here t is time in months after the price began rising.
Use the graph to find the following.

G 1 t 2 ,

2``

q 1x 2 ,p 1x 2
q 1x 2 ,p 1x 2

A /B,
q 1x 2 ,p 1x 2

a. b.

c. d. The tipping point (in months)

83. Sales Tax Officials in California tend to raise the sales tax in
years in which the state faces a budget deficit and then cut the
tax when the state has a surplus. The graph below shows the
California state sales tax since it was first established in 1933.
Let represent the sales tax per dollar spent in year x. Find
the following. Source: California State.

a. b.

c. d.

e. T 109 2

lim
xl09

 T 1x 2lim
xl091

 T 1x 2

lim
xl092

 T 1x 2lim
xl53

 T 1x 2

T 1x 2

G 1 16 2

lim
tl16

 G 1 t 2lim
tl12

 G 1 t 2

t

G t
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present value equation as n approaches infinity to derive a
formula for the present value of a share of preferred stock pay-
ing a periodic dividend R. Source: Robert D. Campbell.

89. Growing Annuities For some annuities encountered in business
finance, called growing annuities, the amount of the periodic
payment is not constant but grows at a constant periodic rate.
Leases with escalation clauses can be examples of growing
annuities. The present value of a growing annuity takes the form

where

amount of the next annuity payment,

expected constant annuity growth rate,

required periodic return at the time the annuity is
evaluated,

number of periodic payments.

A corporation’s common stock may be thought of as a claim on
a growing annuity where the annuity is the company’s annual
dividend. However, in the case of common stock, these
payments have no contractual end but theoretically continue
forever. Compute the limit of the expression above as n
approaches infinity to derive the Gordon–Shapiro Dividend
Model popularly used to estimate the value of common stock.
Make the reasonable assumption that (Hint: What
happens to as if Source: Robert D.
Campbell.

Life Sciences

90. Alligator Teeth Researchers have developed a mathematical
model that can be used to estimate the number of teeth at
time t (days of incubation) for Alligator mississippiensis,
where

Source: Journal of Theoretical Biology.

a. Find the number of teeth of an alligator that hatched
after 65 days.

b. Find and use this value as an estimate of the

number of teeth of a newborn alligator. (Hint: See Exercise
65.) Does this estimate differ significantly from the estimate
of part a?

91. Sediment To develop strategies to manage water quality in
polluted lakes, biologists must determine the depths of
sediments and the rate of sedimentation. It has been deter-
mined that the depth of sediment (in centimeters) with
respect to time (in years before 1990) for Lake Coeur d’Alene,
Idaho, can be estimated by the equation

Source: Mathematics Teacher.

a. Find and interpret.

b. Find and interpret.lim
tl` 

D 1 t 2
D 120 2

D 1 t 2 5 155 1 1 2 e20.0133t 2 .

D 1 t 2

lim
tl`

 N 1 t 2

N 1 65 2 ,

N 1 t 2 5 71.8e28.96e20.0685t
.

N 1 t 2

0 , a , 1? 2nl `an
i . g.

 n 5

 i 5

 g 5

 R 5

P 5
R

i 2 g
c1 2 a

1 1 g

1 1 i
b

n

d ,

84. Postage The graph below shows how the postage required to
mail a letter in the United States has changed in recent years.
Let be the cost to mail a letter in the year t. Find the fol-
lowing.  Source: United States Postal Service.

a.

b.

c.

d. C 12009 2

lim
tl2009

 C 1 t 2

lim
tl20091

 C 1 t 2

lim
tl20092

 C 1 t 2

C 1 t 2
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85. Average Cost The cost (in dollars) for manufacturing a partic-
ular DVD is

where x is the number of DVDs produced. Recall from the pre-
vious chapter that the average cost per DVD, denoted by 
is found by dividing by x. Find and interpret 

86. Average Cost In Chapter 1, we saw that the cost to fly x miles
on American Airlines could be approximated by the equation

Recall from the previous chapter that the average cost per mile,
denoted by , is found by dividing C(x) by x. Find and
interpret . Source: American Airlines.

87. Employee Productivity A company training program has
determined that, on the average, a new employee produces

items per day after s days of on-the-job training, where

Find and interpret 

88. Preferred Stock In business finance, an annuity is a series of
equal payments received at equal intervals for a finite period of
time. The present value of an n-period annuity takes the form

where R is the amount of the periodic payment and i is the
fixed interest rate per period. Many corporations raise money
by issuing preferred stock. Holders of the preferred stock,
called a perpetuity, receive payments that take the form of an
annuity in that the amount of the payment never changes.
However, normally the payments for preferred stock do not
end but theoretically continue forever. Find the limit of this

P 5 R c
1 2 1 1 1 i 22n

i
d ,

lim
sl`

 P 1 s 2 .

P 1 s 2 5
63s

s 1 8
 .

P 1 s 2

lim
xl`

 C 1x 2
C 1x 2

C 1x 2 5 0.0738x 1 111.83.

lim
xl`

C 1x 2 .C 1x 2
C 1x 2 ,

C 1x 2 5 15,000 1 6x,



92. Drug Concentration The concentration of a drug in a
patient’s bloodstream h hours after it was injected is given
by

Find and interpret 

Social Sciences

93. Legislative Voting Members of a legislature often must vote
repeatedly on the same bill. As time goes on, members may
change their votes. Suppose that is the probability that an
individual legislator favors an issue before the first roll call
vote, and suppose that p is the probability of a change in posi-
tion from one vote to the next. Then the probability that the
legislator will vote “yes” on the nth roll call is given by

pn 5
1

2
1 ap0 2

1

2
b 1 1 2 2p 2n.

p0

lim
hl`

 A 1h 2 .

A 1h 2 5
0.17h

h2 1 2
 .
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For example, the chance of a “yes” on the third roll call vote is

Source: Mathematics in the Behavioral and Social Sciences.

Suppose that there is a chance of that Congressman
Stephens will favor the budget appropriation bill before the
first roll call, but only a probability of that he will
change his mind on the subsequent vote. Find and interpret the
following.

a. b.

c. d.

YOUR TURN ANSWERS 

1. 3 2. 4 3. 5 4. Does not exist. 5. 49

6. �7 7. 1/2 8. 1/3

lim
nl`

 pnp8

p4p2

p 5 0.2

p0 5 0.7

p3 5
1

2
1 ap0 2

1

2
b 1 1 2 2p 2 3.

Continuity
How does the average cost per day of a rental car change with the
number of days the car is rented?

3.2
APPLY IT 

We will answer this question in Exercise 38.

In 2009, Congress passed legislation raising the federal minimum wage for the third time
in three years. Figure 14 below shows how that wage has varied since it was instituted in 1938.
We will denote this function by f (t), where t is the year. Source: U.S. Department of Labor.

Notice from the graph that and that so that 

does not exist. Notice also that A point such as this,

where a function has a sudden sharp break, is a point where the function is discontinuous.
In this case, the discontinuity is caused by the jump in the minimum wage from $4.75 per
hour to $5.15 per hour in 1997.

f 1 1997 2 5 5.15.lim
tl1997

 f 1 t 2

lim
tl19971

 f 1 t 2 5 5.15,lim
tl19972

 f 1 t 2 5 4.75
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Intuitively speaking, a function is continuous at a point if you can draw the graph of the
function in the vicinity of that point without lifting your pencil from the paper. As we
already mentioned, this would not be possible in Figure 14 if it were drawn correctly; there
would be a break in the graph at for example. Conversely, a function is discon-
tinuous at any x-value where the pencil must be lifted from the paper in order to draw the
graph on both sides of the point. A more precise definition is as follows.

Continuity at 
A function f is continuous at if the following three conditions are satisfied:

1. is defined,

2. exists, and

3.

If f is not continuous at c, it is discontinuous there.

The following example shows how to check a function for continuity at a specific point.
We use a three-step test, and if any step of the test fails, the function is not continuous at
that point.

Continuity
Determine if each function is continuous at the indicated x-value.

(a) in Figure 15 at 

SOLUTION

Step 1 Does the function exist at ?

The open circle on the graph of Figure 15 at the point where means
that does not exist at . Since the function does not pass the first
test, it is discontinuous at , and there is no need to proceed to Step 2.x 5 3

x 5 3f 1x 2
x 5 3

x 5 3

x 5 3f 1x 2

lim
xlc

 f 1x 2 5 f 1 c 2 .

lim
xlc

 f 1x 2

f 1 c 2

x 5 c
x 5 c

t 5 1997,
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EXAMPLE  1

(b) in Figure 16 at 

SOLUTION

Step 1 Does the function exist at ?

According to the graph in Figure 16, exists and is equal to –1.

Step 2 Does the limit exist at ?

As x approaches 0 from the left, is –1. As x approaches 0 from the
right, however, is 1. In other words,

while

lim
xl01

 h 1x 2 5 1.

lim
xl02

 h 1x 2 5 21,

h 1x 2
h 1x 2

x 5 0

h 10 2
x 5 0

x 5 0h 1x 2

0 3 x

f(x)

2

1

FIGURE 15

h(x)

0 x

1

–1

FIGURE 16



Since no single number is approached by the values of as x
approaches 0, the limit does not exist. Since the function does

not pass the second test, it is discontinuous at , and there is no need
to proceed to Step 3.

(c) in Figure 17 at 

SOLUTION

Step 1 Is the function defined at ?

In Figure 17, the heavy dot above 4 shows that is defined. In fact,
.

Step 2 Does the limit exist at ?

The graph shows that

Therefore, the limit exists at and 

Step 3 Does ?

Using the results of Step 1 and Step 2, we see that .

Since the function does not pass the third test, it is discontinuous at .x 5 4

lim
xl4

 g 1x 2g 14 2 2

lim
xl4

 g 1x 2g 14 2 5

lim
xl4

 g 1x 2 5 22.

x 5 4

lim
xl42

 g 1x 2 5 22, and lim
xl41

 g 1x 2 5 22.

x 5 4

g 14 2 5 1
g 14 2

x 5 4

x 5 4g 1x 2

x 5 0

lim
xl0 

h 1x 2
h 1x 2
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FIGURE 18
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FIGURE 17

(d) in Figure 18 at .

SOLUTION

Step 1 Does the function exist at ?

The function f graphed in Figure 18 is not defined at . Since the
function does not pass the first test, it is discontinuous at . (Func-
tion f is continuous at any value of x greater than –2, however.)

Notice that the function in part (a) of Example 1 could be made continuous simply by
defining Similarly, the function in part (c) could be made continuous by redefin-
ing In such cases, when the function can be made continuous at a specific
point simply by defining or redefining it at that point, the function is said to have a removable
discontinuity.

A function is said to be continuous on an open interval if it is continuous at every 
x-value in the interval. Continuity on a closed interval is slightly more complicated because

g 14 2 5 22.
f 1 3 2 5 2.

x 5 22
x 5 22

x 5 22

x 5 22f 1x 2



we must decide what to do with the endpoints. We will say that a function f is continuous from
the right at if A function f is continuous from the left at 

if With these ideas, we can now define continuity on a closed interval.

Continuity on a Closed Interval
A function is continuous on a closed interval if

1. it is continuous on the open interval 

2. it is continuous from the right at and

3. it is continuous from the left at 

For example, the function shown in Figure 19, is continuous on the
closed interval By defining continuity on a closed interval in this way, we need

not worry about the fact that does not exist to the left of or to the right
of

The table below lists some key functions and tells where each is continuous.
x 5 1.

x 5 21"1 2 x2

321, 1 4.
f 1x 2 5 "1 2 x2,

x 5 b.

x 5 a,

1a, b 2 ,

3a, b 4

lim
xlc2

 f 1x 2 5 f 1 c 2 .
x 5 clim

xlc1
 f 1x 2 5 f 1 c 2 .x 5 c
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q 1x 2 2 0

(continued)

ax 1 b $ 0

Continuous Functions

Type of Function Where It Is Continuous Graphic Example

Polynomial Function
For all x

where 
are real 

numbers, not all 0

Rational Function

where and For all x where 

are polynomials, 
with 

Root Function

where a For all x where 

and b are real numbers, 

with and 

ax 1 b $ 0

a 2 0

y 5 "ax 1 b ,

q 1x 2 2 0
q 1x 2

p 1x 2y 5
p 1x 2
q 1x 2

 ,

an21, ) , a1, a0

an) 1 a1x 1 a0,
y 5 anx

n 1 an21x
n21 1
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Continuous Functions (cont.)

Type of Function Where It Is Continuous Graphic Example

Exponential Function
where For all x

Logarithmic Function
where , For all 

a 2 1
x . 0a . 0y 5 loga x

a . 0y 5 ax
y

x0

y

x0

Continuous functions are nice to work with because finding is simple if f is
continuous: just evaluate 

When a function is given by a graph, any discontinuities are clearly visible. When a
function is given by a formula, it is usually continuous at all x-values except those where
the function is undefined or possibly where there is a change in the defining formula for the
function, as shown in the following examples.

Continuity

Find all values where the function is discontinuous.

(a)

SOLUTION This rational function  is discontinuous wherever the denominator is zero.
There is a discontinuity when .

(b)

SOLUTION This exponential function is continuous for all x. TRY YOUR TURN 1

Continuity

Find all values of x where the following piecewise function is discontinuous.

SOLUTION Since each piece of this function is a polynomial, the only x-values where 
f might be discontinuous here are 1 and 3. We investigate at first. From the left, where
x-values are less than 1,

From the right, where x-values are greater than 1,

lim
xl11

 f 1x 2 5 lim
xl11

1x2 2 3x 1 4 2 5 12 2 3 1 4 5 2.

lim
xl12

 f 1x 2 5 lim
xl12

1x 1 1 2 5 1 1 1 5 2.

x 5 1

f 1x 2 5 cx 1 1

x2 2 3x 1 4

5 2 x

if x , 1

if 1 # x # 3.

if x . 3

g 1x 2 5 e2x23

a 5 7 /2

f 1x 2 5
4x 2 3

2x 2 7

x 5 a

f 1 c 2 .
lim
xlc

 f 1x 2

EXAMPLE  3

EXAMPLE  2

YOUR TURN 1 Find all values
where the function is 

discontinuous.

f 1x 2 5 "5x 1 3

x 5 a



Furthermore, so Thus f is continuous at
since

Now let us investigate From the left,

From the right,

Because the limit does not exist, so f is discontinuous

at regardless of the value of 

The graph of can be drawn by considering each of the three parts separately. In
the first part, the line is drawn including only the section of the line to the left of

The other two parts are drawn similarly, as illustrated in Figure 20. We can see by
the graph that the function is continuous at and discontinuous at , which con-
firms our solution above. TRY YOUR TURN 2

x 5 3x 5 1
x 5 1.

y 5 x 1 1
f 1x 2

f 1 3 2 .x 5 3,

lim
xl3

 f 1x 2lim
xl32

 f 1x 2 2 lim
xl31

 f 1x 2 ,

lim
xl31

 f 1x 2 5 lim
xl31

1 5 2 x 2 5 5 2 3 5 2.

lim
xl32

 f 1x 2 5 lim
xl32

1x2 2 3x 1 4 2 5 32 2 3 1 3 2 1 4 5 4.

x 5 3.

f 1 1 2 5 lim
xl1

 f 1x 2 .x 5 1
lim
xl1

 f 1x 2 5 f 1 1 2 5 2.f 1 1 2 5 12 2 3 1 4 5 2,
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Some graphing calculators have the ability to draw piecewise functions. On the TI-84 Plus, letting

Y1 (X 1)(X 1) (X2 3X 4)(1 X)(X 3) (5 X)(X 3)

produces the graph shown in Figure 21(a).

It is important here that the graphing mode be set on DOT rather than CONNECTED.
Otherwise, the calculator will show a line segment at connecting the parabola
to the line, as in Figure 21(b), although such a segment does not really exist.

x 5 3

.21##121,15

2

1

3

4

42 310 x

y

FIGURE 20

CAUTION

�2 6
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FIGURE 21
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(a) (b)

YOUR TURN 2 Find all values
of x where the piecewise function is
discontinuous.

f 1x 2 5 c5x 2 4

x2

x 1 6

if x , 0

if 0 # x # 3

if x . 3

TECHNOLOGY NOTE



Cost Analysis
A trailer rental firm charges a flat $8 to rent a hitch. The trailer itself is rented for $22 per
day or fraction of a day. Let represent the cost of renting a hitch and trailer for x days.

(a) Graph C.

SOLUTION The charge for one day is $8 for the hitch and $22 for the trailer, or $30.
In fact, if then To rent the trailer for more than one day, but
not more than two days, the charge is dollars. For any value of x sat-
isfying the cost is Also, if then 
These results lead to the graph in Figure 22.

(b) Find any values of x where C is discontinuous.

SOLUTION As the graph suggests, C is discontinuous at and all other
positive integers.

One application of continuity is the Intermediate Value Theorem, which says that if a
function is continuous on a closed interval the function takes on every value between

and For example, if and then f must take on every value
between and 5 as x varies over the interval In particular (in this case), there must be
a value of x in the interval such that If f were discontinuous, however, this
conclusion would not necessarily be true. This is important because, if we are searching for
a solution to in we would like to know that a solution exists.31, 2 4,f 1x 2 5 0

f 1x 2 5 0.1 1, 2 2
31, 2 4.23

f 12 2 5 5,f 1 1 2 5 23f 1b 2 .f 1a 2
3a, b 4,

x 5 1, 2, 3, 4,

C 1x 2 5 74.2 , x # 3,C 1x 2 5 52.1 , x # 2,
8 1 2 . 22 5 52

C 1x 2 5 30.0 , x # 1,

C 1x 2
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EXAMPLE  4

0 21 3 4 5

C(x)

x

100

80

60

40

20

FIGURE 22

3.2 EXERCISES

3.

4.

In Exercises 1–6, find all values where the function is dis-
continuous. For each point of discontinuity, give (a) if it
exists, (b) , (c) , (d) , and (e) identify

which conditions for continuity are not met. Be sure to note
when the limit doesn’t exist.

1.

2.

lim
xla

 f 1 x 2lim
xla1

 f 1 x 2lim
xla2

 f 1 x 2
f 1 a 2

x 5 a

f(x)

1
2
3

–3

0 31–2–4 x

f(x)

–3

3
2

–2
210 3 x

–4 –2

f(x)

2

–2
2–2 0 x

f(x)

2
3

–3
–2

0 21–3 x



5.

6.

Find all values where the function is discontinuous. For
each value of x, give the limit of the function as x approaches a.
Be sure to note when the limit doesn’t exist.

7.

8.

9.

10.

11.

12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, (a) graph the given function, (b) find all values
of x where the function is discontinuous, and (c) find the limit
from the left and from the right at any values of x found in part b.

19.

20.

21. g 1x 2 5 c11

x2 1 2

11

if x , 21

if 21 # x # 3

if x . 3

f 1x 2 5 cx 2 1

0

x 2 2

if x , 1

if 1 # x # 4

if x . 4

f 1x 2 5 c1

x 1 3

7

if x , 2

if 2 # x # 4

if x . 4

j 1x 2 5 ln `
x 1 2

x 2 3
`r 1x 2 5 ln `

x

x 2 1
`

j 1x 2 5 e1/xk 1x 2 5 e"x21

r 1x 2 5
0 5 2 x 0
x 2 5

p 1x 2 5
0 x 1 2 0
x 1 2

q 1x 2 5 23x3 1 2x2 2 4x 1 1

p 1x 2 5 x2 2 4x 1 11

  f 1x 2 5
x2 2 25

x 1 5

f 1x 2 5
x2 2 4

x 2 2

f 1x 2 5
22x

12x 1 1 2 1 3x 1 6 2

f 1x 2 5
5 1 x

x 1x 2 2 2

x 5 a
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f(x)

3

–3

2– 5 x

f(x)

3

2
–2

4–3 –1 0 x

22.

23.

24.

In Exercises 25–28, find the value of the constant k that makes
the function continuous.

25.

26.

27.

28.

29. Explain in your own words what the Intermediate Value
Theorem says and why it seems plausible.

30. Explain why can be evaluated by substituting

In Exercises 31–32, (a) use a graphing calculator to tell where
the rational function is discontinuous, and (b) ver-
ify your answer from part (a) by using the graphing calculator
to plot and determine where You will need to
choose the viewing window carefully.

31.

32.

33. Let Determine all values of x at which 

g is discontinuous, and for each of these values of x, define g in such a
manner so as to remove the discontinuity, if possible. Choose one of
the following. Source: Society of Actuaries.

a. g is discontinuous only at 24 and 2.
Define to make g continuous at 24.
g(2) cannot be defined to make g continuous at 2.

b. g is discontinuous only at 24 and 2.
Define to make g continuous at 24.
Define g(2) 5 6 to make g continuous at 2.

c. g is discontinuous only at 24 and 2.
g(24) cannot be defined to make g continuous at 24.
g(2) cannot be defined to make g continuous at 2.

d. g is discontinuous only at 2.
Define g(2) 5 6 to make g continuous at 2.

e. g is discontinuous only at 2.
g(2) cannot be defined to make g continuous at 2.

g 124 2 5 21
6

g 124 2 5 21
6

g 1x 2 5
x 1 4

x2 1 2x 2 8
.

f 1x 2 5
x2 1 3x 2 2

x3 2 0.9x2 1 4.14x 1 5.4

f 1x 2 5
x2 1 x 1 2

x3 2 0.9x2 1 4.14x 2 5.4

Q 1 x 2 5 0.Q 1 x 2

P 1 x 2 /Q 1 x 2

x 5 2.

lim
xl2

1 3x2 1 8x 2

h 1x 2 5 c3x2 1 2x 2 8

x 1 2

3x 1 k

if x 2 22

if x 5 22

g 1x 2 5 c2x2 2 x 2 15

x 2 3

kx 2 1

if x 2 3

if x 5 3

g 1x 2 5 bx3 1 k

kx 2 5

if x # 3

if x . 3

f 1x 2 5 bkx2

x 1 k

if x # 2

if x . 2

h 1x 2 5 bx2 1 x 2 12

3 2 x

if x # 1

if x . 1

h 1x 2 5 b4x 1 4

x2 2 4x 1 4

if x # 0

if x . 0

g 1x 2 5 c0

x2 2 5x

5

if x , 0

if 0 # x # 5

if x . 5



34. Tell at what values of x the function in Figure 8 from the
previous section is discontinuous. Explain why it is discontinu-
ous at each of these values.

APPLICATIONS
Business and Economics

35. Production The graph shows the profit from the daily produc-
tion of x thousand kilograms of an industrial chemical. Use the
graph to find the following limits.

a. b. c.

d.

e. Where is the function discontinuous? What might account for
such a discontinuity?

f. Use the graph to estimate the number of units of the chemi-
cal that must be produced before the second shift is as prof-
itable as the first.

lim
xl10

 P 1x 2

lim
xl101

 P 1x 2lim
xl102

 P 1x 2lim
xl6

 P 1x 2

f 1x 2
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38. APPLY IT Car Rental Recently, a car rental firm charged
$36 per day or portion of a day to rent a car for a period of 1 to
5 days. Days 6 and 7 were then free, while the charge for days
8 through 12 was again $36 per day. Let represent the
average cost to rent the car for t days, where Find
the average cost of a rental for the following number of days.

a. 4 b. 5 c. 6 d. 7 e. 8

f. Find g. Find

h. Where is A discontinuous on the given interval?

39. Postage To send international first class mail (large envelopes)
from the United States to Australia in 2010, it cost $1.24 for
the first ounce, $0.84 for each additional ounce up to a total of
8 oz, and $1.72 for each additional four ounces after that up to
a total of 64 oz. Let be the cost to mail x ounces. Find the
following. Source: U.S. Postal Service.

a. b. c.

d. e. f.

g. h.

i. Find all values on the interval where the function C
is discontinuous.

Life Sciences

40. Pregnancy A woman’s weight naturally increases during the
course of a pregnancy. When she delivers, her weight immedi-
ately decreases by the approximate weight of the child. Sup-
pose that a 120-lb woman gains 27 lb during pregnancy,
delivers a 7-lb baby, and then, through diet and exercise, loses
the remaining weight during the next 20 weeks.

a. Graph the weight gain and loss during the pregnancy and the
20 weeks following the birth of the baby. Assume that the
pregnancy lasts 40 weeks, that delivery occurs immediately
after this time interval, and that the weight gain/loss before
and after birth is linear.

b. Is this a continuous function? If not, then find the value(s) of t
where the function is discontinuous.

41. Poultry Farming Researchers at Iowa State University and the
University of Arkansas have developed a piecewise function
that can be used to estimate the body weight (in grams) of a
male broiler during the first 56 days of life according to

where t is the age of the chicken (in days). Source: Poultry
Science.

a. Determine the weight of a male broiler that is 25 days old. 

b. Is a continuous function?

c. Use a graphing calculator to graph on by
Comment on the accuracy of the graph.

d. Comment on why researchers would use two different types
of functions to estimate the weight of a chicken at various ages.

30, 3000 4.
31, 56 4W 1 t 2

W 1 t 2

W 1 t 2 5 e
48 1 3.64t 1 0.6363t2 1 0.00963t3 if 1 # t # 28,

21004 1 65.8t if 28 , t # 56,

10, 64 2
C 1 14 2lim

xl14
 C 1x 2

lim
xl142

 C 1x 2lim
xl141

 C 1x 2C 1 3 2

lim
xl3

 C 1x 2lim
xl31

 C 1x 2lim
xl32

 C 1x 2

C 1x 2

lim
xl51

 A 1 t 2 .lim
xl52

 A 1 t 2 .

0 , t # 12.
A 1 t 2

P(x)

2000

1500

1000

500

15 206 1050 x

Pr
of

it 
(i

n 
do

lla
rs

)

Number of units
(thousands of kilograms)

(10, 1500)

(10, 1000)

Second
shift

First
shift

$4.00

$3.00

$2.50  400 , x

 150 , x # 400

 0 , x # 150

Cost per Mile Distance in Miles

36. Cost Analysis The cost to transport a mobile home depends on
the distance, x, in miles that the home is moved. Let rep-
resent the cost to move a mobile home x miles. One firm
charges as follows.

C 1x 2

Find the cost to move a mobile home the following distances.

a. 130 miles b. 150 miles c. 210 miles

d. 400 miles e. 500 miles

f. Where is C discontinuous?

37. Cost Analysis A company charges $1.25 per lb for a certain
fertilizer on all orders 100 lb. or less, and $1 per lb for orders
over 100 lb. Let represent the cost for buying x lb of the
fertilizer. Find the cost of buying the following.

a. 80 lb b. 150 lb c. 100 lb

d. Where is F discontinuous?

F 1x 2
YOUR TURN ANSWERS 
1. Discontinuous when a � .

2. Discontinuous at x � 0.

23 /5



This question will be answered in Example 4 of this section as we develop a method for
finding the rate of change of one variable with respect to a unit change in another variable.

Average Rate of Change One of the main applications of calculus is determining
how one variable changes in relation to another. A marketing manager wants to know how
profit changes with respect to the amount spent on advertising, while a physician wants to
know how a patient’s reaction to a drug changes with respect to the dose.

For example, suppose we take a trip from San Francisco driving south. Every half-hour
we note how far we have traveled, with the following results for the first three hours.
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Rates of Change
How does the manufacturing cost of a DVD change as the number of
DVDs manufactured changes?

3.3
APPLY IT 

If s is the function whose rule is

then the table shows, for example, that and so on.
The distance traveled during, say, the second hour can be calculated by

miles.
Distance equals time multiplied by rate (or speed); so the distance formula is 

Solving for rate gives or

For example, the average speed over the time interval from to is

or 46 mph. We can use this formula to find the average speed for any interval of time during
the trip, as shown below.

Average speed 5
s 1 3 2 2 s 10 2

3 2 0
5

138 2 0

3
5 46,

t 5 3t 5 0

Average speed 5
Distance

Time
 .

r 5 d / t,
d 5 rt.

s 12 2 2 s 1 1 2 5 104 2 55 5 49

s 12.5 2 5 124,s 1 1 2 5 55,s 10 2 5 0,

s 1 t 2 5 Distance from San Francisco at time t,

Time in Hours 0 0.5 1 1.5 2 2.5 3

Distance in Miles 0 30 55 80 104 124 138

FOR REVIEW
Recall from Section 1.1 the 
formula for the slope of a line
through two points and

Find the slopes of the lines through
the following points.

Compare your answers to the
average speeds shown in the table.

 1 1, 55 2   and  1 2, 104 2
 1 0.5, 30 2   and  1 1.5, 80 2
 1 0.5, 30 2   and  1 1, 55 2

y2 2 y1

x2 2 x1
.

1 x2, y2 2 :
1 x1, y1 2

Average Speed

Time Interval Average Speed 5
Distance

Time

to 

to 

to 

to 

to 
s 1b 2 2 s 1a 2

b 2 a
t 5 bt 5 a

s 1 3 2 2 s 1 1 2
3 2 1

5
83

2
5 41.5t 5 3t 5 1

s 12 2 2 s 1 1 2
2 2 1

5
49

1
5 49t 5 2t 5 1

s 1 1.5 2 2 s 10.5 2
1.5 2 0.5

5
50

1
5 50t 5 1.5t 5 0.5

s 1 1 2 2 s 10.5 2
1 2 0.5

5
25

0.5
5 50t 5 1t 5 0.5

Distance Traveled



The analysis of the average speed or average rate of change of distance s with respect
to t can be extended to include any function defined by to get a formula for the aver-
age rate of change of f with respect to x.

Average Rate of Change
The average rate of change of with respect to x for a function f as x changes from
a to b is

f 1 b 2 2 f 1 a 2

b 2 a
 .

f 1x 2

f 1x 2
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Minority Population

The United States population is becoming more diverse. Based on the U.S. Census popula-
tion projections for 2000 to 2050, the projected Hispanic population (in millions) can be
modeled by the exponential function

,

where corresponds to 2000 and . Use H to estimate the average rate of
change in the Hispanic population from 2000 to 2010. Source: U.S. Census Bureau.

SOLUTION On the interval from (2000) to (2010), the average rate of
change is 

� 0.873,

or 0.873 million. Based on this model, it is estimated that the Hispanic population in the
United States increased, on average, at a rate of about 873,000 people per year between
2000 and 2010. TRY YOUR TURN 1

<
46.521 2 37.791

10
5

8.73

10

H 1 10 2 2 H 10 2
10 2 0

5
37.791 1 1.021 2 10 2 37.791 1 1.021 2 0

10

t 5 10t 5 0

0 # t # 50t 5 0

H 1 t 2 5 37.791 1 1.021 2 t

1 2 3

s(t)

20

40

60

80

100

120

140

Change in time = 0.5 hr

Change in distance = 25 mi

Slope = Average Speed
25 mi
0.5 hr

= = 50 mi/hr

t

FIGURE 23

EXAMPLE  1

YOUR TURN 1 The projected
U.S. Asian population (in millions)
for this same time period is 

. Use A to estimate the
average rate of change from 2000 to
2010.

11.14 1 1.023 2 t
A 1 t 2 5

NOTE
The formula for the average rate of
change is the same as the formula
for the slope of the line through

and This
connection between slope and rate
of change will be examined more
closely in the next section.

1 b, f 1 b 2 2 .1 a, f 1 a 2 2

In Figure 23 we have plotted the distance vs. time for our trip from San Francisco, con-
necting the points with straight line segments. Because the change in y gives the change in
distance, and the change in x gives the change in time, the slope of each line segment gives
the average speed over that time interval:

Average speed.Slope 5
Change in y

Change in x
5

Change in distance

Change in time
5



Household Telephones

Some U.S. households are substituting wireless telephones for traditional landline tele-
phones. The graph in Figure 24 shows the percent of households in the United States with
landline telephones for the years 2005 to 2009.  Find the average rate of change in the per-
cent of households with a landline between 2005 and 2009. Source: Centers for Disease
Control and Prevention. 

SOLUTION Let be the percent of U.S. households with landlines in the year t. Then
the average rate of change between 2005 and 2009 was

,

or �4.05%. On average, the percent of U.S. households with landline telephones decreased
by about 4.05% per year during this time period. TRY YOUR TURN 2

L 12009 2 2 L 12005 2
2009 2 2005

5
73.5 2 89.7

4
5

216.2

4
5 24.05

L 1 t 2
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FIGURE 24

EXAMPLE  2

YOUR TURN 2 In Example 2,
find the average rate of change in
percent of households with a land-
line between 2007 and 2009.

2005 2006 2007 2008 2009

60

90

100

50

80

70Pe
rc

en
t

Year

89.7
82.0

73.5

Instantaneous Rate of Change Suppose a car is stopped at a traffic light. When
the light turns green, the car begins to move along a straight road. Assume that the distance
traveled by the car is given by the function 

for 0 # t # 15,

where t is the time in seconds and s(t) is the distance in feet. We have already seen how to
find the average speed of the car over any time interval. We now turn to a different prob-
lem, that of determining the exact speed of the car at a particular instant, say t 5 10.

The intuitive idea is that the exact speed at t 5 10 is very close to the average speed
over a very short time interval near t 5 10. If we take shorter and shorter time intervals near
t 5 10, the average speeds over these intervals should get closer and closer to the exact
speed at t 5 10. In other words, the exact speed at t 5 10 is the limit of the average speeds
over shorter and shorter time intervals near t 5 10. The following chart illustrates this idea.
The values in the chart are found using , so that, for example, 

and s 1 10.1 2 5 3 1 10.1 2 2 5 306.03.3 1 10 22 5 300
s 1 10 2 5s 1 t 2 5 3t2

s 1 t 2 5 3t2,

Approximation of Speed at 10 Seconds

Interval Average Speed

to 

to 

to 
s 1 10.001 2 2 s 1 10 2

10.001 2 10
5

300.060003 2 300

0.001
5 60.003t 5 10.001t 5 10

s 1 10.01 2 2 s 1 10 2
10.01 2 10

5
300.6003 2 300

0.01
5 60.03t 5 10.01t 5 10

s 1 10.1 2 2 s 1 10 2
10.1 2 10

5
306.03 2 300

0.1
5 60.3t 5 10.1t 5 10



The results in the chart suggest that the exact speed at t 5 10 is 60 ft/sec. We can con-
firm this by computing the average speed from t 5 10 to t 5 10 1 h, where h is a small, but
nonzero, number that represents a small change in time. (The chart does this for h 5 0.1, 
h 5 0.01, and h 5 0.001.) The average speed from t 5 10 to t 5 10 1 h is then

where h is not equal to 0. Saying that the time interval from 10 to 10 1 h gets shorter and
shorter is equivalent to saying that h gets closer and closer to 0. Therefore, the exact speed
at t 5 10 is the limit, as h approaches 0, of the average speed over the interval from t 5 10
to t 5 10 1 h; that is,

This example can be easily generalized to any function f. Let a be a specific x-value,
such as 10 in the example. Let h be a (small) number, which represents the distance
between the two values of x, namely, a and a 1 h. The average rate of change of f as x
changes from a to is

which is often called the difference quotient. Observe that the difference quotient is equiv-
alent to the average rate of change formula, which can be verified by letting in
the average rate of change formula. Furthermore, the exact rate of change of f at 
called the instantaneous rate of change of f at is the limit of this difference quotient.

Instantaneous Rate of Change
The instantaneous rate of change for a function f when is

provided this limit exists.

Remember that To find replace x with
in the expression for For example, if 

but

In the example just discussed, with the car starting from the traffic light, we saw that the
instantaneous rate of change gave the speed of the car. But speed is always positive, while

f 1 x 2 1 f 1 h 2 5 x2 1 h2.

f 1 x 1 h 2 5 1 x 1 h 2 2 5 x2 1 2xh 1 h2,

f 1x 2 5 x2,f 1x 2 .1x 1 h 2
f 1x 1 h 2 ,f 1x 1 h 2 2 f 1x 2 1 f 1h 2 .

lim
hl0

 
f 1 a 1 h 2 2 f 1 a 2

h
 ,

x 5 a

x 5 a,
x 5 a,

b 5 a 1 h

f 1a 1 h 2 2 f 1a 2
1a 1 h 2 2 a

5
f 1a 1 h 2 2 f 1a 2

h
 ,

a 1 h

 5 60 ft /sec.

 lim
hl0

 
s 1 10 1 h 2 2 s 1 10 2

h
 5 lim

hl0
1 60 1 3h 2

 5 60 1 3h,

 5
h 1 60 1 3h 2

h

 5
60h 1 3h2

h

 5
300 1 60h 1 3h2 2 300

h

 5
3 1 100 1 20h 1 h2 2 2 300

h

 
s 1 10 1 h 2 2 s 1 10 2
1 10 1 h 2 2 10

5
3 1 10 1 h 2 2 2 3 . 102

h
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CAUTION



instantaneous rate of change can be positive or negative. Therefore, we will refer to velocity
when we want to consider not only how fast something is moving but also in what direction it
is moving. In any motion along a straight line, one direction is arbitrarily labeled as positive, so
when an object moves in the opposite direction, its velocity is negative. In general, velocity is
the same as the instantaneous rate of change of a function that gives position in terms of time.

In Figure 25, we have plotted the function , giving distance as a function of
time. We have also plotted in green a line through the points (10, s(10)) and (15, s(15)). As we
observed earlier, the slope of this line is the same as the average speed between t 5 10 and
t 5 15. Finally, in red, we have plotted the line that results when the second point, (15, s(15)),
moves closer and closer to the first point until the two coincide. The slope of this line corre-
sponds to the instantaneous velocity at t 5 10. We will explore these ideas further in the next
section. Meanwhile, you might think about how to calculate the equations of these lines.

s 1 t 2 5 3t2
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FIGURE 25

An alternate, but equivalent, approach is to let a 1 h 5 b in the definition for instanta-
neous rate of change, so that h 5 b 2 a. This makes the instantaneous rate of change for-
mula look more like the average rate of change formula.

Instantaneous Rate of Change (Alternate Form)
The instantaneous rate of change for a function f when x 5 a can be written as

provided this limit exists.

Velocity

The distance in feet of an object from a starting point is given by 
where t is time in seconds.

(a) Find the average velocity of the object from 2 seconds to 4 seconds.

SOLUTION The average velocity is

ft per second. 

s 14 2 2 s 12 2
4 2 2

5
52 2 38

2
5

14

2
5 7

s 1 t 2 5 2t2 2 5t 1 40,

lim
bla

  
f 1b 2 2 f 1a 2

b 2 a
,

EXAMPLE  3



(b) Find the instantaneous velocity at 4 seconds.

SOLUTION

For the instantaneous velocity is

ft per second. We first calculate s(4 1 h) and s (4), that is,

and

Therefore, the instantaneous velocity at is

or 11 ft per second.

SOLUTION

For t 5 4, the instantaneous velocity is

ft per second. We first calculate s(b) and s(4), that is,

and

The instantaneous rate of change is then

Simplify the numerator.

Factor the numerator.

Cancel the b 2 4.

Calculate the limit. 

or 11 ft per second. TRY YOUR TURN 3

Manufacturing

A company determines that the cost in dollars to manufacture x cases of the DVD “Mathe-
maticians Caught in Embarrassing Moments” is given by

C 1x 2 5 100 1 15x 2 x2 10 # x # 7 2 .

 5 11,

 5 lim
bl4

 12b 1 3 2

 5 lim
bl4

12b 1 3 2 1b 2 4 2
b 2 4

 lim
bl4

 
2b2 2 5b 1 40 2 52

b 2 4
5 lim

bl4
 
2b2 2 5b 2 12

b 2 4

s 14 2 5 2 14 2 2 2 5 14 2 1 40 5 52.

s 1b 2 5 2b2 2 5b 1 40

lim
bl4

 
s 1b 2 2 s 14 2

b 2 4

5 lim
hl0

12h 1 11 2 5 11,

 lim
hl0

 
12h2 1 11h 1 52 2 2 52

h
5 lim

hl0
 
2h2 1 11h

h
5 lim  

hl0

h 12h 1 11 2
h

t 5 4

s 14 2 5 2 14 2 2 2 5 14 2 1 40 5 52.

 5 2h2 1 11h 1 52,

 5 32 1 16h 1 2h2 2 20 2 5h 1 40

 5 2 1 16 1 8h 1 h2 2 2 20 2 5h 1 40

 s 14 1 h 2 5 2 14 1 h 2 2 2 5 14 1 h 2 1 40

lim
hl0

 
s 14 1 h 2 2 s 14 2

h

t 5 4,
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EXAMPLE  4

Method 1
Standard Form

YOUR TURN 3 For the 
function in Example 3, find the
instantaneous velocity at 2 seconds.

Method 2
Alternate Form

APPLY IT 



(a) Find the average rate of change of cost per case for manufacturing between 1 and 5
cases.

SOLUTION Use the formula for average rate of change.

The average rate of change of cost is

Thus, on average, the cost increases at the rate of $9 per case when production increases
from 1 to 5 cases.

(b) Find the additional cost when production is increased from 1 to 2 cases.

SOLUTION The additional cost can be found by calculating the cost to produce 2
cases, and subtracting the cost to produce 1 case; that is,

The additional cost to produce the second case is $12.

(c) Find the instantaneous rate of change of cost with respect to the number of cases pro-
duced when just one case is produced.

SOLUTION The instantaneous rate of change for is given by

Combine terms.

Factor.

Divide by

Calculate the limit.

When 1 case is manufactured, the cost is increasing at the rate of $13 per case. Notice
that this is close to the value calculated in part (b).

As we mentioned in Chapter 1, economists sometimes define the marginal cost as the
cost of producing one additional item and sometimes as the instantaneous rate of change of
the cost function. These definitions are considered to be essentially equivalent. If a com-
pany (or an economy) produces millions of items, it makes little difference whether we let
h 5 1 or take the limit as h goes to 0, because 1 is very close to 0 when production is in the
millions. The advantage of taking the instantaneous rate of change point of view is that it
allows all the power of calculus to be used, including the Fundamental Theorem of Calculus,
which is discussed later in this book.

Throughout this textbook, we define the marginal cost to be the instantaneous rate of
change of the cost function. It can then be interpreted as the approximate cost of producing
one additional item. For simplicity, we will make this interpretation even when production
numbers are fairly small.

Manufacturing
For the cost function in the previous example, find the instantaneous rate of change of cost
when 5 cases are made.

 5 13.

h. 5 lim
hl0

1 13 2 h 2

 5 lim
hl0

 
h 1 13 2 h 2

h

 5 lim
hl0

 
13h 2 h2

h

 5 lim
hl0

 
100 1 15 1 15h 2 1 2 2h 2 h2 2 114

h

 5 lim
hl0

 
3100 1 15 1 1 1 h 2 2 1 1 1 h 2 2 4 2 3100 1 15 1 1 2 2 12 4

h

 lim
hl0

 
C 1 1 1 h 2 2 C 1 1 2

h

x 5 1

C 12 2 2 C 1 1 2 5 126 2 114 5 12.

C 1 5 2 2 C 1 1 2
5 2 1

5
150 2 114

4
5 9.
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EXAMPLE  5



SOLUTION The instantaneous rate of change for is given by

Combine terms.

Factor.

Divide by

Calculate the limit.

When 5 cases are manufactured, the cost is increasing at the rate of $5 per case; that is, the
marginal cost when is $5. Notice that as the number of items produced goes up, the
marginal cost goes down, as might be expected. TRY YOUR TURN 4

Minority Population

Estimate the instantaneous rate of change in 2010 in the Hispanic population of the United
States.

SOLUTION We saw in Example 1 that the U.S. Hispanic population is approximately
given by , where t � 0 corresponds to 2000. Unlike the previous
example, in which the function was a polynomial, the function in this example is an expo-
nential, making it harder to compute the limit directly using the formula for instantaneous
rate of change at t � 10 (the year 2010):

Instead, we will approximate the instantaneous rate of change by using smaller and smaller
values of h. See the following table. The limit seems to be approaching 0.96682 (million).
Thus, the instantaneous rate of change in the U.S. Hispanic population is about 966,820
people per year in 2010. TRY YOUR TURN 5

lim
hl0

 
37.791 1 1.021 2 101h 2 37.791 1 1.021 2 10

h
.

H1 t 2 5 37.791 1 1.021 2 t

x 5 5

 5 5.

h. 5 lim
hl0

1 5 2 h 2

 5 lim
hl0

 
h 1 5 2 h 2

h

 5 lim
hl0

 
5h 2 h2

h

 5 lim
hl0

 
100 1 75 1 15h 2 25 2 10h 2 h2 2 150

h

 5 lim
hl0

 
3100 1 15 1 5 1 h 2 2 1 5 1 h 2 2 4 2 3100 1 15 1 5 2 2 52 4

h

 lim
hl0

 
C 1 5 1 h 2 2 C 1 5 2

h

x 5 5

CHAPTER 3 The Derivative156

EXAMPLE  6

YOUR TURN 4 If the cost 
function is given by

, find the
instantaneous rate of change of cost
when .x 5 4

C 1x 2 5 x2 2 2x 1 12

YOUR TURN 5 Estimate the
instantaneous rate of change in 2010
in the Asian population of the
United States. An estimate of the
U.S. Asian population is given by

, where 
corresponds to 2000.

t 5 0A 1 t 2 5 11.14 1 1.023 2 t

Limit Calculations

37.791(1.021)10+h � 37.791(1.021)10

h h

1 0.97693
0.1 0.96782
0.01 0.96692
0.001 0.96683
0.0001 0.96682
0.00001 0.96682



The table could be created using the TABLE feature on a TI-84 Plus calculator by entering Y1 as the
function from Example 6, and Y2 5 (Y1(10 1 X) 2 Y1(10))/X. (The calculator requires us to use X
in place of h in the formula for instantaneous rate of change.) The result is shown in Figure 26. This
table can also be generated using a spreadsheet.
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Velocity
One day Musk, the friendly pit bull, escaped from the yard and ran across the street to see a
neighbor, who was 50 ft away. An estimate of the distance Musk ran as a function of time is
given by the following table. 

FIGURE 26

1
.1
.01
.001
1E-4
1E-5

.97693

.96782

.96692

.96683

.96682

.96682

X5

X Y2

EXAMPLE  7

(a) Find Musk’s average velocity during her 4-second trip.

SOLUTION The total distance she traveled is 50 ft, and the total time is 4 seconds, so
her average velocity is per second.

(b) Estimate Musk’s velocity at 2 seconds.

SOLUTION We could estimate her velocity by taking the short time interval from 2 to
3 seconds, for which the velocity is

Alternatively, we could estimate her velocity by taking the short time interval from
1 to 2 seconds, for which the velocity is

A better estimate is found by averaging these two values to get

Another way to get this same answer is to take the time interval from 1 to 3 seconds, for
which the velocity is

This answer is reasonable if we assume Musk’s velocity changes at a fairly steady
rate and does not increase or decrease drastically from one second to the next. It is
impossible to calculate Musk’s exact velocity without knowing her position at times
arbitrarily close to 2 seconds, or without a formula for her position as a function of time,
or without a radar gun or speedometer on her. (In any case, she was very happy when
she reached the neighbor.)

42 2 10

2
5 16 ft per second.

17 1 15

2
5 16 ft per second.

25 2 10

1
5 15 ft per second.

42 2 25

1
5 17 ft per second.

50 /4 5 12.5 ft

t (sec) 0 1 2 3 4

s (ft) 0 10 25 42 50

TECHNOLOGY NOTE

Distance Traveled



Find the average rate of change for each function over the given
interval.

1. between and 

2. between and 

3. between and 

4. between and 

5. between and 

6. between and 

7. between and 

8. between and 

Suppose the position of an object moving in a straight line is
given by Find the instantaneous velocity at 
each time.

9. 10.

Suppose the position of an object moving in a straight line is
given by Find the instantaneous velocity
at each time.

11. t 5 2 12. t 5 3

Suppose the position of an object moving in a straight line is
given by Find the instantaneous velocity at 
each time.

13. 14.

Find the instantaneous rate of change for each function at the
given value.

15. at 

16. at 

17. at 

18. at 

Use the formula for instantaneous rate of change, approximating
the limit by using smaller and smaller values of h, to find the
instantaneous rate of change for each function at the given value.

19. at 20. at 

21. at 22. at 

23. Explain the difference between the average rate of change of y
as x changes from a to b, and the instantaneous rate of change
of y at 

24. If the instantaneous rate of change of with respect to x is
positive when , is f increasing or decreasing there?

APPLICATIONS
Business and Economics

25. Profit Suppose that the total profit in hundreds of dollars from
selling x items is given by

P 1x 2 5 2x2 2 5x 1 6.

x 5 1
f 1x 2

x 5 a.

x 5 3f 1x 2 5 xln xx 5 2f 1x 2 5 xln x

x 5 3f 1x 2 5 xxx 5 2f 1x 2 5 xx

x 5 0F 1x 2 5 x2 1 2

t 5 21g 1 t 2 5 1 2 t2

t 5 2s 1 t 2 5 24t2 2 6

x 5 0f 1x 2 5 x2 1 2x

t 5 4t 5 1

s 1 t 2 5 t3 1 2t 1 9.

s 1 t 2 5 5t 2 2 2t 2 7.

t 5 1t 5 6

s 1 t 2 5 t 2 1 5t 1 2.

x 5 4x 5 2y 5 ln x

x 5 0x 5 22y 5 ex

x 5 2x 5 1y 5 "3x 2 2

x 5 4x 5 1y 5 "x

x 5 4x 5 21y 5 2x3 2 4x2 1 6x

x 5 1x 5 22y 5 23x3 1 2x2 2 4x 1 1

x 5 6x 5 2y 5 24x2 2 6

x 5 3x 5 1y 5 x2 1 2x

Find the average rate of change of profit for the following changes
in x.

a. 2 to 4 b. 2 to 3

c. Find and interpret the instantaneous rate of change of profit
with respect to the number of items produced when
(This number is called the marginal profit at

d. Find the marginal profit at 

26. Revenue The revenue (in thousands of dollars) from produc-
ing x units of an item is

a. Find the average rate of change of revenue when production
is increased from 1000 to 1001 units.

b. Find and interpret the instantaneous rate of change of rev-
enue with respect to the number of items produced when
1000 units are produced. (This number is called the mar-
ginal revenue at )

c. Find the additional revenue if production is increased from
1000 to 1001 units.

d. Compare your answers for parts a and c. What do you find?
How do these answers compare with your answer to part b?

27. Demand Suppose customers in a hardware store are willing to
buy boxes of nails at p dollars per box, as given by

a. Find the average rate of change of demand for a change in
price from $2 to $3.

b. Find and interpret the instantaneous rate of change of
demand when the price is $2.

c. Find the instantaneous rate of change of demand when the
price is $3.

d. As the price is increased from $2 to $3, how is demand
changing? Is the change to be expected? Explain.

28. Interest If $1000 is invested in an account that pays 5% com-
pounded annually, the total amount, , in the account after 
t years is 

.

a. Find the average rate of change per year of the total amount
in the account for the first five years of the investment (from
t � 0 to t � 5).

b. Find the average rate of change per year of the total amount
in the account for the second five years of the investment
(from t � 5 to t � 10).

c. Estimate the instantaneous rate of change for t � 5.

29. Interest If $1000 is invested in an account that pays 5% com-
pounded continuously, the total amount, , in the account
after t years is

.A 1 t 2 5 1000e0.05t

A 1 t 2

A 1 t 2 5 1000 1 1.05 2 t

A 1 t 2

N 1p 2 5 80 2 5p2, 1 # p # 4.

N 1p 2

x 5 1000.

R 1x 2 5 10x 2 0.002x2.

x 5 4.

x 5 2. 2
x 5 2.
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a. Find the average rate of change per year of the total amount
in the account for the first five years of the investment (from
t � 0 to t � 5).

b. Find the average rate of change per year of the total amount
in the account for the second five years of the investment
(from t � 5 to t � 10).

c. Estimate the instantaneous rate of change for t � 5.

30. Sales The graph shows annual sales (in thousands of dollars) of
a Nintendo game at a particular store. Find the average annual
rate of change in sales for the following changes in years.
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2

9 1210

10 10

4 115 8

8

6

6

7

7

1

1 1

Sa
le

s

Time (in years)

a. 1 to 4 b. 4 to 7 c. 7 to 12

d. What do your answers for parts a–c tell you about the sales
of this product?

e. Give an example of another product that might have such a
sales curve.

31. Gasoline Prices In 2008, the price of gasoline in the United
States inexplicably spiked and then dropped. The average
monthly price (in cents) per gallon of unleaded regular
gasoline for 2008 is shown in the following chart. Find the
average rate of change per month in the average price per
gallon for each time period. Source: U.S. Energy Information
Administration.

a. From January to July (the peak)

b. From July to December

c. From January to December

Find the approximate average rate of change in the trust fund
for each time period.

a. From 2000 to 2008 (the peak) b. From 2008 to 2018

Life Sciences
33. Flu Epidemic Epidemiologists in College Station, Texas,

estimate that t days after the flu begins to spread in town, the
percent of the population infected by the flu is approximated by

for 

a. Find the average rate of change of p with respect to t over
the interval from 1 to 4 days.

b. Find and interpret the instantaneous rate of change of p with
respect to t at 

34. World Population Growth The future size of the world popu-
lation depends on how soon it reaches replacement-level
fertility, the point at which each woman bears on average
about 2.1 children. The graph shows projections for reaching
that point in different years. Source: Population Reference
Bureau.

t 5 3.
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32. Medicare Trust Fund The graph shows the money remaining
in the Medicare Trust Fund at the end of the fiscal year. Source:
Social Security Administration.
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a. Estimate the average rate of change in population for each
projection from 1990 to 2050. Which projection shows the
smallest rate of change in world population?

b. Estimate the average rate of change in population from 2090
to 2130 for each projection. Interpret your answer.

35. Bacteria Population The graph shows the population in mil-
lions of bacteria t minutes after an antibiotic is introduced into a
culture. Find and interpret the average rate of change of popula-
tion with respect to time for the following time intervals.
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37. Thermic Effect of Food The metabolic rate of a person who
has just eaten a meal tends to go up and then, after some time
has passed, returns to a resting metabolic rate. This phenome-
non is known as the thermic effect of food. Researchers have
indicated that the thermic effect of food (in kJ/hr) for a particu-
lar person is

where t is the number of hours that have elapsed since eating a
meal. Source: American Journal of Clinical Nutrition.

a. Graph the function on by

b. Find the average rate of change of the thermic effect of food
during the first hour after eating.

c. Use a graphing calculator to find the instantaneous rate of
change of the thermic effect of food exactly 1 hour after
eating.

d. Use a graphing calculator to estimate when the function
stops increasing and begins to decrease.

38. Mass of Bighorn Yearlings The body mass of yearling bighorn
sheep on Ram Mountain in Alberta, Canada, can be estimated
by

where is measured in kilograms and t is days since May 25.
Source: Canadian Journal of Zoology.

a. Find the average rate of change of the weight of a bighorn
yearling between 105 and 115 days past May 25.

b. Find the instantaneous rate of change of weight for a
bighorn yearling sheep whose age is 105 days past May 25.

c. Graph the function on by 

d. Does the behavior of the function past 125 days accurately
model the mass of the sheep? Why or why not?

Social  Sciences

39. Immigration The following graph shows how immigration (in
thousands) to the United States has varied over the past cen-
tury. Source: Homeland Security.

325, 65 4.35, 125 4M 1 t 2

M 1 t 2

M 1 t 2 5 27.5 1 0.3t 2 0.001t2

3220, 100 4.30, 6 4

F 1 t 2 5 210.28 1 175.9te2t/1.3,

a. 1 to 2 b. 2 to 3 c. 3 to 4 d. 4 to 5

e. How long after the antibiotic was introduced did the popula-
tion begin to decrease?

f. At what time did the rate of decrease of the population slow
down?

36. Molars The crown length (as shown below) of first molars in
fetuses is related to the postconception age of the tooth as

where is the crown length, in millimeters, of the molar t
weeks after conception. Source: American Journal of Physi-
cal Anthropology.

L 1 t 2

L 1 t 2 5 20.01t2 1 0.788t 2 7.048,
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a. Find the average rate of growth in crown length during
weeks 22 through 28.

b. Find the instantaneous rate of growth in crown length when
the tooth is exactly 22 weeks of age.

c. Graph the function on by Does a function that
increases and then begins to decrease make sense for this
particular application? What do you suppose is happening
during the first 11 weeks? Does this function accurately
model crown length during those weeks?

30, 9 4.30, 50 4



40. Drug Use The following chart shows how the percentage of
eighth graders, tenth graders, and twelfth graders who have
used marijuana in their lifetime has varied in recent years.
Source:  National Institute of Health.

a. Find the average annual rate of change in the percent of
eighth graders who have used marijuana in their lifetime
over the three-year period 2003–2006 and the three-year
period 2006–2009. Then calculate the annual rate of change
for 2003–2009.

b. Repeat part a for tenth graders.

c. Repeat part a for twelfth graders.

d. Discuss any similarities and differences between your
answers to parts a through c, as well as possible reasons for
these differences and similarities.
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42. Velocity A car is moving along a straight test track. The posi-
tion in feet of the car, at various times t is measured, with
the following results.

s 1 t 2 ,

T (ºC)

25
20
15
10
5

7000500030001000 9000 h (ft)

T = T(h)

Find and interpret the average velocities for the following
changes in t.

a. 0 to 2 seconds b. 2 to 4 seconds

c. 4 to 6 seconds d. 6 to 8 seconds

e. Estimate the instantaneous velocity at 4 seconds

i. by finding the average velocity between 2 and 6 seconds,
and

ii. by averaging the answers for the average velocity in the
two seconds before and the two seconds after (that is, the
answers to parts b and c).

f. Estimate the instantaneous velocity at 6 seconds using the
two methods in part e.

g. Notice in parts e and f that your two answers are the same.
Discuss whether this will always be the case, and why or
why not.

43. Velocity Consider the example at the beginning of this section
regarding the car traveling from San Francisco.

a. Estimate the instantaneous velocity at 1 hour. Assume that
the velocity changes at a steady rate from one half-hour to
the next.

b. Estimate the instantaneous velocity at 2 hours.

44. Velocity The distance of a particle from some fixed point is
given by

where t is time measured in seconds. Find the average velocity
of the particle over the following intervals.

a. 4 to 6 seconds

b. 4 to 5 seconds

c. Find the instantaneous velocity of the particle when

YOUR TURN ANSWERS 

1. Increase, on average, by 284,000 people per year
2. Decrease, on average, of 4.25% per year
3. 3 ft per second
4. $6 per unit 
5. About 0.318 million, or 318,000 people per year

t 5 4.

s 1 t 2 5 t2 1 5t 1 2,

t (sec) 0 2 4 6 8 10

(ft) 0 10 14 20 30 36s 1 t 2

50

40

30

20

10

2003 2004 2005 2006

8th Graders

10th Graders

12th Graders

2007 2008 2009

36.4

17.5

46.1

15.7

31.8

42.3

15.7

32.3

42.0

Physical  Sciences

41. Temperature The graph shows the temperature T in degrees
Celsius as a function of the altitude h in feet when an inversion
layer is over Southern California. (An inversion layer is formed
when air at a higher altitude, say 3000 ft, is warmer than air at
sea level, even though air normally is cooler with increasing
altitude.) Estimate and interpret the average rate of change in
temperature for the following changes in altitude.

a. 1000 to 3000 ft b. 1000 to 5000 ft

c. 3000 to 9000 ft d. 1000 to 9000 ft

e. At what altitude at or below 7000 ft is the temperature high-
est? Lowest? How would your answer change if 7000 ft is
changed to 10,000 ft?

f. At what altitude is the temperature the same as it is at 1000 ft?

a. Find the average annual rate of change in immigration for
the first half of the century (from 1905 to 1955).

b. Find the average annual rate of change in immigration for
the second half of the century (from 1955 to 2005).

c. Find the average annual rate of change in immigration for
the entire century (from 1905 to 2005).

d. Average your answers to parts a and b, and compare the
result with your answer from part c. Will these always be
equal for any two time periods?

e. If the annual average rate of change for the entire century
continues, predict the number of immigrants in 2009.  Com-
pare your answer to the actual number of 1,130,818 immi-
grants.



We will answer this question in Example 3, using the concept of the derivative.

In the previous section, the formula

was used to calculate the instantaneous rate of change of a function f at the point where
Now we will give a geometric interpretation of this limit.

The Tangent Line In geometry, a tangent line to a circle is defined as a line that
touches the circle at only one point, as at the point P in Figure 27 (which shows the top half
of a circle). If you think of this half-circle as part of a curving road on which you are dri-
ving at night, then the tangent line indicates the direction of the light beam from your head-
lights as you pass through the point P. (We are not considering the new type of headlights
on some cars that follow the direction of the curve.) Intuitively, the tangent line to an arbi-
trary curve at a point P on the curve should touch the curve at P, but not at any points
nearby, and should indicate the direction of the curve. In Figure 28, for example, the lines
through and are tangent lines, while the lines through and are not. The tangent
lines just touch the curve and indicate the direction of the curve, while the other lines pass
through the curve heading in some other direction. To decide about the line at we need
to define the idea of a tangent line to the graph of a function more carefully.

P4,

P5P2P3P1

x 5 a.

lim
hl0

 
f 1a 1 h 2 2 f 1a 2

h
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Definition of the Derivative
How does the risk of chromosomal abnormality in a child change with
the mother’s age?

APPLY IT 

3.4

f(x)
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FIGURE 27
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FIGURE 28

To see how we might define the slope of a line tangent to the graph of a function f at
a given point, let R be a fixed point with coordinates on the graph of a function

as in Figure 29 on the next page. Choose a different point S on the graph and
draw the line through R and S; this line is called a secant line. If S has coordinates

then by the definition of slope, the slope of the secant line RS is
given by

This slope corresponds to the average rate of change of y with respect to x over the interval
from a to As h approaches 0, point S will slide along the curve, getting closer and
closer to the fixed point R. See Figure 30, which shows successive positions andS1, S2, S3,

a 1 h.

Slope of secant 5
Dy

Dx
5

f 1a 1 h 2 2 f 1a 2
a 1 h 2 a

5
f 1a 1 h 2 2 f 1a 2

h
 .

1a 1 h, f 1a 1 h 2 2 ,

y 5 f 1x 2 ,
1a, f 1a 2 2



of the point S. If the slopes of the corresponding secant lines approach a limit as h
approaches 0, then this limit is defined to be the slope of the tangent line at point R.

Slope of the Tangent Line
The tangent line of the graph of at the point is the line through this
point having slope

provided this limit exists. If this limit does not exist, then there is no tangent at the point.

Notice that the definition of the slope of the tangent line is identical to that of the instan-
taneous rate of change discussed in the previous section and is calculated by the same
procedure.

The slope of the tangent line at a point is also called the slope of the curve at the point
and corresponds to the instantaneous rate of change of y with respect to x at the point. It
indicates the direction of the curve at that point.

Tangent Line

Consider the graph of 

(a) Find the slope and equation of the secant line through the points where x 5 21 and 
x 5 2.

SOLUTION Use the formula for slope as the change in y over the change in x, where y
is given by f(x). Since and , we have

The slope of the secant line through (21, f(21)) 5 (21, 3) and (2, f(2)) 5 (2, 6) is 1.
The equation of the secant line can be found with the point-slope form of the equa-

tion of a line from Chapter 1. We’ll use the point (21, 3), although we could have just
as well used the point (2, 6).

y 5 x 1 4

y 2 3 5 x 1 1

y 2 3 5 1 3x 2 121 2 4
y 2 y1 5 m 1x 2 x1 2

Slope of secant line 5
f 12 2 2 f 121 2

2 2 121 2
5

6 2 3

3
5 1.

2 5 6f 12 2 5 22 1f 121 2 5 121 2 2 1 2 5 3

f 1x 2 5 x2 1 2.

lim
hl0

 
f 1 a 1 h 2 2 f 1 a 2

h
 ,

1a, f 1a 2 2y 5 f 1x 2

S4
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EXAMPLE  1

FOR REVIEW
In Section 1.1, we saw that the
equation of a line can be found
with the point-slope form 

if the 
slope m and the coordinates 

of a point on the line are
known. Use the point-slope form
to find the equation of the line
with slope 3 that goes through 
the point 

Let 
Then

 y 5 3x 1 7.

 y 2 4 5 3x 1 3

 y 2 4 5 3 1x 2 121 2 2
 y 2 y1 5 m 1x 2 x1 2

m 5 3, x1 5 21, y1 5 4.
121, 4 2 .

1x1, y1 2

y 2 y1 5 m 1x 2 x1 2 ,



Figure 31 shows a graph of along with a graph of the secant line (in
green) through the points where x 5 21 and x 5 2.

(b) Find the slope and equation of the tangent line at x 5 21.

SOLUTION Use the definition given previously, with and 
The slope of the tangent line is given by

The slope of the tangent line at is 

The equation of the tangent line can be found with the point-slope form of the
equation of a line from Chapter 1.

The tangent line at x 5 21 is shown in red in Figure 31. TRY YOUR TURN 1

Figure 32 shows the result of zooming in on the point in Figure 31. Notice that
in this closeup view, the graph and its tangent line appear virtually identical. This gives us
another interpretation of the tangent line. Suppose, as we zoom in on a function, the graph
appears to become a straight line. Then this line is the tangent line to the graph at that point.
In other words, the tangent line captures the behavior of the function very close to the point
under consideration. (This assumes, of course, that the function when viewed close up is
approximately a straight line. As we will see later in this section, this may not occur.)

121, 3 2

 y 5 22x 1 1

 y 2 3 5 22x 2 2

 y 2 3 5 22 1x 1 1 2
 y 2 3 5 22 3x 2 121 2 4
 y 2 y1 5 m 1x 2 x1 2

22.121, f 121 2 2 5 121, 3 2

 5 lim
hl0

122 1 h 2 5 22.

 5 lim
hl0

 
h 122 1 h 2

h

 5 lim
hl0

 
22h 1 h2

h

 5 lim
hl0

 
31 2 2h 1 h2 1 2 4 2 31 1 2 4

h

 5 lim
hl0

 
3 121 1 h 2 2 1 2 4 2 3 121 2 2 1 2 4

h

 Slope of tangent 5 lim
hl0

 
f 1a 1 h 2 2 f 1a 2

h

a 5 21.f 1x 2 5 x2 1 2

f 1x 2 5 x2 1 2,
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FIGURE 31
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the points where and

and (b) find the equation of
the tangent line at .x 5 22
x 5 1,

x 5 22

f 1x 2 5 x2 2 x



If it exists, the tangent line at is a good approximation of the graph of a func-
tion near

Consequently, another way to approximate the slope of the curve is to zoom in on the
function using a graphing calculator until it appears to be a straight line (the tangent line).
Then find the slope using any two points on that line.

Slope (Using a Graphing Calculator)
Use a graphing calculator to find the slope of the graph of at

SOLUTION The slope would be challenging to evaluate algebraically using the limit defin-
ition. Instead, using a graphing calculator on the window by we see the graph
in Figure 33.

30, 2 4,30, 2 4

x 5 1.f 1x 2 5 xx

x 5 a.
x 5 a
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FIGURE 32
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y = x2 + 2

y = –2x + 1

EXAMPLE  2

Zooming in gives the view in Figure 34. Using the TRACE key, we find two points on the
line to be and Therefore, the slope is approximately

In addition to the method used in Example 2, there are other ways to use a graphing calculator to
determine slopes of tangent lines and estimate instantaneous rates. Some alternate methods are listed
below.

1. The Tangent command (under the DRAW menu) on a TI-84 Plus allows the tangent line to
be drawn on a curve, giving an easy way to generate a graph with its tangent line similar to
Figure 31.

2. Rather than using a graph, we could use a TI-84 Plus to create a table, as we did in the 
previous section, to estimate the instantaneous rate of change. Letting Y1 X^X and 5

1.0021322 2 1

1.0021277 2 1
< 1.

1 1.0021277, 1.0021322 2 .1 1, 1 2

0 2

2

0

y 5 x x

FIGURE 33

0.9 1.1

1.1

0.9

y 5 x x

FIGURE 34
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Y2 = (Y1(1 X) Y1(1))/X, along with specific table settings, results in the table shown in
Figure 35. Based on this table, we estimate that the slope of the graph of at is 1.x 5 1f 1x 2 5 xx

21
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FIGURE 35
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1
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X Y2

Genetics
Figure 36 shows how the risk of chromosomal abnormality in a child increases with the age
of the mother. Find the rate that the risk is rising when the mother is 40 years old. Source:
downsyndrome.about.com.

EXAMPLE  3

SOLUTION In Figure 37, we have added the tangent line to the graph at the point where
the age of the mother is 40. At that point, the risk is approximately 15 per 1000. Extending
the line, we estimate that when the age is 45, the y-coordinate of the line is roughly 35.
Thus, the slope of the line is

Therefore, at the age of 40, the risk of chromosomal abnormality in the child is increasing
at the rate of about 4 per 1000 for each additional year of the mother’s age.

The Derivative If is a function and a is a number in its domain, then we
shall use the symbol to denote the special limit

lim
hl0

 
f 1a 1 h 2 2 f 1a 2

h
 ,

f r 1a 2
y 5 f 1x 2
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APPLY IT 

3. An even simpler method on a TI-84 Plus is to use the dy/dx command (under the CALC menu)
or the nDeriv command (under the MATH menu). We will use this method in Example 4(b).
But be careful, because sometimes these commands give erroneous results. For an example, see
the Caution at the end of this section. For more details on the dy/dx command or the nDeriv
command, see the Graphing Calculator and Excel Spreadsheet Manual available with this
book.



provided that it exists. This means that for each number a we can assign the number 
found by calculating this limit. This assignment defines an important new function.

Derivative
The derivative of the function f at x is defined as

provided this limit exists.

The notation is read “f-prime of x.” The function is called the derivative of f
with respect to x. If x is a value in the domain of f and if exists, then f is differen-
tiable at x. The process that produces is called differentiation.

The derivative function has several interpretations, two of which we have discussed.

1. The function represents the instantaneous rate of change of with
respect to x. This instantaneous rate of change could be interpreted as marginal cost, rev-
enue, or profit (if the original function represented cost, revenue, or profit) or velocity (if
the original function described displacement along a line). From now on we will use rate
of change to mean instantaneous rate of change.

2. The function represents the slope of the graph of at any point x. If the
derivative is evaluated at the point then it represents the slope of the curve, or
the slope of the tangent line, at that point.

The following table compares the different interpretations of the difference quotient
and the derivative.

x 5 a,
f 1x 2f r 1x 2

y 5 f 1x 2f r 1x 2

f r
f r 1x 2

f r 1x 2f r 1x 2

f 9 1 x 2 5 lim
hl0

 
f 1 x 1 h 2 2 f 1 x 2

h
 ,

f r 1a 2
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NOTE
The derivative is a function of x,
since varies as x varies. This
differs from both the slope of the
tangent line and the instantaneous
rate of change, either of which is
represented by the number 
that corresponds to a number a.
Otherwise, the formula for the
derivative is identical to the for-
mula for the slope of the tangent
line given earlier in this section and
to the formula for instantaneous
rate of change given in the previous
section.

f r 1a 2

f r 1x 2

Just as we had an alternate definition in the previous section by using b instead of a 1 h,
we now have an alternate definition by using b in place of x 1 h.

Derivative (Alternate Form)
The derivative of function f at x can be written as

provided this limit exists.

The next few examples show how to use the definition to find the derivative of a func-
tion by means of a four-step procedure.

f 9 1 x 2 5 lim
blx

 
f 1 b 2 2 f 1 x 2

b 2 x
 ,

The Difference Quotient and the Derivative
Difference Quotient

■ Slope of the secant line
■ Average rate of change
■ Average velocity
■ Average rate of change

in cost, revenue, or
profit

f1x 1 h 2 2 f1x 2
h

Derivative

■ Slope of the tangent line
■ Instantaneous rate of change
■ Instantaneous velocity
■ Marginal cost, revenue, or

profit

lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h



Derivative
Let 

(a) Find the derivative.

SOLUTION By definition, for all values of x where the following limit exists, the
derivative is given by

Use the following sequence of steps to evaluate this limit.

Step 1 Find 
Replace x with in the equation for Simplify the result.

(Note that since )

Step 2 Find 
Since 

Step 3 Find and simplify the quotient We find that 

,

except that 2x 1 h is defined for all real numbers h, while 
[ f(x 1 h) 2 f(x)]/h is not defined at h 5 0. But this makes no difference in the
limit, which ignores the value of the expression at h 5 0.

Step 4 Finally, find the limit as h approaches 0. In this step, h is the variable and x is
fixed.

SOLUTION Use

and

We apply the alternate definition of the derivative as follows.

Factor the numerator.

Divide by b2 x.

Calculate the limit.

5 2x

 5 x 1 x

 5 lim
blx

 1b 1 x 2

 5 lim
blx

 
1b 1 x 2 1b 2 x 2

b 2 x

 lim 
blx

f 1b 2 2 f 1x 2
b 2 x

5 lim 
blx

b2 2 x2

b 2 x

f 1x 2 5 x2.

f 1b 2 5 b2

 5 2x 1 0 5 2x

 5 lim
hl0

 12x 1 h 2

 f9 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
 .

f 1x 1 h 2 2 f 1x 2
h

5
2xh 1 h2

h
5

h 12x 1 h 2
h

5 2x 1 h

f 1x 1 h 2 2 f 1x 2
h

 .

f 1x 1 h 2 2 f 1x 2 5 1x2 1 2xh 1 h2 2 2 x2 5 2xh 1 h2.

f 1x 2 5 x2,
f 1x 1 h 2 2 f 1x 2 .

f 1x 2 1 h 5 x2 1 h.f 1x 1 h 2 2 f 1x 2 1 h,

 5 x2 1 2xh 1 h2

 f 1x 1 h 2 5 1x 1 h 2 2
 f 1x 2 5 x2

f 1x 2 .x 1 h
f 1x 1 h 2 .

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
 .

f 1x 2 5 x2.
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EXAMPLE  4

Method 1
Original Definition

Method 2
Alternate Form



The alternate method appears shorter here because factoring may seem simpler
than calculating . In other problems, however, factoring may be harder,
in which case the first method may be preferable. Thus, from now on, we will use only the
first method.

(b) Calculate and interpret 

SOLUTION Since , we have

The number 6 is the slope of the tangent line to the graph of at the point
where that is, at See Figure 38(a).

As we mentioned earlier, some graphing calculators can calculate the value of the deriva-
tive at a given x-value. For example, the TI-84 Plus uses the nDeriv command as shown
in Figure 38(b), with the expression for the variable, and the value of a entered to
find for  

TRY YOUR TURN 2

f 1x 2 5 x2.f r 1 3 2
f 1x 2 ,

1 3, f 1 3 2 2 5 1 3, 9 2 .x 5 3,
f 1x 2 5 x2

f r 1 3 2 5 2 . 3 5 6.

f r 1x 2 5 2x

f r 1 3 2 .

f 1x 1 h 2 2 f 1x 2
b2 2 x2
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YOUR TURN 2 Let
. Find the derivative,

and then find .f r 122 2
f 1x 2 5 x2 2 x

Method 1
Algebraic Method

Method 2
Graphing Calculator

0 1 2 3 4

f(x)

x

6

10

4

8

12

2

f(x) = x2

Slope of tangent line
at (3, f(3)) is 6.

(3, 9)     f ' (3) = 6

(a)

FIGURE 38

(x2)⏐x53
d
dx

6

1. In Example 4(a) notice that is not equal to In fact,

but

2. In Example 4(b), do not confuse and The value is the
y-value that corresponds to It is found by substituting 3 for x in 

On the other hand, is the slope of the tangent line 
to the curve at as Example 4(b) shows,  f r 1 3 2 5 2 . 3 5 6.x 5 3;

f r 1 3 2f 1 3 2 5 32 5 9.
f 1 x 2 ;x 5 3.

f 1 3 2f r 1 3 2 .f 1 3 2

f 1 x 2 1 h 5 x2 1 h.

f 1 x 1 h 2 5 1 x 1 h 2 2 5 x2 1 2xh 1 h2,

f 1 x 2 1 h.f 1 x 1 h 2CAUTION

(b)



Finding from the Definition of Derivative
The four steps used to find the derivative for a function are summa-
rized here.

1. Find 

2. Find and simplify 

3. Divide by h to get 

4. Let , if this limit exists.

We now have four equivalent expressions for the change in x, but each has its uses, as the
following box shows. We emphasize that these expressions all represent the same concept.

Equivalent Expressions for the Change in x
Useful for describing the equation of a line through two points
A way to write without the subscripts
Useful for describing slope without referring to the individual points
A way to write with just one symbol

Derivative
Let Find and 

SOLUTION Go through the four steps to find 

Step 1 Find by replacing x with 

Step 2

Step 3

Step 4 Now use the rules for limits to get

 f r 1x 2 5 6x2 1 4.

 5 6x2 1 6x 10 2 1 2 10 2 2 1 4

 5 lim
hl0

1 6x2 1 6xh 1 2h2 1 4 2

 f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h

 5 6x2 1 6xh 1 2h2 1 4

 5
h 1 6x2 1 6xh 1 2h2 1 4 2

h

 
f 1x 1 h 2 2 f 1x 2

h
5

6x2h 1 6xh2 1 2h3 1 4h

h

 5 6x2h 1 6xh2 1 2h3 1 4h

 5 2 2x3 2 4x

 f 1x 1 h 2 2 f 1x 2 5 2x3 1 6x2h 1 6xh2 1 2h3 1 4x 1 4h

 5 2x3 1 6x2h 1 6xh2 1 2h3 1 4x 1 4h

 5 2 1x3 1 3x2h 1 3xh2 1 h3 2 1 4 1x 1 h 2
 f 1x 1 h 2 5 2 1x 1 h 2 3 1 4 1x 1 h 2

x 1 h.f 1x 1 h 2

f r 1x 2 .
f r 123 2 .f r 12 2 ,f r 1x 2 ,f 1x 2 5 2x3 1 4x.

Dxh
Dx

x2 2 x1b 2 a
x2 2 x1

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
hl 0;

f 1x 1 h 2 2 f 1x 2
h

 .

f 1x 1 h 2 2 f 1x 2 .
f 1x 1 h 2 .

y 5 f 1x 2f r 1x 2
f9 1 x 2
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Use this result to find and 

One way to support the result in Example 5 is to plot on a graphing
calculator with a small value of h. Figure 39 shows a graphing calculator screen of

where f is the function and which
was just found to be the derivative of f. The two functions, plotted on the window 
by appear virtually identical. If had been used, the two functions would be
indistinguishable.

Derivative

Let Find 

SOLUTION

Step 1

Step 2

Find a common denominator.

Simplify the numerator.

Step 3

Invert and multiply.

Step 4

TRY YOUR TURN 4

Notice that in Example 6 neither nor is defined when Look at a
graph of to see why this is true.f 1x 2 5 4 /x

x 5 0.f r 1x 2f 1x 2

 f r 1x 2 5
24

x 1x 2
5

24

x2

 5
24

x 1x 1 0 2

 5 lim
hl0

 
24

x 1x 1 h 2

 f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h

 5
24

x 1x 1 h 2

 5
24h

x 1x 1 h 2
. 1

h

 
f 1x 1 h 2 2 f 1x 2

h
5

24h

x 1x 1 h 2
h

 5
24h

x 1x 1 h 2

 5
4x 2 4x 2 4h

x 1x 1 h 2

 5
4x 2 4 1x 1 h 2

x 1x 1 h 2

 f 1x 1 h 2 2 f 1x 2 5
4

x 1 h
2

4
x

f 1x 1 h 2 5
4

x 1 h

f r 1x 2 .f 1x 2 5
4
x

 .

h 5 0.0130, 30 4,
322, 2 4

y 5 6x2 1 4,f 1x 2 5 2x3 1 4x,y 5 3f 1x 1 0.1 2 2 f 1x 2 4 /0.1,

3f 1x 1 h 2 2 f 1x 2 4 /h

 f r 123 2 5 6 . 123 2 2 1 4 5 58

 f r 12 2 5 6 . 22 1 4 5 28

f r 123 2 .f r 12 2
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EXAMPLE  6

YOUR TURN 3 Let
. Find and

.f r 1 2 1 2
f r 1 x 2f 1 x 2 5 x3 2 1

YOUR TURN 4 Let 

. Find .f r 1 x 2f 1 x 2 5 2
2

x

TRY YOUR TURN 3

�2 2

30

0

y � 6x2 � 4x

y �
f (x � 0.1) � f (x)

0.1

FIGURE 39

TECHNOLOGY NOTE



Weight Gain
A mathematics professor found that, after introducing his dog Django to a new brand of
food, Django’s weight began to increase. After x weeks on the new food, Django’s weight
(in pounds) was approximately given by for Find the rate
of change of Django’s weight after x weeks.

SOLUTION

Step 1

Step 2

Step 3

In order to be able to divide by h, multiply both numerator and denominator by
that is, rationalize the numerator.

Rationalize the numerator

Divide by h.

Step 4

This tells us, for example, that after 4 weeks, when Django’s weight is 
, her weight is increasing at a rate of lb

per week. TRY YOUR TURN 5

Cost Analysis

The cost in dollars to manufacture x graphing calculators is given by
when Find the rate of change of cost

with respect to the number manufactured when 100 calculators are made and when 1000
calculators are made.

SOLUTION The rate of change of cost is given by the derivative of the cost function,

Going through the steps for finding gives

When 

C r 1 100 2 5 20.01 1 100 2 1 20 5 19.

x 5 100,

C r 1x 2 5 20.01x 1 20.

C r 1x 2

C r 1x 2 5 lim
hl0

 
C 1x 1 h 2 2 C 1x 2

h
 .

0 # x # 2000.C 1x 2 5 20.005x2 1 20x 1 150

1 / 12"4 2 5 1 /4w r 14 2  5"4 1 40 5 42 lb
w 14 2 5

w r 1x 2 5 lim
hl0

 
1

"x 1 h 1 "x
5

1

"x 1 "x
5

1

2 "x

 5
1

"x 1 h 1 "x

 5
h

h 1"x 1 h 1 "x 2

 5
x 1 h 2 x

h 1"x 1 h 1 "x 2

 5
1"x 1 h 2 2 2 1"x 2 2

h 1"x 1 h 1 "x 2

 
w 1x 1 h 2 2 w 1x 2

h
5
"x 1 h 2"x

h
."x 1 h 1"x

"x 1 h 1"x

"x 1 h 1 "x;

 
w 1x 1 h 2 2 w 1x 2

h
5
"x 1 h 2 "x

h

 5 "x 1 h 2 "x

 w 1x 1 h 2 2 w 1x 2 5 "x 1 h 1 40 2 1"x 1 40 2

w 1x 1 h 2 5 "x 1 h 1 40

0 # x # 6.w 1x 2 5 "x 1 40
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EXAMPLE  7

EXAMPLE  8

YOUR TURN 5 Let 

. Find .f r 1 x 2f 1 x 2 5 2"x

Simplify.

1a2 b2 1a1 b2 5 a2 2 b2 .



This rate of change of cost per calculator gives the marginal cost at which means
the approximate cost of producing the 101st calculator is $19.

When 1000 calculators are made, the marginal cost is

or $10. TRY YOUR TURN 6

We can use the notation for the derivative to write the equation of the tangent line.
Using the point-slope form, and letting and
we have the following formula.

Equation of the Tangent Line
The tangent line to the graph of at the point is given by the
equation

provided exists.

Tangent Line

Find the equation of the tangent line to the graph of at

SOLUTION From the answer to Example 6, we have so 
Also Then the equation of the tangent

line is

or

after simplifying. TRY YOUR TURN 7

Existence of the Derivative The definition of the derivative included the phrase
“provided this limit exists.” If the limit used to define the derivative does not exist, then of
course the derivative does not exist. For example, a derivative cannot exist at a point where
the function itself is not defined. If there is no function value for a particular value of x,
there can be no tangent line for that value. This was the case in Example 6—there was no
tangent line (and no derivative) when 

Derivatives also do not exist at “corners” or “sharp points” on a graph. For example, the
function graphed in Figure 40 is the absolute value function, defined previously as

and written By the definition of derivative, the derivative at any value of x is
given by

provided this limit exists. To find the derivative at 0 for replace x with 0 and
with to get

f r 10 2 5 lim
hl0

 
0 0 1 h 0 2 0 0 0

h
5 lim

hl0
 
0 h 0
h

.

0 0 0f 1x 2
f 1x 2 5 0 x 0 ,

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
,

f 1x 2 5 0 x 0 .

f 1x 2 5 b2x

2x

if x $ 0

if x , 0,

x 5 0.

y 5 2x 1 4

y 2 2 5 121 2 1x 2 2 2 ,

f 1x1 2 5 f 12 2 5 4 /2 5 2.f r 12 2 5 24 /22 5 21.
f r 1x1 2  5f r 1x 2 5 24 /x2,

x 5 2.f 1x 2 5 4 /x

f r1x 2

y 2 f 1 x1 2 5 f9 1 x1 2 1 x 2 x1 2 ,

1x1, f 1x1 2 2y 5 f 1x 2

m 5 f r 1x1 2 ,y1 5 f 1x1 2y 2 y1 5 m 1x 2 x1 2 ,

C r 1 1000 2 5 20.01 1 1000 2 1 20 5 10,

x 5 100,
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EXAMPLE  9

YOUR TURN 6 If cost is given 
by , find 
the rate of change when x � 100.

C 1 x 2 5 10x 2 0.002x2

YOUR TURN 7 Find the equa-
tion of the tangent line to the graph 

at x = 4.f 1x 2 5 2"x

–2

2

1

4

3

42 31–2–3–4 –1 0 x

f(x)

f (x) = ⎜x ⎜

FIGURE 40



In Example 5 in the first section of this chapter, we showed that

therefore, the derivative does not exist at 0. However, the derivative does exist for all val-
ues of x other than 0.

The command nDeriv(abs(X),X,0) on a TI-84 Plus calculator gives the
answer 0, which is wrong. It does this by investigating a point slightly to the left
of 0 and slightly to the right of 0. Since the function has the same value at these
two points, it assumes that the function must be flat around 0, which is false in this
case because of the sharp corner at 0. Be careful about naively trusting your calcu-
lator; think about whether the answer is reasonable.

In Figure 41, we have zoomed in on the origin in Figure 40. Notice that the graph looks
essentially the same. The corner is still sharp, and the graph does not resemble a straight line
any more than it originally did. As we observed earlier, the derivative only exists at a point
when the function more and more resembles a straight line as we zoom in on the point.

lim
hl0

 
0 h 0
h

 does not exist;
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CAUTION
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f(x)

f (x) = ⎜x ⎜

FIGURE 41
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f(x)

x

f(x) = x1/3

Tangent line
is vertical.

FIGURE 42

A graph of the function is shown in Figure 42. As the graph suggests, the
tangent line is vertical when Since a vertical line has an undefined slope, the deriva-
tive of cannot exist when Use the fact that 

does not exist and the definition of the derivative to verify that does not exist for

Figure 43 summarizes the various ways that a derivative can fail to exist. Notice in
Figure 43 that at a point where the function is discontinuous, such as and thex6,x4,x3,

f 1x 2 5 x1/3.
f r 10 2

lim
hl0 

h1/3 /h 5 lim
hl0 

1 /h2/3x 5 0.f 1x 2 5 x1/3
x 5 0.
f 1x 2 5 x1/3

f(x)

0 x x x x x x x1 2 3 4 5 6

Function
not defined

Vertical
tangent

Function
not defined

No tangent
line possible

lim f(x)

does not exist.
3x     x

FIGURE 43



derivative does not exist. A function must be continuous at a point for the derivative to exist
there. But just because a function is continuous at a point does not mean the derivative nec-
essarily exists. For example, observe that the function in Figure 43 is continuous at and

but the derivative does not exist at those values of x because of the sharp corners, mak-
ing a tangent line impossible. This is exactly what happens with the function at

, as we saw in Figure 40. Also, the function is continuous at but the derivative
doesn’t exist there because the tangent line is vertical, and the slope of a vertical line is
undefined.

We summarize conditions for the derivative to exist or not below.

Existence of the Derivative
The derivative exists when a function f satisfies all of the following conditions at a
point.

1. f is continuous,

2. f is smooth, and

3. f does not have a vertical tangent line.

The derivative does not exist when any of the following conditions are true for a function
at a point.

1. f is discontinuous,

2. f has a sharp corner, or

3. f has a vertical tangent line.

Astronomy

A nova is a star whose brightness suddenly increases and then gradually fades. The cause of
the sudden increase in brightness is thought to be an explosion of some kind. The intensity
of light emitted by a nova as a function of time is shown in Figure 44. Find where the func-
tion is not differentiable. Source: Astronomy: The Structure of the Universe.

x5,x 5 0
f 1x 2 5 0 x 0

x2,
x1
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EXAMPLE  10

SOLUTION Notice that although the graph is a continuous curve, it is not differentiable at
the point of explosion.
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FIGURE 44



1. By considering, but not calculating, the slope of the tangent
line, give the derivative of the following.

a. b.

c. d. The line 

e. The line 

2. a. Suppose Use the graph of to find 

b. Explain why the derivative of a function does not exist at a
point where the tangent line is vertical.

3. If where is f not differentiable?

4. If the rate of change of is zero when what can be
said about the tangent line to the graph of at

Estimate the slope of the tangent line to each curve at the given
point 

5. 6.

7. 8.

9. 10.

Using the definition of the derivative, find Then find
and when the derivative exists. (Hint for

Exercises 17 and 18: In Step 3, multiply numerator and denom-
inator by 

11. 12.

13. 14.

15. 16. f 1x 2 5 3 /xf 1x 2 5 12 /x

f 1x 2 5 6x2 2 5x 2 1f 1x 2 5 24x2 1 9x 1 2

f 1x 2 5 22x 1 5f 1x 2 5 3x 2 7

"x 1 h 1 "x .)

f 9 1 3 2f 9 1 0 2 ,f 9122 2 ,
f 9 1 x 2 .

1 x, y 2 .

x 5 a?f 1x 2
x 5 a,f 1x 2

f 1x 2 5
x2 2 1

x 1 2
 ,

g r 10 2 .g 1x 2g 1x 2 5 "3 x .

y 5 mx 1 b

x 5 3f 1x 2 5 2x

f 1x 2 5 xf 1x 2 5 5
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3.4 EXERCISES
17. 18.

19. 20.

For each function, find (a) the equation of the secant line
through the points where x has the given values, and (b) the
equation of the tangent line when x has the first value.

21. ,

22. ,

23. ,

24. ,

25. ,

26. ,

Use a graphing calculator to find and 
for the following when the derivative exists.

27. 28.

29. 30.

31. 32.

33. 34.

Find the x-values where the following do not have derivatives.

35. 36.

37.

38.

f 1x 2 5 23 "xf 1x 2 5 "x

f 1x 2 5
6

x
f 1x 2 5 2 

2

x

f 1x 2 5 ln 0 x 0f 1x 2 5 ex

f 1x 2 5 6x2 2 4xf 1x 2 5 24x2 1 11x

f 9123 2f 9 1 16 2 ,f 9 1 2 2 ,

x 5 36x 5 25f 1x 2 5 "x ;

x 5 16x 5 9f 1x 2 5 4 "x;

x 5 5f 1x 2 5 23 / 1x 1 1 2 ; x 5 1

x 5 5x 5 2f 1x 2 5 5 /x;

x 5 3x 5 21f 1x 2 5 6 2 x2;

x 5 5x 5 3f 1x 2 5 x2 1 2x;

f 1x 2 5 4x3 2 3f 1x 2 5 2x3 1 5

f 1x 2 5 23 "xf 1x 2 5 "x

y

–2

2

4

2–2 0 x

(2, 2)

y

–2

4

2

2 4–2–4 0 x

(–2, 2)

0 2 4 6

4

y

x

6

2

(5, 3)

y

–2

–4

4

2

2

–2 4–4 0 x

(3, –1)

y

–2

–4

4

2

2–2–4 0 x

(–3, –3)

y

2

6

4

62 40 x

(4, 2)

y

0 x2

2

–2

y

8

6–6 0 x

0 41–3

–3

f(x)

x

3

0 2

–3

f(x)

x

3



46. For each function in Column A, graph 
for a small value of h on the window by Then
graph each function in Column B on the same window. Com-
pare the first set of graphs with the second set to choose from
Column B the derivative of each of the functions in Column A. 

322, 8 4  .322, 2 4
3f 1x 1 h 2 2 f 1x 2 4 /h39. For the function shown in the sketch, give the intervals or

points on the x-axis where the rate of change of with
respect to x is

a. positive; b. negative; c. zero.

In Exercises 40 and 41, tell which graph, a or b, represents
velocity and which represents distance from a starting point.
(Hint: Consider where the derivative is zero, positive, or negative.)

40. a.

b.

41. a.

b.

In Exercises 42–45, find the derivative of the function at the
given point.

a. Approximate the definition of the derivative with small
values of h.

b. Use a graphing calculator to zoom in on the function
until it appears to be a straight line, and then find the
slope of that line.

42. 43.

44. 45. f 1x 2 5 x1/x; a 5 3f 1x 2 5 x1/x; a 5 2

f 1x 2 5 xx; a 5 3f 1x 2 5 xx; a 5 2

f 1x 2
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f(x)

b ca 0 x

y

t

y

y

t

y

t

Column A Column B

1

x
x3

3x2ex

exln 0 x 0

47. Explain why

should give a reasonable approximation of when 
exists and h is small.

48. a. For the function find the value of
as well as the approximation using

and using the formula in Exercise 47 with 

b. Repeat part a using 

c. Repeat part a using the function and 

d. Repeat part c using 

e. Repeat part a using the function and 

f. Repeat part e using 

g. Using the results of parts a through f, discuss which approx-
imation formula seems to give better accuracy.

APPLICATIONS
Business and Economics

49. Demand Suppose the demand for a certain item is given by
where p represents the price of

the item in dollars.

a. Find the rate of change of demand with respect to price.

b. Find and interpret the rate of change of demand when the
price is $10.

50. Profit The profit (in thousands of dollars) from the expendi-
ture of x thousand dollars on advertising is given by 

Find the marginal profit at the following
expenditures. In each case, decide whether the firm should
increase the expenditure.

a. $8000 b. $6000 c. $12,000 d. $20,000

51. Revenue The revenue in dollars generated from the sale of x

picnic tables is given by

a. Find the marginal revenue when 1000 tables are sold.

b. Estimate the revenue from the sale of the 1001st table by
finding 

c. Determine the actual revenue from the sale of the 1001st table.

d. Compare your answers for parts b and c. What do you find? 

R r 1 1000 2 .

R 1x 2 5 20x 2
x2

500
 .

1000 1 32x 2 2x2.
P 1x 2 5

D 1p 2 5 22p2 2 4p 1 300,

h 5 0.01.

h 5 0.1.f 1x 2 5 "x

h 5 0.01.

h 5 0.1.f 1x 2 5 22 /x

h 5 0.01.

h 5 0.1.

f 1x 1 h 2 2 f 1x 2
h

f r 1 3 2 ,
f 1x 2 5 24x2 1 11x,

f r 1x 2f r 1x 2

f 1x 1 h 2 2 f 1x 2 h 2
2h



52. Cost The cost in dollars of producing x tacos is 
for 

a. Find the marginal cost.

b. Find and interpret the marginal cost at a production level of
100 tacos.

c. Find the exact cost to produce the 101st taco.

d. Compare the answers to parts b and c. How are they related?

e. Show that whenever 
Source: The College

Mathematics Journal.

f. Show that whenever 

53. Social Security Assets The table gives actual and projected
year-end assets in Social Security trust funds, in trillions of
current dollars, where Year represents the number of years
since 2000. Source: Social Security Administration.

The polynomial function defined by

models the data quite well.

a. To verify the fit of the model, find and

b. Use a graphing calculator with a command such as
nDeriv to find the slope of the tangent line to the graph of
f at the following x-values: 0, 10, 20, 30, and 35.

c. Use your results in part b to describe the graph of f and interpret
the corresponding changes in Social Security assets.

f 1 30 2 .
f 120 2 ,f 1 10 2 ,

f 1x 2 5 0.0000329x3 2 0.00450x2 1 0.0613x 1 2.34

C 1x 1 1 2 2 C 1x 2 5 C'ax 1
1

2
b .

C 1x 2 5 ax2 1 bx 1 c,

3C 1x 1 1 2 2 C 1x 2 4 2 C' 1x 2 5 a.
C 1x 2 5 ax2 1 bx 1 c,

0 # x # 180.20.00375x2 1 1.5x 1 1000,
C 1x 2 5
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a. The speed minimizes energy costs per unit of time.
What is the slope of the line tangent to the curve at the point
corresponding to What is the physical significance of
the slope at that point?

b. The speed minimizes the energy costs per unit of dis-
tance covered. Estimate the slope of the curve at the point
corresponding to Give the significance of the slope at
that point.

c. By looking at the shape of the curve, describe how the
power level decreases and increases for various speeds.

d. Notice that the slope of the lines found in parts a and b rep-
resents the power divided by speed. Power is measured in
energy per unit time per unit weight of the bird, and speed is
distance per unit time, so the slope represents energy per
unit distance per unit weight of the bird. If a line is drawn
from the origin to a point on the graph, at which point is the
slope of the line (representing energy per unit distance per
unit weight of the bird) smallest? How does this compare
with your answers to parts a and b?

Vmr.

Vmr

Vmp?

Vmp

Year Trillions of Dollars

10 2.45
20 2.34
30 1.03
40 �0.57
50 �1.86

Life Sciences

54. Flight Speed Many birds, such as cockatiels or the Arctic
terns shown below, have flight muscles whose expenditure of
power varies with the flight speed in a manner similar to the
graph shown in the next column. The horizontal axis of the
graph shows flight speed in meters per second, and the vertical
axis shows power in watts per kilogram. Source: Biolog-e: The
Undergraduate Bioscience Research Journal.
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55. Shellfish Population In one research study, the population of a
certain shellfish in an area at time t was closely approximated
by the following graph. Estimate and interpret the derivative at
each of the marked points.



56. Eating Behavior The eating behavior of a typical human dur-
ing a meal can be described by

where t is the number of minutes since the meal began, and
represents the amount (in grams) that the person has eaten

at time t. Source: Appetite.

a. Find the rate of change of the intake of food for this particu-
lar person 5 minutes into a meal and interpret.

b. Verify that the rate in which food is consumed is zero 24
minutes after the meal starts.

c. Comment on the assumptions and usefulness of this func-
tion after 24 minutes. Given this fact, determine a logical
domain for this function.

57. Quality Control of Cheese It is often difficult to evaluate the
quality of products that undergo a ripening or maturation
process. Researchers have successfully used ultrasonic veloc-
ity to determine the maturation time of Mahon cheese. The age
can be determined by

where is the estimated age of the cheese (in days) for a
velocity v (m per second). Source: Journal of Food Science.

a. If Mahon cheese ripens in 150 days, determine the velocity
of the ultrasound that one would expect to measure. 
(Hint: Set and solve for v.)

b. Determine the derivative of this function when
and interpret.

Physical  Sciences

58. Temperature The graph shows the temperature in degrees
Celsius as a function of the altitude h in feet when an inversion
layer is over Southern California. (See Exercise 41 in the pre-
vious section.) Estimate and interpret the derivatives of 
at the marked points.

T 1h 2

v 5 1700 m per second

M 1 v 2 5 150

M 1 v 2
M 1 v 2 5 0.0312443v2 2 101.39v 1 82,264, v $ 1620,

I 1 t 2

I 1 t 2 5 27 1 72t 2 1.5t2
 ,
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T (ºC)

25
20
15
10
5

7000500030001000 9000 h (ft)

T = T(h)

59. Oven Temperature The graph in the next column shows the
temperature one Christmas day of a Heat-Kit Bakeoven, a wood-
burning oven for baking. Source: Heatkit.com. The oven was lit
at 8:30 a.m. Let be the temperature x hours after 8:30 a.m.

a. Find and interpret 

b. Find and interpret 

c. Find and interpret 

d. At a certain time a Christmas turkey was put into the oven,
causing the oven temperature to drop. Estimate when the
turkey was put into the oven.

T r 14 2 .

T r 1 3 2 .

T r 10.5 2 .

T 1x 2

8:30
0º

100º
200º
300º
400º
500º

9:309:00 10:00 10:30 11:00 11:30 12:00 12:30 1:00

T
em

pe
ra

tu
re

Time

60. Baseball The graph shows how the velocity of a baseball that
was traveling at 40 miles per hour when it was hit by a Little
League baseball player varies with respect to the weight of the
bat. Source: Biological Cybernetics.

a. Estimate and interpret the derivative for a 16-oz and 25-oz
bat.

b. What is the optimal bat weight for this player?

61. Baseball The graph shows how the velocity of a baseball that
was traveling at 90 miles per hour when it was hit by a Major
League baseball player varies with respect to the weight of the
bat. Source: Biological Cybernetics.
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YOUR TURN ANSWERS 

1. a. b.

2. and .

3. and .

4. . 5.

6. $9.60 7. y 5 1
2x 1 2

f r 1x 2 5
1

"x
f r 1x 2 5

2

x2

f r 1 2 1 2 5 3f r 1x 2 5 3x2

f r 1 2 2 2 5 25f r 1x 2 5 2x 2 1

y 5 25x 2 4y 5 22x 1 2

a. Estimate and interpret the derivative for a 40-oz and 30-oz
bat.

b. What is the optimal bat weight for this player?



We will answer this question in Example 1 using graphical differentiation.

In the previous section, we estimated the derivative at various points of a graph by esti-
mating the slope of the tangent line at those points. We will now extend this process to
show how to sketch the graph of the derivative given the graph of the original function.
This is important because, in many applications, a graph is all we have, and it is easier to
find the derivative graphically than to find a formula that fits the graph and take the deriva-
tive of that formula.

Production of Landscape Mulch
In Figure 45(a), the graph shows total production (TP), measured in cubic yards of land-
scape mulch per week, as a function of labor used, measured in workers hired by a small
business. The graph in Figure 45(b) shows the marginal production curve , which is
the derivative of the total production function. Verify that the graph of the marginal produc-
tion curve is the graph of the derivative of the total production curve (TP).1MPL2

1MPL2
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Graphical Differentiation
Given a graph of the production function, how can we find the graph of
the marginal production function?

APPLY IT 

3.5

EXAMPLE  1

Cubic yards
per week

2000

800

1200

1600

0

400

85 Labor
MPL

Cubic yards
per worker

10000

8000

0

5000

85 Labor

TP

(a)

(b)

FIGURE 45

SOLUTION Let q refer to the quantity of labor. We begin by choosing a point where esti-
mating the derivative of TP is simple. Observe that when q � 8, TP has a horizontal tan-
gent line, so its derivative is 0. This explains why the graph of equals 0 when q � 8.

Now, observe in Figure 45(a) that when q � 8, the tangent lines of TP have positive
slope and the slope is steepest when q � 5. This means that the derivative should be posi-
tive for q � 8 and largest when q � 5. Verify that the graph of has this property.

Finally, as Figure 45(a) shows, the tangent lines of TP have negative slope when q � 8,
so its derivative, represented by the graph of , should also be negative there. Verify that
the graph of , in Figure 45(b), has this property as well.MPL

MPL

MPL

MPL

APPLY IT 



In Example 1, we saw how the general shape of the graph of the derivative could be
found from the graph of the original function. To get a more accurate graph of the deriva-
tive, we need to estimate the slope of the tangent line at various points, as we did in the
previous section.

Temperature

Figure 46 gives the temperature in degrees Celsius as a function, , of the altitude h in
feet when an inversion layer is over Southern California. Sketch the graph of the derivative
of the function. (This graph appeared in Exercise 58 in the previous section.)

T 1h 2
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EXAMPLE  2

T (ºC)

25
20
15
10
5

7000500030001000 9000 h (ft)

T = T(h)

FIGURE 46

SOLUTION First, observe that when h � 1000 and h � 3500, has horizontal tangent

lines, so and .
Notice that the tangent lines would have a negative slope for 0 � h � 1000. Thus, the

graph of the derivative should be negative (below the x-axis) there. Then, for 1000 � h �
3500, the tangent lines have positive slope, so the graph of the derivative should be positive
(above the x-axis) there. Notice from the graph of that the slope is largest when h =
1500. Finally, for h � 3500, the tangent lines would be negative again, forcing the graph of
the derivative back down below the x-axis to take on negative values.

Now that we have a general shape of the graph, we can estimate the value of the deriv-
ative at several points to improve the accuracy of the graph. To estimate the derivative, find
two points on each tangent line and compute the slope between the two points. The esti-
mates at selected points are given in the table to the left. (Your answers may be slightly
different, since estimation from a picture can be inexact.) Figure 47 shows a graph of these
values of .T r 1h 2

T 1h 2

T r 1 3500 2 5 0T r 1 1000 2 5 0

T 1h 2

Estimates of

h

500 20.005
1000 .0
1500 0.008
3500 .0
5000 20.00125

T r 1h 2
T r 1h 2

T'(h)

0.008

0.006

0.004

0.002

–0.002

–0.004

–0.006

–0.008

50001000 3000 7000 9000

h (ft)

FIGURE 47

T'(h)

0.008

0.006

0.004

0.002

–0.002

–0.004

–0.006

–0.008

50001000 3000 7000 9000

h (ft)

FIGURE 48

YOUR TURN 1 Sketch the
graph of the derivative of the 
function .f 1 x 2

–2

2

4

42–2–4 0 x

f(x)

Using all of these facts, we connect the points in the graph smoothly, with the
result shown in Figure 48. TRY YOUR TURN 1

T r 1h 2



Remember that when you graph the derivative, you are graphing the slope of 
the original function. Do not confuse the slope of the original function with the 
y-value of the original function. In fact, the slope of the original function is equal
to the y-value of its derivative.

Sometimes the original function is not smooth or even continuous, so the graph of the
derivative may also be discontinuous.

Graphing a Derivative

Sketch the graph of the derivative of the function shown in Figure 49.

SOLUTION Notice that when the slope is 1, and when the slope is
At the derivative does not exist due to the sharp corner in the graph. The

derivative also does not exist at because the function is discontinuous there. Using
this information, the graph of on is shown in Figure 50.x , 0f r 1x 2

x 5 0
x 5 22,21.

22 , x , 0,x , 22,
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EXAMPLE  3

YOUR TURN 2 Sketch the
graph of the derivative of the
function .g 1 x 2

CAUTION

–2

f '(x)

2 4 6–6 –2–4 x

2

FIGURE 51

–2

f(x)

2 4 6–6 –4 –2 x

2

FIGURE 49

–2

f '(x)

2 4 6–6 –2–4 x

2

FIGURE 50

g x

x
For the derivative is positive. If you draw a tangent line at you should

find that the slope of this line is roughly 1. As x approaches 0 from the right, the derivative
becomes larger and larger. As x approaches infinity, the tangent lines become more and
more horizontal, so the derivative approaches 0. The resulting sketch of the graph of

is shown in Figure 51. TRY YOUR TURN 2

Finding the derivative graphically may seem difficult at first, but with practice you
should be able to quickly sketch the derivative of any function graphed. Your answers to
the exercises may not look exactly like those in the back of the book, because estimating
the slope accurately can be difficult, but your answers should have the same general
shape.

Figures 52(a), (b), and (c) show the graphs of and on a graph-
ing calculator. When finding the derivative graphically, all three seem to have the same
behavior: negative derivative for 0 derivative at and positive derivative for

Beyond these general features, however, the derivatives look quite different, as youx . 0.
x 5 0,x , 0,

y 5 x4/3y 5 x4,y 5 x2,

y 5 f r 1x 2

x 5 1,x . 0,



can see from Figures 53(a), (b), and (c), which show the graphs of the derivatives. When
finding derivatives graphically, detailed information can only be found by very carefully
measuring the slope of the tangent line at a large number of points.
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�2 2

8

�1
y � x2

FIGURE 52

�2 2

8

�1
y � x4

�2 2

8

�1
y � x4/3

�2 2

10

�10

�2 2

10

�10

�2 2

10

�10

(a) (b) (c)

FIGURE 53
(a) (b) (c)

EXAMPLE  4

1 3 5 7–2 –1

–10

–5

5

10

Y1 Y2

FIGURE 54

On many calculators, the graph of the derivative can be plotted if a formula for the original function
is known. For example, the graphs in Figure 53 were drawn on a TI-84 Plus by using the nDeriv
command. Define Y2 = (Y1)|x = x after entering the original function into Y1. You can use this fea-
ture to practice finding the derivative graphically. Enter a function into Y1, sketch the graph on the
graphing calculator, and use it to draw by hand the graph of the derivative. Then use nDeriv to draw
the graph of the derivative, and compare it with your sketch.

Graphical Differentiation

Figure 54 shows the graph of a function f and its derivative function Use slopes to
decide which graph is that of f and which is the graph of f r.

f r.

d
dx

SOLUTION Look at the places where each graph crosses the x-axis; that is, the x-intercepts,
since x-intercepts occur on the graph of whenever the graph of f has a horizontal tangent
line or slope of zero. Also, a decreasing graph corresponds to negative slope or a negative
derivative, while an increasing graph corresponds to positive slope or a positive derivative.

has zero slope near and has x-intercepts near these values of x. 
decreases on and is negative on those intervals. increases on 
and is positive there. Thus, is the graph of f and   is the graph of   f r.Y2Y1Y21 5, 7 2 ;

10, 1 2Y1Y21 1, 5 2 ;122, 0 2
Y1Y2x 5 5;x 5 1,x 5 0,Y1

f r

TECHNOLOGY NOTE
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10.

11.

12.

13.

14.

15.
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f

–2

(x)

2–2 4 6–6 –4 x

2

f

–2

(x)
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2

f

–2

(x)

2 4 6–6 –2–4 x

2

f

f (x)

x–3

–1

10

3.5 EXERCISES
1. Explain how to graph the derivative of a function given the

graph of the function.

2. Explain how to graph a function given the graph of the deriva-
tive function. Note that the answer is not unique.

Each graphing calculator window shows the graph of a func-
tion and its derivative function Decide which is the
graph of the function and which is the graph of the derivative.

3. 4.

5. 6.

Sketch the graph of the derivative for each function shown.

7.

8.

9.

f 9 1 x 2 .f 1 x 2

26 3

8

210

Y1 Y2

23 3

5

215

Y1 Y2



16.

APPLICATIONS
Business and Economics

17. Consumer Demand When the price of an essential commod-
ity rises rapidly, consumption drops slowly at first. If the price
continues to rise, however, a “tipping” point may be reached,
at which consumption takes a sudden substantial drop. Suppose
the accompanying graph shows the consumption of gasoline,
G(t), in millions of gallons, in a certain area. We assume that
the price is rising rapidly. Here t is the time in months after the
price began rising. Sketch a graph of the rate of change in
consumption as a function of time.
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20. Body Mass Index The following graph shows how the body
mass index-for-age percentile for boys varies from the age of 2
to 20 years. Source: Centers for Disease Control.

a. Sketch a graph of the rate of change of the 95th percentile as
a function of age.

b. Sketch a graph of the rate of change of the 50th percentile as
a function of age.

f (x)

x0

2

2 1

t

G t

18. Sales The graph shows annual sales (in thousands of dollars) of
a Nintendo game at a particular store. Sketch a graph of the rate
of change of sales as a function of time.

Life Sciences

19. Insecticide The graph in the next column shows how the num-
ber of arthropod species resistant to insecticides has varied
with time. Sketch a graph of the rate of change of the insecti-
cide–resistant species as a function of time. Source: Science.
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21. Shellfish Population In one research study, the population of a
certain shellfish in an area at time t was closely approximated
by the following graph. Sketch a graph of the growth rate of
the population.

9000

12,000

6000

3000

2 64 108 14 1612 18 20 t

y

0

22. Flight Speed The graph on the next page shows the relation-
ship between the speed of a bird in flight and the required
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power expended by flight muscles. Sketch the graph of the rate of
change of the power as a function of the speed. Source: Biolog-e:
The Undergraduate Bioscience Research Journal.

YOUR TURN ANSWERS 

1. 2.

23. Human Growth The growth remaining in sitting height at
consecutive skeletal age levels is indicated below for boys.
Source: Standards in Pediatric Orthopedics: Tables, Charts,
and Graphs Illustrating Growth. Sketch a graph showing the

rate of change of growth remaining for the indicated years. Use
the graph and your sketch to estimate the remaining growth
and the rate of change of remaining growth for a 14-year-old
boy.

24. Weight Gain The graph below shows the typical weight (in
kilograms) of an English boy for his first 18 years of life.
Sketch the graph of the rate of change of weight with respect
to time. Source: Human Growth After Birth.
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In this chapter we introduced the ideas of limit and continuity of
functions and then used these ideas to explore calculus. We saw
that the difference quotient can represent

• the average rate of change,

• the slope of the secant line, and

• the average velocity.

We saw that the derivative can represent

• the instantaneous rate of change,

• the slope of the tangent line, and

• the instantaneous velocity.

SUMMARY

3 CHAPTER REVIEW
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Limit of a Function Let f be a function and let a and L be real numbers. If

1. as x takes values closer and closer (but not equal) to a on both sides of a, the corresponding val-
ues of get closer and closer (and perhaps equal) to L; and

2. the value of can be made as close to L as desired by taking values of x close enough to a;

then L is the limit of as x approaches a, written

Existence of Limits The limit of f as x approaches a may not exist.

1. If becomes infinitely large in magnitude (positive or negative) as x approaches the number
a from either side, we write or In either case, the limit does
not exist.

2. If becomes infinitely large in magnitude (positive) as x approaches a from one side and infi-
nitely large in magnitude (negative) as x approaches a from the other side, then does
not exist.

3. If and and then does not exist.

Limits at Infinity For any positive real number n,

Finding Limits at Infinity If for polynomials p (x) and q (x), can be found 

by dividing p (x) and q (x) by the highest power of x in q (x).

Continuity A function f is continuous at c if

1. f (c) is defined,

2. exists, and

3.

Average Rate of Change The average rate of change of f (x) with respect to x as x changes from a to b is

Difference Quotient The average rate of change can also be written as

Derivative The derivative of f (x) with respect to x is

f' 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
.

f 1x 1 h 2 2 f 1x 2
h

.

f 1b 2 2 f 1a 2
b 2 a

.

lim
xlc

 f 1x 2 5 f 1 c 2 .

lim
xlc

 f 1x 2

lim
xl`

 f 1x 2  and lim
xl2`

f 1x 2f 1x 2 5 p 1x 2 /q 1x 2

lim
xl`

 
1

xn  5 lim
xl2`

 
1

xn  5 0.

lim
xla 

f 1x 2L 2 M,lim
xla1 

f 1x 2 5 M,lim
xla2 

f 1x 2 5 L

lim
xla 

f 1x 2
f 1x 2

lim
xla 

f 1x 2 5 2`.lim
xla 

f 1x 2 5 `

f 1x 2

lim
xla 

f 1 x 2 5 L.

f 1x 2
f 1x 2

f 1x 2

We also learned how to estimate the value of the derivative using
graphical differentiation. In the next chapter, we will take a closer
look at the definition of the derivative to develop a set of rules to

quickly and easily calculate the derivative of a wide range of
functions without the need to directly apply the definition of the
derivative each time.



Determine whether each of the following statements is true or
false, and explain why.

1. The limit of a product is the product of the limits when each
of the limits exists.

2. The limit of a function may not exist at a point even though
the function is defined there.

3. If a rational function has a polynomial in the denominator of
higher degree than the polynomial in the numerator, then the
limit at infinity must equal zero.

4. If the limit of a function exists at a point, then the function is
continuous there.

5. A polynomial function is continuous everywhere.

6. A rational function is continuous everywhere.

7. The derivative gives the average rate of change of a function.

8. The derivative gives the instantaneous rate of change of a
function.

9. The instantaneous rate of change is a limit.

10. The derivative is a function.

11. The slope of the tangent line gives the average rate of change.

12. The derivative of a function exists wherever the function is
continuous.

13. Is a derivative always a limit? Is a limit always a derivative?
Explain.

14. Is every continuous function differentiable? Is every
differentiable function continuous? Explain.

15. Describe how to tell when a function is discontinuous at the
real number 

16. Give two applications of the derivative

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
 .

x 5 a.

Decide whether the limits in Exercises 17–34 exist. If a limit
exists, find its value.

17. a. b. c. d. 

18. a. b. c. d. 

19. a. b. c. d. f 14 2lim
xl4

f 1x 2lim
xl41

f 1x 2lim
xl42

f 1x 2

g 121 2lim
xl21

g 1x 2lim
xl211

g 1x 2lim
xl212

g 1x 2

f 123 2lim
xl23

f 1x 2lim
xl231

f 1x 2lim
xl232

f 1x 2
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KEY TERMS

3.1
limit
limit from the left/right
one-/two-sided limit
piecewise function
limit at infinity

3.2
continuous
discontinuous
removable discontinuity
continuous on an open/closed 
interval

continuous from the right/left
Intermediate Value Theorem

3.3
average rate of change
difference quotient
instantaneous rate of change 
velocity

3.4
secant line
tangent line
slope of the curve
derivative
differentiable
differentiation

To understand the concepts presented in this chapter, you should know the meaning and use of the following terms.
For easy reference, the section in the chapter where a word (or expression) was first used is provided.

REVIEW EXERCISES

CONCEPT CHECK

PRACTICE AND EXPLORATIONS

–2

f(x)

3–3 x

4

–2

g(x)

2–2 x

2

0

f(x)

–4 4 x

3

0

–3



Find all x-values where the function is discontinuous. For each
such value, give and or state that it does not
exist.

37. 38.

39. 40.

41. 42.

In Exercises 43 and 44, (a) graph the given function, (b) find all
values of x where the function is discontinuous, and (c) find the
limit from the left and from the right at any values of x found
in part b.

43.

44.

Find each limit (a) by investigating values of the function near
the point where the limit is taken and (b) by using a graphing
calculator to view the function near the point.

45.

46.

Find the average rate of change for the following on the given
interval. Then find the instantaneous rate of change at the first 
x-value.

47.

48.

49.

50.

For each function, find (a) the equation of the secant line
through the points where x has the given values, and (b) the
equation of the tangent line when x has the first value.

51. ; x 5 2, x 5 4

52. f (x) 5 ; x 5 1/2, x 5 3

53. f (x) 5 ; x 5 3, x 5 7

54. ; x 5 5, x 5 10f 1x 2 5 2"x 2 1

12

x 2 1

1

x

f 1x 2 5 3x2 2 5x 1 7

y 5
x 1 4

x 2 1
 from x 5 2 to x 5 5

y 5
26

3x 2 5
 from x 5 4 to x 5 9

y 5 22x3 2 3x2 1 8 from x 5 22 to x 5 6

y 5 6x3 1 2 from x 5 1 to x 5 4

lim
xl22

 
x4 1 3x3 1 7x2 1 11x 1 2

x3 1 2x2 2 3x 2 6

lim
xl1

 
x4 1 2x3 1 2x2 2 10x 1 5

x2 2 1

f 1x 2 5 c2

2x2 1 x 1 2

1

if x , 0

if 0 # x # 2

if x . 2

f 1x 2 5 c1 2 x

2

4 2 x

if x , 1

if 1 # x # 2

if x . 2

f 1x 2 5 2x2 2 5x 2 3f 1x 2 5 x2 1 3x 2 4

f 1x 2 5
x2 2 9

x 1 3
f 1x 2 5

x 2 6

x 1 5

f 1x 2 5
7 2 3x

1 1 2 x 2 1 3 1 x 2
f 1x 2 5

25 1 x

3x 1 3x 1 1 2

lim
xl

 a  f 1x 2f 1a 2
20. a. b. c. d. 

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

Identify the x-values where f is discontinuous.

35.

36.

lim
xl2`

a
9

x4 1
10

x2 2 6blim
xl2`

a
3

8
1

3

x
2

6

x2b

lim
xl`

 
x2 1 6x 1 8

x3 1 2x 1 1
lim
xl`

 
2x2 1 5

5x2 2 1

lim
xl16

 
"x 2 4

x 2 16
lim
xl9

 
"x 2 3

x 2 9

lim
xl3

 
3x2 2 2x 2 21

x 2 3
lim

xl24
 
2x2 1 3x 2 20

x 1 4

lim
xl2

 
x2 1 3x 2 10

x 2 2
lim
xl4

 
x2 2 16

x 2 4

lim
xl23

 
2x 1 5

x 1 3
lim
xl6

 
2x 1 7

x 1 3

lim
xl`

f 1x 2lim
xl2`

g 1x 2

h 12 2lim
xl2

h 1x 2lim
xl21

h 1x 2lim
xl22

h 1x 2
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Use the definition of the derivative to find the derivative of the
following.

55. 56.

In Exercises 57 and 58, find the derivative of the function at
the given point (a) by approximating the definition of the
derivative with small values of h and (b) by using a graphing
calculator to zoom in on the function until it appears to be a
straight line, and then finding the slope of that line.

57. 58.

Sketch the graph of the derivative for each function shown.

59.

60.

61. Let f and g be differentiable functions such that

where . Determine

(Choose one of the following.) Source: Society of Actuaries.

a. 0 b.

c. d. e.

Business and Economics

62. Revenue Waverly Products has found that its revenue is
related to advertising expenditures by the function

where is the revenue in dollars when x hundred dollars
are spent on advertising.

a. Find the marginal revenue function.

b. Find and interpret the marginal revenue when $1000 is spent
on advertising.

R 1x 2
R 1x 2 5 5000 1 16x 2 3x2,

c 1 dc 2 df' 10 2 2 g' 10 2

cf' 10 2 2 dg' 10 2
f' 10 2 2 g' 10 2

lim
xl`

 
cf 1x 2 2 dg 1x 2

f 1x 2 2 g 1x 2
.

c 2  d

lim
xl`

 g 1x 2 5 d

lim
xl`

 f 1x 2 5 c

f 1x 2 5 xln x; x0 5 2f 1x 2 5 1 ln x 2x; x0 5 3

y 5 5x2 2 6x 1 7y 5 4x2 1 3x 2 2
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63. Cost Analysis A company charges $1.50 per lb when a certain
chemical is bought in lots of 125 lb or less, with a price per
pound of $1.35 if more than 125 lb are purchased. Let 
represent the cost of x lb. Find the cost for the following num-
bers of pounds.

a. 100 b. 125 c. 140 d. Graph 

e. Where is C discontinuous?

Find the average cost per pound if the following number of
pounds are bought.

f. 100 g. 125 h. 140

Find and interpret the marginal cost (that is, the instantaneous
rate of change of the cost) for the following numbers of
pounds.

i. 100 j. 140

64. Marginal Analysis Suppose the profit (in cents) from selling x
lb of potatoes is given by

Find the average rate of change in profit from selling each of
the following amounts.

a. 6 lb to 7 lb b. 6 lb to 6.5 lb c. 6 lb to 6.1 lb

Find the marginal profit (that is, the instantaneous rate of
change of the profit) from selling the following amounts.

d. 6 lb e. 20 lb f. 30 lb

g. What is the domain of x?

h. Is it possible for the marginal profit to be negative here?
What does this mean?

i. Find the average profit function. (Recall that average profit
is given by total profit divided by the number produced, or

)

j. Find the marginal average profit function (that is, the func-
tion giving the instantaneous rate of change of the average
profit function).

k. Is it possible for the marginal average profit to vary here?
What does this mean?

l. Discuss whether this function describes a realistic situation.

65. Average Cost The graph on the next page shows the total
cost to produce x tons of cement. (Recall that average
cost is given by total cost divided by the number produced, or

)

a. Draw a line through and Explain why the
slope of this line represents the average cost per ton when 
5 tons of cement are produced.

b. Find the value of x for which the average cost is smallest.

c. What can you say about the marginal cost at the point where
the average cost is smallest?

1 5, C 1 5 2 2 .10, 0 2

C 1x 2 5 C 1x 2 /x.

C 1x 2

P 1x 2 5 P 1x 2 /x.

P 1x 2 5 15x 1 25x2.

y 5 C 1x 2 .

C 1x 2

–2

f(x)

2 4–4 6–6 –2 x

2

–2

f(x)

2 4 6–6 –2–4 x

2

APPLICATIONS



66. Tax Rates A simplified income tax considered in the U.S. Sen-
ate in 1986 had two tax brackets. Married couples earning
$29,300 or less would pay 15% of their income in taxes. Those
earning more than $29,300 would pay $4350 plus 27% of the
income over $29,300 in taxes. Let be the amount of taxes
paid by someone earning x dollars in a year. Source: Wall Street
Journal. 

a. Find b. Find

c. Find d. Sketch a graph of 

e. Identify any x-values where T is discontinuous.

f. Let be the average tax rate, that is, the
amount paid in taxes divided by the income. Find a formula
for (Note: The formula will have two parts: one for

and one for )

g. Find h. Find

i. Find j. Find 

k. Sketch the graph of 

67. Unemployment The annual unemployment rates of the U.S.
civilian noninstitutional population for 1990–2009 are shown
in the graph. Sketch a graph showing the rate of change of the
annual unemployment rates for this period. Use the given
graph and your sketch to estimate the annual unemployment
rate and rate of change of the unemployment rate in 2008.
Source: Bureau of Labor Statistics.

A 1x 2 .

lim
xl`

A 1x 2 .lim
xl29,300

A 1x 2 .

lim
xl29,3001

A 1x 2 .lim
xl29,3002

A 1x 2 .

x . 29,300.x # 29,300
A 1x 2 .

A 1x 2 5 T 1x 2 /x

T 1x 2 .lim
xl29,300

T 1x 2 .

lim
xl29,3001

T 1x 2 .lim
xl29,3002

T 1x 2 .

T 1x 2
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Life Sciences

68. Alzheimer’s Disease The graph below shows the projected
number of people aged 65 and over in the United States with
Alzheimer’s Disease. Source: Alzheimer’s Disease Facts and
Figures. Estimate and interpret the derivative in each of the
following years

a. b.

c. Find the average rate of change between 2000 and 2040 in
the number of people aged 65 and over in the United States
with Alzheimer’s disease.
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69. Spread of a Virus The spread of a virus is modeled by

where is the number of people (in hundreds) with the virus
and t is the number of weeks since the first case was observed.

a. Graph 

b. What is a reasonable domain of t for this problem?

c. When does the number of cases reach a maximum? What is
the maximum number of cases?

d. Find the rate of change function.

e. What is the rate of change in the number of cases at the
maximum?

f. Give the sign ( or ) of the rate of change up to the maxi-
mum and after the maximum.

70. Whales Diving The following figure, already shown in the
section on Properties of Functions, shows the depth of a
sperm whale as a function of time, recorded by researchers at
the Woods Hole Oceanographic Institution in Massachusetts.
Source: Peter Tyack, Woods Hole Oceanographic Institution.

a. Find the rate that the whale was descending at the following
times.

i. 17 hours and 37 minutes

ii. 17 hours and 39 minutes

b. Sketch a graph of the rate the whale was descending as a
function of time.

21

V 1 t 2 .

V 1 t 2
V 1 t 2 5 2t2 1 6t 2 4,
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71. Body Mass Index The following graph shows how the body
mass index-for-age percentile for girls varies from the age of 
2 to 20 years. Source: Centers for Disease Control.

a. Sketch a graph of the rate of change of the 95th percentile as
a function of age.

b. Sketch a graph of the rate of change of the 50th percentile as
a function of age.
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72. Human Growth The growth remaining in sitting height at
consecutive skeletal age levels is indicated below for girls.
Sketch a graph showing the rate of change of growth remain-
ing for the indicated years. Use the graph and your sketch to
estimate the remaining growth and the rate of change of
remaining growth for a 10-year-old girl. Source: Standards in
Pediatric Orthopedics: Tables, Charts, and Graphs Illustrat-
ing Growth.

Body Mass Index-for-Age Percentiles:
Girls, 2 to 20 years
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Physical  Sciences

73. Temperature Suppose a gram of ice is at a temperature of
The graph shows the temperature of the ice as

increasing numbers of calories of heat are applied. It takes 80
calories to melt one gram of ice at into water, and 540
calories to boil one gram of water at into steam.

a. Where is this graph discontinuous?

b. Where is this graph not differentiable?

c. Sketch the graph of the derivative.

100°C
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2100°C.

200
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T (degrees C)

0 Q (calories)



A MODEL FOR DRUGS ADMINISTERED INTRAVENOUSLY

E X T E N D E D APPLICATION

193

When a drug is
administered
intravenously it

enters the bloodstream imme-
diately, producing an immedi-
ate effect for the patient. The
drug can be either given as a
single rapid injection or given
at a constant drip rate. The lat-
ter is commonly referred to as
an intravenous (IV) infusion.
Common drugs administered
intravenously include mor-
phine for pain, diazepam (or
Valium) to control a seizure,
and digoxin for heart failure.

SINGLE RAPID INJECTION
With a single rapid injection, the amount of drug in the blood-
stream reaches its peak immediately and then the body eliminates
the drug exponentially. The larger the amount of drug there is in
the body, the faster the body eliminates it. If a lesser amount of
drug is in the body, it is eliminated more slowly.

The amount of drug in the bloodstream t hours after a single
rapid injection can be modeled using an exponential decay func-
tion, like those found in the Chapter on Nonlinear Functions, as
follows:

A(t) � Dekt,

where D is the size of the dose administered and k is the exponen-
tial decay constant for the drug.

Rapid Injection
The drug labetalol is used for the control of blood pressure in
patients with severe hypertension. The half-life of labetalol is 4
hours. Suppose a 35-mg dose of the drug is administered to a
patient by rapid injection.

(a) Find a model for the amount of drug in the bloodstream t hours
after the drug is administered.

SOLUTION Since D � 35 mg, the function has the form

A(t) � 35ekt.

Recall from the chapter on Nonlinear Functions that the general
equation giving the half-life T in terms of the decay constant k was

Solving this equation for k, we get

k 5 2
ln 2

T
 .

T 5 2
ln 2

k
 .

Since the half-life of this drug is 4 hours,

Therefore, the model is

A(t) � 35e�0.17t.

The graph of A(t) is given in Figure 55.

k 5 2 

ln 2

4
 < 2 0.17.

FIGURE 55
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A (t ) = 35e–0.17t

(b) Find the average rate of change of drug in the bloodstream
between t � 0 and t � 2. Repeat for t � 4 and t � 6.

SOLUTION The average rate of change from t � 0 to t � 2 is

The average rate of change from t � 4 to t � 6 is

Notice that since the half-life of the drug is 4 hours, the average
rate of change from t � 4 to t � 6 is half of the average rate of
change from t � 0 to t � 2. What would the average rate of change
be from t � 8 to t � 10?

(c) What happens to the amount of drug in the bloodstream as 
t increases? (i.e., What is the limit of the function as t
approaches `?)

SOLUTION Looking at the graph of A(t), we can see that

An advantage of an intravenous rapid injection is that the amount
of drug in the body reaches a high level immediately. Suppose,

lim
tl` 

A 1 t 2 5 0.

A 1 6 2 2 A 14 2
6 2 4

<
13 2 18

2
5 2 2.5 mg/hr.

A 12 2 2 A 10 2
2 2 0

<
25 2 35

2
5 2 5 mg/hr.EXAMPLE  1



194

however, that the effective level of this drug is between 30 mg
and 40 mg. From the graph, we can see that it only takes an hour
after the dose is given for the amount of drug in the body to fall
below the effective level.

INTRAVENOUS INFUSION
With an IV infusion, the amount of drug in the bloodstream starts
at zero and increases until the rate the drug is entering the body
equals the rate the drug is being eliminated from the body. At this
point, the amount of drug in the bloodstream levels off. This model
is a limited growth function, like those from Chapter 2.

The amount of drug in the bloodstream t hours after an IV
infusion begins can be modeled using a limited growth function, as
follows.

where r is the rate of infusion per hour and k is the exponential
decay constant for the drug.

IV Infusion
The same drug used in Example 1 is given to a patient by IV infu-
sion at a drip rate of 6 mg/hr. Recall that the half-life of this drug is
4 hours.

(a) Find a model for the amount of drug in the bloodstream t hours
after the IV infusion begins.

SOLUTION Since r � 6 and k � �0.17, the function has the form

A(t) � 35(1 � e�0.17t ).

The graph of A(t) is given in Figure 56.

A 1 t 2 5
r

2k
 1 1 2 ekt 2 ,

The average rate of change from t � 4 to t � 6 is

Recall that the average rate of change from t � 0 to t � 2 for the
rapid injection of this drug was �5 mg/hr and the average rate of
change from t � 4 to t � 6 was �2.5 mg/hr. In fact, at any given
time, the rapid injection function is decreasing at the same rate the
IV infusion function is increasing.

(c) What happens to the amount of drug in the bloodstream as t
increases? (i.e., What is the limit of the function as t
approaches �?)

SOLUTION Looking at the graph of A(t) in Figure 56 and the for-
mula for A(t) in part (a), we can see that

An advantage of an IV infusion is that a dose can be given such
that the limit of A(t) as t approaches � is an effective level. Once
the amount of drug has reached this effective level, it will remain
there as long as the infusion continues. However, using this
method of administration, it may take a while for the amount of
drug in the body to reach an effective level. For our example, the
effective level is between 30 mg and 40 mg. Looking at the graph,
you can see that it takes about 11 hours to reach an effective level.
If this patient were experiencing dangerously high blood pressure,
you wouldn’t want to wait 11 hours for the drug to reach an
effective level.

SINGLE RAPID INJECTION FOLLOWED
BY AN INTRAVENOUS INFUSION
Giving a patient a single rapid injection immediately followed by
an intravenous infusion allows a patient to experience the advan-
tages of both methods. The single rapid injection immediately pro-
duces an effective drug level in the patient’s bloodstream. While
the amount of drug in the bloodstream from the rapid infusion is
decreasing, the amount of drug in the system from the IV infusion
is increasing.

The amount of drug in the bloodstream t hours after the injec-
tion is given and infusion has started can be calculated by finding
the sum of the two models.

Combination Model
A 35-mg dose of labetalol is administered to a patient by rapid injec-
tion. Immediately thereafter, the patient is given an IV infusion at a
drip rate of 6 mg/hr. Find a model for the amount of drug in the
bloodstream t hours after the drug is administered.

SOLUTION Recall from Example 1, the amount of drug in the
bloodstream t hours after the rapid injection was found to be

A(t) � 35e�0.17t.

A 1 t 2 5 Dekt 1
r

2k
 1 1 2 ekt 2 .

lim
tl` 

A 1 t 2 5 35.

A 1 6 2 2 A 14 2
6 2 4

<
22 2 17

2
5 2.5 mg/hr.

FIGURE 56
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2 4 6 8 10 12 14 16 18 20 22 24
0

A (t )

t

A (t ) = 35(1 – e–0.17t)

(b) Find the average rate of change of drug in the bloodstream
between t � 0 and t � 2. Repeat for t � 4 and t � 6.

SOLUTION The average rate of change from t � 0 to t � 2 is

A 12 2 2 A 10 2
2 2 0

<
10 2 0

2
5 5 mg/hr.

EXAMPLE  2

EXAMPLE  3
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From Example 2, the amount of drug in the bloodstream t hours
after the IV infusion began was found to be

A(t) � 35(1 � e�0.17t ).

Therefore, t hours after administering both the rapid injection and
the IV infusion, the amount of drug in the bloodstream is

A(t) � 35e�0.17t � 35(1�e�0.17t )

� 35 mg.

The graph of A(t) is given in Figure 57.

Since we want the sum of the rapid injection function and the IV
infusion function to be 58 mg, it follows that

Solving for r, we get

r � 13.34 mg/hr.

EXERCISES
1. A 500-mg dose of a drug is administered by rapid injection to

a patient. The half-life of the drug is 9 hours.

a. Find a model for the amount of drug in the bloodstream t
hours after the drug is administered.

b. Find the average rate of change of drug in the bloodstream
between t � 0 and t � 2. Repeat for t � 9 and t � 11.

2. A drug is given to a patient by IV infusion at a drip rate of 350
mg/hr. The half-life of this drug is 3 hours.

a. Find a model of the amount of drug in the bloodstream t
hours after the IV infusion begins.

b. Find the average rate of change of drug in the bloodstream
between t � 0 and t � 3. Repeat for t � 3 and t � 6.

3. A drug with a half-life of 9 hours is found to be effective
when the amount of drug in the bloodstream is 250 mg. A
250-mg loading dose is given by rapid injection followed by
an IV infusion. What should the rate of infusion be to main-
tain this level of drug in the bloodstream?

4. Use the table feature on a graphing calculator or a spreadsheet
to develop a table that shows how much of the drug is present
in a patient’s system at the end of each 1/2 hour time interval
for 24 hours for the model found in Exercise 1a. A chart such
as this provides the health care worker with immediate infor-
mation about patient drug levels.

5. Use the table feature on a graphing calculator or a spreadsheet
to develop a table that shows how much of the drug is present
in a patient’s system at the end of each 1/2 hour time interval
for 10 hours for the model found in Exercise 2a. A chart such
as this provides the health care worker with immediate infor-
mation about patient drug levels.

6. Use the table feature on a graphing calculator or a spreadsheet
to develop a table that shows how much of the drug is present
in a patient’s system at the end of each 1/2 hour time interval
for 10 hours for the model found in Exercise 3. Are your
results surprising?

DIRECTIONS FOR GROUP PROJECT
Choose a drug that is commonly prescribed by physicians for a
common ailment. Develop an analysis for this drug that is similar
to the analysis for labetalol in Examples 1 through 3. You can
obtain information on the drug from the Internet or from advertise-
ments found in various media. Once you complete the analysis,
prepare a professional presentation that can be delivered at a pub-
lic forum. The presentation should summarize the facts presented
in this extended application but at a level that is understandable to
a typical layperson.

r

0.23
5 58.

Notice that the constant multiple of the rapid injection func-
tion, 35, is equal to the constant multiple of the IV infusion func-
tion. When this is the case, the sum of the two functions will be
that constant.

Combination Model
A drug with a half-life of 3 hours is found to be effective when the
amount of drug in the bloodstream is 58 mg. A 58-mg loading dose
is given by rapid injection followed by an IV infusion. What
should the rate of infusion be to maintain this level of drug in the
bloodstream?

SOLUTION Recall that the amount of drug in the bloodstream t
hours after both a rapid injection and IV infusion are administered
is given by

The rapid injection dose, D, is 58 mg. The half-life of the drug is
three hours; therefore,

It follows that

A 1 t 2 5 58e20.23t 1
r

0.23
 1 1 2 e20.23t 2 .

k 5 2
ln 2

3
< 20.23.

A 1 t 2 5 Dekt 1
r

2k
 1 1 2 ekt 2 .

FIGURE 57

5
10

15
20
25
30
35

40

m
g 

of
 d

ru
g 

in
 b

lo
od

st
re

am

Loading Dose Plus IV Infusion

Hours since dose was administered and infusion began
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A (t)

t

A (t ) = 35

EXAMPLE  4



Calculating the Derivative
4.1 Techniques for Finding 

Derivatives

4.2 Derivatives of Products and Quotients

4.3 The Chain Rule

4.4 Derivatives of Exponential Functions

4.5 Derivatives of Logarithmic Functions

Chapter 4 Review

Extended Application: Electric Potential
and Electric Field

By differentiating the function defining a mathematical

model we can see how the model’s output changes with

the input. In an exercise in Section 2 we explore a rational-

function model for the length of the rest period needed to

recover from vigorous exercise such as riding a bike. The

derivative indicates how the rest required changes with the

work expended in kilocalories per minute.

4

196



n the previous chapter, we found the derivative to be a useful tool for describing the rate
of change, velocity, and the slope of a curve.Taking the derivative by using the definition,
however, can be difficult.To take full advantage of the power of the derivative, we need

faster ways of calculating the derivative.That is the goal of this chapter.
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Techniques for Finding Derivatives
How can a manager determine the best production level if the
relationship between profit and production is known? How fast is 
the number of Americans who are expected to be over 100 years old
growing?

APPLY IT

4.1

These questions can be answered by finding the derivative of an appropriate function. 
We shall return to them at the end of this section in Examples 8 and 9.

Using the definition to calculate the derivative of a function is a very involved process
even for simple functions. In this section we develop rules that make the calculation of
derivatives much easier. Keep in mind that even though the process of finding a derivative
will be greatly simplified with these rules, the interpretation of the derivative will not
change. But first, a few words about notation are in order.

In addition to , there are several other commonly used notations for the derivative.fr 1x 2

The notation for the derivative (read “the derivative of y with respect to x”) is
sometimes referred to as Leibniz notation, named after one of the co-inventors of calculus,
Gottfried Wilhelm von Leibniz (1646–1716). (The other was Sir Isaac Newton, 1642–1727.)

With the above notation, the derivative of for example,
which was found in Example 5 of Section 3.4 to be would be written

A variable other than x is often used as the independent variable. For example, if
gives population growth as a function of time, then the derivative of y with

respect to t could be written

or

Other variables also may be used to name the function, as in or h 1 t 2 .g 1x 2

  Dt 
3f 1 t 2 4. 

d

dt
 3f 1 t 2 4,   

dy

dt
 , f r 1 t 2 , 

y 5 f 1 t 2

 Dx 12x3 1 4x 2 5 6x2 1 4.

 
d

dx
 12x3 1 4x 2 5 6x2 1 4

 
dy

dx
5 6x2 1 4

f r 1x 2 5 6x2 1 4,
y 5 f 1x 2 5 2x3 1 4x,

dy /dx

Notations for the Derivative
The derivative of may be written in any of the following ways:

or  Dx 
[ f 1 x 2 \.f9 1 x 2 ,  

dy

dx
,  

d
dx

 [ f 1 x 2 \,  

y 5 f 1x 2

I



Now we will use the definition

to develop some rules for finding derivatives more easily than by the four-step process
given in the previous chapter.

The first rule tells how to find the derivative of a constant function defined by
where k is a constant real number. Since is also k, by definition is

establishing the following rule.

 5 lim
hl0

 
k 2 k

h
5 lim

hl0
 
0

h
5 lim

hl0
 0 5 0,

 f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h

f r 1x 2f 1x 1 h 2f 1x 2 5 k,

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
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This rule is logical because the derivative represents rate of change, and a constant
function, by definition, does not change. Figure 1 illustrates this constant rule geometri-
cally; it shows a graph of the horizontal line At any point P on this line, the tangent
line at P is the line itself. Since a horizontal line has a slope of 0, the slope of the tangent line
is 0. This agrees with the result above: The derivative of a constant is 0.

Derivative of a Constant

(a) If then 

(b) If then 

(c) If then 

Functions of the form where n is a fixed real number, are very common in
applications. To obtain a rule for finding the derivative of such a function, we can use
the definition to work out the derivatives for various special values of n. This was done
in Section 3.4 in Example 4 to show that for 

For the derivative is found as follows.

The binomial theorem (discussed in most intermediate and college algebra texts) was used
to expand in the last step. Now, the limit can be determined.

 5 3x2.

 5 lim
hl0

1 3x2 1 3xh 1 h2 2

 f r 1x 2 5 lim
hl0

 
3x2h 1 3xh2 1 h3

h

1x 1 h 2 3

 5 lim
hl0

 
1x3 1 3x2h 1 3xh2 1 h3 2 2 x3

h
.

 5 lim
hl0

 
1x 1 h 2 3 2 x3

h

 f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h

f 1x 2 5 x3,
f r 1x 2 5 2x.f 1x 2 5 x2,

y 5 xn,

dy /dx 5 0.y 5 23,

Dt 
3h 1 t 2 4 5 0.h 1 t 2 5 p,

f r 1x 2 5 0.f 1x 2 5 9,

y 5 k.

EXAMPLE  1

y

P

x

k y � k

FIGURE 1

Constant Rule
If where k is any real number, then

(The derivative of a constant is 0.)

f 9 1 x 2 5 0.

f 1x 2 5 k,



The results in the following table were found in a similar way, using the definition of the
derivative. (These results are modifications of some of the examples and exercises from the
previous chapter.) 
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1
2
3
4

f r 1x 2 5
1

2
 x21/2 5

1

2x1/21 /2f 1x 2 5 x1/2

f r 1x 2 5 21 . x22 5
21

x221f 1x 2 5 x21

f r 1x 2 5 4x3f 1x 2 5 x4

f r 1x 2 5 3x2f 1x 2 5 x3

f r 1x 2 5 2x 5 2x1f 1x 2 5 x2

f r 1x 2 5 1 5 1x0f 1x 2 5 x

Derivative of f(x) = xn

Function n Derivative

These results suggest the following rule.

While the power rule is true for every real-number value of n, a proof is given here
only for positive integer values of n. This proof follows the steps used above in finding the
derivative of 

For any real numbers p and q, by the binomial theorem,

Replacing p with x and q with h gives

from which

Dividing each term by h yields

Use the definition of derivative, and the fact that each term except the first contains h as a
factor and thus approaches 0 as h approaches 0, to get

This shows that the derivative of is proving the power rule
for positive integer values of n.

f r 1x 2 5 nxn21,f 1x 2 5 xn

 5 nxn21.

 5 nxn21 1
n 1n 2 1 2

2
 xn220 1 ) 1 nx0n22 1 0n21

 f r 1x 2 5 lim
hl0

 
1x 1 h 2n 2 xn

h

1x 1 h 2n 2 xn

h
5 nxn21 1

n 1n 2 1 2
2

 xn22h 1 ) 1 nxhn22 1 hn21.

1x 1 h 2n 2 xn 5 nxn21h 1
n 1n 2 1 2

2
 xn22h2 1 ) 1 nxhn21 1 hn.

1x 1 h 2n 5 xn 1 nxn21h 1
n 1n 2 1 2

2
 xn22h2 1 ) 1 nxhn21 1 hn,

1 p 1 q 2n 5 pn 1 npn21q 1
n 1 n 2 1 2

2
 pn22q2 1P1 npqn21 1 qn.

f 1x 2 5 x3.

Power Rule
If for any real number n, then

(The derivative of is found by multiplying by the exponent n and decreasing
the exponent on x by 1.)

f 1x 2 5 xn

f 9 1 x 2 5 nxn21.

f 1x 2 5 xn



Constant Times a Function
Let k be a real number. If g91x 2 exists, then the derivative of is

f 9 5 k ? g9 .

(The derivative of a constant times a function is the constant times the derivative of the
function.)

1 x 21 x 2

f 1x 2 5 k . g 1x 2

Power Rule

(a) If find 

SOLUTION

(b) If find 

SOLUTION

(c) If find 

SOLUTION Use a negative exponent to rewrite this equation as then

or

(d) Find 

SOLUTION

(e) If find 

SOLUTION Rewrite this as then

or or
TRY YOUR TURN 1

The next rule shows how to find the derivative of the product of a constant and a function.

  
1

2"z
 .  

1

2 z1/2  
dy

dz
5

1

2
 z1/221 5

1

2
 z21/2  

y 5 z1/2;

dy /dz.y 5 "z,

Dx 
1x4/3 2 5

4

3
 x4/321 5

4

3
 x1/3

Dx 
1x4/3 2 .

  
23

x4  .
dy

dx
5 23x2321 5 23 x24  

y 5 x23;

dy /dx.y 5 1 /x3,

dy

dt
5 1t121 5 t0 5 1

dy

dt
 .y 5 t 5 t1,

f' 1x 2 5 6x621 5 6x5

f r 1x 2 .f 1x 2 5 x6,
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EXAMPLE  2

FOR REVIEW
At this point you may wish to turn
back to Sections R.6 and R.7 for a
review of negative exponents and
rational exponents. The relation-
ship between powers, roots, and
rational exponents is explained
there.

EXAMPLE 3

YOUR TURN 1 If ,

find .f r 1 t 2

f 1 t 2 5
1

"t

This rule is proved with the definition of the derivative and rules for limits.

Factor out .

Limit rule 

5 k ? g9 Definition of derivative

Derivative of a Constant Times a Function

(a) If find 

SOLUTION

(b) If find 

SOLUTION
dy

dx
5 2

3

4
 1 12x11 2 5 29x11

dy /dx.y 5 2
3

4
 x12,

dy

dx
5 8 14x3 2 5 32x3

dy

dx
 .y 5 8x4,

1x 2

1 5 k lim
hl0

 
g 1x 1 h 2 2 g 1x 2

h

k 5 lim
hl0

 k 
3g 1x 1 h 2 2 g 1x 2 4

h

 f ' 1x 2 5 lim
hl0

 
kg 1x 1 h 2 2 kg 1x 2

h



Sum or Difference Rule
If and if and exist, then

(The derivative of a sum or difference of functions is the sum or difference of the
derivatives.)

f9 1 x 2 5 u9 1 x 2 6 v9 1 x 2 .

v r 1x 2u r 1x 2f 1x 2 5 u 1x 2 6 v 1x 2 ,

(c) Find 

SOLUTION

(d) Find 

SOLUTION

(e) If find 

SOLUTION Rewrite this as then

or
TRY YOUR TURN 2

Beagles

Researchers have determined that the daily energy requirements of female beagles who are
at least 1 year old change with respect to age according to the function

where is the daily energy requirements for a dog that is t years old.
Source: Journal of Nutrition.

(a) Find 

SOLUTION Using the rules of differentiation we find that

.

(b) Determine the rate of change of the daily energy requirements of a 2-year-old female
beagle.

SOLUTION
Thus, the daily energy requirements of a 2-year-old female beagle are decreasing at the
rate of

The final rule in this section is for the derivative of a function that is a sum or differ-
ence of terms.

45.4 kJ/W0.67 per year.

E r 12 2 5 299.4713 12 221.1321 < 245.4

5 753 120.1321 2 t 
20.132121 5 299.4713t21.1321E r 1 t 2

E r 1 t 2 .

1 in kJ/W0.67 2E 1 t 2

E 1 t 2 5 753t20.1321,

  
26

x2  .
dy

dx
5 6 121x22 2 5 26x22  

y 5 6x21;

dy

dx
 .y 5

6
x

,

Dp 
1 10p3/2 2 5 10a

3

2
 p1/2b 5 15p1/2

Dp 
1 10p3/2 2 .

Dt 
128t 2 5 28 1 1 2 5 28

Dt 
128t 2 .
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EXAMPLE 4

YOUR TURN 2 If ,
find .dy /dx

y 5 3"x

The proof of the sum part of this rule is as follows: If then

A similar proof can be given for the difference of two functions.

 5 u r 1x 2 1 v r 1x 2 .

 5 lim
hl0

 
u 1x 1 h 2 2 u 1x 2

h
1 lim

hl0
 
v 1x 1 h 2 2 v 1x 2

h

 5 lim
hl0

 c
u 1x 1 h 2 2 u 1x 2

h
1

v 1x 1 h 2 2 v 1x 2
h

d

 5 lim
hl0

 
3u 1x 1 h 2 2 u 1x 2 4 1 3v 1x 1 h 2 2 v 1x 2 4

h

 f r 1x 2 5 lim
hl0

 
3u 1x 1 h 2 1 v 1x 1 h 2 4 2 3u 1x 2 1 v 1x 2 4

h

f 1x 2 5 u 1x 2 1 v 1x 2 ,



Derivative of a Sum

Find the derivative of each function.

(a)

SOLUTION Let and then Since
and

(b)

SOLUTION Rewrite as then

Also, may be written as .

(c)

SOLUTION Rewrite as Then

or

(d)

SOLUTION Rewrite as using the fact that
; then

TRY YOUR TURN 3f r 1x 2 5 64x3 2 72x2 1 18x.

1a 2 b 2 2 5 a2 2 2ab 1 b2
f 1x 2 5 16x4 2 24x3 1 9x2f 1x 2

f 1x 2 5 14x2 2 3x 2 2

Dx 
3f 1x 2 4 5 2x 2

3

2"x3
 .

Dx 
3f 1x 2 4 5 2x 2

3

2
 x23/2,

f 1x 2 5
x3

x
1

3x1/2

x
5 x2 1 3x21/2.f 1x 2

f 1x 2 5
x3 1 3"x

x

p r 1 t 2 5 48t3 2
3

"t
2

5

t2p r 1 t 2

p r 1 t 2 5 48t3 2 3t21/2 2 5t22.

p 1 t 2 5 12t4 2 6t1/2 1 5t21;p 1 t 2

p 1 t 2 5 12t4 2 6"t 1
5

t

dy

dx
5 18x2 1 30x.

v r 1x 2 5 30x,u r 1x 2 5 18x2
y 5 u 1x 2 1 v 1x 2 .v 1x 2 5 15x2;u 1x 2 5 6x3

y 5 6x3 1 15x2
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EXAMPLE 5

YOUR TURN 3 If

find .h r 1 t 2

h 1 t 2 5 23t2 1 2"t 1
5

t4 2 7,

FIGURE 2

Some computer programs and calculators have built-in methods for taking derivatives symbolically,
which is what we have been doing in this section, as opposed to approximating the derivative numer-
ically by using a small number for h in the definition of the derivative. In the computer program
Maple, we would do part (a) of Example 5 by entering

> diff(6*x^3+15*x^2,x);

where the x after the comma tells what variable the derivative is with respect to. Maple would
respond with

18*x^2+30*x.

Similarly, on the TI-89, we would enter d(6x^3+15x^2,x) and the calculator would give
“18·x2+30·x.”

Other graphing calculators, such as the TI-84 Plus, do not have built-in methods for taking
derivatives symbolically. As we saw in the last chapter, however, they do have the ability to calculate
the derivative of a function at a particular point and to simultaneously graph a function and its
derivative.

Recall that, on the TI-84 Plus, we could use the nDeriv Command, as shown in Figure 2, to
approximate the value of the derivative when Figure 3(a) and Figure 3(b) indicate how tox 5 1.

(6X3 1 15X2)d
dx x51

48.000006

TECHNOLOGY NOTE



input the functions into the calculator and the corresponding graphs of both the function and its deriva-
tive. Consult the Graphing Calculator and Excel Spreadsheet Manual, available with this book, for
assistance.

4.1 Techniques for Finding Derivatives 203

FIGURE 3

The rules developed in this section make it possible to find the derivative of a function
more directly, so that applications of the derivative can be dealt with more effectively. The
following examples illustrate some business applications.

Marginal Analysis In previous sections we discussed the concepts of marginal cost,
marginal revenue, and marginal profit. These concepts of marginal analysis are summa-
rized here.

In business and economics the rates of change of such variables as cost, revenue, and
profit are important considerations. Economists use the word marginal to refer to rates of
change. For example, marginal cost refers to the rate of change of cost. Since the derivative
of a function gives the rate of change of the function, a marginal cost (or revenue, or profit)
function is found by taking the derivative of the cost (or revenue, or profit) function.
Roughly speaking, the marginal cost at some level of production x is the cost to produce the

item. (Similar statements could be made for revenue or profit.)
To see why it is reasonable to say that the marginal cost function is approximately

the cost of producing one more unit, look at Figure 4, where represents the cost of
producing x units of some item. Then the cost of producing units is The
cost of the unit is, therefore, This quantity is shown in the
graph in Figure 4.

C 1x 1 1 2 2 C 1x 2 .1x 1 1 2st
C 1x 1 1 2 .x 1 1

C 1x 2

1x 1 1 2st

C(x)

0 x

C(x � 1) � C(x)
� the actual cost
of the (x � 1)st unit

x x � 1

(x � 1, C(x � 1))

(x, C(x))

FIGURE 4 

Now if is the cost function, then the marginal cost represents the slope of
the tangent line at any point The graph in Figure 5 shows the cost function

and the tangent line at a point Remember what it means for a line to have
a given slope. If the slope of the line is then

Dy

Dx
5 C r 1x 2 5

C r 1x 2
1

,

C r 1x 2 ,
1x, C 1x 2 2 .C 1x 2

1x, C 1x 2 2 .
C r 1x 2C 1x 2

C(x)

0 x

C�(x)

x x � 1

(x � 1, C(x � 1))

(x, C(x))

1

Slope of tangent �        �
rise
run

C�(x)
1

FIGURE 5

Y2 (Y1)

Y3 �

Y4 �

Y5 �

�Y1 6X3 � 15X2  

�

Plot 1    Plot 2    Plot 3

d
dx x�x

(a)
0 3

250

0

� 18x2 � 30x
dy
dx

y � 6x3 � 15x2

(b)



Marginal Cost

Suppose that the total cost in hundreds of dollars to produce x thousand barrels of a bever-
age is given by

Find the marginal cost for the following values of x.

(a)

SOLUTION To find the marginal cost, first find the derivative of the total cost
function.

When 

After 5 thousand barrels of the beverage have been produced, the cost to produce one
thousand more barrels will be approximately 140 hundred dollars, or $14,000.

The actual cost to produce one thousand more barrels is :

144 hundred dollars, or $14,400.

(b)

SOLUTION After 30 thousand barrels have been produced, the cost to produce one
thousand more barrels will be approximately

or $34,000. Notice that the cost to produce an additional thousand barrels of beverage
has increased by approximately $20,000 at a production level of 30,000 barrels com-
pared to a production level of 5000 barrels. TRY YOUR TURN 4

C r 1 30 2 5 8 1 30 2 1 100 5 340,

x 5 30

 5 1244 2 1100 5 144,

 C 1 6 2 2 C 1 5 2 5 14 . 62 1 100 . 6 1 500 2 2 14 . 52 1 100 . 5 1 500 2

C16 2 2 C1 5 2

C r 1 5 2 5 8 1 5 2 1 100 5 140.

x 5 5,

C r 1x 2 5 8x 1 100

C r 1x 2 ,
x 5 5

C 1x 2 5 4x2 1 100x 1 500.
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and beginning at any point on the line and moving 1 unit to the right requires moving
units up to get back to the line again. The vertical distance from the horizontal line

to the tangent line shown in Figure 5 is therefore 
Superimposing the graphs from Figures 4 and 5 as in Figure 6 shows that is

indeed very close to The two values are closest when x is very large, so
that 1 unit is relatively small.

C 1x 1 1 2 2 C 1x 2 .
C r 1x 2

C r 1x 2 .
C r 1x 2

C(x)

0 x

C�(x)

x x � 1

(x � 1, C(x � 1))

(x, C(x))

1

C(x � 1) � C(x)

FIGURE 6

YOUR TURN 4 If the cost
function is given by

, find the
marginal cost when .x 5 100
C 1x 2 5 5x3 2 10x2 1 75

EXAMPLE 6
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EXAMPLE 7

YOUR TURN 5 If the 
demand function is given by

, find the marginal
revenue when q = 5.
p 5 16 2 1.25q

Demand Functions The demand function, defined by relates the num-
ber of units q of an item that consumers are willing to purchase to the price p. (Demand
functions were also discussed in Chapter 1.) The total revenue is related to price per
unit and the amount demanded (or sold) by the equation

Marginal Revenue

The demand function for a certain product is given by

Find the marginal revenue when units and p is in dollars.

SOLUTION From the given function for p, the revenue function is given by

The marginal revenue is

When the marginal revenue is

or $1.20 per unit. Thus, the next item sold (at sales of 10,000) will produce additional rev-
enue of about $1.20. TRY YOUR TURN 5

Management must be careful to keep track of marginal costs and revenue. If the mar-
ginal cost of producing an extra unit exceeds the marginal revenue received from selling it,
then the company will lose money on that unit.

Marginal Profit

Suppose that the cost function for the product in Example 7 is given by

Find the marginal profit from the production of the following numbers of units.

(a) 15,000

SOLUTION From Example 7, the revenue from the sale of x units is

R 1q 2 5 2q 2
1

25,000
 q2

 .

C 1q 2 5 2100 1 0.25q,  where 0 # q # 30,000.

R r 1 10,000 2 5 2 2
2

25,000
 1 10,000 2 5 1.2,

q 5 10,000,

R r 1q 2 5 2 2
2

25,000
q.

 5 2q 2
1

25,000
 q2

 .

 5
50,000q 2 q2

25,000

 5 qa
50,000 2 q

25,000
b

 R 1q 2 5 qp

q 5 10,000

p 5
50,000 2 q

25,000
 .

R 1q 2 5 qp 5 q . D 1q 2 .

R 1q 2

p 5 D 1q 2 ,

EXAMPLE 8

APPLY IT 



Since profit, P, is given by 

See Figure 

The marginal profit from the sale of q units is

At the marginal profit is

or $0.55 per unit.

(b) 21,875

SOLUTION When the marginal profit is

(c) 25,000

SOLUTION When the marginal profit is

or per unit.
As shown by parts (b) and (c), if more than 21,875 units are sold, the marginal

profit is negative. This indicates that increasing production beyond that level will
reduce profit.

The final example shows an application of the derivative to a problem of demography.

Centenarians

The number of Americans (in thousands) who are expected to be over 100 years old can be
approximated by the function

,

where t is the year, with t = 0 corresponding to 2000, and . Source: U.S. Census
Bureau.

(a) Find a formula giving the rate of change of the number of Americans over 100 years old.

SOLUTION Using the techniques for finding the derivative, we have

.

This tells us the rate of change in the number of Americans over 100 years old. 

f r 1 t 2 5 0.02829t2 2 0.940t 1 11.085

0 # t # 50

f 1 t 2 5 0.00943t3 2 0.470t2 1 11.085t 1 23.441

2$0.25

P r 125,000 2 5 1.75 2
1

12,500
 125,000 2 5 20.25,

q 5 25,000,

P r 121,875 2 5 1.75 2
1

12,500
 121,875 2 5 0.

q 5 21,875,

P r 1 15,000 2 5 1.75 2
1

12,500
 1 15,000 2 5 0.55,

q 5 15,000

P r 1q 2 5 1.75 2
2

25,000
 q 5 1.75 2

1

12,500
 q.

7. 5 1.75q 2
1

25,000
 q2 2 2100.

 5 2q 2
1

25,000
 q2 2 2100 2 0.25q

 5 a2q 2
1

25,000
 q2b 2 12100 1 0.25q 2

 P 1q 2 5 R 1q 2 2 C 1q 2

P 5 R 2 C,
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APPLY IT 

FIGURE 7
0 10,000

0

10,000

20,000
P(q)

q

1
25,000

P(q) = 1.75q – q2 – 2100

EXAMPLE 9



(b) Find the rate of change in the number of Americans who are expected to be over 100
years old in the year 2015.

SOLUTION The year 2015 corresponds to t = 15.

The number of Americans over 100 years old is expected to grow at a rate of about
3.35 thousand, or about 3350, per year in the year 2015.

fr 1 15 2 5 0.02829 1 15 22 2 0.940 1 15 2 1 11.085 5 3.35025
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Find the derivative of each function defined as follows.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. g 1x 2 5 1 8x2 2 4x 2 2

g 1x 2 5
x3 2 4x

"x

f 1x 2 5
x3 1 5

x

y 5
22

"3 x

y 5
6

"4 x

h 1x 2 5 x21/2 2 14x23/2

p 1x 2 5 210x21/2 1 8x23/2

y 5
3

x6 1
1

x5 2
7

x2

y 5
6

x4 2
7

x3 1
3

x
1 "5

f 1 t 2 5
14

t
1

12

t4 1 "2

f 1 t 2 5
7

t
2

5

t3

y 5 5x25 2 6x22 1 13x21

y 5 10x23 1 5x24 2 8x

y 5 2100"x 2 11x2/3

y 5 8"x 1 6x3/4

f 1x 2 5 22x1.5 1 12x0.5

f 1x 2 5 6x3.5 2 10x0.5

y 5 5x4 1 9x3 1 12x2 2 7x

y 5 3x4 2 6x3 1
x2

8
1 5

y 5 8x3 2 5x2 2
x

12

y 5 12x3 2 8x2 1 7x 1 5

22.

23. Which of the following describes the derivative function
of a quadratic function ?

a. Quadratic b. Linear c. Constant d. Cubic (third degree)

24. Which of the following describes the derivative function
of a cubic (third degree) function ?

a. Quadratic b. Linear c. Constant d. Cubic 

25. Explain the relationship between the slope and the derivative
of at 

26. Which of the following do not equal 

a. b. c.

d.

Find each derivative.

27.

28.

29.

30.

In Exercises 31–34, find the slope of the tangent line to the
graph of the given function at the given value of x. Find the
equation of the tangent line in Exercises 31 and 32.

31.

32.

33.

34.

35. Find all points on the graph of where
the slope of the tangent line is 0.

36. Find all points on the graph of 
where the slope of the tangent line is 25.

f 1x 2 5 x3 1 9x2 1 19x 2 10

f 1x 2 5 9x2 2 8x 1 4

y 5 2x23 1 x22; x 5 2

y 5 22x1/2 1 x3/2; x 5 9

y 5 23x5 2 8x3 1 4x2; x 5 1

y 5 x4 2 5x3 1 2; x 5 2

f r 1 3 2 if f 1x 2 5
x3

9
2 7x2

f r 122 2 if f 1x 2 5
x4

6
2 3x

Dx c
8

"4 x
2

3

"x3
d

Dx c9x21/2 1
2

x3/2 d

12x3 1 12x23

12x2 1
12

x3

12x5 1 12

x3

12x2 1 12

x3

d

dx
 14x3 2 6x22 2?

x 5 a.f 1x 2

f 1x 2f r 1x 2

f 1x 2f r 1x 2

h 1x 2 5 1x2 2 1 2 3

4.1 EXERCISES
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In Exercises 37–40, for each function find all values of x where
the tangent line is horizontal.

37.

38.

39.

40.

41. At what points on the graph of is the
slope of the tangent line

42. At what points on the graph of 
is the slope of the tangent line 12?

43. At what points on the graph of 
is the slope of the tangent line 9?

44. If and find for 

45. If and find for

46. Use the information given in the figure to find the following
values.

a. b. c. The domain of f d. The range of ff r 1 1 2f 1 1 2

f 1x 2 5
1

2
 g 1x 2 1

1

4
 h 1x 2 .

f r 12 2h r 12 2 5 14,g r 12 2 5 7

3g 1x 2 2 2h 1x 2 1 3.f 1x 2 5
f r 1 5 2h r 1 5 2 5 23,g r 1 5 2 5 12

f 1x 2 5 x3 1 6x2 1 21x 1 2

f 1x 2 5 2x3 2 9x2 2 12x 1 5

22?
f 1x 2 5 6x2 1 4x 2 9

f 1x 2 5 x3 2 5x2 1 6x 1 3

f 1x 2 5 x3 2 4x2 2 7x 1 8

f 1x 2 5 x3 1 15x2 1 63x 2 10

f 1x 2 5 2x3 1 9x2 2 60x 1 4

y

x1�1

(1, 2)
(–1, 1)

f(x)

2

1

APPLICATIONS
Business and Economics

51. Revenue Assume that a demand equation is given by q �
Find the marginal revenue for the following

production levels (values of q). (Hint: Solve the demand equation
for p and use )

a. 1000 units b. 2500 units c. 3000 units 

52. Profit Suppose that for the situation in Exercise 51 the cost of
producing q units is given by
Find the marginal profit for the following production levels.

a. 500 units b. 815 units c. 1000 units 

53. Revenue If the price in dollars of a stereo system is given by

where q represents the demand for the product, find the mar-
ginal revenue when the demand is 10. 

54. Profit Suppose that for the situation in Exercise 53 the cost in
dollars of producing q stereo systems is given by

Find the marginal profit when the
demand is 10.

55. Sales Often sales of a new product grow rapidly at first and
then level off with time. This is the case with the sales repre-
sented by the function

where t represents time in years. Find the rate of change of
sales for the following numbers of years.

a. 1 b. 10

56. Profit An analyst has found that a company’s costs and rev-
enues in dollars for one product are given by

respectively, where x is the number of items produced.

a. Find the marginal cost function.

b. Find the marginal revenue function.

c. Using the fact that profit is the difference between revenue and
costs, find the marginal profit function.

d. What value of x makes marginal profit equal 0? 

e. Find the profit when the marginal profit is 0. 

(As we shall see in the next chapter, this process is used to find
maximum profit.)

57. Postal Rates U.S. postal rates have steadily increased since
1932. Using data depicted in the table for the years
1932–2009, the cost in cents to mail a single letter can be mod-
eled using a quadratic formula as follows:

where t is the number of years since 1932. Source: U.S. Postal
Service.

C 1 t 2 5 0.008446 t2 2 0.08924t 1 1.254

C 1x 2 5 2x  and  R 1x 2 5 6x 2
x2

1000
 ,

S 1 t 2 5 100 2 100t21,

C 1q 2 5 0.2q2 1 6q 1 50.

p 1q 2 5
1000

q2 1 1000,

0.03q2.C 1q 2 5 3000 2 20q 1

R 1q 2 5 qp.

5000 2 100p.

47. Explain the concept of marginal cost. How does it relate to
cost? How is it found?

48. In Exercises 43–46 of Section 2.2, the effect of a when graph-
ing was discussed. Now describe how this relates to
the fact that 

49. Show that, for any constant k,

50. Use the differentiation feature on your graphing calculator to
solve the problems (to 2 decimal places) below, where is
defined as follows:

a. Find 

b. Find all values of x where f r 1x 2 5 0.

f r 14 2 .

f 1x 2 5 1.25x3 1 0.01x2 2 2.9x 1 1.

f 1x 2

d

dx
c
f 1x 2

k
d 5

f r 1x 2
k

 .

Dx 
3af 1 x 2 4 5 af r 1 x 2 .

y 5 af 1 x 2
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a. Find the predicted cost of mailing a letter in 1982 and 2002
and compare these estimates with the actual rates. 

b. Find the rate of change of the postage cost for the years
1982 and 2002 and interpret your results. 

c. Using the regression feature on a graphing calculator, find a
cubic function that models this data, letting correspond
to the year 1932. Then use your answer to find the rate of
change of the postage cost for the years 1982 and 2002. 

d. Discuss whether the quadratic or cubic function best
describes the data. Do the answers from part b or from part c
best describe the rate that postage was going up in the years
1982 and 2002?

e. Explore other functions that could be used to model the data,
using the various regression features on a graphing calcula-
tor, and discuss to what extent any of them are useful
descriptions of the data.

58. Money The total amount of money in circulation for the years
1950–2009 can be closely approximated by 

where t represents the number of years since 1950 and is
in billions of dollars. Find the derivative of and use it to
find the rate of change of money in circulation in the following
years. Source: U.S. Treasury.

a. 1960 b. 1980 c. 1990 d. 2000

e. What do your answers to parts a–d tell you about the amount
of money in circulation in those years?

Life Sciences

59. Cancer Insulation workers who were exposed to asbestos and
employed before 1960 experienced an increased likelihood of
lung cancer. If a group of insulation workers has a cumulative
total of 100,000 years of work experience with their first date of
employment t years ago, then the number of lung cancer cases
occurring within the group can be modeled using the function

Find the rate of growth of the number of workers with lung
cancer in a group as described by the following first dates of

N 1 t 2 5 0.00437t3.2.

M 1 t 2
M 1 t 2

M 1 t 2 5 0.005209t3 2 0.04159t2 2 0.3664t 1 34.49

t 5 0

employment. Source: Observation and Inference: An Intro-
duction to the Methods of Epidemiology.

a. 5 years ago b. 10 years ago

60. Blood Sugar Level Insulin affects the glucose, or blood sugar,
level of some diabetics according to the function

where is the blood sugar level 1 hour after x units of
insulin are injected. (This mathematical model is only approxi-
mate, and it is valid only for values of x less than about 40.)
Find the blood sugar level after the following numbers of units
of insulin are injected.

a. 0 b. 25 

Find the rate of change of blood sugar level after injection of
the following numbers of units of insulin.

c. 10 d. 25 

61. Bighorn Sheep The cumulative horn volume for certain types of
bighorn rams, found in the Rocky Mountains, can be described
by the quadratic function

where is the horn volume and t is the year of
growth, Source: Conservation Biology.

a. Find the horn volume for a 3-year-old ram. 

b. Find the rate at which the horn volume of a 3-year-old ram
is changing. 

62. Brain Mass The brain mass of a human fetus during the last
trimester can be accurately estimated from the circumference
of the head by

where is the mass of the brain (in grams) and c is the cir-
cumference (in centimeters) of the head. Source: Early
Human Development. 

a. Estimate the brain mass of a fetus that has a head circumfer-
ence of 30 cm.

b. Find the rate of change of the brain mass for a fetus that has
a head circumference of 30 cm and interpret your results. 

63. Velocity of Marine Organism The typical velocity (in cen-
timeters per second) of a marine organism of length l (in cen-
timeters) is given by Find the rate of change of
the velocity with respect to the length of the organism. Source:
Mathematical Topics in Population Biology Morphogenesis
and Neurosciences.

64. Heart The left ventricular length (viewed from the front of the
heart) of a fetus that is at least 18 weeks old can be estimated by

where is the ventricular length (in centimeters) and x is
the age (in weeks) of the fetus. Source: American Journal of
Cardiology.

a. Determine a meaningful domain for this function. 

b. Find 

c. Find l r 125 2 .

l r 1x 2 .

l 1x 2

l 1x 2 5 22.318 1 0.2356x 2 0.002674x2,

v 5 2.69l1.86.

m 1 c 2

m 1 c 2 5
c3

100
2

1500

c
 ,

2 # t # 9.
1 in cm3 2V 1 t 2

V 1 t 2 5 22159 1 1313t 2 60.82t2,

G 1x 2

G 1x 2 5 20.2x2 1 450,

1932 3 1988 25

1958 4 1991 29

1963 5 1995 32

1968 6 1999 33

1971 8 2001 34

1974 10 2002 37

1975 13 2006 39

1978 15 2007 41

1981 18 2008 42
1981 20 2009 44

1985 22

Year Cost Year Cost



CHAPTER 4 Calculating the Derivative210

65. Track and Field In 1906 Kennelly developed a simple for-
mula for predicting an upper limit on the fastest time that
humans could ever run distances from 100 yards to 10 miles.
His formula is given by

where s is the distance in meters and t is the time to run that
distance in seconds. Source: Proceedings of the American
Academy of Arts and Sciences.

a. Find Kennelly’s estimate for the fastest mile. (Hint:
)

b. Find when and interpret your answer.

c. Compare this and other estimates to the current world
records. Have these estimates been surpassed?

66. Human Cough To increase the velocity of the air flowing
through the trachea when a human coughs, the body contracts
the windpipe, producing a more effective cough. Tuchinsky
formulated that the velocity of air that is flowing through the
trachea during a cough is

where C is a constant based on individual body characteristics, 
is the radius of the windpipe before the cough, and R is the radius
of the windpipe during the cough. It can be shown that the maxi-
mum velocity of the cough occurs when Find the
value of R that maximizes the velocity.* Source: COMAP, Inc.

67. Body Mass Index The body mass index (BMI) is a number that
can be calculated for any individual as follows: Multiply weight
by 703 and divide by the person’s height squared. That is,

where w is in pounds and h is in inches. The National Heart,
Lung, and Blood Institute uses the BMI to determine whether a
person is “overweight” or “obese”

Source: The National Institutes of Health.

a. Calculate the BMI for Lebron James, basketball player for
the Miami Heat, who is 250 lb. and 6’8” tall. 

b. How much weight would Lebron James have to lose until he
reaches a BMI of 24.9 and is no longer “overweight”?
Comment on whether BMI cutoffs are appropriate for ath-
letes with considerable muscle mass.

c. For a 125-lb female, what is the rate of change of BMI with
respect to height? (Hint: Take the derivative of the function:

)

d. Calculate and interpret the meaning of 

e. Use the TABLE feature on your graphing calculator to con-
struct a table for BMI for various weights and heights.

Physical  Sciences

Velocity We saw in the previous chapter that if a function gives
the position of an object at time t, the derivative gives the velocity,
that is, For each position function in Exercises 68–71,
find (a) and (b) the velocity when and

68. s 1 t 2 5 11t2 1 4t 1 2

t 5 10.t 5 5,t 5 0,v 1 t 2
v 1 t 2 5 s r 1 t 2 .

s 1 t 2

f r 1 65 2 .
f 1h 2 5 703 1 125 2 /h2.

1BMI $ 30 2 .
125 # BMI , 30 2

BMI 5
703w

h2  ,

dV /dR 5 0.

R0 

V 5 C 1R0 2 R 2R2,

s 5 100dt /ds

1 mile < 1609 meters.

t 5 0.0588s1.125,

69.

70.

71.

72. Velocity If a rock is dropped from a 144-ft building, its posi-
tion (in feet above the ground) is given by 
where t is the time in seconds since it was dropped.

a. What is its velocity 1 second after being dropped? 2 seconds
after being dropped? 

b. When will it hit the ground? 

c. What is its velocity upon impact? 

73. Velocity A ball is thrown vertically upward from the ground at
a velocity of 64 ft per second. Its distance from the ground at t
seconds is given by 

a. How fast is the ball moving 2 seconds after being thrown? 3
seconds after being thrown? 

b. How long after the ball is thrown does it reach its maximum
height? 

c. How high will it go? 

74. Dead Sea Researchers who have been studying the alarming rate
in which the level of the Dead Sea has been dropping have shown
that the density of the Dead Sea brine during
evaporation can be estimated by the function

where x is the fraction of the remaining brine, 
Source: Geology.

a. Estimate the density of the brine when 50% of the brine
remains. 

b. Find and interpret the instantaneous rate of change of the
density when 50% of the brine remains.

75. Dog’s Human Age From the data printed in the following table
from the Minneapolis Star Tribune on September 20, 1998, 
a dog’s age when compared to a human’s age can be modeled
using either a linear formula or a quadratic formula as follows:

where and represent a dog’s human age for each formula
and x represents a dog’s actual age. Source: Mathematics
Teacher.

y2 y1 

 y2 5 20.033x2 1 4.647x 1 13.347,

 y1 5 4.13x 1 14.63

0 # x # 1.

d 1x 2 5 1.66 2 0.90x 1 0.47x2,

1 in g per cm3 2d 1x 2

s 1 t 2 5 216t2 1 64t.

216t2 1 144,s 1 t 2  5

s 1 t 2 5 23t3 1 4t2 2 10t 1 5

s 1 t 2 5 4t3 1 8t2 1 t

s 1 t 2 5 18t2 2 13t 1 8

Dog Age Human Age

1 16

2 24

3 28

5 36

7 44

9 52

11 60

13 68

15 76*Interestingly, Tuchinsky also states that X-rays indicate that the body
naturally contracts the windpipe to this radius during a cough.
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a. Find and when 

b. Find and when and interpret your
answers.

c. If the first two points are eliminated from the table, find the
equation of a line that perfectly fits the reduced set of data.
Interpret your findings.

d. Of the three formulas, which do you prefer?

x 5 5dy2 /dxdy1 /dx

x 5 5.y2 y1 

We show how the derivative is used to solve a problem like this in Example 5, later in this section.

In the previous section we saw that the derivative of a sum of two functions is found
from the sum of the derivatives. What about products? Is the derivative of a product equal
to the product of the derivatives? For example, if

then

u 1x 2 5 2x 1 3  and  v 1x 2 5 3x2,

Derivatives of Products and Quotients
A manufacturer of small motors wants to make the average cost per
motor as small as possible. How can this be done?

4.2
APPLY IT

YOUR TURN ANSWERS 

1. or 

2. or 

3. or 
4. $148,000
5. $3.50

h r 1 t 2 5 26t 1
1

"t
2

20

t5h r 1 t 2 5 26t 1 t21
2 2 20t25

dy

dx
5

3

2"x

dy

dx
5

3

2
x2 

1
2

f r 1 t 2 5 2
1

2t
3
2

f r 1 t 2 5 2
1

2
t2 

3
2

Let be the product of u and v; that is, By
the rules of the preceding section, On the other hand,

In this example, the derivative of a product is not
equal to the product of the derivatives, nor is this usually the case.

The rule for finding derivatives of products is as follows.

2 1 6x 2 5 12x 2 f r 1x 2 .u r 1x 2 . v r 1x 2  5
18x 1x 1 1 2 .f r 1x 2 5 18x2 1 18x 5

6x3 1 9x2.f 1x 2 5 12x 1 3 2 1 3x2 2  5f 1x 2

u r 1x 2 5 2  and  v r 1x 2 5 6x.

Product Rule
If and if and both exist, then

(The derivative of a product of two functions is the first function times the derivative of
the second plus the second function times the derivative of the first.)

f9 1 x 2 5 u 1 x 2 ? v9 1 x 2 1 v 1 x 2 ? u9 1 x 2 .

v r 1x 2u r 1x 2f 1x 2 5 u 1x 2 . v 1x 2 ,

To sketch the method used to prove the product rule, let

Then and, by definition, is given by

 5 lim
hl0

 
u 1x 1 h 2 . v 1x 1 h 2 2 u 1x 2 . v 1x 2

h
 .

 f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h

f r 1x 2f 1x 1 h 2 5 u 1x 1 h 2 . v 1x 1 h 2 ,

f 1x 2 5 u 1x 2 . v 1x 2 .

FOR REVIEW
This proof uses several of the rules
for limits given in the first section
of the previous chapter. You may
want to review them at this time.



Now subtract and add in the numerator, giving

(1)

If and both exist, then

The fact that exists can be used to prove

and since no h is involved in 

Substituting these results into Equation (1) gives

the desired result.
To help see why the product rule is true, consider the special case in which u and v are

positive functions. Then represents the area of a rectangle, as shown in Figure 8.
If we assume that u and v are increasing, then represents the area of a
slightly larger rectangle when h is a small positive number, as shown in the figure. The
change in the area of the rectangle is given by the pink rectangle, with an area of 
times the amount v has changed, plus the blue rectangle, with an area of times the
amount u has changed, plus the small green rectangle. As h becomes smaller and smaller,
the green rectangle becomes negligibly small, and the change in the area is essentially 
times the change in v plus times the change in u.v 1x 2

u 1x 2

v 1x 2
u 1x 2

u 1x 1 h 2 . v 1x 1 h 2
u 1x 2 . v 1x 2

f r 1x 2 5 u 1x 2 . v r 1x 2 1 v 1x 2 . u r 1x 2 ,

lim
hl0

 v 1x 2 5 v 1x 2 .

v 1x 2 ,

lim
hl0

 u 1x 1 h 2 5 u 1x 2 ,

1x 2u r

lim
hl0

 
u 1x 1 h 2 2 u 1x 2

h
5 u r 1x 2  and  lim

hl0
 
v 1x 1 h 2 2 v 1x 2

h
5 v r 1x 2 .

1x 2v r1x 2u r

 5 lim
hl0

 u 1x 1 h 2 . lim
hl0

 
v 1x 1 h 2 2 v 1x 2

h
1 lim

hl0
 v 1x 2 . lim

hl0
 
u 1x 1 h 2 2 u 1x 2

h
 .

 5 lim
hl0

 u 1x 1 h 2 c
v 1x 1 h 2 2 v 1x 2

h
d 1 lim

hl0
 v 1x 2 c

u 1x 1 h 2 2 u 1x 2
h

d

 5 lim
hl0

 
u 1x 1 h 2 3v 1x 1 h 2 2 v 1x 2 4 1 v 1x 2 3u 1x 1 h 2 2 u 1x 2 4

h

 f r 1x 2 5 lim
hl0

 
u 1x 1 h 2 . v 1x 1 h 2 2 u 1 x 1 h 2 ? v 1 x 2 1 u 1 x 1 h 2 ? v 1 x 2 2 u 1x 2 . v 1x 2

h

u 1x 1 h 2 . v 1x 2
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u(x)

v(x)

u(x + h)

v(x + h)

FIGURE 8
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EXAMPLE 1

EXAMPLE 2

YOUR TURN 1 Find the deriv-
ative of .y 5 1x3 1 7 2 14 2 x2 2

Product Rule
Let Use the product rule to find 

SOLUTION Here f is given as the product of and By the prod-
uct rule and the fact that and ,

This result is the same as that found at the beginning of the section.

Product Rule

Find the derivative of 

SOLUTION Let and Then

Simplify by multiplying and combining terms.

TRY YOUR TURN 1

We could have found the derivatives above by multiplying out the original functions.
The product rule then would not have been needed. In the next section, however, we shall
see products of functions where the product rule is essential.

What about quotients of functions? To find the derivative of the quotient of two func-
tions, use the next rule.

 5
5

2
 x3/2 1 6x 2

15

2
 x1/2 2 15

 5 2x3/2 1 6x 2 5x1/2 2 15 1
1

2
 x3/2 2

5

2
 x1/2

 
dy

dx
5 12x 2 1x1/2 2 1 6x 2 5x1/2 2 15 1 1x2 2 a

1

2
 x21/2b 2 1 5x 2 a

1

2
 x21/2b

 5 1x1/2 1 3 2 12x 2 5 2 1 1x2 2 5x 2 a
1

2
 x21/2b .

 
dy

dx
5 u 1x 2 . v r 1x 2 1 v 1x 2 . u r 1x 2

v 1x 2 5 x2 2 5x.u 1x 2 5 "x 1 3 5 x1/2 1 3,

y 5 1"x 1 3 2 1x2 2 5x 2 .

 5 12x2 1 18x 1 6x2 5 18x2 1 18x 5 18x 1x 1 1 2 .
 5 12x 1 3 2 16x 2 1 1 3x2 2 1 2 2

 f r 1x 2 5 u 1x 2 . v r 1x 2 1 v 1x 2 . u r 1x 2

v r 1x 2 5 6xu r 1x 2 5 2
v 1x 2 5 3x2.u 1x 2 5 2x 1 3

f r 1x 2 .f 1x 2 5 12x 1 3 2 1 3x2 2 .

Quotient Rule
If if all indicated derivatives exist, and if then

(The derivative of a quotient is the denominator times the derivative of the numerator
minus the numerator times the derivative of the denominator, all divided by the square
of the denominator.)

f 9 1 x 2 5
v 1 x 2 ? u9 1 x 2 2 u 1 x 2 ? v9 1 x 2

[v 1 x 2 \2
 .

v 1x 2 2 0,f 1x 2 5 u 1x 2 /v 1x 2 ,

The proof of the quotient rule is similar to that of the product rule and is left for the
exercises. (See Exercises 37 and 38.)



Just as the derivative of a product is not the product of the derivatives, the
derivative of a quotient is not the quotient of the derivatives. If you are asked
to take the derivative of a product or a quotient, it is essential that you recog-
nize that the function contains a product or quotient and then use the appropri-
ate rule.

Quotient Rule

Find if 

SOLUTION Let with Also, let with
. Then, by the quotient rule,

In the second step of Example 3, we had the expression

Students often incorrectly “cancel” the in the numerator with one factor
of the denominator. Because the numerator is a difference of two products, how-
ever, you must multiply and combine terms before looking for common factors in
the numerator and denominator.

Product and Quotient Rules

Find 

SOLUTION This function has a product within a quotient. Instead of multiplying the fac-
tors in the numerator first (which is an option), we can use the quotient rule together with
the product rule, as follows. Use the quotient rule first to get

Now use the product rule to find in the numerator.

TRY YOUR TURN 3 5
2140x2 1 360x 2 120

1 7x 2 9 2 2

 5
2280x2 1 437x 2 99 2 21 2 77x 1 140x2

1 7x 2 9 2 2

 5
1 7x 2 9 2 1 11 2 40x 2 2 21 2 77x 1 140x2

1 7x 2 9 2 2

 5
1 7x 2 9 2 1 15 2 20x 2 20x 2 4 2 2 121 1 77x 2 140x2 2

1 7x 2 9 2 2

 5
1 7x 2 9 2 3 1 3 2 4x 25 1 1 5x 1 1 2 124 2 4 2 1 3 1 11x 2 20x2 2 1 7 2

1 7x 2 9 2 2

Dx 
3 1 3 2 4x 2 1 5x 1 1 2 4

Dx c
1 3 2 4x 2 1 5x 1 1 2

7x 2 9
d 5

1 7x 2 9 2Dx 
[ 1 3 2 4x 2 1 5x 1 1 2 \ 2 3 1 3 2 4x 2 1 5x 1 1 2Dx 

1 7x 2 9 2 4
1 7x 2 9 2 2

 .

Dx c
1 3 2 4x 2 1 5x 1 1 2

7x 2 9
d  .

4x 1 3

1 4x 1 3 2 1 2 2 2 1 2x 2 1 2 1 4 2
1 4x 1 3 2 2

 .

 5
10

14x 1 3 2 2
 .

 5
8x 1 6 2 8x 1 4

14x 1 3 2 2

 5
14x 1 3 2 12 2 2 12x 2 1 2 14 2

14x 1 3 2 2

 f r 1x 2 5
v 1x 2 . u r 1 x 2 2 u 1x 2 . v r 1 x 2

3v 1x 2 42

v r 1x 2 5 4
v 1x 2 5 4x 1 3,u r 1 x 2 5 2.u 1x 2 5 2x 2 1,

f 1x 2 5
2x 2 1

4x 1 3
 .f r 1x 2

CHAPTER 4 Calculating the Derivative214

CAUTION

CAUTION

EXAMPLE  3

EXAMPLE  4

FOR REVIEW
You may want to consult the
Rational Expressions section of
the Algebra Reference chapter
(Section 3) to help you work with
the fractions in the section.

YOUR TURN 2 Find 

if .f 1x 2 5
3x 1 2

5 2 2x

f r 1x 2

YOUR TURN 3 Find 

.Dx c
1 5x 2 3 2 12x 1 7 2

3x 1 7
d

TRY YOUR TURN 2



Average Cost Suppose gives the total cost to manufacture x items. As men-
tioned earlier, the average cost per item is found by dividing the total cost by the number of
items. The rate of change of average cost, called the marginal average cost, is the deriva-
tive of the average cost.

y 5 C 1x 2
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Marginal Average Cost
If the total cost to manufacture x items is given by then the average cost per item
is The marginal average cost is the derivative of the average cost
function, C r 1x 2 .

C 1x 2 5 C 1x 2 /x.
C 1x 2 ,

Similarly, the marginal average revenue function, is defined as the derivative of the
average revenue function, and the marginal average profit function,

is defined as the derivative of the average profit function,
A company naturally would be interested in making the average cost as small as possi-

ble. The next chapter will show that this can be done by using the derivative of 
This derivative often can be found by means of the quotient rule, as in the next example.

Minimum Average Cost

Suppose the cost in dollars of manufacturing x hundred small motors is given by

(a) Find the average cost per hundred motors.

SOLUTION The average cost is defined by

(b) Find the marginal average cost.

SOLUTION The marginal average cost is given by

(c) As we shall see in the next chapter, average cost is generally minimized when the mar-
ginal average cost is zero. Find the level of production that minimizes average cost.

SOLUTION Set the derivative and solve for x.

Use the quadratic formula to solve this quadratic equation. Discarding the negative
solution leaves as the solution. Since x is in
hundreds, production of 160 hundred or 16,000 motors will minimize average cost.

TRY YOUR TURN 4

x 5 1 160 1 "1 160 2 2 1 160 2 /2 < 160

 3 1x2 2 160x 2 40 2 5 0

 3x2 2 480x 2 120 5 0

 
3x2 2 480x 2 120

12x2 1 x 2 2
5 0

C r 1x 2 5 0

 5
3x2 2 480x 2 120

12x2 1 x 2 2
 .

 5
12x3 1 6x2 2 12x3 2 480x 2 3x2 2 120

12x2 1 x 2 2

 
d

dx
 3C 1x 2 4 5

12x2 1 x 2 1 6x 2 2 1 3x2 1 120 2 14x 1 1 2
12x2 1 x 2 2

C 1x 2 5
C 1x 2

x
5

3x2 1 120

2x 1 1
. 1

x
5

3x2 1 120

2x2 1 x
 .

C 1x 2 5
3x2 1 120

2x 1 1
 , 10 # x # 200.

C 1x 2 /x.

P 1x 2 5 P 1x 2 /x.P r 1x 2 ,
R 1x 2 5 R 1x 2 /x,

R r 1x 2 ,

EXAMPLE  5

APPLY IT 

YOUR TURN 4 Suppose cost 

is given by . Find 

the marginal average cost. 

C 1x 2 5
4x 1 50

x 1 2
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Use the product rule to find the derivative of the following.
(Hint for Exercises 3–6: Write the quantity as a product.)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Use the quotient rule to find the derivative of the following.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. g 1 y 2 5
y1.4 1 1

y2.5 1 2

h 1 z 2 5
z2.2

z3.2 1 5

y 5
4x 2 3

"x

y 5
5x 1 6

"x

r 1 t 2 5
"t

2t 1 3

p 1 t 2 5
"t

t 2 1

k 1x 2 5
x2 1 7x 2 2

x2 2 2

g 1x 2 5
x2 2 4x 1 2

x2 1 3

y 5
2x2 1 8x

4x2 2 5

f 1 t 2 5
4t2 1 11

t2 1 3

y 5
x2 2 4x

x 1 3

y 5
x2 1 x

x 2 1

y 5
9 2 7t

1 2 t

y 5
5 2 3t

4 1 t

f 1x 2 5
8x 2 11

7x 1 3

f 1x 2 5
6x 1 1

3x 1 10

q 1x 2 5 1x22 2 x23 2 1 3x21 1 4x24 2

p 1 y 2 5 1 y21 1 y22 2 12y23 2 5y24 2

y 5 12x 2 3 2 1"x 2 1 2
y 5 1x 1 1 2 1"x 1 2 2
g 1 t 2 5 1 3t2 1 2 2 2
k 1 t 2 5 1 t2 2 1 2 2
y 5 1 7x 2 6 2 2
y 5 12x 2 5 2 2
y 5 1 5x2 2 1 2 14x 1 3 2
y 5 1 3x2 1 2 2 12x 2 1 2

27.

28.

29. If and find 
when 

30. If and find 
when 

31. Find the error in the following work.

32. Find the error in the following work.

33. Find an equation of the line tangent to the graph of
at 

34. Find an equation of the line tangent to the graph of
at 

35. Consider the function

a. Find the derivative using the quotient rule.

b. Find the derivative by first simplifying the function to

and using the rules from the previous section.

c. Compare your answers from parts a and b and explain any
discrepancies.

36. What is the result of applying the product rule to the function

where k is a constant? Compare with the rule for differentiat-
ing a constant times a function from the previous section.

37. Following the steps used to prove the product rule for deriva-
tives, prove the quotient rule for derivatives.

38. Use the fact that can be rewritten as
and the product rule for derivatives to ver-

ify the quotient rule for derivatives. (Hint: After applying the
product rule, substitute for and simplify.)f 1x 2u 1x 2 /v 1x 2

f 1x 2v 1x 2 5 u 1x 2
f 1x 2 5 u 1x 2 /v 1x 2

f 1x 2 5 kg 1x 2 ,

f 1x 2 5
3x3

x2/3
1

6

x2/3
5 3x7/3 1 6x22/3

f 1x 2 5
3x3 1 6

x2/3
 .

1 1, 5 2 .f 1x 2 5 12x 2 1 2 1x 1 4 2

1 3, 3 2 .f 1x 2 5 x / 1x 2 2 2

 5 2x4 1 12x2

 Dx a
x2 2 4

x3 b 5 x3 12x 2 2 1x2 2 4 2 1 3x2 2 5 2x4 2 3x4 1 12x2

5
2x2 1 10x 1 2

1x2 2 1 2 2

5
4x2 1 10x 2 2x2 1 2

1x2 2 1 2 2

 Dx a
2x 1 5

x2 2 1
b 5

12x 1 5 2 12x 2 2 1x2 2 1 22
1x2 2 1 2 2

h 1x 2 5 f 1x 2 /g 1x 2 .
h r 1 3 2f r 1 3 2 5 8,f 1 3 2 5 9,g r 1 3 2 5 5,g 1 3 2 5 4,

h 1x 2 5 f 1x 2g 1x 2 .
h r 1 3 2f r 1 3 2 5 8,f 1 3 2 5 9,g r 1 3 2 5 5,g 1 3 2 5 4,

g 1x 2 5
12x2 1 3 2 1 5x 1 2 2

6x 2 7

f 1x 2 5
1 3x2 1 1 2 12x 2 1 2

5x 1 4

4.2 EXERCISES



For each function, find the value(s) of x in which 0, to
3 decimal places.

39.

40.

APPLICATIONS
Business and Economics
41. Average Cost The total cost (in hundreds of dollars) to pro-

duce x units of perfume is

Find the average cost for each production level.

a. 10 units b. 20 units c. x units

d. Find the marginal average cost function.

42. Average Profit The total profit (in tens of dollars) from selling
x self-help books is

Find the average profit from each sales level.

a. 8 books b. 15 books c. x books

d. Find the marginal average profit function.

e. Is this a reasonable function for profit? Why or why not?

43. Employee Training A company that manufactures bicycles has
determined that a new employee can assemble bicycles
per day after d days of on-the-job training, where

a. Find the rate of change function for the number of bicycles
assembled with respect to time.

b. Find and interpret and 

44. Marginal Revenue Suppose that the demand function is given by
where q is the quantity that consumers demand when

the price is p. Show that the marginal revenue is given by

45. Marginal Average Cost Suppose that the average cost function is
given by where x is the number of items pro-
duced. Show that the marginal average cost function is given by

46. Revenue Suppose that at the beginning of the year, a Vermont
maple syrup distributor found that the demand for maple
syrup, sold at $15 a quart, was 500 quarts each month. At that
time, the price was going up at a rate of $0.50 a month, but
despite this, the demand was going up at a rate of 30 quarts a
month due to increased advertising. How fast was the revenue
increasing?

C r 1x 2 5
xC r 1x 2 2 C 1x 2

x2  .

C 1x 2 5 C 1x 2 /x,

R r 1q 2 5 D 1q 2 1 qD r 1q 2 .

p 5 D 1q 2 ,

M r 1 5 2 .M r 12 2

M 1d 2 5
100d2

3d2 1 10
 .

M 1d 2

P 1x 2 5
5x 2 6

2x 1 3
 .

C 1x 2 5
3x 1 2

x 1 4
 .

f 1x 2 5
x 2 2

x2 1 4

f 1x 2 5 1x2 2 2 2 1x2 2 "2 2

f r 1x 2 5
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47. Average Cost A gasoline refinery found that the cost to produce
12,500 gallons of gasoline last month was $27,000. At that time,
the cost was going up at a rate of $1200 per month, while the
number of gallons of gasoline the refinery produced was going
up at a rate of 350 gallons per month. At what rate was the aver-
age cost to produce a gallon of gasoline increasing or decreasing
last month?

Life Sciences
48. Muscle Reaction When a certain drug is injected into a mus-

cle, the muscle responds by contracting. The amount of con-
traction, s (in millimeters) is related to the concentration of the
drug, x (in milliliters) by

where m and n are constants.

a. Find 

b. Find the rate of contraction when the concentration of the
drug is 50 ml, and 

49. Growth Models In Exercise 58 of Section 2.3, the formula for
the growth rate of a population in the presence of a quantity x
of food was given as

This was referred to as Michaelis-Menten kinetics.

a. Find the rate of change of the growth rate with respect to the
amount of food.

b. The quantity A in the formula for represents the quan-
tity of food for which the growth rate is half of its maxi-
mum. Using your answer from part a, find the rate of change
of the growth rate when 

50. Bacteria Population Assume that the total number (in mil-
lions) of bacteria present in a culture at a certain time t (in
hours) is given by

a. Find 

Find the rate at which the population of bacteria is changing at
the following times.

b. 8 hours c. 11 hours

d. The answer in part b is negative, and the answer in part c is
positive. What does this mean in terms of the population of
bacteria?

51. Work/Rest Cycles Murrell’s formula for calculating the total
amount of rest, in minutes, required after performing a particular
type of work activity for 30 minutes is given by the formula

where w is the work expended in kilocalories per minute,
Source: Human Factors in Engineering and Design.

a. A value of 5 for w indicates light work, such as riding a
bicycle on a flat surface at 10 mph. Find 

b. A value of 7 for w indicates moderate work, such as
mowing grass with a pushmower on level ground. Find 

c. Find and and compare your answers. Explain
whether these answers make sense.

R r 1 7 2R r 1 5 2
R 1 7 2 .

R 1 5 2 .

kcal /min.

R 1w 2 5
30 1w 2 4 2

w 2 1.5
 ,

N r 1 t 2 .
N 1 t 2 5 3t 1 t 2 10 22 1 40.

x 5 A.

f 1x 2

f 1x 2 5
Kx

A 1 x
 .

n 5 3.m 5 10,

s r 1x 2 .

s 1x 2 5
x

m 1 nx
 ,
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52. Optimal Foraging Using data collected by zoologist Reto
Zach, the work done by a crow to break open a whelk (large
marine snail) can be estimated by the function

where H is the height (in meters) of the whelk when it is
dropped. Source: Mathematics Teacher.

W 5 a1 1
20

H 2 0.93
bH,

4.3 The Chain Rule
Suppose we know how fast the radius of a circular oil slick is growing,
and we know how much the area of the oil slick is growing per unit of
change in the radius. How fast is the area growing?
We will answer this question in Example 4 using the chain rule for derivatives. 

Before discussing the chain rule, we consider the composition of functions. Many of the
most useful functions for modeling are created by combining simpler functions. Viewing
complex functions as combinations of simpler functions often makes them easier to under-
stand and use.

Composition of Functions Suppose a function f assigns to each element x in set
X some element in set Y. Suppose also that a function g takes each element in set
Y and assigns to it a value in set Z. By using both f and g, an element x in X is
assigned to an element z in Z, as illustrated in Figure 9. The result of this process is a new
function called the composition of functions g and f and defined as follows.

z 5 g 3f 1x 2 4
y 5 f 1x 2

APPLY IT 

Find the rate at which the number of facts remembered is chang-
ing after the following numbers of hours.

a. 1 b. 10

General Interest

54. Vehicle Waiting Time The average number of vehicles wait-
ing in a line to enter a parking ramp can be modeled by the
function

where x is a quantity between 0 and 1 known as the traffic
intensity. Find the rate of change of the number of vehicles in
line with respect to the traffic intensity for the following values
of the intensity. Source: Principles of Highway Engineering
and Traffic Control.

a. b. x 5 0.6x 5 0.1

f 1x 2 5
x2

2 1 1 2 x 2
 ,

YOUR TURN ANSWERS 

1.

2.

3.

4.
24x2 2 100x 2 100

1x2 1 2x 2 2

30x2 1 140x 1 266

1 3x 1 7 2 2

f r 1x 2 5
19

1 5 2 2x 2 2

dy

dx
5 25x4 1 12x2 2 14x

a. Find 

b. One can show that the amount of work is minimized when
Find the value of H that minimizes W.

c. Interestingly, Zach observed the crows dropping the whelks
from an average height of 5.23 m. What does this imply?

Social  Sciences

53. Memory Retention Some psychologists contend that the number
of facts of a certain type that are remembered after t hours is
given by

f 1 t 2 5
90t

99t 2 90
 .

dW /dH 5 0.

dW /dH.
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EXAMPLE  1

FOR REVIEW
You may want to review how to 
find the domain of a function.
Domain was discussed in Section
2.1 on Properties of Functions.

X

x f

Y

f (x)
g

Z

g[ f (x)]

FIGURE 9

Composite Function
Let f and g be functions. The composite function, or composition, of g and f is the
function whose values are given by for all x in the domain of f such that 
is in the domain of g. (Read as “g of f of x”.)g 3f 1x 2 4

f 1x 2g 3f 1x 2 4

YOUR TURN 1 For the 
functions in Example 1, find

and .g 3f 10 2 4f 3g 10 2 4

Composite Functions

Let and Find the following.

(a)

SOLUTION Find first.

Then

(b)

SOLUTION Since 

(c)

SOLUTION does not exist since is not in the domain of g.
TRY YOUR TURN 1

22f 3g 122 2 4
f 3g 122 2 4

f 3 g 1 4 2 4 5 2 ."17 2 1 5 2"17 2 1.

g 14 2 5 "3 . 4 1 5 5 "17,

f 3g 14 2 4

g 3f 1 4 2 4 5 g 37 4 5 "3 . 7 1 5 5 "26.

f 14 2 5 2 . 4 2 1 5 8 2 1 5 7

f 14 2
g 3f 14 2 4

g 1x 2 5 "3x 1 5.f 1x 2 5 2x 2 1

Composition of Functions

Let and Find the following.

(a)

SOLUTION Using the given functions, we have

(b)

SOLUTION By the definition above, with f and g interchanged,

TRY YOUR TURN 2 5 8x2 1 20x 1 1.

 5 4 12x2 1 5x 2 1 1

 g 3f 1x 2 4 5 g 32x2 1 5x 4

g 3f 1x 2 4

 5 32x2 1 36x 1 7.

 5 32x2 1 16x 1 2 1 20x 1 5

 5 2 1 16x2 1 8x 1 1 2 1 20x 1 5

 5 2 14x 1 1 2 2 1 5 14x 1 1 2
 f 3 g 1 x 2 4 5 f 34x 1 1 4

f 3g 1x 2 4
g 1x 2 5 4x 1 1.f 1x 2 5 2x2 1 5x

EXAMPLE  2

YOUR TURN 2 Let
and

. Find .g 3f 1x 2 4g 1x 2 5 x2 1 1
f 1x 2 5 2x 2 3



Area of an Oil Slick

A leaking oil well off the Gulf Coast is spreading a circular film of oil over the water sur-
face. At any time t (in minutes) after the beginning of the leak, the radius of the circular oil
slick (in feet) is given by

.

Find the rate of change of the area of the oil slick with respect to time.

SOLUTION We first find the rate of change in the radius over time by finding dr/dt:

This value indicates that the radius is increasing by 4 ft each minute. 
The area of the oil slick is given by

, with .

The derivative, dA/dr, gives the rate of change in area per unit increase in the radius.

dA

dr
5 2p rA1 r 2 5 p r2

dr

dt
5 4.

r 1 t 2 5 4t

As Example 2 shows, it is not always true that In fact, it is rare to
find two functions f and g such that The domain of both composite
functions given in Example 2 is the set of all real numbers.

Composition of Functions

Write each function as the composition of two functions f and g so that

(a)

SOLUTION Let and Then 
Notice that here is the same as

in Example 2(a).

(b)

SOLUTION One way to do this is to let and Another
choice is to let and Verify that with either choice,

For the purposes of this section, the first choice is better; it is
useful to think of f as being the function on the outer layer and g as the function on the
inner layer. With this function h, we see a square root on the outer layer, and when we
peel that away we see on the inside. TRY YOUR TURN 3

The Chain Rule Suppose and What is the derivative
of At first you might think the answer is just

by using the power rule. You can check this answer
by multiplying out 5 15x3 1 222 5 25x6 1 20x3 1 4. Now calculate 5

The guess using the power rule was clearly wrong! The error is that the power
rule applies to x raised to a power, not to some other function of x raised to a power.

How, then, could we take the derivative of This seems far too
difficult to multiply out. Fortunately, there is a way. Notice from the previous paragraph
that So the original guess was almost correct,
except it was missing the factor of which just happens to be This is not a coin-
cidence. To see why the derivative of involves taking the derivative of f and then
multiplying by the derivative of g, let us consider a realistic example, the question from the
beginning of this section.

f 3g 1x 2 4
g r 1x 2 .15x2,

h r 1x 2 5 150x5 1 60x2 5 2 1 5x3 1 2 215x2.

p 1x 2 5 1 5x3 1 2 2 20?

150x5 1 60x2.
h r 1x 2h 1x 2

h r 1x 2 5 2 1 5x3 1 2 2 5 10x3 1 4
h 1x 2 5 f 3g 1x 2 4 5 1 5x3 1 2 2 2?

g 1x 2 5 5x3 1 2.f 1x 2 5 x2

1 2 x2

f 3g 1x 2 4 5 "1 2 x2.
g 1x 2 5 x2.f 1x 2 5 "1 2 x

g 1x 2 5 1 2 x2.f 1x 2 5 "x

h 1x 2 5 "1 2 x2

f 3g 1x 2 4
h 1x 22 14x 1 1 2 2 1 5 14x 1 1 2 .f 14x 1 1 2 5

f 3g 1x 2 4 5g 1x 2 5 4x 1 1.f 1x 2 5 2x2 1 5x

h 1x 2 5 2 14x 1 1 2 2 1 5 14x 1 1 2
h 1x 2 5 f 3g 1x 2 4.

f 3g 1x 2 4 5 g 3f 1x 2 4.
f 3g 1x 2 4 5 g 3f 1x 2 4.
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EXAMPLE  3

YOUR TURN 3 Write
as a 

composition of two functions
f and g so that .h 1x 2 5 f 3g 1x 2 4

h 1x 2 5 12x 2 3 2 3

EXAMPLE  4

APPLY IT 
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As these derivatives show, the radius is increasing at a rate of 4 ft/min, and for each
foot that the radius increases, the area increases by ft2. It seems reasonable, then, that
the area is increasing at a rate of 

2 r ft2/ft 4 ft/min 5 8 r ft2/min.

That is,

.

Notice that because area (A) is a function of radius (r), which is a function of time (t),
area as a function of time is a composition of two functions, written . The last step,
then, can also be written as

.

Finally, we can substitute to get the derivative in terms of t:

.

The rate of change of the area of the oil slick with respect to time is ft2/min.

To check the result of Example 4, use the fact that and to get the same
result:

The product used in Example 4,

is an example of the chain rule, which is used to find the derivative of a composite function.

dA

dt
5

dA

dr
. dr

dt
 ,

A 5 p 14t 2 2 5 16pt2,  with  
dA

dt
5 32pt.

A 5 pr2r 5 4t

32p t

dA

dt
5 8p r 5 8p14t 2 5 32p t

r 1 t 2 5 4t

dA

dt
5

d

dt
A 3r 1 t 2 4 5 A r 3r 1 t 2 4 . r r 1 t 2 5 2p r . 4 5 8p r

A1 r 1 t 2 2

dA

dt
5

dA

dr
. dr

dt
5 2p r . 4 5 8p r

p3p

2p r

Chain Rule
If y is a function of u, say and if u is a function of x, say then

and

dy

dx
5

dy

du
?

du
dx

 .

y 5 f 1 u 2 5 f 3g 1x 2 4,
u 5 g 1x 2 ,y 5 f 1 u 2 ,

Chain Rule

Find if 

SOLUTION Let and Then

 5
1
2

 u21/2 . 1 6x 2 5 2 .

 
dy

dx
5

dy

du
. du

dx

u 5 3x2 2 5x.y 5 u1/2,

y 5 1 3x2 2 5x 2 1/2.dy /dx

EXAMPLE  5

One way to remember the chain rule is to pretend that and are fractions,
with du “canceling out.” The proof of the chain rule requires advanced concepts and, there-
fore, is not given here.

du /dxdy /du
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EXAMPLE  6

In words, the chain rule tells us to first take the derivative of the outer function, then
multiply it by the derivative of the inner function.

Chain Rule

Use the chain rule to find 

SOLUTION As in Example 3(b), think of this as a function with layers. The outer layer is
something being raised to the 8th power, so let Once this layer is peeled away,
we see that the inner layer is Then 
and

Here with and 

TRY YOUR TURN 5

(a) A common error is to forget to multiply by when using the chain rule.
Remember, the derivative must involve a “chain,” or product, of derivatives.

(b) Another common mistake is to write the derivative as Remember
to leave unchanged in and then to multiply by 

One way to avoid both of the errors described above is to remember that the
chain rule is a two-step process. In Example 6, the first step was taking the deriv-
ative of the power, and the second step was multiplying by Forgetting to
multiply by would be an erroneous one-step process. The other erroneous
one-step process is to take the derivative inside the power, getting or

in Example 6.

Sometimes both the chain rule and either the product or quotient rule are needed to find
a derivative, as the next examples show.

8 12x 1 5 2 7
f r 3g r 1x 2 4,

g r 1x 2
g r 1x 2 .

g r 1 x 2 .f r 3g 1 x 2 4g 1 x 2
f r 3g r 1 x 2 4.

g r 1 x 2

 5 8 1x2 1 5x 2 7 12x 1 5 2

 5 8 3g 1x 2 4 7g r 1x 2

 Dx 
1x2 1 5x 2 8 5 f r 3g 1x 2 4g r 1x 2

g r 1x 2 5 2x 1 5.f r 3g 1x 2 4 5 8 3g 1x 2 4 7 5 8 1x2 1 5x 2 7f r 1x 2 5 8x7,

Dx 
1x2 1 5x 2 8 5 f r 3g 1x 2 4g r 1x 2 .

1x2 1 5x 2 8 5 f 3g 1x 2 4x2 1 5x, so g 1x 2 5 x2 1 5x.
f 1x 2 5 x8.

Dx 
1x2 1 5x 2 8.

Chain Rule (Alternate Form)
If then

(To find the derivative of find the derivative of replace each x with
and then multiply the result by the derivative of )g 1x 2 .g 1x 2 ,

f 1x 2 ,f 3g 1x 2 4,

dy

dx
5 f 9[g 1 x 2 \ ? g9 1 x 2 .

y 5 f 3g 1x 2 4,

⎫ ⎬ ⎭

YOUR TURN 5
Find .Dx 1x2 2 7 2 10

YOUR TURN 4 Find dy/dx
if .y 5 1 5x2 2 6x 222

Replacing u with gives

TRY YOUR TURN 4

The following alternative version of the chain rule is stated in terms of composite
functions.

dy

dx
5

1

2
 1 3x2 2 5x 221/2 1 6x 2 5 2 5

6x 2 5

2 1 3x2 2 5x 2 1/2  .

3x2 2 5x

CAUTION

⎫ ⎬ ⎭ ⎫ ⎬ ⎭



Derivative Rules

Find the derivative of 

SOLUTION Write as the product

To find the derivative of let with Now use the
product rule and the chain rule.

Derivative of Derivative of 
$+%+&

Derivative Rules

Find 

SOLUTION Use the quotient rule and the chain rule.

TRY YOUR TURN 7

Some applications requiring the use of the chain rule are illustrated in the next two
examples.

City Revenue

The revenue realized by a small city from the collection of fines from parking tickets is
given by

where n is the number of work-hours each day that can be devoted to parking patrol. At the
outbreak of a flu epidemic, 30 work-hours are used daily in parking patrol, but during the
epidemic that number is decreasing at the rate of 6 work-hours per day. How fast is rev-
enue from parking fines decreasing at the outbreak of the epidemic?

SOLUTION We want to find , the change in revenue with respect to time. By the
chain rule,

dR

dt
5

dR

dn
. dn

dt
 .

dR /dt

R 1n 2 5
8000n

n 1 2
 ,

 5
1 3x 1 2 2 6 1 18x 2 23 2

1x 2 1 2 2

 5
1 3x 1 2 2 6 321x 2 21 2 3x 2 2 4

1x 2 1 2 2

 5
1 3x 1 2 2 6 321 1x 2 1 2 2 1 3x 1 2 2 4

1x 2 1 2 2

 5
21 1x 2 1 2 1 3x 1 2 2 6 2 1 3x 1 2 2 7

1x 2 1 2 2

 Dx c
1 3x 1 2 2 7

x 2 1
d 5

1x 2 1 2 37 1 3x 1 2 2 6 . 3 4 2 1 3x 1 2 2 7 1 1 2
1x 2 1 2 2

Dx c
1 3x 1 2 2 7

x 2 1
d  .

 5 4 1 3x 1 5 24 1 18x 1 5 2
 5 4 1 3x 1 5 24 315x 1 1 3x 1 5 2 1 4

 5 60x 1 3x 1 5 24 1 4 1 3x 1 5 2 5

 
dy

dx
5 4x 35 1 3x 1 5 24 . 3 4 1 1 3x 1 5 2 5 14 2

4x1 3x 1 5 2 5

g r 1x 2 5 3.g 1x 2 5 3x 1 5,1 3x 1 5 2 5,

14x 2 . 1 3x 1 5 2 5.

4x 1 3x 1 5 2 5
y 5 4x 1 3x 1 5 2 5.
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Factor out the greatest common 
factor, 

Simplify inside brackets.

4 1 3x 1 5 24.

Factor out the
greatest common
factor, 1 3x 1 2 2 6.

Simplify inside
brackets.

YOUR TURN 6 Find the
derivative of .y 5 x2 1 5x 2 1 2 3

EXAMPLE  7

EXAMPLE  8

YOUR TURN 7

Find .Dx c
14x 2 1 2 3

x 1 3
d

EXAMPLE  9

�

TRY YOUR TURN 6



First find using the quotient rule, as follows.

Since 30 work-hours were used at the outbreak of the epidemic, so
Also, Thus,

Revenue is being lost at the rate of about $94 per day at the outbreak of the epidemic.

Compound Interest

Suppose a sum of $500 is deposited in an account with an interest rate of r percent per year
compounded monthly. At the end of 10 years, the balance in the account (as illustrated in
Figure 10) is given by

Find the rate of change of A with respect to r if or 7.*

SOLUTION First find using the chain rule.

If 

or $82.01 per percentage point. If 

or $99.90 per percentage point.

NOTE One lesson to learn from this section is that a derivative is always with respect to some
variable. In the oil slick example, notice that the derivative of the area with respect to the radius
is while the derivative of the area with respect to time is As another example, con-
sider the velocity of a conductor walking at 2 mph on a train car. Her velocity with respect to
the ground may be 50 mph, but the earth on which the train is running is moving about the sun
at 1.6 million mph. The derivative of her position function might be 2, 50, or 1.6 million mph,
depending on what variable it is with respect to.

8pr.2pr,

 < 99.90,

 
dA

dr
5 50a1 1

7

1200
b

119

r 5 7,

 < 82.01,

 
dA

dr
5 50a1 1

5

1200
b

119

r 5 5,

 5 50a1 1
r

1200
b

119

 
dA

dr
5 1 120 2 1 500 2 a1 1

r

1200
b

119

a
1

1200
b

dA /dr

r 5 5

A 5 500a1 1
r

1200
b

120

 .

dR

dt
5

dR

dn
?

dn

dt
 5 1 15.625 2 126 2 5 293.75.

dn /dt 5 26.dR /dn 5 16,000 / 1 30 1 2 2 2 5 15.625.
n 5 30,

dR

dn
5
1n 1 2 2 1 8000 2 2 8000n 1 1 2

1n 1 2 2 2
5

16,000
1n 1 2 2 2

dR /dn,
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EXAMPLE  10

FIGURE 10 

0
0

A

r
2 4 6 8 10

500

1000

1500
r

1200
A = 500

120
1 +( )

*Notice that r is given here as an integer percent, rather than as a decimal, which is why the formula for compound
interest has 1200 where you would expect to see 12. This leads to a simpler interpretation of the derivative.
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Let and Find the following.

1. 2. 3.

4. 5. 6.

In Exercises 7–14, find and .

7.

8.

9.

10.

11.

12.

13.

14.

Write each function as the composition of two functions. (There
may be more than one way to do this.)

15. 16.

17. 18.

19.

20.

Find the derivative of each function defined as follows.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40. y 5
x2 1 4x

1 3x3 1 2 24
y 5

3x2 2 x

12x 2 1 2 5

p 1 t 2 5
12t 1 3 2 3

4t2 2 1
r 1 t 2 5

1 5t 2 6 24

3t2 1 4

y 5
1

1 3x2 2 4 2 5
y 5

25

12x3 1 1 2 2

p 1 z 2 5 z 1 6z 1 1 24/3q 1 y 2 5 4y2 1 y2 1 1 2 5/4

y 5 1x3 1 2 2 1x2 2 1 24y 5 1 3x4 1 1 24 1x3 1 4 2

r 1 t 2 5 4t 12t5 1 3 24m 1 t 2 5 26t 1 5t4 2 1 24

f 1 t 2 5 8"4t2 1 7g 1 t 2 5 23"7t3 2 1

s 1 t 2 5 12 12t4 1 5 2 3/2s 1 t 2 5 45 1 3t3 2 8 2 3/2

f 1x 2 5 27 1 3x4 1 2 224k 1x 2 5 22 1 12x2 1 5 226

y 5 12x3 1 9x 2 5y 5 1 8x4 2 5x2 1 1 24

y 5 1x1/2 2 3 2 2 1 1x1/2 2 3 2 1 5

y 5 1x2 1 5x 2 1/3 2 2 1x2 1 5x 2 2/3 1 7

y 5 "9 2 4xy 5 2"13 1 7x

y 5 1 3x2 2 7 2 2/3y 5 1 5 2 x2 2 3/5

f 1x 2 5
8

x
 ; g 1x 2 5 "3 2 x

f 1x 2 5 "x 1 1; g 1x 2 5
21

x

f 1x 2 5 9x2 2 11x; g 1x 2 5 2"x 1 2

f 1x 2 5 "x 1 2; g 1x 2 5 8x2 2 6

f 1x 2 5
2

x4  ; g 1x 2 5 2 2 x

f 1x 2 5
1

x
; g 1x 2 5 x2

f 1x 2 5 28x 1 9; g 1x 2 5
x

5
1 4

f 1x 2 5
x

8
1 7; g 1x 2 5 6x 2 1

g 3 f 1x 2 4f 3g 1x 2 4

g 3f 1 5z 2 4f 3g 1k 2 4g 3f 125 2 4

g 3f 12 2 4f 3g 125 2 4f 3g 12 2 4

g 1x 2 5 8x 1 3.f 1x 2 5 5x2 2 2x 41. In your own words explain how to form the composition of
two functions. 

42. The generalized power rule says that if is a function of x
and for any real number n, then

Explain why the generalized power rule is a consequence of
the chain rule and the power rule.

Consider the following table of values of the functions f and g
and their derivatives at various points.

dy

dx
5 n . 3g 1x 2 4 n21 . g r 1x 2 .

y 5 3g 1x 2 4 n
g 1x 2

4.3 EXERCISES

x 1 2 3 4

2 4 1 3

2 3 4 1

5 /74 /73 /72 /7g r 1x 2

g 1x 2

29282726f r 1x 2

f 1x 2

Find the following using the table above.
43. a. at b. at 

44. a. at b. at 

In Exercises 45–48, find the equation of the tangent line to the
graph of the given function at the given value of x.

45.

46.

47.

48.

In Exercises 49 and 50, find all values of x for the given func-
tion where the tangent line is horizontal.

49.

50.

51. Katie and Sarah are working on taking the derivative of

Katie uses the quotient rule to get

Sarah converts it into a product and uses the product rule and
the chain rule:

Explain the discrepancies between the two answers. Which
procedure do you think is preferable?

 5 2 1 3x 1 4 221 2 6x 1 3x 1 4 222.

 f r 1x 2 5 2x 121 2 1 3x 1 4 222 1 3 2 1 2 1 3x 1 4 221

 f 1x 2 5 2x 1 3x 1 4 221

f r 1x 2 5
1 3x 1 4 22 2 2x 1 3 2

1 3x 1 4 2 2
5

8

1 3x 1 4 2 2
 .

f 1x 2 5
2x

3x 1 4
 .

f 1x 2 5
x

1x2 1 4 24

f 1x 2 5 "x3 2 6x2 1 9x 1 1

f 1x 2 5 x2"x4 2 12 ; x 5 2

f 1x 2 5 x 1x2 2 4x 1 5 24; x 5 2

f 1x 2 5 1x3 1 7 2 2/3; x 5 1

f 1x 2 5 "x2 1 16; x 5 3

x 5 2Dx 
1g 3f 1x 2 4 2x 5 1Dx 

1g 3f 1x 2 4 2

x 5 2Dx 
1f 3g 1x 2 4 2x 5 1Dx 

1f 3g 1x 2 4 2



52. Margy and Nate are working on taking the derivative of

Margy uses the quotient rule and chain rule as follows:

Nate rewrites the function and uses the power rule and chain
rule as follows:

Compare the two procedures. Which procedure do you think is
preferable?

APPLICATIONS
Business and Economics

53. Demand Suppose the demand for a certain brand of vacuum
cleaner is given by

where p is the price in dollars. If the price, in terms of the cost
c, is expressed as

find the demand in terms of the cost.

54. Revenue Assume that the total revenue (in dollars) from the
sale of x television sets is given by

Find the marginal revenue when the following numbers of sets
are sold.

a. 100 b. 200 c. 300

d. Find the average revenue from the sale of x sets.

e. Find the marginal average revenue. 

f. Write a paragraph covering the following questions. How
does the revenue change over time? What does the marginal
revenue function tell you about the revenue function? What
does the average revenue function tell you about the revenue
function?

55. Interest A sum of $1500 is deposited in an account 
with an interest rate of r percent per year, compounded
daily. At the end of 5 years, the balance in the account is
given by

A 5 1500a1 1
r

36,500
b

1825

 .

R 1x 2 5 24 1x2 1 x 2 2/3.

p 1 c 2 5 2c 2 10,

D 1p 2 5
2p2

100
1 500,

 f r 1x 2 5 124 22 1 3x 1 1 225 . 3 5
224

1 3x 1 1 2 5
 .

 f 1x 2 5 2 1 3x 1 1 224

 5
224 1 3x 1 1 2 3

1 3x 1 1 2 8
5

224

1 3x 1 1 2 5
 .

 f r 1x 2 5
1 3x 1 1 24 . 0 2 2 . 4 1 3x 1 1 2 3 . 3

1 3x 1 1 2 8

f 1x 2 5
2

1 3x 1 1 24
 .

Find the rate of change of A with respect to r for the following
interest rates.

a. 6% b. 8% c. 9%

56. Demand Suppose a demand function is given by

where q is the demand for a product and p is the price per item
in dollars. Find the rate of change in the demand for the prod-
uct per unit change in price (i.e., find ).

57. Depreciation A certain truck depreciates according to the
formula

where V is the value of the truck (in dollars), t is time measured
in years, and represents the time of purchase (in years).
Find the rate at which the value of the truck is changing at the
following times.

a. 2 years b. 4 years

58. Cost Suppose the cost in dollars of manufacturing q items is
given by

and the demand equation is given by

In terms of the demand q,

a. find an expression for the revenue R;

b. find an expression for the profit P; 

c. find an expression for the marginal profit.

d. Determine the value of the marginal profit when the price is
$5000.

Life Sciences

59. Fish Population Suppose the population P of a certain species
of fish depends on the number x (in hundreds) of a smaller fish
that serves as its food supply, so that

Suppose, also, that the number of the smaller species of fish
depends on the amount a (in appropriate units) of its food sup-
ply, a kind of plankton. Specifically,

A biologist wants to find the relationship between the popula-
tion P of the large fish and the amount a of plankton available,
that is, What is the relationship?

60. Oil Pollution An oil well off the Gulf Coast is leaking, with the
leak spreading oil over the surface as a circle. At any time t (in
minutes) after the beginning of the leak, the radius of the circu-
lar oil slick on the surface is feet. Let
represent the area of a circle of radius r.

a. Find and interpret 

b. Find and interpret when t 5 100.Dt A 3r 1 t 2 4

A 3r 1 t 2 4.

A 1 r 2 5 pr2r 1 t 2 5 t2

P 3f 1a 2 4.

x 5 f 1a 2 5 3a 1 2.

P 1x 2 5 2x2 1 1.

q 5 "15,000 2 1.5p.

C 5 2000q 1 3500,

t 5 0

V 5
60,000

1 1 0.3t 1 0.1t2  ,

dq /dp

q 5 D 1p 2 5 30a5 2
p

"p2 1 1
b  ,
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General Interest

65. Candy The volume and surface area of a “jawbreaker” for any
radius is given by the formulas

and

respectively. Roger Guffey estimates the radius of a jawbreaker
while in a person’s mouth to be

where r(t) is in millimeters and t is in minutes. Source: Mathe-
matics Teacher.

a. What is the life expectancy of a jawbreaker?

b. Find and when and interpret your
answer.

c. Construct an analogous experiment using some other type of
food or verify the results of this experiment.

66. Zenzizenzizenzic Zenzizenzizenzic is an obsolete word with
the distinction of containing the most z’s of any word found in
the Oxford English Dictionary. It was used in mathematics,
before powers were written as superscript numbers, to repre-
sent the square of the square of the square of a number. In 
symbols, zenzizenzizenzic is written as . Source: The
Phrontistery.

a. Use the chain rule twice to find the derivative.

b. Use the properties of exponents to first simplify the expres-
sion, and then find the derivative.

67. Zenzizenzicube Zenzizenzicube is another obsolete word (see
Exercise 66) that represents the square of the square of a cube.
In symbols, zenzizenzicube is written as .  Source: The
Phrontistery.

a. Use the chain rule twice to find the derivative.

b. Use the properties of exponents to first simplify the expres-
sion, and then find the derivative. 

1 1x3 2 2 2 2

1 1x2 2 2 2 2

t 5 17dS /dtdV /dt

r 1 t 2 5 6 2
3

17
 t,

S 1 r 2 5 4pr2,V 1 r 2 5
4

3
pr3

61. Thermal Inversion When there is a thermal inversion layer over
a city (as happens often in Los Angeles), pollutants cannot rise
vertically but are trapped below the layer and must disperse hor-
izontally. Assume that a factory smokestack begins emitting a
pollutant at 8 A.M. Assume that the pollutant disperses horizon-
tally, forming a circle. If t represents the time (in hours) since the
factory began emitting pollutants ( represents 8 A.M.),
assume that the radius of the circle of pollution is 
miles. Let represent the area of a circle of radius r.

a. Find and interpret 

b. Find and interpret when 

62. Bacteria Population The total number of bacteria (in mil-
lions) present in a culture is given by

where t represents time (in hours) after the beginning of an
experiment. Find the rate of change of the population of bacteria
with respect to time for the following numbers of hours.

a. 0 b. c. 8

63. Calcium Usage To test an individual’s use of calcium, a
researcher injects a small amount of radioactive calcium
into the person’s bloodstream. The calcium remaining in the
bloodstream is measured each day for several days. Suppose
the amount of the calcium remaining in the bloodstream (in
milligrams per cubic centimeter) t days after the initial injec-
tion is approximated by

Find the rate of change of the calcium level with respect to
time for the following numbers of days.

a. 0 b. 4 c. 7.5

d. Is C always increasing or always decreasing? How can you
tell?

64. Drug Reaction The strength of a person’s reaction to a certain
drug is given by

where Q represents the quantity of the drug given to the patient
and C is a constant.

a. The derivative is called the sensitivity to the drug.
Find

b. Find the sensitivity to the drug if and a patient is
given 87 units of the drug.

c. Is the patient’s sensitivity to the drug increasing or decreas-
ing when Q 5 87?

C 5 59

R r 1Q 2 .
R r 1Q 2

R 1Q 2 5 QaC 2
Q

3
b

1/2
 ,

C 1 t 2 5
1

2
 12t 1 1 221/2.

7 /5

N 1 t 2 5 2t 1 5t 1 9 2 1/2 1 12,

t 5 4.Dt A 3r 1 t 2 4

A 3r 1 t 2 4.

A 1 r 2 5 pr2
r 1 t 2 5 2t

t 5 0
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YOUR TURN ANSWERS 

1. ; 

2.

3. One possible answer is and 

4.

5.

6.

7.
14x 2 1 2 2 1 8x 1 37 2

1x 1 3 2 2

dy

dx
5 x 1 5x 2 1 2 2 125x 2 2 2

20x 1x2 2 7 2 9

dy

dx
5

22 1 10x 2 6 2
1 5x2 2 6x 2 3

f 1x 2 5 x3g 1x 2 5 2x 2 3

4x2 2 12x 1 10

"22"5 2 1



Derivative of ax

For any positive constant 

.

(The derivative of an exponential function is the original function times the natural log-
arithm of the base.)

d
dx
1ax 2 5 1 ln a 2 ax

a 2  1,
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4.4 Derivatives of Exponential Functions
Given a new product whose rate of growth is rapid at first and then
slows, how can we find the rate of growth?

APPLY IT 

We will use a derivative to answer this question in Example 5 at the end of this section.

We can find the derivative of the exponential function by using the definition of the
derivative. Thus

Property 1 of exponents

Property 1 of limits

In the last step, since does not involve h, we were able to bring in front of the limit.
The result says that the derivative of is times a constant, namely, To

investigate this limit, we evaluate the expression for smaller and smaller values of h, as
shown in the table in the margin. Based on the table, it appears that . 

This is proved in more advanced courses. We, therefore, have the following formula.

lim
hl0

1 eh 2 1 2 /h 5 1

lim
hl0

1 eh 2 1 2 /h.exex
exex

 5 ex
 lim
hl0

 
eh 2 1

h
.

 5 lim
hl0

 
exeh 2 ex

h

 
d 1 ex 2

dx
5 lim

hl0
 
ex1h 2 ex

h

FOR REVIEW
Recall from Section 2.4 that e
is a special irrational number
whose value is approximately
2.718281828. It arises in many
applications, such as continuously
compounded interest, and it can
be defined as 

lim
ml`

a1 1
1
m
b

m

.

h

�0.1 0.9516

�0.01 0.9950

�0.001 0.9995

�0.0001 1.0000

0.00001 1.0000

0.0001 1.0001

0.001 1.0005

0.01 1.0050

0.1 1.0517

eh 2 1
h

Approximation of lim
hl0

 
eh 2 1

h

Derivative of ex

d
dx

  
1 ex 2 5 ex

To find the derivative of the exponential function with a base other than e, use the
change-of-base theorem for exponentials to rewrite as . Thus, for any positive con-
stant 

Change-of-base theorem for exponentials

Chain rule

Change-of-base theorem again 5 1 ln a 2ax.

 5 e1ln a2x ln a

 
d 1ax 2

dx
5

d 3e 1ln a2x 4
dx

a 2  1,
e1ln a2xax

We now see why e is the best base to work with: It has the simplest derivative of all the
exponential functions. Even if we choose a different base, e appears in the derivative
anyway through the term. (Recall that is the logarithm of a to the base e.) In fact,ln aln a
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Derivative of ag(x) and eg(x)

and

d
dx

 1 eg1x2 2 5 eg 1x2g r 1 x 2

d
dx

 1ag1x2 2 5 1 ln a 2ag 1x2g r 1 x 2

of all the functions we have studied, is the simplest to differentiate, because its derivative
is just itself.*

The chain rule can be used to find the derivative of the more general exponential func-
tion Let and so that Then

and by the chain rule,

As before, this formula becomes simpler when we use natural logarithms because 
We summarize these results next.

ln e 5 1.

 5 1 ln a 2ag1x2 . g r 1x 2 .

 
dy

dx
5 f r 3g 1x 2 4 . g r 1x 2

f r 3g 1x 2 4 5 f r 1 u 2 5 1 ln a 2au 5 1 ln a 2ag1x2,

f 3g 1x 2 4 5 ag1x2.u 5 g 1x 2 ,y 5 f 1 u 2 5 auy 5 ag1x2.

ex

You need not memorize the previous two formulas. They are simply the result of applying
the chain rule to the formula for the derivative of ax.

Notice the difference between the derivative of a variable to a constant power,
such as and a constant to a variable power, like 
Remember, 

Derivatives of Exponential Functions

Find the derivative of each function.

(a)

SOLUTION Let so Then

(b)

SOLUTION

(c)

SOLUTION

(d)

SOLUTION

TRY YOUR TURN 1
 5

28 1 ln 10 2101/t

t2

 
ds

dt
5 8 1 ln 10 2101/ta

2 1

t2 b

s 5 8 . 101/t

dy

dx
5 10 1 e3x2 2 1 6x 2 5 60xe3x2

y 5 10e3x2

ds

dt
5 1 ln 3 23t

s 5 3t

dy

dx
5 5e5x

 .

g r 1x 2 5 5.g 1x 2 5 5x,

y 5 e5x

Dx  3x u x3x2 1.
Dx  3x 5 1 ln 3 23x.Dx  x3 5 3x2,

CAUTION

*There is a joke about a deranged mathematician who frightened other inmates at an insane asylum by screaming at
them, “I’m going to differentiate you!” But one inmate remained calm and simply responded, “I don’t care; I’m ”ex.

YOUR TURN 1 Find dy/dx for
(a) y � 43x,
(b) .y 5 e7x3 1 5

EXAMPLE  1



Derivative of an Exponential Function

Let Find 

SOLUTION Rewrite y as , and then use the product rule and the chain
rule.

Least common denominator

Simplify.
TRY YOUR TURN 2

Derivative of an Exponential Function

Let Find 

SOLUTION Use the quotient rule.

TRY YOUR TURN 3

In the previous example, we could also have taken the derivative by writing �
from which we have 

This simplifies to the same expression as in Example 3.

Radioactivity

The amount in grams in a sample of uranium 239 after t years is given by

Find the rate of change of the amount present after 3 years.

SOLUTION The rate of change is given by the derivative 

After 3 years ( ), the rate of change is

grams per year. TRY YOUR TURN 4

dA

dt
5 236.2e20.362132 5 236.2e21.086 < 212.2

t 5 3

dA

dt
5 100 1 e20.362t 2 120.362 2 5 236.2e20.362t

dA /dt.

A 1 t 2 5 100e20.362t.

100e20.3x 120.3 2 .100e20.3x 2222100,000 1 1 1f r 1x 2  5

100,000 1 1 1 100e20.3x 221,
f 1x 2

5
3,000,000e20.3x

1 1 1 100e20.3x 2 2

 f9 1x 2 5
1 1 1 100e20.3x 2 10 2 2 100,000 1230e20.3x 2

1 1 1 100e20.3x 2 2

f r 1x 2 .f 1x 2 5
100,000

1 1 100e20.3x.

 5
ex211 120x2 1 8x 1 5 2

2"5x 1 2

5 ex211 1 5x 1 2 221/2 c
5 1 20x2 1 8x

2
d

5 ex211 1 5x 1 2 221/2 c
5 1 4x 1 5x 1 2 2

2
d

5 ex211 1 5x 1 2 221/2 c
5

2
1 1 5x 1 2 2 . 2x d

dy

dx
5 ex211 . 1

2
1 5x 1 2 221/2 . 5 1 1 5x 1 2 2 1/2ex211 . 2x

y 5 ex211 1 5x 1 2 2 1/2

dy

dx
 .y 5 ex211"5x 1 2.
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EXAMPLE  2

EXAMPLE  3

YOUR TURN 2 Let
. Find dy/dx.y 5 1 x2 1 1 2 2e2x

YOUR TURN 3 Let

. Find f r 1 x 2 .f 1 x 2 5
100

5 1 2e2 0.01x

EXAMPLE  4

YOUR TURN 4 The quantity
(in grams) of a radioactive sub-
stance present after t years is

. Find the rate of
change of the quantity present after
2 years. 

Q 1 t 2 5 100e2 0.421t

Factor out the greatest common factor,
.ex211 1 5x 1 2 221/2



Frequently a population, or the sales of a certain product, will start growing slowly,
then grow more rapidly, and then gradually level off. Such growth can often be approxi-
mated by a mathematical model known as the logistic function:

where t represents time in appropriate units, is the initial number present, m is the max-
imum possible size of the population, k is a positive constant, and is the population
at time t. It is sometimes simpler to divide the numerator and denominator of the logis-
tic function by , writing the result as 

.

Notice that

because 

Product Sales

A company sells 990 units of a new product in the first year and 3213 units in the fourth
year. They expect that sales can be approximated by a logistic function, leveling off at
around 100,000 in the long run.

(a) Find a formula S(t) for the sales as a function of time.

SOLUTION We already know that and so

To find k, use the fact that S(4)

Cross multiply.

Subtract 3213 from both sides.

Divide both sides by 321,332.

Take the natural logarithm of both sides.

Rounding 100.01 to 100 and simplifying 

. 5
100,000

1 1 100e20.3t

 S 1 t 2 5
100,000

1 1 100e2k100,000t

k100,000 5 1 3 3 1026 2100,000 5 0.3,

 k < 3 3 1026

 k 5 2ln 0.3012/400,000

 2k400,000 5 ln 0.3012

 e2k400,000 5 0.3012

 321,332e2k400,000 5 96,787

 3213 1 321,332e2k400,000 5 100,000

 3213 1 1 1 100.01e2k400,000 2 5 100,000

 3213 5
100,000

1 1 100.01e2k400,000

 3213 5
100,000

1 1 100.01e2k100,000 . 4

5 3213.

 5
100,000

1 1 100.01e2k100,000t .

S 1 t 2  5
100,000

1 1 a
100,000

990
2 1be2k100,000t

m 5 100,000,S0 5 990

lim
tl` 

e2kmt 5 0.

lim
tl`

 G 1 t 2 5
m

1 1 0
5 m

G 1 t 2 5
m

1 1 a
m

G0

2 1be2kmt

G0

G 1 t 2
G0

G 1 t 2 5
mG0

G0 1 1m 2 G0 2e2kmt ,
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25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. Prove that if where and k are constants, then
(This says that for exponential growth and decay,

the rate of change of the population is proportional to the size
of the population, and the constant of proportionality is the
growth or decay constant.)

36. Use a graphing calculator to sketch the graph of y �
using and 

Compare it with the graph of and discuss what you
observe.

37. Use graphical differentiation to verify that .
d

dx
1 ex 2 5 ex

y 5 ex
h 5 0.0001.f 1x 2 5 ex3f 1x 1 h 2 2 f 1x 2 4 /h

dy /dt 5 ky.
y0y 5 y0 ekt,

f 1x 2 5 ex2/1x3122f 1x 2 5 ex"3x12

y 5
t2e2t

t 1 e3ty 5
tet 1 2

e2t 1 1

s 5 5 . 2"t22s 5 2 . 3"t

y 5 2103x224y 5 3 . 4x212

y 5 425x12y 5 73x11

(b) Find the rate of change of sales after 4 years.

SOLUTION The derivative of this sales function, which gives the rate of change of sales,
was found in Example 3. Using that derivative,

Using a calculator, and

The rate of change of sales after 4 years is about 933 units per year. The positive
number indicates that sales are increasing at this time.

The graph of the function in Example 5 is shown in Figure 11. 

 <
903,600

968.5
< 933.

 <
903,600

1 1 1 30.12 2 2

 S' 14 2 <
3,000,000 10.3012 2
31 1 100 10.3012 2 42

e21.2 < 0.3012,

S' 14 2 5
3,000,000e20.3142

31 1 100e20.3142 42
5

3,000,000e21.2

1 1 1 100e21.2 2 2
 .
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APPLY IT 

t S(t)

0 990

5 4300

10 17,000

15 47,000

20 80,000

30 99,000

100,000

50,000

t

S(t)

0 10 20 30

S(t) �
100,000

1 � 100e�0.3t

FIGURE 11

4.4 EXERCISES
Find derivatives of the functions defined as follows.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. f 1 t 2 5 1 et2

1 5t 2 3f 1 z 2 5 12z 1 e2z2 2 2

p 5
500

12 1 5e20.5tp 5
10,000

9 1 4e20.2t

y 5
ex 2 e2x

x
y 5

ex 1 e2x

x

y 5
ex

2x 1 1
y 5

x2

ex

y 5 1 3x3 2 4x 2e25xy 5 1x 1 3 2 2e4x

y 5 x2e22xy 5 xex

y 5 23e3x215y 5 4e2x224

y 5 25e4x3

y 5 3e2x2

y 5 e2x2

y 5 ex2

y 5 24e20.3xy 5 216e2x11

y 5 1.2e5xy 5 28e3x

y 5 e22xy 5 e4x



where S(t) is the value after t years. Calculate the rate at which
the value of the investment is changing after 8 years. (Choose
one of the following.) Source: Society of Actuaries.

a. 618 b. 1934 c. 2011 d. 7735 e. 10,468

43. Internet Users The growth in the number (in millions) of
Internet users in the United States between 1990 and 2015 can be
approximated by a logistic function with k � 0.0018, where t is
the number of years since 1990. In 1990 (when t � 0), the num-
ber of users was about 2 million, and the number is expected to level
out around 250 million. Source:  World Bank. 

a. Find the growth function for the number of Internet
users in the United States. 

Estimate the number of Internet users in the United States and
the rate of growth for the following years.

b. 1995

c. 2000

d. 2010

e. What happens to the rate of growth over time?

Life Sciences
44. Population Growth In Section 2.4, Exercise 47, the growth in

world population (in millions) was approximated by the expo-
nential function 

,

where t is the number of years since 1960. Find the instanta-
neous rate of change in the world population at the following
times. Source: United Nations.

a. 2010 b. 2015

45. Minority Population In Section 2.4, Exercise 49, we saw that
the projected Hispanic population in the United States (in
millions) can be approximated by the function

where t = 0 corresponds to 2000 and 0 ≤ t ≤ 50. Source:  U.S.
Census Bureau.

a. Estimate the Hispanic population in the United States for the
year 2015.  

b. What is the instantaneous rate of change of the Hispanic
population in the United States when t = 15? Interpret your
answer.

46. Insect Growth The growth of a population of rare South
American beetles is given by the logistic function with k �

and t in months. Assume that there are 200 beetles
initially and that the maximum population size is 10,000.

a. Find the growth function for these beetles.

Find the population and rate of growth of the population after
the following times.

b. 6 months c. 3 years d. 7 years

e. What happens to the rate of growth over time?

G 1 t 2

0.00001

h 1 t 2 5 37.79 1 1.021 2 t

A 1 t 2 5 3100e0.0166t

G 1 t 2
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APPLICATIONS
Business and Economics
38. Sales The sales of a new personal computer (in thousands) are

given by

where t represents time in years. Find the rate of change of
sales at each time.

a. After 1 year b. After 5 years

c. What is happening to the rate of change of sales as time goes
on?

d. Does the rate of change of sales ever equal zero?

39. Cost The cost in dollars to produce x DVDs can be approxi-
mated by

Find the marginal cost when the following quantities are made.

a. 0 b. 20

c. What happens to the marginal cost as the number produced
becomes larger and larger?

40. Product Awareness After the introduction of a new product
for tanning without sun exposure, the percent of the public that
is aware of the product is approximated by

where t is the time in months. Find the rate of change of the
percent of the public that is aware of the product after the fol-
lowing numbers of months.

a. 2 b. 4

c. Notice that the answer to part a is positive and the answer to
part b is negative. What does this tell you about how public
awareness of the product has changed?

41. Product Durability Using data in a car magazine, we con-
structed the mathematical model

for the percent of cars of a certain type still on the road after t
years. Find the percent of cars on the road after the following
numbers of years.

a. 0 b. 2 c. 4 d. 6

Find the rate of change of the percent of cars still on the road
after the following numbers of years.

e. 0 f. 2

g. Interpret your answers to parts e and f.

42. Investment The value of a particular investment changes over
time according to the function

,S 1 t 2 5 5000e0.11e0.25t2

y 5 100e20.03045t

A 1 t 2 5 10t222t,

C 1x 2 5 "900 2 800 . 1.12x.

S 1 t 2 5 100 2 90e20.3t,



51. Medical Literature It has been observed that there has been an
increase in the proportion of medical research papers that use
the word “novel” in the title or abstract, and that this proportion
can be accurately modeled by the function

where x is the number of years since 1970. Source: Nature.

a. Find 

b. If this phenomenon continues, estimate the year in which
every medical article will contain the word “novel” in its
title or abstract.

c. Estimate the rate of increase in the proportion of medical
papers using this word in the year 2010.

d. Explain some factors that may be contributing to researchers
using this word.

52. Arctic Foxes The age/weight relationship of female Arctic
foxes caught in Svalbard, Norway, can be estimated by the
function

where t is the age of the fox in days and is the weight of
the fox in grams. Source: Journal of Mammalogy.

a. Estimate the weight of a female fox that is 200 days old.

b. Use to estimate the largest size that a female fox can
attain. (Hint: Find )

c. Estimate the age of a female fox when it has reached 80% of
its maximum weight.

d. Estimate the rate of change in weight of an Arctic fox that is
200 days old. (Hint: Recall that )

e. Use a graphing calculator to graph and then describe
the growth pattern.

f. Use the table function on a graphing calculator or a spread-
sheet to develop a chart that shows the estimated weight and
growth rate of female foxes for days 50, 100, 150, 200, 250,
and 300.

53. Beef Cattle Researchers have compared two models that are
used to predict the weight of beef cattle of various ages,

and

where and represent the weight (in kilograms) of
a t-day-old beef cow. Source: Journal of Animal Science.

a. What is the maximum weight predicted by each function for
the average beef cow? Is this difference significant?

b. According to each function, find the age that the average
beef cow reaches 90% of its maximum weight.

c. Find and Compare your results.

d. Graph the two functions on by and com-
ment on the differences in growth patterns for each of these
functions.

e. Graph the derivative of these two functions on by
and comment on any differences you notice between

these functions.
30, 1 4

30, 2500 4

30, 525 430, 2500 4
W2 r 1 750 2 .W1 r 1 750 2

W2 
1 t 2W1 

1 t 2
W2 
1 t 2 5 498.4 1 1 2 0.889e20.00219t 2 1.25,

W1 
1 t 2 5 509.7 1 1 2 0.941e20.00181t 2

M 1 t 2
f r 1 t 2ef 1t2.Dt 

3ef1t2 4 5

lim
tl`

 M 1 t 2 .
M 1 t 2

M 1 t 2

M 1 t 2 5 3102e2e20.0221t2562
,

p 140 2 .

p 1x 2 5 0.001131e0.1268x,

47. Clam Population The population of a bed of clams in the
Great South Bay off Long Island is described by the logistic
function with and t in years. Assume that there are
400 clams initially and that the maximum population size is
5200.

a. Find the growth function for the clams.

Find the population and rate of growth of the population after
the following times.

b. 1 year c. 4 years d. 10 years

e. What happens to the rate of growth over time?

48. Pollution Concentration The concentration of pollutants (in
grams per liter) in the east fork of the Big Weasel River is
approximated by

where x is the number of miles downstream from a paper mill
that the measurement is taken. Find the following values.

a. The concentration of pollutants 0.5 mile downstream

b. The concentration of pollutants 1 mile downstream

c. The concentration of pollutants 2 miles downstream

Find the rate of change of concentration with respect to dis-
tance for the following distances.

d. 0.5 mile e. 1 mile f. 2 miles 

49. Breast Cancer It has been observed that the following formula
accurately models the relationship between the size of a breast
tumor and the amount of time that it has been growing.

where t is in months and is measured in cubic
centimeters. Source: Cancer.

a. Find the tumor volume at 240 months.

b. Assuming that the shape of a tumor is spherical, find the
radius of the tumor from part a. (Hint: The volume of a
sphere is given by the formula )

c. If a tumor of size 0.5 is detected, according to the for-
mula, how long has it been growing? What does this imply?

d. Find and interpret this value. Explain whether

this makes sense.

e. Calculate the rate of change of tumor volume at 240 months
and interpret.

50. Mortality The percentage of people of any particular age
group that will die in a given year may be approximated by the
formula

where t is the age of the person in years. Source: U.S. Vital
Statistics.

a. Find and 

b. Find and 

c. Interpret your answers for parts a and b. Are there any limi-
tations of this formula?

P r 1 75 2 .P r 1 50 2 ,P r 125 2 ,

P 1 75 2 .P 1 50 2 ,P 125 2 ,

P 1 t 2 5 0.00239e0.0957t,

lim
tl`

 V 1 t 2

cm3

V 5 14 /3 2pr3.

V 1 t 2
V 1 t 2 5 1100 31023e20.02415t 1 1 424,

P 1x 2 5 0.04e24x,

G 1 t 2

k 5 0.0001
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54. Cholesterol Researchers have found that the risk of coronary
heart disease rises as blood cholesterol increases. This risk
may be approximated by the function

where R is the risk in terms of coronary heart disease incidence
per 1000 per year, and c is the cholesterol in mg/dL. Suppose 
a person’s cholesterol is 180 mg/dL and going up at a rate of 
15 mg/dL per year. At what rate is the person’s risk of coronary
heart disease going up? Source: Circulation.

Social  Sciences

55. Survival of Manuscripts Paleontologist John Cisne has
demonstrated that the survival of ancient manuscripts can be
modeled by the logistic equation. For example, the number of
copies of the Venerable Bede’s De Temporum Ratione was
found to approach a limiting value over the five centuries after
its publication in the year 725. Let G(t) represent the propor-
tion of manuscripts known to exist after t centuries out of the
limiting value, so that . Cisne found that for Venerable
Bede’s De Temporum Ratione, and .
Source: Science.

a. Find the growth function G(t) for the proportion of copies of
De Temporum Ratione found.

Find the proportion of manuscripts and their rate of growth
after the following number of centuries.

b. 1 c. 2 d. 3

e. What happens to the rate of growth over time?

56. Habit Strength According to work by the psychologist
C. L. Hull, the strength of a habit is a function of the number of
times the habit is repeated. If N is the number of repetitions and

is the strength of the habit, then

where k is a constant. Find if and the number
of times the habit is repeated is as follows.

a. 10 b. 100 c. 1000

d. Show that is always positive. What does this mean? 

57. Online Learning The growth of the number of students taking
at least one online course can be approximated by a logistic
function with k = 0.0440, where t is the number of years since
2002.  In 2002 (when t = 0), the number of students enrolled in
at least one online course was 1.603 million.  Assume that the
number will level out at around 6.8 million students. Source:
The Sloan Consortium.

a. Find the growth function G(t) for students enrolled in at
least one online course.

Find the number of students enrolled in at least one online
course and the rate of growth in the number in the following
years.

b. 2004 c. 2006 d. 2010

e. What happens to the rate of growth over time?

H r 1N 2

k 5 0.1H r 1N 2

H 1N 2 5 1000 1 1 2 e2kN 2 ,

H 1N 2

G0 5 0.00369k 5 3.5
m 5 1

100 # c # 300,R 1 c 2 5 3.19 1 1.006 2 c,
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Physical  Sciences

58. Radioactive Decay The amount (in grams) of a sample of lead
214 present after t years is given by

Find the rate of change of the quantity present after each of the
following years.

a. 4 b. 6 c. 10

d. What is happening to the rate of change of the amount pre-
sent as the number of years increases?

e. Will the substance ever be gone completely?

59. Electricity In a series resistance-capacitance DC circuit, the
instantaneous charge Q on the capacitor as a function of time
(where is the moment the circuit is energized by closing
a switch) is given by the equation

where C, V, and R are constants. Further, the instantaneous
charging current is the rate of change of charge on the
capacitor, or Source: Kevin Friedrich.

a. Find the expression for as a function of time.

b. If farads, ohms, and volts, what
is the charging current after 200 seconds? (Hint: When
placed into the function in part a the units can be combined
into amps.)

60. Heat Index The heat index is a measure of how hot it really
feels under different combinations of temperature and humid-
ity. The heat index, in degrees Fahrenheit, can be approxi-
mated by

where the temperature T and dewpoint D are both expressed in
degrees Fahrenheit. Source:  American Meteorological Society.

a. Assume the dewpoint is D = 85 F.  Find the function H(T ).

b. Using the function you found in part a, find the heat index
when the temperature T is 80 F.

c. Find the rate of change of the heat index when T = 80 F.

General Interest

61. Track and Field In 1958, L. Lucy developed a method for
predicting the world record for any given year that a human
could run a distance of 1 mile. His formula is given as follows:

where is the world record (in seconds) for the mile run
in year Thus, corresponds to the year 1955.
Source: Statistics in Sports.

a. Find the estimate for the world record in the year 2010.

b. Calculate the instantaneous rate of change for the world
record at the end of year 2010 and interpret.

c. Find and interpret. How does this compare with

the current world record?

lim
nl`

 t 1n 2

n 5 51950 1 n.
t 1n 2

t 1n 2 5 218 1 31 10.933 2n,

°

°

°

H 1T 2 5 T 2 0.9971e0.02086T 31 2 e0.04451D257.22 4,

V 5 10R 5 107C 5 1025

IC 

IC 5 dQ /dt.
IC 

Q 1 t 2 5 CV 1 1 2 e2t/RC 2 ,

t 5 0

A 1 t 2 5 500e20.31t.



62. Ballooning Suppose a person is going up in a hot air balloon.
The surrounding air temperature in degrees Fahrenheit
decreases with height according to the formula

where h is the height in feet. How fast is the temperature
decreasing when the person is at a height of 1000 ft and rising
at a height of 800 ft/hr?

63. The Gateway Arch The Gateway Arch in St. Louis, Missouri,
is approximately 630 ft wide and 630 ft high. At first glance,
the arch resembles a parabola, but its shape is actually known
as a modified catenary. The height s (in feet) of the arch, mea-
sured from the ground to the middle of the arch, is approxi-
mated by the function

where x � 0 represents the center of the arch with �299.2 � x
� 299.2. Source: Notices of the AMS.

a. What is the height of the arch when x � 0?

b. What is the slope of the line tangent to the curve when x �
0? Does this make sense?

s 1x 2 5 693.9 2 34.38 1 e0.01003x 1 e20.01003x 2 ,

T 1h 2 5 80e20.000065h,
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c. Find the rate of change of the height of the arc when x �
150 ft.

Derivatives of Logarithmic Functions
How does the average resale value of an automobile change with the
age of the automobile?

4.5
APPLY IT 

We will use the derivative to answer this question in Example 4.

Recall that in the section on Logarithmic Functions, we showed that the logarithmic
function and the exponential function are inverses of each other.  In the last section we
showed that the derivative of is (ln a)ax. We can use this information and the chain rule
to find the derivative of logax. We begin by solving the general logarithmic function for x.

ƒ(x) � logax

af(x) � x Definition of the logarithm

Now consider the left and right sides of the last equation as functions of x that are equal, so
their derivatives with respect to x will also be equal. Notice in the first step that we need to
use the chain rule when differentiating .

Derivative of the exponential function

Substitute 

Finally, divide both sides of this equation by to get

f r 1x 2 5
1

1 ln a 2x
 .

1 ln a 2x

a 
f  1x2 5 x. 1 ln a 2x f r 1x 2 5 1

 1 ln a 2af1x2f r 1x 2 5 1

af1x2

ax

YOUR TURN ANSWERS 

1. (a) (b)

2.

3. 4. �18.1 grams per yearf r 1x 2 5
2e20.01x

1 5 1 2e20.01x 2 2

dy

dx
5 2e2x 1x2 1 1 2 1x 1 1 2 2

dy

dx
5 21x2e7x315

dy

dx
5 3 1 ln4 243x

s(x)

–100–200–300 200 3001000 x

y

100

200

300

400

500
600

700

x



As with the exponential function, this formula becomes particularly simple when we let
because of the fact that ln e 5 1.a 5 e,
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Derivative of loga x

(The derivative of a logarithmic function is the reciprocal of the product of the variable
and the natural logarithm of the base.)

d
 dx

 [loga x\ 5
1

1 ln a 2x

Derivative of ln x
d
dx

  
[ln x\ 5

1
x

This fact can be further justified geometrically. Notice what happens to the slope of the
line if the x-axis and y-axis are switched. That is, if we replace x with y and y
with x, then the resulting line or is a reflection of the line

across the line , as seen in Figure 12. Furthermore, the slope of the new
line is the reciprocal of the original line. In fact, the reciprocal property holds for all lines.

y 5 xy 5 2x 1 4
y 5 x /2 2 2x 5 2y 1 4

y 5 2x 1 4

10

5

–5

–10

y

5 10
x

–5–10

y = (x/2) – 2

y = x

y = 2x + 4

FIGURE 12

In the section on Logarithmic Functions, we showed that switching the x and y vari-
ables changes the exponential graph into a logarithmic graph, a defining property of func-
tions that are inverses of each other. We also showed in the previous section that the slope
of the tangent line of at any point is —that is, the y-coordinate itself. So, if we switch
the x and y variables, the new slope of the tangent line will be except that it is no
longer y, it is x. Thus, the slope of the tangent line of must be and hence

Derivatives of Logarithmic Functions

Find the derivative of each function.

(a)

SOLUTION Use the properties of logarithms and the rules for derivatives.

 5
d

dx
1 ln 6 2 1

d

dx
1 ln x 2 5 0 1

1
x

5
1
x

 5
d

dx
1 ln 6 1 ln x 2

 f r 1x 2 5
d

dx
1 ln 6x 2

f 1x 2 5 ln 6x

Dx  ln x 5 1 /x.
1 /xy 5 ln x

1 /y,
exex

EXAMPLE  1



(b)

SOLUTION Recall that when the base is not specified, we assume that the logarithm is
a common logarithm, which has a base of 10.

TRY YOUR TURN 1

Applying the chain rule to the formulas for the derivative of logarithmic functions gives us

and

Derivatives of Logarithmic Functions

Find the derivative of each function.

(a)

SOLUTION Here and Thus,

(b)

SOLUTION

TRY YOUR TURN 2

If where the chain rule with and gives

The derivative of is the same as the derivative of For this reason,
these two results can be combined into one rule using the absolute value of x. A similar sit-
uation holds true for and as well as for and

These results are summarized as follows.y 5 loga 
32g 1x 2 4.

y 5 loga 
3g 1x 2 4y 5 ln 32g 1x 2 4,y 5 ln 3g 1x 2 4

y 5 ln x.y 5 ln 12x 2

dy

dx
5

g r 1x 2
g 1x 2

5
21
2x

5
1
x

 .

g r 1x 2 5 21g 1x 2 5 2xx , 0,y 5 ln 12x 2 ,

 5
6x 2 4

1 ln 2 2 1 3x2 2 4x 2

 
dy

dx
5

1

ln 2
. 6x 2 4

3x2 2 4x

y 5 log2 
1 3x2 2 4x 2

f r 1x 2 5
g r 1x 2
g 1x 2

5
2x

x2 1 1
 .

g r 1x 2 5 2x.g 1x 2 5 x2 1 1

f 1x 2 5 ln 1x2 1 1 2

d

dx
 ln g 1x 2 5

g r 1x 2
g 1x 2

 .

d

dx
 loga  g 1x 2 5

1

ln a
. g r 1x 2

g 1x 2

dy

dx
5

1
1 ln 10 2x

y 5 log x
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YOUR TURN 1 Find the
derivative of f 1x 2 5 log3x.

YOUR TURN 2 Find the
derivative of 
(a) 

(b) f 1x 2 5 log4 1 5x 1 3x3 2 .
y 5 ln 1 2x3 2 3 2 ,

Derivative of and

d
dx

  
[ln 0 g 1 x 2 0 \ 5

g r 1 x 2

g 1 x 2
d
dx

  
[ln 0 x 0 \ 5 1

x

d
dx

 [loga 0 x 0 \ 5
1

1 ln a 2x
      

d
dx

  
[loga 0 g 1 x 2 0 \ 5

1
ln a

?
g r 1 x 2

g 1 x 2

ln 0 g 1 x 2 0ln 0 x 0 ,loga 0 g 1 x 2 0 ,loga 0 x 0 ,

NOTE You need not memorize the previous four formulas. They are simply the result of
the chain rule applied to the formula for the derivative of as well as the fact
that when , so that then An absolute value inside of
a logarithm has no effect on the derivative, other than making the result valid for more 
values of x.

ln a 5 ln e 5 1.a 5 e,loga  x 5 ln x
y 5 loga  x,

EXAMPLE  2



Derivatives of Logarithmic Functions

Find the derivative of each function.

(a)

SOLUTION Let so that From the previous formula,

Notice that the derivative of is the same as the derivative of Also
notice that we would have found the exact same answer for the derivative of 
(without the absolute value), but the result would not apply to negative values of x.
Also, in Example 1, the derivative of was the same as that for This suggests
that for any constant a,

Exercise 46 asks for a proof of this result.

(b)

SOLUTION This function is the product of the two functions 3x and so use the
product rule.

By the power rule for logarithms,

Alternatively, write the answer as except that this last form
requires while negative values of x are acceptable in .

Another method would be to use a rule of logarithms to simplify the function to
and then to take the derivative.

(c)

SOLUTION Use the quotient rule and the chain rule.

This expression can be simplified slightly by multiplying the numerator and the denom-

inator by 

 5
3t3/2 2 2 1 t3/2 1 1 2 1 ln 8 2  log8 1 t3/2 1 1 2

2t2 1 t3/2 1 1 2  ln 8
 

 s' 1 t 2 5

t . 1

1 t3/2 1 1 2  ln 8
. 3

2
 t1/2 2 log8 1 t3/2 1 1 2

t2
. 2 1 t3/2 1 1 2   ln 8

2 1 t3/2 1 1 2   ln 8

2 1 t3/2 1 1 2  ln 8.

s' 1 t 2 5

t . 1

1 t3/2 1 1 2  ln 8
. 3

2
 t1/2 2 log8 1 t3/2 1 1 2 . 1

t2

s 1 t 2 5
log8 1 t3/2 1 1 2

t

f 1x 2 5 3x . 2 ln x 5 6x ln x

6 1  ln x6x . 0,
f' 1x 2 5 6 1 6 ln x,

 5 6 1 ln x6
 .

 f r 1x 2 5 6 1 ln 1x2 2 3

 5 6 1 3 ln x2

 5 3xa
2x

x2 b 1 1 ln x2 2 1 3 2

 f r 1x 2 5 1 3x 2 c
d

dx
 ln x2 d 1 1 ln x2 2 c

d

dx
 3x d

ln x2,

f 1x 2 5 3x ln x2

 5
1
x

 .

 
d

dx
 ln 0 ax 0 5

d

dx
 ln 0 x 0

ln x.ln 6x

y 5 ln 5x
ln 0 x 0 .ln 0 5x 0

dy

dx
5

g r 1x 2
g 1x 2

5
5

5x
5

1
x

 .

g r 1x 2 5 5.g 1x 2 5 5x,

y 5 ln 0 5x 0
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EXAMPLE  3

YOUR TURN 3 Find the 
derivative of each function.
(a) y � ln
(b) 

(c) s 1 t 2 5
ln 1 t2 2 1 2

t 1 1

f 1 x 2 5 x2 ln3x
0 2x 1 6 0

TRY YOUR TURN 3



Automobile Resale Value
Based on projections from the Kelly Blue Book, the resale value of a 2010 Toyota Corolla
4-door sedan can be approximated by the following function

where t is the number of years since 2010. Find and interpret and Source:
Kelly Blue Book.

SOLUTION Recognizing this function as a common (base 10) logarithm, we have

The average resale value of a 2010 Toyota Corolla in 2014 would be approximately
$5500.08.

The derivative of is

so In 2014, the average resale value of a 2010 Toyota Corolla is
decreasing by $1208.64 per year.

f r 14 2 < 21208.64.

f' 1 t 2 5
213,915

1 ln 10 2 1 t 1 1 2
 ,

f 1 t 2

f 14 2 5 15,450 2 13,915 log 14 1 1 2 < 5500.08.

f r 14 2 .f 14 2

f 1x 2 5 15,450 2 13,915 log 1 t 1 1 2 ,
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EXAMPLE  4

APPLY IT 

4.5 EXERCISES
Find the derivative of each function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. s 1 t 2 5 "e2t 1 ln 2tg 1 z 2 5 1 e2z 1 ln z 2 3

p 1 y 2 5
ln y

eyy 5
ex

ln x

y 5 e2x21 ln 12x 2 1 2y 5 ex2

 ln x

y 5 1 ln 4 2 1 ln 0 3x 0 2y 5 ln 0 ln x 0

y 5 "ln 0 x 2 3 0y 5 1 ln 0 x 1 1 0 24

y 5
x3 2 1

2 ln x
y 5

3x2

ln x

y 5
22 ln x

3x 2 1
y 5

ln x

4x 1 7

v 5
ln u

u3y 5
2 ln 1x 1 3 2

x2

y 5 x ln 0 2 2 x2 0s 5 t2 ln 0 t 0

y 5 1 3x 1 7 2  ln 12x 2 1 2y 5 25x ln 13x 1 2 2

y 5 ln 1 5x3 2 2x 2 3/2y 5 ln 1x4 1 5x2 2 3/2

y 5 ln"2x 1 1y 5 ln"x 1 5

y 5 ln 028x3 1 2x 0y 5 ln 0 4x2 2 9x 0

y 5 ln 1 1 1 x3 2y 5 ln 1 8 2 3x 2

y 5 ln 124x 2y 5 ln 1 8x 2 31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. Why do we use the absolute value of x or of in the deriv-
ative formulas for the natural logarithm?

46. Prove for any constant a.

47. A friend concludes that because and have
the same derivative, namely these two functions
must be the same. Explain why this is incorrect.

48. Use a graphing calculator to sketch the graph of y �
using and 

Compare it with the graph of and discuss what you
observe.

49. Using the fact that

ln 3u 1x 2v 1x 2 4 5 ln u 1x 2 1 ln v 1x 2 ,

y 5 1 /x
h 5 0.0001.f 1x 2 5 ln 0 x 03f 1x 1 h 2 2 f 1x 2 4 /h

dy /dx 5 1/x,
y 5 ln xy 5 ln 6x

d

dx
 ln 0 ax 0 5

d

dx
 ln 0 x 0

g 1x 2

f 1 t 2 5
2 t 

3/2

ln 12 t 
3/2 1 1 2

f 1 t 2 5
ln 1 t2 1 1 2 1 t

ln 1 t2 1 1 2 1 1

f 1x 2 5 ln 1xe"x 1 2 2f 1x 2 5 e"x ln 1"x 1 5 2

z 5 10y log yw 5 log8 
12p 2 1 2

y 5 log2 
12x2 2 x 2 5/2y 5 log3 

1x2 1 2x 2 3/2

y 5 log7 "4x 2 3y 5 log5 "5x 1 2

y 5 log 0 3x 0y 5 log 0 1 2 x 0

y 5 log 14x 2 3 2y 5 log 1 6x 2



use the chain rule and the formula for the derivative of ln x to
derive the product rule. In other words, find with-
out assuming the product rule.

50. Using the fact that

use the chain rule and the formula for the derivative of ln x to
derive the quotient rule. In other words, find 
without assuming the quotient rule.

51. Use graphical differentiation to verify that .

52. Use the fact that as well as the change-of-
base theorem for logarithms, to prove that

53. Let

.

a. Using the fact that

use the chain rule, the product rule, and the formula for the
derivative of to show that

b. Use the result from part a and the fact that

to show that

The idea of taking the logarithm of a function before differenti-
ating is known as logarithmic differentiation.

Use the ideas from Exercise 53 to find the derivative of each of
the following functions. 

54. 55. h 1x 2 5 1x2 1 1 2 5xh 1x 2 5 xx

d

dx
 h 1x 2 5 u 1x 2 v 1x2 c

v 1x 2u' 1x 2
u 1x 2

1 1 ln u 1x 2 2  v' 1x 2 d .

d

dx
 ln h 1x 2 5

h' 1x 2
h 1x 2

d

dx
 ln h 1x 2 5

v 1x 2u' 1x 2
u 1x 2

1 1 ln u 1x 2 2  v' 1x 2 .

ln x

ln 3u 1x 2 v1x2 4 5 v 1x 2  ln u 1x 2 ,

h 1x 2 5 u 1x 2 v1x2

d loga x

dx
5

1

x ln a
 .

d ln x /dx 5 1/x,

d

dx
 1 ln x 2 5

1
x

3u 1x 2 /v 1x 2 4 r

ln 
u 1x 2
v 1x 2

5 ln u 1x 2 2 ln v 1x 2 ,

3u 1x 2v 1x 2 4 r
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APPLICATIONS
Business and Economics

56. Profit If the total revenue received from the sale of x items is
given by

while the total cost to produce x items is find the
following.

a. The marginal revenue

b. The profit function P(x) 

c. The marginal profit when x � 60

d. Interpret the results of part c.

C 1x 2 5 x /2,

R 1x 2 5 30 ln 12x 1 1 2 ,

57. Revenue Suppose the demand function for q units of a certain
item is

where p is in dollars.

a. Find the marginal revenue.

b. Approximate the revenue from one more unit when 8 units
are sold.

c. How might a manager use the information from part b?

58. Profit If the cost function in dollars for q units of the item in
Exercise 57 is find the following.

a. The marginal cost

b. The profit function 

c. The approximate profit from one more unit when 8 units are
sold

d. How might a manager use the information from part c?

59. Marginal Average Cost Suppose the cost in dollars to make x
oboe reeds is given by

Find the marginal average cost when the following numbers of
reeds are sold.

a. 10 b. 20

C 1x 2 5 5 log2  x 1 10.

P 1q 2

C 1q 2 5 100q 1 100,

p 5 D 1q 2 5 100 1
50

ln q
, q . 1,

Life Sciences

60. Body Surface Area There is a mathematical relationship between
an infant’s weight and total body surface area (BSA), given by

where w is the weight (in grams) and is the BSA in
square centimeters. Source: British Journal of Cancer.

a. Find the BSA for an infant who weighs 4000 g.

b. Find and interpret your answer.

c. Use a graphing calculator to graph on
by

61. Bologna Sausage Scientists have developed a model to predict
the growth of bacteria in bologna sausage at The number
of bacteria is given by

lna
N 1 t 2
N0 

b 5 9.8901e2e2.5419720.2167t
,

32°C.

30, 6000 4.
32000, 10,000 4A 1w 2

A r 14000 2

A 1w 2

A 1w 2 5 4.688w0.816820.0154 log10 w,



where is the number of bacteria present at the beginning 
of the experiment and is the number of bacteria present
at time t (in hours). Source: Applied and Environmental
Microbiology.

a. Use the properties of logarithms to find an expression for
Assume that 

b. Use a graphing calculator to estimate the derivative of 
when and interpret.

c. Let Graph on by 

d. Graph on by and compare the
graphs from parts c and d.

e. Find and then use this limit to find 

62. Pronghorn Fawns The field metabolic rate (FMR), or the
total energy expenditure per day in excess of growth, can be
calculated for pronghorn fawns using Nagy’s formula,

where x is the mass (in grams) of the fawn and is the
energy expenditure (in kJ/day). Source: Animal Behavior.

a. Determine the total energy expenditure per day in excess of
growth for a pronghorn fawn that weighs 25,000 g.

b. Find and interpret the result.

c. Graph the function on by 

63. Fruit Flies A study of the relation between the rate of repro-
duction in Drosophila (fruit flies) bred in bottles and the den-
sity of the mated population found that the number of imagoes
(sexually mature adults) per mated female per day (y) can be
approximated by

where x is the mean density of the mated population (measured
as flies per bottle) over a 16-day period. Source: Elements of
Mathematical Biology.

a. Show that the above equation is equivalent to

b. Using your answer from part a, find the number of imagoes
per mated female per day when the density is

i.20 flies per bottle;

ii. 40 flies per bottle.

c. Using your answer from part a, find the rate of change in the
number of imagoes per mated female per day with respect to
the density when the density is

i.20 flies per bottle;

ii. 40 flies per bottle.

64. Insect Mating Consider an experiment in which equal num-
bers of male and female insects of a certain species are permit-
ted to intermingle. Assume that

M 1 t 2 5 10.1t 1 1 2  ln"t

y 5 34.7 1 1.0186 22xx20.658.

log y 5 1.54 2 0.008x 2 0.658 log x,

33, 5 4.35000, 30,000 4
F r 125,000 2

F 1x 2

F 1x 2 5 0.774 1 0.727 log x,

lim
tl`

 N 1 t 2 .lim
tl`

 S 1 t 2

30, 20,000,000 430, 35 4N 1 t 2

30, 124.30, 35 4S 1t2S 1 t 2  5  ln 1N 1 t 2 /N0 
2 .

t 5 20
N 1 t 2

N0 5 1000.N 1 t 2 .

N 1 t 2
N0 represents the number of matings observed among the insects

in an hour, where t is the temperature in degrees Celsius.
(Note: The formula is an approximation at best and holds only
for specific temperature intervals.)

a. Find the number of matings when the temperature is

b. Find the number of matings when the temperature is

c. Find the rate of change of the number of matings when the
temperature is 

65. Population Growth Suppose that the population of a certain
collection of rare Brazilian ants is given by

where t represents the time in days. Find the rates of change of
the population on the second day and on the eighth day.

Social  Sciences

66. Poverty The passage of the Social Security Amendments of
1965 resulted in the creation of the Medicare and Medicaid
programs.  Since then, the percent of persons 65 years and over
with family income below the poverty level has declined. The
percent can be approximated by the following function:

,

where t is the number of years since 1965.  Find the percent of
persons 65 years and over with family income below the
poverty level and the rate of change in the following years.
Source:  U.S. Census.

a. 1970 b. 1990 c. 2010

d. What happens to the rate of change over time?

Physical  Sciences

67. Richter Scale The Richter scale provides a measure of the
magnitude of an earthquake. In fact, the largest Richter number
M ever recorded for an earthquake was 8.9 from the 1933
earthquake in Japan. The following formula shows a relation-
ship between the amount of energy released and the Richter
number.

where E is measured in kilowatt-hours. Source: Mathematics
Teacher.

a. For the 1933 earthquake in Japan, what value of E gives a
Richter number 

b. If the average household uses 247 kWh per month, how
many months would the energy released by an earthquake of
this magnitude power 10 million households?

c. Find the rate of change of the Richter number M with respect
to energy when 

d. What happens to as E increases?dM /dE

E 5 70,000 kWh.

M 5 8.9?

M 5
2

3
  log 

E

0.007
 ,

P 1 t 2 5 30.60 2 5.79 ln t

P 1 t 2 5 1 t 1 100 2  ln 1 t 1 2 2 ,

15°C.

25°C.

15°C.
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General Interest

68. Street Crossing Consider a child waiting at a street corner for
a gap in traffic that is large enough so that he can safely cross
the street. A mathematical model for traffic shows that if the
expected waiting time for the child is to be at most 1 minute,
then the maximum traffic flow, in cars per hour, is given by

where x is the width of the street in feet. Find the maximum
traffic flow and the rate of change of the maximum traffic flow

f 1x 2 5
29,000 12.322 2 log x 2

x
 ,
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with respect to street width for the following values of the street
width. Source: An Introduction to Mathematical Modeling.

a. 30 ft b. 40 ft

SUMMARY

4 CHAPTER REVIEW

In this chapter we used the definition of the derivative to develop
techniques for finding derivatives of several types of functions.
With the help of the rules that were developed, such as the power
rule, product rule, quotient rule, and chain rule, we can now directly
compute the derivative of a large variety of functions. In particu-
lar, we developed rules for finding derivatives of exponential and

logarithmic functions. We also began to see the wide range of
applications that these functions have in business, life sciences,
social sciences, and the physical sciences. In the next chapter we
will apply these techniques to study the behavior of certain func-
tions, and we will learn that differentiation can be used to find
maximum and minimum values of continuous functions.

Assume all indicated derivatives exist.

Constant Function If where k is any real number, then 

Power Rule If for any real number n, then 

Constant Times a Function Let k be a real number. Then the derivative of is 

Sum or Difference Rule If then 

Product Rule If then

Quotient Rule If then

Chain Rule If y is a function of u, say and if u is a function of x, say then
and

Chain Rule (Alternative Form) Let Then 
dy

dx
5 f r 3g 1x 2 4 . g r 1x 2 .y 5 f 3g 1x 2 4.

dy

dx
5

dy

du
. du

dx
 .

y 5 f 1 u 2 5 f 3g 1x 2 4,
u 5 g 1x 2 ,y 5 f 1 u 2 ,

f r 1x 2 5
v 1x 2 . u r 1x 2 2 u 1x 2 . v r 1x 2

3v 1x 2 4 2
 .

f 1x 2 5
u 1x 2
v 1x 2

,

f r 1x 2 5 u 1x 2 . v r 1x 2 1 v 1x 2 . u r 1x 2 .

f 1x 2 5 u 1x 2 . v 1x 2 ,

dy

dx
5 u r 1x 2 6 v r 1x 2 .y 5 u 1x 2 6 v 1x 2 ,

dy /dx 5 k . f r 1x 2 .y 5 k . f 1x 2

f r 1x 2 5 n . xn21.f 1x 2 5 xn,

f r 1x 2 5 0.f 1x 2 5 k,

YOUR TURN ANSWERS 

1. 2. (a)

(b) 3. (a)

(b) (c) s r 1t2 5 
2t2 1t 212 ln 1t221 2
1 t 2 1 2 1t 1 1 2 2

f r 1x 2 5 x 1 2x ln 3x

dy

dx
5

1

x 1 3
f r1x2 5

5 1 9x2

1 ln 4 2 15x 1 3x3 2

dy

dx
5

6x2

2x3 2 3
f r 1x 2 5

1
1 ln 3 2x

 



Exponential Functions

Logarithmic Functions

d

dx
  
1 loga 

0 g 1x 2 0 2 5
1

ln a
. g r 1x 2

g 1x 2
d

dx
  
1 ln 0 g 1x 2 0 2 5

g r 1x 2
g 1x 2

d

dx
  
1 loga 

0 x 0 2 5
1

1 ln a 2x
d

dx
  
1 ln 0 x 0 2 5

1

x

d

dx
  
1ag1x2 2 5 1 ln a 2ag1x2g r 1x 2

d

dx
  1 eg1x2 2 5 eg1x2g r 1x 2  

d

dx
  
1ax 2 5 1 ln a 2axd

dx
  
1 ex 2 5 ex
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KEY TERMS
4.1
marginal analysis

4.2
marginal average cost

4.3
composite function
composition
chain rule

4.4
logistic function

REVIEW EXERCISES

CONCEPT CHECK
Determine whether each of the following statements is true or
false, and explain why.

1. The derivative of p3 is 3p2.

2. The derivative of a sum is the sum of the derivatives.

3. The derivative of a product is the product of the derivatives.

4. The marginal cost function is the derivative of the cost function.

5. The chain rule is used to take the derivative of a product of
functions.

6. The only function that is its own derivative is .

7. The derivative of is .

8. The derivative of is the same as the derivative of .

9. The derivative of is the same as the derivative of .

10. The derivative of is the same as the derivative of .ln xlog x

ln xln kx

ln xln 0 x 0
x10x2110x

ex

Use the rules for derivatives to find the derivative of each function
defined as follows.

11.

12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. k 1x 2 5 1 5x3 2 1 2 6f 1x 2 5 1 3x2 2 2 24

y 5
2x3 2 5x2

x 1 2
y 5

x2 2 x 1 1

x 2 1

r 1x 2 5
28x

2x 1 1
k 1x 2 5

3x

4x 1 7

f 1x 2 5 19x21 2 8"xf 1x 2 5 3x24 1 6"x

y 5 24x23y 5 9x8/3

y 5 7x3 2 4x2 2 5x 1 "2

y 5 5x3 2 7x2 2 9x 1 "5

PRACTICE AND EXPLORATIONS

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Consider the following table of values of the functions f and g
and their derivatives at various points.

f 1x 2 5
e"x

ln 1"x 1 1 2
f 1x 2 5 e2x ln 1xex 1 1 2

h 1 z 2 5 log 1 1 1 ez 2g 1 z 2 5 log2 
1 z3 1 z 1 1 2

y 5 10 . 2"xy 5 3 . 102x2

q 5 1 e2p11 2 2 24s 5 1 t2 1 et 2 2

y 5
1x2 1 1 2e2x

ln x
y 5

xex

ln 1x2 2 1 2

y 5
ln 0 2x 2 1 0

x 1 3
y 5

ln 0 3x 0
x 2 3

y 5 ln 1 5x 1 3 2y 5 ln 12 1 x2 2

y 5 27x2e23xy 5 5xe2x

y 5 24ex2

y 5 e22x3

y 5 8e0.5xy 5 26e2x

g 1 t 2 5 t3 1 t4 1 5 2 7/2p 1 t 2 5 t2 1 t2 1 1 2 5/2

s 1 t 2 5
t3 2 2t

14t 2 3 24
r 1 t 2 5

5t2 2 7t

1 3t 1 1 2 3

y 5 4x2 1 3x 2 2 2 5y 5 3x 12x 1 1 2 3
y 5 23"8t4 2 1y 5 "2t7 2 5

x 1 2 3 4

3 4 2 1

4 1 2 3

6 /134 /113 /102 /9g r 1x 2
g 1x 2

211272625f r 1x 2
f 1x 2



Find the following using the table.

51. a. at b. at x 5 3

52. a. at b. at x 5 3

Find the slope of the tangent line to the given curve at the given
value of x. Find the equation of each tangent line.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. Consider the graphs of the function and the
straight line Discuss the number of points of inter-
section versus the change in the value of k. Source: Japanese
University Entrance Examination Problems in Mathematics.

64. a. Verify that

This expression is called the relative rate of change. It
expresses the rate of change of f relative to the size of f.
Stephen B. Maurer denotes this expression by and notes that
economists commonly work with relative rates of change.
Source: The College Mathematics Journal.

b. Verify that

Interpret this equation in terms of relative rates of change.

c. In his article, Maurer uses the result of part b to solve the
following problem:

“Last year, the population grew by 1% and the average
income per person grew by 2%. By what approximate per-
cent did the national income grow?”

Explain why the result from part b implies that the answer
to this question is approximately 3%.

65. Suppose that the student body in your college grows by 2%
and the tuition goes up by 3%. Use the result from the previous
exercise to calculate the approximate amount that the total
tuition collected goes up, and compare this with the actual
amount.

66. Why is e a convenient base for exponential and logarithmic
functions?

fĝ 5 f̂ 1 ĝ

f̂

d ln f 1 x 2
dx

5
f9 1x 2
f 1x 2

 .

y 5 x 1 k.
y 5 "2x 2 1

y 5 x ln x; x 5 ey 5 ln x; x 5 1

y 5 xex; x 5 1y 5 ex; x 5 0

y 5 2"8x 1 1; x 5 3y 5 "6x 2 2; x 5 3

y 5
x

x2 2 1
; x 5 2y 5

3

x 2 1
; x 5 21

y 5 8 2 x2; x 5 1y 5 x2 2 6x; x 5 2

Dx 
1g 3f 1x 2 4 2x 5 2Dx 

1g 3f 1x 2 4 2
Dx 
1f 3g 1x 2 4 2x 5 2Dx 

1f 3g 1x 2 4 2
69.

70.

71.

72.

73. Sales The sales of a company are related to its expenditures on
research by

where gives sales in millions when x thousand dollars is
spent on research. Find and interpret if the following
amounts are spent on research.

a. $9000 b. $16,000 c. $25,000

d. As the amount spent on research increases, what happens to
sales?

74. Profit Suppose that the profit (in hundreds of dollars) from
selling x units of a product is given by

Find and interpret the marginal profit when the following num-
bers of units are sold.

a. 4 b. 12 c. 20

d. What is happening to the marginal profit as the number sold
increases?

e. Find and interpret the marginal average profit when 4 units
are sold.

75. Costs A company finds that its total costs are related to the
amount spent on training programs by

where is costs in thousands of dollars when x hundred
dollars are spent on training. Find and interpret if the
following amounts are spent on training.

a. $900 b. $1900

c. Are costs per dollar spent on training always increasing or
decreasing?

76. Compound Interest If a sum of $1000 is deposited into an
account that pays r% interest compounded quarterly, the bal-
ance after 12 years is given by

Find and interpret when 

77. Continuous Compounding If a sum of $1000 is deposited into
an account that pays r% interest compounded continuously,
the balance after 12 years is given by

Find and interpret when r 5 5.
dA

dr

A 5 1000e12r/100.

r 5 5.
dA

dr

A 5 1000a1 1
r

400
b
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.

T r 1x 2
T 1x 2

T 1x 2 5
1000 1 60x

4x 1 5
 ,

P 1x 2 5
x2

2x 1 1
.

dS /dx
S 1x 2

S 1x 2 5 1000 1 60"x 1 12x,

C 1x 2 5 ln 1x 1 5 2
C 1x 2 5 10 2 e2x

C 1x 2 5 14x 1 3 24
C 1x 2 5 1x2 1 3 2 3
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APPLICATIONS
Business and Economics

Marginal Average Cost Find the marginal average cost function
of each function defined as follows.

67.

68. C 1x 2 5 "3x 1 2

C 1x 2 5 "x 1 1



78. Doubling Time If a sum of money is deposited into an account
that pays r% interest compounded annually, the doubling time
(in years) is given by

Find and interpret when 

79. U.S. Post Office The number (in billions) of pieces of mail han-
dled by the U.S. Post Office each year from 1980 through 2009
can be approximated by

,

where t is the number of years since 1980. Find and interpret
the rate of change in the volume of mail for the following
years. Source: U.S. Postal Service.

a. 1995 b. 2005

80. Elderly Employment After declining over the last century, the
percentage of men aged 65 and older in the workforce has begun
to rise in recent years, as shown by the following table. Source:
U.S. Bureau of Labor Statistics.

P 1 t 2 5 20.00132t4 1 0.0665t3 2 1.127t2 1 11.581t 1 105.655

r 5 5.dT /dr

T 5
ln 2

ln 1 1 1 r /100 2
 .

increased in value. The following table shows the number of dol-
lars it took in various years to equal $1 in 1913. Source: U.S.
Bureau of Labor Statistics.
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Percent of Men
65 and Older

Year in Workforce

1900 63.1

1920 55.6

1930 54.0

1940 41.8

1950 45.8

1960 33.1

1970 26.8

1980 19.0

1990 16.3

2000 17.7

2009 21.9

Number of Dollars
It Took to Equal

Year $1 in 1913

1913 1.00

1920 2.02

1930 1.69

1940 1.41

1950 2.53

1960 2.99

1970 3.92

1980 8.32

1990 13.20

2000 17.39

2010 22.02

a. Using the regression feature on a graphing calculator, find a
cubic and a quartic function that model this data, letting t 5 0
correspond to the year 1900.

b. Using each of your answers to part a, find the rate that the
percent of men aged 65 and older in the workforce was
increasing in 2005.

c. Discuss which model from part a best describes the data, as
well as which answer from part b best describes the rate that
the percent of men aged 65 and older in the workforce was
increasing in 2005.

d. Explore other functions that could be used to model the data,
using the various regression features on a graphing calcula-
tor, and discuss to what extent any of them are useful
descriptions of the data.

81. Value of the Dollar The U.S. dollar has been declining in value
over the last century, except during the Great Depression, when it

a. Using the regression feature on a graphing calculator, find a
cubic and a quartic function that model this data, letting t 5 0
correspond to the year 1900.

b. Using each of your answers to part a, find the rate that the
number of dollars required to equal $1 in 1913 was increas-
ing in 2005.

c. Discuss which model from part a best describes the data, as
well as which answer from part b best describes the rate that
the number of dollars required to equal $1 in 1913 was
increasing in 2005.

d. Explore other functions that could be used to model the data,
using the various regression features on a graphing calcula-
tor, and discuss to what extent any of them are useful
descriptions of the data.

Life Sciences

82. Exponential Growth Suppose a population is growing expo-
nentially with an annual growth constant How fast is
the population growing when it is 1,000,000? Use the deriva-
tive to calculate your answer, and then explain how the answer
can be obtained without using the derivative.

83. Logistic Growth Suppose a population is growing logistically
with and Assume time
is measured in years.

a. Find the growth function for this population.

b. Find the population and rate of growth of the population
after 6 years.

84. Fish The length of the monkeyface prickleback, a West Coast
game fish, can be approximated by

and the weight by

W 5 0.01289 . L2.9,

L 5 71.5 1 1 2 e20.1t 2

G 1 t 2

G0 5 2000.m 5 30,000,k 5 5 3 1026,

k 5 0.05.



where L is the length in centimeters, t is the age in years, and
W is the weight in grams. Source: California Fish and Game.

a. Find the approximate length of a 5-year-old monkeyface.

b. Find how fast the length of a 5-year-old monkeyface is
growing.

c. Find the approximate weight of a 5-year-old monkeyface.
(Hint: Use your answer from part a.)

d. Find the rate of change of the weight with respect to length
for a 5-year-old monkeyface.

e. Using the chain rule and your answers to parts b and d, find
how fast the weight of a 5-year-old monkeyface is growing.

85. Arctic Foxes The age/weight relationship of male Arctic
foxes caught in Svalbard, Norway, can be estimated by the
function

where t is the age of the fox in days and is the weight of
the fox in grams. Source: Journal of Mammology.

a. Estimate the weight of a male fox that is 250 days old.

b. Use to estimate the largest size that a male fox can
attain. (Hint: Find )

c. Estimate the age of a male fox when it has reached 50% of
its maximum weight.

d. Estimate the rate of change in weight of a male Arctic fox that is
250 days old. (Hint: Recall that

e. Use a graphing calculator to graph and then describe the
growth pattern.

f. Use the table function on a graphing calculator or a spread-
sheet to develop a chart that shows the estimated weight and
growth rate of male foxes for days 50, 100, 150, 200, 250,
and 300.

86. Hispanic Population In Section 2.4, Exercise 49, we found
that the projected Asian population in the United States, in mil-
lions, can be approximated by

where t is the years since 2000. Find the instantaneous rate of
change in the projected Asian population in the United States
in each of the following years. Source: U.S. Census.

a. 2005 b. 2025

Physical  Sciences

87. Wind Energy In Section 2.4, Exercise 55, we found that the
total world wind energy capacity (in megawatts) in recent
years could be approximated by the function

,

where t is the number of years since 2000. Find the rate of
change in the energy capacity for the following years. Source:
World Wind Energy Association.

a. 2005 b. 2010 c. 2015

C 1 t 2 5 19,231 1 1.2647 2 t

a 1 t 2 5 11.14 1 1.023 2 t,

M 1 t 2
Dt ef1t2 5 f r 1 t 2ef1t2.2

lim
tl`

 M 1 t 2 .
M 1 t 2

M 1 t 2

M 1 t 2 5 3583e2e20.020 1t2662
,

General Interest

88. Cats The distance from Lisa Wunderle’s cat, Belmar, to a
piece of string he is stalking is given in feet by

where t is the time in seconds since he begins.

a. Find Belmar’s average velocity between 1 second and
3 seconds.

b. Find Belmar’s instantaneous velocity at 3 seconds.

89. Food Surplus In Section 2.4, Example 7, we found that the
production of corn (in billions of bushels) in the United States
since 1930 could be approximated by

where x is the year. Find and interpret 

90. Dating a Language Over time, the number of original basic
words in a language tends to decrease as words become obso-
lete or are replaced with new words. Linguists have used cal-
culus to study this phenomenon and have developed a
methodology for dating a language, called glottochronology.
Experiments have indicated that a good estimate of the number
of words that remain in use at a given time is given by

where is the number of words in a particular language, t
is measured in the number of millennium, and is the origi-
nal number of words in the language. Source: The UMAP
Journal.

a. In 1950, C. Feng and M. Swadesh established that of the
original 210 basic ancient Chinese words from 950 A.D., 167
were still being used. Letting correspond to 950, with

find the number of words predicted to have been
in use in 1950 A.D., and compare it with the actual number in
use.

b. Estimate the number of words that will remain in the year
2050 (t � 1.1).

c. Find and interpret your answer.

91. Driving Fatalities A study by the National Highway Traffic
Safety Administration found that driver fatalities rates were
highest for the youngest and oldest drivers. The rates per 1000
licensed drivers for every 100 million miles may be approxi-
mated by the function

where x is the driver’s age in years and k is the constant
Find and interpret the rate of change of the fatality

rate when the driver is

a. 20 years old; b. 60 years old.

Source: National Highway Traffic Safety Administration.

3.8 3 1029.

f 1x 2 5 k 1x 2 49 2 6 1 0.8,

N r 1 1.1 2

N0 5 210,
t 5 0

N0 

N 1 t 2

N 1 t 2 5 N0 e20.217t,

p r 12000 2 .

p 1x 2 5 1.757 1 1.0249 2x21930

f 1 t 2 5
8

t 1 1
1

20

t2 1 1
,
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ELECTRIC POTENTIAL AND ELECTRIC FIELD

E X T E N D E D APPLICATION

248

z

y

x

R

*For those interested in the constants k1 and k2:

where Q is the charge, is called the electric permittivity, and R is thee0

k1 5
Q

2pe0R
2

and k2 5
1

2
 k1R

2 5
Q

4pe0

,

Using some basic definitions and integral calculus (that you will
learn about later in your calculus book), it can be shown that the
electric potential on the axis is

(2)

where k1 is a constant.* To determine the electric field, we apply
Equation (1) and find

(3)

You will provide the details for this example by working through
Exercise 1 at the end of this section.

Physicists often like to see if complicated expressions such as
these can be simplified when certain conditions apply. An example
would be to imagine that the location z is very far away from the
disk. In that case, the disk doesn’t look much like a disk anymore,
but more like a point. In Equations (2) and (3), we see that z will be
much larger than R. If you reach the topic of Taylor series in calcu-
lus, you will learn how these series can be used to approximate
square roots, so that for large values of z the voltage is inversely pro-
portional to z and looks like this:

, (4)

where k2 is a constant. To determine the electric field, we apply
Equation (1) again to find

. (5)

You will be asked to prove this result in Exercise 2.
Thus we see that the exact functions for V and E of the disk

become much simpler at locations far away from the disk. The
voltage is a reciprocal function and the electric field is called an
inverse-square law. By the way, these functions are the same ones
that would be used for a point charge, which is a charge that takes
up very little space.

Now let’s look at what happens when we are very close to
the surface of the disk. You could imagine that an observer very
close to the surface would see the disk as a large flat plane. If we
apply the Taylor series once more to the exact function for the
potential (Equation (2)), but this time with z much smaller than
R, we find

. (6)V 5 k1 aR 2 z 1
z2

2R
b

E 5
k2

z2

V 5
k2

z

E 5 2k1 a
z

"z2 1 R2
2 1b

V 5 k1 1"z2 1 R2 2 z 2

FIGURE 13

n physics, a major area of study is electricity, including such con-
cepts as electric charge, electric force, and electric current. Two
ideas that physicists use a great deal are electric potential and elec-

tric field. Electric potential is the same as voltage, such as for a bat-
tery. Electric field can be thought of in terms of a force field, which
is often referred to in space movies as a deflector shield around a
spaceship. An electric field causes an electric force to act on
charged objects when they are in the electric field.

Both electric potential and electric field are produced by elec-
tric charges. It is important to physicists and electrical engineers to
know what the electric field and the electric potential are near a
charged object. Usually the problem involves finding the electric
potential and taking the (negative) derivative of the electric poten-
tial to determine the electric field. More explicitly,

, (1)

where V is the electric potential (voltage) near the charged object, z
is the distance from the object, and E is the electric field.

Let’s look at an example. Suppose we have a charged disk of
radius R and we want to determine the electric potential and elec-
tric field at a distance z along the axis of the disk (Figure 13).

E 5 2
dV

dz

I

radius of the disk.
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Notice that this is a quadratic function, or a parabola. Applying
Equation (1) again, we see that the electric field is

. (7)

This is just a linear function that increases as we approach the sur-
face (which would be z � 0) and decreases the farther away from
the surface we move. Again, the details of this calculation are left
for you to do in Exercise 3.

Here is a fun way of making sense of the equations listed
above. Suppose you are in a spaceship approaching the planet DISK
on a very important mission. Planet DISK is noted for the fact that
there is always a sizeable amount of charge on it. You are approach-
ing the planet from very far away along its axis. In Figure 14 the
three voltage functions (Equations (2), (4), and (6)) are plotted, and
in Figure 15 the three electric field functions (Equations (3), (5),
and (7)) are plotted. The graphs were generated using R � 10,000,
k1 � 100, and k2 � 5 	 109.

E 5 k1a1 2
z

R
b
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Notice that it looks like you can use the reciprocal function for
the voltage (Equation (4)) and the inverse-square law function for
the electric field (Equation (5)) when you are farther away than
about 20,000 m because the exact functions and the approximate
functions are almost exactly the same. Also, when you get close to
the planet, say less than about 4000 m, you can use the quadratic
function for the voltage (Equation (6)) and the linear function for the
electric field (Equation (7)) because the exact functions and the
approximate functions are nearly the same. This means that you
should use the exact functions (Equations (2) and (3)) between about
20,000 m and about 4000 m because the other functions deviate sub-
stantially in that region.

There are many other examples that could be studied, but they
involve other functions that you haven’t covered yet, especially
trigonometric functions. But the process is still the same: If you
can determine the electric potential in the region around a charged
object, then the electric field is found by taking the negative deriv-
ative of the electric potential.
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EXERCISES
1. Use Equation (1) to prove that the electric field of the disk

(Equation (3)) is obtained from the voltage of the disk
(Equation (2)). (Hint: It may help to write the square root in
Equation (2) as a power.)

2. Apply Equation (1) to the voltage of a point charge (Equation
(4)) to obtain the electric field of a point charge (Equation (5)).

3. Show that the electric field in Equation (7) results from the
electric potential in Equation (6).

4. Sometimes for z very, very close to the disk, the third term in
Equation (6) is so small that it can be dismissed. Show that the
electric field is constant for this case.

5. Use a graphing calculator or Wolfram Alpha (which can be
found at www.wolframalpha.com) to recreate the graphs of
the functions in Figures 14 and 15.

6. Use a spreadsheet to create a table of values for the functions
displayed in Figures 14 and 15. Compare the three voltage
functions and then compare the three electric field functions. 

DIRECTIONS FOR GROUP PROJECT
Determine the electric potential and the electric field at various
locations along the axis of a charged compact disc (CD). You will
need to measure the radius of a typical CD and use the value for
the electric permittivity (sometimes called the permittivity of free
space), � 8.85 	 10�12C 2/Nm2. To estimate the value for the
charge on the CD, assume that a typical CD has about one mole of
atoms (6.0 	 1023, which is Avogadro’s number) and that one out
of every billion of these atoms loses an electron. The charge is
found by multiplying 10�9 (one billionth) by Avogadro’s number
and by the charge of one electron (or proton), which is 1.6 	 10�19 C.
With this information you can calculate the constants k1 and k2.
Use appropriate graphing software, such as Microsoft Excel, to
plot all three of the voltage functions (Equations (2), (4), and (6))
on one graph and all three electric field functions (Equations (3),
(5), and (7)) on one graph.

e0

www.wolframalpha.com


Graphs and the Derivative
5.1 Increasing and Decreasing Functions

5.2 Relative Extrema

5.3 Higher Derivatives, Concavity, and 
the Second Derivative Test

5.4 Curve Sketching

Chapter 5 Review

Extended Application: A Drug
Concentration Model for Orally
Administered Medications

Derivatives provide useful information about the behavior

of functions and the shapes of their graphs. The first

derivative describes the rate of increase or decrease, while

the second derivative indicates how the rate of increase or

decrease is changing. In an exercise at the end of this

chapter, we will see what changes in the sign of the second

derivative tell us about the shape of the graph that shows a

weightlifter’s performance as a function of age.

5
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The graph in Figure 1 shows the relationship between the number of sleep-related
accidents and traffic density during a 24-hour period. The blue line indicates the
hourly distribution of sleep-related accidents. The green line indicates the hourly

distribution of traffic density. The red line indicates the relative risk of sleep-related
accidents. For example, the relative risk graph shows us that a person is nearly seven
times as likely to have an accident at 4:00 A.M. than at 10:00 P.M. Source: Sleep.

Given a graph like the one in Figure 1, we can often locate maximum and minimum
values simply by looking at the graph. It is difficult to get exact values or exact locations
of maxima and minima from a graph, however, and many functions are difficult to graph
without the aid of technology. In Chapter 2, we saw how to find exact maximum and
minimum values for quadratic functions by identifying the vertex. A more general
approach is to use the derivative of a function to determine precise maximum and
minimum values of the function. The procedure for doing this is described in this
chapter, which begins with a discussion of increasing and decreasing functions.

APPLY IT

Increasing and Decreasing Functions
How long is it profitable to increase production?
We will answer this question in Example 5 after further investigating increasing and decreas-
ing functions.

A function is increasing if the graph goes up from left to right and decreasing if 
its graph goes down from left to right. Examples of increasing functions are shown in
Figures 2(a)–(c), and examples of decreasing functions in Figures 2(d)–(f).

5.1
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Increasing and Decreasing Functions
Let f be a function defined on some interval. Then for any two numbers and in the
interval, f is increasing on the interval if

and f is decreasing on the interval if

Increasing and Decreasing

Where is the function graphed in Figure 3 increasing? Where is it decreasing?

f 1 x1 
2 + f 1 x2 

2 whenever x1 * x2 .

f 1 x1 
2 * f 1 x2 

2 whenever x1 * x2 ,

x2x1
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EXAMPLE  1

f(x)

x

(e)

f(x)

x

(a)

FIGURE 2

f(x)

x

(b)

f(x)

x

(c)

f(x)

x

(d)

f(x)

x

(f)

SOLUTION Moving from left to right, the function is increasing for x-values up to 
then decreasing for x-values from to 0, constant (neither increasing nor decreasing) for
x-values from 0 to 4, increasing for x-values from 4 to 6, and decreasing for all x-values
larger than 6. In interval notation, the function is increasing on and 
decreasing on and and constant on TRY YOUR TURN 1

How can we tell from the equation that defines a function where the graph increases
and where it decreases? The derivative can be used to answer this question. Remember that
the derivative of a function at a point gives the slope of the line tangent to the function at
that point. Recall also that a line with a positive slope rises from left to right and a line with
a negative slope falls from left to right.

10, 4 2 .1 6, ` 2 ,124, 0 2
14, 6 2 ,12`, 24 2

24
24,

7421 3 5 6 8 9–1–2–3–4–5 10
x

f(x)

0

FIGURE 3

YOUR TURN 1 Find where
the function is increasing and
decreasing.

–1 2 4 6

y

x

4

6

8

2

0



The graph of a typical function, f, is shown in Figure 4. Think of the graph of f as a
roller coaster track moving from left to right along the graph. Now, picture one of the cars
on the roller coaster. As shown in Figure 5, when the car is on level ground or parallel to
level ground, its floor is horizontal, but as the car moves up the slope, its floor tilts upward.
When the car reaches a peak, its floor is again horizontal, but it then begins to tilt down-
ward (very steeply) as the car rolls downhill. The floor of the car as it moves from left to
right along the track represents the tangent line at each point. Using this analogy, we can see
that the slope of the tangent line will be positive when the car travels uphill and f is increas-
ing, and the slope of the tangent line will be negative when the car travels downhill and f is
decreasing. (In this case it is also true that the slope of the tangent line will be zero at
“peaks” and “valleys.”)
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Thus, on intervals where the function will increase, and on intervals
where the function will decrease. We can determine where peaks
by finding the intervals on which it increases and decreases.

Our discussion suggests the following test.

Test for Intervals Where is Increasing and Decreasing
Suppose a function f has a derivative at each point in an open interval; then
if for each x in the interval, f is increasing on the interval;
if for each x in the interval, f is decreasing on the interval;
if for each x in the interval, f is constant on the interval.      

The derivative can change signs from positive to negative (or negative to
positive) at points where and at points where does not exist. The values
of x where this occurs are called critical numbers.

Critical Numbers
The critical numbers for a function f are those numbers c in the domain of f for which

or does not exist. A critical point is a point whose x-coordinate is the
critical number c and whose y-coordinate is 

It is shown in more advanced classes that if the critical numbers of a function are used
to determine open intervals on a number line, then the sign of the derivative at any point in
an interval will be the same as the sign of the derivative at any other point in the interval.
This suggests that the test for increasing and decreasing functions be applied as follows
(assuming that no open intervals exist where the function is constant).

f 1 c 2 .
f r 1 c 2f r 1 c 2 5 0

f r 1x 2f r 1x 2 5 0
f r 1x 2

lf r 1x 2 5 0
f r 1x 2 , 0
f r 1x 2 . 0

f 1 x 2

f 1x 2f 1x 2f r 1x 2 , 0,
f 1x 2f r 1x 2 . 0,

NOTE
The third condition must hold for an
entire open interval, not a single
point. It would not be correct to say
that because at a point,
then is constant at that point.f 1 x 2

f' 1 x 2 5 0

l
l



Applying the Test
1. Locate the critical numbers for f on a number line, as well as any points where f is

undefined. These points determine several open intervals.

2. Choose a value of x in each of the intervals determined in Step 1. Use these values
to decide whether or in that interval.

3. Use the test on the previous page to decide whether f is increasing or decreasing on
the interval.

Increasing and Decreasing

Find the intervals in which the following function is increasing or decreasing. Locate all
points where the tangent line is horizontal. Graph the function.

SOLUTION Here To find the critical numbers, set this derivative
equal to 0 and solve the resulting equation by factoring.

The tangent line is horizontal at or Since there are no values of x where
fails to exist, the only critical numbers are and 1. To determine where the func-

tion is increasing or decreasing, locate and 1 on a number line, as in Figure 6. (Be sure
to place the values on the number line in numerical order.) These points determine three
intervals: and 1 1, ` 2 .123, 1 2 ,12`, 23 2 ,

23
23f r 1x 2

x 5 1.x 5 23

x 5 23  or  x 5 1

 3 1x 1 3 2 1x 2 1 2 5 0

 3 1x2 1 2x 2 3 2 5 0

 3x2 1 6x 2 9 5 0

f r 1x 2 5 3x2 1 6x 2 9.

f 1x 2 5 x3 1 3x2 2 9x 1 4

f r 1x 2 , 0f r 1x 2 . 0

5.1 Increasing and Decreasing Functions 255

EXAMPLE  2

FOR REVIEW
The method for finding where 
a function is increasing and
decreasing is similar to the
method introduced in Section 
R.5 for solving quadratic
inequalities.

FOR REVIEW
In this chapter you will need all
of the rules for derivatives you
learned in the previous chapter. 
If any of these are still unclear,
go over the Derivative Summary
at the end of that chapter and
practice some of the Review
Exercises before proceeding.

210–1–2–3–4
x

– ++ f '(x)

f(x)

Test pointTest pointTest point

FIGURE 6

Now choose any value of x in the interval Choosing and evaluating
using the factored form of gives

which is positive. You could also substitute in the unfactored form of , but
using the factored form makes it easier to see whether the result is positive or negative,
depending upon whether you have an even or an odd number of negative factors. Since one
value of x in this interval makes , all values will do so, and therefore, f is increas-
ing on . Selecting 0 from the middle interval gives , so f is decreasing
on . Finally, choosing 2 in the right-hand region gives , with f increas-
ing on . The arrows in each interval in Figure 6 indicate where f is increasing 
or decreasing.

1 1, ` 2
f' 12 2 5 15123, 1 2

f' 10 2 5 2912`, 23 2
f' 1x 2 . 0

f' 1x 2x 5 24

f r 124 2 5 3 124 1 3 2 124 2 1 2 5 3 121 2 125 2 5 15,

f' 1x 2f' 124 2
x 5 2412`, 23 2 .



We now have an additional tool for graphing functions: the test for determining where
a function is increasing or decreasing. (Other tools are discussed in the next few sections.)
To graph the function, plot a point at each of the critical numbers by finding 
and Also plot points for 0, and 2, the test values of each interval.
Use these points along with the information about where the function is increasing and
decreasing to get the graph in Figure 7. TRY YOUR TURN 2

Be careful to use , not , to find the y-value of the points to plot.

Recall critical numbers are numbers c in the domain of f for which or 
does not exist. In Example 2, there are no critical values, c, where fails to exist. The
next example illustrates the case where a function has a critical number at c because the
derivative does not exist at c.

Increasing and Decreasing

Find the critical numbers and decide where f is increasing and decreasing if

SOLUTION We find first, using the power rule and the chain rule.

To find the critical numbers, we first find any values of x that make , but
here is never 0. Next, we find any values of x where fails to exist. This
occurs whenever the denominator of is 0, so set the denominator equal to 0 and
solve.

Divide by 3.

Raise both sides to the 3rd power.

 x 5 1

 x 2 1 5 0

 3 1x 2 1 2 1/3 43 5 03

 3 1x 2 1 2 1/3 5 0

f r 1x 2
f r 1x 2f r 1x 2

f r 1x 2 5 0

f r 1x 2 5
2

3
 1x 2 1 221/3 1 1 2 5

2

3 1x 2 1 2 1/3

f r 1x 2
f 1x 2 5 1x 2 1 2 2/3.

f r 1 c 2
f r 1x 2f r 1 c 2 5 0

f r 1 x 2f 1 x 2

x 5 24,f 1 1 2 5 21.
f 123 2 5 31
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YOUR TURN 2
Find the intervals in which

is increasing or decreasing. Graph
the function.

f 1 x 2 5 2x3 2 2x2 1 15x 1 10

–3 0

10

20

30

3

f(t)

x

f(x) = x  + 3x  – 9x + 423

(1, –1)

(2, 6)
(0, 4)

(–4, 24)

(–3, 31)

Increasing

Slope of tangent
is zero.

Increasing

Slope of tangent
is zero.

Decreasing

FIGURE 7

CAUTION

EXAMPLE  3



Since does not exist but is defined, is a critical number, the only critical
number. This point divides the number line into two intervals: and . Draw a
number line for , and use a test point in each of the intervals to find where f is increasing
and decreasing.

Since f is defined for all x, these results show that f is decreasing on and increasing
on The graph of f is shown in Figure 8. TRY YOUR TURN 3

In Example 3, we found a critical number where failed to exist. This occurred
when the denominator of was zero. Be on the alert for such values of x. Also be alert
for values of x that would make the expression under a square root, or other even root, neg-
ative. For example, if , then . Notice that does not
exist for , but the values of are not critical numbers because those values of x
are not in the domain of f. The function does have a critical point at x � 0,
because 0 is in the domain of f.

Sometimes a function may not have any critical numbers, but we are still able to deter-
mine where the function is increasing and decreasing, as shown in the next example.

Increasing and Decreasing (No Critical Numbers)

Find the intervals for which the following function increases and decreases. Graph the
function.

SOLUTION Notice that the function f is undefined when , so is not in the
domain of f. To determine any critical numbers, first use the quotient rule to find .

This derivative is never 0, but it fails to exist at , where the function is undefined.
Since is not in the domain of f, there are no critical numbers for f.

We can still apply the first derivative test, however, to find where f is increasing and
decreasing. The number (where f is undefined) divides the number line into two inter-
vals: and . Draw a number line for , and use a test point in each of
these intervals to find that for all x except . (This can also be determined by
observing that is the quotient of 2, which is positive, and , which is always
positive or 0.) This means that the function f is increasing on both and .

To graph the function, we find any asymptotes. Since the value makes the
denominator 0 but not the numerator, the line is a vertical asymptote. To find the
horizontal asymptote, we find

Divide numerator and denominator by

We get the same limit as x approaches , so the graph has the line y � 1 as a
horizontal asymptote. Using this information, as well as the x-intercept (1, 0) and the 
y-intercept (0,�1), gives the graph in Figure 9. TRY YOUR TURN 4

2`

 5 1.

x. lim
xl`

 
x 2 1

x 1 1
5 lim

xl`
 
1 2 1 /x

1 1 1 /x

x 5 21
x 5 21

121,` 212`,21 2
1x 1 1 2 2f r 1x 2

21f r 1x 2 . 0
f r121,` 212`,21 2

21

21
x 5 21

 5
x 1 1 2 x 1 1
1x 1 1 2 2

5
2

1x 1 1 2 2

 f r 1x 2 5
1x 1 1 2 1 1 2 2 1x 2 1 2 1 1 2

1x 1 1 2 2

f r 1x 2
21x 5 21

f 1x 2 5
x 2 1

x 1 1

f 1x 2 5 "x
x , 0x # 0

f r 1x 2f r 1x 2 5 1 / 12"x 2f 1x 2 5 "x

f r 1x 2
f r 1x 2

1 1, ` 2 .
12`, 1 2

 f r 12 2 5
2

3 12 2 1 2 1/3 5
2

3

 f r 10 2 5
2

3 10 2 1 2 1/3 5
2

23
5 2 

2

3

f r
1 1,` 212`,1 2

x 5 1f 1 1 2f r 1 1 2
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YOUR TURN 3 Find where 
f is increasing and decreasing if

. Graph the
function.
f 1 x 2 5 1 2x 1 4 2 2/5

YOUR TURN 4 Find where f is
increasing and decreasing if 

.

Graph the function.

f 1 x 2 5
22x

x 1 2

0 86

y

x

4

6

2

2 4–2–6 –4

–2

f (x) = (x – 1)2/3

FIGURE 8

EXAMPLE  4

1 4–4 –1

f(x)

x

x = –1

x – 1
x + 1

y = 1

f(x) =

1

–1

FIGURE 9



It is important to note that the reverse of the test for increasing and decreasing
functions is not true—it is possible for a function to be increasing on an interval
even though the derivative is not positive at every point in the interval. A good
example is given by which is increasing on every interval, even
though when See Figure 10.

Similarly, it is incorrect to assume that the sign of the derivative in regions
separated by critical numbers must alternate between and If this were
always so, it would lead to a simple rule for finding the sign of the derivative: just
check one test point, and then make the other regions alternate in sign. But this is
not true if one of the factors in the derivative is raised to an even power. In the
function just considered, is positive on both sides of the
critical number

A graphing calculator can be used to find the derivative of a function at a particular x-value. The
screen in Figure 11 supports our results in Example 2 for the test values, and 2. (Notice that the
calculator screen does not show the entire command.) The results are not exact because the calculator
uses a numerical method to approximate the derivative at the given x-value.

Some graphing calculators can find where a function changes from increasing to decreasing by
finding a maximum or minimum. The calculator windows in Figure 12 show this feature for the func-
tion in Example 2. Note that these, too, are approximations. This concept will be explored further in
the next section.

24

x 5 0.
f r 1 x 2 5 3x2f 1 x 2 5 x3

2.1

x 5 0.f r 1x 2 5 0
f 1x 2 5 x3,
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2–2

f(x)

x

2

4

6

8

–2

–4

–6

–8

f(x) = x3

FIGURE 10

(X3 � 3X2 � 9X � 4)d
dx x��4

15.000001
(X3 � 3X2 � 9X � 4)d

dx x�2
15.000001

FIGURE 11

CAUTION

6 4

35

5

Maximum
X -3.000002 Y 31

(a)

f(x) x3 3x2 9x 4

FIGURE 12 

�6 4

35

�5

f(x) � x3 � 3x2 � 9x � 4

Minimum
X�.99999898 Y�-1

(b)

Knowing the intervals where a function is increasing or decreasing can be important in
applications, as shown by the next examples.

Profit Analysis

A company selling computers finds that the cost per computer decreases linearly with the
number sold monthly, decreasing from $1000 when none are sold to $800 when 1000 are
sold. Thus, the average cost function has a y-intercept of 1000 and a slope of

so it is given by the formula

where x is the number of computers sold monthly. Since the cost func-
tion is given by

Suppose the revenue function can be approximated by

R 1x 2 5 0.0008x3 2 2.4x2 1 2400x, 0 # x # 1000.

 5 1000x 2 0.2x2, 0 # x # 1000.

 C 1x 2 5 xC 1x 2 5 x 1 1000 2 0.2x 2

C 1x 2 5 C 1x 2 /x,

C 1x 2 5 1000 2 0.2x, 0 # x # 1000,

20.2,
2200 /1000 5

EXAMPLE  5

TECHNOLOGY NOTE



Determine any intervals on which the profit function is increasing.

SOLUTION First find the profit function 

To find any intervals where this function is increasing, set 

Solving this with the quadratic formula gives the approximate solutions and
The latter number is outside of the domain. Use to determine two

intervals on a number line, as shown in Figure 13. Choose and as test points.

This means that when no computers are sold monthly, the profit is going up at a rate of
$1400 per computer. When 1000 computers are sold monthly, the profit is going down at a
rate of $600 per computer. The test points show that the function increases on 
and decreases on See Figure 13. Thus, the profit is increasing when 409
computers or fewer are sold, and decreasing when 410 or more are sold, as shown in Figure 14.

1409.8, 1000 2 .
10, 409.8 2

 P r 1 1000 2 5 0.0024 1 10002 2 2 4.4 1 1000 2 1 1400 5 2600

 P r 10 2 5 0.0024 102 2 2 4.4 10 2 1 1400 5 1400

x 5 1000x 5 0
x 5 409.8x 5 1423.6.

x 5 409.8

P r 1x 2 5 0.0024x2 2 4.4x 1 1400 5 0

P r 1x 2 5 0.

 5 0.0008x3 2 2.2x2 1 1400x

 5 10.0008x3 2 2.4x2 1 2400x 2 2 1 1000x 2 0.2x2 2
 P 1x 2 5 R 1x 2 2 C 1x 2

P 1x 2 .
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FIGURE 13
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FIGURE 14

As the graph in Figure 14 shows, the profit will increase as long as the revenue func-
tion increases faster than the cost function. That is, increasing production will produce
more profit as long as the marginal revenue is greater than the marginal cost.

Recollection of Facts

In the exercises in the previous chapter, the function

gave the number of facts recalled after t hours for Find the intervals in which
is increasing or decreasing.

SOLUTION First use the quotient rule to find the derivative, 

Since is positive everywhere in the domain of the function and since the
numerator is a negative constant, for all t in the domain of Thus always
decreases and, as expected, the number of words recalled decreases steadily over time.

f 1 t 2f 1 t 2 .f r 1 t 2 , 0
1 99t 2 90 2 2

 5
8910t 2 8100 2 8910t

1 99t 2 90 2 2
5

28100
1 99t 2 90 2 2

 f r 1 t 2 5
1 99t 2 90 2 1 90 2 2 90t 1 99 2

1 99t 2 90 2 2

f r 1 t 2 .
f 1 t 2

t . 10 /11.

f 1 t 2 5
90t

99t 2 90

EXAMPLE  6

APPLY IT 



Find the open intervals where the functions graphed as follows
are (a) increasing, or (b) decreasing.

1. 2.

3. 4.

5. 6.

7. 8.

For each of the exercises listed below, suppose that the function
that is graphed is not , but . Find the open intervals
where is (a) increasing or (b) decreasing.

9. Exercise 1 10. Exercise 2

11. Exercise 7 12. Exercise 8

For each function, find (a) the critical numbers; (b) the open
intervals where the function is increasing; and (c) the open
intervals where it is decreasing.

13.

14.

15.

16. f 1x 2 5
2

3
 x3 2 x2 2 4x 1 2

f 1x 2 5
2

3
 x3 2 x2 2 24x 2 4

y 5 1.1 2 0.3x 2 0.3x2

y 5 2.3 1 3.4x 2 1.2x2

f 1 x 2
f r 1 x 2f 1 x 2

17.

18.

19.

20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. A friend looks at the graph of and observes that if you
start at the origin, the graph increases whether you go to the
right or the left, so the graph is increasing everywhere. Explain
why this reasoning is incorrect.

38. Use the techniques of this chapter to find the vertex and inter-
vals where f is increasing and decreasing, given

where we assume Verify that this agrees with what we
found in Chapter 2.

39. Repeat Exercise 38 under the assumption 

40. Where is the function defined by increasing?
Decreasing? Where is the tangent line horizontal?

41. Repeat Exercise 40 with the function defined by 

42. a. For the function in Exercise 15, find the average of the
critical numbers.

b. For the function in Exercise 15, use a graphing calculator to
find the roots of the function, and then find the average of
those roots.

c. Compare your answers to parts a and b. What do you notice?

d. Repeat part a for the function in Exercise 17.

e. Repeat part b for the function in Exercise 17.

f. Compare your answers to parts d and e. What do you notice?

It can be shown that the average of the roots of a polynomial
(including the complex roots, if there are any) and the critical
numbers of a polynomial (including complex roots of f 
(x) � 0,
if there are any) are always equal. Source: The Mathematics
Teacher.

For each of the following functions, use a graphing calculator 
to find the open intervals where is (a) increasing, or (b)
decreasing.

43. 44. f 1x 2 5 ln 1x2 1 1 2 2 x0.3f 1x 2 5 e0.001x 2 ln x

f 1 x 2

f 1x 2 5 ln x.

f 1x 2 5 ex

a , 0.

a . 0.

f 1x 2 5 ax2 1 bx 1 c,

y 5 x2

y 5 x1/3 1 x4/3y 5 x2/3 2 x5/3

f 1x 2 5 x22x2

f 1x 2 5 x222x

f 1x 2 5 xex223xf 1x 2 5 xe23x

f 1x 2 5 ln  

5x2 1 4

x2 1 1
y 5 x 2 4 ln 1 3x 2 9 2

f 1x 2 5 1x 1 1 24/5f 1x 2 5 x2/3

y 5 x "9 2 x2y 5 "x2 1 1

f 1x 2 5
x 1 3

x 2 4
f 1x 2 5

x 1 2

x 1 1

y 5 6x 2 9y 5 23x 1 6

f 1x 2 5 3x4 1 8x3 2 18x2 1 5

f 1x 2 5 x4 1 4x3 1 4x2 1 1

f 1x 2 5 4x3 2 9x2 2 30x 1 6

f 1x 2 5 4x3 2 15x2 2 72x 1 5
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5.1 EXERCISES
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Life Sciences

51. Air Pollution The graph shows the amount of air pollution
removed by trees in the Chicago urban region for each month
of the year. From the graph we see, for example, that the ozone
level starting in May increases up to June, and then abruptly
decreases. Source: National Arbor Day Foundation.

APPLICATIONS
Business and Economics

45. Housing Starts A county realty group estimates that the num-
ber of housing starts per year over the next three years will be

where r is the mortgage rate (in percent).

a. Where is increasing?

b. Where is decreasing?

46. Cost Suppose the total cost (in dollars) to manufacture a
quantity x of weed killer (in hundreds of liters) is given by

a. Where is decreasing?

b. Where is increasing?

47. Profit A manufacturer sells video games with the following
cost and revenue functions (in dollars), where x is the number
of games sold, for 0 � x � 3300.

Determine the interval(s) on which the profit function is
increasing.

48. Profit A manufacturer of CD players has determined that the
profit (in thousands of dollars) is related to the quantity
x of CD players produced (in hundreds) per month by

.

a. At what production levels is the profit increasing?

b. At what levels is it decreasing?

49. Social Security Assets The projected year-end assets in the
Social Security trust funds, in trillions of dollars, where t repre-
sents the number of years since 2000, can be approximated by

,

where 0 ≤ t ≤ 50. Source: Social Security Administration.

a. Where is A(t) increasing?

b. Where is A(t) decreasing?

50. Unemployment The annual unemployment rates of the U.S.
civilian noninstitutional population for 1990–2009 are shown
in the graph. When is the function increasing? Decreasing?
Constant? Source: Bureau of Labor Statistics.

A 1 t 2 5 0.0000329t3 2 0.00450t2 1 0.0613t 1 2.34

P 1x 2 5 2 1x 2 4 2ex 2 4,  0 , x # 3.9

P 1x 2

 R 1x 2 5 0.848x2 2 0.0002x3

 C 1x 2 5 0.32x2 2 0.00004x3

C 1x 2
C 1x 2

C 1x 2 5 x3 2 2x2 1 8x 1 50.

C 1x 2
H 1 r 2
H 1 r 2

H 1 r 2 5
300

1 1 0.03r2  ,
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a. Are these curves the graphs of functions?

b. Look at the graph for particulates. Where is the function
increasing? Decreasing? Constant?

c. On what intervals do all four lower graphs indicate that the
corresponding functions are constant? Why do you think the
functions are constant on those intervals?

52. Spread of Infection The number of people (in hundreds)
infected t days after an epidemic begins is approximated by

When will the number of people infected start to decline?

53. Alcohol Concentration In Exercise 55 in the section on Poly-
nomial and Rational Functions, we gave the function defined by

as the approximate blood alcohol concentration in a 170-lb
woman x hours after drinking 2 oz of alcohol on an empty
stomach, for x in the interval [0, 5]. Source: Medicolegal
Aspects of Alcohol Determination in Biological Specimens.

a. On what time intervals is the alcohol concentration increasing?

b. On what intervals is it decreasing?

54. Drug Concentration The percent of concentration of a drug in
the bloodstream x hours after the drug is administered is given by

a. On what time intervals is the concentration of the drug
increasing?

b. On what intervals is it decreasing?

55. Drug Concentration Suppose a certain drug is administered
to a patient, with the percent of concentration of the drug in the
bloodstream t hours later given by

a. On what time intervals is the concentration of the drug
increasing?

b. On what intervals is it decreasing?

K 1 t 2 5
5t

t2 1 1
 .

K 1x 2 5
4x

3x2 1 27
 .

A 1x 2 5 0.003631x3 2 0.03746x2 1 0.1012x 1 0.009

P 1 t 2 5
10 ln 10.19t 1 1 2

0.19t 1 1
 .

P 1 t 2
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56. Cardiology The aortic pressure-diameter relation in a particu-
lar patient who underwent cardiac catheterization can be mod-
eled by the polynomial

where is the aortic diameter (in millimeters) and p is the
aortic pressure (in mmHg). Determine where this function is
increasing and where it is decreasing within the interval given
above. Source: Circulation.

57. Thermic Effect of Food The metabolic rate of a person who has
just eaten a meal tends to go up and then, after some time has
passed, returns to a resting metabolic rate. This phenomenon is
known as the thermic effect of food. Researchers have indicated
that the thermic effect of food for one particular person is

where is the thermic effect of food (in and t is the
number of hours that have elapsed since eating a meal. Source:
American Journal of Clinical Nutrition.

a. Find 

b. Determine where this function is increasing and where it is
decreasing. Interpret your answers.

58. Holstein Dairy Cattle Researchers have developed the fol-
lowing function that can be used to accurately predict the
weight of Holstein cows (females) of various ages:

where is the weight of the Holstein cow (in kilograms)
that is t days old. Where is this function increasing? Source:
Canadian Journal of Animal Science.

Social  Sciences

59. Population The standard normal probability function is used
to describe many different populations. Its graph is the well-
known normal curve. This function is defined by

Give the intervals where the function is increasing and decreasing.

60. Nuclear Arsenals The figure shows estimated totals of nuclear
weapons inventory for the United States and the Soviet Union
(and its successor states) from 1945 to 2010. Source: Federation
of American Scientists.

a. On what intervals were the total inventories of both coun-
tries increasing?

b. On what intervals were the total inventories of both coun-
tries decreasing?

f 1x 2 5
1

"2p
 e2x2/2.

W1 
1 t 2

W1 
1 t 2 5 619 1 1 2  0.905e20.002t 2 1.2386,

F9 1 t 2 .

kJ/hr)F 1 t 2
F 1 t 2 5 210.28 1 175.9te2t/1.3,

D 1p 2
55 # p # 130,

D 1p 2 5 0.000002p3 2 0.0008p2 1 0.1141p 1 16.683,

General Interest

61. Sports Cars The following graph shows the horsepower and
torque as a function of the engine speed for a 1964 Ford Mustang.
Source: Online with Fuel Line Exhaust.

a. On what intervals is the power increasing with engine speed?

b. On what intervals is the power decreasing with engine speed?

c. On what intervals is the torque increasing with engine speed?

d. On what intervals is the torque decreasing with engine speed?
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YOUR TURN ANSWERS 

1. Increasing on and . Decreasing on 
and (2, 4).

2. Increasing on . Decreasing on and 

3. Increasing on and 4. Never increasing.
decreasing on . Decreasing on 

and . 122,` 2
12`,22 212`,22 2
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1 5 /3,` 212`,23 2123,  5 /3 2

12`,21 214, ` 2121, 2 2

y

x2 4 6 8–8 –6 –2

–30

–10

–20

10

30

20

0

(–3, –26)

5
3

670
27( (,

(–2, 0)

0 1

y

x

3

2

1

–1
–1–2–3–4

4

–4–6–8 –2 x0
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f (x)

x = –2

y = –2

62. Automobile Mileage As a mathematics professor loads more
weight in the back of his Subaru, the mileage goes down. Let x
be the amount of weight (in pounds) that he adds, and let

be the mileage (in mpg).

a. Is positive or negative? Explain.

b. What are the units of ?f r 1x 2
f r 1x 2

y 5 f 1x 2



Maximizing Viewer’s Attention
Suppose that the manufacturer of a diet soft drink is disappointed by sales after airing a
new series of 30-second television commercials. The company’s market research analysts
hypothesize that the problem lies in the timing of the commercial’s message, Drink
Sparkling Light. Either it comes too early in the commercial, before the viewer has become
involved; or it comes too late, after the viewer’s attention has faded. After extensive exper-
imentation, the research group finds that the percent of full attention that a viewer devotes
to a commercial is a function of time (in seconds) since the commercial began, where

When is the best time to present the commercial’s sales message?

SOLUTION Clearly, the message should be delivered when the viewer’s attention is at a
maximum. To find this time, find 

The derivative is greater than 0 when 

or 

Similarly, when or Thus, attention increases for the
first 20 seconds and decreases for the last 10 seconds. The message should appear about 
20 seconds into the commercial. At that time the viewer will devote % of his
attention to the commercial.

The maximum level of viewer attention (80%) in Example 1 is a relative maximum,
defined as follows.

Relative Maximum or Minimum
Let c be a number in the domain of a function f. Then is a relative (or local)
maximum for f if there exists an open interval containing c such that

for all x in 
Likewise, is a relative (or local) minimum for f if there exists an open interval

containing c such that

for all x in 1a, b 2 .
f 1 x 2 # f 1 c 2

1a, b 2
f 1 c 2

1a, b 2 .

f 1 x 2 " f 1 c 2

1a, b 2
f 1 c 2

f 120 2 5 80

t . 20.20.3t 1 6 , 0,f r 1 t 2 , 0

t , 20.

23t . 260,

20.3t 1 6 . 0,

f r 1 t 2

f r 1 t 2 5 2 

3

10
 t 1 6 5 20.3t 1 6

f r 1 t 2 .

Viewer’s attention 5 f 1 t 2 5 2 

3

20
 t2 1 6t 1 20, 0 # t # 30.
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Relative Extrema
In a 30-second commercial, when is the best time to present the sales
message? 
We will answer this question in Example 1 by investigating the idea of a relative maximum.

As we have seen throughout this text, the graph of a function may have peaks and val-
leys. It is important in many applications to determine where these points occur. For exam-
ple, if the function represents the profit of a company, these peaks and valleys indicate
maximum profits and losses. When the function is given as an equation, we can use the
derivative to determine these points, as shown in the first example. 

5.2

EXAMPLE  1

APPLY IT 

APPLY IT

(continued)



A function has a relative (or local) extremum (plural: extrema) at c if it has either a
relative maximum or a relative minimum there.

If c is an endpoint of the domain of f, we only consider x in the half-open interval
that is in the domain.*

The intuitive idea is that a relative maximum is the greatest value of the function in
some region right around the point, although there may be greater values elsewhere. For
example, the highest value of the Dow Jones industrial average this week is a relative max-
imum, although the Dow may have reached a higher value earlier this year. Similarly, a
relative minimum is the least value of a function in some region around the point.

A simple way to view these concepts is that a relative maximum is a peak, and a rela-
tive minimum is the bottom of a valley, although either a relative minimum or maximum
can also occur at the endpoint of the domain.

Relative Extrema

Identify the x-values of all points where the graph in Figure 15 has relative extrema.
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*There is disagreement on calling an endpoint a maximum or minimum. We define it this way because this is an
applied calculus book, and in an application it would be considered a maximum or minimum value of the function.

NOTE
Recall from Section 2.3 on Polyno-
mials and Rational Functions that a
relative extremum that is not an
endpoint is also referred to as a
turning point.

EXAMPLE  2

YOUR TURN 1 Identify the 
x-values of all points where the
graph has relative extrema.

f(x)

x0x1 x2 x3 x4

(   ) (   ) (   ) (   )

FIGURE 15

f(x)

x0x1 x2 x3 x4

m = 0

m = 0

Relative
minimum

Relative
maximum

Relative
maximum

Endpoint;
relative

minimum

FIGURE 16

SOLUTION The parentheses around show an open interval containing such that
so there is a relative maximum of at Notice that many other

open intervals would work just as well. Similar intervals around and can be used
to find a relative maximum of at and relative minima of at
and at TRY YOUR TURN 1

The function graphed in Figure 16 has relative maxima when or and rel-
ative minima when or The tangent lines at the points having x-values andx1x 5 x4 .x 5 x2

x 5 x3x 5 x1

x 5 x4 .f 1x4 
2

x 5 x2f 1x2 
2x 5 x3f 1x3 

2
x4x3 ,x2 ,

x 5 x1 .f 1x1 
2f 1x 2 # f 1x1 

2 ,
x1x1

0

y

xx2

x1 x3



are shown in the figure. Both tangent lines are horizontal and have slope 0. There is no
single tangent line at the point where 

Since the derivative of a function gives the slope of a line tangent to the graph of the
function, to find relative extrema we first identify all critical numbers and endpoints. A rel-
ative extremum may exist at a critical number. (A rough sketch of the graph of the function
near a critical number often is enough to tell whether an extremum has been found.) These
facts about extrema are summarized below.

If a function f has a relative extremum at c, then c is a critical number or c is an endpoint
of the domain.

Be very careful not to get this result backward. It does not say that a function has
relative extrema at all critical numbers of the function. For example, Figure 17
shows the graph of The derivative, is 0 when
so that 0 is a critical number for that function. However, as suggested by the
graph of Figure 17, has neither a relative maximum nor a relative
minimum at (or anywhere else, for that matter). A critical number is a can-
didate for the location of a relative extremum, but only a candidate.

First Derivative Test Suppose all critical numbers have been found for some function f.
How is it possible to tell from the equation of the function whether these critical numbers
produce relative maxima, relative minima, or neither? One way is suggested by the graph
in Figure 18.

x 5 0
f 1 x 2 5 x3

x 5 0,f r 1 x 2 5 3x2,f 1 x 2 5 x3.

x 5 x3 .
x2
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CAUTION
2

0
–2

f(x)

x

2

4

6

8

–2

–4

–6

–8

f(x) = x3

FIGURE 17

As shown in Figure 18, on the left of a relative maximum the tangent lines to the graph
of a function have positive slopes, indicating that the function is increasing. At the relative
maximum, the tangent line is horizontal. On the right of the relative maximum the tangent
lines have negative slopes, indicating that the function is decreasing. Around a relative
minimum the opposite occurs. As shown by the tangent lines in Figure 18, the function is
decreasing on the left of the relative minimum, has a horizontal tangent at the minimum,
and is increasing on the right of the minimum.

Putting this together with the methods from Section 1 for identifying intervals where a
function is increasing or decreasing gives the following first derivative test for locating
relative extrema.

First Derivative Test
Let c be a critical number for a function f. Suppose that f is continuous on and differ-
entiable on except possibly at c, and that c is the only critical number for f in 

1. is a relative maximum of f if the derivative is positive in the interval
and negative in the interval 

2. is a relative minimum of f if the derivative is negative in the interval
and positive in the interval 1 c, b 2 .1a, c 2

f r 1x 2f 1 c 2
1 c, b 2 .1a, c 2

f r 1x 2f 1 c 2
1a, b 2 .1a, b 2

1a, b 2

Relative
minimum

f(x)

x0

Relative
maximum

Decreasing IncreasingIncreasing

FIGURE 18



The sketches in the following table show how the first derivative test works. Assume
the same conditions on a, b, and c for the table as those given for the first derivative test.
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EXAMPLE  3

Relative Extrema
Sign of Sign of 

has: in in Sketches

Relative maximum

Relative minimum

No relative extrema

No relative extrema

c ba

(c, f(c))
– –

c ba

(c, f(c))

––

22
c ba

(c, f(c))
++

c ba

(c, f(c))

++

11
c ba

(c, f(c))
+–

c ba

(c, f(c))
+–

12
c ba

(c, f(c))

+ –

c ba

(c, f(c))
+ –

21

1 c, b 21 a, c 2f 1 x 2
f rf r

Relative Extrema

Find all relative extrema for the following functions, as well as where each function is
increasing and decreasing.

(a)

SOLUTION
The derivative is There are no points where fails to exist,
so the only critical numbers will be found where the derivative equals 0. Setting the deriva-
tive equal to 0 gives

As in the previous section, the critical numbers 4 and are used to determine the
three intervals and shown on the number line in Figure 19.14, ` 2123, 4 2 ,12`, 23 2 ,

23

 x 5 4  or   x 5 23.

 x 2 4 5 0  or   x 1 3 5 0

 6 1x 2 4 2 1x 1 3 2 5 0

 6 1x2 2 x 2 12 2 5 0

 6x2 2 6x 2 72 5 0

f r 1x 2f r 1x 2 5 6x2 2 6x 2 72.

f 1x 2 5 2x3 2 3x2 2 72x 1 15

x

f(x)

f '(x)

Relative
minimum

Relative
maximum

Test
point

Test
point

Test
point

+–+

540–3–4

FIGURE 19

Method 1
First Derivative Test



Any number from each of the three intervals can be used as a test point to find the sign of
in each interval. Using 0, and 5 gives the following information.

Thus, the derivative is positive on negative on and positive on 
By Part 1 of the first derivative test, this means that the function has a relative maximum of

when by Part 2, f has a relative minimum of when
The function is increasing on and and decreasing on

The graph is shown in Figure 20. TRY YOUR TURN 2

123, 4 2 .14, ` 212`, 23 2x 5 4.
f 14 2 5 2193x 5 23;f 123 2 5 150

14, ` 2 .123, 4 2 ,12`, 23 2 ,

 f r 1 5 2 5 6 1 1 2 1 8 2 . 0

 f r 10 2 5 6 124 2 1 3 2 , 0

 f r 124 2 5 6 128 2 121 2 . 0

24,f r
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–3–4 –2

–1

0

–150

321 4 5

–200

–50

–100

50

100

150
f(x)

x

f increasing
f ′(x) > 0

f decreasing
f ′(x) < 0

f increasing
f ′(x) > 0

(4, –193)

(–3, 150)
f(x) = 2x3 – 3x2 – 72x + 15

FIGURE 20

Many graphing calculators can locate a relative extremum when supplied with an 
interval containing the extremum. For example, after graphing the function 

on a TI-84 Plus, we selected “maximum” from the CALC menu and
entered a left bound of and a right bound of 0. The calculator asks for an initial guess,
but in this example it doesn’t matter what we enter. The result of this process, as well as a
similar process for finding the relative minimum, is shown in Figure 21.

24
2x3 2 3x2 2 72x 1 15

f 1x 2 5
Method 2

Graphing Calculator

�4 6

160

�200

Maximum
X�-2.999997 Y�150

(a)

f(x) � 2x3 � 3x2 � 72x � 15

FIGURE 21

�4 6

160

�200

f(x) � 2x3 � 3x2 � 72x � 15

Minimum
X�3.9999996 Y�-193

(b)

24 5

80

280

y 5 6x2 2 6x 2 72

Zero
X5-3 Y50

FIGURE 22

Another way to verify the extrema with a graphing calculator is to graph
and find where the graph crosses the x-axis. Figure 22 shows the result of this approach for
finding the relative minimum of the previous function.

y 5 f r 1x 2

YOUR TURN 2 Find all 
relative extrema of 

.2x3 2 2x2 1 15x 1 10
f 1 x 2 5



(b)

SOLUTION Find 

The derivative fails to exist when but the function itself is defined when 
making 0 a critical number for f. To find other critical numbers, set 

Multiply both sides by .

Divide both sides by .

Cube both sides.

The critical numbers 0 and 1 are used to locate the intervals and
on a number line as in Figure 23. Evaluating at the test points 

and 2 and using the first derivative test shows that f has a relative maximum at 
the value of this relative maximum is Also, f has a relative minimum at

this relative minimum is The function is increasing on and
decreasing on and Notice that the graph, shown in Figure 24, has a sharp
point at the critical number where the derivative does not exist. In the last section of this
chapter we will show how to verify other features of the graph.

1 1, ` 2 .12`, 0 2
10, 1 2f 10 2 5 0.x 5 0;

f 1 1 2 5 2.
x 5 1;

21, 1 /2,f r 1x 21 1, ` 2
10, 1 2 ,12`, 0 2 ,

 1 5 x

 1 5 x1/3
 4 5 4x1/3

 
4

x1/3 5 4

 
4

x1/3 2 4 5 0

 f r 1x 2 5 0

f r 1x 2 5 0.
x 5 0,x 5 0,

f r 1x 2 5 4x21/3 2 4 5
4

x1/3 2 4

f r 1x 2 .
f 1x 2 5 6x2/3 2 4x
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YOUR TURN 3 Find all rela-
tive extrema of .f 1 x 2 5 x2/3 2 x5/3

–2

–2

3

42

f(x)

x

f(x) = 6x     – 4x2/3

(0, 0)

(1, 2)

FIGURE 24

20–1
x

1

– –+ f '(x)

f(x)

Relative
minimum

Relative
maximum

Test pointTest pointTest point

1
2

FIGURE 23

(c)

SOLUTION The derivative, found by using the product rule and the chain rule, is

This expression exists for all x in the domain of f. Since is always positive, the
derivative is 0 when

 x 5 6 

1

"2
< 60.707.

 x 5 6 "1 /2

 
1

2
5 x2

 1 5 2x2

 22x2 1 1 5 0

e22x2

 5 e22x2 122x2 1 1 2 .

 f r 1x 2 5 x 122x 2e22x2

1 e22x2

f 1x 2 5 xe22x2

FOR REVIEW
Recall that for all x, so
there can never be a solution to

for any function g 1x 2 .eg1x2 5 0

ex . 0

TRY YOUR TURN 3
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YOUR TURN 4 Find all 
relative extrema of .f 1 x 2 5 x2ex

There are two critical points, and Using test points of and 1
gives the results shown in Figure 25.

The function has a relative minimum at of and a rela-
tive maximum at of It is decreasing on the interval

increasing on the interval and decreasing on the
interval The graph is shown in Figure 26. TRY YOUR TURN 4

A critical number must be in the domain of the function. For example, the deriv-
ative of is which fails to exist
when But does not exist, so 4 is not a critical number, and the func-
tion has no relative extrema.

As mentioned at the beginning of this section, finding the maximum or minimum value
of a quantity is important in applications of mathematics. The final example gives a further
illustration.

Bicycle Sales

A small company manufactures and sells bicycles. The production manager has determined
that the cost and demand functions for bicycles per week are

where p is the price per bicycle.

(a) Find the maximum weekly revenue.

SOLUTION The revenue each week is given by

To maximize find Then find the critical numbers.

Since exists for all q, 45 is the only critical number. To verify that will
produce a maximum, evaluate the derivative on both sides of 

R r 140 2 5 10  and  R r 1 50 2 5 210

q 5 45.
q 5 45R r 1q 2

 q 5 45

 90 5 2q

 R r 1q 2 5 90 2 2q 5 0

R r 1q 2 .R 1q 2 5 90q 2 q2,

R 1q 2 5 qp 5 q 1 90 2 q 2 5 90q 2 q2.

C 1q 2 5 10 1 5q 1
1

60
 q3  and  p 5 D 1q 2 5 90 2 q,

q 1q $ 0 2

f 1 4 2x 5 4.
f r 1 x 2 5 24 / 1 x 2 4 2 2,f 1 x 2 5 x / 1 x 2 4 2

1 1 /"2, ` 2 .
121 /"2 , 1 /"2 2 ,12`, 21 /"2 2 ,

f 1 1 /"2 2 < 3.17.1 /"2
f 121 /"2 2 < 23.1721 /"2

21, 0,1 /"2 .21 /"2

CAUTION

EXAMPLE  4

10–1
x

– –+ f '(x)

f(x)

Relative
minimum

Relative
maximum

Test pointTest pointTest point

–1
√2

1
√2

–1

–2

4

2–2–3 31

2

–4

f(x)

x

f(x) = xe2 _ x2

FIGURE 26FIGURE 25



This shows that is increasing up to then decreasing, so there is a maxi-
mum value at of The maximum revenue will be $2025 and
will occur when 45 bicycles are produced and sold each week.

(b) Find the maximum weekly profit.

SOLUTION Since profit equals revenue minus cost, the profit is given by

Find the derivative and set it equal to 0 to find the critical numbers. (The derivative
exists for all q.)

Solving this equation by the quadratic formula gives the solutions and
Since q cannot be negative, the only critical number of concern is 25.8.

Determine whether produces a maximum by testing a value on either side of
25.8 in 

These results show that increases to and then decreases. Since q
must be an integer, evaluate at and . Since  and

the maximum value occurs when Thus, the maximum
profit of $1231.07 occurs when 26 bicycles are produced and sold each week. Notice that
this is not the same as the number that should be produced to yield maximum revenue.

(c) Find the price the company should charge to realize maximum profit.

SOLUTION As shown in part (b), 26 bicycles per week should be produced and sold
to get the maximum profit of $1231.07 per week. Since the price is given by

if then The manager should charge $64 per bicycle and produce and
sell 26 bicycles per week to get the maximum profit of $1231.07 per week. Figure 27
shows the graphs of the functions used in this example. Notice that the slopes of the
revenue and cost functions are the same at the point where the maximum profit occurs.
Why is this true? TRY YOUR TURN 5

p 5 64.q 5 26,

p 5 90 2 q,

q 5 26.P 126 2 5 1231.07,
P 125 2 5 1229.58q 5 26q 5 25P 1q 2

q 5 25.8P 1q 2

P r 10 2 5 85  and  P r 140 2 5 275

P r 1q 2 .
q 5 25.8

q < 265.8.
q < 25.8

P r 1q 2 5 2 

1

20
 q2 2 2q 1 85 5 0

 5 2 

1

60
 q3 2 q2 1 85q 2 10.

 5 1 90q 2 q2 2 2 a10 1 5q 1
1

60
 q3b

 P 1q 2 5 R 1q 2 2 C 1q 2

R 145 2 5 2025.q 5 45
q 5 45,R 1q 2
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YOUR TURN 5 Find the 
maximum weekly profit and the
price a company should charge to
realize maximum profit if

and
.p 5 D 1 q 2 5 50 2 2q

C 1 q 2 5 100 1 10q

R q C q

q

C q q q

R q q q

FIGURE 27



Be careful to give the y-value of the point where an extremum occurs. Although
we solve the equation for x to find the extremum, the maximum or
minimum value of the function is the corresponding y-value. Thus, in Example 4(a),
we found that at the maximum weekly revenue is $2025 (not $45).

The examples in this section involving the maximization of a quadratic function, such
as the advertising example and the bicycle revenue example, could be solved by the meth-
ods described in Chapter 2 on Nonlinear Functions. But those involving more complicated
functions, such as the bicycle profit example, are difficult to analyze without the tools of
calculus.

Finding extrema for realistic problems requires an accurate mathematical model of the
problem. In particular, it is important to be aware of restrictions on the values of the vari-
ables. For example, if closely approximates the number of items that can be manufac-
tured daily on a production line when x is the number of employees on the line, x must
certainly be restricted to the positive integers or perhaps to a few common fractional val-
ues. (We can imagine half-time workers, but not -time workers.)

On the other hand, to apply the tools of calculus to obtain an extremum for some func-
tion, the function must be defined and be meaningful at every real number in some interval.
Because of this, the answer obtained from a mathematical model might be a number that is
not feasible in the actual problem.

Usually, the requirement that a continuous function be used, rather than one that can
take on only certain selected values, is of theoretical interest only. In most cases, the meth-
ods of calculus give acceptable results as long as the assumptions of continuity and differ-
entiability are not totally unreasonable. If they lead to the conclusion, say, that 
workers should be hired, it is usually only necessary to investigate acceptable values close
to This was done in Example 4.80 "2.

80 "2

1 /49

T 1x 2

q 5 45,

f r 1x 2 5 0
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CAUTION

Find the locations and values of all relative extrema for the
functions with graphs as follows. Compare with Exercises 1–8
in the preceding section.

1. 2.

3. 4.

5. 6.

7. 8.

5.2 EXERCISES

f x

x 2 4
–2

2

f(x)

x

g x

x

–2
–2 42

2

g(x)

x

2 4

2

h(x)

x

–2
–2–4 2

2

h(x)

x

–4
–2

2

f(x)

x
–2 2

–2

2

f (x)

x



For each of the exercises listed below, suppose that the function
that is graphed is not but . Find the locations of all 
relative extrema, and tell whether each extremum is a relative
maximum or minimum.

9. Exercise 1 10. Exercise 2

11. Exercise 7 12. Exercise 8

Find the x-value of all points where the functions defined as fol-
lows have any relative extrema. Find the value(s) of any relative
extrema.

13. 14.

15.

16.

17.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

Use the derivative to find the vertex of each parabola.

35. 36.

Graph each function on a graphing calculator, and then use the
graph to find all relative extrema (to three decimal places).
Then confirm your answer by finding the derivative and using
the calculator to solve the equation 

37.

38.

39. Graph with a graphing
calculator in the window by Use the
graph and the function to determine the x-values of all
extrema.

40. Consider the function

Source: Mathematics Teacher.

a. Using a graphing calculator, try to find any local minima, or
tell why finding a local minimum is difficult for this function.

g 1x 2 5
1

x12 2 2a
1000

x
b

6

 .

3215, 30 4.3210, 10 4
f 1x 2 5 2 0 x 1 1 0 1 4 0 x 2  5 0220

f 1x 2 5 2x5 2 x4 1 2x3 2 25x2 1 9x 1 12

f 1x 2 5 x5 2 x4 1 4x3 2 30x2 1 5x 1 6

f r 1 x 2 5 0.

y 5 ax2 1 bx 1 cy 5 22x2 1 12x 2 5

f 1x 2 5 x 1 82xf 1x 2 5
2x

x

f 1x 2 5
x2

ln x
f 1x 2 5 2x 1 ln x

f 1x 2 5 3xex 1 2f 1x 2 5 x2ex 2 3

f 1x 2 5
x2 2 6x 1 9

x 1 2
f 1x 2 5

x2 2 2x 1 1

x 2 3

f 1x 2 5 x2 1
1

x
f 1x 2 5 x 2

1

x

f 1x 2 5 3x5/3 2 15x2/3f 1x 2 5 2x 1 3x2/3

f 1x 2 5
1 5 2 9x 2 2/3

7
1 1f 1x 2 5 3 2 1 8 1 3x 2 2/3

f 1x 2 5 x4 2 8x2 1 9f 1x 2 5 x4 2 18x2 2 4

f 1x 2 5 2 

2

3
 x3 2

1

2
 x2 1 3x 2 4

f 1x 2 5 2 

4

3
 x3 2

21

2
 x2 2 5x 1 8

f 1x 2 5 x3 1 3x2 2 24x 1 2

f 1x 2 5 x3 1 6x2 1 9x 2 8

f 1x 2 5 x2 1 8x 1 5f 1x 2 5 x2 2 10x 1 33

f r 1 x 2f 1 x 2
b. Find any local minima using the techniques of calculus.

c. Based on your results in parts a and b, describe circum-
stances under which relative extrema are easier to find
using the techniques of calculus than using a graphing cal-
culator.

APPLICATIONS
Business and Economics

Profit In Exercises 41–44, find (a) the number, q, of units that
produces maximum profit; (b) the price, p, per unit that pro-
duces maximum profit; and (c) the maximum profit, P.

41.

42.

43.

44.

45. Power On August 8, 2007, the power used in New York state
(in thousands of megawatts) could be approximated by the
function

where t is the number of hours since midnight, for 
0 � t � 24. Find any relative extrema for power usage, as well
as when they occurred. Source: Current Energy.

46. Profit The total profit (in thousands of dollars) from the
sale of x units of a certain prescription drug is given by

for x in 

a. Find the number of units that should be sold in order to
maximize the total profit.

b. What is the maximum profit?

47. Revenue The demand equation for telephones at one store is

where p is the price (in dollars) and q is the quantity of tele-
phones sold per week. Find the values of q and p that maxi-
mize revenue.

48. Revenue The demand equation for one type of computer net-
working system is

where p is the price (in dollars) and q is the quantity of servers
sold per month. Find the values of q and p that maximize
revenue.

49. Cost Suppose that the cost function for a product is given by
Find the production level

(i.e., value of x) that will produce the minimum average cost
per unit C 1x 2 .

C 1x 2 5 0.002x3 1 9x 1 6912.

p 5 D 1q 2 5 500qe20.0016q2

,

p 5 D 1q 2 5 200e20.1q,

30, 10 4.

P 1x 2 5 ln 12x3 1 3x2 1 72x 1 1 2

P 1x 2

P 1 t 2 5 20.005846t3 1 0.1614t2 2 0.4910t 1 20.47,

C 1q 2 5 21.047q 1 3; p 5 50 2 5 ln 1q 1 10 2

C 1q 2 5 100 1 20qe20.01q; p 5 40e20.01q

C 1q 2 5 25q 1 5000; p 5 90 2 0.02q

C 1q 2 5 80 1 18q; p 5 70 2 2q
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where is the thermic effect of food (in and t is the
number of hours that have elapsed since eating a meal. Find
the time after the meal when the thermic effect of the food is
maximized. Source: American Journal of Clinical Nutrition.

Social  Sciences

55. Attitude Change Social psychologists have found that as the
discrepancy between the views of a speaker and those of an
audience increases, the attitude change in the audience also
increases to a point but decreases when the discrepancy
becomes too large, particularly if the communicator is viewed
by the audience as having low credibility. Suppose that the
degree of change can be approximated by the function

where x is the discrepancy between the views of the speaker
and those of the audience, as measured by scores on a ques-
tionnaire. Find the amount of discrepancy the speaker should
aim for to maximize the attitude change in the audience.
Source: Journal of Personality and Social Psychology.

56. Film Length A group of researchers found that people prefer
training films of moderate length; shorter films contain too lit-
tle information, while longer films are boring. For a training
film on the care of exotic birds, the researchers determined that
the ratings people gave for the film could be approximated by

where t is the length of the film (in minutes). Find the film
length that received the highest rating.

Physical  Sciences

57. Height After a great deal of experimentation, two Atlantic
Institute of Technology senior physics majors determined that
when a bottle of French champagne is shaken several times,
held upright, and uncorked, its cork travels according to

where s is its height (in feet) above the ground t seconds after
being released.

a. How high will it go?

b. How long is it in the air?

s 1 t 2 5 216t2 1 40t 1 3,

R 1 t 2 5
20t

t2 1 100
 ,

D 1x 2 5 2x4 1 8x3 1 80x2,

kJ/hr),F 1 t 250. Unemployment The annual unemployment rates of the U.S.
civilian noninstitutional population for 1990–2009 are shown
in the graph. Identify the years where relative extrema occur,
and estimate the unemployment rate at each of these years.
Source: Bureau of Labor Statistics.
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Life Sciences

51. Activity Level In the summer the activity level of a certain type
of lizard varies according to the time of day. A biologist has
determined that the activity level is given by the function

where t is the number of hours after 12 noon. When is the
activity level highest? When is it lowest?

52. Milk Consumption The average individual daily milk con-
sumption for herds of Charolais, Angus, and Hereford calves
can be described by the function

where is the milk consumption (in kilograms) and t is
the age of the calf (in weeks). Source: Animal Production.

a. Find the time in which the maximum daily consumption
occurs and the maximum daily consumption.

b. If the general formula for this model is given by

find the time where the maximum consumption occurs and
the maximum consumption. (Hint: Express your answer in
terms of a, b, and c.)

53. Alaskan Moose The mathematical relationship between the
age of a captive female moose and its mass can be described
by the function

where is the mass of the moose (in kilograms) and t is
the age (in years) of the moose. Find the age at which the mass
of a female moose is maximized. What is the maximum mass?
Source: Journal of Wildlife Management.

54. Thermic Effect of Food As we saw in the last section, the
metabolic rate after a person eats a meal tends to go up and
then, after some time has passed, returns to a resting metabolic
rate. This phenomenon is known as the thermic effect of food
and can be described for a particular individual as

F 1 t 2 5 210.28 1 175.9te2t/1.3,

M 1 t 2

M 1 t 2 5 369 10.93 2 tt0.36, t # 12,

M 1 t 2 5 atbe2ct,

M 1 t 2

M 1 t 2 5 6.281t0.242e20.025t,  1 # t # 26,

a 1 t 2 5 0.008t3 2 0.288t2 1 2.304t 1 7,

YOUR TURN ANSWERS 

1. Relative maximum of at ; relative minima of
at and at .

2. Relative maximum of at 
and relative minimum of at .

3. Relative maximum of at x � 2/5

and relative minimum of at x = 0.

4. Relative maximum of at x � �2 and
relative minimum of at x � 0.

5. Maximum weekly profit is $100 when q � 10 and the com-
pany should charge $30 per item.

f 10 2 5 0
f 122 2 5 4e22 < 0.5413

f 10 2 5 0

fa
2

5
b 5

3

5
a

2

5
b

2/3
< 0.3257

x 5 23f 123 2 5 226
x 5 5 /3f 1 5 /3 2 5 670 /27 < 24.8

x 5 x3f 1x3 2x 5 x1f 1x1 2
x 5 x2f 1x2 2
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APPLY IT

Higher Derivatives, Concavity, and 
the Second Derivative Test
Just because the price of a stock is increasing, does that alone make it a
good investment?
We will address this question in Example 1.

5.3

APPLY IT 

In the first section of this chapter, we used the derivative to determine intervals where a
function is increasing or decreasing. For example, if the function represents the price of a
stock, we can use the derivative to determine when the price is increasing. In addition, it
would be important for us to know how the rate of increase is changing. We can determine
how the rate of increase (or the rate of decrease) is changing by determining the rate of
change of the derivative of the function. In other words, we can find the derivative of the
derivative, called the second derivative, as shown in the following example.

Stock Prices

Suppose a friend is trying to get you to invest in the stock of a young company. The follow-
ing function represents the price of the company’s stock since it became available two
years ago:

,

where t is the number of months since the stock became available. He claims that the price
of the stock is always increasing and that you will make a fortune on it. Verify his claims.
Is the price of the stock increasing? How fast? How much will you make if you invest now?

SOLUTION The derivative of ,

,

is always positive because is positive for t � 0. This means that the price function 
is always increasing. But how fast is it increasing?

The derivative tells how fast the price is increasing at any number
of months, t, since the stock became available. For example, when t � 1 month, �
1/2, and the price is increasing at 1/2 dollar, or 50 cents, per month. When t � 4 months,

� 1/4; the stock is increasing at 25 cents per month. By the time you buy in at t � 24
months, the price is increasing at 10 cents per month, and the rate of increase looks as
though it will continue to decrease.

In general, the rate of increase in is given by the derivative of , called the
second derivative and denoted by . Since ,

.

is negative for t � 0 and, therefore, confirms the suspicion that the rate of increase in
price does indeed decrease for all t � 0. The price of the company’s stock will not drop, but
the amount of return will certainly not be the fortune your friend predicts.

If you invest now, at t � 24 months, the price would be $21.90. A year later, it would
be worth $23 a share. If you were rich enough to buy 100 shares for $21.90 each, the total
investment would be worth $2300 in a year. The increase of $110 is about 5% of the investment.
The only investors to make a lot of money on this stock would be those who bought early,
when the rate of increase was much greater.

Ps 1 t 2

Ps 1 t 2 5 2
1

4
t23/2 5 2

1

4"t3

P r 1 t 2 5 1 1 /2 2 t21/2Ps 1 t 2
P r 1 t 2P r

P r 1 t 2

P r 1 t 2
P r 1 t 2 5 1 / 12"t 2

P 1 t 2"t

P r 1 t 2 5
1

2
 t21/2 5

1

2"t

P 1 t 2

P 1 t 2 5 17 1 t1/2

P 1 t 2

EXAMPLE  1



As mentioned earlier, the second derivative of a function f, written gives the rate of
change of the derivative of f. Before continuing to discuss applications of the second deriv-
ative, we need to introduce some additional terminology and notation.

Higher Derivatives If a function f has a derivative then the derivative of if it
exists, is the second derivative of f, written The derivative of if it exists, is called the
third derivative of f, and so on. By continuing this process, we can find fourth derivatives
and other higher derivatives. For example, if then

First derivative of

Second derivative of

Third derivative of

and

Fourth derivative of

Notation for Higher Derivatives
The second derivative of can be written using any of the following notations:

The third derivative can be written in a similar way. For the nth derivative is
written 

Notice the difference in notation between which indicates the fourth
derivative of , and which indicates raised to the fourth power.

Second Derivative

Let 

(a) Find 

SOLUTION To find the second derivative of find the first derivative, and then
take its derivative.

(b) Find 

SOLUTION Since 

TRY YOUR TURN 1

Second Derivative

Find the second derivative for the functions defined as follows.

(a)

SOLUTION Here, using the chain rule,

Use the product rule to find 

 5 12x2 2 4

 5 8x2 1 4x2 2 4

 fs 1x 2 5 4x 12x 2 1 1x2 2 1 2 14 2

fs 1x 2 .

f r 1x 2 5 2 1x2 2 1 2 12x 2 5 4x 1x2 2 1 2 .

f 1x 2 5 1x2 2 1 2 2

fs 10 2 5 6 10 2 1 12 5 12.

fs 1x 2 5 6x 1 12,

fs 10 2 .

 fs 1x 2 5 6x 1 12

 f r 1x 2 5 3x2 1 12x 2 9

f 1x 2 ,
fs 1x 2 .

f 1x 2 5 x3 1 6x2 2 9x 1 8.

f 1x 2f4 1x 2 ,f 1x 2
f142 1x 2 ,

f1n2 1x 2 .
n $ 4,

f 0 1 x 2 , 
d2y

dx2  ,  or  Dx
2

 
[ f 1 x 2 \.

y 5 f 1x 2

f f142 1x 2 5 24.

f ft 1x 2 5 24x 1 12,

f fs 1x 2 5 12x2 1 12x 1 6,

f f r 1x 2 5 4x3 1 6x2 1 6x 2 5,

f 1x 2 5 x4 1 2x3 1 3x2 2 5x 1 7,

fs,fs.
f r,f r,

fs,
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EXAMPLE  2

EXAMPLE  3

CAUTION

YOUR TURN 1 Find if
.f 1 x 2 5 5x4 2 4x3 1 3x
fs 1 1 2



(b)

SOLUTION Use the product rule.

(c)

SOLUTION Here, we need the quotient rule.

TRY YOUR TURN 2

Earlier, we saw that the first derivative of a function represents the rate of change of
the function. The second derivative, then, represents the rate of change of the first deriva-
tive. If a function describes the position of a vehicle (along a straight line) at time t, then the
first derivative gives the velocity of the vehicle. That is, if describes the position
(along a straight line) of the vehicle at time t, then gives the velocity at time t.

We also saw that velocity is the rate of change of distance with respect to time. Recall, the
difference between velocity and speed is that velocity may be positive or negative, whereas
speed is always positive. A negative velocity indicates travel in a negative direction (backing
up) with regard to the starting point; positive velocity indicates travel in the positive direction
(going forward) from the starting point.

The instantaneous rate of change of velocity is called acceleration. Since instanta-
neous rate of change is the same as the derivative, acceleration is the derivative of velocity.
Thus if represents the acceleration at time t, then

If the velocity is positive and the acceleration is positive, the velocity is increasing, so the
vehicle is speeding up. If the velocity is positive and the acceleration is negative, the vehicle
is slowing down. A negative velocity and a positive acceleration mean the vehicle is back-
ing up and slowing down. If both the velocity and acceleration are negative, the vehicle is
speeding up in the negative direction.

Velocity and Acceleration

Suppose a car is moving in a straight line, with its position from a starting point (in feet) at
time t (in seconds) given by

Find the following.

(a) The velocity at any time t

SOLUTION The velocity is given by

feet per second.

v 1 t 2 5 s r 1 t 2 5 3t2 2 4t 2 7

s 1 t 2 5 t3 2 2t2 2 7t 1 9.

a 1 t 2 5
d

dt
 v 1 t 2 5 ss 1 t 2 .

a 1 t 2

v 1 t 2 5 s r 1 t 2
y 5 s 1 t 2

 hs 1x 2 5
ex 121 2 2 1 1 2 x 2ex

1 ex 2 2
5

ex 121 2 1 1 x 2
1 ex 2 2

5
22 1 x

ex

 h r 1x 2 5
ex 2 xex

1 ex 2 2
5

ex 1 1 2 x 2
1 ex 2 2

5
1 2 x

ex

h 1x 2 5
x

ex

 gs 1x 2 5 0 1 4 . 1
x

5
4
x

 g r 1x 2 5 4x . 1
x

1 1 ln x 2 . 4 5 4 1 4 1 ln x 2

g 1x 2 5 4x 1 ln x 2
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EXAMPLE  4

YOUR TURN 2 Find the 
second derivative for 
(a)
(b)

(c) .h 1x 2 5
lnx
x

g 1 x 2 5 xex
f 1 x 2 5 1 x3 1 1 2 2



(b) The acceleration at any time t

SOLUTION Acceleration is given by

feet per second per second.

(c) The time intervals (for ) when the car is going forward or backing up

SOLUTION We first find when the velocity is 0, that is, when the car is stopped.

We are interested in Choose a value of t in each of the intervals (0, 7/3) and
to see that the velocity is negative in and positive in The

car is backing up for the first 7/3 seconds, then going forward.

(d) The time intervals (for ) when the car is speeding up or slowing down

SOLUTION The car will speed up when the velocity and acceleration are the same sign
and slow down when they have opposite signs. Here, the acceleration is positive when

that is, seconds, and negative for seconds. Since the veloc-
ity is negative in and positive in the car is speeding up for

seconds, slowing down for seconds, and speeding up again
for seconds. See the sign graphs.

� � �

0

� � �

0

� � �

net result

0

TRY YOUR TURN 3

Concavity of a Graph The first derivative has been used to show where a function
is increasing or decreasing and where the extrema occur. The second derivative gives the
rate of change of the first derivative; it indicates how fast the function is increasing or
decreasing. The rate of change of the derivative (the second derivative) affects the shape of
the graph. Intuitively, we say that a graph is concave upward on an interval if it “holds
water” and concave downward if it “spills water.” See Figure 28.

7 /32 /3

7 /32 /3

a 1 t 2

7 /32 /3

v 1 t 2

t . 7 /3
2 /3 , t , 7 /30 , t , 2 /3

1 7 /3, ` 2 ,10, 7 /3 2
t , 2 /3t . 2 /36t 2 4 . 0,

t $ 0

1 7 /3, ` 2 .10, 7 /3 21 7 /3, ` 2
t $ 0.

 t 5 7 /3  or  t 5 21

 1 3t 2 7 2 1 t 1 1 2 5 0

 v 1 t 2 5 3t2 2 4t 2 7 5 0

t $ 0

a 1 t 2 5 v r 1 t 2 5 ss 1 t 2 5 6t 2 4
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YOUR TURN 3 Find the
velocity and acceleration of the car
if the distance (in feet) is given by

, at
time t (in seconds). When is the car
going forward or backing up? When
is the car speeding up or slowing
down?

s 1 t 2 5 t3 2 3t2 2 24t 1 10

0

(a)

f (x)

y = f (x)

x

Concave upward
“holds water”

Concave downward
“spills water”

FIGURE 28

0

(b)

f (x)
y = f (x)

x

Concave upward
“holds water”

Concave downward
“spills water”



More precisely, a function is concave upward on an interval if the graph of the
function lies above its tangent line at each point of A function is concave downward
on if the graph of the function lies below its tangent line at each point of A
point where a graph changes concavity is called an inflection point. See Figure 29.

1a, b 2 .1a, b 2
1a, b 2 .

1a, b 2

CHAPTER 5 Graphs and the Derivative278

f x

xa b

FIGURE 29

Users of soft contact lenses recognize concavity as the way to tell if a lens is inside out. As
Figure 30 shows, a correct contact lens has a profile that is entirely concave upward. The profile
of an inside-out lens has inflection points near the edges, where the profile begins to turn con-
cave downward very slightly.

inside-out

(b)
correct

(a)

FIGURE 30

f(x)

x0

(a)

Decreasing Increasing

Concave upward

f(x)

x0

(b)

Concave
upward

Concave
downward

Increasing

f(x)

x0

(c)

Decreasing Increasing

Concave downward

FIGURE 31

Just as a function can be either increasing or decreasing on an interval, it can be either
concave upward or concave downward on an interval. Examples of various combinations
are shown in Figure 31.



Test for Concavity
Let f be a function with derivatives and existing at all points in an interval 
Then f is concave upward on if for all x in and concave down-
ward on if for all x in 

An easy way to remember this test is by the faces shown in Figure 34. When the sec-
ond derivative is positive at a point the graph is concave upward ( ). When the
second derivative is negative at a point the graph is concave downward ( ).(12 2 2 ,

(11 1 2 ,

1a, b 2 .fs 1x 2 , 01a, b 2
1a, b 2fs 1x 2 . 01a, b 2

1a, b 2 .fsf r

Figure 32 shows two functions that are concave upward on an interval Several
tangent lines are also shown. In Figure 32(a), the slopes of the tangent lines (moving from
left to right) are first negative, then 0, and then positive. In Figure 32(b), the slopes are all
positive, but they get larger.

In both cases, the slopes are increasing. The slope at a point on a curve is given by the
derivative. Since a function is increasing if its derivative is positive, its slope is increasing
if the derivative of the slope function is positive. Since the derivative of a derivative is the
second derivative, a function is concave upward on an interval if its second derivative is
positive at each point of the interval.

1a, b 2
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g(x)

x0

(b)

a b

Increasing
positive slopes

f(x)

x0

(a)

a b

Negative
slope Positive

slope

Zero
slope

FIGURE 32

h(x)

x0

(a)

a b

Positive
slope

Negative
slope

Zero
slope

FIGURE 33

k (x)

x0

(b)

a b

Decreasing
negative slopes

FIGURE 34

A similar result is suggested by Figure 33 for functions whose graphs are concave
downward. In both graphs, the slopes of the tangent lines are decreasing as we move from
left to right. Since a function is decreasing if its derivative is negative, a function is concave
downward on an interval if its second derivative is negative at each point of the interval.
These observations suggest the following test.



Concavity

Find all intervals where is concave upward or downward, and
find all inflection points.

SOLUTION The first derivative is and the second derivative is
We factor as and then create a num-

ber line for as we did in the previous two sections for
We see from Figure 35 that on the intervals and so f is

concave upward on these intervals. Also, on the interval so f is concave
downward on this interval.

1 1, 3 2 ,fs 1x 2 , 0
1 3, ` 2 ,12`, 1 2fs 1x 2 . 0

f r 1x 2 .fs 1x 2
12 1x 2 1 2 1x 2 3 2 ,fs 1x 2fs 1x 2 5 12x2 2 48x 1 36.

f r 1x 2 5 4x3 2 24x2 1 36x,

f 1x 2 5 x4 2 8x3 1 18x2
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EXAMPLE  5

410 32

+ +– f"(x)

f(x)Concave
upward

Concave
downward

Concave
upward

Test pointTest pointTest point

FIGURE 35x

f x
f x x x x

FIGURE 36 Finally, we have inflection points where changes sign, namely, at and 
Since and the inflection points are and 

Although we were only seeking information about concavity and inflection points in 
this example, it is also worth noting that ,
which has roots at and . Verify that there is a relative minimum at (0, 0), but that
(3, 27) is neither a relative minimum nor a relative maximum. The function is graphed in 
Figure 36. TRY YOUR TURN 4

Example 5 suggests the following result.

At an inflection point for a function f, the second derivative is 0 or does not exist.

1. Be careful with the previous statement. Finding a value of x where
does not mean that an inflection point has been located. 

For example, if then which is 0
at The graph of is always concave upward, how-
ever, so it has no inflection point. See Figure 37.

2. Note that the concavity of a function might change not only at a point where
but also where does not exist. For example, this happens

at for .

Most graphing calculators do not have a feature for finding inflection points. Nevertheless, a graph-
ing calculator sketch can be useful for verifying that your calculations for finding inflection points
and intervals where the function is concave up or down are correct.

Second Derivative Test The idea of concavity can often be used to decide whether
a given critical number produces a relative maximum or a relative minimum. This test, an
alternative to the first derivative test, is based on the fact that a curve with a horizontal tan-
gent at a point c and concave downward on an open interval containing c also has a relative
maximum at c. A relative minimum occurs when a graph has a horizontal tangent at a point
d and is concave upward on an open interval containing d. See Figure 38.

f 1 x 2 5 x1/3x 5 0
fs 1 x 2fs 1 x 2 5 0

f 1 x 2 5 1 x 2 1 2 4x 5 1.
fs 1 x 2 5 12 1 x 2 1 2 2,f 1 x 2 5 1 x 2 1 2 4,

fs 1 x 2 5 0

x 5 3x 5 0
4x 1x 2 3 2 2f' 1x 2 5 4x3 2 24x2 1 36x 5

1 3, 27 2 .1 1, 11 2f 1 3 2 5 27,f 1 1 2 5 11
x 5 3.x 5 1fs

YOUR TURN 4 Find all inter-
vals where is
concave upward or downward, and
find all inflection points.

f 1 x 2 5 x5 2 30x3

CAUTION

2

1

21
0 x

f(x)

f(x) = (x  – 1)4

Second derivative is 0 at
x = 1, but (1, f(1)) is not
an inflection point.

FIGURE 37

TECHNOLOGY NOTE



A function f is concave upward on an interval if for all x in the interval,
while f is concave downward on an interval if for all x in the interval. These
ideas lead to the second derivative test for relative extrema.

Second Derivative Test
Let exist on some open interval containing c, (except possibly at c itself) and 
let 

1. If then is a relative minimum.

2. If then is a relative maximum.

3. If or does not exist, then the test gives no information about
extrema, so use the first derivative test.

Second Derivative Test

Find all relative extrema for

SOLUTION First, find the points where the derivative is 0. Here 
Solve the equation to get

Now use the second derivative test. The second derivative is Evaluate
first at getting

so that by Part 2 of the second derivative test, leads to a relative maximum of
Also, when

with leading to a relative minimum of TRY YOUR TURN 5f 1 1 /2 2 5 21 /4.1 /2

fsa
1

2
b 5 24a

1

2
b 1 14 5 12 1 14 5 26 . 0,

x 5 1 /2,f 125 /3 2 5 691 /27.
25 /3

fsa2 

5

3
b 5 24a2 

5

3
b 1 14 5 240 1 14 5 226 , 0,

25 /3,fs 1x 2
fs 1x 2 5 24x 1 14.

 x 5 2 

5

3
   x 5

1

2
 .

 3x 5 25   2x 5 1

 3x 1 5 5 0  or   2x 2 1 5 0

 2 1 3x 1 5 2 12x 2 1 2 5 0

 2 1 6x2 1 7x 2 5 2 5 0

 12x2 1 14x 2 10 5 0

f r 1x 2 5 0
12x2 1 14x 2 10.f r 1x 2  5

f 1x 2 5 4x3 1 7x2 2 10x 1 8.

fs 1 c 2fs 1 c 2 5 0

f 1 c 2fs 1 c 2 , 0,

f 1 c 2fs 1 c 2 . 0,

f r 1 c 2 5 0.
fs

fs 1x 2 , 0
fs 1x 2 . 0
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YOUR TURN 5
Find all relative extrema of

.f 1 x 2 5 22x3 1 3x2 1 72x

dc
0 x

f(x) f" (x) < 0
Concave downward

Relative
maximum

y = f(x)

Relative
minimum f" (x) > 0

Concave upward

FIGURE 38

NOTE
In Case 3 of the second derivative
test (when or does 
not exist), observe that if 
changes sign at c, there is an in-
flection point at x 5 c.

fs 1 x 2
fs 1 c 2 5 0

EXAMPLE  6



The second derivative test works only for those critical numbers c that make
This test does not work for critical numbers c for which does

not exist (since would not exist either). Also, the second derivative test
does not work for critical numbers c that make In both of these
cases, use the first derivative test.

The law of diminishing returns in economics is related to the idea of concavity. The
function graphed in Figure 39 gives the output y from a given input x. If the input were
advertising costs for some product, for example, the output might be the corresponding rev-
enue from sales.

The graph in Figure 39 shows an inflection point at For the graph is
concave upward, so the rate of change of the slope is increasing. This indicates that the output
y is increasing at a faster rate with each additional dollar spent. When however, the
graph is concave downward, the rate of change of the slope is decreasing, and the increase in
y is smaller with each additional dollar spent. Thus, further input beyond c dollars produces
diminishing returns. The inflection point at is called the point of diminishing
returns. Beyond this point there is a smaller and smaller return for each dollar invested.

1 c, f 1 c 2 2

x . c,

x , c,1 c, f 1 c 2 2 .

fs 1 c 2 5 0.
fs 1 c 2

f r 1 c 2f r 1 c 2 5 0.
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CAUTION

c0 x

y

(c, f(c))
f(c)

Input (dollars)

O
ut

pu
t (

do
lla

rs
)

Inflection point

FIGURE 39

As another example of diminishing returns from agriculture, with a fixed amount of
land, machinery, fertilizer, and so on, adding workers increases production a lot at first,
then less and less with each additional worker.

Point of Diminishing Returns

The revenue generated from sales of a certain product is related to the amount x spent
on advertising by

where x and are in thousands of dollars. Is there a point of diminishing returns for this
function? If so, what is it?

SOLUTION Since a point of diminishing returns occurs at an inflection point, look for an
x-value that makes Write the function as

Now find and then 

 Rs 1x 2 5
2

25
2

1

2500
 x

 R r 1x 2 5
2x

25
2

3x2

15,000
5

2

25
 x 2

1

5000
 x2

Rs 1x 2 .R r 1x 2

R 1x 2 5
600

15,000
 x2 2

1

15,000
 x3 5

1

25
 x2 2

1

15,000
 x3

 .

Rs 1x 2 5 0.

R 1x 2

R 1x 2 5
1

15,000
 1 600x2 2 x3 2 , 0 # x # 600,

R 1x 2

EXAMPLE  7



Set equal to 0 and solve for x.

Test a number in the interval to see that is positive there. Then test a
number in the interval to find negative in that interval. Since the sign of

changes from positive to negative at the graph changes from concave upward
to concave downward at that point, and there is a point of diminishing returns at the inflection
point (200, 1066 ). Investments in advertising beyond $200,000 return less and less for each
dollar invested. Verify that This means that when $200,000 is invested, another
$1000 invested returns approximately $8000 in additional revenue. Thus it may still be eco-
nomically sound to invest in advertising beyond the point of diminishing returns.

R r 1200 2 5 8.

2
3

x 5 200,Rs 1x 2
Rs 1x 21200, 600 2

Rs 1x 210, 200 2

 x 5
5000

25
5 200

 2 

1

2500
 x 5 2 

2

25

 
2

25
2

1

2500
 x 5 0

Rs 1x 2
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5.3 EXERCISES
Find (x) for each function. Then find (0) and (2).

1.

2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

Find , the third derivative of f, and , the fourth
derivative of f, for each function.

17.

18.

19.

20.

21. 22.

23. 24. f 1x 2 5
x

2x 1 1
f 1x 2 5

3x

x 2 2

f 1x 2 5
x 1 1

x
f 1x 2 5

x 2 1

x 1 2

f 1x 2 5 2x5 1 3x4 2 5x3 1 9x 2 2

f 1x 2 5 5x5 2 3x4 1 2x3 1 7x2 1 4

f 1x 2 5 22x4 1 7x3 1 4x2 1 x

f 1x 2 5 7x4 1 6x3 1 5x2 1 4x 1 3

f 142 1 x 2f t 1 x 2

f 1x 2 5 ln x 1
1

x
f 1x 2 5

ln x

4x

f 1x 2 5 0.5ex2

f 1x 2 5 5e2x2

f 1x 2 5 26x1/3f 1x 2 5 32x3/4

f 1x 2 5 "2x2 1 9f 1x 2 5 "x2 1 4

f 1x 2 5
2x

1 2 x2f 1x 2 5
x2

1 1 x

f 1x 2 5 8x2 1 6x 1 5f 1x 2 5 3x2 2 4x 1 8

f 1x 2 5 2x4 1 7x3 2
x2

2

f 1x 2 5 4x4 2 3x3 2 2x2 1 6

f 1x 2 5 4x3 1 5x2 1 6x 2 7

f 1x 2 5 5x3 2 7x2 1 4x 1 3

f sf sf s 25. Let 

a. Compute and 

b. Guess a formula for where n is any positive integer.

26. For find and What is the nth deriva-
tive of f with respect to x?

In Exercises 27–48, find the open intervals where the functions
are concave upward or concave downward. Find any inflection
points.

27. 28.

29. 30.

ft 1x 2 .fs 1x 2f 1x 2 5 ex,

f 1n2 1x 2 ,

f 152 1x 2 .f 142 1x 2 ,ft 1x 2 ,fs 1x 2 ,f r 1x 2 ,

f 1x 2 5 ln x.

–2 20 4

y

x

3

5

(2, 3)

–3 3 6

y

x

7

3

(3, 7)

0

–2 8

y

x

(–1, 7) (8, 6)

0

4

–4

8

–8

y

x

(–2, –4)

(6, –1)
0



31. 32.

33. 34.

35.

36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

For each of the exercises listed below, suppose that the function
that is graphed is not , but . Find the open intervals
where the original function is concave upward or concave
downward, and find the location of any inflection points.

49. Exercise 27 50. Exercise 28

51. Exercise 29 52. Exercise 30

53. Give an example of a function such that but
does not exist. Is there a relative minimum or maximum

or an inflection point at ?

54. a. Graph the two functions and on
the window by 

b. Verify that both f and g have an inflection point at 

c. How is the value of different from ?

d. Based on what you have seen so far in this exercise, is it
always possible to tell the difference between a point where
the second derivative is 0 or undefined based on the graph?
Explain.

55. Describe the slope of the tangent line to the graph of
for the following.

a. b.

56. What is true about the slope of the tangent line to the graph of
as As 

Find any critical numbers for f in Exercises 57–64 and then use
the second derivative test to decide whether the critical num-
bers lead to relative maxima or relative minima. If 
or does not exist for a critical number c, then the second
derivative test gives no information. In this case, use the first
derivative test instead.

57. 58.

59. 60.

61. 62.

63. 64. f 1x 2 5 x8/3 1 x5/3f 1x 2 5 x7/3 1 x4/3

f 1x 2 5 x3f 1x 2 5 1x 1 3 24
f 1x 2 5 2x3 2 4x2 1 2f 1x 2 5 3x3 2 3x2 1 1

f 1x 2 5 x2 2 12x 1 36f 1x 2 5 2x2 2 10x 2 25

f s 1 c 2
f s 1 c 2 5 0

xl 0?xl `?f 1x 2 5 ln x

xl 0xl 2`

f 1x 2 5 ex

gs 10 2fs 10 2
10, 0 2 .

322, 2 4.322, 2 4
g 1x 2 5 x5/3f 1x 2 5 x7/3

x 5 0
fs 10 2

f' 10 2 5 0f 1x 2

f r 1 x 2f 1 x 2

f 1x 2 5 52x2

f 1x 2 5 x2 log 0 x 0
f 1x 2 5 x2 1 8 ln 0 x 1 1 0f 1x 2 5 ln 1x2 1 1 2
f 1x 2 5 x7/3 1 56x4/3f 1x 2 5 x8/3 2 4x5/3

f 1x 2 5 2e2x2

f 1x 2 5 18x 2 18e2x

f 1x 2 5 2x 1x 2 3 2 2f 1x 2 5 x 1x 1 5 2 2

f 1x 2 5
22

x 1 1
f 1x 2 5

3

x 2 5

f 1x 2 5 2x3 2 12x2 2 45x 1 2

f 1x 2 5 22x3 1 9x2 1 168x 2 3

f 1x 2 5 8 2 6x 2 x2f 1x 2 5 x2 1 10x 2 9

Sometimes the derivative of a function is known, but not the
function. We will see more of this later in the book. For each
function defined in Exercises 65–68, find , then use a
graphing calculator to graph and in the indicated window.
Use the graph to do the following.

a. Give the (approximate) x-values where f has a maximum or
minimum.

b. By considering the sign of give the (approximate) inter-
vals where is increasing and decreasing.

c. Give the (approximate) x-values of any inflection points.

d. By considering the sign of give the intervals where f is
concave upward or concave downward.

65. by 

66. by 

67. by 

68. by 

69. Suppose a friend makes the following argument. A function f is
increasing and concave downward. Therefore, is positive
and decreasing, so it eventually becomes 0 and then negative,
at which point f decreases. Show that your friend is wrong by
giving an example of a function that is always increasing and
concave downward.

APPLICATIONS
Business and Economics

70. Product Life Cycle The accompanying figure shows the prod-
uct life cycle graph, with typical products marked on it. It illus-
trates the fact that a new product is often purchased at a faster
and faster rate as people become familiar with it. In time, satu-
ration is reached and the purchase rate stays constant until the
product is made obsolete by newer products, after which it is
purchased less and less. Source: tutor2u.

f r

322, 2 430, 1 4f' 1x 2 5 x2 1 x ln x;

321.5, 1.5 4323, 3 4f r 1x 2 5
1 2 x2

1x2 1 1 2 2
 ;

3220, 20 4321, 1.5 4f r 1x 2 5 10x2 1x 2 1 2 1 5x 2 3 2 ;

325, 15 4325, 5 4f r 1x 2 5 x3 2 6x2 1 7x 1 4;

fs 1x 2 ,

f 1x 2
f r 1x 2 ,

fsf r
fs 1 x 2f r
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a. Which products on the left side of the graph are closest to
the left-hand inflection point? What does the inflection point
mean here?

b. Which product on the right side of the graph is closest to the
right-hand inflection point? What does the inflection point
mean here?

c. Discuss where portable Blu-ray players, iPads, and other
new technologies should be placed on the graph.



a. At what time before 8 hours will the population be
maximized?

b. Find the maximum population.

80. Ozone Depletion According to an article in The New York
Times, “Government scientists reported last week that they had
detected a slowdown in the rate at which chemicals that
deplete the earth’s protective ozone layer are accumulating in
the atmosphere.” Letting be the amount of ozone-deplet-
ing chemicals at time t, what does this statement tell you about

and Source: The New York Times. 

81. Drug Concentration The percent of concentration of a certain
drug in the bloodstream x hours after the drug is administered
is given by

For example, after 1 hour the concentration is given by

a. Find the time at which concentration is a maximum.

b. Find the maximum concentration.

82. Drug Concentration The percent of concentration of a drug in
the bloodstream x hours after the drug is administered is given by

a. Find the time at which the concentration is a maximum.

b. Find the maximum concentration.

The next two exercises are a continuation of exercises first given
in the section on Derivatives of Exponential Functions. Find
the inflection point of the graph of each logistic function. This is
the point at which the growth rate begins to decline.

83. Insect Growth The growth function for a population of bee-
tles is given by

84. Clam Population Growth The population of a bed of clams is
described by

Hints for Exercises 85 and 86: Leave B, c, and k as constants
until you are ready to calculate your final answer.

85. Clam Growth Researchers used a version of the Gompertz
curve to model the growth of razor clams during the first seven
years of the clams’ lives with the equation

where gives the length (in centimeters) after t years,
and Find the

inflection point and describe what it signifies. Source: Journal
of Experimental Biology.

k 5 0.670840.c 5 7.267963,B 5 14.3032,
L 1 t 2

L 1 t 2 5 Be2ce2kt

,

G 1 t 2 5
5200

1 1 12e20.52t  .

G 1 t 2 5
10,000

1 1 49e20.1t  .

K 1x 2 5
4x

3x2 1 27
 .

K 1 1 2 5
3 1 1 2

12 1 4
5

3

5
 % 5 0.6% 5 0.006.

K 1x 2 5
3x

x2 1 4
 .

cs 1 t 2?c r 1 t 2 ,c 1 t 2 ,

c 1 t 2

71. Social Security Assets As seen in the first section of this chap-
ter, the projected year-end assets in the Social Security trust
funds, in trillions of dollars, where t represents the number of
years since 2000, can be approximated by

,

where . Find the value of t when Social Security
assets will decrease most rapidly. Approximately when does
this occur? Source: Social Security Administration.

Point of Diminishing Returns In Exercises 72–75, find the point
of diminishing returns (x, y) for the given functions, where
R(x), represents revenue (in thousands of dollars) and x repre-
sents the amount spent on advertising (in thousands of dollars).

72.

73.

74.

75.

76. Risk Aversion In economics, an index of absolute risk aver-
sion is defined as

where M measures how much of a commodity is owned and
is a utility function, which measures the ability of quan-

tity M of a commodity to satisfy a consumer’s wants. Find
for and for and deter-

mine which indicates a greater aversion to risk.

77. Demand Function The authors of an article in an economics
journal state that if is the demand function, then the
inequality

is equivalent to saying that the marginal revenue declines more
quickly than does the price. Prove that this equivalence is true.
Source: Bell Journal of Economics.

Life Sciences

78. Population Growth When a hardy new species is introduced
into an area, the population often increases as shown. Explain
the significance of the following function values on the graph.

a. b. c. fMf 1a 2f0

qDs 1q 2 1 D r 1q 2 , 0

D 1q 2

U 1M 2 5 M2/3,U 1M 2 5 "MI 1M 2

U 1M 2

I 1M 2 5
2Us 1M 2
U r 1M 2

 ,

R 1x 2 5 20.6x3 1 3.7x2 1 5x, 0 # x # 6

R 1x 2 5 20.3x3 1 x2 1 11.4x, 0 # x # 6

R 1x 2 5
4

27
 12x3 1 66x2 1 1050x 2 400 2 , 0 # x # 25

R 1x 2 5 10,000 2 x3 1 42x2 1 800x, 0 # x # 20

0 # t # 50

A 1 t 2 5 0.0000329t3 2 0.00450t2 1 0.0613t 1 2.34
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0 t

f(t)

a

(a, f(a))

fM

f0

79. Bacteria Population Assume that the number of bacteria 
(in millions) present in a certain culture at time t (in hours) is
given by

R 1 t 2 5 t2 1 t 2 18 2 1 96t 1 1000.

R 1 t 2



86. Breast Cancer Growth Researchers used a version of the
Gompertz curve to model the growth of breast cancer tumors
with the equation

where is the number of cancer cells after t days,
and Find the inflection point and describe

what it signifies. Source: Cancer Research.

87. Popcorn Researchers have determined that the amount of
moisture present in a kernel of popcorn affects the volume of
the popped corn and can be modeled for certain sizes of ker-
nels by the function

where x is moisture content (%, wet basis) and is the
expansion volume Describe the concavity of
this function. Source: Cereal Chemistry. 

88. Alligator Teeth Researchers have developed a mathematical
model that can be used to estimate the number of teeth N(t) at
time t (days of incubation) for Alligator mississippiensis, where

.

Find the inflection point and describe its importance to this
research. Source: Journal of Theoretical Biology.

Social  Sciences

89. Crime In 1995, the rate of violent crimes in New York City
continued to decrease, but at a slower rate than in previous
years. Letting be the rate of violent crime as a function of
time, what does this tell you about and 
Source: The New York Times.

Physical  Sciences

90. Chemical Reaction An autocatalytic chemical reaction is one
in which the product being formed causes the rate of formation
to increase. The rate of a certain autocatalytic reaction is given by

where x is the quantity of the product present and 100 repre-
sents the quantity of chemical present initially. For what value
of x is the rate of the reaction a maximum?

91. Velocity and Acceleration When an object is dropped straight
down, the distance (in feet) that it travels in t seconds is given by

Find the velocity at each of the following times.

a. After 3 seconds b. After 5 seconds

c. After 8 seconds

d. Find the acceleration. (The answer here is a constant—the
acceleration due to the influence of gravity alone near the
surface of Earth.)

92. Baseball Roger Clemens, ace pitcher for many major league
teams, including the Boston Red Sox, is standing on top of the
37-ft-high “Green Monster” left-field wall in Boston’s Fen-
way Park, to which he has returned for a visit. We have asked
him to fire his famous 95 mph (140 ft per second) fastball
straight up. The position equation, which gives the height of
the ball at any time t, in seconds, is given by 

Find the following. Source: Frederick
Russell.
216t2 1 140t 1 37.

s 1 t 2 5

s 1 t 2 5 216t2.

V 1x 2 5 12x 1 100 2 x 2 ,

fs 1 t 2?f r 1 t 2 ,f 1 t 2 ,
f 1 t 2

20.0685t

N 1 t 2 5 71.8e28.96e

1 in cm3/gram 2 .
v 1x 2

v 1x 2 5 235.98 1 12.09x 2 0.4450x2,

k 5 0.011.c 5 27.3,
N 1 t 2

N 1 t 2 5 ec 112e2kt2,
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a. The maximum height of the ball

b. The time and velocity when the ball hits the ground

93. Height of a Ball If a cannonball is shot directly upward with a
velocity of 256 ft per second, its height above the ground after
t seconds is given by Find the velocity
and the acceleration after t seconds. What is the maximum
height the cannonball reaches? When does it hit the ground?

s 1 t 2 5 256t 2 16t2.

94. Velocity and Acceleration of a Car A car rolls down a hill. Its
distance (in feet) from its starting point is given by 

where t is in seconds.

a. How far will the car move in 10 seconds?

b. What is the velocity at 5 seconds? At 10 seconds?

c. How can you tell from that the car will not stop?

d. What is the acceleration at 5 seconds? At 10 seconds?

e. What is happening to the velocity and the acceleration as t
increases?

95. Velocity and Acceleration A car is moving along a straight
stretch of road. The acceleration of the car is given by the
graph shown. Assume that the velocity of the car is always
positive. At what time was the car moving most rapidly?
Explain. Source: Larry Taylor.

v 1 t 2

1.5t2 1 4t,
s 1 t 2 5

2 4 6 80

a(t)

t

YOUR TURN ANSWERS 

1. 36 2. (a)

(b) (c)

3. and . Car backs up for the
first 4 seconds and then goes forward. It speeds up for 0 � t � 1,
slows down for 1 � t � 4, and then speeds up for t � 4.

4. Concave up on and ; concave down on 
and ; inflection points are , , and 

5. Relative maximum of at x � 4 and relative minimum
of at x � �3.f 123 2 5 2135

f 14 2 5 208

1 3, 2567 210, 0 2123, 567 210, 3 2
12`, 23 21 3, ` 2123,  0 2

a 1 t 2 5 6t 2 6v 1 t 2 5 3t2 2 6t 2 24

hs 1x 2 5
23 1 2 ln x

x3gs 1x 2 5 2ex 1 xex

fs 1x 2 5 30x4 1 12x



In the following examples, the test for concavity, the test for increasing and decreasing func-
tions, and the concept of limits at infinity will help us sketch the graphs and describe the
behavior of a variety of functions. This process, called curve sketching, has decreased some-
what in importance in recent years due to the widespread use of graphing calculators. We
believe, however, that this topic is worth studying for the following reasons.

For one thing, a graphing calculator picture can be misleading, particularly if impor-
tant points lie outside the viewing window. Even if all important features are within the
viewing windows, there is still the problem that the calculator plots and connects points and
misses what goes on between those points. As an example of the difficulty in choosing an
appropriate window without a knowledge of calculus, see Exercise 40 in the second section
of this chapter.

Furthermore, curve sketching may be the best way to learn the material in the previous
three sections. You may feel confident that you understand what increasing and concave
upward mean, but using those concepts in a graph will put your understanding to the test.

Curve sketching may be done with the following steps.

Curve Sketching
To sketch the graph of a function f:

1. Consider the domain of the function, and note any restrictions. (That is, avoid divid-
ing by 0, taking a square root of a negative number, or taking the logarithm of 0 or a
negative number.)

2. Find the y-intercept (if it exists) by substituting into Find any x-intercepts
by solving if this is not too difficult.

3. a. If f is a rational function, find any vertical asymptotes by investigating where the
denominator is 0, and find any horizontal asymptotes by finding the limits as

and 

b. If f is an exponential function, find any horizontal asymptotes; if f is a logarithmic
function, find any vertical asymptotes.

4. Investigate symmetry. If f(2x) 5 f (x), the function is even, so the graph is symmetric
about the y-axis. If f(�x) 5 2f (x), the function is odd, so the graph is symmetric
about the origin.

5. Find Locate any critical points by solving the equation and deter-
mining where does not exist, but f (x) does. Find any relative extrema and
determine where f is increasing or decreasing.

6. Find . Locate potential inflection points by solving the equation
and determining where does not exist. Determine where f is concave upward
or concave downward.

7. Plot the intercepts, the critical points, the inflection points, the asymptotes, and
other points as needed. Take advantage of any symmetry found in Step 4.

8. Connect the points with a smooth curve using the correct concavity, being careful
not to connect points where the function is not defined.

9. Check your graph using a graphing calculator. If the picture looks very different
from what you’ve drawn, see in what ways the picture differs and use that informa-
tion to help find your mistake.

fs 1x 2
fs 1x 2 5 0fs 1x 2

f r 1x 2
f r 1x 2 5 0f9 1x 2 .

xl 2`.xl `

f 1x 2 5 0
f 1x 2 .x 5 0
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APPLY IT

Curve Sketching
How can we use differentiation to help us sketch the graph of a function,
and describe its behavior?

5.4



There are four possible combinations for a function to be increasing or decreasing and
concave up or concave down, as shown in the following table.
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Polynomial Function Graph

Graph 

SOLUTION The domain is The y-intercept is located at Finding
the x-intercepts requires solving the equation But this is a third-degree equa-
tion; since we have not covered a procedure for solving such equations, we will skip this step.
This is neither a rational nor an exponential function, so we also skip step 3. Observe that

, which is neither
nor 2 , so there is no symmetry about the y-axis or origin.

To find the intervals where the function is increasing or decreasing, find the first
derivative.

This derivative is 0 when

These critical numbers divide the number line in Figure 40 into three regions. Testing a
number from each region in shows that f is increasing on and and
decreasing on This is shown with the arrows in Figure 41. By the first derivative
test, f has a relative maximum when and a relative minimum when The rel-
ative maximum is while the relative minimum is f 12 2 5 219.f 121 2 5 8,

x 5 2.x 5 21
121, 2 2 .

12, ` 212`, 21 2f r 1x 2

 x 5 2  or  x 5 21.

 6 1x 2 2 2 1x 1 1 2 5 0

 6 1x2 2 x 2 2 2 5 0

f r 1x 2 5 6x2 2 6x 2 12

f 1x 2f 1x 2
22x3 2 3x2 1 12x 1 13 12x 2 2 2 12 12x 2 1 1 52 12x 2 3 2f12x 2  5

f 1x 2 5 0.
y 5 f 10 2 5 1.12`, ` 2 .

f 1x 2 5 2x3 2 3x2 2 12x 1 1.

Concavity Summary

(Function Is (Function Is
Increasing) Decreasing)

(function is 
concave up)
(function is 
concave down)

2

1

f 0 1 x 2
21f9 1 x 2

EXAMPLE  1

320–1–2
x

+ – +
f (x)

f ′(x)

FIGURE 40

Now use the second derivative to find the intervals where the function is concave
upward or downward. Here

which is 0 when Testing a point with x less than and one with x greater than
shows that f is concave downward on and concave upward on 1 1 /2, ` 2 .12`, 1 /2 21 /2,

1 /2,x 5 1 /2.

fs 1x 2 5 12x 2 6,



The graph has an inflection point at or This information is
summarized in the following table.

1 1 /2, 211 /2 2 .1 1 /2, f 1 1 /2 2 2 ,
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Graph Summary

Interval

Sign of 

Sign of 

f Increasing 
or Decreasing

Increasing Decreasing Decreasing Increasing

Concavity of f Downward Downward Upward Upward

Shape of Graph

1122fs
1221f r

1 2, ` 21 1 /2, 2 2121, 1 /2 212`, 21 2

YOUR TURN 1 Graph 
.f 1 x 2 5 2x3 1 3x2 1 9x 2 10

–10

–20

20

10

21 3 4–1–3
x

f(x)

f(x) = 2x  – 3x

0

Concave downward Concave upward

Increasing IncreasingDecreasing

(2, –19)

(–1, 8)

3 2

– 12x + 1

1
2

1
2

1
2

11
2

( ( ((
( (,

, f

= –

FIGURE 41

�3 3

7

�7

f(x) � 2x3 � 3x2 � 12x � 1

(a)

�3 4

20

�20

f(x) � 2x3 � 3x2 � 12x � 1

(b)

FIGURE 42

A graphing calculator picture of the function in Figure 41 on the arbitrarily chosen window
by gives a misleading picture, as Figure 42(a) shows. Knowing where the turning

points lie tells us that a better window would be by with the results shown in
Figure 42(b).

3220, 20 4,323, 4 4
327, 7 4323, 3 4

Use this information and the critical points to get the graph shown in Figure 41. Notice that
the graph appears to be symmetric about its inflection point. It can be shown that is always
true for third-degree polynomials. In other words, if you put your pencil point at the inflec-
tion point and then spin the book 180° about the pencil point, the graph will appear to be
unchanged. TRY YOUR TURN 1

TECHNOLOGY NOTE



Rational Function Graph

Graph 

SOLUTION Notice that is not in the domain of the function, so there is no y-intercept.
To find the x-intercept, solve

Since is always positive, there is also no x-intercept.
The function is a rational function, but it is not written in the usual form of one poly-

nomial over another. By getting a common denominator and adding the fractions, it can be
rewritten in that form:

Because makes the denominator (but not the numerator) 0, the line is a vertical
asymptote. To find any horizontal asymptotes, we investigate

The second term, 1/x, approaches 0 as but the first term, x, becomes infinitely
large, so the limit does not exist. Verify that also does not exist, so there are no
horizontal asymptotes.

Observe that as x gets very large, the second term (1/x) in f(x) gets very small, so
The graph gets closer and closer to the straight line as x

becomes larger and larger. This is what is known as an oblique asymptote.
Observe that

so the graph is symmetric about the origin. This means that the left side of the graph can be
found by rotating the right side 180° about the origin.

Here which is 0 when

The derivative fails to exist at 0, where the vertical asymptote is located. Evaluating
in each of the regions determined by the critical numbers and the asymptote shows that f is
increasing on and and decreasing on and See Figure 43(a).
By the first derivative test, f has a relative maximum of when
and a relative minimum of when

The second derivative is

which is never equal to 0 and does not exist when (The function itself also does not
exist at 0.) Because of this, there may be a change of concavity, but not an inflection point,

x 5 0.

fs 1x 2 5
2

x3  ,

x 5 1.y 5 f 1 1 2 5 2
x 5 21,y 5 f 121 2 5 22

10, 1 2 .121, 0 21 1, ` 212`, 21 2

f r 1x 2

x 5 1  or  x 5 21.
 x2 2 1 5 1x 2 1 2 1x 1 1 2 5 0

 x2 5 1

 
1

x2 5 1

f r 1x 2 5 1 2 1 1 /x2 2 ,

f 12x 2 5 12x 2 1
1

2x
5 2 ax 1

1
x
b 5 2f 1x 2 ,

y 5 xf 1x 2 5 x 1 11/x 2 < x.

lim
xl2`

f 1x 2
xl `,

a
x2

x
1

1
x
b 5 lim

xl`
 ax 1

1
x
b .lim

xl`
 
x2 1 1

x
5 lim

xl`

x 5 0x 5 0

f 1x 2 5 x 1
1
x

5
x2 1 1

x
 .

x2

 x2 5 21

 x 5 2 

1
x

 x 1
1
x

5 0

f 1x 2 5 0.
x 5 0

f 1x 2 5 x 1
1
x

.
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EXAMPLE  2

FOR REVIEW
Asymptotes were discussed in
Section 2.3 on Polynomial and
Rational Functions. You may wish
to refer back to that section to
review. To review limits, refer to
Section 3.1 in the chapter titled
The Derivative.



when The second derivative is negative when x is negative, making f concave
downward on Also, when making f concave upward on

See Figure 43(b).
Use this information, the asymptotes, and the critical points to get the graph shown 

in Figure 44. TRY YOUR TURN 2

10, ` 2 .
x . 0,fs 1x 2 . 012`, 0 2 .

x 5 0.
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YOUR TURN 2 Graph

.f 1 x 2 5 4x 1
1

x

FIGURE 43

10–1
x

+ – +
f (x)

f ′(x)

(a)

10–1 x

–
f (x)

f ″(x)

Concave
downward

+

Concave
upward

(b)

–2

2

1–1
x

f(x)

f(x) = x + 1
x

0

y = x

Concave
downward

Concave
upward

Increasing IncreasingDecreasing

(1, 2)

(–1, –2)

FIGURE 44

Graph Summary

Interval (0, 1)

Sign of 

Sign of 

f Increasing Increasing Decreasing Decreasing Increasing
or Decreasing

Concavity of f Downward Downward Upward Upward

Shape of Graph

1122fs
1221f r

1 1, ` 2121, 0 212`, 21 2

Rational Function Graph

Graph 

SOLUTION The y-intercept is located at Verify that this is also the only
x-intercept. There is no vertical asymptote, because for any value of x. Find any
horizontal asymptote by calculating and First, divide both the numerator

and the denominator of by

Verify that the limit of as is also 3. Thus, the horizontal asymptote is y 5 3.xl 2`f 1x 2

lim
xl`

 
3x2

x2 1 5
5 lim

xl`
 

3x2

x2

x2

x2 1
5

x2

5
3

1 1 0
5 3

x2.f 1x 2

lim
xl2`

f 1x 2 .lim
xl`

f 1x 2
x2 1 5 2 0

y 5 f 10 2 5 0.

f 1x 2 5
3x2

x2 1 5
 .

EXAMPLE  3



Observe that

so the graph is symmetric about the y-axis. This means that the left side of the graph is the
mirror image of the right side.

We now compute 

Notice that 6x can be factored out of each term in the numerator:

From the numerator, is a critical number. The denominator is always positive.
(Why?) Evaluating in each of the regions determined by shows that f is
decreasing on and increasing on By the first derivative test, f has a relative
minimum when

The second derivative is

Factor out of the numerator:

Divide a factor of out of the numerator and denominator, and simplify the
numerator:

The numerator of is 0 when Testing a point in each of the
three intervals defined by these points shows that f is concave downward on 
and and concave upward on The graph has inflection points at

Use this information, the asymptote, the critical point, and the inflection points to get
the graph shown in Figure 45. TRY YOUR TURN 3

16 "5 /3, f 16 "5 /3 2 2 < 161.29, 0.75 2 .
121.29, 1.29 2 .1 1.29, ` 2 ,

12`, 21.29 2
x 5 6 "5 /3 < 61.29.fs 1x 2

 5
30 1 5 2 3x2 2
1x2 1 5 2 3

 .

 5
30 3 1x2 1 5 2 2 14x2 2 4

1x2 1 5 2 3

 fs 1x 2 5
30 3 1x2 1 5 2 2 1x 2 12 2 12x 2 4

1x2 1 5 2 3

1x2 1 5 2

fs 1x 2 5
30 1x2 1 5 2 3 1x2 1 5 2 2 1x 2 12 2 12x 2 4

1x2 1 5 24
 .

30 1x2 1 5 2

fs 1x 2 5
1x2 1 5 2 2 1 30 2 2 1 30x 2 12 2 1x2 1 5 2 12x 2

1x2 1 5 24
 .

x 5 0.
10, ` 2 .12`, 0 2

x 5 0f r 1x 2
x 5 0

 5
1 6x 2 1 5 2
1x2 1 5 2 2

5
30x

1x2 1 5 2 2
.

 f r 1x 2 5
1 6x 2 3 1x2 1 5 2 2 x2 4

1x2 1 5 2 2

f r 1x 2 5
1x2 1 5 2 1 6x 2 2 1 3x2 2 12x 2

1x2 1 5 2 2
 .

f r 1x 2 :

f 12x 2 5
3 12x 2 2

12x 2 2 1 5
5

3x2

x2 1 5
5 f 1x 2 ,
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YOUR TURN 3

Graph .f 1 x 2 5
4x2

x2 1 4



Graph with Logarithm

Graph 

SOLUTION The domain is so there is no y-intercept. The x-intercept is 1, because
We know that has a vertical asymptote at because

Dividing by when x is small makes even more negative than

ln x. Therefore, has a vertical asymptote at as well. The first derivative is

by the quotient rule. Setting the numerator equal to 0 and solving for x gives

Since is positive and is negative, f increases on then decreases on
with a maximum value of f 1 1.65 2 < 0.18.1 1.65, ` 2 ,

10, 1.65 2f r 12 2f r 1 1 2

 x 5 e0.5 < 1.65.

 ln x 5 0.5

 1 5 2 ln x

 1 2 2 ln x 5 0

f r 1x 2 5

x2 . 1
x

2 2x ln x

1x2 2 2 5
x 1 1 2 2 ln x 2

x4 5
1 2 2 ln x

x3

x 5 01 ln x 2 /x2

1 ln x 2 /x2x2lim
xl01

 ln x 5 2`.
x 5 0,y 5 ln xln 1 5 0.

x . 0,

f 1x 2 5
ln x

x2  .
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x

f x

f x x
x

FIGURE 45

Graph Summary

Interval

Sign of 

Sign of 

f Increasing Decreasing Decreasing Increasing Increasing
or Decreasing

Concavity of f Downward Upward Upward Downward

Shape of Graph

2112fs
1122f r

1 1.29, ` 21 0, 1.29 2121.29, 0 212`, 21.29 2

EXAMPLE  4



To find any inflection points, we set 

Set the numerator equal to 0.

Add 5 to both sides.

Divide both sides by 6.

There is an inflection point at Verify that is negative
and is positive, so the graph is concave downward on and upward on

This information is summarized in the following table and could be used to
sketch the graph. A graph of the function is shown in Figure 46. TRY YOUR TURN 4

12.3, ` 2 .
1 1, 2.3 2fs 1 3 2

fs 1 1 212.3, f 12.3 2 2 < 12.3, 0.16 2 .
e

ln x 5 x.   x 5 e5/6 < 2.3

   ln x 5 5 /6

   6 ln x 5 5

   25 1 6 ln x 5 0

   
25 1 6 ln x

x4 5 0

 5
22x2 2 3x2 1 6x2 ln x

x6 5
25 1 6 ln x

x4

 fs 1x 2 5

x3a22 . 1
x
b 2 1 1 2 2 ln x 2 . 3x2

1x3 2 2

fs 1x 2 5 0.
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YOUR TURN 4 Graph
.

(Recall xne2x 5 0 2lim
xl`

f 1 x 2 5 1 x 1 2 2e2x

x

y

0.5

0.3

0.1

41

–0.5

–0.3

–0.1 2 3

f(x) = ln x
x2

(1, 0)

(1.65, 0.18)
(2.3, 0.16)

FIGURE 46

As we saw earlier, a graphing calculator, when used with care, can be helpful in study-
ing the behavior of functions. This section has illustrated that calculus is also a great help.
The techniques of calculus show where the important points of a function, such as the rela-
tive extrema and the inflection points, are located. Furthermore, they tell how the function
behaves between and beyond the points that are graphed, something a graphing calculator
cannot always do.

Graph Summary

Interval

Sign of 

Sign of 

f Increasing Increasing Decreasing Decreasing
or Decreasing

Concavity of f Downward Downward Upward

Shape of Graph

122fs
221f r

1 2.3, ` 21 1.65, 2.3 21 0, 1.65 2

5.4 EXERCISES
1. By sketching a graph of the function or by investigating values

of the function near 0, find (This result will be
useful in Exercise 21.)

2. Describe how you would find the equation of the horizontal
asymptote for the graph of

Graph each function, considering the domain, critical points,
symmetry, regions where the function is increasing or decreasing,

f 1x 2 5
3x2 2 2x

2x2 1 5
 .

lim
xl0

x ln 0 x 0 .
inflection points, regions where the function is concave upward
or concave downward, intercepts where possible, and asymp-
totes where applicable. (Hint: In Exercise 21, use the result of
Exercise 1. In Exercises 25–27, recall from Exercise 66 in the
section on Limits that )

3.

4.

5. f 1x 2 5 23x3 1 6x2 2 4x 2 1

f 1x 2 5 x3 2
15

2
 x2 2 18x 2 1

f 1x 2 5 22x3 2 9x2 1 108x 2 10

lim
xl`

x ne2x 5 0.



6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. The default window on many calculators is by
For the odd exercises between 3 and 15, tell which

would give a poor representation in this window. (Note: Your
answers may differ from ours, depending on what you consider
“poor.”)

32. Repeat Exercise 31 for the even exercises between 4 and 16.

33. Repeat Exercise 31 for the odd exercises between 17 and 29.

34. Repeat Exercise 31 for the even exercises between 18 and 30.

In Exercises 35–39, sketch the graph of a single function that
has all of the properties listed.

35. a. Continuous and differentiable everywhere except at 
where it has a vertical asymptote

b. everywhere it is defined

c. A horizontal asymptote at 

d. on and 

e. on and 

36. a. Continuous for all real numbers

b. on and 

c. on and 

d. on and 

e. on 

f. A y-intercept at 

37. a. Continuous and differentiable for all real numbers

b. on and 

c. on and 

d. on and 12, ` 212`, 21 2fs 1x 2 , 0

14, ` 2123, 1 2f r 1x 2 , 0

1 1, 4 212`, 23 2f r 1x 2 . 0

10, 2 2
126, 3 2fs 1x 2 , 0

1 3, ` 212`, 26 2fs 1x 2 . 0

1 3, ` 2126, 1 2f r 1x 2 . 0

1 1, 3 212`, 26 2f r 1x 2 , 0

14, ` 21 1, 2 2fs 1x 2 . 0

12, 4 212`, 1 2fs 1x 2 , 0

y 5 2

f r 1x 2 , 0

x 5 1,

3210, 10 4.
3210, 10 4

f 1x 2 5 x1/3 1 x4/3f 1x 2 5 x2/3 2 x5/3

f 1x 2 5 ex 1 e2xf 1x 2 5 1x 2 1 2e2x

f 1x 2 5 x2e2xf 1x 2 5 xe2x

f 1x 2 5
ln x2

x2f 1x 2 5
ln x

x

f 1x 2 5 x 2 ln 0 x 0f 1x 2 5 x ln 0 x 0

f 1x 2 5
22x

x2 2 4
f 1x 2 5

1

x2 2 9

f 1x 2 5
1

x2 1 4
f 1x 2 5

x

x2 1 1

f 1x 2 5
28

x2 2 6x 2 7
f 1x 2 5

1

x2 1 4x 1 3

f 1x 2 5
3x

x 2 2
f 1x 2 5

2x 1 4

x 1 2

f 1x 2 5 16x 1
1

x2f 1x 2 5 2x 1
10

x

f 1x 2 5 x5 2 15x3f 1x 2 5 x4 2 4x3

f 1x 2 5 2x4 1 6x2f 1x 2 5 x4 2 24x2 1 80

f 1x 2 5 x3 2 6x2 1 12x 2 11
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e. on 

f.

g. at and 

38. a. Continuous for all real numbers

b. on and 

c. on and 

d. on and 

e. on 

f.

g. doesn’t exist

h. Differentiable everywhere except at 

i. An inflection point at 

39. a. Continuous for all real numbers

b. Differentiable everywhere except at 

c.

d. and 

e. on and 

f. on and 

g. and 

h. on 

i. on and 

40. On many calculators, graphs of rational functions produce
lines at vertical asymptotes. For example, graphing 

on the window by 
produces such a line at on the TI-84 Plus and TI-89.
But with the window by on a TI-84
Plus; or by on a TI-89, the spurious line
does not appear. Experiment with this function on your calcu-
lator, trying different windows, and try to figure out an expla-
nation for this phenomenon. (Hint: Consider the number of
pixels on the calculator screen.)

YOUR TURN ANSWERS

1. 2.

3. 4.

327.9, 7.9 4327.9, 7.9 4
324.7, 4.7 4324.7, 4.7 4

x 5 21
324.9, 4.9 4324.9, 4.9 41x 2 1 2 / 1x 1 1 2

y 5

14, ` 21 3, 4 2 ,12`, 2 2 ,fs 1x 2 , 0

12, 3 2fs 1x 2 . 0

lim
xl41

f r 1x 2 5 `lim
xl42 

f r 1x 2 5 2`

1 3, 4 21 1, 3 2f r 1x 2 , 0

14, ` 212`, 1 2f r 1x 2 . 0

f r 1 3 2 5 0f r 1 1 2 5 0

f 1 1 2 5 5

x 5 4

1 5, 1 2
x 5 0

f r 10 2
f r 122 2 5 f r 1 3 2 5 0

1 5, ` 2fs 1x 2 . 0

10, 5 212`, 0 2fs 1x 2 , 0

1 3, ` 2122, 0 2f r 1x 2 , 0

10, 3 212`, 22 2f r 1x 2 . 0

12, 4 2121, 3 2fs 1x 2 5 0

f r 123 2 5 f r 14 2 5 0

121, 2 2fs 1x 2 . 0

y

x1 3 5–5 –3 –1

–20

–10

10

20

0

(1, 1)

(3, 17)

(–1, –15)

f(x) = –x3 + 3x2 + 9x – 10 y

x1 2 3–3 –2 –1

–10

–6

2

6

10

0

y = 4x

1
2( (, –4–

f(x) = 4x + 1
x

1
2( (, 4

(0, 2)

(–2, 0)

(–1, 2.72)

x

y

4

5–3 –1
–1

1 2 43

2

3

1 f(x) = (x + 2)e–x

(0, 0)

f(x) = 4x
x  + 4

2

2

x

y

4

4–4 –2 2

2

3( (, 14
3( (, 1– 4



In this chapter we have explored various concepts related to the
graph of a function:

• increasing and decreasing,
• critical numbers (numbers c in the domain of f for which

f 
(x) 5 0 or f 
(x) does not exist),
• critical points (whose x-coordinate is a critical number c and

whose y-coordinate is f (c)),
• relative maxima and minima (together known as relative

extrema),
• concavity, and
• inflection points (where the concavity changes).

The first and second derivative tests provide ways to locate relative
extrema. The last section brings all these concepts together. Also,
we investigated two applications of the second derivative:

• acceleration (the second derivative of the position function),
and

• the point of diminishing returns (an inflection point on an
input/output graph).
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SUMMARY

5 CHAPTER REVIEW

Test for Increasing/Decreasing On any open interval,
if f 
(x) . 0, then f is increasing;
if f 
(x) , 0, then f is decreasing;
if f 
(x) 5 0, then f is constant.

First Derivative Test If c is a critical number for f on the open interval (a, b), f is continuous on (a, b), and f is differen-
tiable on (a, b) (except possibly at c), then

1. f (c) is a relative maximum if f 
(x) . 0 on (a, c) and f 
(x) , 0 on (c, b);
2. f (c) is a relative minimum if f 
(x) , 0 on (a, c) and f 
(x) . 0 on (c, b).

Test for Concavity On any open interval,
if f �(x) . 0, then f is concave upward;
if f �(x) , 0, then f is concave downward.

Second Derivative Test Suppose f � exists on an open interval containing c and f 
(c) 5 0.

1. If f �(c) . 0, then f (c) is a relative minimum.

2. If f �(c) , 0, then f (c) is a relative maximum.

3. If f �(c) 5 0 or f �(c) does not exist, then the test gives no information about extrema, so use the
first derivative test.

Curve Sketching To sketch the graph of a function f :

1. Consider the domain of the function, and note any restrictions. (That is, avoid dividing by 0, tak-
ing a square root of a negative number, or taking the logarithm of 0 or a negative number.)

2. Find the y-intercept (if it exists) by substituting x 5 0 into f (x). Find any x-intercepts by solving
f (x) 5 0 if this is not too difficult.

3. a. If f is a rational function, find any vertical asymptotes by investigating where the denominator
is 0, and find any horizontal asymptotes by finding the limits as and .

b. If f is an exponential function, find any horizontal asymptotes; if f is a logarithmic function,
find any vertical asymptotes.

4. Investigate symmetry. If f (2x) 5 f (x), the function is even, so the graph is symmetric about the
y-axis. If f (2x) 5 2f (x), the function is odd, so the graph is symmetric about the origin.

5. Find f 
(x). Locate any critical points by solving the equation f 
(x) 5 0 and determining where f 
(x)
does not exist, but f (x) does. Find any relative extrema and determine where f is increasing or
decreasing.

6. Find f �(x). Locate potential inflection points by solving the equation f �(x) 5 0 and determining
where f �(x) does not exist. Determine where f is concave upward or concave downward.

7. Plot the intercepts, the critical points, the inflection points, the asymptotes, and other points as
needed. Take advantage of any symmetry found in Step 4.

xl 2`xl `



14. When given the equation for a function, how can you
determine where the relative extrema are located? Give two
ways to test whether a relative extremum is a minimum or a
maximum.

15. Does a relative maximum of a function always have the
largest y-value in the domain of the function? Explain your
answer.

16. What information about a graph can be found from the second
derivative?

Find the open intervals where f is increasing or decreasing.

17. 18.

19.

20.

21. 22.

23. 24.

Find the locations and values of all relative maxima and minima.

25. 26.

27. 28.

29.

30.

31. 32.

Find the second derivative of each function, and then find
and 

33. 34. f 1x 2 5 9x3 1
1

x
f 1x 2 5 3x4 2 5x2 2 11x

f s 123 2 .f s 1 1 2

f 1x 2 5
ln 1 3x 2

2x2f 1x 2 5
xex

x 2 1

f 1x 2 5 2x3 1 3x2 2 12x 1 5

f 1x 2 5 2x3 1 3x2 2 36x 1 20

f 1x 2 5 23x2 1 2x 2 5f 1x 2 5 2x2 2 8x 1 1

f 1x 2 5 x2 2 6x 1 4f 1x 2 5 2x2 1 4x 2 8

f 1x 2 5 8xe24xf 1x 2 5 ln 0 x2 2 1 0

f 1x 2 5
15

2x 1 7
f 1x 2 5

16

9 2 3x

f 1x 2 5 4x3 1 8x2 2 16x 1 11

f 1x 2 5 2x3 1 2x2 1 15x 1 16

f 1x 2 5 22x2 1 7x 1 14f 1x 2 5 x2 1 9x 1 8

For Exercises 1–12 determine whether each of the following
statements is true or false, and explain why.

1. A critical number c is a number in the domain of a function f
for which f 
(c) 5 0 or f 
(c) does not exist.

2. If f 
(x) . 0 on an interval, the function is positive on that
interval.

3. If c is a critical number, then the function must have a relative
maximum or minimum at c.

4. If f is continuous on (a, b), f 
(x) , 0 on (a, c), and f 
(x) . 0
on (c, b), then f has a relative minimum at c.

5. If f 
(c) exists, f �(c) also exists.

6. The acceleration is the second derivative of the position
function.

7. If f �(x) . 0 on an interval, the function is increasing on that
interval.

8. If f �(c) 5 0, the function has an inflection point at c.

9. If f �(c) � 0, the function does not have a relative maximum or
minimum at c.

10. Every rational function has either a vertical or a horizontal
asymptote.

11. If an odd function has a y-intercept, it must pass through the
origin.

12. If f 
(c) 5 0, where c is a value in interval (a, b), then f is a
constant on the interval (a, b).

13. When given the equation for a function, how can you
determine where it is increasing and where it is decreasing?
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8. Connect the points with a smooth curve using the correct concavity, being careful not to connect
points where the function is not defined.

9. Check your graph using a graphing calculator. If the picture looks very different from what
you’ve drawn, see in what ways the picture differs and use that information to help find your mis-
take.

KEY TERMS
5.1
increasing function
decreasing function
critical number
critical point

5.2
relative (or local) maximum

relative (or local) minimum
relative (or local) extremum
first derivative test

5.3
second derivative
third derivative

fourth derivative
acceleration
concave upward and downward
concavity
inflection point

second derivative test
point of diminishing returns

5.4
curve sketching
oblique asymptote

REVIEW EXERCISES

CONCEPT CHECK

PRACTICE AND EXPLORATIONS



35. 36.

37. 38.

Graph each function, considering the domain, critical points,
symmetry, regions where the function is increasing or decreasing,
inflection points, regions where the function is concave up or
concave down, intercepts where possible, and asymptotes where
applicable.

39.

40.

41.

42.

43. 44.

45.

46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59 and 60, sketch the graph of a single function
that has all of the properties listed.

59. a. Continuous everywhere except at where there is a
vertical asymptote

b. A y-intercept at 

c. x-intercepts at 1, and 4

d. on and 

e. on and 

f. on and 

g. on and 

h. Differentiable everywhere except at and 

60. a. Continuous and differentiable everywhere except at 
where it has a vertical asymptote

b. A horizontal asymptote at 

c. An x-intercept at 

d. A y-intercept at y 5 4

x 5 22

y 5 1

x 5 23,

x 5 21x 5 24

121, ` 2123, 21 2fs 1x 2 , 0

124, 23 212`, 24 2fs 1x 2 . 0

121, 2 2125, 24 2f r 1x 2 . 0

12, ` 2124, 21 2 ,12`, 25 2 ,f r 1x 2 , 0

x 5 23,

y 5 22

x 5 24,

f 1x 2 5 5x2/3 1 x5/3f 1x 2 5 4x1/3 1 x4/3

f 1x 2 5 x2  ln  xf 1x 2 5 ln 1x2 1 4 2
f 1x 2 5 x2e2xf 1x 2 5 xe2x

f 1x 2 5
24x

1 1 2x
f 1x 2 5

2x

3 2 x

f 1x 2 5 x 1
8

x
f 1x 2 5

x2 1 4

x

f 1x 2 5 6x3 2 x4f 1x 2 5 x4 1 2x2

f 1x 2 5 x3 1
5

2
 x2 2 2x 2 3

f 1x 2 5 24x3 2 x2 1 4x 1 5

f 1x 2 5
2x 2 5

x 1 3
f 1x 2 5

x 2 1

2x 1 1

f 1x 2 5 2 

2

3
 x3 1

9

2
 x2 1 5x 1 1

f 1x 2 5 x4 2
4

3
 x3 2 4x2 1 1

f 1x 2 5 2 

4

3
 x3 1 x2 1 30x 2 7

f 1x 2 5 22x3 2
1

2
 x2 1 x 2 3

f 1 t 2 5 2 "5 2 t2f 1 t 2 5 "t2 1 1

f 1x 2 5
1 2 2x

4x 1 5
f 1x 2 5

4x 1 2

3x 2 6
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e. on the intervals and 

f. on the interval 

g. on the intervals and 

h. on the interval 

i.
j. An inflection point at 

Business and Economics

Stock Prices In Exercises 61 and 62, P(t) is the price of a cer-
tain stock at time t during a particular day.

61. a. If the price of the stock is falling faster and faster, are
and positive or negative?

b. Explain your answer.

62. a. When the stock reaches its highest price of the day, are
and positive, zero, or negative?

b. Explain your answer.

63. Cat Brushes The cost function to produce q electric cat
brushes is given by The demand
equation is given by where p is the
price in dollars.

a. Find and simplify the profit function.

b. Find the number of brushes that will produce the maximum
profit.

c. Find the price that produces the maximum profit.

d. Find the maximum profit.

e. Find the point of diminishing returns for the profit function.

64. Gasoline Prices In 2008, the price of gasoline in the United
States spiked and then dropped. The average monthly price (in
cents per gallon) of unleaded regular gasoline for 2008 can be
approximated by the function

for 0 � t � 12,

where t is in months and corresponds to January 2008.
Source: U.S. Energy Information Administration.

a. Determine the interval(s) on which the price is increasing.

b. Determine the interval(s) on which the price is decreasing.

c. Find any relative extrema for the price of gasoline, as well
as when they occurred.

Life Sciences

65. Weightlifting An abstract for an article states, “We tentatively
conclude that Olympic weightlifting ability in trained subjects
undergoes a nonlinear decline with age, in which the second
derivative of the performance versus age curve repeatedly
changes sign.” Source: Medicine and Science in Sports and
Exercise.

a. What does this quote tell you about the first derivative of the
performance versus age curve?

b. Describe what you know about the performance versus age
curve based on the information in the quote.

t 5 1

p 1 t 2 5 20.614t3 1 6.25t2 1 1.94t 1 297,

p 5 2q2 2 3q 1 299,
C 1q 2 5 210q2 1 250q.

Ps 1 t 2P r 1 t 2

Ps 1 t 2
P r 1 t 2

14, 3 2
f r 12 2 5 0

123, 4 2fs 1x 2 , 0

14, ` 212`, 23 2fs 1x 2 . 0

12, ` 2f r 1x 2 , 0

123, 2 212`, 23 2f r 1x 2 . 0

APPLICATIONS



66. Scaling Laws Many biological variables depend on body
mass, with a functional relationship of the form

where M represents body mass, b is a multiple of and is
a constant. For example, when Y represents metabolic rate,

When Y represents heartbeat, When Y
represents life span, Source: Science.

a. Determine which of metabolic rate, heartbeat, and life span
are increasing or decreasing functions of mass. Also deter-
mine which have graphs that are concave upward and which
have graphs that are concave downward.

b. Verify that all functions of the form given above satisfy the
equation

This means that the rate of change of Y is proportional to Y
and inversely proportional to body mass.

67. Thoroughbred Horses The association between velocity dur-
ing exercise and blood lactate concentration after submaximal
800-m exercise of thoroughbred racehorses on sand and grass
tracks has been studied. The lactate-velocity relationship can
be described by the functions.

where and are the lactate concentrations (in
and is the velocity (in of the horse during

workout on sand and grass tracks, respectively. Sketch the
graph of both functions for Source: The Veteri-
nary Journal.

68. Neuron Communications In the FitzHugh-Nagumo model of
how neurons communicate, the rate of change of the electric
potential v with respect to time is given as a function of v by

where a is a positive constant.
Sketch a graph of this function when and 
Source: Mathematical Biology.

69. Fruit Flies The number of imagoes (sexually mature adult fruit
flies) per mated female per day (y) can be approximated by

where x is the mean density of the mated population (measured
as flies per bottle) over a 16-day period. Sketch the graph of
the function. Source: Elements of Mathematical Biology.

70. Blood Volume A formula proposed by Hurley for the red cell
volume (RCV) in milliliters for males is

where S is the surface area (in square meters). A formula given
by Pearson et al., is

Source: Journal of Nuclear Medicine and British Journal of
Haematology.

a. For the value of S which the RCV values given by the two for-
mulas are closest, find the rate of change of RCV with respect
to S for both formulas. What does this number represent?

RCV 5 1486S 2 825.

RCV 5 1486S2 2 4106S 1 4514,

y 5 34.7 1 1.0186 22xx20.658,

0 # v # 1.a 5 0.25
f 1 v 2 5 v 1a 2 v 2 1 v 2 1 2 ,

13 # v # 17.

m/sec)vmmol/L)
l2 
1 v 2l1 

1 v 2

l2 
1 v 2 5 20.87v2 1 28.17v 2 211.41,

l1 
1 v 2 5 0.08e0.33v  and

dY

dM
5

b

M
 Y.

b 5 1 /4.
b 5 21 /4.b 5 3 /4.

Y01 /4,

Y 5 Y0 Mb,
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b. The formula for plasma volume for males given by Hurley is

while the formula given by Pearson et al., is

where PV is measured in milliliters and S in square meters.
Find the value of S for which the PV values given by the two
formulas are the closest. Then find the value of PV that each
formula gives for this value of S.

c. For the value of S found in part b, find the rate of change of
PV with respect to S for both formulas. What does this num-
ber represent?

d. Notice in parts a and c that both formulas give the same
instantaneous rate of change at the value of S for which the
function values are closest. Prove that if two functions f and
g are differentiable and never cross but are closest together
when then 

Social  Sciences

71. Learning Researchers used a version of the Gompertz curve to
model the rate that children learn with the equation

where is the portion of children of age t years passing a
certain mental test, and .
Find the inflection point and describe what it signifies. 
(Hint: Leave A and c as constants until you are ready to calcu-
late your final answer. If A is too small for your calculator to
handle, use common logarithms and properties of logarithms
to calculate Source: School and Society.

72. Population Under the scenario that the fertility rate in the
European Union (EU) remains at 1.8 until 2020, when it rises
to replacement level, the predicted population (in millions) of
the 15 member countries of the EU can be approximated over
the next century by

where t is the number of years since 2000. Source: Science.

a. In what year is the population predicted to be largest? What
is the population predicted to be in that year?

b. In what year is the population declining most rapidly? 

c. What is the population approaching as time goes on?

73. Nuclear Weapons The graph shows the total inventory of
nuclear weapons held by the United States and by the Soviet

P 1 t 2 5 325 1 7.475 1 t 1 10 2e21t1102/20,

1 log A 2 / 1 log e 2 . 2

c 5 0.4252A 5 0.3982 3 102291,
y 1 t 2

y 1 t 2 5 Act

,

f r 1x0 
2 5 g r 1x0 

2 .x 5 x0 ,

PV 5 1578S,

PV 5 995e0.6085S,

10,000

20,000

30,000

40,000
45,000

5,000

1945 ’55 ’65 ’75 ’85 ’95 ’05

15,000

25,000

35,000

50,000

US Total
Inventory

Soviet/Russian
Total Inventory



Union and its successor states from 1945 to 2010. (See
Exercise 60 in the first section of this chapter.) Source: Feder-
ation of American Scientists.

a. In what years was the U.S. total inventory of weapons at a
relative maximum?

b. When the U.S. total inventory of weapons was at the largest
relative maximum, is the graph for the Soviet stockpile con-
cave up or concave down? What does this mean?
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Physical  Sciences

74. Velocity and Acceleration A projectile is shot straight up with
an initial velocity of 512 ft per second. Its height above the
ground after t seconds is given by

a. Find the velocity and acceleration after t seconds.

b. What is the maximum height attained?

c. When does the projectile hit the ground and with what velocity?

s 1 t 2 5 512t 2 16t2.

A DRUG CONCENTRATION MODEL FOR ORALLY 
ADMINISTERED MEDICATIONS

E X T E N D E D APPLICATION

Finding a range for
the concentration of
a drug in the blood-

stream that is both safe
and effective is one of the
primary goals in pharma-
ceutical research and
development. This range
is called the therapeutic
window. When determin-
ing the proper dosage
(both the size of the dose
and the frequency of
administration), it is

important to understand the behavior of the drug once it enters the
body. Using data gathered during research we can create a mathe-
matical model that predicts the concentration of the drug in the
bloodstream at any given time.

We will look at two examples that explore a mathematical
model for the concentration of a particular drug in the bloodstream.
We will find the maximum and minimum concentrations of the
drug given the size of the dose and the frequency of administration.
We will then determine what dose should be administered to main-
tain concentrations within a given therapeutic window.

The drug tolbutamide is used for the management of mild to
moderately severe type 2 diabetes. Suppose a 1000-mg dose of this
drug is taken every 12 hours for three days. The concentration of
the drug in the bloodstream, t hours after the initial dose is taken, is
shown in Figure 47.

Looking at the graph, you can see that after a few doses have
been administered, the maximum values of the concentration func-
tion begin to level off. The function also becomes periodic, repeat-
ing itself between every dose. At this point, the concentration is said
to be at steady-state. The time it takes to reach steady-state depends
on the elimination half-life of the drug (the time it takes for half the
dose to be eliminated from the body). The elimination half-life of

the drug used for this function is about 7 hours. Generally speaking,
we say that steady-state is reached after about 5 half-lives.

We will define the steady-state concentration function, ,
to be the concentration of drug in the bloodstream t hours after a
dose has been administered once steady-state has been reached.

The steady-state concentration function can be written as the
difference of two exponential decay functions, or

.

The constants and are influenced by several factors, including
the size of the dose and how widely the particular drug disperses
through the body. The constants and are decay constants
reflecting the rate at which the drug is being absorbed into the
bloodstream and eliminated from the bloodstream, respectively.

Consider the following steady-state concentration function:

where D is the size of the dose (in milligrams) administered every
12 hours. The concentration is given in micrograms per milliliter.

If a single dose is 1000 mg, then the concentration of drug in
the bloodstream is

Css 1 t 2 5 247.3e20.1t 2 172.8e22.8t mcg/mL.

Css 1 t 2 5 0.2473De20.1t 2 0.1728De22.8t mcg/mL

kka

c2c1

Css 1 t 2 5 c1e
kt 2 c2e

kat

Css 1 t 2
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The graph of is given below in Figure 48.Css 1 t 2 If the therapeutic window for this drug is 70–240 ,
then, once steady-state has been reached, the concentration remains
safe and effective as long as treatment continues.

Suppose, however, that a new study found that this drug is
effective only if the concentration remains between 100 and 400

. How could you adjust the dose so that the maximum and
minimum steady-state concentrations fall within this range?

Therapeutic Window
Find a range for the size of doses such that the steady-state concen-
tration remains within the therapeutic window of 100 to 400

.

SOLUTION Recall that the steady-state concentration function is

,

where D is the size of the dose given (in milligrams) every
12 hours.

From Example 1, we found that the minimum concentration
occurs when t � 0. Therefore, we want the minimum concentra-
tion, , to be greater than or equal to 100 .

or

Solving for D, we get

In Example 1, we also found that the maximum concentration
occurs when t � 1.1 hours. If we change the size of the dose, the
maximum concentration will change; however, the time it takes to
reach the maximum concentration does not change. Can you see
why this is true?

Since the maximum concentration occurs when t � 1.1, we
want , the maximum concentration, to be less than or equal

to 400 .

or

Solving for D, we get

Therefore, if the dose is between 1342 mg and 1873 mg, 
the steady-state concentration remains within the new therapeutic
window.

D  #  1873 mg.

0.2136D  #  400

0.2215D 2 0.0079D # 400.

Css 1 1.1 2 5 0.2473De20.111.12 2 0.1728De22.811.12  # 400

mcg/mL

Css 1 1.1 2

D $ 1342 mg.

0.0745D $ 100

0.2473D 2 0.1728D $ 100

Css 10 2 5 0.2473De20.1102 2 0.1728De22.8102  $ 100

mcg/mLCss 10 2

Css 1 t 2 5 0.2473De20.1t 2 0.1728De22.8t mcg/mL

mcg/mL

mcg/mL

mcg/mL

FIGURE 48
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Drug Concentration
Find the maximum and minimum concentrations for the steady-state
concentration function

SOLUTION The maximum concentration occurs when � 0.
Calculating the derivative, we get:

.

If we factor out , we can find where the derivative is
equal to zero.

when

.

Solving this equation for t, we get

Therefore, the maximum concentration is

Looking at the graph of in Figure 48, you can see that the
minimum concentration occurs at the endpoints (when t � 0 and 
t � 12; immediately after a dose is administered and immediately
before a next dose is to be administered, respectively).

Therefore, the minimum concentration is

Verify that gives the same value.Css 1 12 2

5 74.5 mcg/mL.

Css 10 2 5 247.3e20.1102 2 172.8e22.8102 5 247.3 2 172.8

Css 1 t 2

Css 1 1.1 2 5 247.3e20.111.12 2 172.8e22.811.12 < 214 mcg/mL.

t 5

lna
24.73

483.84
b

22.7
< 1.1 hours.

224.73 1 483.84e22.7t 5 0

C'ss 1 t 2 5 0

C'ss 1 t 2 5 e20.1t 1224.73 1 483.84e22.7t 2 5 0

e20.1t

5 224.73e20.1t 1 483.84e22.8t
C'ss 1 t 2 5 247.3 120.1 2e20.1t 2 172.8 122.8 2e22.8t

C'ss 1 t 2

Css 1 t 2 5 247.3e20.1t 2 172.8e22.8t mcg/mL.

EXAMPLE  1

EXAMPLE  2



EXERCISES
Use the following information to answer Exercises 1–3.
A certain drug is given to a patient every 12 hours. The steady-state
concentration function is given by

where D is the size of the dose in milligrams.

1. If a 500-mg dose is given every 12 hours, find the maximum
and minimum steady-state concentrations.

2. If the dose is increased to 1500 mg every 12 hours, find the
maximum and minimum steady-state concentrations.

3. What dose should be given every 12 hours to maintain a
steady-state concentration between 80 and 400 ?mcg/mL

Css 1 t 2 5 1.99De20.14t 2 1.62De22.08t   mcg /mL,

DIRECTIONS FOR GROUP PROJECT
Because of declining health, many elderly people rely on prescrip-
tion medications to stabilize or improve their medical condition.
Your group has been assigned the task of developing a brochure to
be made available at senior citizens’ centers and physicians’
offices that describes drug concentrations in the body for orally
administered medications. The brochure should summarize the
facts presented in this extended application but at a level that is
understandable to a typical layperson. The brochure should be
designed to look professional with a marketing flair.
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Applications of the Derivative
6.1 Absolute Extrema

6.2 Applications of Extrema

6.3 Further Business Applications: Economic
Lot Size; Economic Order Quantity;
Elasticity of Demand

6.4 Implicit Differentiation

6.5 Related Rates

6.6 Differentials: Linear Approximation

Chapter 6 Review

Extended Application: A Total Cost
Model for a Training Program

When several variables are related by a single equation,

their rates of change are also related. For example, the

height and horizontal distance of a kite are related to the

length of the string holding the kite. In an exercise in

Section 5 we differentiate this relationship to discover how

fast the kite flier must let out the string to maintain the

kite at a constant height and constant horizontal speed.

6
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The previous chapter included examples in which we used the derivative to find the
maximum or minimum value of a function. This problem is ubiquitous; consider
the efforts people expend trying to maximize their income, or to minimize their

costs or the time required to complete a task. In this chapter we will treat the topic of
optimization in greater depth.

The derivative is applicable in far wider circumstances, however. In roughly 500 B.C.,
Heraclitus said,“Nothing endures but change,” and his observation has relevance here. If
change is continuous, rather than in sudden jumps, the derivative can be used to describe
the rate of change. This explains why calculus has been applied to so many fields.

APPLY IT

Absolute Extrema
During a 10-year period, when did the U.S. dollar reach a minimum
exchange rate with the Canadian dollar, and how much was the U.S.
dollar worth then?
We will answer this question in Example 3.

A function may have more than one relative maximum.  It may be important, however,
in some cases to determine if one function value is larger than any other.  In other cases, we
may want to know whether one function value is smaller than any other. For example, in
Figure 1, for all x in the domain. There is no function value that is smaller
than all others, however, because as or as 

The largest possible value of a function is called the absolute maximum and the smallest
possible value of a function is called the absolute minimum. As Figure 1 shows, one or both
of these may not exist on the domain of the function, here. Absolute extrema often
coincide with relative extrema, as with in Figure 1. Although a function may have sev-
eral relative maxima or relative minima, it never has more than one absolute maximum or
absolute minimum, although the absolute maximum or minimum might occur at more than
one value of x.

f 1x1 
2

12`, ` 2

xl 2`.xl `f 1x 2 l 2`
f 1x1 

2 $ f 1x 2

6.1

Absolute Maximum or Minimum
Let f be a function defined on some interval. Let c be a number in the interval. Then

is the absolute maximum of f on the interval if

for every x in the interval, and is the absolute minimum of f on the interval if

for every x in the interval.

A function has an absolute extremum (plural: extrema) at c if it has either an
absolute maximum or an absolute minimum there.

f 1 x 2 # f 1 c 2

f 1 c 2

f 1 x 2 " f 1 c 2

f 1 c 2

xx x0 x

f(x)

1 2 3

FIGURE 1

Notice that, just like a relative extremum, an absolute extremum is a y-value, not
an x-value.

CAUTION
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Now look at Figure 2, which shows three functions defined on closed intervals. In each
case there is an absolute maximum value and an absolute minimum value. These absolute
extrema may occur at the endpoints or at relative extrema. As the graphs in Figure 2 show,
an absolute extremum is either the largest or the smallest function value occurring on a
closed interval, while a relative extremum is the largest or smallest function value in some
(perhaps small) open interval.

xx0 x

f(x)

1 2 x3

Absolute
maximum

Absolute
minimum

(a)

FIGURE 2

x x x

f(x)

21

Absolute
maximum

Absolute
minimum

(b)

xx x

f(x)

3x1 x2 4 x5

Absolute
maximum

Absolute
minimum

(c)

Although a function can have only one absolute minimum value and only one absolute
maximum value, it can have many points where these values occur. (Note that the absolute
maximum value and absolute minimum value are numbers, not points.) As an extreme exam-
ple, consider the function The absolute minimum value of this function is
clearly 2, as is the absolute maximum value. Both the absolute minimum and the absolute
maximum occur at every real number x.

One of the main reasons for the importance of absolute extrema is given by the
extreme value theorem (which is proved in more advanced courses).

f 1x 2 5 2.

Extreme Value Theorem
A function f that is continuous on a closed interval will have both an absolute
maximum and an absolute minimum on the interval.

3a, b 4

A continuous function on an open interval may or may not have an absolute maximum or
minimum. For example, the function in Figure 3(a) has an absolute minimum on the interval
(a, b) at , but it does not have an absolute maximum. Instead, it becomes arbitrarily large as
x approaches a or b. Also, a discontinuous function on a closed interval may or may not have
an absolute minimum or maximum. The function in Figure 3(b) has an absolute minimum at

yet it has no absolute maximum. It may appear at first to have an absolute maximum
at , but notice that has a smaller value than f at values of x less than .

The extreme value theorem guarantees the existence of absolute extrema for a continu-
ous function on a closed interval. To find these extrema, use the following steps.

x1f 1x1 2x1

x 5 a,

x1

Finding Absolute Extrema
To find absolute extrema for a function f continuous on a closed interval

1. Find all critical numbers for f in 

2. Evaluate f for all critical numbers in 

3. Evaluate f for the endpoints a and b of the interval 

4. The largest value found in Step 2 or 3 is the absolute maximum for f on 
and the smallest value found is the absolute minimum for f on 3a, b 4.

3a, b 4,
3a, b 4.

1a, b 2 .
1a, b 2 .

3a, b 4:

a x1 b x

f (x)

f (x1)

0

(b)

FIGURE 3 

a x1

(a)

b x

f (x)

0



CHAPTER 6 Applications of the Derivative306

Absolute Extrema

Find the absolute extrema of the function

on the interval 

SOLUTION First look for critical numbers in the interval 

Factor.

Set and solve for x. Notice that at and but is not
in the interval so we ignore it. The derivative is undefined at but the func-
tion is defined there, so 0 is also a critical number.

Evaluate the function at the critical numbers and the endpoints.

x 5 0,121, 8 2 ,
22x 5 22,x 5 2f r 1x 2 5 0f r 1x 2 5 0

 5
8

3
 a

x2 2 4

x1/3 b

 5
8

3
 x21/3 1x2 2 4 2

 f r 1x 2 5
8

3
 x5/3 2

32

3
 x21/3

121, 8 2 .

321, 8 4.

f 1x 2 5 x8/3 2 16x2/3

EXAMPLE  1

YOUR TURN 1 Find the 
absolute extrema of the function

on the 
interval [0, 8].
f 1x 2 5 3x2/ 3 2 3x 5/ 3

Extrema Candidates
Value 

x-Value of Function

21 215
0 0
2 219.05 Absolute minimum

8 192 Absolute maximumk
k

The absolute maximum, 192, occurs when and the absolute minimum, 
approximately occurs when A graph of f is shown in Figure 4.

TRY YOUR TURN 1

x 5 2.219.05,
x 5 8,

–2

150

100

50

2 4 6 8

f(x)

x

f(x) = x    – 16x2/38/3

Relative
maximum

Absolute minimum

Absolute maximum

Relative minimum

FIGURE 4

FOR REVIEW
Recall from Section R.6 that an
exponential expression can be sim-
plified by factoring out the smallest
power of the variable. The

expression 

has a common factor

of .
8

3
 x21/3

8

3
 x5/3 2

32

3
 x21/3
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For an open interval, rather than evaluating the function at the endpoints, we evaluate
the limit of the function when the endpoints are approached. Because the positive -term
dominates the other terms as x becomes large,

The limit is also as x approaches Since the function can be made arbitrarily large, it
has no absolute maximum. The absolute minimum, occurs at This result can
be confirmed with a graphing calculator, as shown in Figure 5. TRY YOUR TURN 2

In many of the applied extrema problems in the next section, a continuous function on
an open interval has just one critical number. In that case, we can use the following theo-
rem, which also applies to closed intervals.

x 5 2.230,
2`.`

lim
xl`

1 3x4 2 4x3 2 12x2 1 2 2 5 `.

x4

YOUR TURN 2 Find the 
locations and values of the absolute
extrema, if they exist, for the function
f 1x 2 5 2x4 2 4x3 1 8x2 1 20.

Extrema Candidates
x-Value Value of Function

21 23
0 2
2 230 Absolute minimumk

Critical Point Theorem
Suppose a function f is continuous on an interval I and that f has exactly one critical
number in the interval I, located at .

If f has a relative maximum at , then this relative maximum is the absolute
maximum of f on the interval I.

If f has a relative minimum at , then this relative minimum is the absolute
minimum of f on the interval I.

x 5 c

x 5 c
x 5 c

23 3

40

240

f(x) 5 3x4 2 4x3 2 12x2 1 2

Minimum
X51.9999998 Y5-30

FIGURE 5 

EXAMPLE  2

In Example 1, a graphing calculator that gives the maximum and minimum values of a function on an
interval, such as the fMax or fMin feature of the TI-84 Plus, could replace the table. Alternatively,
we could first graph the function on the given interval and then select the feature that gives the maxi-
mum or minimum value of the graph of the function instead of completing the table.

Absolute Extrema

Find the locations and values of the absolute extrema, if they exist, for the function

SOLUTION In this example, the extreme value theorem does not apply since the domain is
an open interval, which has no endpoints. Begin as before by finding any critical
numbers.

There are no values of x where does not exist. Evaluate the function at the critical
numbers. 

f r 1x 2

x 5 0  or  x 5 21  or  x 5 2
 12x 1x 1 1 2 1x 2 2 2 5 0

 12x 1x2 2 x 2 2 2 5 0

 f r 1x 2 5 12x3 2 12x2 2 24x 5 0

12`, ` 2 ,

f 1x 2 5 3x4 2 4x3 2 12x2 1 2.

TECHNOLOGY NOTE



CHAPTER 6 Applications of the Derivative308

EXAMPLE  3

The critical point theorem is of no help in the previous two examples because they each had
more than one critical point on the interval under consideration. But the theorem could be
useful for some of Exercises 31–38 at the end of this section, and we will make good use of
it in the next section.

U.S. and Canadian Dollar Exchange

The U.S. and Canadian exchange rate changes daily.  The value of the U.S. dollar (in Canadian
dollars) between 2000 and 2010 can be approximated by the function

where t is the number of years since 2000.  Based on this approximation, in what year dur-
ing this period did the value of the U.S. dollar reach its absolute minimum? What is the
minimum value of the dollar during this period? Source: The Federal Reserve.

SOLUTION The function is defined on the interval [0, 10]. We first look for critical num-
bers in this interval. Here . We set this derivative
equal to 0 and use the quadratic formula to solve for t.

0.00948t 2 2 0.0942t 1 0.114 5 0

t 5 1.41 or t 5 8.53

Both values are in the interval [0,10]. Now evaluate the function at the critical numbers and
the endpoints 0 and 10.

t 5
0.0942 6 "12 0.0942 22 2 4 10.00948 2 10.114 2

2 10.00948 2

f' 1 t 2 5 0.00948t2 2 0.0942t 1 0.114

f1 t 2 5 0.00316t3 2 0.0471t2 1 0.114t 1 1.47

Extrema Candidates
t-Value Value of Function

0 1.47
1.41 1.55
8.53 0.977 Absolute minimum

10 1.06
k

About 8.53 years after 2000, that is, around the middle of 2008, the U.S. dollar was worth
about $0.98 Canadian, which was an absolute minimum during this period.  It is also worth
noting the absolute maximum value of the U.S. dollar, which was about $1.55 Canadian,
occurred approximately 1.41 years after 2000, or around May of 2001.

Graphical Optimization Figure 6 shows the production output for a family owned
business that produces landscape mulch. As the number of workers (measured in hours of
labor) varies, the total production of mulch also varies. In Section 3.5, Example 1, we saw that
maximum production occurs with 8 workers (corresponding to 320 hours of labor). A man-
ager, however, may want to know how many hours of labor to use in order to maximize the
output per hour of labor. For any point on the curve, the y-coordinate measures the output and
the x-coordinate measures the hours of labor, so the y-coordinate divided by the x-coordinate
gives the output per hour of labor. This quotient is also the slope of the line through the ori-
gin and the point on the curve. Therefore, to maximize the output per hour of labor, we
need to find where this slope is greatest. As shown in Figure 6, this occurs when approxi-
mately 270 hours of labor are used. Notice that this is also where the line from the origin to
the curve is tangent to the curve. Another way of looking at this is to say that the point on
the curve where the tangent line passes through the origin is the point that maximizes the
output per hour of labor.

APPLY IT 
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We can show that, in general, when represents the output as a function of
input, the maximum output per unit input occurs when the line from the origin to a point on
the graph of the function is tangent to the function. Our goal is to maximize

Taking the derivative and setting it equal to 0 gives

Notice that gives the slope of the tangent line at the point, and gives the
slope of the line from the origin to the point. When these are equal, as in Figure 6, the out-
put per input is maximized. In other examples, the point on the curve where the tangent line
passes through the origin gives a minimum. For a life science example of this, see Exercise 54
in Section 3.4 on the Definition of the Derivative.

f 1x 2 /xf r 1x 2

 f r 1x 2 5
f 1x 2

x
 .

 xf r 1x 2 5 f 1x 2

 g r 1x 2 5
xf r 1x 2 2 f 1x 2

x2 5 0

g 1x 2 5
output
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5

f 1x 2
x

 .

y 5 f 1x 2

0
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10000
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x
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O
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The line with the
greatest slope is
tangent to the curve.

FIGURE 6

Find the locations of any absolute extrema for the functions
with graphs as follows.

1. 2.

3. 4.

0 x

h(x)

x1

x20 x

f(x)

x1

0 x

f(x)

x2x1 x3

x 0 x

f(x)

1 x3

x2

6.1 EXERCISES

5. 6.

7. 8.

0

f(x)

x
x1

x3x2
0

f(x)

x
x

4x2

x1 x3

0

g(x)

x x1
0

g(x)

x
x

1
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9. What is the difference between a relative extremum and an
absolute extremum? 

10. Can a relative extremum be an absolute extremum? Is a rela-
tive extremum necessarily an absolute extremum?

Find the absolute extrema if they exist, as well as all values of x
where they occur, for each function, and specified domain. If
you have one, use a graphing calculator to verify your answers.

11.

12.

13.

14.

15.

16.

17.  18.

19. 20.

21.

22.

23.

24.

25. 26.

27. 28.

Graph each function on the indicated domain, and use the
capabilities of your calculator to find the location and value of
the absolute extrema.

29.

30.

Find the absolute extrema if they exist, as well as all values of x
where they occur.

31.

32.

33.

34.

35. 36.

37. 38. f 1x 2 5 x ln xf 1x 2 5
ln x

x3

f 1x 2 5
x

x2 1 1
f 1x 2 5

x 2 1

x2 1 2x 1 6

f 1x 2 5 x4 2 4x3 1 4x2 1 1

f 1x 2 5 23x4 1 8x3 1 18x2 1 2

f 1x 2 5 12 2 x 2
9

x
, x . 0

f 1x 2 5 2x 1
8

x2 1 1, x . 0

f 1x 2 5
x3 1 2x 1 5

x4 1 3x3 1 10
 ; 323, 0 4

f 1x 2 5
25x4 1 2x3 1 3x2 1 9

x4 2 x3 1 x2 1 7
 ; 321, 1 4

f 1x 2 5 x2e20.5x; 32, 5 4f 1x2 5 x 1 e23x; 321, 3 4

f 1x 2 5
ln x

x2 ; 31, 4 4f 1x 2 5 x2 2 8 ln x; 31, 4 4

f 1x 2 5 x 1 3x2/3; 3210, 1 4

f 1x 2 5 5x2/3 1 2x5/3; 322, 1 4

f 1x 2 5 1x2 2 16 2 2/3; 325, 8 4

f 1x 2 5 1x2 2 4 2 1/3; 322, 3 4

f 1x 2 5
x

x2 1 2
 ; 30, 4 4f 1x 2 5

x 2 1

x2 1 1
 ; 31, 5 4

f 1x 2 5
8 1 x

8 2 x
 ; 34, 6 4f 1x 2 5

1 2 x

3 1 x
 ; 30, 3 4

f 1x 2 5 x4 2 32x2 2 7; 325, 6 4

f 1x 2 5 x4 2 18x2 1 1; 324, 4 4

f 1x 2 5
1

3
 x3 2

1

2
 x2 2 6x 1 3; 324, 4 4

f 1x 2 5
1

3
 x3 1

3

2
 x2 2 4x 1 1; 325, 2 4

f 1x 2 5 x3 2 3x2 2 24x 1 5; 323, 6 4

f 1x 2 5 x3 2 6x2 1 9x 2 8; 30, 5 4

39. Find the absolute maximum and minimum of 
(a) on the interval (b) on the interval

40. Let . For , let P(x) be the perimeter of the rec-
tangle with vertices (0, 0), (x, 0), (x, f(x)) and (0, f(x)). Which of
the following statements is true? Source: Society of Actuaries.

a. The function P has an absolute minimum but not an absolute
maximum on the interval .

b. The function P has an absolute maximum but not an
absolute minimum on the interval .

c. The function P has both an absolute minimum and an
absolute maximum on the interval .

d. The function P has neither an absolute maximum nor an
absolute minimum on the interval , but the graph of
the function P does have an inflection point with positive
x-coordinate.

e. The function P has neither an absolute maximum nor an
absolute minimum on the interval , and the graph of
the function P does not have an inflection point with posi-
tive x-coordinate.

APPLICATIONS
Business and Economics
41. Bank Robberies The number of bank robberies in the United

States for the years 2000–2009 is given in the following figure.
Consider the closed interval [2000, 2009]. Source: FBI.

a. Give all relative maxima and minima and when they occur
on the interval.

b. Give the absolute maxima and minima and when they occur
on the interval. Interpret your results.

10, ` 2

10, ` 2

10, ` 2

10, ` 2

10, ` 2

x . 0f 1x 2 5 e22x

30.5, 2 4.
321, 0.5 4;2x 2 3x2/3

f 1x 2 5
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42. Bank Burglaries The number of bank burglaries (entry into or
theft from a bank during nonbusiness hours) in the United
States for the years 2000–2009 is given in the figure on the
following page. Consider the closed interval [2000, 2009].
Source: FBI.

a. Give all relative maxima and minima and when they occur
on the interval.
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43. Profit The total profit (in thousands of dollars) from the
sale of x hundred thousand automobile tires is approximated by

Find the number of hundred thousands of tires that must be sold
to maximize profit. Find the maximum profit. 

44. Profit A company has found that its weekly profit from the
sale of x units of an auto part is given by 

Production bottlenecks limit the number of units that can be
made per week to no more than 150, while a long-term contract
requires that at least 50 units be made each week. Find the max-
imum possible weekly profit that the firm can make.

Average Cost Find the minimum value of the average cost for
the given cost function on the given intervals.

45. on the following intervals.

a. b.

46. on the following intervals.

a. b.

Cost Each graph gives the cost as a function of production
level. Use the method of graphical optimization to estimate
the production level that results in the minimum cost per item
produced.

47.

10 # x # 201 # x # 10

C 1x 2 5 81x2 1 17x 1 324

10 # x # 201 # x # 10

C 1x 2 5 x3 1 37x 1 250

P 1x 2 5 20.02x3 1 600x 2 20,000.

P 1x 2 5 2x3 1 9x2 1 120x 2 400, x $ 5.

P 1x 2

48.
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Profit Each graph gives the profit as a function of production
level. Use graphical optimization to estimate the production
level that gives the maximum profit per item produced.

49.
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50.

Life Sciences

51. Pollution A marshy region used for agricultural drainage has
become contaminated with selenium. It has been determined
that flushing the area with clean water will reduce the selenium
for a while, but it will then begin to build up again. A biologist
has found that the percent of selenium in the soil x months
after the flushing begins is given by

When will the selenium be reduced to a minimum? What is the
minimum percent?

f 1x 2 5
x2 1 36

2x
, 1 # x # 12.

b. Give the absolute maxima and minima and when they occur
on the interval. Interpret your results. 
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52. Salmon Spawning The number of salmon swimming up-
stream to spawn is approximated by

where x represents the temperature of the water in degrees Cel-
sius. Find the water temperature that produces the maximum
number of salmon swimming upstream.

53. Molars Researchers have determined that the crown length of
first molars in fetuses is related to the postconception age of
the tooth as

where is the crown length (in millimeters) of the molar t
weeks after conception. Find the maximum length of the crown
of first molars during weeks 22 through 28. Source: American
Journal of Physical Anthropology .

54. Fungal Growth Because of the time that many people spend
indoors, there is a concern about the health risk of being
exposed to harmful fungi that thrive in buildings. The risk
appears to increase in damp environments. Researchers have
discovered that by controlling both the temperature and the
relative humidity in a building, the growth of the fungus A.
versicolor can be limited. The relationship between temperature
and relative humidity, which limits growth, can be described by

where is the relative humidity (in percent) and T is the
temperature (in degrees Celsius). Find the temperature at
which the relative humidity is minimized. Source: Applied
and Environmental Microbiology.

Physical Sciences

55. Gasoline Mileage From information given in a recent business
publication, we constructed the mathematical model

to represent the miles per gallon used by a certain car at a
speed of x mph. Find the absolute maximum miles per gallon
and the absolute minimum and the speeds at which they occur.

56. Gasoline Mileage For a certain sports utility vehicle,

represents the miles per gallon obtained at a speed of x mph.
Find the absolute maximum miles per gallon and the absolute
minimum and the speeds at which they occur. 

M 1x 2 5 20.015x2 1 1.31x 2 7.3, 30 # x # 60,

M 1x 2 5 2 

1

45
 x2 1 2x 2 20, 30 # x # 65,

R 1T 2
15 # T # 46,

R 1T 2 5 20.00007T3 1 0.0401T2 2 1.6572T 1 97.086,

L 1 t 2

L 1 t 2 5 20.01t2 1 0.788t 2 7.048,

S 1x 2 5 2x3 1 3x2 1 360x 1 5000, 6 # x # 20,

57. Where should the cut be made in order to minimize the sum of
the areas enclosed by both figures?

58. Where should the cut be made in order to make the sum of the
areas maximum? (Hint: Remember to use the endpoints of a
domain when looking for absolute maxima and minima.)

59. For the solution to Exercise 57, show that the side of the square
equals the diameter of the circle, that is, that the circle can be
inscribed in the square.* 

60. Information Content Suppose dots and dashes are transmit-
ted over a telegraph line so that dots occur a fraction p of the
time (where and dashes occur a fraction of
the time. The information content of the telegraph line is given
by where

a. Show that 

b. Set and find the value of p that maximizes the
information content.

c. How might the result in part b be used?

I r 1p 2 5 0

I r 1p 2 5 2ln p 1 ln 1 1 2 p 2 .

I 1p 2 5 2p ln p 2 1 1 2 p 2  ln 1 1 2 p 2 .

I 1p 2 ,

1 2 p0 , p , 1)

 Side of square 5
12 2 x

4
  Area of square 5 a

12 2 x

4
b

2

 Radius of circle 5
x

2p
  Area of circle 5 pa

x

2p
b

2

12

x 12 – x

General Interest

Area A piece of wire 12 ft long is cut into two pieces. (See the
figure.) One piece is made into a circle and the other piece is
made into a square. Let the piece of length x be formed into a
circle. We allow x to equal 0 or 12, so all the wire may be used
for the square or for the circle. 

*For a generalization of this phenomenon, see Cade, Pat and Russell 
A. Gordon, “An Apothem Apparently Appears,” The College Mathematics
Journal, Vol. 36, No. 1, Jan. 2005, pp. 52–55.

YOUR TURN ANSWERS 

1. Absolute maximum of about 0.977 occurs when x � and
absolute minimum of �84 when x � 8. 

2. Absolute maximum, 148, occurs at x � �4. No absolute 
minimum.

2 /5
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In Examples 3 and 4 we will use the techniques of calculus to find an answer to these
questions.

In this section we give several examples showing applications of calculus to maximum
and minimum problems. To solve these examples, go through the following steps. 

Applications of Extrema
How should boxes and cans be designed to minimize the material
needed to construct them or to maximize the volume?

6.2
APPLY IT 

Solving an Applied Extrema Problem
1. Read the problem carefully. Make sure you understand what is given and what is

unknown.

2. If possible, sketch a diagram. Label the various parts.

3. Decide on the variable that must be maximized or minimized. Express that variable
as a function of one other variable.

4. Find the domain of the function.

5. Find the critical points for the function from Step 3.

6. If the domain is a closed interval, evaluate the function at the endpoints and at each
critical number to see which yields the absolute maximum or minimum. If the domain
is an open interval, apply the critical point theorem when there is only one critical
number. If there is more than one critical number, evaluate the function at the critical
numbers and find the limit as the endpoints of the interval are approached to deter-
mine if an absolute maximum or minimum exists at one of the critical points.

Do not skip Step 6 in the preceding box. If a problem asks you to maximize a
quantity and you find a critical point at Step 5, do not automatically assume the
maximum occurs there, for it may occur at an endpoint, as in Exercise 58 of the
previous section, or it may not exist at all.

An infamous case of such an error occurred in a 1945 study of “flying wing”
aircraft designs similar to the Stealth bomber. In seeking to maximize the range of
the aircraft (how far it can fly on a tank of fuel), the study’s authors found that a
critical point occurred when almost all of the volume of the plane was in the
wing. They claimed that this critical point was a maximum. But another engineer
later found that this critical point, in fact, minimized the range of the aircraft!
Source: Science.

Maximization

Find two nonnegative numbers x and y for which such that is maximized.

SOLUTION Step 1, reading and understanding the problem, is up to you. Step 2 does not
apply in this example; there is nothing to draw. We proceed to Step 3, in which we decide
what is to be maximized and assign a variable to that quantity. Here, is to be maxi-
mized, so let

According to Step 3, we must express M in terms of just one variable, which can be done using
the equation by solving for either x or y. Solving for y gives

 y 5 30 2 2x.

 2x 1 y 5 30

2x 1 y 5 30

M 5 xy2.

xy2

xy22x 1 y 5 30,

CAUTION

EXAMPLE  1
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EXAMPLE  2

Substitute for y in the expression for M to get

We are now ready for Step 4, when we find the domain of the function. Because of the
nonnegativity requirement, x must be at least 0. Since y must also be at least 0, we require

so Thus x is confined to the interval 
Moving on to Step 5, we find the critical points for M by finding and then solv-

ing the equation for x.

Factor out the 12.

Factor the quadratic.

Finally, at Step 6, we find M for the critical numbers and , as well as for
an endpoint of the domain. The other endpoint, has already been included as

a critical number. We see in the table that the maximum value of the function occurs when
Since the values that maximize are and

TRY YOUR TURN 1

NOTE A critical point is only a candidate for an absolute maximum or minimum. The
absolute maximum or minimum might occur at a different critical point or at an 
endpoint.

Minimizing Time

A math professor participating in the sport of orienteering must get to a specific tree in
the woods as fast as possible. He can get there by traveling east along the trail for 300 m
and then north through the woods for 800 m. He can run 160 m per minute along the trail
but only 70 m per minute through the woods. Running directly through the woods toward
the tree minimizes the distance, but he will be going slowly the whole time. He could
instead run 300 m along the trail before entering the woods, maximizing the total dis-
tance but minimizing the time in the woods. Perhaps the fastest route is a combination, as
shown in Figure 7. Find the path that will get him to the tree in the minimum time.

SOLUTION As in Example 1, the first step is to read and understand the problem. If the
statement of the problem is not clear to you, go back and reread it until you understand it
before moving on.

We have already started Step 2 by providing Figure 7. Let x be the distance shown in
Figure 7, so the distance he runs on the trail is 300 � x. By the Pythagorean theorem, the
distance he runs through the woods is 

The first part of Step 3 is noting that we are trying to minimize the total amount of time,
which is the sum of the time on the trail and the time through the woods. We must express
this time as a function of x. Since the total time is

To complete Step 4, notice in this equation that 0 # x # 300.

T 1x 2 5
300 2 x

160
1
"8002 1 x2

70
.

time 5 distance/speed,

"8002 1 x2
 .

y 5 20.
x 5 5xy2y 5 30 2 2x 5 30 2 2 1 5 2 5 20,x 5 5.

x 5 15,x 5 0,
x 5 15x 5 5

x 5 5  or  x 5 15

12 1 5 2 x 2 1 15 2 x 2 5 0

 12 1 75 2 20x 1 x2 2 5 0

 
dM

dx
5 900 2 240x 1 12x2 5 0

dM /dx 5 0
dM /dx,

30, 15 4.x # 15.30 2 2x $ 0,

 5 900x 2 120x2 1 4x3.

 5 x 1 900 2 120x 1 4x2 2
 M 5 x 1 30 2 2x 2 2

YOUR TURN 1 Find two 
nonnegative numbers x and y for
which , such that is
maximized. 

x2 yx 1 3y 5 30

x300 – x

800 m

300 m

8002 + x2

FIGURE 7 

0 0

5 2000 Maximum

15 0

k

Extrema Candidates

x M
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EXAMPLE  3

We now move to Step 5, in which we find the critical points by calculating the deriva-
tive and setting it equal to 0. Since 

Square both sides.

Subtract 49x2 from
both sides.

Since 389 is not in the interval the minimum time must occur at one of the end-
points.

We now complete Step 6 by creating a table with T(x) evaluated at the endpoints. We
see from the table that the time is minimized when x � 300, that is, when the professor
heads straight for the tree. TRY YOUR TURN 2

Maximizing Volume

An open box is to be made by cutting a square from each corner of a 12-in. by 12-in. piece
of metal and then folding up the sides. What size square should be cut from each corner to
produce a box of maximum volume?

SOLUTION Let x represent the length of a side of the square that is cut from each corner,
as shown in Figure 8(a). The width of the box is with the length also 
As shown in Figure 8(b), the depth of the box will be x inches. The volume of the box is
given by the product of the length, width, and height. In this example, the volume, 
depends on x:

Clearly, and since neither the length nor the width can be negative, so
Thus, the domain of V is the interval 30, 6 4.x # 6.

0 # 12 2 2x,0 # x,

V 1x 2 5 x 1 12 2 2x 2 1 12 2 2x 2 5 144x 2 48x2 1 4x3.

V 1x 2 ,

12 2 2x.12 2 2x,

30, 300 4,

 x 5
7 . 800

"207
< 389

 x2 5
49 . 8002

207

 207x2 5 49 . 8002

 256x2 5 49 1 8002 1 x2 2 5 149 . 8002 2 1 49x2

 16x 5 7 "8002 1 x2

 
x

70 "8002 1 x2
5

1

160

 T r 1x 2 5 2 

1

160
1

1

70
 a

1

2
b 1 8002 1 x2 221/2 12x 2 5 0.

1 8002 1 x2 2 1/2,"8002 1 x2 5

0 13.30

300 12.21 Minimumk

Extrema Candidates

x T(x)

YOUR TURN 2 Suppose the
professor in Example 2 can only run
40 m per minute through the woods.
Find the path that will get him to the
tree in the minimum time.

12

12 – 2xx

(a)

FIGURE 8

12 – 2x 12 – 2x

x = depth

(b)

APPLY IT 

Take the square root of
both sides

Cross multiply
and divide by 10.



EXAMPLE  4

The derivative is Set this derivative equal to 0.

Find for x equal to 0, 2, and 6 to find the depth that will maximize the volume. The
table indicates that the box will have maximum volume when and that the maximum
volume will be TRY YOUR TURN 3

Minimizing Area

A company wants to manufacture cylindrical aluminum cans with a volume of 
(1 liter). What should the radius and height of the can be to minimize the amount of alu-
minum used?

SOLUTION The two variables in this problem are the radius and the height of the can,
which we shall label r and h, as in Figure 9. Minimizing the amount of aluminum used
requires minimizing the surface area of the can, which we will designate S. The surface
area consists of a top and a bottom, each of which is a circle with an area plus the side.
If the side were sliced vertically and unrolled, it would form a rectangle with height h and
width equal to the circumference of the can, which is Thus the surface area is given by

The right side of the equation involves two variables. We need to get a function of a single
variable. We can do this by using the information about the volume of the can:

(Here we have used the formula for the volume of a cylinder.) Solve this for h:

(Solving for r would have involved a square root and a more complicated function.)
We now substitute this expression for h into the equation for S to get

There are no restrictions on r other than that it be a positive number, so the domain of S
is 

Find the critical points for S by finding then solving the equation for r.

Take the cube root of both sides to get

centimeters. Substitute this expression into the equation for h to get

centimeters. Notice that the height of the can is twice its radius.

h 5
1000

p5.4192 < 10.84

r 5 a
500
p
b

1/3
< 5.419

 r3 5
500
p

 4pr3 5 2000

 
dS

dr
5 4pr 2

2000

r2 5 0

dS /dr 5 0dS /dr,
10, ` 2 .

S 5 2pr2 1 2pr 

1000

pr2 5 2pr2 1
2000

r
 .

h 5
1000

pr2  .

V 5 pr2h 5 1000.

S 5 2pr2 1 2prh.

2pr.

pr2,

1000 cm3

128 in3.
x 5 2

V 1x 2

 x 5 2   x 5 6

 x 2 2 5 0  or   x 2 6 5 0

 12 1x 2 2 2 1x 2 6 2 5 0

 12 1x2 2 8x 1 12 2 5 0

 12x2 2 96x 1 144 5 0

V r 1x 2 5 144 2 96x 1 12x2.
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YOUR TURN 3 Repeat 
Example 3 using an 8-m by 8-m
piece of metal. 

r

h

FIGURE 9

APPLY IT 

0 0

2 128 Maximum

6 0

k

Extrema Candidates

x V(x)
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Method 2
Critical Point Theorem

with Second Derivative Test

Method 3
Limits at Endpoints

There are several ways to carry out Step 6 to verify that we have found the minimum.
Because there is only one critical number, the critical point theorem applies.

Verify that when then and when then dS/dr . 0.
Since the function is decreasing before 5.419 and increasing after 5.419, there must be a
relative minimum at cm. By the critical point theorem, there is an absolute
minimum there.

We could also use the critical point theorem with the second derivative test.

Notice that for positive r, the second derivative is always positive, so there is a relative
minimum at cm. By the critical point theorem, there is an absolute minimum
there.

We could also find the limit as the endpoints are approached.

The surface area becomes arbitrarily large as r approaches the endpoints of the domain, so
the absolute minimum surface area must be at the critical point.

The graphing calculator screen in Figure 10 confirms that there is an absolute minimum
at cm. TRY YOUR TURN 4 

Notice that if the previous example had asked for the height and radius that maximize
the amount of aluminum used, the problem would have no answer. There is no maximum
for a function that can be made arbitrarily large.

Maximum Sustainable Harvest For most living things, reproduction is seasonal—
it can take place only at selected times of the year. Large whales, for example, reproduce every
two years during a relatively short time span of about two months. Shown on the time axis in
Figure 11 are the reproductive periods. Let of adults present during the reproductive
period and let of adults that return the next season to reproduce. Source: Mathe-
matics for the Biosciences.

R 5 number
S 5 number

r 5 5.419

lim
rl0

S 5 lim
rl`

S 5 `

r 5 5.419

d 
2S

dr 
2 5 4p 1

4000

r 
3

r 5 5.419

r . 5.419,dS /dr , 0,r , 5.419,

YOUR TURN 4 Repeat Exam-
ple 4 if the volume is to be 500 cm3.

0 20

1600

0

2000
r

FIGURE 10

Reproductive period

R returnS reproduce

FIGURE 11

If we find a relationship between R and S, then we have formed a spawner-
recruit function or parent-progeny function. These functions are notoriously hard to
develop because of the difficulty of obtaining accurate counts and because of the many
hypotheses that can be made about the life stages. We will simply suppose that the function
f takes various forms.

If we can presumably harvest

individuals, leaving S to reproduce. Next season, will return and the harvesting
process can be repeated, as shown in Figure 12 on the next page.

Let be the number of spawners that will allow as large a harvest as possible without
threatening the population with extinction. Then is called the maximum sustain-
able harvest.

H 1S0 
2

S0

R 5 f 1S 2

H 5 R 2 S 5 f 1S 2 2 S

R . S,

R 5 f 1S 2 ,

Method 1
Critical Point Theorem

with First Derivative Test



CHAPTER 6 Applications of the Derivative318

EXAMPLE  5 Maximum Sustainable Harvest

Suppose the spawner-recruit function for Idaho rabbits is
where S is measured in thousands of rabbits. Find and the maximum sustainable har-
vest, 

SOLUTION is the value of S that maximizes H. Since

Now we want to set this derivative equal to 0 and solve for S.

This equation cannot be solved analytically, so we will graph with a graphing calcu-
lator and find any S-values where is 0. (An alternative approach is to use the equa-
tion solver some graphing calculators have.) The graph with the value where is 0 is
shown in Figure 13.

From the graph we see that when so the number of rabbits
needed to sustain the population is about 36,600. A graph of H will show that this is a max-
imum. From the graph, using the capability of the calculator, we find that the harvest is

These results indicate that after one reproductive season, a
population of 36,600 rabbits will have increased to 47,600. Of these, 11,000 may be har-
vested, leaving 36,600 to regenerate the population. Any harvest larger than 11,000 will
threaten the future of the rabbit population, while a harvest smaller than 11,000 will allow
the population to grow larger each season. Thus 11,000 is the maximum sustainable harvest
for this population.

H 1 36.557775 2 < 11.015504.

S 5 36.557775,H r 1S 2 5 0

H r 1S 2
H r 1S 2

H r 1S 2

0 5 2.17a
ln 1S 1 1 2

2 "S
1

"S

S 1 1
b 2 1.

 H r 1S 2 5 2.17a
ln 1S 1 1 2

2 "S
1

"S

S 1 1
b 2 1.

 5 2.17 "S ln 1S 1 1 2 2 S,

 H 1S 2 5 f 1S 2 2 S

S0

H 1S0 
2 .

S0

 ln 1S 1 1 2 ,2.17 "Sf 1S 2  5

R return S reproduce

H = R – S  caught

FIGURE 12

0 60

1.5

20.5

Zero
X536.557775 Y50

FIGURE 13

1. and the product is as large as possible.

a. Solve for y.

b. Substitute the result from part a into the equation
for the variable that is to be maximized.

P 5 xy,

x 1 y 5 180

P 5 xyx 1 y 5 180

c. Find the domain of the function P found in part b.

d. Find Solve the equation 

e. Evaluate P at any solutions found in part d, as well as at the
endpoints of the domain found in part c.

f. Give the maximum value of P, as well as the two numbers x
and y whose product is that value.

dP /dx 5 0.dP /dx.

In Exercises 1–4, use the steps shown in Exercise 1 to find non-
negative numbers x and y that satisfy the given requirements.
Give the optimum value of the indicated expression.

6.2 EXERCISES
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2. The sum of x and y is 140 and the sum of the squares of x and y
is minimized.

3. and is maximized.

4. and is maximized.

APPLICATIONS
Business and Economics

Average Cost In Exercises 5 and 6, determine the average cost
function . To find where the average cost is
smallest, first calculate , the derivative of the average cost
function. Then use a graphing calculator to find where the deriv-
ative is 0. Check your work by finding the minimum from the
graph of the function .

5.

6.

7. Revenue If the price charged for a candy bar is cents,
then x thousand candy bars will be sold in a certain city, where

a. Find an expression for the total revenue from the sale of x
thousand candy bars.

b. Find the value of x that leads to maximum revenue.

c. Find the maximum revenue.

8. Revenue The sale of compact disks of “lesser” performers is
very sensitive to price. If a CD manufacturer charges 
dollars per CD, where

then x thousand CDs will be sold.

a. Find an expression for the total revenue from the sale of x
thousand CDs.

b. Find the value of x that leads to maximum revenue.

c. Find the maximum revenue.

9. Area A campground owner has 1400 m of fencing. He wants
to enclose a rectangular field bordering a river, with no fencing
needed along the river. (See the sketch.) Let x represent the
width of the field.

p 1x 2 5 12 2
x

8
 ,

p 1x 2

p 1x 2 5 160 2
x

10
 .

p 1x 2
C 1x 2 5 10 1 20x1/2 1 16x3/2

C 1x 2 5
1

2
 x3 1 2x2 2 3x 1 35

C 1 x 2

C9 1 x 2
C 1 x 2 5 C 1 x 2 /x

xy2x 1 y 5 105

x2yx 1 y 5 90

11. Area An ecologist is conducting a research project on breed-
ing pheasants in captivity. She first must construct suitable
pens. She wants a rectangular area with two additional fences
across its width, as shown in the sketch. Find the maximum
area she can enclose with 3600 m of fencing.

x

River

a. Write an expression for the length of the field.

b. Find the area of the field 

c. Find the value of x leading to the maximum area.

d. Find the maximum area.

10. Area Find the dimensions of the rectangular field of maximum
area that can be made from 300 m of fencing material. (This
fence has four sides.)

1 area 5 length 3 width 2 .

12. Area A farmer is constructing a rectangular pen with one addi-
tional fence across its width. Find the maximum area that can
be enclosed with 2400 m of fencing.

13. Cost with Fixed Area A fence must be built in a large field to
enclose a rectangular area of One side of the area is
bounded by an existing fence; no fence is needed there. Mater-
ial for the fence costs $3 per meter for the two ends and $1.50
per meter for the side opposite the existing fence. Find the cost
of the least expensive fence.

14. Cost with Fixed Area A fence must be built to enclose a rec-
tangular area of Fencing material costs $2.50 per
foot for the two sides facing north and south and $3.20 per foot
for the other two sides. Find the cost of the least expensive
fence.

15. Revenue A local club is arranging a charter flight to Hawaii.
The cost of the trip is $1600 each for 90 passengers, with a
refund of $10 per passenger for each passenger in excess of 90.

a. Find the number of passengers that will maximize the rev-
enue received from the flight.

b. Find the maximum revenue.

16. Profit In planning a restaurant, it is estimated that a profit of
$8 per seat will be made if the number of seats is no more than
50, inclusive. On the other hand, the profit on each seat will
decrease by 10¢ for each seat above 50.

a. Find the number of seats that will produce the maximum
profit.

b. What is the maximum profit?

17. Timing Income A local group of scouts has been collecting
aluminum cans for recycling. The group has already collected
12,000 lb of cans, for which they could currently receive $7.50
per hundred pounds. The group can continue to collect cans at
the rate of 400 lb per day. However, a glut in the aluminum
market has caused the recycling company to announce that it
will lower its price, starting immediately, by $0.15 per hundred
pounds per day. The scouts can make only one trip to the recy-
cling center. Find the best time for the trip. What total income
will be received?

18. Pricing Decide what you would do if your assistant presented
the following contract for your signature:

Your firm offers to deliver 250 tables to a dealer, at $160 per
table, and to reduce the price per table on the entire order
by 50¢ for each additional table over 250.

Find the dollar total involved in the largest possible transaction
between the manufacturer and the dealer; then find the smallest
possible dollar amount.

20,000 ft2.

25,600 m2.
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19. Packaging Design A television manufacturing firm needs to
design an open-topped box with a square base. The box must
hold Find the dimensions of the box that can be built
with the minimum amount of materials. (See the figure.)

32 in3.

25. Can Design

a. For the can problem in Example 4, the minimum surface
area required that the height be twice the radius. Show that
this is true for a can of arbitrary volume V.

b. Do many cans in grocery stores have a height that is twice
the radius? If not, discuss why this may be so.

26. Container Design Your company needs to design cylindrical
metal containers with a volume of 16 cubic feet. The top and
bottom will be made of a sturdy material that costs $2 per
square foot, while the material for the sides costs $1 per square
foot. Find the radius, height, and cost of the least expensive
container.

In Exercises 27–29, use a graphing calculator to determine
where the derivative is equal to zero.

27. Can Design Modify the can problem in Example 4 so the cost
must be minimized. Assume that aluminum costs 3¢ per
square centimeter, and that there is an additional cost of 2¢ per
cm times the perimeter of the top, and a similar cost for the
bottom, to seal the top and bottom of the can to the side.

28. Can Design In this modification of the can problem in Exam-
ple 4, the cost must be minimized. Assume that aluminum
costs 3¢ per square centimeter, and that there is an additional
cost of 1¢ per cm times the height of the can to make a vertical
seam on the side.

29. Can Design This problem is a combination of Exercises 27 and
28. We will again minimize the cost of the can, assuming that
aluminum costs 3¢ per square centimeter. In addition, there is a
cost of 2¢ per cm to seal the top and bottom of the can to the
side, plus 1¢ per cm to make a vertical seam.

30. Packaging Design A cylindrical box will be tied up with rib-
bon as shown in the figure. The longest piece of ribbon avail-
able is 130 cm long, and 10 cm of that are required for the bow.
Find the radius and height of the box with the largest possible
volume.

20. Packaging Design A company wishes to manufacture a box
with a volume of that is open on top and is twice as long
as it is wide. Find the dimensions of the box produced from the
minimum amount of material.

21. Container Design An open box will be made by cutting a
square from each corner of a 3-ft by 8-ft piece of cardboard
and then folding up the sides. What size square should be
cut from each corner in order to produce a box of maximum
volume?

22. Container Design Consider the problem of cutting corners out
of a rectangle and folding up the sides to make a box. Specific
examples of this problem are discussed in Example 3 and
Exercise 21.

a. In the solution to Example 3, compare the area of the base of
the box with the area of the walls.

b. Repeat part a for the solution to Exercise 21.

c. Make a conjecture about the area of the base compared with
the area of the walls for the box with the maximum volume.

23. Packaging Cost A closed box with a square base is to have a
volume of The material for the top and bottom of
the box costs $3 per square centimeter, while the material for
the sides costs $1.50 per square centimeter. Find the dimen-
sions of the box that will lead to the minimum total cost. What
is the minimum total cost?

24. Use of Materials A mathematics book is to contain of
printed matter per page, with margins of 1 in. along the sides
and along the top and bottom. Find the dimensions of the
page that will require the minimum amount of paper. (See the
figure.)

1 
1
2 in.

36 in2

16,000 cm3.

36 ft3

36 in.2

1"

11/2"

11/2"

1"

31. Cost A company wishes to run a utility cable from point A on
the shore (see the figure on the next page) to an installation at
point B on the island. The island is 6 miles from the shore. It
costs $400 per mile to run the cable on land and $500 per mile
underwater. Assume that the cable starts at A and runs along
the shoreline, then angles and runs underwater to the island.
Find the point at which the line should begin to angle in order
to yield the minimum total cost.
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32. Cost Repeat Exercise 31, but make point A 7 miles from
point C.

Life Sciences

33. Disease Epidemiologists have found a new communicable
disease running rampant in College Station, Texas. They esti-
mate that t days after the disease is first observed in the com-
munity, the percent of the population infected by the disease is
approximated by

for 

a. After how many days is the percent of the population
infected a maximum?

b. What is the maximum percent of the population infected?

34. Disease Another disease hits the chronically ill town of Col-
lege Station, Texas. This time the percent of the population
infected by the disease t days after it hits town is approximated
by for 

a. After how many days is the percent of the population
infected a maximum?

b. What is the maximum percent of the population infected?

Maximum Sustainable Harvest Find the maximum sustainable
harvest in Exercises 35 and 36. See Example 5.

35. 36.

37. Pollution A lake polluted by bacteria is treated with an
antibacterial chemical. After t days, the number N of bacteria
per milliliter of water is approximated by

for 

a. When during this time will the number of bacteria be a
minimum?

b. What is the minimum number of bacteria during this time?

c. When during this time will the number of bacteria be a
maximum?

d. What is the maximum number of bacteria during this time?

38. Maximum Sustainable Harvest The population of salmon
next year is given by where S is this year’s
salmon population, P is the equilibrium population, and r is a

f 1S 2 5 Ser 112S/P2,

1 # t # 15.

N 1 t 2 5 20a
t

12
2 lna

t

12
bb 1 30

f 1S 2 5
25S

S 1 2
f 1S 2 5 12S0.25

0 # t # 40.p 1 t 2 5 10te2t/8

0 # t # 20.

p 1 t 2 5
20t3 2 t4

1000

constant that depends upon how fast the population grows.
The number of salmon that can be fished next year while
keeping the population the same is The
maximum value of is the maximum sustainable harvest.
Source: Journal of the Fisheries Research Board of Canada.

a. Show that the maximum sustainable harvest occurs when
(Hint: To maximize, set 

b. Let the value of S found in part a be denoted by Show
that the maximum sustainable harvest is given by

(Hint: Set and solve for Then find
and substitute the expression for 

Maximum Sustainable Harvest In Exercises 39 and 40, refer to
Exercise 38. Find and solve the equation 
using a calculator to find the intersection of the graphs of

and 

39. Find the maximum sustainable harvest if and

40. Find the maximum sustainable harvest if and

41. Pigeon Flight Homing pigeons avoid flying over large bodies
of water, preferring to fly around them instead. (One possible
explanation is the fact that extra energy is required to fly over
water because air pressure drops over water in the daytime.)
Assume that a pigeon released from a boat 1 mile from the
shore of a lake (point B in the figure) flies first to point P on the
shore and then along the straight edge of the lake to reach its
home at L. If L is 2 miles from point A, the point on the shore
closest to the boat, and if a pigeon needs as much energy per
mile to fly over water as over land, find the location of point P,
which minimizes energy used.

4 /3

P 5 500.
r 5 0.4

P 5 100.
r 5 0.1

y 5 1.f r 1 S0 
2

f r 1 S0 
2 5 1,f r 1 S0 

2

er 112S0 /P2.)H 1S0 
2

er 112S0 /P2.f r 1S0 
2 5 1

S0 a
1

1 2 rS0 /P
2 1b .

S0 .

H r 1S 2 5 0.)f r 1S 2 5 1.

H 1S 2
H 1S 2 5 f 1S 2 2 S.

6

Island

Shore line

C

9

B

A

1 mile

2 miles

A

B

P L

42. Pigeon Flight Repeat Exercise 41, but assume a pigeon needs
as much energy to fly over water as over land.

43. Harvesting Cod A recent article described the population
of cod in the North Sea next year as a function of this

year’s population S (in thousands of tons) by various mathe-
matical models.

where a, b, and c are constants. Source: Nature.

 Beverton–Holt:  f 1S 2 5
aS

1 1 1S /b 2
 ,

 Ricker:  f 1S 2 5 aSe2bS;

 Shepherd:  f 1S 2 5
aS

1 1 1S /b 2 c
 ;

f 1S 2

10 /9
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a. Find a replacement of variables in the Ricker model above
that will make it the same as another form of the Ricker
model described in Exercise 38 of this section,

b. Find for all three models.

c. Find for all three models. From your answer, describe
in words the geometric meaning of the constant a.

d. The values of a, b, and c reported in the article for the Shep-
herd model are 3.026, 248.72, and 3.24, respectively. Find
the value of this year’s population that maximizes next
year’s population using the Shepherd model.

e. The values of a and b reported in the article for the Ricker
model are 4.151 and 0.0039, respectively. Find the value of
this year’s population that maximizes next year’s population
using the Ricker model.

f. Explain why, for the Beverton-Holt model, there is no value of
this year’s population that maximizes next year’s population.

44. Bird Migration Suppose a migrating bird flies at a velocity v,
and suppose the amount of time the bird can fly depends on its
velocity according to the function Source: A Concrete
Approach to Mathematical Modelling.

a. If E is the bird’s initial energy, then the bird’s effective
power is given by where k is the fraction of the power
that can be converted into mechanical energy. According to
principles of aerodynamics,

where a is a constant, S is the wind speed, and I is the induced
power, or rate of working against gravity. Using this result and
the fact that distance is velocity multiplied by time, show that
the distance that the bird can fly is given by

b. Show that the migrating bird can fly a maximum distance by
flying at a velocity

v 5 a
I

2aS
b

1/3
.

D 1 v 2 5
kEv

aSv3 1 I
 .

kE

T
5 aSv3 1 I,

kE /T,

T 1 v 2 .

f r 10 2
f r 1S 2

f 1S 2 5 Ser 112S/P2.

General Interest

45. Travel Time A hunter is at a point along a river bank. He
wants to get to his cabin, located 3 miles north and 8 miles
west. (See the figure.) He can travel 5 mph along the river but
only 2 mph on this very rocky land. How far upriver should
he go in order to reach the cabin in minimum time?

3

Cabin

Hunter

8

Girth

Length

YOUR TURN ANSWERS 

1. x 5 20 and y 5 10/3
2. Go 93 m along the trail and then head into the woods.
3. Box will have maximum volume when x 5 4/3 m and the

maximum volume is 1024/27 m3.
4. Radius is 4.3 cm and height is 8.6 cm.

46. Travel Time Repeat Exercise 45, but assume the cabin is 
19 miles north and 8 miles west.

47. Postal Regulations The U.S. Postal Service stipulates that any
boxes sent through the mail must have a length plus girth total-
ing no more than 108 in. (See the figure.) Find the dimensions
of the box with maximum volume that can be sent through the
U.S. mail, assuming that the width and the height of the box
are equal. Source: U.S. Postal Service.

APPLY IT

Further Business Applications: Economic
Lot Size; Economic Order Quantity;
Elasticity of Demand 
How many batches of primer should a paint company produce per year
to minimize its costs while meeting its customers’ demand?
We will answer this question in Example 1 using the concept of economic lot size.

In this section we introduce three common business applications of calculus. The
first two, economic lot size and economic order quantity, are related. A manufacturer

6.3
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must determine the production lot (or batch) size that will result in minimum production
and storage costs, while a purchaser must decide what quantity of an item to order in an
effort to minimize reordering and storage costs. The third application, elasticity of
demand, deals with the sensitivity of demand for a product to changes in the price of the
product.

Economic Lot Size Suppose that a company manufactures a constant number of
units of a product per year and that the product can be manufactured in several batches of
equal size throughout the year. On the one hand, if the company were to manufacture one
large batch every year, it would minimize setup costs but incur high warehouse costs. On
the other hand, if it were to make many small batches, this would increase setup costs. Cal-
culus can be used to find the number that should be manufactured in each batch in order to
minimize the total cost. This number is called the economic lot size.

Figure 14 below shows several possibilities for a product having an annual demand
of 12,000 units. The top graph shows the results if all 12,000 units are made in one
batch per year. In this case an average of 6000 units will be held in a warehouse. If
3000 units are made in each batch, four batches will be made at equal time intervals dur-
ing the year, and the average number of units in the warehouse falls to only 1500. If
1000 units are made in each of twelve batches, an average of 500 units will be in the
warehouse.

The variable in our discussion of economic lot size will be

q 5 number of units in each batch.

12,000

Number of
units per batch

Months
0 12

121110987654321

12963

Average number
stored
6000

3000

Months

0

1500

1000

Months

0

500

FIGURE 14 
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In addition, we have the following constants:

The company has two types of costs: a cost associated with manufacturing the item and
a cost associated with storing the finished product. Because q units are produced in each
batch, and each batch has a fixed cost f and a variable cost g per unit, the manufacturing
cost per batch is

The number of units produced in a year is M, so the number of batches per year must be
Therefore, the total annual manufacturing cost is

(1)

Since demand is constant, the inventory goes down linearly from q to 0, as in Figure 14,
with an average inventory of units per year. The cost of storing one unit of the product
for a year is k, so the total storage cost is

(2)

The total production cost is the sum of the manufacturing and storage costs, or the sum of
Equations (1) and (2). If is the total cost of producing M units in batches of size q,

In words, we have found that the total cost is equal to

Since the only constraint on q is that it be a positive number, the domain of T is To
find the value of q that will minimize remember that f, g, k, and M are constants and
find 

Set this derivative equal to 0.

(3)

The critical point theorem can be used to show that is the economic lot size
that minimizes total production costs. (See Exercise 1.)

"12fM 2 /k

 q 5
Å

2fM

k

 q2 5
2fM

k

 q2
 

k

2
5 fM

 
k

2
5

fM

q2

 
2fM

q2 1
k

2
5 0

T r 1q 2 5
2fM

q2 1
k

2

T r 1q 2 .
T 1q 2 ,

10, ` 2 .

afixed cost 1
cost

unit
3

# units

batch
 b 

# batches
year

1 storage cost 3 # units in storage.

T 1q 2 5
fM

q
1 gM 1

kq

2
 .

T 1q 2

ka
q

2
b 5

kq

2
 .

q /2

1f 1 gq 2  

M
q

5
fM

q
1 gM.

M /q.

f 1 gq.

 M 5 total number of units produced annually.

 g 5 cost of manufacturing a single unit of the product;

 f 5 fixed setup cost to manufacture the product;

 k 5 cost of storing one unit of the product for one year;

Add to both sides.

Multiply both sides by q2.

Multiply both sides by .

Take square root of both sides.

2/k

fM

q2
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EXAMPLE  2

EXAMPLE  1

This application is referred to as the inventory problem and is treated in more detail in
management science courses. Please note that Equation (3) was derived under very specific
assumptions. If the assumptions are changed slightly, a different conclusion might be
reached, and it would not necessarily be valid to use Equation (3).

In some examples Equation (3) may not give an integer value, in which case we must
investigate the next integer smaller than q and the next integer larger to see which gives the
minimum cost.

Lot Size

A paint company has a steady annual demand for 24,500 cans of automobile primer. The
comptroller for the company says that it costs $2 to store one can of paint for 1 year and
$500 to set up the plant for the production of the primer. Find the number of cans of primer
that should be produced in each batch, as well as the number of batches per year, in order to
minimize total production costs.

SOLUTION Use Equation (3), with and 

The company should make 3500 cans of primer in each batch to minimize production
costs. The number of batches per year is  

TRY YOUR TURN 1

Economic Order Quantity We can extend our previous discussion to the prob-
lem of reordering an item that is used at a constant rate throughout the year. Here, the com-
pany using a product must decide how often to order and how many units to request each
time an order is placed; that is, it must identify the economic order quantity. In this case,
the variable is

We also have the following constants:

The goal is to minimize the total cost of ordering over a year’s time, where

Again assume an average inventory of so the yearly storage cost is The number
of orders placed annually is The reorder cost is the product of this quantity and the
cost per order, f. Thus, the reorder cost is and the total cost is

This is almost the same formula we derived for the inventory problem, which also had a
constant term gM. Since a constant does not affect the derivative, Equation (3) is also valid
for the economic order quantity problem. As before, the number of orders placed annually
is This illustrates how two different applications might have the same mathematical
structure, so a solution to one applies to both.

Order Quantity

A large pharmacy has an annual need for 480 units of a certain antibiotic. It costs $3 to
store one unit for one year. The fixed cost of placing an order (clerical time, mailing, and
so on) amounts to $31. Find the number of units to order each time, and how many times a
year the antibiotic should be ordered.

M /q.

T 1q 2 5
fM

q
1

kq

2
 .

fM /q,
M /q.

kq /2.q /2,

Total cost 5 Storage cost 1 Reorder cost.

 M 5 total units needed per year

 f 5 fixed cost to place an order

 k 5 cost of storing one unit for one year

q 5 number of units to order each time.

24,500 /3500 5 7.M /q 5

q 5
Å

2fM

k
5
Å

2 1 500 2 124,500 2
2

5 "12,250,000 5 3500

f 5 500.M 5 24,500,k 5 2,

YOUR TURN 1 Suppose the
annual demand in Example 1 is only
18,000 cans, the setup cost is $750,
and the storage cost is $3 per can.
Find the number of cans that should
be produced in each batch and the
number of batches per year to mini-
mize production costs.

APPLY IT 
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SOLUTION Here and We have

and so ordering 100 units of the drug each time min-
imizes the annual cost. The drug should be ordered times a year, or
about once every months. TRY YOUR TURN 2

Elasticity of Demand Anyone who sells a product or service is concerned with
how a change in price affects demand. The sensitivity of demand to changes in price varies
with different items. Luxury items tend to be more sensitive to price than essentials. For
items such as milk, heating fuel, and light bulbs, relatively small percentage changes in
price will not change the demand for the item much, so long as the price is not far from its
normal range. For cars, home loans, jewelry, and concert tickets, however, small percent-
age changes in price can have a significant effect on demand.

One way to measure the sensitivity of demand to changes in price is by the relative
change—the ratio of percent change in demand to percent change in price. If q represents
the quantity demanded and p the price, this ratio can be written as

where represents the change in q and represents the change in p. This ratio is always
negative, because q and p are positive, while and have opposite signs. (An increase
in price causes a decrease in demand.) If the absolute value of this ratio is large, it suggests
that a relatively small increase in price causes a relatively large drop (decrease) in demand.

This ratio can be rewritten as

Suppose (Note that this is the inverse of the way our demand functions have been
expressed so far; previously we had Then and

As this quotient becomes

and

The negative of this last quantity is called the elasticity of demand (E) and measures the
instantaneous responsiveness of demand to price. *
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M/q 5 480/100 5 4.8
T 1 100 2 5 298.800,T 1 99 2 5 298.803

q 5
Å

2fM

k
5
Å

2 1 31 2 1480 2
3

5 "9920 < 99.6

f 5 31.M 5 480,k 5 3,YOUR TURN 2 Suppose the
annual need in Example 2 is 320
units, the fixed cost amounts to $30,
and the storage cost is $2 per unit.
Find the number of units to order
each time and how many times a
year to order to minimize cost.

FOR REVIEW
Recall from Chapter 1 that the
Greek letter pronounced
delta, is used in mathematics to
mean “change.”

D,

Elasticity of Demand
Let where q is demand at a price p. The elasticity of demand is

Demand is inelastic if 

Demand is elastic if 

Demand has unit elasticity if E 5 1.

E . 1.

E , 1.

E 5 2 

p
q
?

dq

dp
 .

q 5 f 1p 2 ,

*Economists often define elasticity as the negative of our definition.
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EXAMPLE  4

EXAMPLE  3

For example, E has been estimated at 0.6 for physician services and at 2.3 for restaurant
meals. The demand for medical care is much less responsive to price changes than is the
demand for nonessential commodities, such as restaurant meals. Source: Economics:
Private and Public Choice.

If the relative change in demand is less than the relative change in price, and the
demand is called inelastic. If the relative change in demand is greater than the rela-
tive change in price, and the demand is called elastic. In other words, inelastic means that a
small change in price has little effect on demand, while elastic means that a small change in
price has more effect on demand. When the percentage changes in price and
demand are relatively equal and the demand is said to have unit elasticity.

Elasticity

Terrence Wales described the demand for distilled spirits as

where p represents the retail price of a case of liquor in dollars per case. Here q represents the
average number of cases purchased per year by a consumer. Calculate and interpret the elas-
ticity of demand when per case. Source: The American Economic Review.

SOLUTION From we determine Now we find E.

Let to get

Since the demand is inelastic, and a percentage change in price will result in a
smaller percentage change in demand. Thus an increase in price will increase revenue. For
example, a 10% increase in price will cause an approximate decrease in demand of

or about 0.6%. TRY YOUR TURN 3

Elasticity

The demand for beer was modeled by Hogarty and Elzinga with the function given by
The price was expressed in dollars per can of beer, and the quantity sold

in cans per day per adult. Calculate and interpret the elasticity of demand. Source: The
Review of Economics and Statistics.

SOLUTION Since 

Here, the elasticity is 1, unit elasticity, at every (positive) price. As we will see shortly, this
means that revenues remain constant when the price changes. TRY YOUR TURN 4

Elasticity can be related to the total revenue, R, by considering the derivative of R.
Since revenue is given by price times sales (demand),

R 5 pq.

E 5 2 

p

q
. dq

dp
5 2 

p

1 /p
. 21

p2 5 1.

dq

dp
5

21

p2  , and

q 5 1 /p,

q 5 f 1p 2 5 1 /p.

10.0597 2 10.10 2 5 0.00597

0.0597 , 1,

E 5
0.00375 1 118.30 2

20.00375 1 118.30 2 1 7.87
< 0.0597.

p 5 118.30

 5
0.00375p

20.00375p 1 7.87

 5 2 

p

20.00375p 1 7.87
 120.00375 2

 E 5 2 

p

q
. dq

dp

dq /dp 5 20.00375.q 5 20.00375p 17.87,

p 5 $118.30

q 5 f 1p 2 5 20.00375p 1 7.87,

E 5 1,

E . 1,
E , 1,

YOUR TURN 3 Suppose the
demand equation for a given com-
modity is . 
Calculate and interpret E when 
p 5 $50.

q 5 24,000 2 3p2

YOUR TURN 4 Suppose 
the demand equation for a given
product is q 5 200e20.4p. Calculate
and interpret E when p 5 $100.
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EXAMPLE  5

Differentiate with respect to p using the product rule.

Multiply by 

.

Factor.

Total revenue R is increasing, optimized, or decreasing depending on whether 
or These three situations correspond to or 

See Figure 15.
In summary, total revenue is related to elasticity as follows.

E . 1.E 5 1,E , 1,dR /dp , 0.dR /dp 5 0,
dR /dp . 0,

 5 q 1 1 2 E 2

 5 q 12E 1 1 2

2E 5
p

q
 . dq

dp
  5 q 12E 2 1 q

 5 qa
p

q
. dq

dp
b 1 q

q

q
 1 or 1 2 . 5

q

q
. p . dq

dp
1 q

 
dR

dp
5 p . dq

dp
1 q . 1

R

pE

dR
dp

E E

dR
dp

dR
dp

FIGURE 15

Revenue and Elasticity
1. If the demand is inelastic, total revenue increases as price increases.

2. If the demand is elastic, total revenue decreases as price increases.

3. Total revenue is maximized at the price where demand has unit elasticity.

Elasticity

Assume that the demand for a product is where p is the price in dollars.

(a) Find the price intervals where demand is elastic and where demand is inelastic.

SOLUTION Since and

To decide where or solve the corresponding equation.

Multiply both sides by 216 � 2p 2.

Add 2p2 to both sides.

Divide both sides by 6.

Take square root of both sides.

Substitute a test number on either side of 6 in the expression for E to see which values
make and which make 

Let p 5 10: E 5
4 1 10 22

216 2 2 1 10 2 2
5

400

216 2 200
. 1.

Let p 5 1: E 5
4 1 1 22

216 2 2 1 1 2 2
5

4

214
, 1.

E . 1.E , 1

 p 5 6

 p2 5 36

 6p2 5 216

 4p2 5 216 2 2p2

E 5  
4p2

216 2 2p2  
4p2

216 2 2p2 5 1

 E 5 1

E . 1,E , 1

 5
4p2

216 2 2p2  .

 5 2 

p

216 2 2p2  124p 2

 E 5 2 

p

q
. dq

dp

dq /dp 5 24p,q 5 216 2 2p2,

q 5 216 2 2p2,
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Demand is inelastic when This occurs when Demand is elastic when
that is, when 

(b) What price results in the maximum revenue? What is the maximum revenue?

SOLUTION Total revenue is maximized at the price where demand has unit elasticity.
As we saw in part (a), this occurs when the price is set at $6 per item. The demand at this
price is . The maximum revenue is then pq 5 6 . 144 .

TRY YOUR TURN 5

5 $864q 5 216 2 2 1 6 2 2 5 144

p . 6.E . 1;
p , 6.E , 1.YOUR TURN 5 Suppose the

demand function for a given product
is q 5 3600 2 3p2. Find the price
intervals where demand is elastic
and where demand is inelastic. What
price results in maximum revenue?
What is the maximum revenue?

1. In the discussion of economic lot size, use the critical point
theorem to show that is the economic lot size that
minimizes total production costs.

2. Why do you think that the cost g does not appear in the equa-
tion for q [Equation (3)]?

3. Choose the correct answer. Source: American Institute of
Certified Public Accountants.

The economic order quantity formula assumes that

a. Purchase costs per unit differ due to quantity discounts.

b. Costs of placing an order vary with quantity ordered.

c. Periodic demand for the goods is known.

d. Erratic usage rates are cushioned by safety stocks.

4. Describe elasticity of demand in your own words.

5. A Giffen good is a product for which the demand function is
increasing. Economists debate whether such goods actually
exist. What is true about the elasticity of a Giffen good?
Source: investopedia.com.

6. What must be true about the demand function if

7. Suppose that a demand function is linear—that is,
for where m and n are positive constants.
Show that at the midpoint of the demand curve on the
interval that is, at 

8. Suppose the demand function is of the form where
C and k are positive constants.

a. Find the elasticity E.

b. If what does your answer from part a say about
how prices should be set to maximize the revenue?

c. If what does your answer from part a say about how
prices should be set to maximize the revenue?

d. If what does your answer from part a tell you about
setting prices to maximize revenue?

e. Based on your answers above, is a demand function of the
form realistic? Explain your answer.

APPLICATIONS
Business and Economics

9. Lot Size Suppose 100,000 lamps are to be manufactured
annually. It costs $1 to store a lamp for 1 year, and it costs

q 5 Cp2k

k 5 1,

k . 1,

0 , k , 1,

q 5 Cp2k,

p 5 m / 12n 2 .0 # p # m /n;
E 5 1

0 # p # m /n,
q 5 m 2 np

E 5 0?

"12fM 2 /k
$500 to set up the factory to produce a batch of lamps. Find the
number of lamps to produce in each batch.

10. Lot Size A manufacturer has a steady annual demand for 13,950
cases of sugar. It costs $9 to store 1 case for 1 year, $31 in setup
cost to produce each batch, and $16 to produce each case. Find
the number of cases per batch that should be produced.

11. Lot Size Find the number of batches of lamps that should be
manufactured annually in Exercise 9.

12. Lot Size Find the number of batches of sugar that should be
manufactured annually in Exercise 10.

13. Order Quantity A bookstore has an annual demand for
100,000 copies of a best-selling book. It costs $0.50 to store 
1 copy for 1 year, and it costs $60 to place an order. Find the
optimum number of copies per order.

14. Order Quantity A restaurant has an annual demand for 
900 bottles of a California wine. It costs $1 to store 1 bottle for
1 year, and it costs $5 to place a reorder. Find the optimum
number of bottles per order.

15. Lot Size Suppose that in the inventory problem, the storage
cost depends on the maximum inventory size, rather than the
average. This would be more realistic if, for example, the com-
pany had to build a warehouse large enough to hold the maxi-
mum inventory, and the cost of storage was the same no matter
how full or empty the warehouse was. Show that in this case
the number of units that should be ordered or manufactured to
minimize the total cost is

16. Lot Size A book publisher wants to know how many times a
year a print run should be scheduled. Suppose it costs $1000
to set up the printing process, and the subsequent cost per
book is so low it can be ignored. Suppose further that the
annual warehouse cost is $6 times the maximum number of
books stored. Assuming 5000 copies of the book are needed
per year, how many books should be printed in each print run?
(See Exercise 15.)

17. Lot Size Suppose that in the inventory problem, the storage
cost is a combination of the cost described in the text and the
cost described in Exercise 15. In other words, suppose there is
an annual cost, for storing a single unit, plus an annual cost
per unit, that must be paid for each unit up to the maximum
number of units stored. Show that the number of units that

k2 ,
k1 ,

q 5
Å

fM

k
 .

6.3 EXERCISES
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30. Elasticity The price of beef in the United States has been
found to depend on the demand (measured by per capita con-
sumption) according to the equation

.

Find the elasticity. Is the demand for beef elastic or inelastic?
Source: SAS Institute Inc.

31. Elasticity A study of the demand for air travel in Australia
found that the demand for discount air travel from Sydney to
Melbourne (in revenue passenger kilometre per capita, the
product of the number of passengers travelling on a route and
the distance of the route, divided by the populations of the host
cities) depends on the airfare according to the equation

Source: International Journal of Transport Economics.

a. Find the elasticity when the price is $166.10, the average dis-
count airfare deflated by the consumer price index to
1989–1990 prices, according to the authors of the study.

b. Is the demand for airfare elastic or inelastic at this price?

c. Find the price that maximizes revenue.

32. Elasticity The price along the West Coast of the United States
for Japanese spruce logs (in dollars per cubic meter) based on
the demand (in thousands of cubic meters per day) has been
approximated by

Source: Kamiak Econometrics.

a. Find the elasticity when the demand is 11 thousand cubic
meters a day. (Hint: To find when p is expressed in
terms of q, you may use the fact that

Review the explanation of the derivative of the natural log-
arithm to see why this is true.)

b. Is the demand for spruce logs elastic or inelastic?

c. What happens to the elasticity as q approaches 16.6887?
Discuss the limitations of this model for the price as a func-
tion of the demand.

33. Elasticity A geometric interpretation of elasticity is as follows.
Consider the tangent line to the demand curve q � f(p) at the
point P0 � (p0, q0). Let the point where the tangent line inter-
sects the p-axis be called A, and the point where it intersects
the q-axis be called B. Let P0A and P0B be the distances from
P0 to A and to B, respectively. Calculate the ratio in
terms of p0, q0, and f
(p0), and show that this ratio equals the
elasticity. Source: The AMATYC Review.

YOUR TURN ANSWERS 

1. 6 batches per year with 3000 cans per batch 
2. Order 98 units about every 3.675 months.
3. E 5 0.909, the demand is inelastic.
4. E 5 40, the demand is elastic.
5. Demand is inelastic when p , 20 and demand is elastic when 

p . 20. The maximum revenue is $48,000 when p 5 $20.

P0B /P0A

dq

dp
5

1

dp /dq
.

dq /dp

p 5 0.604q2 2 20.16q 1 263.067.

q 5 55.2 2 0.022p.

q 5
342.5

p0.5314

should be ordered or manufactured to minimize the total cost in
this case is

18. Lot Size Every year, Corinna Paolucci sells 30,000 cases of
her Famous Spaghetti Sauce. It costs her $1 per year in elec-
tricity to store a case, plus she must pay annual warehouse fees
of $2 per case for the maximum number of cases she will store.
If it costs her $750 to set up a production run, plus $8 per case
to manufacture a single case, how many production runs
should she have each year to minimize her total costs? 
(See Exercise 17.)

Elasticity For each of the following demand functions, find 
(a) E, and (b) values of q (if any) at which total revenue is
maximized.

19. 20.

21. 22.

23. 24.

Elasticity Find the elasticity of demand (E) for the given
demand function at the indicated values of p. Is the demand
elastic, inelastic, or neither at the indicated values? Interpret
your results.

25.

a. b.

26.

a. b.

27. Elasticity of Crude Oil The short-term demand for crude oil
in the United States in 2008 can be approximated by 

q 5 f (p) 5 2,431,129p20.06,

where p represents the price of crude oil in dollars per barrel
and q represents the per capita consumption of crude oil. Cal-
culate and interpret the elasticity of demand when the price is
$40 per barrel. Source:  2003 OPEC Review. 

28. Elasticity of Rice The demand for rice in Japan for a particu-
lar year was estimated by the general function

q 5 f (p) 5 Ap20.13,

where p represents the price of a unit of rice, A represents a
constant that can be calculated uniquely for a particular year,
and q represents the annual per capita rice demand.  Calculate
and interpret the elasticity of demand. Source: Agricultural
Economics.

29. Elasticity of Software In 2008, the Valve Corporation, a soft-
ware entertainment company, ran a holiday sale on its popular
Steam software program. Using data collected from the sale, it
is possible to estimate the demand corresponding to various
discounts in the price of the software.  Assuming that the origi-
nal price was $40, the demand for the software can be esti-
mated by the function

q 5 3,751,000p22.826,

where p is the price and q is the demand. Calculate and inter-
pret the elasticity of demand. Source: codinghorror.com.

p 5 $50p 5 $100

q 5 300 2 2p

p 5 $40p 5 $20

q 5 400 2 0.2p2

q 5 10 2 ln pp 5 400e20.2q

q 5 48,000 2 10p2q 5 37,500 2 5p2

q 5 25,000 2 50pq 5 50 2
p

4

q 5
Å

2fM

k1 1 2k2

 .



6.4 Implicit Differentiation 331

EXAMPLE  1

APPLY IT

Implicit Differentiation
How does demand for a certain commodity change with respect to price?
We will answer this question in Example 4.

In almost all of the examples and applications so far, all functions have been defined
in the form

with y given explicitly in terms of x, or as an explicit function of x. For example,

are all explicit functions of x. The equation can be expressed as an explicit
function of x by solving for y. This gives

On the other hand, some equations in x and y cannot be readily solved for y, and some
equations cannot be solved for y at all. For example, while it would be possible (but
tedious) to use the quadratic formula to solve for y in the equation it
is not possible to solve for y in the equation In equa-
tions such as these last two, y is said to be given implicitly in terms of x.

In such cases, it may still be possible to find the derivative by a process called
implicit differentiation. In doing so, we assume that there exists some function or func-
tions f, which we may or may not be able to find, such that and exists. It is
useful to use here rather than to make it clear which variable is independent
and which is dependent.

Implicit Differentiation

Find if 

SOLUTION Differentiate with respect to x on both sides of the equation.

(1)

Now differentiate each term on the left side of the equation. Think of as the product
and use the product rule and the chain rule. Since

the derivative of is

To differentiate the second term, use the chain rule, since y is assumed to be some
function of x.

d

dx
 14y2 2 5 4 12y1 2  

dy

dx
5 8y 

dy

dx

4y2,

1 3x 2  

dy

dx
1 1 y 23 5 3x 

dy

dx
1 3y.

1 3x 2 1 y 2

d

dx
 1 3x 2 5 3 and 

d

dx
 1 y 2 5

dy

dx
 ,

1 3x 2 1 y 2
3xy

 
d

dx
 1 3xy 1 4y2 2 5

d

dx
 1 10 2

 3xy 1 4y2 5 10

3xy 1 4y2 5 10.dy /dx

f r 1x 2dy/dx
dy/dxy 5 f 1x 2

dy/dx

y5 1 8y3 1 6y2x2 1 2yx3 1 6 5 0.
y2 1 2yx 1 4x2 5 0,

 y 5
3x 1 6

4x
 .

 4xy 5 3x 1 6

 4xy 2 3x 5 6

4xy 2 3x 5 6

y 5 3x 2 2,  y 5 x2 1 x 1 6,  and  y 5 2x3 1 2

y 5 f 1x 2 ,

6.4

FOR REVIEW
In Chapter 1, we pointed out that
when y is given as a function of x,
x is the independent variable and
y is the dependent variable. We
later defined the derivative 
when y is a function of x. In an
equation such as 
either variable can be considered
the independent variable. If a
problem asks for consider
x the independent variable; if it
asks for consider y the
independent variable. A similar
rule holds when other variables 
are used.

dy /dx,

dy /dx,

3xy 1 4y2 5 10,

dy /dx

Derivative 
of y2

$+%+&
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EXAMPLE  3

EXAMPLE  2

On the right side of Equation (1), the derivative of 10 is 0. Taking the indicated derivatives
in Equation (1) term by term gives

Now solve this result for .

TRY YOUR TURN 1

NOTE Because we are treating y as a function of x, notice that each time an expression has 
y in it, we use the chain rule.

Implicit Differentiation

Find for 

SOLUTION Take the derivative on both sides with respect to x.

Since use the product rule and the chain rule as follows.

Derivative Derivative Derivative
of of of 
# $++++++%++++++& $+%+&

Multiply both sides by 

Combine terms and solve for 

TRY YOUR TURN 2

Tangent Line

The graph of shown in Figure 16, is a folium of Descartes.* Find the equa-
tion of the tangent line at the point shown in Figure 16.

SOLUTION Since this is not the graph of a function, y is not a function of x, and is
not defined. But if we restrict the curve to the vicinity of as shown in Figure 17,12, 4 2 ,

dy /dx

12, 4 2 ,
x3 1 y3 5 9xy,

 
dy

dx
5

2x1/2 . y1/2 1 y

4x1/2 . y3/2 2 x

 2x1/2 . y1/2 1 y 5 14x1/2 . y3/2 2 x 2  

dy

dx

dy /dx.

2x1/2 . y1/2 1 x 

dy

dx
1 y 5 4x1/2 . y3/2 . dy

dx

2x1/2 . y1/2.

 1 1
x1/2

2y1/2
. dy

dx
1

y1/2

2x1/2 5 2y 

dy

dx

 1 1 x1/2a
1

2
 y21/2 . dy

dx
b 1 y1/2a

1

2
 x21/2b 5 2y 

dy

dx

y2x1/2y1/2x

"x ."y 5 x1/2 . y1/2,

d

dx
 1x 1 "x "y 2 5

d

dx
 1 y2 2

x 1 "x "y 5 y2.dy /dx

 
dy

dx
5

23y

3x 1 8y

 1 3x 1 8y 2  

dy

dx
5 23y

dy /dx

3x 

dy

dx
1 3y 1 8y 

dy

dx
5 0.

YOUR TURN 1 Find if 

.x2 1 y2 5 xy

dy /dx

YOUR TURN 2 Find 

for .xey 1 x2 5 ln y

dy/dx

*Information on this curve and others is available on the Famous Curves section of the MacTutor History of Math-
ematics Archive website at www-history.mcs.st-and.ac.uk/~history. See Exercises 33–36 for more curves.

www-history.mcs.st-and.ac.uk/~history
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the curve does represent the graph of a function, and we can calculate by implicit
differentiation.

Chain rule and product rule

Factor.

To find the slope of the tangent line at the point let and The slope is

The equation of the tangent line is then found by using the point-slope form of the equation
of a line.

The tangent line is graphed in Figure 16. TRY YOUR TURN 3

NOTE In Example 3, we could have substituted and immediately after taking
the derivative implicitly. You may find that such a substitution makes solving the equation
for easier.

The steps used in implicit differentiation can be summarized as follows.

dy /dx

y 5 4x 5 2

 y 5
4

5
 x 1

12

5

 y 2 4 5
4

5
 x 2

8

5

 y 2 4 5
4

5
 1x 2 2 2

 y 2 y1 5 m 1x 2 x1 
2

m 5
3y 2 x2

y2 2 3x
5

3 14 2 2 22

42 2 3 12 2
5

8

10
5

4

5
 .

y 5 4.x 5 212, 4 2 ,

 5
3 1 3y 2 x2 2
3 1 y2 2 3x 2

5
3y 2 x2

y2 2 3x

 
dy

dx
5

9y 2 3x2

3y2 2 9x

 
dy

dx
 1 3y2 2 9x 2 5 9y 2 3x2

 3y2 . dy

dx
2 9x 

dy

dx
5 9y 2 3x2

 3x2 1 3y2 . dy

dx
5 9x 

dy

dx
1 9y

dy /dx

–4–6 –2 42 6 8

–4

2

4

y

x

x3 + y3 = 9xy

FIGURE 16 

–4–6 –2 42 6 8

–4

2

4

y

x

FIGURE 17 

Implicit Differentiation
To find for an equation containing x and y:

1. Differentiate on both sides of the equation with respect to x, keeping in mind that y
is assumed to be a function of x.

2. Using algebra, place all terms with on one side of the equals sign and all terms
without on the other side.

3. Factor out and then solve for dy/dx.dy/dx,

dy/dx
dy/dx

dy/dx

YOUR TURN 3 The graph of
is called

the devil’s curve. Find the equation
of the tangent line at the point (1, 1).

y4 2 x4 2 y2 1 x2 5 0

Move all terms to the same
side of the equation.

dy /dx
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EXAMPLE  4

When an applied problem involves an equation that is not given in explicit form,
implicit differentiation can be used to locate maxima and minima or to find rates of change.

Demand

The demand function for a certain commodity is given by

where p is the price in dollars and q is the demand in hundreds of units. Find the rate of
change of demand with respect to price when (that is, find 

SOLUTION Since we don’t have q as a function of p, we will use implicit differentiation.
Differentiate both sides with respect to p using the power rule (with a power of 21) and the
chain rule.

Now substitute q 5 100.

Therefore,

This means that when demand (q) is 100 hundreds, or 10,000, demand is decreasing at the
rate of 139 hundred, or 13,900, units per dollar change in price. TRY YOUR TURN 4

dq

dp
5 2

2,045,0002

500,000 . 60,400
< 2138.

 5
2500,000 . 60,400

2,045,0002
. dq

dp

 1 5
2500,000

12 . 1003 1 400 . 100 1 5000 2 2
 1 6 . 1002 1 400 2  

dq

dp

 5
2500,000

12q3 1 400q 1 5000 2 2
 1 6q2 1 400 2  

dq

dp

 1 5
2500,000

12q3 1 400q 1 5000 2 2
 a6q2 

dq

dp
1 400 

dq

dp
b

dq /dp).q 5 100

p 5
500,000

2q3 1 400q 1 5000
 ,

YOUR TURN 4 Find the 
rate of change of demand with
respect to price when q = 200 if 
the demand function is given by

.
p 5

100,000

q2 1 100q

Find by implicit differentiation for the following.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

Find the equation of the tangent line at the given point on each curve.

17. 18. x2 1 y2 5 100; 1 8, 26 2x2 1 y2 5 25; 123, 4 2

y ln x 1 2 5 x3/2y5/2x 1 ln y 5 x2y3

x2ey 1 y 5 x3ex2y 5 5x 1 4y 1 2

1xy 24/3 1 x1/3 5 y6 1 1x4y3 1 4x3/2 5 6y3/2 1 5

4 !x 2 8!y 5 6y3/22!x 1 4!y 5 5y

2y2 5
5 1 x

5 2 x
3x2 5

2 2 y

2 1 y

3x3 2 8y2 5 10y5x3 5 3y2 1 4y

7x2 5 5y2 1 4xy 1 18x2 2 10xy 1 3y2 5 26

7x2 2 4y2 5 246x2 1 5y2 5 36

dy/dx 19. 20.

21.

22.

23.

24.

25.

26.

In Exercises 27–32, find the equation of the tangent line at the
given value of x on each curve.

27.

28. y3 1 2x2y 2 8y 5 x3 1 19; x 5 2

y3 1 xy 2 y 5 8x4; x 5 1

ln 1x2 1 y2 2 5 ln 5x 1
y

x
2 2; 1 1, 2 2

ln 1x 1 y 2 5 x3y2 1 ln 1x2 1 2 2 2 4; 1 1, 2 2

2xexy 5 ex3

1 yex2

; 1 1, 1 2

ex21y2

5 xe5y 2 y2e5x/2; 12, 1 2

y 1
!x

y
5 3; 14, 2 2

2y2 2 !x 5 4; 1 16, 2 2

x2y3 5 8; 121, 2 2x2y2 5 1; 121, 1 2

6.4 EXERCISES

APPLY IT 



6.4 Implicit Differentiation 335

29.

30.

31.

32.

Information on curves in Exercises 33–36, as well as many
other curves, is available on the Famous Curves section of 
the MacTutor History of Mathematics Archive website at 
www-history.mcs.st-and.ac.uk/~history.

33. The graph of shown in the figure, is an astroid.
Find the equation of the tangent line at the point 1 1, 1 2 .

x2/3 1 y2/3 5 2,

y

18
 1x2 2 64 2 1 x2/3y1/3 5 12; x 5 8

2y3 1x 2 3 2 1 x !y 5 3; x 5 3

y4 1 1 2 x 2 1 xy 5 2; x 5 1

y3 1 xy2 1 1 5 x 1 2y2; x 5 2

37. The graph of is a circle having center at the ori-
gin and radius 10.
a. Write the equations of the tangent lines at the points where

b. Graph the circle and the tangent lines.

38. Much has been written recently about elliptic curves because
of their role in Andrew Wiles’s 1995 proof of Fermat’s Last
Theorem. An elliptic curve can be written in the form 

y2 5 x3 1 ax 1 b,

where a and b are constants, and the cubic function on the right has
distinct roots. Find dy/dx for this curve.

39. Let Find each derivative.

a. b.

c. Based on your answers to parts a and b, what do you notice
about the relationship between du/dv and dv/du? 

40. Let . Find each derivative.

a. b.

c. Based on your answers to parts a and b, what do you notice
about the relationship between du/dv and dv/du?

41. Suppose Use implicit differentiation to find
Then explain why the result you got is meaningless.

(Hint: Can equal 0?)

APPLICATIONS
Business and Economics

42. Demand The demand equation for a certain product is
where p is the price per unit in dollars and q

is the number of units demanded.

a. Find and interpret 

b. Find and interpret 

43. Cost and Revenue For a certain product, cost C and revenue R
are given as follows, where x is the number of units sold (in
hundreds)

a. Find and interpret the marginal cost at

b. Find and interpret the marginal revenue at 

44. Elasticity of Demand Researchers found the demand for milk
in Mexico for a particular year can be estimated by the implicit
equation

,ln q 5 C 2 0.678 ln p

x 5 5.dR /dx

x 5 5.dC /dx

Revenue: 900 1x 2 5 2 2 1 25R2 5 22,500

Cost: C2 5 x2 1 100 "x 1 50

dp /dq.

dq /dp.

2p2 1 q2 5 1600,

x2 1 y2 1 1
dy /dx.

x2 1 y2 1 1 5 0.

dv

du

du

dv

eu22v 2 v 5 1

dv

du

du

dv

"u 1 "2v 1 1 5 5.

x 5 6.

x2 1 y2 5 100

y

x

x    + y    = 22/3 2/3

–2 2 4

2

–2

34. The graph of shown in the figure,
is a lemniscate of Bernoulli. Find the equation of the tangent
line at the point 12, 1 2 .

3 1x2 1 y2 2 2 5 25 1x2 2 y2 2 ,

y

x

y (x  + y )  = 20x2 22 2

–6 –2–4

–2

–4

2

4

2 4 6 8

y

x

3(x  + y )  = 25(x  – y )2 2 2 2 2

–4 –1

–1

1

1

0

35. The graph of shown in the figure, is a
kappa curve. Find the equation of the tangent line at the
point 1 1, 2 2 .

y2 1x2 1 y2 2 5 20x2,

36. The graph of shown in the figure, is a
double folium. Find the equation of the tangent line at the point
12, 1 2 .

2 1x2 1 y2 2 2 5 25xy2,

y

x

2(x  + y )  = 25xy22 22

–2

–4

2

4

2–2 4

www-history.mcs.st-and.ac.uk/~history
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EXAMPLE  1

where p represents the price of a unit of fluid milk and C repre-
sents a constant that can be calculated uniquely for a particular
year. Here q represents the annual per capita fluid milk demand.
Source: Agricultural Economics.

a. Use implicit differentiation to calculate and interpret the
elasticity of demand. (Recall from the previous section that
elasticity of demand is .)

b. Solve the equation for q, then calculate the elasticity of
demand.

45. Elasticity of Demand Researchers found the demand for cheese
in Mexico for a particular year can be estimated by the implicit
equation

,

where p represents the price of a unit of cheese and D repre-
sents a constant that can be calculated uniquely for a particular
year. Here q represents the annual per capita cheese demand.
Source: Agricultural Economics.

a. Use implicit differentiation to calculate and interpret the
elasticity of demand. (Recall from the previous section that
elasticity of demand is .)

b. Solve the equation for q, then calculate the elasticity of
demand.

Life Sciences

46. Respiratory Rate Researchers have found a correlation between
respiratory rate and body mass in the first three years of life.
This correlation can be expressed by the function

where w is the body weight (in kilograms) and is the res-
piratory rate (in breaths per minute). Source: Archives of 
Disease in Children.

R 1w 2
log R 1w 2 5 1.83 2 0.43 log 1w 2 ,

E 5 2 1p /q 2 . dq /dp

ln q 5 D 2 0.44 ln p

E 5 2 1p /q 2 . dq /dp

a. Find using implicit differentiation.

b. Find by first solving the equation for 

c. Discuss the two procedures. Is there a situation when you
would want to use one method over another?

47. Biochemical Reaction A simple biochemical reaction with
three molecules has solutions that oscillate toward a steady
state when positive constants a and b are below the curve

Find the largest possible value of a for
which the reaction has solutions that oscillate toward a steady
state. (Hint: Find where Derive values for
and and then solve the equations in two unknowns.)
Source: Mathematical Biology.

48. Species The relationship between the number of species in a
genus (x) and the number of genera (y) comprising x species is
given by

where a and k are constants. Find Source: Elements of
Mathematical Biology.

Physical  Sciences

Velocity The position of a particle at time t is given by s. Find
the velocity

49.

50.

YOUR TURN ANSWERS 
1.

2.

3.

4. dq /dp 5 272

y 5 x

dy

dx
5

yey 1 2xy

1 2 xyey

dy/dx 5 1 y 2 2x 2 / 12y 2 x 2

2s2 1 "st 2 4 5 3t

s3 2 4st 1 2t3 2 5t 5 0

ds /dt.

dy /dx.

xya 5 k,

a 2 b,
a 1 bda /db 5 0.

b 2 a 5 1b 1 a 2 3.

R 1w 2 .R r 1w 2
R r 1w 2

Related Rates
When a skier’s blood vessels contract because of the cold, how fast is
the velocity of blood changing?
We use related rates to answer this question in Example 6 of this section.

It is common for variables to be functions of time; for example, sales of an item may
depend on the season of the year, or a population of animals may be increasing at a certain
rate several months after being introduced into an area. Time is often present implicitly in a
mathematical model, meaning that derivatives with respect to time must be found by the
method of implicit differentiation discussed in the previous section.

We start with a simple algebraic example.

Related Rates

Suppose that x and y are both functions of t, which can be considered to represent time, and
that x and y are related by the equation 

xy2 � y � x2 � 17.

Suppose further that when x � 2 and y � 3, then dx/dt � 13. Find the value of dy/dt at
that moment.

6.5
APPLY IT 
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EXAMPLE  2

SOLUTION We start by taking the derivative of the relationship, using the product and
chain rules. Keep in mind that both x and y are functions of t. The result is 

Now substitute x � 2, y � 3, and dx/dt � 13 to get 

Solve this last equation for dy/dt to get

TRY YOUR TURN 1

Our next example is typical of the word problems involving related rates.

Area

A small rock is dropped into a lake. Circular ripples spread over the surface of the water,
with the radius of each circle increasing at the rate of per second. Find the rate of
change of the area inside the circle formed by a ripple at the instant the radius is 

SOLUTION As shown in Figure 18, the area A and the radius r are related by

Both A and r are functions of the time t in seconds. Take the derivative of both sides with
respect to time.

(1)

Since the radius is increasing at the rate of per second,

The rate of change of area at the instant is given by evaluated at 
Substituting into Equation (1) gives

In Example 2, the derivatives (or rates of change) and are related by Equa-
tion (1); for this reason they are called related rates. As suggested by Example 2, four
basic steps are involved in solving problems about related rates.

dr/dtdA/dt

 
dA

dt
5 12p < 37.7 ft2 per second.

 
dA

dt
5 2p . 4 . 3

2

r 5 4.dA /dtr 5 4

dr

dt
5

3

2
 .

3 /2 ft

 
dA

dt
5 2pr . dr

dt

 
d

dt
 1A 2 5

d

dt
 1pr2 2

A 5 pr2.

4 ft.
3 /2 ft

 
dy

dt
5  25.

 13 
dy

dt
5  265,

 12
dy

dt
1 117 1

dy

dt
5 52.

 2a6 
dy

dt
b 1 9 1 13 2 1

dy

dt
5 4 1 13 2 ,

xa2y 
dy

dt
b 1 y2

 
dx

dt
1

dy

dt
5 2x 

dx

dt
.

YOUR TURN 1 Suppose x
and y are both functions of t and

. If x 5 1, y 5 22,
and dx/dt 5 6, then find dy/dt.
x3 1 2xy 1 y2 5 1

Rock
dropped

r

Area = πr 2

FIGURE 18 
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EXAMPLE  3

1. Differentiate first, and then substitute values for the variables. If the substitu-
tions were performed first, differentiating would not lead to useful results.

2. Some students confuse related rates problems with applied extrema problems,
perhaps because they are both word problems. There is an easy way to tell the
difference. In applied extrema problems, you are always trying to maximize or
minimize something, that is, make it as large or as small as possible. In related
rate problems, you are trying to find how fast something is changing; time is
always the independent variable.

Sliding Ladder

A 50-ft ladder is placed against a large building. The base of the ladder is resting on an oil
spill, and it slips (to the right in Figure 19) at the rate of 3 ft per minute. Find the rate of
change of the height of the top of the ladder above the ground at the instant when the base
of the ladder is 30 ft from the base of the building.

SOLUTION Starting with Step 1, let y be the height of the top of the ladder above the
ground, and let x be the distance of the base of the ladder from the base of the building. We
are trying to find dy/dt when x � 30. To perform Step 2, use the Pythagorean theorem to
write 

(2)

Both x and y are functions of time t (in minutes) after the moment that the ladder starts slip-
ping. According to Step 3, take the derivative of both sides of Equation (2) with respect to
time, getting 

(3)

To complete Step 4, we need to find the values of x, y, and . Once we find these,
we can substitute them into Equation (3) to find .

Since the base is sliding at the rate of 3 ft per minute,

Also, the base of the ladder is 30 ft from the base of the building, so x � 30. Use this to find y.

 y 5 40

 1600 5 y2

 2500 5 900 1 y2

 502 5 302 1 y2

dx

dt
5 3.

dy/dt
dx/dt

 2x 

dx

dt
1 2y 

dy

dt
5 0.

 
d

dt
 1x2 1 y2 2 5

d

dt
 1 502 2

x2 1 y2 5 502.

Solving a Related Rate Problem
1. Identify all given quantities, as well as the quantities to be found. Draw a sketch

when possible.

2. Write an equation relating the variables of the problem.

3. Use implicit differentiation to find the derivative of both sides of the equation in
Step 2 with respect to time.

4. Solve for the derivative giving the unknown rate of change and substitute the given
values. 

CAUTION

Ladder

50 ft
y

x

FIGURE 19 
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EXAMPLE  4

In summary, when Also, the rate of change of x over time t is 
Substituting these values into Equation (3) to find the rate of change of y over time gives

At the instant when the base of the ladder is 30 ft from the base of the building, the top of the lad-
der is sliding down the building at the rate of 2.25 ft per minute. (The minus sign shows that the
ladder is sliding down, so the distance y is decreasing.)* TRY YOUR TURN 2

Icicle

A cone-shaped icicle is dripping from the roof. The radius of the icicle is decreasing at a
rate of 0.2 cm per hour, while the length is increasing at a rate of 0.8 cm per hour. If the ici-
cle is currently 4 cm in radius and 20 cm long, is the volume of the icicle increasing or
decreasing, and at what rate?

SOLUTION For this problem we need the formula for the volume of a cone:

(4)

where r is the radius of the cone and h is the height of the cone, which in this case is the
length of the icicle, as in Figure 20.

In this problem, V, r, and h are functions of the time t in hours. Taking the derivative of
both sides of Equation (4) with respect to time yields

(5)

Since the radius is decreasing at a rate of 0.2 cm per hour and the length is increasing at a
rate of 0.8 cm per hour,

Substituting these, as well as and into Equation (5) yields

Because the sign of is negative, the volume of the icicle is decreasing at a rate of
per hour. TRY YOUR TURN 320 cm3

dV /dt

 5
1

3
 p 1219.2 2 < 220.

 
dV

dt
5

1

3
 p 342 10.8 2 1 120 2 1 8 2 120.2 2 4

h 5 20,r 5 4

dr

dt
5 20.2  and  

dh

dt
5 0.8.

dV

dt
5

1

3
 p cr2

 

dh

dt
1 1h 2 12r 2  

dr

dt
d .

V 5
1

3
 pr2h,

 
dy

dt
5

2180

80
5

29

4
5 22.25.

 80 

dy

dt
5 2180

 180 1 80 

dy

dt
5 0

 2 1 30 2 1 3 2 1 2 140 2  

dy

dt
5 0

dx /dt 5 3.x 5 30.y 5 40

YOUR TURN 3 Suppose that
in Example 4 the volume of the ici-
cle is decreasing at a rate of 10 cm3

per hour and the radius is decreasing
at a rate of 0.4 cm per hour.  Find
the rate of change of the length of
the icicle when the radius is 4 cm
and the length is 20 cm.

YOUR TURN 2 A 25-ft ladder
is placed against a building. The base
of the ladder is slipping away from
the building at a rate of 3 ft per minute.
Find the rate at which the top of the
ladder is sliding down the building
when the bottom of the ladder is 7 ft
from the base of the building.

*The model in Example 3 breaks down as the top of the ladder nears the ground. As y approaches 0, 
becomes infinitely large. In reality, the ladder loses contact with the wall before y reaches 0.

dy/dt

h

r

FIGURE 20 



CHAPTER 6 Applications of the Derivative340

EXAMPLE  6

EXAMPLE  5 Revenue

A company is increasing production of peanuts at the rate of 50 cases per day. All cases
produced can be sold. The daily demand function is given by

where q is the number of units produced (and sold) and p is price in dollars. Find the rate of
change of revenue with respect to time (in days) when the daily production is 200 units.

SOLUTION The revenue function,

relates R and q. The rate of change of q over time (in days) is The rate of
change of revenue over time, is to be found when Differentiate both sides
of the equation

with respect to t.

Now substitute the known values for q and 

Thus revenue is increasing at the rate of $2400 per day. TRY YOUR TURN 4

Blood Flow

Blood flows faster the closer it is to the center of a blood vessel. According to Poiseuille’s
laws, the velocity V of blood is given by

where R is the radius of the blood vessel, r is the distance of a layer of blood flow from the
center of the vessel, and k is a constant, assumed here to equal 375. See Figure 21. Suppose
a skier’s blood vessel has radius and that cold weather is causing the vessel
to contract at a rate of per minute. How fast is the velocity of blood
changing?

SOLUTION Find Treat r as a constant. Assume the given units are compatible.

is a constant.

Here and so

dV

dt
5 750 10.08 2 120.01 2 5 20.6.

dR /dt 5 20.01,R 5 0.08

 
dV

dt
5 750R 

dR

dt

r 
dV

dt
5 375a2R 

dR

dt
2 0b

 V 5 375 1R2 2 r2 2

dV/dt.

dR /dt 5 20.01 mm
R 5 0.08 mm

V 5 k 1R2 2 r2 2 ,

dR

dt
5 c50 2

1

100
 1200 2 d 1 50 2 5 2400

dq /dt.

dR

dt
5 50 

dq

dt
2

1

100
 q 

dq

dt
5 a50 2

1

100
 qb  

dq

dt

R 5 50q 2
q2

200

q 5 200.dR /dt,
dq/dt 5 50.

R 5 qp 5 qa50 2
q

200
b 5 50q 2

q2

200
 ,

p 5 50 2
q

200
 ,

YOUR TURN 4 Repeat 
Example 5 using the daily 
demand function given by

.p 5 2000 2
q2

100

R r

BloBBloBloBloBloBBloBloBloloBloBloBlolBlolooo dododdod odododdodododod od od o floflofloflflfloflofloflofloooBloBlBloBlBBBloBloBloBlolollolooododododdodoodododo flooflofloflofloooowowwowowwowowowoww

FIGURE 21 

APPLY IT 
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That is, the velocity of the blood is decreasing at a rate of per minute each
minute. The minus sign indicates that this is a deceleration (negative acceleration), since it
represents a negative rate of change of velocity.

20.6 mm

Assume x and y are functions of t. Evaluate for each of the
following.

1.

2.

3.

4.

5.

6.

7.

8.

APPLICATIONS
Business and Economics

9. Cost A manufacturer of handcrafted wine racks has deter-
mined that the cost to produce x units per month is given by

How fast is cost per month changing
when production is changing at the rate of 12 units per month
and the production level is 80 units?

10. Cost/Revenue The manufacturer in Exercise 9 has found that
the cost C and revenue R (in dollars) in one month are related
by the equation

Find the rate of change of revenue with respect to time when
the cost is changing by $15 per month and the monthly rev-
enue is $25,000.

11. Revenue/Cost/Profit Given the revenue and cost functions
R 5 50x and (in dollars), where x is
the daily production (and sales), find the following when 40
units are produced daily and the rate of change of production is
10 units per day.

a. The rate of change of revenue with respect to time

b. The rate of change of cost with respect to time

c. The rate of change of profit with respect to time

C 5 5x 1 152 0.4x2

C 5
R2

450,000
1 12,000.

C 5 0.2x2 1 10,000.

y ln x 1 xey 5 1; 
dx

dt
5 5, x 5 1, y 5 0

xey 5 2 2 ln 2 1 ln x; 
dx

dt
5 6, x 5 2, y 5 0

y3 2 4x2

x3 1 2y
5

44

31
 ; 

dx

dt
5 5, x 5 23, y 5 22

x2 1 y

x 2 y
5 9; 

dx

dt
5 2, x 5 4, y 5 2

4x3 2 6xy2 1 3y2 5 228; 
dx

dt
5 3, x 5 23, y 5 4

2xy 2 5x 1 3y3 5 251; 
dx

dt
5 26, x 5 3, y 5 22

8y3 1 x2 5 1; 
dx

dt
5 2, x 5 3, y 5 21

y2 2 8x3 5 255; 
dx

dt
5 24, x 5 2, y 5 3

dy/dt 12. Revenue/Cost/Profit Repeat Exercise 11, given that 80 units
are produced daily and the rate of change of production is 
12 units per day.

13. Demand The demand function for a certain product is deter-
mined by the fact that the product of the price and the quantity
demanded equals 8000. The product currently sells for $3.50 per
unit. Suppose manufacturing costs are increasing over time at a
rate of 15% and the company plans to increase the price p at
this rate as well. Find the rate of change of demand over time.

14. Revenue A company is increasing production at the rate of
25 units per day. The daily demand function is determined by
the fact that the price (in dollars) is a linear function of q. At a
price of $70, the demand is 0, and 100 items will be demanded
at a price of $60. Find the rate of change of revenue with
respect to time (in days) when the daily production (and sales)
is 20 items.

Life Sciences

15. Blood Velocity A cross-country skier has a history of heart
problems. She takes nitroglycerin to dilate blood vessels, thus
avoiding angina (chest pain) due to blood vessel contraction.
Use Poiseuille’s law with to find the rate of change
of the blood velocity when and R is changing
at 0.003 mm per minute. Assume r is constant. (See Example 6.)

16. Allometric Growth Suppose x and y are two quantities that
vary with time according to the allometric formula 
(See Exercise 84 in the section on Logarithmic Functions.)
Show that the derivatives of x and y are related by the formula

(Hint: Take natural logarithms of both sides before taking the
derivatives.)

17. Brain Mass The brain mass of a fetus can be estimated using
the total mass of the fetus by the function

where m is the mass of the fetus (in grams) and b is the brain
mass (in grams). Suppose the brain mass of a 25-g fetus is
changing at a rate of Use this to estimate the rate
of change of the total mass of the fetus, Source:
Archives d’Anatomie, d’Histologie et d’Embryologie.

18. Birds The energy cost of bird flight as a function of body mass
is given by

where m is the mass of the bird (in grams) and E is the energy
expenditure (in calories per gram per hour). Suppose that the

E 5 429m20.35,

dm /dt.
0.25 g per day.

b 5 0.22m0.87,

1

y
  

dy

dt
5 m 

1

x
 
dx

dt
 .

y 5 nxm.

R 5 0.02 mm
k 5 555.6

6.5 EXERCISES
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mass of a 10-g bird is increasing at a rate of
Find the rate at which the energy expenditure is changing with
respect to time. Source: Wildlife Feeding and Nutrition.

19. Metabolic Rate The average daily metabolic rate for captive
animals from weasels to elk can be expressed as a function of
mass by

where m is the mass of the animal (in kilograms) and r is the
metabolic rate (in kcal per day). Source: Wildlife Feeding and
Nutrition.

a. Suppose that the mass of a weasel is changing with respect
to time at a rate Find 

b. Determine for a 250-kg elk that is gaining mass at a
rate of 

20. Lizards The energy cost of horizontal locomotion as a func-
tion of the body mass of a lizard is given by

where m is the mass of the lizard (in kilograms) and E is the
energy expenditure (in Suppose that the mass of
a 5-kg lizard is increasing at a rate of 0.05 kg per day. Find the
rate at which the energy expenditure is changing with respect
to time. Source: Wildlife Feeding and Nutrition.

Social  Sciences

21. Crime Rate Sociologists have found that crime rates are influ-
enced by temperature. In a midwestern town of 100,000 people,
the crime rate has been approximated as

where C is the number of crimes per month and T is the aver-
age monthly temperature in degrees Fahrenheit. The average
temperature for May was and by the end of May the tem-
perature was rising at the rate of per month. How fast is the
crime rate rising at the end of May?

22. Memorization Skills Under certain conditions, a person can
memorize W words in t minutes, where

Find when 

Physical  Sciences

23. Sliding Ladder A 17-ft ladder is placed against a building. The
base of the ladder is slipping away from the building at a rate of

Find the rate at which the top of the ladder is
sliding down the building at the instant when the bottom of the
ladder is 8 ft from the base of the building.

24. Distance

a. One car leaves a given point and travels north at 30 mph.
Another car leaves the same point at the same time and trav-
els west at 40 mph. At what rate is the distance between the
two cars changing at the instant when the cars have traveled
2 hours?

9 ft per minute.

t 5 5.dW /dt

W 1 t 2 5
20.02t2 1 t

t 1 1
 .

8°
76°,

C 5
1

10
 1T 2 60 2 2 1 100,

kcal /kg/km).

E 5 26.5m20.34,

2 kg per day.
dr/dt

dr /dt.dm /dt.

r 5 140.2m0.75,

0.001 g per hour. b. Suppose that, in part a, the second car left 1 hour later than
the first car. At what rate is the distance between the two
cars changing at the instant when the second car has traveled
1 hour?

25. Area A rock is thrown into a still pond. The circular ripples
move outward from the point of impact of the rock so that the
radius of the circle formed by a ripple increases at the rate of
2 ft per minute. Find the rate at which the area is changing at
the instant the radius is 4 ft.

26. Volume A spherical snowball is placed in the sun. The sun
melts the snowball so that its radius decreases per hour.
Find the rate of change of the volume with respect to time at
the instant the radius is 4 in.

27. Ice Cube An ice cube that is 3 cm on each side is melting at a
rate of 2 cm3 per min. How fast is the length of the side
decreasing?

28. Volume A sand storage tank used by the highway department
for winter storms is leaking. As the sand leaks out, it forms a
conical pile. The radius of the base of the pile increases at the
rate of 0.75 in. per minute. The height of the pile is always
twice the radius of the base. Find the rate at which the vol-
ume of the pile is increasing at the instant the radius of the
base is 6 in.

29. Shadow Length A man 6 ft tall is walking away from a lamp
post at the rate of 50 ft per minute. When the man is 8 ft from
the lamp post, his shadow is 10 ft long. Find the rate at which
the length of the shadow is increasing when he is 25 ft from the
lamp post. (See the figure.)

1 /4 in.

6 ft

30. Water Level A trough has a triangular cross section. The
trough is 6 ft across the top, 6 ft deep, and 16 ft long. Water is
being pumped into the trough at the rate of per minute.4 ft3

16 ft
6 ft

6 ft

Find the rate at which the height of the water is increasing at
the instant that the height is 4 ft.

31. Velocity A pulley is on the edge of a dock, 8 ft above the water
level. (See the figure on the next page.) A rope is being used to
pull in a boat. The rope is attached to the boat at water level.
The rope is being pulled in at the rate of 1 ft per second. Find
the rate at which the boat is approaching the dock at the instant
the boat is 8 ft from the dock.
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YOUR TURN ANSWERS 

1. dy/dt 5 23.
2. 27/8 ft /min
3. Increases 3.4 cm per hour
4. Revenue is increasing at the rate of $40,000 per day. 

8 ft
100 ft

32. Kite Flying Christine O’Brien is flying her kite in a wind that
is blowing it east at a rate of She has already
let out 200 ft of string, and the kite is flying 100 ft above her
hand. How fast must she let out string at this moment to keep
the kite flying with the same speed and altitude?

50 ft per minute.

Using differentials, we will answer this question in Example 4.

As mentioned earlier, the symbol represents a change in the variable x. Similarly,
represents a change in y. An important problem that arises in many applications is to

determine given specific values of x and This quantity is often difficult to evaluate.
In this section we show a method of approximating that uses the derivative In
essence, we use the tangent line at a particular value of x to approximate for values
close to x.

For values and 

Solving for gives

For a function the symbol represents a change in y:

Replacing with gives

If is used instead of h, the derivative of a function f at could be defined as

If the derivative exists, then
dy

dx
<

Dy

Dx

dy

dx
5 lim

Dxl0
 
Dy

Dx
 .

x1Dx

Dy 5 f 1x1 1 Dx 2 2 f 1x1 
2 .

x1 1 Dxx2

Dy 5 f 1x2 
2 2 f 1x1 

2 .

Dyy 5 f 1x 2 ,

x2 5 x1 1 Dx.

x2

Dx 5 x2 2 x1 .

x2 ,x1

f 1x 2
dy /dx.Dy

Dx.Dy
Dy

Dx

APPLY IT

Differentials: Linear Approximation
If the estimated sales of cellular telephones turn out to be inaccurate,
approximately how much are profits affected?

6.6
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as long as is close to 0. Multiplying both sides by (assume gives

Until now, has been used as a single symbol representing the derivative of y with
respect to x. In this section, separate meanings for dy and dx are introduced in such a way
that their quotient, when is the derivative of y with respect to x. These meanings of
dy and dx are then used to find an approximate value of 

To define dy and dx, look at Figure 22 below, which shows the graph of a function
The tangent line to the graph has been drawn at the point P. Let be any

nonzero real number (in practical problems, is a small number) and locate the point
on the x-axis. Draw a vertical line through Let this vertical line cut the tan-

gent line at M and the graph of the function at Q.
Define the new symbol dx to be the same as Define the new symbol dy to equal the

length MR. The slope of PM is By the definition of slope, the slope of PM is also
so that

or

 dy 5 f r 1x 2dx.

 f r 1x 2 5
dy

dx
 ,

dy /dx,
f r 1x 2 .

Dx.

x 1 Dx.x 1 Dx
Dx

Dxy 5 f 1x 2 .

Dy.
dx 2 0,

dy /dx

Dy <
dy

dx
. Dx.

Dx 2 0)DxDx

P

y + Δy

Δx = dx

Q y = f(x)

dy

R

M Δy

xx + Δxx

f(x)

y

FIGURE 22

In summary, the definitions of the symbols dy and dx are as follows.

Differentials
For a function whose derivative exists, the differential of x, written dx, is an
arbitrary real number (usually small compared with x); the differential of y, written dy,
is the product of and dx, or

dy 5 f9 1 x 2dx.

f r 1x 2

y 5 f 1x 2

The usefulness of the differential is suggested by Figure 22. As dx approaches 0, the
value of dy gets closer and closer to that of so that for small nonzero values of dx

or

 Dy < f r 1x 2dx.

 dy < Dy,

Dy,
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EXAMPLE  2

EXAMPLE  1 Differential

Find dy for the following functions.

(a)

SOLUTION The derivative is so

(b)

SOLUTION

TRY YOUR TURN 1

Differentials can be used to approximate function values for a given x-value (in the
absence of a calculator or computer). As discussed above,

For small nonzero values of so that

or

Replacing dy with gives the following result.f r 1x 2dx

 f 1x 2 1 dy < f 1x 1 Dx 2 .

 dy < f 1x 1 Dx 2 2 f 1x 2 ,

Dy < dy,Dx,

Dy 5 f 1x 1 Dx 2 2 f 1x 2 .

 5 2600a
1

27b 10.01 2 5 20.046875

 5 2600 1 16 227/4 10.01 2

 dy 5 2600x27/4dx

dx 5 0.01x 5 16,y 5 800x23/4,

dy 5 12x dx.

dy /dx 5 12x

y 5 6x2

YOUR TURN 1 Find dy if 
, x 5 8, and dx 5 0.05. y 5 300x22/3

Linear Approximation
Let f be a function whose derivative exists. For small nonzero values of 

and

f 1x 1 Dx 2 ? f 1x 2 1 dy 5 f 1x 2 1 f9 1x 2dx.

dy ? Dy,

Dx,

Approximation

Approximate 

SOLUTION We will use the linear approximation

for a small value of to form this estimate. We first choose a number x that is close to 50
for which we know its square root. Since we let and

Using this information, with the fact that when 

we have

f1x 1 Dx 2 < f1x 2 1 f' 1x 2dx 5 !x 1
1

2!x
 dx.

 f r 1x 2 5
1

2
 x21/2 5

1

2x1/2  
,

f 1x 2 5 !x 5 x1/2,Dx 5 dx 5 1.
f 1x 2 5 !x, x 5 49,!49 5 7,

Dx

f 1x 1 Dx 2 < f 1x 2 1 f' 1x 2dx

!50 .
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Substituting and into the preceding formula gives

A calculator gives and Our approximation of is close
to the true answer and does not require a calculator. TRY YOUR TURN 2

While calculators have made differentials less important, the approximation of functions,
including linear approximation, is still important in the branch of mathematics known as
numerical analysis.

Marginal Analysis Differentials are used to find an approximate value of the change
in the dependent variable corresponding to a given change in the independent variable.
When the concept of marginal cost (or profit or revenue) was used to approximate the
change in cost for nonlinear functions, the same idea was developed. Thus the differential
dy approximates in much the same way as the marginal quantities approximate
changes in functions.

For example, for a cost function 

Since 

If the change in production, is equal to 1, then

which shows that marginal cost approximates the cost of the next unit produced, as
mentioned earlier.

Cost

Let .

(a) Use to approximate when and x 5 3. Then compare with .

SOLUTION Since , the derivative is 

and the marginal cost approximation at x 5 3 is

Now, the actual cost of the next unit produced is 

. 

Here, the approximation of for is poor, since is large relative to x 5 3.Dx 5 1DCC r 1 3 2

DC 5 C 14 2 2 C 1 3 2 5 428 2 354 5 74

C r 1 3 2 5 6 1 32 2 5 54.

C r 1x 2 5 6x2

C 1x 2 5 2x3 1 300

C r 1 3 2DCDx 5 1DCC r 1x 2

C 1x 2 5 2x3 1 300

C r 1x 2

 5 C r 1x 2 ,
 < C r 1x 2Dx

 C 1x 1 1 2 2 C 1x 2 5 DC

Dx,

DC < C r 1x 2Dx.

DC < dC,

dC 5 C r 1x 2dx 5 C r 1x 2Dx.

C 1x 2 ,

Dy

7 1
14"50 < 7.07107.7 1

14 < 7.07143

 5 7 

1

14
 .

 5 7 1
1

14

 f1 50 2 5 f149 1 1 2  < !49 1
1

2!49
 1 1 2

dx 5 1x 5 49

YOUR TURN 2
Approximate .!99
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EXAMPLE  5

EXAMPLE  4

(b) Use to approximate when and x 5 50. Then compare with .

SOLUTION The marginal cost approximation at x 5 50 is

and the actual cost of the next unit produced is

.

This approximation is quite good since is small compared to x 5 50.

Profit

An analyst for a manufacturer of electronic devices estimates that the profit (in dollars)
from the sale of x cellular telephones is given by

In a report to management, the analyst projected sales for the coming year to be 10,000
phones, for a total profit of about $36,840. He now realizes that his sales estimate may have
been as much as 1000 phones too high. Approximately how far off is his profit estimate?

SOLUTION Differentials can be used to find the approximate change in P resulting from
decreasing x by 1000. This change can be approximated by where

and Since 

Thus the profit estimate may have been as much as $400 too high. Computing the actual
difference with a calculator gives which is close
to our approximation.

Error Estimation The final example in this section shows how differentials are used
to estimate errors that might enter into measurements of a physical quantity.

Error Estimation

In a precision manufacturing process, ball bearings must be made with a radius of 0.6 mm,
with a maximum error in the radius of mm. Estimate the maximum error in the vol-
ume of the ball bearing.

SOLUTION The formula for the volume of a sphere is

If an error of is made in measuring the radius of the sphere, the maximum error in the
volume is

Rather than calculating approximate with dV, where

Replacing r with 0.6 and with gives

The maximum error in the volume is about TRY YOUR TURN 30.07 mm3.

 < 60.0679.

 dV 5 4p 10.6 2 2 160.015 2

6 0.015dr 5 Dr

dV 5 4pr2dr.

DVDV,

DV 5
4

3
 p 1 r 1 Dr 2 3 2

4

3
 pr3.

Dr

V 5
4

3
 pr3.

60.015

4000 ln 9000 2 4000 ln 10,000 < 2421,

 5 2400.

 5
4000

10,000
 121000 2

 DP < dP 5
4000

x
 dx

P r 1x 2 5 4000 /x,dx 5 21000.x 5 10,000
dP 5 P r 1x 2dx

P 1x 2 5 4000 ln x.

Dx 5 1

DC 5 C 1 51 2 2 C 1 50 2 5 265,602 2 250,300 5 15,302

C r 1 50 2 5 6 1 502 2 5 15,000

C r 1 50 2DCDx 5 1DCC r 1x 2

YOUR TURN 3 Repeat Example
5 for r 5 1.25 mm with a maximum
error in the radius of mm.6 0.025

APPLY IT 
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For Exercises 1–8, find dy for the given values of x and 

1.

2.

3.

4.

5.

6.

7.

8.

Use the differential to approximate each quantity. Then use a
calculator to approximate the quantity, and give the absolute
value of the difference in the two results to 4 decimal places.

9. 10.

11. 12.

13. 14.

15. 16.

APPLICATIONS
Business and Economics

17. Demand The demand for grass seed (in thousands of pounds)
at a price of p dollars is

Use the differential to approximate the changes in demand for
the following changes in p.

a. $2 to $2.10 b. $6 to $6.15

18. Average Cost The average cost (in dollars) to manufacture 
x dozen marking pencils is

Use the differential to approximate the changes in the average
cost for the following changes in x.

a. 3 to 4 b. 5 to 6

19. Revenue A company estimates that the revenue (in dollars)
from the sale of x doghouses is given by

Use the differential to approximate the change in revenue from the
sale of one more doghouse when 100 doghouses are sold.

20. Profit The cost function for the company in Exercise 19 is

where x represents the demand for the product. Find the approx-
imate change in profit for a 1-unit change in demand when
demand is at a level of 100 doghouses. Use the differential. 

C 1x 2 5 150 1 75x,

R 1x 2 5 12,000 ln 10.01x 1 1 2 .

A 1x 2 5 0.04x3 1 0.1x2 1 0.5x 1 6.

D 1p 2 5 23p3 2 2p2 1 1500.

ln 0.98ln 1.05

e20.002e0.01

"17.02"0.99

"23"145

y 5
6x 2 3

2x 1 1
 ; x 5 3, Dx 5 20.04

y 5
2x 2 5

x 1 1
 ; x 5 2, Dx 5 20.03

y 5 "4x 2 1; x 5 5, Dx 5 0.08

y 5 "3x 1 2 x 5 4, Dx 5 0.15

y 5 2x3 1 x2 2 4x; x 5 2, Dx 5 20.2

y 5 x3 2 2x2 1 3; x 5 1, Dx 5 20.1

y 5 4x3 2 3x; x 5 3, Dx 5 0.2

y 5 2x3 2 5x; x 5 22, Dx 5 0.1

Dx. 21. Material Requirement A cube 4 in. on an edge is given a pro-
tective coating 0.1 in. thick. About how much coating should a
production manager order for 1000 such cubes?

22. Material Requirement Beach balls 1 ft in diameter have a
thickness of 0.03 in. How much material would be needed to
make 5000 beach balls?

Life Sciences

23. Alcohol Concentration In Exercise 55 in the section on Poly-
nomial and Rational Functions, we gave the function defined by

as the approximate blood alcohol concentration in a 170-lb
woman x hours after drinking 2 oz of alcohol on an empty
stomach, for x in the interval [0, 5]. Source: Medicolegal
Aspects of Alcohol Determination in Biological Specimens.

a. Approximate the change in alcohol level from 1 to
1.2 hours.

b. Approximate the change in alcohol level from 3 to
3.2 hours.

24. Drug Concentration The concentration of a certain drug in
the bloodstream x hours after being administered is approxi-
mately

Use the differential to approximate the changes in concentra-
tion for the following changes in x.

a. 1 to 1.5 b. 2 to 2.25

25. Bacteria Population The population of bacteria (in millions)
in a certain culture x hours after an experimental nutrient is
introduced into the culture is

Use the differential to approximate the changes in population
for the following changes in x.

a. 2 to 2.5 b. 3 to 3.25

26. Area of a Blood Vessel The radius of a blood vessel is 1.7 mm.
A drug causes the radius to change to 1.6 mm. Find the approxi-
mate change in the area of a cross section of the vessel.

27. Volume of a Tumor A tumor is approximately spherical in
shape. If the radius of the tumor changes from 14 mm to 16 mm,
find the approximate change in volume.

28. Area of an Oil Slick An oil slick is in the shape of a circle.
Find the approximate increase in the area of the slick if its
radius increases from 1.2 miles to 1.4 miles.

29. Area of a Bacteria Colony The shape of a colony of bacteria
on a Petri dish is circular. Find the approximate increase in its
area if the radius increases from 20 mm to 22 mm.

P 1x 2 5
25x

8 1 x2  .

C 1x 2 5
5x

9 1 x2  .

A 1x 2 5 0.003631x3 2 0.03746x2 1 0.1012x 1 0.009

6.6 EXERCISES
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30. Gray Wolves Accurate methods of estimating the age of gray
wolves are important to scientists who study wolf population
dynamics. One method of estimating the age of a gray wolf is
to measure the percent closure of the pulp cavity of a canine
tooth and then estimate age by

where p is the percent closure and is the age of the wolf
(in years). Source: Journal of Wildlife Management.

a. What is a sensible domain for this function?

b. Use differentials to estimate how long it will take for a gray
wolf that first measures a 60% closure to obtain a 65% clo-
sure. Compare this with the actual value of about 0.55 years.

31. Pigs Researchers have observed that the mass of a female
(gilt) pig can be estimated by the function

where t is the age of the pig (in days) and is the mass of
the pig (in kilograms). Source: Animal Science.

a. If a particular gilt is 80 days old, use differentials to estimate
how much it will gain before it is 90 days old.

b. What is the actual gain in mass?

Physical  Sciences

32. Volume A spherical balloon is being inflated. Find the approx-
imate change in volume if the radius increases from 4 cm to
4.2 cm.

33. Volume A spherical snowball is melting. Find the approximate
change in volume if the radius decreases from 3 cm to 2.8 cm.

34. Volume A cubical crystal is growing in size. Find the approxi-
mate change in the length of a side when the volume increases
from 27 cubic mm to 27.1 cubic mm.

M 1 t 2
M 1 t 2 5 23.5 1 197.5e2e20.01394 1t2108.42

,

A 1p 2

A 1p 2 5
1.181p

94.359 2 p
 ,

35. Volume An icicle is gradually increasing in length, while
maintaining a cone shape with a length 15 times the radius.
Find the approximate amount that the volume of the icicle
increases when the length increases from 13 cm to 13.2 cm.

General Interest

36. Measurement Error The edge of a square is measured as 3.45
in., with a possible error of Estimate the maximum
error in the area of the square.

37. Tolerance A worker is cutting a square from a piece of sheet
metal. The specifications call for an area that is 16 cm2 with an
error of no more than 0.01 cm2. How much error could be tol-
erated in the length of each side to ensure that the area is
within the tolerance?

38. Measurement Error The radius of a circle is measured as 4.87
in., with a possible error of Estimate the maximum
error in the area of the circle.

39. Measurement Error A sphere has a radius of 5.81 in., with a
possible error of Estimate the maximum error in
the volume of the sphere.

40. Tolerance A worker is constructing a cubical box that must
contain 125 ft3, with an error of no more than 0.3 ft3. How
much error could be tolerated in the length of each side to
ensure that the volume is within the tolerance?

41. Measurement Error A cone has a known height of 7.284 in.
The radius of the base is measured as 1.09 in., with a possible
error of Estimate the maximum error in the volume
of the cone.

YOUR TURN ANSWERS 

1. �5/16
2. 9.95
3. About 0.5 mm3

60.007 in.

60.003 in.

60.040 in.

60.002 in.

In this chapter, we began by discussing how to find an absolute
maximum or minimum. In contrast to a relative extremum, which
is the largest or smallest value of a function on some open interval
about the point, an absolute extremum is the largest or smallest
value of the function on the entire interval under consideration.
We then studied various applications with maximizing or mini-
mizing as the goal. Two more applications, economic lot size and

economic order quantity, were covered in a separate section,
which also applied the derivative to the economic concept of elas-
ticity of demand. Implicit differentiation is more of a technique
than an application, but it underlies related rate problems, in
which one or more rates are given and another is to be found.
Finally, we studied the differential as a way to find linear approxi-
mations of functions.

SUMMARY

Finding Absolute Extrema To find absolute extrema for a function f continuous on a closed interval [a, b]:
1. Find all critical numbers for f in (a, b).
2. Evaluate f for all critical numbers in (a, b).
3. Evaluate f for the endpoints a and b of the interval.
4. The largest value found in Step 2 or 3 is the maximum, and the smallest value is the minimum.

6 CHAPTER REVIEW



Solving an Applied 1. Read the problem carefully. Make sure you understand what is given and what is unknown.
2. If possible, sketch a diagram. Label the various parts.
3. Decide on the variable that must be maximized or minimized. Express that variable as a function

of one other variable.
4. Find the domain of the function.
5. Find the critical points for the function from Step 3.
6. If the domain is a closed interval, evaluate the function at the endpoints and at each critical num-

ber to see which yields the absolute maximum or minimum. If the domain is an open interval,
apply the critical point theorem when there is only one critical number. If there is more than one
critical number, evaluate the function at the critical numbers and find the limit as the endpoints of
the interval are approached to determine if an absolute maximum or minimum exists at one of the
critical points.

Elasticity of Demand Let where q is demand at a price p.

Demand is inelastic if 
Demand is elastic if 
Demand has unit elasticity if 
Total revenue is maximized at the price where demand has unit elasticity.

Implicit Differentiation To find for an equation containing x and y:

1. Differentiate on both sides of the equation with respect to x, keeping in mind that y is assumed to
be a function of x.

2. Place all terms with on one side of the equals sign and all terms without on the
other side.

3. Factor out and then solve for 

Solving a Related Rate Problem 1. Identify all given quantities, as well as the quantities to be found. Draw a sketch when possible.
2. Write an equation relating the variables of the problem.
3. Use implicit differentiation to find the derivative of both sides of the equation in Step 2 with

respect to time.
4. Solve for the derivative, giving the unknown rate of change, and substitute the given values.

Differentials

Linear Approximation f 1x 1 Dx 2 < f 1x 2 1 dy 5 f 1x 2 1 f r 1x 2dx

dy 5 f r 1x 2dx

dy /dx.dy /dx,

dy /dxdy /dx

dy /dx

E 5 1.
E . 1.

E , 1.

E 5 2
p

q
. dq

dp
.

q 5 f 1p 2 ,

KEY TERMS
6.1
absolute maximum
absolute minimum
absolute extremum 
(or extrema)

extreme value theorem

critical point theorem
graphical optimization

6.2
spawner-recruit function
parent-progeny function
maximum sustainable 
harvest

6.3
economic lot size
economic order quantity
elasticity of demand
unit elasticity

6.4
explicit function

implicit differentiation

6.5
related rates

6.6
differential

REVIEW EXERCISES

CONCEPT CHECK
Determine whether each of the following statements is true or
false, and explain why.

1. The absolute maximum of a function always occurs where
the derivative has a critical number.

2. A continuous function on a closed interval has an absolute
maximum and minimum.

3. A continuous function on an open interval does not have an
absolute maximum or minimum.

4. Demand for a product is elastic if the elasticity is greater
than 1.

5. Total revenue is maximized at the price where demand has
unit elasticity.

CHAPTER 6 Applications of the Derivative350

Extrema Problem
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34.

35.

36.

37.

38.

39. What is a differential? What is it used for?

40. Describe when linear approximations are most accurate.

Evaluate dy.

41.

42.

43. Suppose x and y are related by the equation

a. Find all critical points on the curve.
b. Determine whether the critical points found in part a are

relative maxima or relative minima by taking values of x
nearby and solving for the corresponding values of y.

c. Is there an absolute maximum or minimum for x and y in
the relationship given in part a? Why or why not?

44. In Exercise 43, implicit differentiation was used to find the rel-
ative extrema. The exercise was contrived to avoid various dif-
ficulties that could have arisen. Discuss some of the difficulties
that might be encountered in such problems, and how these
difficulties might be resolved.

Business and Economics
45. Profit The total profit (in tens of dollars) from the sale of x

hundred boxes of candy is given by

a. Find the number of boxes of candy that should be sold in
order to produce maximum profit.

b. Find the maximum profit.

46. Packaging Design The packaging department of a corporation
is designing a box with a square base and no top. The volume
is to be To reduce cost, the box is to have minimum sur-
face area. What dimensions (height, length, and width) should
the box have?

47. Packaging Design A company plans to package its product in a
cylinder that is open at one end. The cylinder is to have a volume
of What radius should the circular bottom of the cylin-
der have to minimize the cost of the material?

48. Packaging Design Fruit juice will be packaged in cylindrical
cans with a volume of each. The top and bottom of the40 in3

27p in3.

32 m3.

P 1x 2 5 2x3 1 10x2 2 12x.

212x 1 x3 1 y 1 y2 5 4.

y 5 8 2 x2 1 x3; x 5 21, Dx 5 0.02

y 5
3x 2 7

2x 1 1
 ; x 5 2, Dx 5 0.003

y 5
1

ex2

1 1
; 

dx

dt
5 3, x 5 1

y 5 xe3x
 ; 

dx

dt
5 22, x 5 1

x2 1 5y

x 2 2y
5 2; 

dx

dt
5 1, x 5 2, y 5 0

y 5
1 1 "x

1 2 "x
 ; 

dx

dt
5 24, x 5 4

y 5
9 2 4x

3 1 2x
 ; 

dx

dt
5 21, x 5 23

6. Implicit differentiation can be used to find dy/dx when x is
defined in terms of y.

7. In a related rates problem, all derivatives are with respect to
time.

8. In a related rates problem, there can be more than two quanti-
ties that vary with time.

9. A differential is a real number.

10. When the change in x is small, the differential of y is approxi-
mately the change in y.

Find the absolute extrema if they exist, and all values of x
where they occur on the given intervals.

11.

12.

13.

14.

15. When solving applied extrema problems, why is it necessary
to check the endpoints of the domain?

16. What is elasticity of demand (in words; no mathematical
symbols allowed)? Why is the derivative used to describe
elasticity?

17. Find the absolute maximum and minimum of 
on each interval.

a. b.

18. Find the absolute maximum and minimum of on
each interval.

a. [ 1/2 , 2] b. [1, 3]

19. When is it necessary to use implicit differentiation?

20. When a term involving y is differentiated in implicit differen-
tiation, it is multiplied by Why? Why aren’t terms involv-
ing x multiplied by ?

Find 

21. 22.

23. 24.

25. 26.

27. 28.

29. Find the equation of the line tangent to the graph of
at the point (3, 2).

30. Find an equation of the line tangent to the graph of 
at the point (23, 1).

31. What is the difference between a related rate problem and an
applied extremum problem?

32. Why is implicit differentiation used in related rate problems?

Find 

33. y 5 8x3 2 7x2; 
dx

dt
5 4, x 5 2

dy /dt.

5 20
8y3 2 4xy2

4xy 5 222!2y 2

ln 1x 1 y 2 5 1 1 x2 1 y3ln 1xy 1 1 2 5 2xy3 1 4

x 1 2y

x 2 3y
5 y1/26 1 5x

2 2 3y
5

1

5x

9 "x 1 4y3 5 2"y2 "y 2 1 5 9x2/3 1 y

x2y3 1 4xy 5 2x2 2 4y2 5 3x3y4

dy /dx.

dx /dx
dy /dx.

f 1x 2 5
e2x

x2

32, 5 431, 4 4

f 1x 2 5
2 ln x

x2

f 1x 2 5 22x3 2 2x2 1 2x 2 1; 323, 1 4
f 1x 2 5 x3 1 2x2 2 15x 1 3; 324, 2 4
f 1x 2 5 4x3 2 9x2 2 3; 321, 2 4
f 1x 2 5 2x3 1 6x2 1 1; 321, 6 4

PRACTICE AND EXPLORATIONS

APPLICATIONS
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a. Use a graphing calculator to sketch the graph of this func-
tion on by 

b. Find the time in which the dentin formation is growing most
rapidly. (Hint: Find the maximum value of the derivative of
this function.)

58. Human Skin Surface The surface of the skin is made up of a
network of intersecting lines that form polygons. Researchers
have discovered a functional relationship between the age
of a female and the number of polygons per area of skin
according to

where t is the age of the person (in years), and is the num-
ber of polygons for a particular surface area of skin. Source:
Gerontology.

a. Use a graphing calculator to sketch a graph of on
by 

b. Find the maximum and minimum number of polygons per
area predicted by the model.

c. Discuss the accuracy of this model for older people.

Physical  Sciences

59. Sliding Ladder A 50-ft ladder is placed against a building. The
top of the ladder is sliding down the building at the rate of

Find the rate at which the base of the ladder is
slipping away from the building at the instant that the base is
30 ft from the building.

60. Spherical Radius A large weather balloon is being inflated
with air at the rate of Find the rate of change
of the radius when the radius is 1.7 ft.

61. Water Level A water trough 2 ft across, 4 ft long, and 1 ft deep
has ends in the shape of isosceles triangles. (See the figure.) It
is being filled with of water per minute. Find the rate at
which the depth of water in the tank is changing when the
water is deep.1 /3 ft

3.5 ft3

0.9 ft3 per minute.

2 ft per minute.

30, 300 4.30, 95 4
P 1 t 2

P 1 t 2

1 0.000013016t4, 0 # t # 95,

P 1 t 2 5 237.09 2 8.0398t 1 0.20813t2 2 0.0027563t3

30, 7.5 4.35, 51 4
can cost 4¢ per while the sides cost 3¢ per Find the
radius and height of the can of minimum cost.

49. Order Quantity A large camera store sells 20,000 batteries
annually. It costs 15¢ to store 1 battery for 1 year and $12 to
place a reorder. Find the number of batteries that should be
ordered each time.

50. Order Quantity A store sells 180,000 cases of a product annu-
ally. It costs $12 to store 1 case for 1 year and $20 to place a
reorder. Find the number of cases that should be ordered each
time.

51. Lot Size A company produces 128,000 cases of soft drink
annually. It costs $1 to store 1 case for 1 year and $10 to pro-
duce 1 lot. Find the number of lots that should be produced
annually.

52. Lot Size In 1 year, a health food manufacturer produces and
sells 240,000 cases of vitamins. It costs $2 to store 1 case for
1 year and $15 to produce each batch. Find the number of
batches that should be produced annually.

53. Elasticity of Demand The demand for butter in Mexico for a
particular year can be estimated by the general function

,

where p represents the price of a unit of butter and D repre-
sents a constant that can be calculated uniquely for a particular
year. Here q represents the annual per capita butter demand.
Calculate and interpret the elasticity of demand. Source: Agri-
cultural Economics.

54. Elasticity Suppose the demand function for a product is given
by where A and k are positive constants. For what
values of k is the demand elastic? Inelastic?

Life Sciences

55. Pollution A circle of pollution is spreading from a broken
underwater waste disposal pipe, with the radius increasing at
the rate of Find the rate of change of the area
of the circle when the radius is 7 ft.

56. Logistic Growth Many populations grow according to the
logistic equation

where r is a constant involving the rate of growth and N is the
carrying capacity of the environment, beyond which the popu-
lation decreases. Show that the graph of x has an inflection
point where (Hint: Use implicit differentiation.
Then set and factor.)

57. Dentin Growth The dentinal formation of molars in mice has
been studied by researchers in Copenhagen. They determined
that the growth curve that best fits dentinal formation for the
first molar is

where t is the age of the mouse (in days), and is the
cumulative dentin volume (in Source: Journal of
Craniofacial Genetics and Developmental Biology.

1021 mm3).
M 1 t 2

5 # t # 51,

 20.0020506t3 1 0.0000315t4 2 0.0000001785t5,

 M 1 t 2 5 1.3386309 2 0.4321173t 1 0.0564512t2

d2x /dt 2 5 0,
x 5 N /2.

dx

dt
5 rx 1N 2 x 2 ,

4 ft per minute.

q 5 A /pk,

 ln q 5 D 2 0.47 ln p

in2.in2,

1 ft

4 ft 2 ft

General Interest

62. Volume Approximate the volume of coating on a sphere of
radius 4 in. if the coating is 0.02 in. thick.

63. Area A square has an edge of 9.2 in., with a possible error in
the measurement of Estimate the possible error in
the area of the square.

64. Package Dimensions UPS has the following rule regarding
package dimensions. The length can be no more than 108 in.,
and the length plus the girth (twice the sum of the width and the
height) can be no more than 130 in. If the width of a package is
4 in. more than its height and it has the maximum length plus
girth allowed, find the length that produces maximum volume.

65. Pursuit A boat moves north at a constant speed. A second
boat, moving at the same speed, pursues the first boat in such a
way that it always points directly at the first boat. When the

60.04 in.
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should he walk before paddling toward the desired destina-
tion if he wants to complete the trip in the shortest possible
time? What is the shortest possible time?

first boat is at the point the second boat is at the point
with the positive y-axis pointing north. It can then be

shown that the curve traced by the second boat, known as a
pursuit curve, is given by

Find the y-coordinate of the southernmost point of the second
boat’s path. Source: Differential Equations: Theory and
Applications.

66. Playground Area The city park department is planning an
enclosed play area in a new park. One side of the area will be
against an existing building, with no fence needed there. Find
the dimensions of the maximum rectangular area that can be
made with 900 m of fence.

67. Surfing A mathematician is surfing in Long Beach, New
York. He is standing on the shore and wants to paddle out to a
spot 40 ft from shore; the closest point on the shore to that
spot is 40 ft from where he is now standing. (See the figure.)
If he can walk 5 ft per second along the shore and paddle 3 ft
per second once he’s in the water, how far along the shore

y 5
x2

16
2 2 ln x 1

1

4
1 2 ln 6.

1 6, 2.5 2 ,
10, 1 2 ,

A TOTAL MODEL FOR A TRAINING PROGRAM

E X T E N D E D APPLICATION

In this application, we set up a mathematical model for determin-
ing the total costs in setting up a training program. Then we use
calculus to find the time interval between training programs that
produces the minimum total cost. The model assumes that the
demand for trainees is constant and that the fixed cost of training a
batch of trainees is known. Also, it is assumed that people who are
trained, but for whom no job is readily available, will be paid a
fixed amount per month while waiting for a job to open up.

The model uses the following variables.

The total cost of training a batch of trainees is given by
However, so that the total cost per batch is

After training, personnel are given jobs at the rate of D per
month. Thus, of the trainees will not get a job the first
month, will not get a job the second month, and so on. The

trainees who do not get a job the first month produce total
costs of those not getting jobs during the second1N 2 D 2C3 ,
N 2 D

N 2 2D
N 2 D

C1 1 mDtC2.
N 5 mD,C1 1 NtC2 .

 Z 1m 2 5 total monthly cost of program

 t 5 length of training program in months

 batches of trainees
 m 5 time interval in months between successive 

 been given a job after training
 C3 5 salary paid monthly to a trainee who has not yet 

 C2 5 marginal cost of training per trainee per month

 C1 5 fixed cost of training a batch of trainees

 N 5 number of trainees per batch

 D 5 demand for trainees per month

month produce costs of and so on. Since
the costs during the first month can be written as

while the costs during the second month are and so
on. The total cost for keeping the trainees without a job is thus

which can be factored to give

The expression in brackets is the sum of the terms of an arithmetic
sequence, discussed in most algebra texts. Using formulas for
arithmetic sequences, the expression in brackets can be shown to
equal so that we have

(1)

as the total cost for keeping jobless trainees.
The total cost per batch is the sum of the training cost per batch,

and the cost of keeping trainees without a proper job,
given by Equation (1). Since we assume that a batch of trainees is
trained every m months, the total cost per month, is given by

 5
C1

m
1 DtC2 1 DC3 a

m 2 1

2
b .

 Z 1m 2 5
C1 1 mDtC2

m
1

DC3 c
m 1m 2 1 2

2
d

m

Z 1m 2 ,

C1 1 mDtC2 ,

DC3 c
m 1m 2 1 2

2
d

m 1m 2 1 2 /2,

DC3 3 1m 2 1 2 1 1m 2 2 2 1 1m 2 3 2 1 ) 1 2 1 1 4.

 1 1m 2 3 2DC3 1 ) 1 2DC3 1 DC3 ,

 1m 2 1 2DC3 1 1m 2 2 2DC3

1m 2 2 2DC3 ,

1N 2 D 2C3 5 1mD 2 D 2C3 5 1m 2 1 2DC3 ,

N 5 mD,1N 2 2D 2C3 ,

40 ft

40 ft

68. Repeat Exercise 67, but the closest point on the shore to the
desired destination is now 25 ft from where he is standing.

Source: P. L. Goyal and S. K. Goyal.
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4. Since m is not a whole number, find and 

5. Calculate and 

6. What is the optimum time interval between successive batches
of trainees? How many trainees should be in a batch?

7. The parameters of this model are likely to change over time; it
is essential that such changes be incorporated into the model
as they change. One way to anticipate this is to create a
spreadsheet that gives the manager the total cost of training a
batch of trainees for various scenarios. Using the data from
Exercise 3 as a starting point, create a spreadsheet that varies
these numbers and calculates the total cost of training a group
of employees for each scenario. Graph the total cost of train-
ing with respect to changes in the various costs associated
with training.

DIRECTIONS FOR GROUP PROJECT
Suppose you have read an article in the paper announcing that a
new high-tech company is locating in your town. Given that the
company is manufacturing very specialized equipment, you realize
that it must develop a program to train all new employees. Because
you would like to get an internship at this new company, use the
information above to develop a hypothetical training program that
optimizes the time interval between successive batches of trainees
and the number of trainees that should be in each session. Assume
that you know the new CEO because you and three of your friends
have served her pizza at various times at the local pizza shop (your
current jobs) and that she is willing to listen to a proposal that
describes your training program. Prepare a presentation for your
interview that will describe your training program. Use presenta-
tion software such as Microsoft PowerPoint.

Z 1m2 2 .Z 1m1 2
m2.m1EXERCISES

1. Find 

2. Solve the equation 

As a practical matter, it is usually required that m be a
whole number. If m does not come out to be a whole num-
ber, then and the two whole numbers closest to m,
must be chosen. Calculate both and the
smaller of the two provides the optimum value of Z.

Z 1m2 2 ;Z 1m1 2
m2,m1

Z r 1m 2 5 0.

Z r 1m 2 .

354

3. Suppose a company finds that its demand for trainees is 3
per month, that a training program requires 12 months, that
the fixed cost of training a batch of trainees is $15,000, that
the marginal cost per trainee per month is $100, and that
trainees are paid $900 per month after training but before
going to work. Use your result from Exercise 2 and find m.
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7
If we know the rate at which a quantity is changing, we can

find the total change over a period of time by integrating.

An exercise in Section 3 illustrates how this process can

be used to estimate the number of cars that cross the

Tappan Zee Bridge in New York state each day, given

information about how the rate of cars per hour varies

with time.This same concept allows us to determine how

far a car has gone, given its speed as a function of time;

how much a culture of bacteria will grow; or how much

consumers benefit by buying a product at the price

determined by supply and demand.
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APPLY IT

Up to this point in calculus you have solved problems such as

; find .

In this chapter you will be asked to solve problems that are the reverse of these, that is,
problems of the form

; find .

The derivative and its applications, which you studied in previous chapters, are part 
of what is called differential calculus.The next two chapters are devoted to the other
main branch of calculus, integral calculus. Integrals have many applications: finding areas;
determining the lengths of curved paths; solving complicated probability problems; and
calculating the location of an object (such as the distance of a space shuttle from Earth)
when its velocity and initial position are known.The Fundamental Theorem of Calculus,
presented later in this chapter, will reveal a surprisingly close connection between 
differential and integral calculus.

f (x)f 9(x) 5 5x4

f 9(x)f (x) 5 x5

Antiderivatives
If an object is thrown from the top of the Willis Tower in Chicago, how
fast is it going when it hits the ground?

7.1

Using antiderivatives, we will answer this question in Example 11.

Functions used in applications in previous chapters have provided information about
a total amount of a quantity, such as cost, revenue, profit, temperature, gallons of oil, or
distance. Derivatives of these functions provided information about the rate of change
of these quantities and allowed us to answer important questions about the extrema of
the functions. It is not always possible to find ready-made functions that provide infor-
mation about the total amount of a quantity, but it is often possible to collect enough
data to come up with a function that gives the rate of change of a quantity. We know that
derivatives give the rate of change when the total amount is known. The reverse of find-
ing a derivative is known as antidifferentiation. The goal is to find an antiderivative,
defined as follows.

Antiderivative
If then is an antiderivative of f(x).F(x)F r 1x 2 5 f 1x 2 ,

Antiderivative

(a) If then so is an antiderivative of 

(b) For making an antiderivative of f(x) 5 2x.F(x) 5 x2F r 1x 2 5 2x,F(x) 5 x2,

f(x) 5 10.F(x) 5 10xF r 1x 2 5 10,F(x) 5 10x,

EXAMPLE  1
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Antiderivative

Find an antiderivative of 

SOLUTION To find a function whose derivative is work backwards. Recall that
the derivative of is If

then and so is an antiderivative of TRY YOUR TURN 1

Population

Suppose a population is growing at a rate given by where x is time in years
from some initial date. Find a function giving the population at time x.

SOLUTION Let the population function be Then

The derivative of the function defined by is so one possible popu-
lation function with the given growth rate is

The function from Example 1(b), defined by is not the only function whose
derivative is For example, 

are all antiderivatives of and any two of them differ only by a constant.
These three functions, shown in Figure 1, have the same derivative, and
the slopes of their tangent lines at any particular value of x are the same. In fact, for
any real number C, the function has as its derivative. This
means that there is a family or class of functions having as a derivative. As the next the-
orem states, if two functions and are antiderivatives of then and

can differ only by a constant.G 1x 2
F 1x 2f 1x 2 ,G 1x 2F 1x 2

2x
f 1x 2 5 2xF 1x 2 5 x2 1 C

f 1x 2 5 2x,
f 1x 2 5 2x,

F 1x 2 5 x2,  G 1x 2 5 x2 1 2,  and  H 1x 2 5 x2 2 4

f 1x 2 5 2x.
F 1x 2 5 x2,

F 1x 2 5 ex.
F r 1x 2 5 ex,F 1x 2 5 ex

f 1x 2 5 F r 1x 2 5 ex.

F 1x 2 .

f 1x 2 5 ex,

5x4.x5n 5 5,n 2 1 5 4

nxn21
$%&

 is 5x4,

nxn21.xn
5x4,F 1x 2

f1x 2 5 5x4.

EXAMPLE  2

YOUR TURN 1 Find an 
antiderivative f (x) � 8x7. 

EXAMPLE  3

If and are both antiderivatives of a function on an interval, then there
is a constant C such that

(Two antiderivatives of a function can differ only by a constant.) The arbitrary real
number C is called an integration constant.

F 1x 2 2 G 1x 2 5 C.

f 1x 2G 1x 2F 1x 2

The family of all antiderivatives of the function f is indicated by

The symbol is the integral sign, is the integrand, and is called an
indefinite integral, the most general antiderivative of f.

ef 1x 2  dxf 1x 2e

3f 1x 2  dx 5 F 1x 2 1 C.

FIGURE 1

x

y

G(x)

x1

Slopes of the tangent lines
at x = x1 are the same.

F(x)

H(x)

0
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For example, using this notation,

The dx in the indefinite integral indicates that is the “integral of with
respect to x” just as the symbol denotes the “derivative of y with respect to x.” For
example, in the indefinite integral dx indicates that a is to be treated as a constant
and x as the variable, so that

On the other hand,

A more complete interpretation of dx will be discussed later.
The symbol was created by G. W. Leibniz (1646–1716) in the latter part of the

seventeenth century. The is an elongated S from summa, the Latin word for sum. The word
integral as a term in the calculus was coined by Jakob Bernoulli (1654–1705), a Swiss mathe-
matician who corresponded frequently with Leibniz. The relationship between sums and inte-
grals will be clarified in a later section.

Finding an antiderivative is the reverse of finding a derivative. Therefore, each rule for
derivatives leads to a rule for antiderivatives. For example, the power rule for derivatives
tells us that

Consequently,

the result found in Example 2. Note that the derivative of is found by multiplying x by n
and reducing the exponent on x by 1. To find an indefinite integral—that is, to undo what
was done—increase the exponent by 1 and divide by the new exponent, n 1 1.

xn

35x4 dx 5 x5 1 C,

d

 dx
 x5 5 5x4.

e
ef 1x 2  dx

32ax da 5 a2x 1 C 5 xa2 1 C.

32ax dx 5 3a 12x 2dx 5 ax2 1 C.

e2ax dx,
dy /dx

f 1x 2ef 1x 2  dx

32x dx 5 x2 1 C.

Indefinite Integral
If then

for any real number C.
3f 1 x 2  dx 5 F 1 x 2 1 C,

F r 1x 2 5 f 1x 2 ,

Power Rule
For any real number 

(The antiderivative of for is found by increasing the exponent n by 1
and dividing x raised to the new power by the new value of the exponent.) 

n 2 21f 1x 2 5 xn

3xn
 dx 5

xn11

n 1 1
1 C.

n 2 21,

This rule can be verified by differentiating the expression on the right above:

(If the expression in the denominator is 0, and the above rule cannot be used.
Finding an antiderivative for this case is discussed later.)

n 5 21,

d

dx
 a

xn11

n 1 1
1 Cb 5

n 1 1

n 1 1
 x 1n11221 1 0 5 xn.

FOR REVIEW

Recall that
d

 dx
 xn 5 nxn2 1.



7.1 Antiderivatives 359

Power Rule
Use the power rule to find each indefinite integral.

(a)

SOLUTION Use the power rule with 

To check the solution, find the derivative of The derivative is t3, the original
function.

(b)

SOLUTION First, write as Then

Verify the solution by differentiating � � C to get 

(c)

SOLUTION Since 

To check this, differentiate the derivative is the original function.

(d)

SOLUTION Write dx as and use the fact that for any nonzero number
x to get

TRY YOUR TURN 2

As shown earlier, the derivative of the product of a constant and a function is the
product of the constant and the derivative of the function. A similar rule applies to
indefinite integrals. Also, since derivatives of sums or differences are found term by
term, indefinite integrals also can be found term by term.

3  dx 5 31 dx 5 3x0 dx 5
x1

1
1 C 5 x 1 C.

x0 5 11 . dx,

3dx

u1/2,12 /3 2u3/2 1 C;

3"u du 5 3u1/2 du 5
u3/2

3 /2
1 C 5

2

3
 u3/2 1 C.

"u 5 u1/2,

3"u du

1 / t2.1 1 / t 2

3  
1

t2 dt 5 3t22
 dt 5

t2211

22 1 1
1 C 5

t21

21
1 C 5 2 

1

t
1 C.

t22.1 / t2

3

 
1

t2 dt

t4 /4 1 C.

3t3 dt 5
t311

3 1 1
1 C 5

t4

4
1 C

n 5 3.

3t3
 dt

EXAMPLE  4

YOUR TURN 2

Find 3

 
1

t4 dt.

FOR REVIEW

Recall that 

and

 kf r 1x 2 .
d

 dx
 3kf 1x 2 4 5

3f r 1x 2 6 g r 1x 2 4

d

 dx
 3f 1x 2 6 g 1x 2 4 5

Constant Multiple Rule and Sum or Difference Rule
If all indicated integrals exist,

and

(The antiderivative of a constant times a function is the constant times the antiderivative
of the function. The antiderivative of a sum or difference of functions is the sum or dif-
ference of the antiderivatives.) 

3[  
f 1 x 2 6 g 1 x 2 \ dx 5 3  f 1 x 2  dx 6 3g 1 x 2  dx.

3k ? f 1 x 2  dx 5 k3  f 1 x 2  dx,  for any real number k,



The constant multiple rule requires k to be a number. The rule does not apply to a
variable. For example,

Rules of Integration
Use the rules to find each integral.

(a)

SOLUTION By the constant multiple rule and the power rule,

Because C represents any real number, it is not necessary to multiply it by 2 in the
next-to-last step.

(b)

SOLUTION Rewrite 12/z5 as 12z�5, then find the integral.

(c)

SOLUTION By extending the sum and difference rules to more than two terms,
we get

Only one constant C is needed in the answer; the three constants from integrating term
by term are combined. TRY YOUR TURN 3

Remember to check your work by taking the derivative of the result. For instance, in
Example 5(c) check that is the required indefinite integral by taking the
derivative

which agrees with the original information.

d

dz
 1 z3 2 2z2 1 5z 1 C 2 5 3z2 2 4z 1 5,

z3 2 2z2 1 5z 1 C

 5 z3 2 2z2 1 5z 1 C.

 5 3a
z3

3
b 2 4a

z2

2
b 1 5z 1 C

 3 1 3z2 2 4z 1 5 2  dz 5 33z2 dz 2 43z dz 1 53  dz

3 1 3z2 2 4z 1 5 2  dz

 5 23z24 1 C 5
23

z4 1 C

 3  
12

z5  dz 5 312z25 dz 5 123z25 dz 5 12a
z24

24
b 1 C

3  
12

z5   dz

32v3 dv 5 23v3 dv 5 2a
v4

4
b 1 C 5

v4

2
1 C.

32v3 dv

3  x"x 2 1 dx 2 x 3"x 2 1 dx.
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CAUTION

EXAMPLE  5

YOUR TURN 3

Find 3 1 6x2 1 8x 2 9 2  dx.
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Rules of Integration

Use the rules to find each integral.

(a)

SOLUTION First rewrite the integrand as follows.

Rewrite as a sum of fractions.

Use 

Now find the antiderivative.

(b)

SOLUTION Square the binomial first, and then find the antiderivative.

TRY YOUR TURN 4

It was shown earlier that the derivative of is and the derivative
of is Also, the derivative of is 
and the derivative of is These results lead to the follow-
ing formulas for indefinite integrals of exponential functions.

f r 1x 2 5 k 1 ln a 2akx.f 1x 2 5 akx
f r 1x 2 5 k . ekx,f 1x 2 5 ekxf r 1x 2 5 1 ln a 2ax.f 1x 2 5 ax

f r 1x 2 5 ex,f 1x 2 5 ex

 5
x5

5
2

2x3

3
1 x 1 C

 3 1x2 2 1 2 2 dx 5 3 1x4 2 2x2 1 1 2  dx

3 1x2 2 1 2 2 dx

 5
2

5
 x5/2 1 2x1/2 1 C

 3 1x3/2 1 x21/2 2  dx 5
x5/2

5 /2
1

x1/2

1 /2
1 C

a m

a n 5 a m2n. 5 3 1x3/2 1 x21/2 2  dx

!a 5 a1/2 5 3 a
x2

x1/2 1
1

x1/2b dx

 3  
x2 1 1

"x
 dx 5 3 a

x2

"x
1

1

"x
b dx

3  
x2 1 1

"x
 dx

EXAMPLE  6

YOUR TURN 4

Find 3  
x3 2 2

"x
 dx.

Indefinite Integrals of Exponential Functions

For

(The antiderivative of the exponential function is itself. If x has a coefficient of k, we
must divide by k in the antiderivative. If the base is not e, we must divide by the natural
logarithm of the base.)

ex

 3akx
 dx 5

akx

k 1 ln a 2
1 C, k u 0

 3ax
 dx 5

ax

ln a
1 C

a + 0, a u 1:

 3ekx
 dx 5

ekx

k
1 C, k u 0

3ex
 dx 5 ex 1 C



Exponential Functions

(a)

(b)

(c)

(d)

The restriction was necessary in the formula for since made
the denominator of equal to 0. To find when that is, to find

recall the differentiation formula for the logarithmic function: The derivative of
where is This formula for the derivative of

gives a formula for ex21 dx.f 1x 2 5 ln 0 x 0
f r 1x 2 5 1 /x 5 x21.x 2 0,f 1x 2 5 ln 0 x 0 ,

ex21 dx,
n 5 21,exn dx1 / 1n 1 1 2

n 5 21exn dxn 2 21

3225x dx 5
225x

25 1 ln 2 2
1 C 5 2 

225x

5 1 ln 2 2
1 C

 5
12

5
 e15/42u 1 C

 5 3a
4

5
be15/42u 1 C

 33e15/42u du 5 3a
e15/42u

5 /4
b 1 C

3e9t dt 5
e9t

9
1 C

39et dt 5 93et dt 5 9et 1 C
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EXAMPLE  7

CAUTION

Indefinite Integral of 

(The antiderivative of for is the natural logarithm of the absolute
value of x.)

n 5 21f 1x 2 5 xn

3x21 dx 5 3  
1
x

 dx 5 ln 0 x 0 1 C

x21

Don’t neglect the absolute value sign in the natural logarithm when integrating
If x can take on a negative value, will be undefined there. Note, how-

ever, that the absolute value is redundant (but harmless) in an expression such as
since can never be negative.

Integrals

(a)

(b) TRY YOUR TURN 5

In all these examples, the antiderivative family of functions was found. In many appli-
cations, however, the given information allows us to determine the value of the integration
constant C. The next examples illustrate this idea.

3 a2 

5
x

1 e22xb dx 5 25 ln 0 x 0 2
1

2
 e22x 1 C

3  
4
x

 dx 5 43  
1
x

 dx 5 4 ln 0 x 0 1 C

x2 1 1ln 0 x2 1 1 0 ,

ln xx21.

EXAMPLE  8

YOUR TURN 5

Find 3 a
3
x

1 e23xb  dx.
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Cost

Suppose a publishing company has found that the marginal cost at a level of production of
x thousand books is given by

and that the fixed cost (the cost before the first book can be produced) is $25,000. Find the
cost function 

SOLUTION Write as or and then use the indefinite integral rules to
integrate the function.

(Here k is used instead of C to avoid confusion with the cost function ) To find the
value of k, use the fact that is 25,000.

With this result, the cost function is  

Demand

Suppose the marginal revenue from a product is given by , where q is the
number of products produced.

(a) Find the revenue function for the product.

SOLUTION The marginal revenue is the derivative of the revenue function, so

If then (no items sold means no revenue), so that

Thus, the revenue function is

.

(b) Find the demand function for this product.

SOLUTION Recall that R � qp, where p is the demand function giving the price p as a
function of q. Then

 R 1q 2 5 24000e20.1q 1 8q 1 4000

 4000 5 C.

 0 5 24000 1 0 1 C

 0 5 24000e20.1102 1 8 10 2 1 C

R 5 0q 5 0,

 5 24000e20.1q 1 8q 1 C.

 5 400 
e20.1q

20.1
1 8q 1 C

 R 1q 2 5 3 1400e20.1q 1 8 2  dq

 R r 1q 2 5 400e20.1q 1 8

400e20.1q 1 8

C 1x 2 5 100x1/2 1 25,000.

 k 5 25,000

 25,000 5 100 . 0 1 k

 C 1x 2 5 100x1/2 1 k

C 10 2
C 1x 2 .

C 1 x 2 5 3  
50

"x
 dx 5 350x21/2 dx 5 50 12x1/2 2 1 k 5 100x1/2 1 k

50x21/2,50 /x1/250 /"x

C 1x 2 .

C r 1x 2 5
50

"x

EXAMPLE  9

EXAMPLE  10



The demand function is 

In the next example, integrals are used to find the position of a particle when the accel-
eration of the particle is given.

Velocity and Acceleration

Recall that if the function gives the position of a particle at time t, then its velocity
and its acceleration are given by

(a) Suppose the velocity of an object is and that the object is at 5 when
time is 0. Find 

SOLUTION Since the function is an antiderivative of 

for some constant C. Find C from the given information that when

(b) Many experiments have shown that when an object is dropped, its acceleration (ignor-
ing air resistance) is constant. This constant has been found to be approximately 32 ft
per second every second; that is,

The negative sign is used because the object is falling. Suppose an object is thrown
down from the top of the 1100-ft-tall Willis Tower (formerly known as the Sears
Tower) in Chicago. If the initial velocity of the object is per second, find 
the distance of the object from the ground at time t.

SOLUTION First find by integrating 

When 

 220 5 k

 220 5 232 10 2 1 k

v 1 t 2 5 220:t 5 0,

v 1 t 2 5 3 1232 2  dt 5 232t 1 k.

a 1 t 2 :v 1 t 2

s 1 t 2 ,220 ft

a 1 t 2 5 232.

 s 1 t 2 5 2t3 2 4t2 1 5

 5 5 C

 5 5 2 10 2 3 2 4 10 2 2 1 C

 s 1 t 2 5 2t3 2 4t2 1 C

t 5 0.s 5 5

 5 2t3 2 4t2 1 C

 s 1 t 2 5 3v 1 t 2  dt 5 3 1 6t2 2 8t 2  dt

v 1 t 2 :s 1 t 2v 1 t 2 5 s r 1 t 2 ,
s 1 t 2 .

v 1 t 2 5 6t2 2 8t

v 1 t 2 5 s r 1 t 2  and  a 1 t 2 5 v r 1 t 2 5 ss 1 t 2 .

a 1 t 2v 1 t 2
s 1 t 2

p 5
24000e20.1q 1 8q 1 4000

q
 .

 
24000e20.1q 1 8q 1 4000

q
 5  p.

 24000e20.1q 1 8q 1 4000 5  qp
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EXAMPLE  11

Divide by q.
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and

Be sure to evaluate the constant of integration k before integrating again to get 
Now integrate to find 

Since when we can substitute these values into the equation for
to get and

as the distance of the object from the ground after t seconds.

(c) Use the equations derived in (b) to find the velocity of the object when it hit the ground
and how long it took to strike the ground.

SOLUTION When the object strikes the ground, so

To solve this equation for t, factor out the common factor of and then use the qua-
dratic formula.

Only the positive value of t is meaningful here: It took the object about
7.69 seconds to strike the ground. From the velocity equation, with we find

so the object was falling (as indicated by the negative sign) at about 266 ft per second
when it hit the ground. TRY YOUR TURN 6

Slope

Find a function f whose graph has slope and goes through the point

SOLUTION Since 

The graph of f goes through so C can be found by substituting 1 for x and 1 for

Finally, TRY YOUR TURN 7f 1x 2 5 2x3 1 4x 2 5.

 C 5 25

 1 5 6 1 C

 1 5 2 1 1 2 3 1 4 1 1 2 1 C

f 1x 2 .
1 1, 1 2 ,

f 1x 2 5 3 1 6x2 1 4 2  dx 5 2x3 1 4x 1 C.

f r 1x 2 5 6x2 1 4,

1 1, 1 2 .
f r 1x 2 5 6x2 1 4

 v 1 7.69 2 5 232 1 7.69 2 2 20 < 2266,

 v 1 t 2 5 232t 2 20

t 5 7.69,
t < 7.69.

 t 5
25 6 "25 1 4400

8
<

25 6 66.5

8

 0 5 24 14t2 1 5t 2 275 2

24

0 5 216t2 2 20t 1 1100.

s 5 0,

s 1 t 2 5 216t2 2 20t 1 1100

C 5 1100s 1 t 2
t 5 0,s 1 t 2 5 1100

s 1 t 2 5 3 1232t 2 20 2  dt 5 216t2 2 20t 1 C

s 1 t 2 .v 1 t 2
s 1 t 2 .

 v 1 t 2 5 232t 2 20.

YOUR TURN 6 Repeat 
Example 11(b) and 11(c) for the
Burj Khalifa in Dubai, which is the
tallest building in the world, standing 
2717 ft. The initial velocity is 
�20 ft per second.

APPLY IT 

EXAMPLE  12

YOUR TURN 7 Find an equa-
tion of the curve whose tangent line
has slope f '(x) � 3x1/2 � 4 and goes
through the point (1, �2).



1. What must be true of and if both are antideriva-
tives of ?

2. How is the antiderivative of a function related to the 
function?

3. In your own words, describe what is meant by an integrand.

4. Explain why the restriction is necessary in the rule

Find the following.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. Find an equation of the curve whose tangent line has a slope of

given that the point is on the curve.

44. The slope of the tangent line to a curve is given by

If the point is on the curve, find an equation of the curve.

APPLICATIONS
Business and Economics

Cost Find the cost function for each marginal cost function.

45. fixed cost is $8

46. fixed cost is $10

47. fixed cost is $8

48. 16 units cost $45

49. 8 units cost $58

50. 2 units cost $5.50

51. 10 units cost $94.20

52. 2 units cost $9.44

Demand Find the demand function for each marginal revenue
function. Recall that if no items are sold, the revenue is 0.

53.

54.

55.

56.

57. Text Messaging The approximate rate of change in the num-
ber (in billions) of monthly text messages is given by

where t represents the number of years since 2000. In 2005 
(t � 5) there were approximately 9.8 billion monthly text
messages. Source: Cellular Telecommunication & Internet
Association.

a. Find the function that gives the total number (in billions) of
monthly text messages in year t. 

b. According to this function, how many monthly text messages
were there in 2009? Compare this with the actual number of
152.7 billion.

58. Profit The marginal profit of a small fast-food stand is given,
in thousands of dollars, by

where x is the sales volume in thousands of hamburgers. The
“profit” is when no hamburgers are sold. Find the
profit function.

2$1000

P r 1x 2 5 "x 1
1

2
,

f r 1 t 2 5 7.50t 2 16.8,

R r 1x 2 5 600 2 5e0.0002x

R r 1x 2 5 500 2 0.15"x

R r 1x 2 5 50 2 5x2/3

R r 1x 2 5 175 2 0.02x 2 0.03x2

C r 1x 2 5 1.2x 1 ln 1.2 2 ;

C r 1x 2 5 5x 2 1 /x;

C r 1x 2 5 x 1 1 /x2;

C r 1x 2 5 x2/3 1 2;

C r 1x 2 5 x1/2;

C r 1x 2 5 0.03e0.01x;

C r 1x 2 5 0.2x2 1 5x;

C r 1x 2 5 4x 2 5;

10, 1 2

f r 1x 2 5 6x2 2 4x 1 3.

1 1, 3 /5 2

f r 1x 2 5 x2/3,

332x dx310x dx

3  
1 2 2"3 z

"3 z
 dz3  

"x 1 1

"3 x
 dx

3 12y 2 1 2 2 dy3 1x 1 1 2 2 dx

3 1 v2 2 e3v 2  dv3 1 e2u 1 4u 2  du

3  
2y1/2 2 3y2

6y
 dy3  

1 1 2t3

4t
 dt

3 a
9

x
2 3e20.4xb dx3 a

23

x
1 4e20.4x 1 e0.1b dx

324e0.2v dv33e20.2x dx

3  
2

3x4 dx3  
1

3x2 dx

3 1 10x23.5 1 4x21 2  dx3 129t22.5 2 2t21 2  dt

3 a"u 1
1

u2b du3 a
p3

y3 2
"p

"y
b dy

3 a
4

x3b dx3 a
7

z2b dz

3 1 56t5/2 1 18t7/2 2  dt3 1 10u3/2 2 14u5/2 2  du

3 1 15x"x 1 2"x 2  dx3 14"v 2 3v3/2 2  dv

3x2 1x4 1 4x 1 3 2  dx35x 1x2 2 8 2  dx

3 1 t1/4 1 p1/4 2  dt3 1 5"z 1 "2 2  dz

3 1 16y3 1 9y2 2 6y 1 3 2  dy3 14z3 1 3z2 1 2z 2 6 2  dz

3 1 5x2 2 6x 1 3 2  dx3 1 6t2 2 8t 1 7 2  dt

3 1 3x 2 5 2  dx3 12z 1 3 2  dz

39 dy36 dk

3xn dx 5
xn11

n 1 1
1 C.

n 2 21

f 1x 2
G 1x 2F 1x 2
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7.1 EXERCISES
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59. Profit The marginal profit in dollars on Brie cheese sold at a
cheese store is given by

where x is the amount of cheese sold, in hundreds of pounds.
The “profit” is 2$40 when no cheese is sold. 

a. Find the profit function.

b. Find the profit from selling 200 lb of Brie cheese.

Life Sciences

60. Biochemical Excretion If the rate of excretion of a bio-
chemical compound is given by

the total amount excreted by time t (in minutes) is 

a. Find an expression for 

b. If 0 units are excreted at time how many units are
excreted in 10 minutes?

61. Flour Beetles A model for describing the population of adult
flour beetles involves evaluating the integral

where is the per-unit-abundance growth rate for a popu-
lation of size x. The researchers consider the simple case in
which for positive constants a and b. Find the
integral in this case. Source: Ecology.

62. Concentration of a Solute According to Fick’s law, the dif-
fusion of a solute across a cell membrane is given by

(1)

where A is the area of the cell membrane, V is the volume of
the cell, is the concentration inside the cell at time t, C is
the concentration outside the cell, and k is a constant. If rep-
resents the concentration of the solute inside the cell when

then it can be shown that

(2)

a. Use the last result to find 

b. Substitute back into Equation (1) to show that (2) is indeed
the correct antiderivative of (1).

63. Cell Growth Under certain conditions, the number of cancer
cells at time t increases at a rate

where A is the rate of increase at time 0 (in cells per day) and k
is a constant.

a. Suppose and at 5 days, the cells are growing at a
rate of 250 per day. Find a formula for the number of cells
after t days, given that 300 cells are present at 

b. Use your answer from part a to find the number of cells pre-
sent after 12 days.

64. Blood Pressure The rate of change of the volume of
blood in the aorta at time t is given by

where is the pressure in the aorta at time t and k is a con-
stant that depends upon properties of the aorta. The pressure in
the aorta is given by

where is the pressure at time and m is another
constant. Letting be the volume at time find a formula
for 

Social  Sciences

65. Bachelor’s Degrees The number of bachelor’s degrees con-
ferred in the United States has been increasing steadily in recent
decades. Based on data from the National Center for Education
Statistics, the rate of change of the number of bachelor’s degrees
(in thousands) can be approximated by the function 

,

where t is the number of years since 1970. Source: National
Center for Education Statistics.
a. Find , given that about 839,700 degrees were conferred

in 1970 (t � 0).

b. Use the formula from part a to project the number of bache-
lor’s degrees that will be conferred in 2015 (t � 45).

66. Degrees in Dentistry The number of degrees in dentistry
(D.D.S. or D.M.D.) conferred to females in the United States has
been increasing steadily in recent decades. Based on data from
the National Center for Education Statistics, the rate of change
of the number of bachelor’s degrees can be approximated by the
function 

,

where t is the number of years since 1980. Source: National
Center for Education Statistics.
a. Find , given that about 700 degrees in dentistry were

conferred to females in 1980 (t � 0). 

b. Use the formula from part a to project the number of degrees in
dentistry that will be conferred to females in 2015 (t � 35).

Physical  Sciences

Exercises 67–71 refer to Example 11 in this section.

67. Velocity For a particular object, and
Find 

68. Distance Suppose and Find

69. Time An object is dropped from a small plane flying at 6400
ft. Assume that per second and 
Find How long will it take the object to hit the ground? 

70. Distance Suppose and
Find s 1 t 2 .s 1 1 2 5 19.

v 1 1 2 5 15,a 1 t 2 5 18t 1 8,

s 1 t 2 .
v 10 2 5 0.a 1 t 2 5 232 ft

s 1 t 2 .
s 1 1 2 5 8.v 1 t 2 5 9t2 2 3"t

v 1 t 2 .v 10 2 5 6.
a 1 t 2 5 5t2 1 4

D 1 t 2

D r 1 t 2 5 29.25e0.03572t

B 1 t 2

B r 1 t 2 5 0.06048t2 2 1.292t 1 15.86

V 1 t 2 .
t 5 0,V0

t 5 0P0

P 1 t 2 5 P0 e2mt,

P 1 t 2

Vr1 t 2 5 2kP 1 t 2 ,

V 1 t 2

t 5 0.

A 5 50,

Nr1 t 2 5 Aekt,

N 1 t 2

c r 1 t 2 .

c 1 t 2 5 1 c0 2 C 2e2kAt/V 1 C.

t 5 0,

c0

c 1 t 2

c r 1 t 2 5
kA

V
 3C 2 c 1 t 2 4,

g 1x 2 5 a 2 bx

g 1x 2

3  
g 1x 2

x
 dx,

t 5 0,

f 1 t 2 .

f 1 t 2 .

f r 1 t 2 5 0.01e20.01t,

P r 1x 2 5 x 1 50x2 1 30x 2 ,
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71. Distance Suppose
and Find 

72. Motion Under Gravity Show that an object thrown from an
initial height with an initial velocity has a height at time t
given by the function

where g is the acceleration due to gravity, a constant with value

.

73. Rocket A small rocket was launched straight up from a plat-
form. After 5 seconds, the rocket reached a maximum height of
412 ft. Find the initial velocity and height of the rocket. (Hint:
See the previous exercise.)

74. Rocket Science In the 1999 movie October Sky, Homer
Hickum was accused of launching a rocket that started a forest
fire. Homer proved his innocence by showing that his rocket
could not have flown far enough to reach where the fire started.
He used the following reasoning.

a. Using the fact that (see Example 11(b)), 
find and given and s 10 2 5 0.v 10 2 5 v0s 1 t 2 ,v 1 t 2

a 1 t 2 5 232

232 ft /sec2

h 1 t 2 5 1
2gt2 1 v0t 1 h0,

v0h0

s 1 t 2 .s 10 2 5 4.
v 10 2 5 23,a 1 t 2 5 1 15 /2 2"t 1 3e2t,

Substitution
If a formula for the marginal revenue is known, how can a formula for
the total revenue be found?

7.2
APPLY IT 

Using the method of substitution, this question will be answered in Exercise 39.

In earlier chapters you learned all the rules for finding derivatives of elementary func-
tions. By correctly applying those rules, you can take the derivative of any function involv-
ing powers of x, exponential functions, and logarithmic functions, combined in any way
using the operations of arithmetic (addition, subtraction, multiplication, division, and expo-
nentiation). By contrast, finding the antiderivative is much more complicated. There are a
large number of techniques—more than we can cover in this book. Furthermore, for some
functions all possible techniques fail. In the last section we saw how to integrate a few sim-
ple functions. In this section we introduce a technique known as substitution that will
greatly expand the set of functions you can integrate.

The substitution technique depends on the idea of a differential, discussed in Chapter 6
on Applications of the Derivative. If u � f (x), the differential of u, written du, is defined
as

du � f 
 dx.

For example, if , then In this chapter we will only use differen-
tials as a convenient notational device when finding an antiderivative such as

3 12x3 1 1 246x2 dx .

du 5 6x2 

 dx .u 5 2x3 1 1

1x 2

YOUR TURN ANSWERS 

1. or 2.

3. 4.

5.

6. 12.42 sec; 417 ft/sec

7. f 1x 2 5 2x3/2 1 4x 2 8

s 1 t 2 5 2 16 t2 220t 1 2717;

3 ln 0x 0 2
1

3
 e23x 1 C

2

7
x7/2 2 4x1/2 1 C2x3 1 4x2 2 9x 1 C

2
1

3t3 1 Cx8 1 Cx8

(The initial velocity was unknown, and the initial height
was 0 ft.)

b. Homer estimated that the rocket was in the air for 14 seconds.
Use to find 

c. If the rocket left the ground at a angle, the velocity in
the horizontal direction would be equal to the velocity in
the vertical direction, so the distance traveled horizontally
would be (The rocket left the ground at a steeper angle,
so this would overestimate the distance from starting to
landing point.) Find the distance the rocket would travel
horizontally during its 14-second flight.

v0 t.

v0 ,
45°

v0 .s 1 14 2 5 0
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The function might remind you of the result when using the chain rule to
take the derivative. We will now use differentials and the chain rule in reverse to find the
antiderivative. Let ; then . Now substitute u for and du
for in the indefinite integral.

With substitution we have changed a complicated integral into a simple one. This last
integral can now be found by the power rule.

Finally, substitute for u in the antiderivative to get

We can check the accuracy of this result by using the chain rule to take the derivative. We
get

This method of integration is called integration by substitution. As shown above, it
is simply the chain rule for derivatives in reverse. The results can always be verified by
differentiation.

Substitution

Find 

SOLUTION If we choose , then and the integrand can be written
as the product of and Now substitute.

Find this last indefinite integral.

Now replace u with 

To verify this result, find the derivative.

The derivative is the original function, as required. TRY YOUR TURN 1

d

dx
 c
1 3x2 1 4 2 8

8
1 C d 5

8

8
 1 3x2 1 4 2 7 1 6x 2 1 0 5 1 3x2 1 4 2 7 1 6x 2

36x 1 3x2 1 4 2 7 dx 5
u8

8
1 C 5

1 3x2 1 4 2 8

8
1 C

3x2 1 4.

3u7 du 5
u8

8
1 C

36x 1 3x2 1 4 2 7 dx 5 3 13x2 1 4 2 7 16x dx 2 5 3u7 du

6x dx.1 3x2 1 4 2 7
du 5 6x dxu 5 3x2 1 4

e6x 1 3x2 1 4 2 7 dx.

 5 12x3 1 1 246x2.

 
d

dx
 c
12x3 1 1 2 5

5
1 C d 5

1

5
. 5 12x3 1 1 24 1 6x2 2 1 0

3 12x3 1 1 246x2 dx 5
12x3 1 1 2 5

5
1 C.

2x3 1 1

3u4 

 du 5
u5

5
1 C

 5 3u4du

 3 12x3 1 1 246x2 dx 5 3 12x3 1 1 2 4 1 6x2 dx 2

6x2 dx
2x3 1 1u 5 2x3 1 1

12x3 1 1 246x2

EXAMPLE  1

YOUR TURN 1

Find .38x 1 4x2 1 8 2 6dx

u duee

FOR REVIEW
The chain rule, discussed in 
detail in Chapter 4 on Calculating
the Derivative, states that

f r 1g 1x2 2 . g r 1x2 .
d

 dx
 3f1g 1x2 2 4 5
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Substitution

Find 

SOLUTION

An expression raised to a power is usually a good choice for u, so because of the square
root or power, let then The integrand does not contain the
constant 3, which is needed for du. To take care of this, multiply by placing 3 inside
the integral sign and outside.

Now substitute u for and du for and then integrate.

Since 

As in Method 1, we let , so that Since there is no 3 in the integral,
we divide the equation for du by 3 to get

We then substitute u for and du /3 for to get

and proceed as we did in Method 1. The two methods are just slightly different ways of
doing the same thing, but some people prefer one method over the other.

TRY YOUR TURN 2

The substitution method given in the examples above will not always work. For example,
you might try to find

by substituting so that However, there is no constant that can be
inserted inside the integral sign to give alone. This integral, and a great many others,
cannot be evaluated by substitution.

With practice, choosing u will become easy if you keep two principles in mind.

1. u should equal some expression in the integral that, when replaced with u, tends to
make the integral simpler.

2. u must be an expression whose derivative—disregarding any constant multiplier,
such as the 3 in —is also present in the integral.

The substitution should include as much of the integral as possible, as long as its deriv-
ative is still present. In Example 1, we could have chosen but u 5 3x2 1 4u 5 3x2,

3x2

3x2
du 5 3x2 dx.u 5 x3 1 1,

3x3
 "x3 1 1 dx

3"u 
1

3
 du 5

1

3
 3u1/2 du

x2 dxx3 1 1

1

3
 du 5 x2 dx.

du 5 3x2 dx.u 5 x3 1 1

3x2"x3 1 1 dx 5
2

9
 1x3 1 1 2 3/2 1 C.

u 5 x3 1 1,

 5
1

3
. u3/2

3 /2
1 C 5

2

9
 u3/2 1 C

 
1

3
 3"x3 1 1 1 3x2

 dx 2 5
1

3
 3"u du 5

1

3
 3u1/2 du

3x2 dx,x3 1 1

3x2"x3 1 1 dx 5
1

3
 33x2"x3 1 1 dx 5

1

3
 3"x3 1 1 1 3x2 dx 2

1 /3
3 /3,

du 5 3x2 dx.u 5 x3 1 1;1 /2

ex2"x3 1 1 dx.

EXAMPLE  2

YOUR TURN 2

Find .3x3
 "3x4 1 10 dx

Method 1
Modifying the Integral

Method 2
Eliminating the Constant
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is better, because it has the same derivative as and captures more of the original
integral. If we carry this reasoning further, we might try but this is a
poor choice, for an expression not present in the original
integral.

Substitution

Find 

SOLUTION Let so that The integral 
is missing the 2, so multiply by putting 2 inside the integral sign and 
outside.

Substituting for u gives

TRY YOUR TURN 3

In Example 3, the quantity was raised to a power in the denominator. When
such an expression is not raised to a power, the function can often be integrated using the
fact that

This suggests that such integrals can be solved by letting u equal the expression in 
the denominator, as long as the derivative of the denominator is present in the numerator
(disregarding any constant multiplier as usual). The next example illustrates this idea.

Substitution

Find 

SOLUTION Let so that Then

TRY YOUR TURN 4

Recall that if f (x) is a function, then by the chain rule, the derivative of the exponential
function is

This suggests that the antiderivative of a function of the form can be found by letting u
be the exponent, as long as f 
(x) is also present in the integral (disregarding any constant
multiplier as usual).

ef1x2

d

dx
 ef1x2 5 ef1x2 . f' 1x 2 .

y 5 ef1x2

3  
12x 2 3 2  dx

x2 2 3x
5 3  

du
u

5 ln 0 u 0 1 C 5 ln 0 x2 2 3x 0 1 C.

du 5 12x 2 3 2  dx.u 5 x2 2 3x,

3  
12x 2 3 2  dx

x2 2 3x
 .

d

dx
 ln 0 f 1x 2 0 5

1

f 1x 2
. f' 1x 2 .

x2 1 6x

3  
x 1 3

1x2 1 6x 2 2
 dx 5

21

2 1x2 1 6x 2
1 C.

x2 1 6x

 5
1

2
 3  

du

u2 5
1

2
 3u22 du 5

1

2
. u21

21
1 C 5

21

2u
1 C

 3  
x 1 3

1x2 1 6x 2 2
 dx 5

1

2
 3  

2 1x 1 3 2
1x2 1 6x 2 2

 dx

1 /22 . 1 1 /2 2 ,
du 5 12x 1 6 2  dx 5 2 1x 1 3 2  dx.u 5 x2 1 6x,

3  
x 1 3

1x2 1 6x 2 2
 dx.

du 5 4 1 3x2 1 4 2 3 1 6x 2  dx,
u 5 1 3x2 1 4 24,

3x2

EXAMPLE  3

YOUR TURN 3

Find 3  
x 1 1

14x2 1 8x 2 3
 dx.

EXAMPLE  4

YOUR TURN 4

Find 3  
x 1 3

x2 1 6x
 dx.



Substitution

Find 

SOLUTION Let the exponent on e. Then Multiplying by gives

TRY YOUR TURN 5

The techniques in the preceding examples can be summarized as follows.

 5
1

3
 3eu du 5

1

3
 eu 1 C 5

1

3
 ex3

1 C.

 3x2ex3

 dx 5
1

3
 3ex3 1 3x2 dx 2

3 /3du 5 3x2 dx.u 5 x3,

ex2ex3

 dx.
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EXAMPLE  5

YOUR TURN 5
Find ex3ex4

 dx.

The next example shows a more complicated integral in which none of the previous
forms apply, but for which substitution still works.

Substitution

Find 

SOLUTION Let To get the x outside the radical in terms of u, solve
for x to get Then and we can substitute as follows.

TRY YOUR TURN 6

The substitution method is useful if the integral can be written in one of the following
forms, where u is some function of x.

 5
2

5
1 1 2 x 2 5/2 2

2

3
 1 1 2 x 2 3/2 1 C

 5 3 1 u3/2 2 u1/2 2  du 5
2

5
 u5/2 2

2

3
 u3/2 1 C

 3x"1 2 x dx 5 3 1 1 2 u 2"u 12du 2 5 3 1 u 2 1 2u1/2 du

dx 5 2dux 5 1 2 u.1 2 x
u 5u 5 1 2 x.

ex"1 2 x dx.

Substitution
Each of the following forms can be integrated using the substitution .

Form of the Integral Result

1.

2.

3. 3eu  du 5 eu 1 C 5 ef1x2 1 C3ef1x2f r 1x 2   dx

3
1
u

  du 5 ln 0 u 0 1 C 5 ln 0 f 1x 2 0 1 C3
f r 1x 2
f 1x 2

  dx

3un du 5
un11

n 1 1
1 C 5

3  f 1x 2 4n11

n 1 1
1 C3 3  f 1x 2 4nf r 1x 2  dx,     n 2 21

u 5 f 1x 2

Substitution Method
In general, for the types of problems we are concerned with, there are three cases. We
choose u to be one of the following:

1. the quantity under a root or raised to a power;

2. the quantity in the denominator;

3. the exponent on e.

Remember that some integrands may need to be rearranged to fit one of these cases.

EXAMPLE  6

YOUR TURN 6
Find ex"3 1 x dx
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Some calculators, such as the TI-89 and TI-Nspire CAS, can find indefinite integrals automatically.
Many computer algebra systems, such as Maple, Matlab, and Mathematica, also do this. The website
www.wolframalpha.com can also be used to symbolically determine indefinite integrals and deriva-
tives of functions. Figure 2 shows the integral in Example 6 performed on a TI-89. The answer looks
different but is algebraically equivalent to the answer found in Example 6.

Demand

The research department for a hardware chain has determined that at one store the marginal
price of x boxes per week of a particular type of nails is

Find the demand equation if the weekly demand for this type of nails is 10 boxes when the
price of a box of nails is $4.

SOLUTION To find the demand function, first integrate as follows.

Let Then and

Multiply by .

Substitute.

(1)

Find the value of C by using the given information that when 

Replacing C with 3.18 in Equation (1) gives the demand function,

With a little practice, you will find you can skip the substitution step for integrals such
as that shown in Example 7, in which the derivative of u is a constant. Recall from the
chain rule that when you differentiate a function, such as p 1x 2 5 1000 / 12x 1 15 2 2 1 3.18

p 1x 2 5
1000

12x 1 15 2 2
1 3.18.

 3.18 < C

 4 < 0.82 1 C

 4 5
1000

352 1 C

 4 5
1000

12 . 10 1 15 2 2
1 C

x 5 10.p 5 4

 p 1x 2 5
1000

12x 1 15 2 2
1 C.

 5
1000

u2 1 C

 5 122000 2  

u22

22
1 C

 5 220003u23 du

2 /2 p 1x 2 5
24000

2 3 12x 1 15 223 2 dx

du 5 2 dx,u 5 2x 1 15.

p 1x 2 5 3p r 1x 2  dx 5 3  
24000

12x 1 15 2 3
 dx

p r 1x 2

p r 1x 2 5
24000

12x 1 15 2 3
 .

EXAMPLE  7

FIGURE 2
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in the previous example, you multiply by 2, the derivative of So when taking
the antiderivative, simply divide by 2:

This procedure is valid because of the constant multiple rule presented in the
previous section, which says that constant multiples can be brought into or out
of integrals, just as they can with derivatives. This procedure is not valid with
any expression other than a constant.

Popularity Index

To determine the top 100 popular songs of each year since 1956, Jim Quirin and Barry
Cohen developed a function that represents the rate of change on the charts of Billboard
magazine required for a song to earn a “star” on the Billboard “Hot 100” survey. They
developed the function

where represents the rate of change in position on the charts, x is the position on the
“Hot 100” survey, and A and B are positive constants. The function

is defined as the “Popularity Index.” Find Source: Chartmasters’ Rock 100.

SOLUTION Integrating gives

Let so that Then

(The absolute value bars are not necessary, since is always positive here.)B 1 x

 5 A ln 1B 1 x 2 1 C.

 F 1x 2 5 A3  
1
u

 du 5 A ln u 1 C

du 5 dx.u 5 B 1 x,

 5 A3  
1

B 1 x
 dx.

 5 3  
A

B 1 x
 dx

 F 1x 2 5 3f 1x 2  dx

f 1x 2

F 1x 2 .

F 1x 2 5 3f 1x 2  dx

f 1x 2

f 1x 2 5
A

B 1 x
 ,

 5
1000

12x 1 15 2 2
1 C.

 324000 12x 1 15 223 dx 5
24000

2
. 12x 1 15 222

22
1 C

12x 1 15 2 .

7.2 EXERCISES

1. Integration by substitution is related to what differentiation
method? What type of integrand suggests using integration by
substitution?

2. The following integrals may be solved using substitution.
Choose a function u that may be used to solve each problem.
Then find du.

a. b. 

c. d. 34x3ex4

 dx3  
x2

2x3 1 1
 dx

3"1 2 x dx3 1 3x2 2 5 24 2x dx

EXAMPLE  8

CAUTION
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Use substitution to find each indefinite integral.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. Stan and Ollie work on the integral

Stan lets and proceeds to get

Ollie tries and proceeds to get

Discuss which procedure you prefer, and why.

38. Stan and Ollie work on the integral

Stan lets and proceeds to get

Ollie multiplies out the function under the integral and gets

How can they both be right?

APPLICATIONS
Business and Economics

39. APPLY IT Revenue The marginal revenue (in thousands of
dollars) from the sale of x MP3 players is given by

a. Find the total revenue function if the revenue from 125 play-
ers is $29,591.

b. How many players must be sold for a revenue of at least
$40,000?

40. Debt A company incurs debt at a rate of

dollars per year, where t is the amount of time (in years) since
the company began. By the fourth year the company had accu-
mulated $16,260 in debt.

a. Find the total debt function.

b. How many years must pass before the total debt exceeds
$40,000?

41. Cost A company has found that the marginal cost (in thousands of
dollars) to produce x central air conditioning units is

where x is the number of units produced.

a. Find the cost function, given that the company incurs a fixed cost
of $10,000 even if no units are built.

b. The company will seek a new source of investment income if
the cost is more than $20,000 to produce 5 units. Should they
seek this new source?

42. Profit The rate of growth of the profit (in millions of dollars)
from a new technology is approximated by

where x represents time measured in years. The total profit in the
third year that the new technology is in operation is $10,000.

a. Find the total profit function.

b. What happens to the total amount of profit in the long run?

43. Transportation According to data from the Bureau of Trans-
portation Statistics, the rate of change in the number of local
transit vehicles (buses, light rail, etc.), in thousands, in the
United States from 1970 to the present can be approximated by

P r 1x 2 5 xe2x2

,

Cr1x 2 5
60x

5x2 1 e
 ,

D' 1 t 2 5 90 1 t 1 6 2"t2 1 12t

R r 1x 2 5 4x 1x2 1 27,000 222/3.

3 12x3 1 4x 2  dx 5
x4

2
1 2x2 1 C.

3u du 5
u2

2
1 C 5

1x2 1 2 2 2

2
1 C.

u 5 x2 1 2

32x 1x2 1 2 2  dx.

3du 5 u 1 C 5 ex3

1 C.

u 5 ex3

3eu du 5 eu 1 C 5 ex3

1 C.

u 5 x3

33x2ex3

 dx.

3  
105"x12

"x
 dx3x83x211 dx

3

1 log2 1 5x 1 1 2 2 2

5x 1 1
 dx3  

log x

x
 dx

3  
1

x 1 ln x 2
 dx3  

e2x

e2x 1 5
 dx

3  
"2 1 ln x

x
 dx3  

1 1 1 3 ln x 2 2

x
 dx

3 1"x2 2 6x 2 1x 2 3 2  dx3 1"x2 1 12x 2 1x 1 6 2  dx

3  
2x

1x 1 5 2 6
 dx3  

u

"u 2 1
 du

34r"8 2 r dr3p 1p 1 1 2 5 dp
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y2 1 y

12y3 1 3y2 1 1 2 2/3
 dy3  

2x 1 1

1x2 1 x 2 3
 dx

3  
t2 1 2

t3 1 6t 1 3
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x3 1 2x

x4 1 4x2 1 7
 dx

3  
24x

x2 1 3
 dx3  

t

t2 1 2
 dt

3  
e"y

2"y
 dy3  

e1/z

z2  dz

3 1x2 2 1 2ex323x dx3 1 1 2 t 2e2t2t2
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 dr33x2e2x3

 dx
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1x2 1 2x 2 4 24
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"3u 2 5
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where t is the year. Source: National Transportation Statistics
2006.

a. Using the fact that in 1970 there were 61,298 such vehicles, find a
formula giving the approximate number of local transit vehicles
as a function of time.

b. Use the answer to part a to forecast the number of local transit
vehicles in the year 2015.

Life Sciences

44. Outpatient Visits According to data from the American Hospi-
tal Association, the rate of change in the number of hospital
outpatient visits, in millions, in the United States each year from
1980 to the present can be approximated by

where t is the year. Source: Hospital Statistics.

a. Using the fact that in 1980 there were 262,951,000 outpatient
visits, find a formula giving the approximate number of outpa-
tient visits as a function of time.

b. Use the answer to part a to forecast the number of outpatient
visits in the year 2015.

f' 1 t 2 5 0.001483t 1 t 2 1980 20.75,

f' 1 t 2 5 4.0674 3 1024t 1 t 2 1970 20.4,
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Area and the Definite Integral
If we know how the rate that oil is leaking from a machine varies with
time, how can we estimate the total amount of leakage over a certain
period of time?

7.3
APPLY IT 

We will answer this question in Example 3 using a method introduced in this section.

To calculate the areas of geometric figures such as rectangles, squares, triangles, and
circles, we use specific formulas. In this section we consider the problem of finding the area
of a figure or region that is bounded by curves, such as the shaded region in Figure 3.

The brilliant Greek mathematician Archimedes (about 287 B.C.–212 B.C.) is considered
one of the greatest mathematicians of all time. His development of a rigorous method
known as exhaustion to derive results was a forerunner of the ideas of integral calculus.
Archimedes used a method that would later be verified by the theory of integration. His
method involved viewing a geometric figure as a sum of other figures. For example, he
thought of a plane surface area as a figure consisting of infinitely many parallel line seg-
ments. Among the results established by Archimedes’ method was the fact that the area of a
segment of a parabola (shown in color in Figure 3) is equal to the area of a triangle with
the same base and the same height.

Approximation of Area

Consider the region bounded by the y-axis, the x-axis, and the graph of 
shown in Figure 4.

f 1x 2 5 "4 2 x2,

4 /3

Area of parabolic segment

=      (area of triangle WYZ )4_
3

YW

Z

X

FIGURE 3

EXAMPLE  1

x

f(x)

2

2

0

f(x)  =     4 – x2

FIGURE 4

YOUR TURN ANSWERS 

1. 2. 

3. 4. 

5.

6. 2
5 1 3 1 x 2 5/2 2 2 1 3 1 x 2 3/2 1 C

1
4ex4

1 C

1
2 ln 0x2 1 6x 0 1 C2

1

16 14x2 1 8x 2 2
1 C

1 3x4 1 10 2 3/2

18
1 C

14x2 1 8 2 7

7
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(a) Approximate the area of the region using two rectangles. Determine the height of the
rectangle by the value of the function at the left endpoint.

SOLUTION A very rough approximation of the area of this region can be found by
using two rectangles whose heights are determined by the value of the function at the
left endpoints, as in Figure 5. The height of the rectangle on the left is and
the height of the rectangle on the right is The width of each rectangle is 1,
making the total area of the two rectangles

Note that f (x) is a decreasing function, and that we will overestimate the area when we evaluate
the function at the left endpoint to determine the height of the rectangle in that interval.

(b) Repeat part (a) using the value of the function at the right endpoint to determine the
height of the rectangle.

SOLUTION Using the right endpoints, as in Figure 6, the area of the two rectangles is

Note that we underestimate the area of this particular region when we use the right
endpoints.

If the left endpoint gives an answer too big and the right endpoint an answer too
small, it seems reasonable to average the two answers. This produces the method called the
trapezoidal rule, discussed in more detail later in this chapter. In this example, we get

(c) Repeat part (a) using the value of the function at the midpoint of each interval to deter-
mine the height of the rectangle.

SOLUTION In Figure 7, the rectangles are drawn with height determined by the mid-
point of each interval. This method is called the midpoint rule, and gives

(d) We can improve the accuracy of the previous approximations by increasing the number
of rectangles. Repeat part (a) using four rectangles.

SOLUTION Divide the interval from to into four equal parts, each of
width The height of each rectangle is given by the value of f at the left side of the
rectangle, as shown in Figure 8. The area of each rectangle is the width, multiplied
by the height. The total area of the four rectangles is

This approximation looks better, but it is still greater than the actual area.

(e) Repeat part (a) using eight rectangles.

SOLUTION Divide the interval from to into 8 equal parts, each of width
(see Figure 9). The total area of all of these rectangles is
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The process used in Example 1 of approximating the area under a curve by using more
and more rectangles to get a better and better approximation can be generalized. To do this,
divide the interval from to into n equal parts. Each of these n intervals has width

so each rectangle has width and height determined by the function value at the left side
of the rectangle, or the right side, or the midpoint. We could also average the left and right
side values as before. Using a computer or graphing calculator to find approximations to
the area for several values of n gives the results in the following table. 

2 /n

2 2 0
n

5
2
n

 ,

x 5 2x 5 0

2 3.7321 1.7321 2.7321 3.2594
4 3.4957 2.4957 2.9957 3.1839
8 3.3398 2.8398 3.0898 3.1567

10 3.3045 2.9045 3.1045 3.1524
20 3.2285 3.0285 3.1285 3.1454
50 3.1783 3.0983 3.1383 3.1426

100 3.1604 3.1204 3.1404 3.1419
500 3.1455 3.1375 3.1415 3.1416

Approximations to the Area
n Left Sum Right Sum Trapezoidal Midpoint

The numbers in the last four columns of this table represent approximations to the area
under the curve, above the x-axis, and between the lines and As n becomes
larger and larger, all four approximations become better and better, getting closer to the
actual area. In this example, the exact area can be found by a formula from plane geometry.
Write the given function as

then square both sides to get

the equation of a circle centered at the origin with radius 2. The region in Figure 4 is the
quarter of this circle that lies in the first quadrant. The actual area of this region is one-quarter
of the area of the entire circle, or

As the number of rectangles increases without bound, the sum of the areas of these rec-
tangles gets closer and closer to the actual area of the region, This can be written as

(The value of was originally found by a process similar to this.)*p

lim
nl`

 1 sum of areas of n rectangles 2 5 p.

p.

1

4
 p 12 2 2 5 p < 3.1416.

 x2 1 y2 5 4,

 y2 5 4 2 x2

y 5 "4 2 x2,

x 5 2.x 5 0

*The number is the ratio of the circumference of a circle to its diameter. It is an example of an irrational number,
and as such it cannot be expressed as a terminating or repeating decimal. Many approximations have been used for

over the years. A passage in the Bible (1 Kings 7:23) indicates a value of 3. The Egyptians used the value 3.16,
and Archimedes showed that its value must be between and A Hindu writer, Brahmagupta, used 
as its value in the seventh century. The search for the digits of has continued into modern times. Fabrice Bellard,
using a desktop computer, recently computed the value to nearly 2.7 trillion digits.

p

"10223 /71.22 /7
p

p
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Notice in the previous table that for a particular value of n, the midpoint rule gave the best
answer (the one closest to the true value of 3.1416), followed by the trapezoidal rule, fol-
lowed by the left and right sums. In fact, the midpoint rule with gives a value (3.1454)
that is slightly more accurate than the left sum with (3.1455). It is usually the case
that the midpoint rule gives a more accurate answer than either the left or the right sum.

Now we can generalize to get a method of finding the area bounded by the curve
the x-axis, and the vertical lines and as shown in Figure 10. To

approximate this area, we could divide the region under the curve first into 10 rectangles
(Figure 10(a)) and then into 20 rectangles (Figure 10(b)). The sum of the areas of the rec-
tangles gives an approximation to the area under the curve when . In the next section
we will consider the case in which might be negative.

To develop a process that would yield the exact area, begin by dividing the interval
from a to b into n pieces of equal width, using each of these n pieces as the base of a rec-
tangle (see Figure 11). Let be an arbitrary point in the first interval, be an arbitrary
point in the second interval, and so on, up to the nth interval. In the graph of Figure 11, the
symbol is used to represent the width of each of the intervals. Since the length of the
entire interval is each of the n pieces has length

Dx 5
b 2 a

n
 .

b 2 a,
Dx

x2x1

f 1x 2
f 1x 2 $ 0

x 5 b,x 5 ay 5 f 1x 2 ,

n 5 500
n 5 20

p <

x

y
y = f (x)

x1 xnxix3x2

n rectangles of equal width

……

f (xi )

Δx

FIGURE 11

The pink rectangle is an arbitrary rectangle called the ith rectangle. Its area is the product
of its length and width. Since the width of the ith rectangle is and the length of the ith
rectangle is given by the height ,

The total area under the curve is approximated by the sum of the areas of all n of the
rectangles. With sigma notation, the approximation to the total area becomes

The exact area is defined to be the limit of this sum (if the limit exists) as the number of rec-
tangles increases without bound:

Whenever this limit exists, regardless of whether is positive or negative, we will call
it the definite integral of from a to b. It is written as follows.f 1x 2

f 1x 2

Exact area 5 lim
nl`

 a

n

i51

f 1xi 
2Dx.

Area of all n rectangles 5 a

n

i51

f 1xi 
2 . Dx.

Area of the ith rectangle 5 f 1xi 
2 . Dx.

f 1xi 
2

Dx

FOR REVIEW
Recall from Chapter 1 that the
symbol (sigma) indicates “the
sum of.” Here, we use 

to indicate the

sum f
f

where we replace i with 1 in the
first term, 2 in the second term,
and so on, ending with n
replacing i in the last term.

1xn 
2Dx, ) 1f1x3 2Dx 1
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FIGURE 10
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The definite integral can be approximated by

If on the interval the definite integral gives the area under the curve
between and In the midpoint rule, is the midpoint of the ith interval. We
may also let be the left endpoint, the right endpoint, or any other point in the ith interval.

In Example 1, the area bounded by the x-axis, the curve and the lines
and could be written as the definite integral

NOTE Notice that unlike the indefinite integral, which is a set of functions, the definite integral
represents a number. The next section will show how antiderivatives are used in finding the
definite integral and, thus, the area under a curve.

Keep in mind that finding the definite integral of a function can be thought of as a math-
ematical process that gives the sum of an infinite number of individual parts (within certain
limits). The definite integral represents area only if the function involved is nonnegative

at every x-value in the interval There are many other interpretations of
the definite integral, and all of them involve this idea of approximation by appropriate
sums. In the next section we will consider the definite integral when f (x) might be negative.

As indicated in this definition, although the left endpoint of the ith interval has been
used to find the height of the ith rectangle, any number in the ith interval can be used. (A
more general definition is possible in which the rectangles do not necessarily all have the
same width.) The b above the integral sign is called the upper limit of integration, and the
a is the lower limit of integration. This use of the word limit has nothing to do with the
limit of the sum; it refers to the limits, or boundaries, on x.

3a, b 4.1f 1x 2 $ 0 2

3

2

0

"4 2 x2 dx 5 p.

x 5 2x 5 0
y 5 "4 2 x2,

xi

xix 5 b.x 5 a
3a, b 4,f 1x 2 $ 0

a

n

i51

f 1xi 
2Dx.

CHAPTER 7 Integration380

The Definite Integral
If f is defined on the interval the definite integral of f from a to b is given by

provided the limit exists, where and is any value of x in the ith
interval.*

xiDx 5 1b 2 a 2 /n

3

b

a
f 1 x 2  dx 5 lim

nl`
 a

n

i51 
 f 1 xi 2D 

x,

3a, b 4,

*The sum in the definition of the definite integral is an example of a Riemann sum, named for the German mathe-
matician Georg Riemann (1826–1866), who at the age of 20 changed his field of study from theology and the clas-
sics to mathematics. Twenty years later he died of tuberculosis while traveling in Italy in search of a cure. The
concepts of Riemann sum and Riemann integral are still studied in rigorous calculus textbooks.

�   (   ) d

(a)

�   � √4 � x2 � dx
2

0 3.141593074

(b)

FIGURE 12

Some calculators have a built-in function for evaluating the definite integral. For example, the TI-84
Plus uses the fnInt command, found in the MATHmenu, as shown in Figure 12(a). Figure 12(b) shows
the command used for Example 1 and gives the answer 3.141593074, with an error of approximately
0.0000004.

TECHNOLOGY NOTE
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Approximation of Area

Approximate the area of the region under the graph of above the 
x-axis, and between and by using four rectangles of equal width whose
heights are the values of the function at the midpoint of each subinterval.

SOLUTION

We want to find the area of the shaded region in Figure 13. The heights of the four rectan-
gles given by for and 4 are as follows.i 5 1, 2, 3,f 1xi 

2

x 5 4,x 5 0
f 1x 2 5 2x,e4

0  2x dx,

1
2
3
4  f 1 3.5 2 5 7.0 x4 5 3.5

 f 12.5 2 5 5.0 x3 5 2.5
 f 1 1.5 2 5 3.0 x2 5 1.5
 f 10.5 2 5 1.0 x1 5 0.5

Rectangle Heights
i f 1 xi 2xi

EXAMPLE  2

Method 1
Calculating by Hand

Method 2
Graphing Calculator

The width of each rectangle is The sum of the areas of the four rec-
tangles is

Using the formula for the area of a triangle, with b, the length of the base,
equal to 4 and h, the height, equal to 8, gives

the exact value of the area. The approximation equals the exact area in this case because
our use of the midpoints of each subinterval distributed the error evenly above and below
the graph.
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 bh 5
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A graphing calculator can be used to organize the information in this example. For exam-
ple, the seq feature in the LIST OPS menu of the TI-84 Plus calculator can be used to store
the values of i in the list Using the STAT EDIT menu, the entries for can be generated
by entering the formula �.5� L1 as the heading of Similarly, entering the formula for

2*L2, at the top of list will generate the values of in (The entries are
listed automatically when the formula is entered.) Then the sum feature in the LIST MATH
menu can be used to add the values in The resulting screens are shown in Figure 14.L3 .

L3 .f 1xi 
2L3f 1xi 

2 ,
L2 .

xiL1 .
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Method 3
Spreadsheet

The calculations in this example can also be done on a spreadsheet. In Microsoft Excel, for
example, store the values of i in column A. Put the command “=A1�.5” into B1; copying
this formula into the rest of column B gives the values of Similarly, use the formula for

to fill column C. Column D is the product of Column C and Sum column D to
get the answer. For more details, see the Graphing Calculator and Excel Spreadsheet Manual
available with this book.

Dx.f 1xi 
2

xi .

Total Change Suppose the function gives the marginal cost of some
item at a particular x-value. Then gives the rate of change of cost at That
is, a unit change in x (at this point) will produce a change of 24 units in the cost function.
Also, means that each unit of change in x (when ) will produce a change of
29 units in the cost function.

To find the total change in the cost function as x changes from 2 to 3, we could divide
the interval from 2 to 3 into n equal parts, using each part as the base of a rectangle as we
did above. The area of each rectangle would approximate the change in cost at the x-value
that is the left endpoint of the base of the rectangle. Then the sum of the areas of these rec-
tangles would approximate the net total change in cost from to The limit of
this sum as would give the exact total change.

This result produces another application of the definite integral: the area of the region
under the graph of the marginal cost function that is above the x-axis and between

and gives the net total change in the cost as x goes from a to b.x 5 bx 5 a
f 1x 2

nl `
x 5 3.x 5 2

x 5 3f 1 3 2 5 29

x 5 2.f 12 2 5 24
f 1x 2 5 x2 1 20

EXAMPLE  3
APPLY IT 

Total Change in
If gives the rate of change of for x in then the total change in 
as x goes from a to b is given by

lim
nl`

 a  

n

i51
f 1 xi 2D 

x 5 3

b

a
f 1 x 2  dx.

F 1x 23a, b 4,F 1x 2f 1x 2
F 1 x 2

In other words, the total change in a quantity can be found from the function that gives the rate
of change of the quantity, using the same methods used to approximate the area under a curve.

Oil Leakage

Figure 15 shows the rate that oil is leaking from a machine in a large factory (in cubic cen-
timeters per hour) with specific rates over a 12-hour period given in the table. Approximate
the total amount of leakage over a 12-hour shift.

SOLUTION Use approximating rectangles, dividing the interval from 0 to 12 into 12 equal
subdivisions. Each subinterval has width 1. Using the left endpoint of each subinterval and
the table to determine the height of the rectangle, as shown, the approximation becomes

About 187.8 cubic centimeters of oil leak during this time. Mathematically, we could write

where is the function shown in Figure 15.

Recall, velocity is the rate of change in distance from time a to time b. Thus the area
under the velocity function defined by from to gives the distance traveled
in that time period.

t 5 bt 5 av 1 t 2

f 1x 2

3

12

0

f 1x 2  dx < 187.8,

1 1 . 20.0 1 1 . 19.2 1 1 . 16.6 1 1 . 16.4 5 187.8.

1 . 15.2 1 1 . 18.0 1 1 . 18.8 1 1 . 14.1 1 1 . 9.5 1 1 . 9.6 1 1 . 13.1 1 1 . 17.3

FIGURE 15
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Total Distance

A driver traveling on a business trip checks the speedometer each hour. The table shows the
driver’s velocity at several times.

Approximate the total distance traveled during the 3-hour period using the left endpoint
of each interval, then the right endpoint.

EXAMPLE  4

Time (hr) 0 1 2 3
Velocity (mph) 0 52 58 60 

Velocity

SOLUTION Using left endpoints, the total distance is

With right endpoints, we get

Again, left endpoints give a total that is too small, while right endpoints give a total that is
too large. The average, 140 miles, is a better estimate of the total distance traveled.

TRY YOUR TURN 2

Before discussing further applications of the definite integral, we need a more efficient
method for evaluating it. This method will be developed in the next section.

52 . 1 1 58 . 1 1 60 . 1 5 170.

0 . 1 1 52 . 1 1 58 . 1 5 110.

YOUR TURN 2 Repeat
Example 4 for a driver traveling at
the following velocities at various
times.

Time
(hr) 0 0.5 1 1.5 2

Velocity
(mph) 0 50 56 40 48

7.3 EXERCISES
1. Explain the difference between an indefinite integral and a def-

inite integral.

2. Complete the following statement.

, where , and 

is .

3. Let and

a. Find 

b. The sum in part a approximates a definite integral using rec-
tangles. The height of each rectangle is given by the value of
the function at the left endpoint. Write the definite integral
that the sum approximates.

4. Let and

a. Find 

b. The sum in part a approximates a definite integral using rec-
tangles. The height of each rectangle is given by the value of
the function at the left endpoint. Write the definite integral
that the sum approximates.

In Exercises 5–12, approximate the area under the graph of
and above the x-axis using the following methods with

(a) Use left endpoints. (b) Use right endpoints. (c) Aver-
age the answers in parts a and b. (d) Use midpoints.

5. to 

6. to 

7. to 

8. to 

9. to 

10. to 

11. to 

12. to 

13. Consider the region below above the x-axis, and
between and Let be the midpoint of the ith
subinterval.

a. Approximate the area of the region using four rectangles. 

b. Find by using the formula for the area of a
triangle. 

14. Consider the region below , above the x-axis,
and between and .  Let be the midpoint of the
ith subinterval.

xix 5 5x 5 0
f 1x 2 5 5 2 x

e4
0 f 1x 2  dx

xix 5 4.x 5 0
f 1x 2 5 x /2,

x 5 3f 1x 2 5
1

x
from x 5 1

x 5 9f 1x 2 5
2

x
from x 5 1

x 5 4f 1x 2 5 ex 2 1 from x 5 0

x 5 2f 1x 2 5 ex 1 1 from x 5 22

x 5 5f 1x 2 5 x2 from x 5 1

x 5 2f 1x 2 5 2x2 1 4 from x 5 22

x 5 3f 1x 2 5 3x 1 2 from x 5 1

x 5 4f 1x 2 5 2x 1 5 from x 5 2

n 5 4.
f 1x 2

a

4

i51

f 1xi 
2Dx.

Dx 5 1 /2.
x4 5 2,x3 5 3 /2,x2 5 1,x1 5 1 /2,f 1x 2 5 1 /x,

a

4

i51

f 1xi 
2Dx.

Dx 5 2.
x4 5 6,x3 5 4,x2 5 2,x1 5 0,f 1x 2 5 2x 1 5,

xiDx 53

4

0

1x2 1 3 2  dx 5 lim
nl`



a. Approximate the area of the region using five rectangles. 

b. Find by using the formula for the area of a
triangle. 

15. Find for each graph of 

a. b. 

16. Find for each graph of , where f (x) con-
sists of line segments and circular arcs.

a. b. 

Find the exact value of each integral using formulas from
geometry.

17. 18.

19. 20.

21. In this exercise, we investigate the value of using larger
and larger values of n in the definition of the definite integral.

a. First let so Fill a list on your calculator
with values of as x goes from 0.1 to 1. (On a TI-84 Plus,
use the command seq(X^2,X,.1,1,.1)lL1.)

b. Sum the values in the list formed in part a, and multiply
by 0.1, to estimate with (On a TI-84 Plus,
use the command .1*sum(L1).) 

c. Repeat parts a and b with 

d. Repeat parts a and b with 

e. Based on your answers to parts b through d, what do you
estimate the value of to be? 

22. Repeat Exercise 21 for 

23. The booklet All About Lawns published by Ortho Books gives
the following instructions for measuring the area of an irregu-
larly shaped region. (See figure in the next column.) Source:
All About Lawns.

Irregular Shapes
(within 5% accuracy)
Measure a long axis of the area. Every 10 feet along the
length line, measure the width at right angles to the length line.
Total widths and multiply by 10.

How does this method relate to the discussion in this section?

 A 5 1320 square feet
 A 5 132 r 3 10 r
 A 5 140 r 1 60 r 1 32 r 2 3 10

 Area 5 1A1 A2 1 B1 B2 1 C1 C2 etc. 2 3 10

1L 2

e1
0 x3 dx.

e1
0 x2 dx

n 5 500.

n 5 100.

n 5 10.e1
0 x2 dx

x2
Dx 5 0.1.n 5 10,

e1
0 

 
x2 dx

3

3

1

1 5 1 x 2  dx3

5

2

1 1 1 2x 2  dx

3

3

23

"9 2 x2 dx3

0

24

"16 2 x2 dx

1

1

0 x

y

1

1

0 x

y

y 5 f 1x 2e6
0 f 1x 2  dx

10

1

x

y

10

1

x

y

y 5 f 1x 2 .e4
0 f 1x 2  dx

e5
0 1 5 2 x 2dx
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APPLICATIONS
In Exercises 24–28, estimate the area under each curve by sum-
ming the area of rectangles. Use the left endpoints, then the
right endpoints, then give the average of those answers.

Business and Economics

24. Electricity Consumption The following graph shows the rate
of use of electrical energy (in millions of kilowatts) in a certain
city on a very hot day. Estimate the total usage of electricity on that
day. Let the width of each rectangle be 2 hours. 

Life Sciences

26. Oxygen Inhalation The graph on the next page shows the rate
of inhalation of oxygen (in liters per minute) by a person riding a
bicycle very rapidly for 10 minutes. Estimate the total volume of
oxygen inhaled in the first 20 minutes after the beginning of the
ride. Use rectangles with widths of 1 minute.
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25. Wind Energy Consumption The following graph shows the
U.S. wind energy consumption (trillion BTUs) for various
years. Estimate the total consumption for the 12-year period
from 1997 to 2009 using rectangles of width 3 years. Source:
Annual Energy Review.
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27. Foot-and-Mouth Epidemic In 2001, the United Kingdom suf-
fered an epidemic of foot-and-mouth disease. The graph below
shows the reported number of cattle (red) and pigs (blue) that
were culled each month from mid-February through mid-October
in an effort to stop the spread of the disease. Source: Department
of Environment, Food and Rural Affairs, United Kingdom.

Physical  Sciences

Distance The next two graphs are from the Road & Track web-
site. The curves show the velocity at t seconds after the car accel-
erates from a dead stop. To find the total distance traveled by the
car in reaching 130 mph, we must estimate the definite integral

where T represents the number of seconds it takes for the car to
reach 130 mph.

Use the graphs to estimate this distance by adding the areas of
rectangles and using the midpoint rule. To adjust your answer to
miles per hour, divide by 3600 (the number of seconds in an hour).
You then have the number of miles that the car traveled in reach-
ing 130 mph. Finally, multiply by 5280 ft per mile to convert the
answer to feet. Source: Road & Track.

29. Estimate the distance traveled by the Lamborghini Gallardo
LP560-4 using the graph below. Use rectangles with widths of
3 seconds, except for the last rectangle, which should have a
width of 2 seconds. The circle marks the point where the car has
gone a quarter mile. Does this seem correct?
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a. Estimate the total number of cattle that were culled from
mid-February through mid-October and compare this
with 581,801, the actual number of cattle that were
culled. Use rectangles that are one month in width, start-
ing with mid-February. 

b. Estimate the total number of pigs that were culled from mid-
February through mid-October and compare this with 146,145,
the actual number of pigs that were culled. Use rectangles
that are one month in width starting with mid-February.

Social  Sciences

28. Automobile Accidents The graph shows the number of fatal auto-
mobile accidents in California for various years. Estimate the total
number of accidents in the 8-year period from 2000 to 2008 using
rectangles of width 2 years. Source: California Highway Patrol.
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30. Estimate the distance traveled by the Alfa Romeo 8C Compe-
tizione using the graph below. Use rectangles with widths of 
4 seconds, except for the last rectangle, which should have a width
of 3.5 seconds. The circle marks the point where the car has gone
a quarter mile. Does this seem correct?
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Heat Gain The following graphs show the typical heat gain, in
BTUs per hour per square foot, for windows (one with plain glass
and one that is triple glazed) in Pittsburgh in June, one facing
east and one facing south. The horizontal axis gives the time of
the day. Estimate the total heat gain per square foot by summing
the areas of rectangles. Use rectangles with widths of 2 hours,
and let the function value at the midpoint of the subinterval give
the height of the rectangle. Source: Sustainable by Design.

Zero to 30 mph 2.0

40 mph 2.9

50 mph 4.1

60 mph 5.3

70 mph 6.9

80 mph 8.7

90 mph 10.7 

100 mph 13.2 

110 mph 16.1 

120 mph 19.3 

130 mph 23.4

Acceleration Seconds

Zero to 30 mph 2.4

40 mph 3.5

50 mph 5.1

60 mph 6.9

70 mph 8.9

80 mph 11.2

90 mph 14.9 

100 mph 19.2 

110 mph 24.4

Acceleration Seconds

Distance When data are given in tabular form, you may need to
vary the size of the interval to calculate the area under the
curve. The next two exercises include data from Car and Driver
magazine. To estimate the total distance traveled by the car (in
feet) during the time it took to reach its maximum velocity, esti-
mate the area under the velocity versus time graph, as in the
previous two exercises. Use the left endpoint for each time
interval (the velocity at the beginning of that interval) and then
the right endpoint (the velocity at the end of the interval).
Finally, average the two answers together. Calculating and
adding up the areas of the rectangles is most easily done on a
spreadsheet or graphing calculator. As in the previous two exer-
cises, you will need to multiply by a conversion factor of
5280/3600 � 22/15, since the velocities are given in miles per
hour, but the time is in seconds, and we want the answer in feet.
Source: Car and Driver.

31. Estimate the distance traveled by the Mercedes-Benz S550,
using the table below. 

32. Estimate the distance traveled by the Chevrolet Malibu Maxx SS,
using the table below. 
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33. a. Estimate the total heat gain per square foot for a plain glass
window facing east. 

b. Estimate the total heat gain per square foot for a triple glazed
window facing east. 

34. a. Estimate the total heat gain per square foot for a plain glass
window facing south. 

b. Estimate the total heat gain per square foot for a triple glazed
window facing south. 
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35. Automobile Velocity Two cars start from rest at a traffic light
and accelerate for several minutes. The graph shows their veloci-
ties (in feet per second) as a function of time (in seconds). CarAis
the one that initially has greater velocity. Source: Stephen Monk. 

a. Use the information in the table and left endpoints to esti-
mate the distance that Johnson ran in miles. You will first
need to calculate for each interval. At the end, you will
need to divide by 3600 (the number of seconds in an hour),
since the speed is in miles per hour. 

b. Repeat part a, using right endpoints. 

c. Wait a minute; we know that the distance Johnson ran is 100 m.
Divide this by 1609, the number of meters in a mile, to find
how far Johnson ran in miles. Is your answer from part a or part
b closer to the true answer? Briefly explain why you think this
answer should be more accurate. 

39. Traffic The following graph shows the number of vehicles per
hour crossing the Tappan Zee Bridge, which spans the Hudson
River north of New York City. The graph shows the number of
vehicles traveling eastbound (into the city) and westbound (out
of the city) as a function of time. Source: The New York Times.
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a. How far has car A traveled after 2 seconds? (Hint: Use for-
mulas from geometry.) 

b. When is car A farthest ahead of car B? 

c. Estimate the farthest that car A gets ahead of car B. For car A,
use formulas from geometry. For car B, use and the
value of the function at the midpoint of each interval. 

d. Give a rough estimate of when car B catches up with car A.

36. Distance Musk the friendly pit bull has escaped again! Here is
her velocity during the first 4 seconds of her romp.

n 5 4

Give two estimates for the total distance Musk traveled during
her 4-second trip, one using the left endpoint of each interval
and one using the right endpoint.

0 0

1.84 12.9

3.80 23.8

6.38 26.3

7.23 26.3

8.96 26.0

9.83 25.7

Time (sec) Speed (mph)

37. Distance The speed of a particle in a test laboratory was noted
every second for 3 seconds. The results are shown in the fol-
lowing table. Use the left endpoints and then the right end-
points to estimate the total distance the particle moved in the
first three seconds. 

38. Running In 1987, Canadian Ben Johnson set a world record in
the 100-m sprint. (The record was later taken away when he
was found to have used an anabolic steroid to enhance his

performance.) His speed at various times in the race is given in
the following table*. Source: Information Graphics.

t (sec)

v (ft /sec)

t (sec)

v (ft /sec)

*The world record of 9.58 seconds is currently held by Usain Bolt of Jamaica.
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a. Using midpoints on intervals of one hour, estimate the total
number of vehicles that cross the bridge going eastbound
each day. 

b. Repeat the instructions for part a for vehicles going west-
bound. 

c. Discuss whether the answers to parts a and b should be
equal, and try to explain any discrepancies.

YOUR TURN ANSWERS 

1. 48
2. Left endpoint estimate is 73 miles, right endpoint estimate is

97 miles, and average is 85 miles.

The Fundamental Theorem of Calculus
If we know how the rate of consumption of natural gas varies over time,
how can we compute the total amount of natural gas used?

7.4
APPLY IT 

We will answer this question in Example 7.

In the first section of this chapter, you learned about antiderivatives. In the previous
section, you learned about the definite integral. In this section, we connect these two sepa-
rate topics and present one of the most powerful theorems of calculus. 

We have seen that, if ,

gives the area between the graph of and the x-axis, from to The definite
integral was defined and evaluated in the previous section using the limit of a sum. In that
section, we also saw that if gives the rate of change of the definite integral

gives the total change of as x changes from a to b. If gives the rate
of change of then is an antiderivative of Writing the total change in

from to as shows the connection between antiderivatives
and definite integrals. This relationship is called the Fundamental Theorem of Calculus.

F 1b 2 2 F 1a 2x 5 bx 5 aF 1x 2
f 1x 2 .F 1x 2F 1x 2 ,

f 1x 2F 1x 2eb
a  f 1x 2  dx

F 1x 2 ,f 1x 2

x 5 b.x 5 af 1x 2

3

b

a

f 1x 2  dx

f 1x 2 $ 0

Fundamental Theorem of Calculus
Let f be continuous on the interval and let F be any antiderivative of f. Then

3

b

a
f 1 x 2  dx 5 F 1 b 2 2 F 1 a 2 5 F 1 x 2 `

b

a
.

3a, b 4,

The symbol is used to represent It is important to note that the Fun-
damental Theorem does not require The condition is necessary only
when using the Fundamental Theorem to find area. Also, note that the Fundamental Theorem
does not define the definite integral; it just provides a method for evaluating it.

Fundamental Theorem of Calculus

First find and then find 

SOLUTION By the power rule given earlier, the indefinite integral is

34t3 dt 5 t4 1 C.

e2
1  
4t3 dt.e4t3 dt

f 1x 2 . 0f 1x 2 . 0.
F 1b 2 2 F 1a 2 .F 1x 2 1 ba

EXAMPLE  1
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By the Fundamental Theorem, the value of the definite integral is found by evalu-
ating with no constant C required.

TRY YOUR TURN 1

Example 1 illustrates the difference between the definite integral and the indefinite inte-
gral. A definite integral is a real number; an indefinite integral is a family of functions in
which all the functions are antiderivatives of a function f.

NOTE No constant C is needed, as it is for the indefinite integral, because even if C were
added to an antiderivative F, it would be eliminated in the final answer:

In other words, any antiderivative will give the same answer, so for simplicity, we choose the
one with 

To see why the Fundamental Theorem of Calculus is true for when f is con-
tinuous, look at Figure 16. Define the function as the area between the x-axis and the
graph of from a to x. We first show that A is an antiderivative of f ; that is

To do this, let h be a small positive number. Then is the shaded area
in Figure 16. This area can be approximated with a rectangle having width h and height

The area of the rectangle is and

Dividing both sides by h gives

This approximation improves as h gets smaller and smaller. Taking the limit on the left as h
approaches 0 gives an exact result.

This limit is simply so

This result means that A is an antiderivative of f, as we set out to show.
is the area under the curve from a to b, and so the area under the curve

can be written as From the previous section, we know that the area under
the curve is also given by Putting these two results together gives

where A is an antiderivative of f. From the note after Example 1, we know that any anti-
derivative will give the same answer, which proves the Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus certainly deserves its name, which sets it apart
as the most important theorem of calculus. It is the key connection between differential

 5 A 1x 2 `
b

a
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f 1x 2  dx 5 A 1b 2 2 A 1a 2

eb
a  f 1x 2  dx.

A 1b 2 2 A 1a 2 .
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hl0
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t4 1 21  ,
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YOUR TURN 1 Find .3
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a x b x + h 0

f(x)

y = f(x)

Area is
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FIGURE 16



calculus and integral calculus, which originally were developed separately without knowledge
of this connection between them.

The variable used in the integrand does not matter; each of the following definite inte-
grals represents the number 

Key properties of definite integrals are listed below. Some of them are just restatements
of properties from Section 1.

3

b

a

f 1x 2  dx 5 3

b

a

f 1 t 2  dt 5 3

b

a

f 1 u 2  du

F 1b 2 2 F 1a 2 .

Properties of Definite Integrals
If all indicated definite integrals exist,

1.

2. for any real constant k

(constant multiple of a function);

3.

(sum or difference of functions);

4. for any real number c;

5. 3

b

a
f 1 x 2  dx 5 23

a

b
f 1 x 2  dx.

3

b

a
f 1 x 2  dx 5 3

c

a
f 1 x 2  dx 1 3

b

c
f 1 x 2  dx

3

b

a

[ f 1 x 2 6 g 1 x 2 \ dx 5 3

b

a
f 1 x 2  dx 6 3

b

a
g 1 x 2  dx

3

b

a
k ? f 1 x 2  dx 5 k ? 3

b

a
f 1 x 2  dx

3

a

a
f 1 x 2  dx 5 0;

For since the distance from a to a is 0, the first property says that the “area”
under the graph of f bounded by and is 0. Also, since represents
the blue region in Figure 17 and represents the pink region,

as stated in the fourth property. While the figure shows the property is true for
any value of c where both and are defined.

An algebraic proof is given here for the third property; proofs of the other properties are
left for the exercises. If and are antiderivatives of and respectively,
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Fundamental Theorem of Calculus

Find 

SOLUTION Use the properties above and the Fundamental Theorem, along with properties
from Section 1.

TRY YOUR TURN 2

Fundamental Theorem of Calculus

TRY YOUR TURN 3 

Substitution

Evaluate 

SOLUTION

Use substitution. Let so that With a definite integral, the lim-
its should be changed, too. The new limits on u are found as follows.

Then

Multiply by .

Substitute and change limits.

Use the power rule.
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If x 5 5, then u 5 25 2 52 5 0.

du 5 22x dx.u 5 25 2 x2,

e5
0  
x"25 2 x2 dx.

 5 ln 2 2 ln 1 < 0.6931 2 0 5 0.6931

 3

2

1

dy

y
5 ln 0 y 0 `

2

1

5 ln 0 2 0 2 ln 0 1 0

 5 234 2
63

2
1 15 5

435

2

 5 2 1 125 2 8 2 2
3

2
 125 2 4 2 1 5 1 3 2

 5 2 1 53 2 23 2 2
3

2
 1 52 2 22 2 1 5 1 5 2 2 2

 5 2x3 `
5

2

2
3

2
 x2 `

5

2

1 5x `
5

2

 3

5

2

1 6x2 2 3x 1 5 2  dx 5 63

5

2

x2 dx 2 33

5

2

x dx 1 53

5

2

 dx

e5
2 1 6x2 2 3x 1 5 2  dx.

YOUR TURN 2

Find .3

5

3

12x3 2 3x 1 4 2  dx

YOUR TURN 3

Find .3

3

1

2
y

 dy

Method 1
Changing the Limits

EXAMPLE  4

EXAMPLE  3

EXAMPLE  2



CHAPTER 7 Integration392

An alternative method that some people prefer is to evaluate the antiderivative first and then
calculate the definite integral. To evaluate the antiderivative in this example, ignore the lim-
its on the original integral and use the substitution , so that Then

We will ignore the constant C because it doesn’t affect the answer, as we mentioned in the
Note following Example 1.

Then, using the Fundamental Theorem of Calculus, we have

TRY YOUR TURN 4

Don’t confuse these two methods. In Method 1, we never return to the original
variable or the original limits of integration. In Method 2, it is essential to return
to the original variable and to not change the limits. When using Method 1, we
recommend labeling the limits with the appropriate variable to avoid confusion,
so the substitution in Example 4 becomes

The Fundamental Theorem of Calculus is a powerful tool, but it has a limitation. The
problem is that not every function has an antiderivative in terms of the functions and oper-
ations you have seen so far. One example of an integral that cannot be evaluated by the
Fundamental Theorem of Calculus for this reason is

yet this integral is crucial in probability and statistics. Such integrals may be evaluated by
numerical integration, which is covered in the last section of this chapter. Fortunately for
you, all the integrals in this section can be antidifferentiated using the techniques presented
in the first two sections of this chapter.

Area In the previous section we saw that, if in the definite integral
gives the area below the graph of the function above the x-axis, and

between the lines and x 5 b.x 5 a
y 5 f 1x 2 ,eb

af 1x 2  dx
3a, b 4,f 1x 2 $ 0

3

b

a

e2x2/2 dx,

3

x5 5

x5 0

x"25 2 x2 dx 5 2  

1

2
 3

u5 0

u5 25

"u du.

5
125

3
.

5 0 2 c2 
125 2 3/2

3
d

3

5

0

x"25 2 x2 dx 5 2 
125 2 x2 2 3/2

3
 `

5

0

5 2 
125 2 x2 2 3/2

3
1 C.

5 2 
u3/2

3
1 C

5 2 
1

2
 
u3/2

3 /2
1 C

5 2 
1

23
u1/2 du

5 2 
1

23
"u du

 3x"25 2 x2 dx 5 2 
1

2
 3  "25 2 x2 122x dx 2

du 5 22x dx.u 5 25 2 x2

YOUR TURN 4 Evaluate

3

4

0

2x"16 2 x2
 dx.

Method 2
Evaluating the Antiderivative

CAUTION



7.4 The Fundamental Theorem of Calculus 393

To see how to work around the requirement that look at the graph of
in Figure 18. The area bounded by the graph of f, the x-axis, and the verti-

cal lines and lies below the x-axis. Using the Fundamental Theorem gives

The result is a negative number because is negative for values of x in the interval
Since is always positive, if the product is negative, so

is negative. Since area is nonnegative, the required area is given by or
Using a definite integral, the area could be written as

Area

Find the area of the region between the x-axis and the graph of from
to 

SOLUTION  The region is shown in Figure 19. Since the region lies below the x-axis, the
area is given by

By the Fundamental Theorem,

The required area is 

Area

Find the area between the x-axis and the graph of from to 

SOLUTION Figure 20 shows the required region. Part of the region is below the x-axis.
The definite integral over that interval will have a negative value. To find the area, integrate
the negative and positive portions separately and take the absolute value of the first result
before combining the two results to get the total area. Start by finding the point where the
graph crosses the x-axis. This is done by solving the equation

The solutions of this equation are 2 and The only solution in the interval is 2.
The total area of the region in Figure 19 is

TRY YOUR TURN 5

 5 16.

 5 2 8
3

2 8 2 1 a
64

3
2 16b 2 a

8

3
2 8b

 232

0

1x2 2 4 2  dx 2 1 3

4

2

1x2 2 4 2  dx 5 2 a1

3
 x3 2 4xb `

2

0

2 1 a
1

3
x3 2 4xb `

4

2

30, 4 422.

x2 2 4 5 0.

x 5 4.x 5 0f 1x 2 5 x2 2 4

0210 /3 0 5 10 /3.

3

3

1

1x2 2 3x 2  dx 5 a
x3

3
2

3x2

2
b `

3

1

5 a
27

3
2

27

2
b 2 a

1

3
2

3

2
b 5 2 

10

3
 .

2
3

3

1

1x2 2 3x 2  dx 2 .
x 5 3.x 5 1

f 1x 2 5 x2 2 3x

2
3

2

0

1x2 2 4 2  dx 2 5 22 

16

3
2 5 16

3
 .

16 /3.
0216 /3 0e2

0f 1x 2  dx
f 1x 2 . Dxf 1x 2 , 0Dx30, 2 4.

f 1x 2

 5 a
8

3
2 8b 2 10 2 0 2 5 2 

16

3
 .

 3

2

0

1x2 2 4 2  dx 5 a
x3

3
2 4xb `

2

0

x 5 2x 5 0
f 1x 2 5 x2 2 4

f 1x 2 $ 0,

2–2 4–4 0

4

2

–2

–4

f (x)

x

f(x)  =  x2 –  4

FIGURE 18

0

–1
321

–2

f (x)

x

f(x)  =  x2 –  3x

FIGURE 19

EXAMPLE  5

EXAMPLE  6

YOUR TURN 5 Repeat
Example 6 for the function 

from x � 0 
to x � 6. 
f 1x 2 5 x2 2 9

0

–4

4

2 4

8

12
f (x)

x

f(x)  =  x2 –  4

FIGURE 20
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Incorrectly using one integral over the entire interval to find the area in Example 6
would have given

which is not the correct area. This definite integral does not represent any area but is just a
real number.

For instance, if in Example 6 represents the annual rate of profit of a company,
then represents the total profit for the company over a 4-year period. The integral
between 0 and 2 is the negative sign indicates a loss for the first two years. The inte-
gral between 2 and 4 is indicating a profit. The overall profit is 
although the total shaded area is 32 /3 1 0216 /3 0 5 16.

32 /3 2 16 /3 5 16 /3,32 /3,
216 /3;

16 /3
f 1x 2

3

4

0

1x2 2 4 2  dx 5 a
x3

3
2 4xb `

4

0

5 a
64

3
2 16b 2 0 5

16

3
,

Finding Area
In summary, to find the area bounded by and the x-axis, use the
following steps.

x 5 b,x 5 a,f 1x 2 ,

1. Sketch a graph.

2. Find any x-intercepts of in These divide the total region into subregions.

3. The definite integral will be positive for subregions above the x-axis and negative
for subregions below the x-axis. Use separate integrals to find the (positive) areas of
the subregions.

4. The total area is the sum of the areas of all of the subregions.

3a, b 4.f 1x 2

In the last section, we saw that the area under a rate of change function from
to gives the total value of on Now we can use the definite integral

to solve these problems.

Natural Gas Consumption

The yearly rate of consumption of natural gas (in trillions of cubic feet) for a certain city is

where t is time in years and corresponds to 2000. At this consumption rate, what was
the total amount the city used in the 10-year period of 2000 to 2010?

SOLUTION To find the consumption over the 10-year period from 2000 to 2010, use the
definite integral.

Therefore, a total of about 60.5 trillion of natural gas was used from 2000 to 2010 at this
consumption rate.

ft3

 < 250 1 100 1 1.10517 2 < 60.5

 5 1 50 1 100e0.1 2 2 10 1 100 2

 3

10

0

1 t 1 e0.01t 2  dt 5 a
t2

2
1

e0.01t

0.01
b `

10

0

t 5 0

C r 1 t 2 5 t 1 e0.01t,

3a, b 4.f 1x 2x 5 bx 5 a
f r 1x 2

APPLY IT 

EXAMPLE  7
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7.4 EXERCISES
Evaluate each definite integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–40, use the definite integral to find the area
between the x-axis and f(x) over the indicated interval. Check
first to see if the graph crosses the x-axis in the given interval.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. f 1x 2 5 1 2
1

x
 ; 3e21, e 4

f 1x 2 5
1

x
2

1

e
 ; 31, e2 4

f 1x 2 5 1 2 e2x; 321, 2 4
f 1x 2 5 ex 2 1; 321, 2 4
f 1x 2 5 x3 2 2x; 322, 4 4
f 1x 2 5 x3; 321, 3 4
f 1x 2 5 9 2 x2; 30, 6 4
f 1x 2 5 2 2 2x2; 30, 5 4
f 1x 2 5 4x 2 32; 35, 10 4
f 1x 2 5 2x 2 14; 36, 10 4

3

1

0

 
e2z

"1 1 e2z
 dz3

1

0

 
e2t

1 3 1 e2t 2 2
 dt

3

2

1

 
3

x 1 1 1 ln x 2
 dx3

8

0

x1/3
 "x4/3 1 9  dx

3

3

1

 
"ln x

x
 dx3

2

1

 
ln x

x
 dx

3

8

1

 
3 2 y1/3

y2/3
 dy3

64

1

 
"z 2 2

"3 z
 dz

3

3

0

m2 14m3 1 2 2 3 dm3

0

21

y 12y2 2 3 2 5 dy

3

1

0.5

1p3 2 e4p 2  dp3

2

1
ae4u 2

1

1 u 1 1 2 2
b du

3

21

22
a

22

t
1 3e0.3tb dt3

22

23
a2e20.1y 1

3

y
b dy

3

3

2

1 3x23 2 5x24 2   dx3

5

1

1 6n22 2 n23 2  dn

3

4

1

 
23

12p 1 1 2 2
 dp3

6

4

 
2

12x 2 7 2 2
 dx

3

9

4

14"r 2 3r"r 2  dr3

4

1

1 5y"y 1 3"y 2  dy

3

4

0

2 1 3x3/2 1 x1/2 2   dx3

4

0

2 1 t1/2 2 t 2  dt

3

9

3

"2r 2 2 dr3

2

0

3"4u 1 1 du

3

3

22

12x2 2 3x 1 5 2   dx3

2

0

1 5x2 2 4x 1 2 2   dx

3

2

22

14z 1 3 2  dz3

2

21

1 5t 2 3 2  dt

3

1

24

"2  dx3

4

22

123 2  dp

Find the area of each shaded region.

41. 42.

0

–4

42

2

4

–2

y

x

y = 4 – x2

43. 44.

45. Assume is continuous for as shown in the
figure. Write an equation relating the three quantities

3

b

a

f 1x 2  dx,  3
c

a

f 1x 2  dx,  3
c

b

f 1x 2  dx.

g # x # cf 1x 2

0 42–1

3

1

y

x

f (x) = x2 – 2x

0 1 32

2

–2

4

y

x

y = ex – e

1 2 3

–4

–2

0

y

x

y = ln x
x

el
e

y

x

y = f(x)

ag b

d c

46. Is the equation you wrote for Exercise 45 still true

a. if b is replaced by d?

b. if b is replaced by g?



Use the Fundamental Theorem to show that the following are
true.

48.

49.

50.

51. Use Exercise 49 to find given

52. You are given and 
Use this information to find

a. b.

53. Let and define with 

a. Find a formula for 

b. Verify that The fact that

is true for all continuous functions g is an alternative ver-
sion of the Fundamental Theorem of Calculus.

c. Let us verify the result in part b for a function whose anti-
derivative cannot be found. Let and let
Use the integration feature on a graphing calculator to find

for and Then use the definition of
the derivative with to approximate and
compare it with

54. Consider the function 

a. Use the Fundamental Theorem of Calculus to evaluate

b. Use symmetry to describe how the integral from part a
could be evaluated without using substitution or finding an
antiderivative.

3

5

25

f 1x 2  dx .

f 1x 2 5 x 1x2 1 3 2 7.

g 1 1 2 .
f r 1 1 2 ,h 5 0.01

x 5 1.01.x 5 1f 1x 2

c 5 0.g 1 t 2 5 et2

dt 5 g 1x 2
d

 dx
 3

x

c

g 1 t 2

f r 1x 2 5 g 1x 2 .

f 1x 2 .

c 5 1.f 1x 2 5 3

x

c

g 1 t 2  dtg 1 t 2 5 t4

3

2

1

ex2

 dx.3

1

21

ex2

 dx;

e2
0ex2

dx 5 16.45263.e1
0ex2

 dx 5 1.46265

f 1x 2 5 c2x 1 3

2 

x

4
2 3

if x # 0

if x . 0.

e4
21f 1x 2  dx,

3

b

a

f 1x 2  dx 5 23

a

b

f 1x 2  dx

3

b

a

f 1x 2  dx 5 3

c

a

f 1x 2  dx 1 3

b

c

f 1x 2  dx

3

b

a

kf 1x 2  dx 5 k3

b

a

f 1x 2  dx
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APPLICATIONS
Business and Economics

55. Profit Karla Harby Communications, a small company of sci-
ence writers, found that its rate of profit (in thousands of dollars)
after t years of operation is given by

a. Find the total profit in the first three years.

b. Find the profit in the fourth year of operation.

c. What is happening to the annual profit over the long run?

56. Worker Efficiency A worker new to a job will improve his effi-
ciency with time so that it takes him fewer hours to produce an
item with each day on the job, up to a certain point. Suppose the
rate of change of the number of hours it takes a worker in a cer-
tain factory to produce the xth item is given by

a. What is the total number of hours required to produce the first
5 items?

b. What is the total number of hours required to produce the first
10 items?

Life Sciences

57. Pollution Pollution from a factory is entering a lake. The rate of
concentration of the pollutant at time t is given by

where t is the number of years since the factory started introduc-
ing pollutants into the lake. Ecologists estimate that the lake can
accept a total level of pollution of 4850 units before all the fish
life in the lake ends. Can the factory operate for 4 years without
killing all the fish in the lake?

58. Spread of an Oil Leak An oil tanker is leaking oil at the rate
given (in barrels per hour) by

where t is the time (in hours) after the tanker hits a hidden rock
(when ).

a. Find the total number of barrels that the ship will leak on the
first day.

b. Find the total number of barrels that the ship will leak on the
second day.

c. What is happening over the long run to the amount of oil
leaked per day?

59. Tree Growth After long study, tree scientists conclude that a
eucalyptus tree will grow at the rate of per
year, where t is time (in years).

a. Find the number of feet that the tree will grow in the second year.

b. Find the number of feet the tree will grow in the third year.

60. Growth of a Substance The rate at which a substance grows is
given by

where x is the time (in days). What is the total accumulated
growth during the first 3.5 days?

R r 1x 2 5 150e0.2x,

0.6 1 4 / 1 t 1 1 2 3 ft

t 5 0

L r 1 t 2 5
80 ln 1 t 1 1 2

t 1 1
,

P r 1 t 2 5 140t5/2,

H r 1x 2 5 20 2 2x.

P r 1 t 2 5 1 3t 1 3 2 1 t2 1 2t 1 2 2 1/3.

y

x2

3

5 16

8

0

y = f(x)

47. The graph of , shown here, consists of two straight line seg-
ments and two quarter circles. Find the value of e16

0  f 1x 2  dx.
f 1x 2
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61. Drug Reaction For a certain drug, the rate of reaction in
appropriate units is given by

where t is time (in hours) after the drug is administered.
Find the total reaction to the drug over the following time
periods.

a. From to b. From to 

62. Human Mortality If is the instantaneous death rate for
members of a population at time x, then the number of individ-
uals who survive to age T is given by

In 1825 the biologist Benjamin Gompertz proposed that
. Find a formula for Source: Philosophical

Transactions of the Royal Society of London.

63. Cell Division Let the expected number of cells in a culture that
have an x percent probability of undergoing cell division dur-
ing the next hour be denoted by .

a. Explain why approximates the total number of
cells with a 20% to 30% chance of dividing during the next
hour.

b. Give an integral representing the number of cells that
have less than a 60% chance of dividing during the next
hour. 

c. Let give the expected number of cells (in
millions) with x percent probability of dividing during the
next hour. Find the number of cells with a 5 to 10% chance
of dividing.

64. Bacterial Growth A population of E. coli bacteria will grow at
a rate given by

where w is the weight (in milligrams) after t hours. Find the
change in weight of the population from to .

65. Blood Flow In an example from an earlier chapter, the velocity
v of the blood in a blood vessel was given as

where R is the (constant) radius of the blood vessel, r is the dis-
tance of the flowing blood from the center of the blood vessel,
and k is a constant. Total blood flow (in millimeters per minute)
is given by

a. Find the general formula for Q in terms of R by evaluating
the definite integral given above. 

b. Evaluate .

66. Rams’ Horns The average annual increment in the horn length
(in centimeters) of bighorn rams born since 1986 can be
approximated by

where x is the ram’s age (in years) for x between 3 and 9. Inte-
grate to find the total increase in the length of a ram’s horn during
this time. Source: Journal of Wildlife Management.

67. Beagles The daily energy requirements of female beagles who
are at least 1 year old change with respect to time according to
the function

where is the daily energy requirement (in ),
where W is the dog’s weight (in kilograms) for a beagle that is
t years old. Source: Journal of Nutrition.

a. Assuming 365 days in a year, show that the energy require-
ment for a female beagle that is t days old is given by

b. Using the formula from part a, determine the total energy
requirements (in ) for a female beagle between her
first and third birthday.

68. Sediment The density of sediment (in grams per cubic cen-
timeter) at the bottom of Lake Coeur d’Alene, Idaho, is given
by

where x is the depth (in centimeters) and is the density at the
surface. The total mass of a square-centimeter column of sedi-
ment above a depth of h cm is given by

If find the total mass above a depth of
100 cm. Source: Mathematics Teacher.

Social  Sciences

69. Age Distribution The U.S. Census Bureau gives an age dis-
tribution that is approximately modeled (in millions) by the
function

where x varies from 0 to 9 decades. The population of a given
age group can be found by integrating this function over the
interval for that age group. Source: Ralph DeMarr and the
U.S. Census Bureau.

a. Find the integral of f(x) over the interval [0, 9]. What does
this integral represent? 

b. Baby boomers are those born between 1945 and 1965, that is,
those in the range of 4.5 to 6.5 decades in 2010. Estimate the
number of baby boomers.

f 1x 2 5 40.2 1 3.50x 2 0.897x2

p0 5 0.85 g per cm3,

3

h

0

p 1x 2  dx.

p0

p 1x 2 5 p0 e0.0133x,

kJ/W0.67

E 1 t 2 5 1642t20.1321.

kJ/W0.67E 1 t 2

E 1 t 2 5 753t20.1321,

y 5 0.1762x2 2 3.986x 1 22.68,

Q 10.4 2

Q 1R 2 5 3

R

0

2pvr dr.

v 5 k 1R2 2 r2 2 ,

t 5 3t 5 0

w r 1 t 2 5 1 3t 1 2 2 1/3,

n 1x 2 5 "5x 1 1

e30
20  

n 1x 2  dx

n 1x 2

F 1T 2 .f 1x 2 5 kbx

F 1T 2 5 3

T

0

f 1x 2  dx.

f 1x 2
t 5 24t 5 12t 5 12t 5 1

R r 1 t 2 5
5

t 1 1
1

2

"t 1 1
,
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70. Income Distribution Based on data from the U.S. Census
Bureau, an approximate family income distribution for the
United States is given by the function

,

where x is the annual income in units of $10,000, with
. For example, x = 0.5 represents an annual fam-

ily income of $5000. (Note: This function does not give a
good representation for family incomes over $100,000.) The
percent of the families with an income in a given range can
be found by integrating this function over that range. Find
the percentage of families with an income between $25,000
and $50,000. Source: Ralph DeMarr and the U.S. Census
Bureau.

Physical  Sciences

71. Oil Consumption Suppose that the rate of consumption of a
natural resource is , where

Here t is time in years, r is a constant, and k is the consump-
tion in the year when . In 2010, an oil company sold 1.2
billion barrels of oil. Assume that 

a. Write for the oil company, letting represent
2010.

b. Set up a definite integral for the amount of oil that the
company will sell in the next 10 years. 

t 5 0c r 1 t 2
r 5 0.04.

t 5 0

c r 1 t 2 5 kert.

c r 1 t 2

0 # x # 10

f 1x 2 5 0.0353x3 2 0.541x2 1 3.78x 1 4.29

c. Evaluate the definite integral of part b. 

d. The company has about 20 billion barrels of oil in reserve. To
find the number of years that this amount will last, solve the
equation

e. Rework part d, assuming that .

72. Oil Consumption The rate of consumption of oil (in billions of
barrels) by the company in Exercise 71 was given as

where corresponds to 2010. Find the total amount of oil
used by the company from 2010 to year T. At this rate, how much
will be used in 5 years? 

t 5 0

1.2e0.04t,

r 5 0.02

3

T

0

1.2e0.04tdt 5 20.

YOUR TURN ANSWERS 

1. 26
2. 256
3. or 
4. 128/3
5. 54

ln 92 ln 3

The Area Between Two Curves
If an executive knows how the savings from a new manufacturing
process decline over time and how the costs of that process will
increase, how can she compute when the net savings will cease and
what the total savings will be?

7.5
APPLY IT 

We will answer this question in Example 4.

Many important applications of integrals require finding the area between two graphs.
The method used in previous sections to find the area between the graph of a function and
the x-axis from to can be generalized to find such an area. For example, the
area between the graphs of and from to in Figure 21(a) is the same
as the area under the graph of , shown in Figure 21(b), minus the area under the graph
of (see Figure 21(c)). That is, the area between the graphs is given by

3

b

a

f 1x 2  dx 2 3

b

a

g 1x 2  dx,

g 1x 2
f 1x 2

x 5 bx 5 ag 1x 2f 1x 2
x 5 bx 5 a
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which can be written as

3

b

a

3f 1x 2 2 g 1x 2 4 dx.

Area Between Two Curves
If f and g are continuous functions and on then the area between
the curves and from to is given by

3

b

a

[  f 1 x 2 2 g 1 x 2 \ dx.

x 5 bx 5 ag 1x 2f 1x 2
3a, b 4,f 1x 2 $ g 1x 2

y

x0

f (x)

g(x)

a b

(a)

y

x0

f (x)

a b

(b)

y

x0

g(x)

a b

(c)

FIGURE 21

Area

Find the area bounded by and

SOLUTION A sketch of the four equations is shown in Figure 22. In general, it is not necessary
to spend time drawing a detailed sketch, but only to know whether the two functions intersect,
and which function is greater between the intersections. To find out, set the two functions equal.

Verify by the quadratic formula that this equation has no real roots. Since the graph of f is a
parabola opening downward that does not cross the graph of g (a line), the parabola must be
entirely under the line, as shown in Figure 22. Therefore for x in the interval

and the area is given by

TRY YOUR TURN 1
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EXAMPLE  1

YOUR TURN 1 Repeat 
Example 1 for ,

, , and .x 5 1x 5 22g 1 x 2 5 x 1 2
f 1x 2 5 4 2 x2

y

x
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g(x) = 2x + 4

FIGURE 22



NOTE It is not necessary to draw the graphs to determine which function is greater. Since the
functions in the previous example do not intersect, we can evaluate them at any point to make
this determination. For example, and Because at 
and the two functions are continuous and never intersect, for all x.

Area

Find the area between the curves and 

SOLUTION Let and As before, set the two equal to find where
they intersect.

The only solutions are and Verify that the graph of f is concave downward,
while the graph of g is concave upward, so the graph of f must be greater between 0 and 1.
(This may also be verified by taking a point between 0 and 1, such as 0.5, and verifying that

) The graph is shown in Figure 23.
The area between the two curves is given by

Using the Fundamental Theorem,

TRY YOUR TURN 2

A graphing calculator is very useful in approximating solutions of problems involving the area
between two curves. First, it can be used to graph the functions and identify any intersection points.
Then it can be used to approximate the definite integral that represents the area. (A function that
gives a numerical approximation to the integral is located in the MATH menu of a TI-84 Plus calcu-
lator.) Figure 24 shows the results of using these steps for Example 2. The second window shows
that the area closely approximates 5 /12.
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YOUR TURN 2 Repeat Example 2
for and .y 5 x2y 5 x1/4

0 1.5

1.5

0

y x3 y x1/2

Intersection
X 1 Y 1

(a)

FIGURE 24

EXAMPLE  2

x1/2 x3  dx
1

0 .416666877
5/12

.4166666667

(b)

TECHNOLOGY NOTE

The difference between two integrals can be used to find the area between the graphs
of two functions even if one graph lies below the x-axis. In fact, if for all val-
ues of x in the interval then the area between the two graphs is always given by

3

b

a

3f 1x 2 2 g 1x 2 4  dx.

3a, b 4,
f 1x 2 $ g 1x 2
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To see this, look at the graphs in Figure 25(a), where for x in Suppose
a constant C is added to both functions, with C large enough so that both graphs lie above
the x-axis, as in Figure 25(b). The region between the graphs is not changed. By the work
above, this area is given by regardless of where the graphs of and

are located. As long as on then the area between the graphs from
to will equal eb

a 3f 1x 2 2 g 1x 2 4  dx.x 5 bx 5 a
3a, b 4,f 1x 2 $ g 1x 2g 1x 2

f 1x 2eb
a 3f 1x 2 2 g 1x 2 4  dx

3a, b 4.f 1x 2 $ g 1x 2

f(x), g(x)

x

g(x) + C

f (x) + C

ba

(b)

f(x), g(x)

x

f(x)

g(x)

a

b

(a)

FIGURE 25

Area

Find the area of the region enclosed by and on

SOLUTION Verify that the two graphs cross at and Because the first graph is a
parabola opening upward, the parabola must be below the line between 0 and 3 and above the
line between 3 and 4. See Figure 26. (The greater function could also be identified by checking
a point between 0 and 3, such as 1, and a point between 3 and 4, such as 3.5. For each of these
values of x, we could calculate the corresponding value of y for the two functions and see which
is greater.) Because the graphs cross at the area is found by taking the sum of two inte-
grals as follows.

TRY YOUR TURN 3

In the remainder of this section we will consider some typical applications that require
finding the area between two curves.

Savings

A company is considering a new manufacturing process in one of its plants. The new
process provides substantial initial savings, with the savings declining with time t (in years)
according to the rate-of-savings function
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YOUR TURN 3 Repeat 
Example 3 for and
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y 5 x2 2 3x

EXAMPLE  3

EXAMPLE  4
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where is in thousands of dollars per year. At the same time, the cost of operating the
new process increases with time t (in years), according to the rate-of-cost function (in thou-
sands of dollars per year)

(a) For how many years will the company realize savings?

SOLUTION Figure 27 shows the graphs of the rate-of-savings and rate-of-cost func-
tions. The rate of cost (marginal cost) is increasing, while the rate of savings (marginal
savings) is decreasing. The company should use this new process until the difference
between these quantities is zero; that is, until the time at which these graphs intersect.
The graphs intersect when

or

Solve this equation as follows.

Multiply by

Factor.

Set each factor equal to 0 separately to get

Only 6 is a meaningful solution here. The company should use the new process for
6 years.

(b) What will be the net total savings during this period?

SOLUTION Since the total savings over the 6-year period is given by the area under the
rate-of-savings curve and the total additional cost is given by the area under the rate-of-
cost curve, the net total savings over the 6-year period is given by the area between the
rate-of-cost and the rate-of-savings curves and the lines and This area can
be evaluated with a definite integral as follows.

The company will save a total of $372,000 over the 6-year period.

The answer to a problem will not always be an integer. Suppose in solving the quadratic
equation in Example 4 we found the solutions to be and It may not bet 5 27.3.t 5 6.7
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realistic to use a new process for 6.7 years; it may be necessary to choose between 6 years and
7 years. Since the mathematical model produces a result that is not in the domain of the func-
tion in this case, it is necessary to find the total savings after 6 years and after 7 years and then
select the best result.

Consumers’ Surplus The market determines the price at which a product is sold. As
indicated earlier, the point of intersection of the demand curve and the supply curve for a prod-
uct gives the equilibrium price. At the equilibrium price, consumers will purchase the same
amount of the product that the manufacturers want to sell. Some consumers, however, would
be willing to spend more for an item than the equilibrium price. The total of the differences
between the equilibrium price of the item and the higher prices that individuals would be will-
ing to pay is thought of as savings realized by those individuals and is called the consumers’
surplus.

To calculate the total amount that consumers would be willing to pay for items,
first consider the simple case in which everyone is willing to pay exactly , the equilib-
rium price. Then the total amount everyone would pay would be the price times the
quantity, or , which is the green area in Figure 28. In fact, this is the exact total that
everyone together pays when the item sells for . Now divide the interval from 0 to 
into n intervals, each of width . Each interval represents people. Specifi-
cally, we will assume that the people represented by the ith interval, where i is a number
between 1 and n, are those who are willing to pay a price for the item, where

is some quantity on that interval. Then the total amount those people would be willing
to pay would be . The total amount that everyone together would be willing to
pay is

In a more realistic situation, the demand curve changes continuously, so we find the total
amount that everyone would be willing to pay by taking the limit as n goes to infinity:

This quantity, which represents the total amount consumers are willing to spend for 
items, is the area under the demand curve in Figure 28. The pink shaded area represents the
difference between what consumers would be willing to pay and what they actually pay, or
the consumers’ surplus.

As the figure suggests, the consumers’ surplus is given by an area between the two
curves and so its value can be found with a definite integral as follows.p 5 p0 ,p 5 D 1q 2

q0

lim
nl`a
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i51

D 1qi 2Dq 5 3
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Consumers’ Surplus
If is a demand function with equilibrium price and equilibrium demand 
then

Consumers’ surplus 5 3

q0

0

[D 1 q 2 2 p0 
\ dq.

q0 ,p0D 1q 2
p

0 q q

p0

0

Producers’
surplus Supply

curve

p = S(q)

FIGURE 29

Similarly, if some manufacturers would be willing to supply a product at a price lower
than the equilibrium price the total of the differences between the equilibrium price and
the lower prices at which the manufacturers would sell the product is considered added
income for the manufacturers and is called the producers’ surplus. Figure 29 shows the

p0 ,
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(green shaded) total area under the supply curve from to which is the mini-
mum total amount the manufacturers are willing to realize from the sale of items. The
total area under the line is the amount actually realized. The difference between
these two areas, the producers’ surplus, is also given by a definite integral.

p 5 p0

q0

q 5 q0 ,q 5 0

Producers’ Surplus
If is a supply function with equilibrium price and equilibrium supply then

Producers’ surplus 5 3

q0

0

[
 
p0 2 S 1 q 2 \ dq.

q0 ,p0S 1q 2

Consumers’ and Producers’ Surplus

Suppose the price (in dollars per ton) for oat bran is

when the demand for the product is q tons. Also, suppose the function

gives the price (in dollars per ton) when the supply is q tons. Find the consumers’ surplus
and the producers’ surplus.

SOLUTION Begin by finding the equilibrium quantity. This is done by setting the two
equations equal.

The result can be further rounded to 10.60 tons as long as this rounded value is not used
in future calculations. At the equilibrium point where the supply and demand are both
10.60 tons, the price is

or $199.50. Verify that this same answer is found by computing The con-
sumers’ surplus, represented by the area shown in Figure 30, is

3

10.60163
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3 1400 2 eq/2 2 2 199.50 4 dq 5 3
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3200.5 2 eq/2 4 dq.

D 1 10.60163 2 .
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401

2
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2
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EXAMPLE  5
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Evaluating the definite integral gives

Here the consumers’ surplus is $1726.63. The producers’ surplus, also shown in Figure 30,
is given by

which is exactly the same as the expression found for the consumers’ surplus, so the pro-
ducers’ surplus is also $1726.63. TRY YOUR TURN 4

NOTE In general, the producers’ surplus and consumers’ surplus are not the same, as 
they are in Example 5.

3

10.60163

0

3199.50 2 1 eq/2 2 1 2 4 dq 5 3

10.60163

0

3200.5 2 eq/2 4 dq,

 < 1726.63.

 1200.5q 2 2eq/2 2 `
10.60163

0

5 3200.5 1 10.60163 2 2 2e10.60163/2 4 2 10 2 2 2

YOUR TURN 4 Repeat 
Example 5 when

and
S 1q 2 5 eq/3 2 100.
D 1q 2 5 600 2 eq/3

7.5 EXERCISES
Find the area between the curves in Exercises 1–24.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16. x 5 2, x 5 4, y 5
x 2 1

4
, y 5

1

x 2 1

x 5 21, x 5 2, y 5 2e2x, y 5 e2x 1 1

x 5 21, x 5 2, y 5 e2x, y 5 ex

x 5 21, x 5 1, y 5 ex, y 5 3 2 ex

x 5 0, x 5 4, y 5
1

x 1 1
, y 5

x 2 1

2

x 5 1, x 5 6, y 5
1

x
, y 5

1

2

y 5 x2, y 5 x3

y 5 x2, y 5 2x

y 5 x2 2 18, y 5 x 2 6

y 5 x2 2 30, y 5 10 2 3x

x 5 0, x 5 6, y 5 5x, y 5 3x 1 10

x 5 22, x 5 1, y 5 2x, y 5 x2 2 3

x 5 23, x 5 0, y 5 1 2 x2, y 5 0

x 5 23, x 5 1, y 5 x3 1 1, y 5 0

x 5 1,  x 5 2, y 5 3x3 1 2, y 5 0

x 5 22, x 5 1, y 5 2x2 1 5, y 5 0

17.

18.

19.

20.

21.

22.

23.

24.

In Exercises 25 and 26, use a graphing calculator to find the values
of x where the curves intersect and then to find the area between
the two curves.

25.

26.

APPLICATIONS
Business and Economics

27. Net Savings Suppose a company wants to introduce a new machine
that will produce a rate of annual savings (in dollars) given by

S' 1x 2 5 150 2 x2,

y 5 ln x, y 5 x3 2 5x2 1 6x 2 1

y 5 ex, y 5 2x2 2 2x

x 5 0, x 5 3, y 5 ex, y 5 e42x

x 5 0, x 5 3, y 5 2e3x, y 5 e3x 1 e6

y 5 !x, y 5 x!x

y 5 x4/3, y 5 2x1/3

y 5 x5 2 2 ln 1x 1 5 2 , y 5 x3 2 2 ln 1x 1 5 2

y 5 x4 1 ln 1x 1 10 2 , y 5 x3 1 ln 1x 1 10 2

y 5 2x3 1 x2 1 x 1 5, y 5 x3 1 x2 1 2x 1 5

y 5 x3 2 x2 1 x 1 1, y 5 2x2 2 x 1 1
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where x is the number of years of operation of the machine,
while producing a rate of annual costs (in dollars) of

a. For how many years will it be profitable to use this new
machine?

b. What are the net total savings during the first year of use
of the machine?

c. What are the net total savings over the entire period of use
of the machine?

28. Net Savings A new smog-control device will reduce the output
of sulfur oxides from automobile exhausts. It is estimated that
the rate of savings (in millions of dollars per year) to the com-
munity from the use of this device will be approximated by

after x years of use of the device. The new device cuts down
on the production of sulfur oxides, but it causes an increase
in the production of nitrous oxides. The rate of additional
costs (in millions of dollars per year) to the community after
x years is approximated by

a. For how many years will it pay to use the new device? 

b. What will be the net savings over this period of time?

29. Profit Canham Enterprises had an expenditure rate of
dollars per day and an income rate of 

dollars per day on a particular job, where x was the
number of days from the start of the job. The company’s profit
on that job will equal total income less total expenditures. Profit
will be maximized if the job ends at the optimum time, which is
the point where the two curves meet. Find the following.

a. The optimum number of days for the job to last 

b. The total income for the optimum number of days 

c. The total expenditures for the optimum number of days

d. The maximum profit for the job

30. Net Savings A factory of Hollis Sherman Industries has
installed a new process that will produce an increased rate of
revenue (in thousands of dollars per year) of

where t is time measured in years. The new process produces
additional costs (in thousands of dollars per year) at the rate of

a. When will it no longer be profitable to use this new
process?

b. Find the net total savings.

31. Producers’ Surplus Find the producers’ surplus if the supply
function for pork bellies is given by

Assume supply and demand are in equilibrium at q 5 16.

S 1q 2 5 q5/2 1 2q3/2 1 50.

C' 1 t 2 5 0.3et/2.

R' 1 t 2 5 104 2 0.4et/2,

98.8 2 e0.1x
I' 1x 2  5E' 1x 2 5 e0.1x

C' 1x 2 5
3

25
 x2.

S' 1x 2 5 2x2 1 4x 1 8,

C' 1x 2 5 x2 1
11

4
 x.

32. Producers’ Surplus Suppose the supply function for concrete is
given by

and that supply and demand are in equilibrium at Find the
producers’ surplus.

33. Consumers’ Surplus Find the consumers’ surplus if the demand
function for grass seed is given by

assuming supply and demand are in equilibrium at 

34. Consumers’ Surplus Find the consumers’ surplus if the demand
function for extra virgin olive oil is given by

and if supply and demand are in equilibrium at 

35. Consumers’ and Producers’ Surplus Suppose the supply func-
tion for oil is given (in dollars) by

and the demand function is given (in dollars) by

a. Graph the supply and demand curves.

b. Find the point at which supply and demand are in equilibrium.

c. Find the consumers’ surplus.

d. Find the producers’ surplus.

36. Consumers’ and Producers’ Surplus Suppose the supply func-
tion for a certain item is given by

and the demand function is given by

a. Graph the supply and demand curves.

b. Find the point at which supply and demand are in equilibrium.

c. Find the consumers’ surplus.

d. Find the producers’ surplus.

37. Consumers’ and Producers’ Surplus Suppose that with the
supply and demand for oil as in Exercise 35, the government
sets the price at $264 per unit.

a. Use the supply function to calculate the quantity that will be
produced at the new price.

b. Find the consumers’ surplus for the new price, using the quan-
tity found in part a in place of the equilibrium quantity. How
much larger is this than the consumers’ surplus in Exercise 35? 

c. Find the producers’ surplus for the new price, using the quan-
tity found in part a in place of the equilibrium quantity. How
much smaller is this than the producers’ surplus in Exercise 35?

d. Calculate the difference between the total of the consumers’
and producers’ surplus under the equilibrium price and under
the government price. Economists refer to this loss as the welfare
cost of the government’s setting the price.

D 1q 2 5
1000

q 1 1
.

S 1q 2 5 1q 1 1 22,

D 1q 2 5 900 2 20q 2 q2.

S 1q 2 5 q2 1 10q,

q 5 6.

D 1q 2 5
32,000

12q 1 8 2 3
,

q 5 3.

D 1q 2 5
200

1 3q 1 1 2 2
,

q 5 9.

S 1q 2 5 100 1 3q3/2 1 q5/2,
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e. Because of the welfare cost calculated in part d, many econ-
omists argue that it is bad economics for the government to
set prices. Others point to the increase in the consumers’
surplus, calculated in part b, as a justification for such gov-
ernment action. Discuss the pros and cons of this issue.

38. Fuel Economy In an article in the December 1994 Scientific
American magazine, the authors estimated future gas use.
Without a change in U.S. policy, auto fuel use is forecasted to
rise along the projection shown at the right in the figure below.
The shaded band predicts gas use if the technologies for
increased fuel economy are phased in by the year 2010. The
moderate estimate (center curve) corresponds to an average of
46 mpg for all cars on the road. Source: Scientific American.

a. Discuss the interpretation of the shaded area and other
regions of the graph that pertain to the topic in this section.

b. According to the Energy Information Administration, the
U.S. gasoline consumption in 2010 was 9,030,000 barrels
per day. Discuss how this affects the areas considered in
part a. Source: U.S. Energy Information Administration.

c. Find the amount of pollution in the lake at the time found in
part b. 

d. Use a graphing calculator to find the time when all the pollu-
tion has been removed from the lake. 

40. Pollution Repeat the steps of Exercise 39, using the functions

and

Social  Sciences

41. Distribution of Income Suppose that all the people in a country
are ranked according to their incomes, starting at the bottom. Let
x represent the fraction of the community making the lowest
income ; , therefore, represents the lower
40% of all income producers. Let represent the proportion
of the total income earned by the lowest x of all people. Thus,

represents the fraction of total income earned by the low-
est 40% of the population. The curve described by this function
is known as a Lorenz curve. Suppose

Find and interpret the following.

a. b.

If income were distributed uniformly, we would have .
The area under this line of complete equality is . As dips
further below , there is less equality of income distribution.
This inequality can be quantified by the ratio of the area between

and to . This ratio is called the Gini index of
income inequality and equals 

c. Graph and , for on
the same axes.

d. Find the area between the curves.

e. For U.S. families, the Gini index was 0.386 in 1968 and 0.466
in 2008. Describe how the distribution of family incomes has
changed over this time. Source: U.S. Census.

Physical  Sciences

42. Metal Plate A worker sketches the curves and
on a sheet of metal and cuts out the region between the

curves to form a metal plate. Find the area of the plate.
y 5 x /2

y 5 "x
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Life Sciences

39. Pollution Pollution begins to enter a lake at time at a
rate (in gallons per hour) given by the formula

where t is the time (in hours). At the same time, a pollution
filter begins to remove the pollution at a rate

as long as pollution remains in the lake.

a. How much pollution is in the lake after 12 hours?

b. Use a graphing calculator to find the time when the rate
that pollution enters the lake equals the rate the pollution
is removed.

g 1 t 2 5 0.4t

f 1 t 2 5 10 1 1 2 e20.5t 2 ,

t 5 0

YOUR TURN ANSWERS 

1. 2.
3. 4. $5103.83; $5103.8371 /3

7 /159 /2
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Numerical Integration
If the velocity of a vehicle is known only at certain points in time, how
can the total distance traveled by the vehicle be estimated?

7.6
APPLY IT 

Using numerical integration, we will answer this question in Example 3 of this section.

Some integrals cannot be evaluated by any technique. One solution to this problem was
presented in Section 3 of this chapter, in which the area under a curve was approximated by
summing the areas of rectangles. This method is seldom used in practice because better
methods exist that are more accurate for the same amount of work. These methods are
referred to as numerical integration methods. We discuss two such methods here: the
trapezoidal rule and Simpson’s rule.

Trapezoidal Rule Recall, the trapezoidal rule was mentioned briefly in Section 3,
where we found approximations with it by averaging the sums of rectangles found by using
left endpoints and then using right endpoints. In this section we derive an explicit formula
for the trapezoidal rule in terms of function values.* To illustrate the derivation of the
trapezoidal rule, consider the integral

The shaded region in Figure 31 shows the area representing that integral, the area under the
graph above the x-axis, and between the lines and x 5 5.x 5 1f 1x 2 5 1 /x,

3

5

1

 
1
x

 dx.

1

2

0

f(x)

x

f(x) = 1
x

x    = 32x    = 10 x    = 21 x    = 43 x    = 54

B
b

h

Left-hand trapezoid
B = f (x0) = f (1) = 1
b = f (x1) = f (2) =
h = 2 – 1 = 1
Area =   (B + b)h

1
2

1
2

1
2
1
2
3
4

3
2

1
2=   (1 +   )1

=

=

FIGURE 31

Note that this function can be integrated using the Fundamental Theorem of Calculus.
Since 

We can also approximate the integral using numerical integration. As shown in the fig-
ure, if the area under the curve is approximated with trapezoids rather than rectangles, the
approximation should be improved.

As in earlier work, to approximate this area we divide the interval into subintervals
of equal widths. To get a first approximation to ln 5 by the trapezoidal rule, find the sum of the

31, 5 4

3

5

1

 
1
x

 dx 5 ln 0 x 0 `
5

1

5 ln 5 2 ln 1 5 ln 5 2 0 5 ln 5 < 1.609438.

e 1 1 /x 2  dx 5 ln 0 x 0 1 C,

*In American English a trapezoid is a four-sided figure with two parallel sides, contrasted with a trapezium, which
has no parallel sides. In British English, however, it is just the opposite. What Americans call a trapezoid is called
a trapezium in Great Britain.
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Approximations to 

Trapezoidal
n Approximation

 3
5

1
 
1
x

 dx

areas of the four trapezoids shown in Figure 31. From geometry, the area of a trapezoid is half
the product of the sum of the bases and the altitude. Each of the trapezoids in Figure 31 has
altitude 1. (In this case, the bases of the trapezoid are vertical and the altitudes are horizontal.)
Adding the areas gives

To get a better approximation, divide the interval into more subintervals. Generally
speaking, the larger the number of subintervals, the better the approximation. The results for
selected values of n are shown to 5 decimal places. When the approximation
agrees with the true value to 5 decimal places.of 1n 5 < 1.609438

n 5 1000,

31, 5 4

 5
1

2
a

3

2
1

5

6
1

7

12
1

9

20
b < 1.68333.

 ln 5 5 3

5

1

 
1
x

  dx <
1

2
 a

1

1
1

1

2
b 1 1 2 1

1

2
 a

1

2
1

1

3
b 1 1 2 1

1

2
 a

1

3
1

1

4
b 1 1 2 1

1

2
 a

1

4
1

1

5
b 1 1 2

0

f(x)

f(x)

x2x1 x3 xn – 2 xn – 1 x  = b xna = x0

FIGURE 32

Generalizing from this example, let f be a continuous function on an interval Divide
the interval from a to b into n equal subintervals by the points as
shown in Figure 32. Use the subintervals to make trapezoids that approximately fill in the
region under the curve. The approximate value of the definite integral is given by
the sum of the areas of the trapezoids, or

This result gives the following rule.

 5 a
b 2 a

n
b c

1

2
 f1x0 

2 1 f1x1 
2 1 f1x2 

2 1 ) 1 f1xn21 
2 1

1

2
 f1xn 

2 d .

 5 a
b 2 a

n
b c

1

2
 f1x0 

21
1

2
 f1x1 

21
1

2
 f1x1 

21
1

2
 f1x2 

2 1
1

2
 f1x2 

2 1 )1
1

2
 f1xn21 

2 1
1

2
 f1xn 

2 d

 1 ) 1
1

2
 3f1xn21 

2 1 f1xn 
2 4 a

b 2 a
n

b

 3

b

a

f1x 2   dx <
1

2
 3f1x0 

2 1 f1x1 
2 4 a

b 2 a
n

b 1
1

2
 3f1x1 

2 1 f1x2 
2 4 a

b 2 a
n

b

eb
af 1x 2  dx

a 5 x0 , x1 , x2 , * , xn 5 b ,
3a, b 4.

6 1.64360

8 1.62897

10 1.62204

20 1.61262

100 1.60957

1000 1.60944

EXAMPLE  1

Trapezoidal Rule
Let f be a continuous function on and let be divided into n equal subinter-
vals by the points Then, by the trapezoidal rule,

3

b

a
f 1 x 2   dx ? a

b 2 a
n

b c
1
2

  f 1 x0 2 1 f 1 x1 2 1P1 f 1 xn21 2 1
1
2

   f  1 xn 2 d .

a 5 x0 , x1 , x2 , * , xn 5 b.
3a, b 43a, b 4

Trapezoidal Rule

Use the trapezoidal rule with to approximate

3

2

0

"x2 1 1 dx.

n 5 4
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Method 2
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SOLUTION

Here and with as the altitude of
each trapezoid. Then and Now find the corre-
sponding function values. The work can be organized into a table, as follows.

x4 5 2.x3 5 3 /2,x2 5 1,x1 5 1 /2,x0 5 0,
1b 2 a 2 /n 5 12 2 0 2 /4 5 1 /2n 5 4,b 5 2,a 5 0,Method 1

Calculating by Hand

0 0

1

2 1

3

4 2 "22 1 1 < 2.23607

"1 3 /2 2 2 1 1 < 1.802783 /2

"12 1 1 < 1.41421

"1 1 /2 2 2 1 1 < 1.118031 /2

"02 1 1 5 1

Calculations for Trapezoidal Rule

i f 1 xi 2xi

Substitution into the trapezoidal rule gives

The approximation 2.97653 found above using the trapezoidal rule with differs from
the true value of 2.95789 by 0.01864. As mentioned above, this error would be reduced if
larger values were used for n. For example, if the trapezoidal rule gives an answer of
2.96254, which differs from the true value by 0.00465. Techniques for estimating such
errors are considered in more advanced courses.

Just as we used a graphing calculator to approximate area using rectangles, we can also use
it for the trapezoidal rule. As before, put the values of i in and the values of in In
the heading for put Using the fact that the
command .5*(.5*L3(1)�sum(L3,2,4)�.5*L3(5)) gives the result 2.976528589.
For more details, see the Graphing Calculator and Excel Spreadsheet Manual available
with this book.

The trapezoidal rule can also be done on a spreadsheet. In Microsoft Excel, for example, store
the values of 0 through n in column A. After putting the left endpoint in E1 and in E2, put
the command “=$E$1�A1*$E$2” into B1; copying this formula into the rest of column B
gives the values of Similarly, use the formula for to fill column C. Using the fact that

in this example, the command “$E$2*(.5*C1�sum(C2:C4)�.5*C5)” gives
the result 2.976529. For more details, see the Graphing Calculator and Excel Spreadsheet
Manual available with this book.

TRY YOUR TURN 1

The trapezoidal rule is not widely used because its results are not very accurate. In fact,
the midpoint rule discussed earlier in this chapter is usually more accurate than the trape-
zoidal rule. We will now consider a method that usually gives more accurate results than
either the trapezoidal or midpoint rule.

Simpson’s Rule Another numerical method, Simpson’s rule, approximates consecu-
tive portions of the curve with portions of parabolas rather than the line segments of the
trapezoidal rule. Simpson’s rule usually gives a better approximation than the trapezoidal
rule for the same number of subintervals. As shown in Figure 33 on the next page, one

n 5 5
f 1xi 

2xi .

Dx

1b 2 a 2 /n 5 12 2 0 2 /4 5 0.5,"1L22 1 1 2.L3 ,
L2 .xiL1

n 5 8,

n 5 4

< 2.97653.

<
2 2 0

4
 c

1

2
 1 1 2 1 1.11803 1 1.41421 1 1.80278 1

1

2
 12.23607 2 d

3

2

0

 "x2 1 1  dx

YOUR TURN 1 Use the 
trapezoidal rule with n � 4 to

approximate .3

3

1

"x2 1 3 dx
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parabola is fitted through points A, B, and C, another through C, D, and E, and so on.
Then the sum of the areas under these parabolas will approximate the area under the graph
of the function. Because of the way the parabolas overlap, it is necessary to have an even
number of intervals, and therefore an odd number of points, to apply Simpson’s rule.

If h, the length of each subinterval, is the area under the parabola through
points A, B, and C can be found by a definite integral. The details are omitted; the result is

Similarly, the area under the parabola through points C, D, and E is

When these expressions are added, the last term of one expression equals the first term of
the next. For example, the sum of the two areas given above is

This illustrates the origin of the pattern of the terms in the following rule.

h

3
 3f 1x0 

2 1 4f 1x1 
2 1 2f 1x2 

2 1 4f 1x3 
2 1 f 1x4 

2 4.

h

3
 3f 1x2 

2 1 4f 1x3 
2 1 f 1x4 

2 4.

h

3
 3f 1x0 

2 1 4f 1x1 
2 1 f 1x2 

2 4.

1b 2 a 2 /n,

0

f(x)

f(x)

x2 x4x1x0 x3
x

h

A

B C

D
E

FIGURE 33

Simpson’s Rule
Let f be a continuous function on and let be divided into an even number n
of equal subintervals by the points Then by Simpson’s rule,

1 2 f 1 xn22 2 1 4 f 1 xn21 2 1 f 1 xn 2 \.

 3

b

a
f 1 x 2  dx ? a

b 2 a
3n

b[ f 1 x 0 2 1 4 f 1 x 1 2 1 2 f 1 x 2 2 1 4 f 1 x 3 2 1P

a 5 x0 , x1 , x2 , * , xn 5 b.
3a, b 43a, b 4

Thomas Simpson (1710–1761), a British mathematician, wrote texts on many branches
of mathematics. Some of these texts went through as many as ten editions. His name
became attached to this numerical method of approximating definite integrals even though
the method preceded his work.

In Simpson’s rule, n (the number of subintervals) must be even.

Simpson’s Rule

Use Simpson’s rule with to approximate

which was approximated by the trapezoidal rule in Example 1.

3

2

0

"x2 1 1 dx,

n 5 4

CAUTION

EXAMPLE  2



CHAPTER 7 Integration412

SOLUTION As in Example 1, and and the endpoints of the four
intervals are and The table of values is also
the same.

x4 5 2.x3 5 3 /2,x2 5 1,x1 5 1 /2,x0 5 0,
n 5 4,b 5 2,a 5 0,

0 0 1

1 1.11803

2 1 1.41421

3 1.80278

4 2 2.23607

3 /2

1 /2

Calculations for Simpson’s Rule

i f 1 xi 2xi

Since substituting into Simpson’s rule gives

This differs from the true value by 0.00007, which is less than the trapezoidal rule with
If for Simpson’s rule, the approximation is 2.95788, which differs from the

true value by only 0.00001. TRY YOUR TURN 2

NOTE

1. Just as we can use a graphing calculator or a spreadsheet for the trapezoidal rule, we can
also use such technology for Simpson’s rule. For more details, see the Graphing Calculator
and Excel Spreadsheet Manual available with this book.

2. Let M represent the midpoint rule approximation and T the trapezoidal rule approximation,
using n subintervals in each. Then the formula gives the Simpson’s rule
approximation with 2n subintervals.

Numerical methods make it possible to approximate

even when is not known. The next example shows how this is done.

Total Distance

As mentioned earlier, the velocity gives the rate of change of distance with
respect to time t. Suppose a vehicle travels an unknown distance. The passengers keep track
of the velocity at 10-minute intervals (every of an hour) with the following results.1 /6

s 1 t 2v 1 t 2

f 1x 2

3

b

a

f 1x 2  dx

12M 1 T 2 /3S 5

n 5 8n 5 8.

3

2

0

"x2 1 1 dx <
1

6
 31 1 4 1 1.11803 2 1 2 1 1.41421 2 1 4 1 1.80278 2 1 2.23607 4 < 2.95796.

1b 2 a 2 / 1 3n 2 5 2 /12 5 1 /6,

Velocity of a Vehicle
1

45 55 52 60 64 58 47

7 /65 /64 /63 /62 /61 /6

What is the total distance traveled in the 60-minute period from to 

SOLUTION The distance traveled in t hours is with The total distance
traveled between and is given by

3

7/6

1/6
v 1 t 2  dt.

t 5 7 /6t 5 1 /6
s r 1 t 2 5 v 1 t 2 .s 1 t 2 ,

t 5 7 /6?t 5 1 /6

EXAMPLE  3

APPLY IT 

YOUR TURN 2 Use Simpson’s
rule with n � 4 to approximate 

.3

3

1

"x2 1 3 dx

Time in Hours, t

Velocity in Miles per Hour, v 1 t 2
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Even though this integral cannot be evaluated since we do not have an expression for 
either the trapezoidal rule or Simpson’s rule can be used to approximate its value and give
the total distance traveled. In either case, let and By
the trapezoidal rule,

By Simpson’s rule,

The distance traveled in the 1-hour period was about 56 miles.

As already mentioned, Simpson’s rule generally gives a better approximation than
the trapezoidal rule. As n increases, the two approximations get closer and closer. For
the same accuracy, however, a smaller value of n generally can be used with Simpson’s
rule so that less computation is necessary. Simpson’s rule is the method used by many
calculators that have a built-in integration feature.

The branch of mathematics that studies methods of approximating definite integrals
(as well as many other topics) is called numerical analysis. Numerical integration is useful
even with functions whose antiderivatives can be determined if the antidifferentiation is
complicated and a computer or calculator programmed with Simpson’s rule is handy. You
may want to program your calculator for both the trapezoidal rule and Simpson’s rule. For
some calculators, these programs are in the Graphing Calculator and Excel Spreadsheet
Manual available with this book.

5
1

18
 145 1 220 1 104 1 240 1 128 1 232 1 47 2 < 56.44.

 3

7/6

1/6
v 1 t 2  dt <

7 /6 2 1 /6

3 1 6 2
 345 1 4 1 55 2 1 2 1 52 2 1 4 1 60 2 1 2 1 64 2 1 4 1 58 2 1 47 4

 < 55.83.

 3

7/6

1/6
v 1 t 2  dt <

7 /6 2 1 /6

6
 c

1

2
145 2 1 55 1 52 1 60 1 64 1 58 1

1

2
147 2 d

b 5 t6 5 7 /6.a 5 t0 5 1 /6,n 5 6,

v 1 t 2 ,

7.6 EXERCISES
In Exercises 1–10, use to approximate the value of the
given integrals by the following methods: (a) the trapezoidal rule,
and (b) Simpson’s rule. (c) Find the exact value by integration.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. 3

4

0

x"2x2 1 1  dx3

1

0

 4xe2x2

  dx

3

4

2

 
1

x3 dx3

5

1

 
1

x2 dx

3

3

0

12x3 1 1 2   dx3

2

21

12x3 1 1 2   dx

3

5

1

 
6

2x 1 1
 dx3

3

21 

 

3

5 2 x
 dx

3

2

0

12x2 1 1 2   dx3

2

0

1 3x2 1 2 2  dx

n 5 4 11. Find the area under the semicircle and above the
x-axis by using with the following methods.

a. The trapezoidal rule b. Simpson’s rule

c. Compare the results with the area found by the formula for the
area of a circle. Which of the two approximation techniques
was more accurate?

12. Find the area between the x-axis and the upper half of the ellipse
by using with the following methods.

a. The trapezoidal rule b. Simpson’s rule

(Hint: Solve the equation for y and find the area of the
semiellipse.)

c. Compare the results with the actual area, (which
can be found by methods not considered in this text). Which
approximation technique was more accurate?

3p < 9.4248

n 5 124x2 1 9y2 5 36

n 5 8
y 5 "4 2 x2
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13. Suppose that and for all x between a
and b, where Which of the following cases is true of a
trapezoidal approximation T for the integral ?
Explain. 

a. b. 

c. Can’t say which is larger

14. Refer to Exercise 13. Which of the three cases applies to
these functions?

a. b. 

c.

f 1x 2 5 "x; 30, 9 4f 1x 2 5 x2; 30, 3 4

T . 3

b

a

f 1x 2dxT , 3

b

a

f 1x 2dx

eb
af 1x 2   dx

a , b.
fs 1x 2 . 0f 1x 2 . 0 APPLICATIONS

Business and Economics

21. Total Sales A sales manager presented the following results at a
sales meeting. 

y

xa b

Exercises 15–18 require both the trapezoidal rule and Simp-
son’s rule. They can be worked without calculator programs if
such programs are not available, although they require more
calculation than the other problems in this exercise set.

Error Analysis The difference between the true value of an inte-
gral and the value given by the trapezoidal rule or Simpson’s
rule is known as the error. In numerical analysis, the error is
studied to determine how large n must be for the error to be
smaller than some specified amount. For both rules, the error
is inversely proportional to a power of n, the number of subdi-
visions. In other words, the error is roughly where k is a
constant that depends on the function and the interval, and p
is a power that depends only on the method used. With a little
experimentation, you can find out what the power p is for the
trapezoidal rule and for Simpson’s rule.

15. a. Find the exact value of 

b. Approximate the integral in part a using the trapezoidal rule
with and 32. For each of these answers, find
the absolute value of the error by subtracting the trapezoidal
rule answer from the exact answer found in part a.

c. If the error is then the error times should be
approximately a constant. Multiply the errors in part b
times for etc., until you find a power p yield-
ing the same answer for all four values of n.

16. Based on the results of Exercise 15, what happens to the
error in the trapezoidal rule when the number of intervals is
doubled?

17. Repeat Exercise 15 using Simpson’s rule.

18. Based on the results of Exercise 17, what happens to the error
in Simpson’s rule when the number of intervals is doubled?

19. For the integral in Exercise 7, apply the midpoint rule with
and Simpson’s rule with to verify the formula

20. Repeat the instructions of Exercise 19 using the integral in
Exercise 8.

S 5 12M 1 T 2 /3.
n 5 8n 5 4

p 5 1, 2,np

npk /np,

n 5 4, 8, 16,

e1
0  
x4  dx.

k /np,

1 2 3 4 5 6 7

0.4 0.6 0.9 1.1 1.3 1.4 1.6

1 2 3 4 5 6 7

9.0 9.2 9.5 9.4 9.8 10.1 10.5

Find the total sales over the given period as follows.

a. Plot these points. Connect the points with line segments. 

b. Use the trapezoidal rule to find the area bounded by the broken
line of part a, the x-axis, the line , and the line 

c. Approximate the same area using Simpson’s rule.

22. Total Cost A company’s marginal costs (in hundreds of dollars
per year) were as follows over a certain period. 

x 5 7.x 5 1

Repeat parts a–c of Exercise 21 for these data to find the total
cost over the given period. 

Life Sciences

23. Drug Reaction Rate The reaction rate to a new drug is given by

where t is time (in hours) after the drug is administered. Find the
total reaction to the drug from to by letting 
and using the following methods.

a. The trapezoidal rule b. Simpson’s rule

24. Growth Rate The growth rate of a certain tree (in feet) is given by

where t is time (in years). Find the total growth from to
by using with the following methods.

a. The trapezoidal rule b. Simpson’s rule

Blood Level Curves In the study of bioavailability in pharmacy,
a drug is given to a patient. The level of concentration of the
drug is then measured periodically, producing blood level
curves such as the ones shown in the figure.

The areas under the curves give the total amount of the drug
available to the patient for each milliliter of blood. Use the
trapezoidal rule with to find the following areas. Source:
Basics of Bioavailability.

n 5 10

n 5 12t 5 7
t 5 1

y 5
2

t 1 2
1 e2t2/2,

n 5 8t 5 9t 5 1

y 5 e2t2

1
1

t 1 1
 ,

0

5.0

6.0

3.0

4.0

7.0

1.0

2.0

105 15 20
Time after drug administration (hours)
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Formulation B

Formulation A

Minimum effective
concentration

Year, x

Rate of Sales, f 1x 2

Year, x

Marginal Cost, f 1x 2
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25. Find the total area under the curve for Formulation A. What
does this area represent? 

26. Find the total area under the curve for Formulation B. What
does this area represent? 

27. Find the area between the curve for Formulation A and the
minimum effective concentration line. What does your answer
represent? 

28. Find the area between the curve for Formulation B and the
minimum effective concentration line. What does this area
represent? 

29. Calves The daily milk consumption (in kilograms) for calves
can be approximated by the function

where w is the age of the calf (in weeks) and and are
constants. Source: Animal Production.

a. The age in days is given by Use this fact to con-
vert the function above to a function in terms of t. 

b. For a group of Angus calves,
and Use the trapezoidal rule with
and then Simpson’s rule with to find the total
amount of milk consumed by one of these calves over the
first 25 weeks of life.

c. For a group of Nelore calves,
and Use the trapezoidal rule with
and then Simpson’s rule with to find the total
amount of milk consumed by one of these calves over the
first 25 weeks of life.

30. Foot-and-Mouth Epidemic In 2001, the United Kingdom
suffered an epidemic of foot-and-mouth disease. The graph
below shows the reported number of cattle (red) and pigs (blue)
that were culled each month from mid-February through mid-
October in an effort to stop the spread of the disease. In section
7.3 on Area and the Definite Integral we estimated the number
of cattle and pigs that were culled using rectangles. Source:
Department of Environment, Food and Rural Affairs,
United Kingdom. 

a. Estimate the total number of cattle that were culled from
mid-February through mid-October and compare this with
581,801, the actual number of cattle that were culled. Use
Simpson’s rule with interval widths of one month starting
with mid-February.

b. Estimate the total number of pigs that were culled from
mid-February through mid-October and compare this with
146,145, the actual number of pigs that were culled. Use
Simpson’s rule with interval widths of one month starting
with mid-February.

n 5 10,
n 5 10,b2 5 0.037.

b1 5 0.143,b0 5 8.409,

n 5 10,
n 5 10, b2 5 0.027.

b1 5 0.233,b0 5 5.955,

t 5 7w.

b2b1 ,b0 ,

y 5 b0 wb1
 e2b2 w,

Social  Sciences

31. Educational Psychology The results from a research study in
psychology were as follows. 

Feb. Mar. Jun.Apr. May
0

300,000

250,000
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Pigs
culled

Cattle culled

1 2 3 4 5 6 7

4 7 11 9 15 16 23

1 2 3 4 5 6 7

12 16 18 21 24 27 32

Repeat parts a–c of Exercise 21 for these data.

Physical  Sciences

32. Chemical Formation The following table shows the results from
a chemical experiment. 

Repeat parts a–c of Exercise 21 for these data.

If you have a program for Simpson’s rule in your graphing calcu-
lator, use it with for Exercises 33–35.

33. Total Revenue An electronics company analyst has determined
that the rate per month at which revenue comes in from the cal-
culator division is given by

where x is the number of months the division has been in operation.
Find the total revenue between the 12th and 36th months. 

34. Milk Consumption As we saw in an earlier chapter, the average
individual daily milk consumption for herds of Charolais, Angus,
and Hereford calves can be described by a mathematical function.
Here we write the consumption in kg/day as a function of the age
of the calf in days (t) as

Find the total amount of milk consumed from 7 to 182 days for a
calf. Source: Animal Production. 

35. Probability The most important function in probability and statis-
tics is the density function for the standard normal distribution,
which is the familiar bell-shaped curve. The function is

a. The area under this curve between and repre-
sents the probability that a normal random variable is within 1
standard deviation of the mean. Find this probability.

b. Find the area under this curve between and 
which represents the probability that a normal random variable
is within 2 standard deviations of the mean.

c. Find the probability that a normal random variable is within 3
standard deviations of the mean.

x 5 2,x 5 22

x 5 1x 5 21

f 1x 2 5
1

"2p
 e2x2/2.

M 1 t 2 5 3.922t0.242e20.00357t, 7 # t # 182.

R 1x 2 5 105e0.01x 1 32,

n 5 20

YOUR TURN ANSWERS 

1.  5.3552 2. 5.3477

Number of Hours of Study, x

Rate of Extra Points Earned on a Test, f 1x2

Concentration of Chemical A, x

Rate of Formation of Chemical B, f 1x2
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Antidifferentiation Formulas

Power Rule

Constant Multiple Rule for any real number k

Sum or Difference Rule

Integration of

Integration of Exponential
Functions

Substitution Method Choose u to be one of the following:

1. the quantity under a root or raised to a power;

2. the quantity in the denominator;

3. the exponent on e.

Definite Integrals

Definition of the Definite Integral where and is any value of x in the

ith interval. If f(x) gives the rate of change of F(x) for x in then this represents the total
change in as x goes from a to b.

Properties of Definite Integrals 1.

2. for any real number k.

3.

4. for any real number c

5.

Fundamental Theorem of Calculus where f is continuous on and F is any antiderivative of f

Area Between Two Curves where f and g are continuous functions and on 3a, b 4f 1x 2 $ g 1x 2eb
a 3

 
f 1x 2 2 g 1x 2 4 dx,

3a, b 4eb
a  

 f 1x 2  dx 5 F 1x 2 1 ba 5 F 1b 2 2 F 1a 2 ,

3

b

a

f 1x 2  dx 5 23

a

b

f 1x 2  dx

3

b

a

f 1x 2  dx 5 3

c

a

f 1x 2  dx 1 3

b

c

f 1x 2  dx,

3

b

a

3f 1x 2 6 g 1x 2 4 dx 5 3

b

a

f 1x 2  dx 6 3

b

a

g 1x 2  dx

3

b

a

k . f 1x 2  dx 5 k3

b

a

f 1x 2  dx,

3

a

a

f 1x 2  dx 5 0

F 1x 2
3a, b 4,

xiDx 5 1b 2 a 2 /neb
a  

 f 1x 2  dx 5 lim
nl` 

 g
n

i51
 f 1xi 

2Dx,

3ekx dx 5
ekx

k
1 C, k 2 0

3x21 dx 5 ln 0 x 0 1 Cx21

3 3f 1x 2 6 g 1x 2 4 dx 5 3f 1x 2  dx 6 3g 1x 2  dx

3k . f 1x 2  dx 5 k3f 1x 2  dx,

3xn dx 5
xn11

n 1 1
1 C, n 2 21

7 CHAPTER REVIEW
SUMMARY
Earlier chapters dealt with the derivative, one of the two main
ideas of calculus. This chapter deals with integration, the second
main idea. There are two aspects of integration. The first is
indefinite integration, or finding an antiderivative; the second is
definite integration, which can be used to find the area under a
curve. The Fundamental Theorem of Calculus unites these two

ideas by showing that the way to find the area under a curve is to
use the antiderivative. Substitution is a technique for finding
antiderivatives. Numerical integration can be used to find the
definite integral when finding an antiderivative is not feasible.
The idea of the definite integral can also be applied to finding
the area between two curves.
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Consumers’ Surplus where D is the demand function and and are the equilibrium price and
demand

Producers’ Surplus where S is the supply function and and are the equilibrium price and supply

Trapezoidal Rule

Simpson’s Rule 3

b

a

f 1x 2  dx < a
b 2 a

3n
b 3f 1x0 

2 1 4f 1x1 
2 1 2f 1x2 

2 1 ) 1 4f 1xn21 
2 1 f 1xn 

2 4

3

b

a

f 1x 2  dx < a
b 2 a

n
b c

1

2
 f 1x0 

2 1 f 1x1 
2 1 ) 1 f 1xn21 

2 1
1

2
 f 1xn 

2 d

q0p0e q
0

0 3p0 2 S 1q 2 4 dq,

q0p0eq0

0  3D 1q 2 2 p0 
4 dq,

KEY TERMS
7.1
antidifferentiation
antiderivative
integral sign
integrand
indefinite integral

7.2
integration by substitution

7.3
midpoint rule
definite integral
limits of integration
total change

7.4
Fundamental Theorem

of Calculus

7.5
consumers’ surplus
producers’ surplus

7.6
numerical integration
trapezoidal rule
Simpson’s rule

REVIEW EXERCISES

CONCEPT CHECK
Determine whether each of the following statements is true or
false, and explain why.

1. The indefinite integral is another term for the family of all
antiderivatives of a function.

2. The indefinite integral of is for all real
numbers n.

3. The indefinite integral is equal to . 

4. The velocity function is an antiderivative of the acceleration
function.

5. Substitution can often be used to turn a complicated integral
into a simpler one.

6. The definite integral gives the instantaneous rate of change of
a function.

7. The definite integral gives an approximation to the area under
a curve.

8. The definite integral of a positive function is the limit of the
sum of the areas of rectangles.

9. The Fundamental Theorem of Calculus gives a relationship
between the definite integral and an antiderivative of a 
function.

10. The definite integral of a function is always a positive 
quantity.

11. The area between two distinct curves is always a positive
quantity.

12. The consumers’ surplus and the producers’ surplus equal each
other.

x3f 1x 2  dx3xf 1x 2  dx

xn11 / 1n 1 1 2 1 Cxn

15. Explain the differences between an indefinite integral and a
definite integral.

16. Explain under what circumstances substitution is useful in
integration.

17. Explain why the limits of integration are changed when u is
substituted for an expression in x in a definite integral.

18. Describe the type of integral for which numerical integration
is useful.

In Exercises 19–40, find each indefinite integral.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. 29.

30. 31. 32. 32xex2

 dx3xe3x2

 dx35e2x dx

323e2x dx3  
5

x4 dx3  
24

x3  dx

3 12x4/3 1 x21/2 2  dx3 1x1/2 1 3x22/3 2  dx

3  
!x

2
 dx33!x dx

3 1 6 2 x2 2  dx3 1x2 2 3x 1 2 2  dx

3 1 5x 2 1 2  dx3 12x 1 3 2  dx

PRACTICE AND EXPLORATION

13. In the trapezoidal rule, the number of subintervals must be even.

14. Simpson’s rule usually gives a better approximation than the
trapezoidal rule.
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33. 34.

35. 36.

37. 38.

39. 40.

41. Let and

Find .

42. Find for each graph of 

a. b.

y 5 f 1x 2 .e4
0  f 1x 2  dx

g
5

i51
 f 1xi 2x5 5 3.

x4 5 2,x3 5 1,x2 5 0,x1 5 21,f 1x 2 5 3x 1 1,

3
"5 ln x 1 3

x
 dx3

1 3 ln x 1 2 24

x
 dx

3e3x214x dx3  
x3

e3x4 dx

3 1x2 2 5x24 12x 2 5 2  dx3  
x2

 dx

1x3 1 5 24

3
2x

2 2 x2 dx3  
3x

x2 2 1
 dx

56. Use the substitution and the equation of a semicircle to
evaluate

In Exercises 57 and 58, use substitution to change the integral
into one that can be evaluated by a formula from geometry,
and then find the value of the integral.

57. 58.

In Exercises 59–62, find the area between the x-axis and 
over each of the given intervals.

59.

60.

61.

62.

Find the area of the region enclosed by each group of curves.

63.

64.

65.

66.

Use the trapezoidal rule with to approximate the value
of each integral. Then find the exact value and compare the
two answers.

67. 68.

69. 70.

Use Simpson’s rule with to approximate the value of
each integral. Compare your answers with the answers to
Exercises 67–70.

71. 72.

73. 74.

75. Find the area of the region between the graphs of 
and from to in three ways.

a. Use antidifferentiation.

b. Use the trapezoidal rule with 

c. Use Simpson’s rule with 

76. Find the area of the region between the graphs of 

and from x � 0 to x � 4 in three ways.

a. Use antidifferentiation.

b. Use the trapezoidal rule with n � 4.

c. Use Simpson’s rule with n � 4.

y 5
x 1 2

2

y 5
1

x 1 1

n 5 4.

n 5 4.

x 5 5x 5 12y 5 x 2 1
y 5 "x 2 1

3

2

0

xe2x2

dx3

1

0

ex"ex 1 4 dx

3

10

2

 
x dx

x 2 13

3

1

 

ln x

x
 dx

n 5 4

3

2

0

x e2x2

dx3

1

0

ex"ex 1 4 dx

3

10

2

 

x dx

x 2 13

3

1

 

ln x

x
 dx

n 5 4

f 1x 2 5 5 2 x2, g 1x 2 5 x2 2 3, x 5 0, x 5 4

f 1x 2 5 x2 2 4x, g 1x 2 5 x 1 6, x 5 22, x 5 4

f 1x 2 5 x2 2 4x, g 1x 2 5 x 2 6

f 1x 2 5 5 2 x2, g 1x 2 5 x2 2 3

f 1x 2 5 1 1 e2x; 30, 4 4

f 1x 2 5 xex2

; 30, 2 4
f 1x 2 5 1 3x 1 2 2 6; 322, 0 4
f 1x 2 5 "4x 2 3; 31, 3 4

f 1x 2

3

"7

1

  2x"36 2 1x2 2 1 2 2 dx3

e5

1

 
"25 2 1 ln x 2 2

x
  dx

3

"2

0

4x"4 2 x4dx.

u 5 x2

y

x0

1

1

y

x0

1

2

3

43. Approximate the area under the graph of and
above the x-axis from to using four rectangles.
Let the height of each rectangle be the function value on the
left side.

44. Find by using the formula for the area of a
trapezoid: where B and b are the lengths
of the parallel sides and h is the distance between them. Com-
pare with Exercise 43.

45. In Exercises 29 and 30 of the section on Area and the Definite
Integral, you calculated the distance that a car traveled by esti-
mating the integral 

a. Let represent the mileage reading on the odometer.
Express the distance traveled between and 
using the function 

b. Since your answer to part a and the original integral both
represent the distance traveled by the car, the two can be set
equal. Explain why the resulting equation is a statement of
the Fundamental Theorem of Calculus.

46. What does the Fundamental Theorem of Calculus state?

Find each definite integral.

47. 48.

49. 50.

51. 52.

53. 54.

55. Use the substitution and the equation of a semicircle
to evaluate

3

1/2

0

x"1 2 16x4 dx.

u 5 4x2

3

5

1

 
5

2
 e0.4x dx3

2

0

3e22x dx

3

2

0

x2 1 3x3 1 1 2 1/3 dx3

1

0

x"5x2 1 4  dx

3

3

1

12x21 1 x22 2  dx3

5

1

1 3x21 1 x23 2  dx

3

6

1

12x2 1 x 2  dx3

2

1

1 3x2 1 5 2  dx

s 1 t 2 .
t 5 Tt 5 0

s 1 t 2
eT

0  v 1 t 2  dt.

1 1 /2 2 1B 1 b 2h,A 5
e4

0  12x 1 3 2  dx

x 5 4x 5 0
f 1x 2 5 2x 1 3
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77. Let 

a. Find using the trapezoidal rule with 

b. Find using Simpson’s rule with 

c. Without evaluating explain why your answers
to parts a and b cannot possibly be correct.

d. Explain why the trapezoidal rule and Simpson’s rule with
give incorrect answers for with this

function.

78. Given and calculate

Choose one of the following. Source: Society

of Actuaries.

a. b. 3 c. 4 d. 6 e. 8

APPLICATIONS
Business and Economics

Cost Find the cost function for each of the marginal cost functions
in Exercises 79 and 80.

79. 13 units cost $270.

80. fixed cost is $18. 

81. Investment The curve shown gives the rate that an investment
accumulates income (in dollars per year). Use rectangles of width
2 units and height determined by the function value at the mid-
point to find the total income accumulated over 10 years.

C r 1x 2 5
8

2x 1 1
 ;

C r 1x 2 5 3"2x 2 1;

3 /2

3

2

0

 f 12x 2  dx.

3

4

2

f 1x 2  dx 5 5,3

2

0

f 1x 2  dx 5 3

e2
22 f 1x 2  dxn 5 4

e2
22 f 1x 2  dx,

n 5 4.e2
22 f 1x 2  dx

n 5 4.e2
22 f 1x 2  dx

f1x 2 5 3x1x 2 1 2 1x 1 1 2 1x 2 2 2 1x 1 2 2 42. 84. Productivity The function defined by

approximates marginal U.S. nonfarm productivity from
2000–2009. Productivity is measured as total output per hour
compared to a measure of 100 for 2000, and x is the number of
years since 2000. Source: Bureau of Labor Statistics.

a. Give the function that describes total productivity in year x.

b. Use your function from part a to find productivity at the end
of 2008. In 2009, productivity actually measured 122.3.
How does your value using the function compare with this?

85. Producers’ and Consumers’ Surplus Suppose that the supply
function for some commodity is

and the demand function for the commodity is

a. Find the producers’ surplus.

b. Find the consumers’ surplus.

86. Net Savings A company has installed new machinery that will
produce a savings rate (in thousands of dollars per year) of

where x is the number of years the machinery is to be used.
The rate of additional costs (in thousands of dollars per year)
to the company due to the new machinery is expected to be

For how many years should the company use the new ma-
chinery? Find the net savings (in thousands of dollars) over this
period.

87. Oil Production The following table shows the amount of crude
oil (in billions of barrels) produced in the United States in
recent years. Source: U.S. Energy Information Administration.

C r 1x 2 5 x2 1 25x 1 150.

S r 1x 2 5 225 2 x2,

D 1q 2 5 350 2 q2.

S 1q 2 5 q2 1 5q 1 100

f r 1x 2 5 2 0.1624x 1 3.4909
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82. Utilization of Reserves A manufacturer of electronic equip-
ment requires a certain rare metal. He has a reserve supply of
4,000,000 units that he will not be able to replace. If the rate at
which the metal is used is given by

where t is time (in years), how long will it be before he uses up
the supply? (Hint: Find an expression for the total amount used
in t years and set it equal to the known reserve supply.) 

83. Sales The rate of change of sales of a new brand of tomato
soup (in thousands of dollars per month) is given by 

where x is the time (in months) that the new product has been
on the market. Find the total sales after 4 months. 

S r 1x 2 5 3"2x 1 1 1 3,

f 1 t 2 5 100,000e0.03t,

Year Crude Oil Produced

2000 2.131

2001 2.118

2002 2.097

2003 2.073

2004 1.983

2005 1.890

2006 1.862

2007 1.848

2008 1.812

2009 1.938

In this exercise we are interested in the total amount of crude oil
produced over the 9-year period from mid-2000 to mid-2009,
using the data for the 10 years above.
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a. One approach is to sum up the numbers in the second col-
umn, but only count half of the first and last numbers. Give
the answer to this calculation.

b. Approximate the amount of crude oil produced over the 9-year
period 2000–2009 by taking the average of the left endpoint
sum and the right endpoint sum. Explain why this is equivalent
to the calculation done in part a. 

c. Explain why the answer from part a is the same as using the
trapezoidal rule to approximate the amount of crude oil pro-
duced over the 9-year period 2000–2009.

d. Find the equation of the least squares line for this data, let-
ting correspond to 2000. Then integrate this equation
over the interval [0, 9] to estimate the amount of crude oil
produced over this time period. Compare with your answer
to part a.

88. Inventory At time a store has 19 units of a product in
inventory. The cumulative number of units sold is given by

, where t is measured in weeks. The inventory
will be replenished when it drops to 1 unit. The cost of carrying
inventory until then is 15 per unit per week (prorated for a por-
tion of a week). Calculate the inventory carrying cost that will be
incurred before the inventory is replenished. Choose one of the
following. Source: Society of Actuaries.

a. 90 b. 199 c. 204 d. 210 e. 294

Life Sciences

89. Population Growth The rate of change of the population of a
rare species of Australian spider for one year is given by

where is the number of spiders present at time t (in
months). Find the total number of additional spiders in the first
10 months. 

90. Infection Rate The rate of infection of a disease (in people per
month) is given by the function

where t is the time (in months) since the disease broke out.
Find the total number of infected people over the first four
months of the disease. 

91. Insect Cannibalism In certain species of flour beetles, the larvae
cannibalize the unhatched eggs. In calculating the population can-
nibalism rate per egg, researchers needed to evaluate the integral

where A is the length of the larval stage and is the canni-
balism rate per egg per larva of age x. The minimum value of A
for the flour beetle Tribolium castaneum is 17.6 days, which is
the value we will use. The function starts at day 0 with a
value of 0, increases linearly to the value 0.024 at day 12, and
then stays constant. Source: Journal of Animal Ecology. Find
the values of the integral using 

a. formulas from geometry;

b. the Fundamental Theorem of Calculus.

c 1x 2

c 1x 2

3

A

0

c 1x 2  dx,

I r 1 t 2 5
100t

t2 1 1
 ,

f 1 t 2
f r 1 t 2 5 100 2 t"0.4t2 1 1,

S 1 t 2 5 e3 t 2 1

t 5 0,

x 5 0

92. Insulin in Sheep A research group studied the effect of a large
injection of glucose in sheep fed a normal diet compared with
sheep that were fasting. A graph of the plasma insulin levels (in
pM—pico molars, or of a molar) for both groups is
shown below. The red graph designates the fasting sheep and
the green graph the sheep fed a normal diet. The researchers
compared the area under the curves for the two groups.
Source: Endocrinology.
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a. For the fasting sheep, estimate the area under the curve
using rectangles, first by using the left endpoints, then the
right endpoints, and then averaging the two. Note that the
width of the rectangles will vary.

b. Repeat part a for the sheep fed a normal diet.

c. How much higher is the area under the curve for the fasting
sheep compared with the normal sheep?

93. Milk Production Researchers report that the average amount
of milk produced (in kilograms per day) by a 4- to 5-year-old
cow weighing 700 kg can be approximated by

where t is the number of days into lactation. Source: Journal
of Dairy Science.

a. Approximate the total amount of milk produced from to
using the trapezoidal rule with 

b. Repeat part a using Simpson’s rule with 

c. Repeat part a using the integration feature of a graphing cal-
culator, and compare your answer with the answers to parts
a and b.

Social  Sciences

94. Automotive Accidents The table on the next page shows the
amount of property damage (in dollars) due to automobile
accidents in California in recent years. In this exercise we are
interested in the total amount of property damage due to auto-
mobile accidents over the 8-year period from mid-2000 to mid-
2008, using the data for the 9 years. Source: The California
Highway Patrol.

a. One approach is to sum up the numbers in the second col-
umn, but only count half of the first and last numbers. Give
the answer to this calculation.

b. Approximate the amount of property damage over the 8-year
period 2000–2008 by taking the average of the left endpoint
sum and the right endpoint sum. Explain why this is equiva-
lent to the calculation done in part a.

n 5 8.

n 5 8.t 5 321
t 5 1

y 5 1.87t1.49e20.189 1ln t22,
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c. Explain why the answer from part a is the same as using the
trapezoidal rule to approximate the amount of property dam-
age over the 8-year period 2000–2008.

d. Find the equation of the least squares line for this data, let-
ting correspond to 2000. Then integrate this equation
over the interval [0, 8] to estimate the amount of property
damage over this time period. Compare with your answer to
part a.

Physical  Sciences

95. Linear Motion A particle is moving along a straight line with
velocity Its distance from the starting point
after 3 seconds is 8 cm. Find the distance of the particle
from the starting point after t seconds.

s 1 t 2 ,
v 1 t 2 5 t2 2 2t.

x 5 0

Year Property Damage ($)

2000 309,569

2001 317,567

2002 335,869

2003 331,055

2004 331,208

2005 330,195

2006 325,453

2007 313,357

2008 278,986

E X T E N D E D APPLICATION

t is becoming more and more obvious that the earth contains only
a finite quantity of minerals. The “easy and cheap” sources of
minerals are being used up, forcing an ever more expensive

search for new sources. For example, oil from the North Slope of
Alaska would never have been used in the United States during the
1930s because a great deal of Texas and California oil was readily
available.

We said in an earlier chapter that population tends to follow an
exponential growth curve. Mineral usage also follows such a curve.
Thus, if q represents the rate of consumption of a certain mineral at
time t, while represents consumption when then

where k is the growth constant. For example, the world consump-
tion of petroleum in 1970 was 16,900 million barrels. During this
period energy use was growing rapidly, and by 1975 annual world
consumption had risen to 21,300 million barrels. We can use these
two values to make a rough estimate of the constant k, and we find
that over this 5-year span the average value of k was about 0.047,
representing 4.7% annual growth. If we let correspond to the
base year 1970, then

q 5 16,900e0.047t

t 5 0

q 5 q0 ekt,

t 5 0,q0

ESTIMATING DEPLETION DATES FOR MINERALS

is the rate of consumption at time t, assuming that all the trends of
the early 1970s have continued. In 1970 a reasonable guess would
have put the total amount of oil in provable reserves or likely to be
discovered in the future at 1,500,000 million barrels. At the
1970–1975 rate of consumption, in how many years after 1970
would you expect the world’s reserves to be depleted? We can use
the integral calculus of this chapter to find out. Source: Energy
Information Administration.

To begin, we need to know the total quantity of petroleum that
would be used between time and some future time 
Figure 34 on the following page shows a typical graph of the func-
tion 

Following the work we did in Section 3, divide the time inter-
val from to into n subintervals. Let each subinterval
have width Let the rate of consumption for the ith subinterval
be approximated by Thus, the approximate total consumption
for the subinterval is given by

and the total consumption over the interval from time to
is approximated by

a

n

i51

q*
i  

. Dt.

t 5 T
t 5 0

q*
i  

. Dt,

q*
i  .

Dt.
t 5 Tt 5 0

q 5 q0 ekt.

t 5 T.t 5 0

I



The limit of this sum as approaches 0 gives the total consump-
tion from time to That is,

We have seen, however, that this limit is the definite integral of the
function from to or

We can now evaluate this definite integral.

(1)

Now let us return to the numbers we gave for petroleum. We said
that million barrels, where represents consumption
in the base year of 1970. We have with total petroleum
reserves estimated at 1,500,000 million barrels. Thus, using Equa-
tion (1) we have

Multiply both sides of the equation by 0.047.

70,500 5 16,900 1 e0.047T 2 1 2

1,500,000 5
16,900

0.047
 1 e0.047T 2 1 2 .

k 5 0.047
q0q0 5 16,900

 5
q0

k
1 ekT 2 1 2
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k
 ekT 2
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k
 1 1 2
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q0
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 ekt `
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0

5
q0

k
 ekT 2

q0
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 e0

 3
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0

q0 ekt dt 5 q0 3

T

0

ekt dt 5 q0 a
ekt

k
b `

T

0

Total consumption 5 3

T

0

q0 ekt dt.

t 5 T,t 5 0q 5 q0 ekt
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Dtl0a
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t 5 T.t 5 0
Dt

q

t0 t = 0 t = TΔt
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q = q  e
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0
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FIGURE 34
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Divide both sides of the equation by 16,900.

Add 1 to both sides.

Take natural logarithms of both sides.

Finally,

By this result, petroleum reserves would only last 35 years after
1970, that is, until about 2005.

In fact, in the early 1970s some analysts were predicting that
reserves would be exhausted before the end of the century, and this
was a reasonable guess. But since 1970, more reserves have been
discovered. One way to refine our model is to look at the historical
data over a longer time span. The following table gives average
world annual petroleum consumption in millions of barrels at
5-year intervals from 1970 to 2000. Source: Energy Information
Administration.

T 5
ln 5.2

0.047
< 35.

 5 0.047T

 ln 5.2 5 ln e0.047T

5.2 5 e0.047T

4.2 5 e0.047T 2 1

1970 16,900

1975 21,300

1980 22,900

1985 22,200

1990 24,300

1995 25,700

2000 27,900

2005 30,400

World Consumption 
Year (in millions of barrels)

The first step in comparing this data with our exponential model is
to estimate a value for the growth constant k. One simple way of
doing this is to solve the equation

Using natural logarithms just as we did in estimating the time to
depletion for we find that

k 5

ln a
30,400

16,900
b

35
< 0.017.

k 5 0.036,

30,400 5 16,900 . ek .35.



So the data from the Bureau of Transportation Statistics suggests a
growth constant of about 1.7%. We can check the fit by plotting the
function along with a bar graph of the consumption
data, shown in Figure 35. The fit looks reasonably good, but over
this short range of 35 years, the exponential model is close to a lin-
ear model, and the growth in consumption is certainly not smooth.

The exponential model rests on the assumption of a constant
growth rate. As already noted, we might expect instead that the
growth rate would change as the world comes closer to exhausting
its reserves. In particular, scarcity might drive up the price of oil
and thus reduce consumption. We can use integration to explore an
alternative model in which the factor k changes over time, so that k
becomes a function of time.

As an illustration, we explore a model in which the growth con-
stant k declines toward 0 over time. We’ll use 1970 as our base year,
so the variable t will count years since 1970. We need a simple posi-
tive function that tends toward 0 as t gets large. To get some
numbers to work with, assume that the growth rate was 2% in 1970
and declined to 1% by 1995. There are many possible choices for the
function but a convenient one is

Using integration to turn the instantaneous rate of consumption
into the total consumption up to time T, we can write

We’d like to find out when the world will use up its estimated
reserves, but as just noted, the estimates have increased since the
1970s. It is estimated that the current global petroleum reserves are
3,000,000 million barrels. Source: Geotimes. So we need to solve

(2)3,000,000 5 16,9003

T

0

e0.5t/1t1252 dt

5 16,9003

T

0

e0.5t/1t1252 dt.

 Total consumption 5 16,9003

T

0

ek1t2 .t dt

k 1 t 2 5
0.5

t 1 25
 .

k 1 t 2 ,

k 1 t 2

k 1 t 2 ,

16,900 . e0.017t

But this problem is much harder to solve than the corresponding
problem for constant growth, because there is no formula for eval-
uating this definite integral! The function

doesn’t have an antiderivative that we can write down in terms of
functions that we know how to compute.

Here the numerical integration techniques discussed in Section
6 come to the rescue. We can use one of the integration rules to
approximate the integral numerically for various values of T, and
with some trial and error we can estimate how long the reserves
will last. If you have a calculator or computer algebra system that
does numerical integration, you can pick some T values and evalu-
ate the right-hand side of Equation (2). Here are the results pro-
duced by one computer algebra system:

For the integral is about 2,797,000.

For the integral is about 3,053,000.

For the integral is about 3,311,000.

So using this model we would estimate that starting in 1970 the
petroleum reserves would last for about 130 years, that is, until 2100.

Our integration tools are essential in building and exploring
models of resource use, but the difference in our two predictions
(35 years vs. 130 years) illustrates the difficulty of making accurate
predictions. A model that performs well on historical data may not
take the changing dynamics of resource use into account, leading
to forecasts that are either unduly gloomy or too optimistic.

EXERCISES
1. Find the number of years that the estimated petroleum

reserves would last if used at the same rate as in the base year.

2. How long would the estimated petroleum reserves last if the
growth constant was only 2% instead of 4.7%?

Estimate the length of time until depletion for each mineral.

3. Bauxite (the ore from which aluminum is obtained): estimated
reserves in base year 15,000,000 thousand tons; rate of consump-
tion in base year 63,000 thousand tons; growth constant 6%

4. Bituminous coal: estimated world reserves 2,000,000 million
tons; rate of consumption in base year 2200 million tons;
growth constant 4%

5. a. Verify that the function defined on the previous page
has the right values at and

b. Find a similar function that has and 

6. a. Use the function you defined in Exercise 5 b to write an
integral for world petroleum consumption from 1970 until
T years after 1970.

b. If you have access to a numerical integrator, compute some
values of your integral and estimate the time required to
exhaust the reserve of 3,000,000 million barrels.

0.02.
k 125 2 5k 10 2 5 0.03

k 5 25.k 5 0
k 1 t 2

T 5 140

T 5 130

T 5 120

g 1 t 2 5 e0.5t/1t1252
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7. A reasonable assumption is that over time scarcity might drive
up the price of oil and thus reduce consumption. Comment on
the fact that the rate of oil consumption actually increased in
2002, connecting current events and economic forecasts to the
short-term possibility of a reduction in consumption.

8. Develop a spreadsheet that shows the time to exhaustion for
various values of k.

9. Go to the website WolframAlpha.com and enter “integrate.”
Follow the instructions to find the time to exhaustion for vari-
ous values of k. Discuss how the solution compares with the
solutions provided by a graphing calculator and by Microsoft
Excel.

DIRECTIONS FOR GROUP PROJECT
Suppose that you and three other students are spending a summer
as interns for a local congresswoman. During your internship you
realize that the information contained in your calculus class could
be used to help with a new bill under consideration. The primary
purpose of the bill is to require, by law, that all cars manufactured
after a certain date get at least 60 miles per gallon of gasoline. Pre-
pare a report that uses the information above to make a case for or
against a bill of this nature.
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Further Techniques and
Applications of Integration

8.1 Integration by Parts

8.2 Volume and Average Value

8.3 Continuous Money Flow

8.4 Improper Integrals

Chapter 8 Review

Extended Application: Estimating Learning
Curves in Manufacturing with Integrals

It might seem that definite integrals with infinite limits

have only theoretical interest, but in fact these improper

integrals provide answers to many practical questions.

An example in Section 4 models an environmental

cleanup process in which the amount of pollution entering

a stream decreases by a constant fraction each year.

An improper integral gives the total amount of pollutant

that will ever enter the river.

8
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CHAPTER 8 Further Techniques and Applications of Integration426

APPLY IT

Integration by Parts
If we know the rate of growth of a patch of moss, how can we calculate
the area the moss covers?

8.1

In the previous chapter we discussed indefinite and definite integrals and presented rules
for finding the antiderivatives of several types of functions.We showed how numerical
methods can be used for functions that cannot be integrated by the techniques presented

there. In this chapter we develop additional methods of integrating functions. We also show
how to evaluate an integral that has one or both limits at infinity. These new techniques
allow us to consider additional applications of integration such as volumes of solids of
revolution, the average value of a function, and continuous money flow.

We will use integration by parts to answer this question in Exercise 42.

The technique of integration by parts often makes it possible to reduce a complicated
integral to a simpler integral. We know that if u and v are both differentiable functions, then
uv is also differentiable and, by the product rule for derivatives,

This expression can be rewritten, using differentials, as

Integrating both sides of this last equation gives

or

Rearranging terms gives the following formula.

uv 5 3u dv 1 3v du.

3d 1 uv 2 5 3u dv 1 3v du,

d 1 uv 2 5 u dv 1 v du.

d 1 uv 2
dx

5 u  

dv

dx
1 v  

du

dx
 .

The process of finding integrals by this formula is called integration by parts. There are
two ways to do integration by parts: the standard method and column integration. Both
methods are illustrated in the following example.

Integration by Parts

Find 

SOLUTION

Although this integral cannot be found by using any method studied so far, it can be
found with integration by parts. First write the expression as a product of two
functions u and dv in such a way that can be found. One way to do this is to chooseedv

xe5x dx

exe5x dx.

Integration by Parts
If u and v are differentiable functions, then

3u dv 5 uv 2 3v du.

EXAMPLE  1

Method 1
Standard Method
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the two functions x and Both x and can be integrated, but which is is
more complicated than x itself, while the derivative of x is 1, which is simpler than x. Since

remains the same (except for the coefficient) whether it is integrated or differentiated, it
is best here to choose

Then

and v is found by integrating dv:

We need not introduce the constant of integration until the last step, because only one con-
stant is needed. Now substitute into the formula for integration by parts and complete the
integration.

Factor out .

The constant C was added in the last step. As before, check the answer by taking its
derivative.

A technique called column integration, or tabular integration, is equivalent to integration
by parts but helps in organizing the details.* We begin by creating two columns. The first
column, labeled D, contains u, the part to be differentiated in the original integral. The second
column, labeled I, contains the rest of the integral: that is, the part to be integrated, but
without the dx. To create the remainder of the first column, write the derivative of the func-
tion in the first row underneath it in the second row. Now write the derivative of the func-
tion in the second row underneath it in the third row. Proceed in this manner down the first
column, taking derivatives until you get a 0. Form the second column in a similar manner,
except take an antiderivative at each row, until the second column has the same number of
rows as the first.

To illustrate this process, consider our goal of finding Here so is
left for the second column. Taking derivatives down the first column and antiderivatives
down the second column results in the following table.

e5xu 5 x,exe5x dx.

e5x/25 5
e5x

25
 1 5x 2 1 2 1 C

 5
xe5x

5
2

e5x

25
1 C

duvvudvu
()*()*()*

 3xe5x dx 5 xa
e5x

5
b 2 3  

e5x

5
 dx

 3u dv 5 uv 2 3v du

v 5 3dv 5 3e5x dx 5
e5x

5
 .

du 5 dx,

dv 5 e5x dx  and  u 5 x.

e5x

x2 /2,ex dx,e5xe5x.

*This technique appeared in the 1988 movie Stand and Deliver.

Method 2
Column Integration

D I

x

1

0 e5x /25

e5x /5

e5x

FOR REVIEW
In Section 7.2 on Substitution, we
pointed out that when the chain
rule is used to find the derivative
of the function we multiply
by k, so when finding the anti-
derivative of we divide by k.
Thus 
Keeping this technique in mind
makes integration by parts simpler.

ee5x dx 5 e5x /5 1 C.
ekx,

ekx,
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Next, draw a diagonal line from each term (except the last) in the left column to the term in
the row below it in the right column. Label the first such line with “ ”, the next with “ ”,
and continue alternating the signs as shown.

21

Then multiply the terms on opposite ends of each diagonal line. Finally, sum up the prod-
ucts just formed, adding the “ ” terms and subtracting the “ ” terms.

Factor out .

Compare these steps with those of Method 1 and convince yourself that the process is
the same.

TRY YOUR TURN 1

e5x/25 5
e5x

25
 1 5x 2 1 2 1 C

 5
xe5x

5
2

e5x

25
1 C

 3xe5x dx 5 x 1 e5x /5 2 2 1 1 e5x /25 2 1 C

21

Integration by Parts

Find for 

SOLUTION

No rule has been given for integrating so choose

Then

and, since we have

" " ()*

 5 x ln x 2 x 1 C.

 5 x ln x 2 3  dx

 3ln x dx 5 x ln x 2 3x . 1
x

 dx

uv 5 vu,

v 5 x  and  du 5
1
x

 dx,

dv 5 dx  and  u 5 ln x.

ln x,

x . 0.eln x dx

D I

x
1
0 e5x /25

e5x /52

e5x1

YOUR TURN 1
Find exe22x

 dx.

Conditions for Integration by Parts
Integration by parts can be used only if the integrand satisfies the following conditions.

1. The integrand can be written as the product of two factors, u and dv.

2. It is possible to integrate dv to get v and to differentiate u to get du.

3. The integral can be found.ev du

EXAMPLE  2

Method 1
Standard Method

u dv v � u v � du
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Column integration works a little differently here. As in Method 1, choose as the part
to differentiate. The part to be integrated must be 1. (Think of as No matter
how many times is differentiated, the result is never 0. In this case, stop as soon as the
natural logarithm is gone.

ln x
1 . ln x.)ln x

ln x

Draw diagonal lines with alternating and as before. On the last line, because the left
column does not contain a 0, draw a horizontal line.

21

The presence of a horizontal line indicates that the product is to be integrated, just as the
original integral was represented by the first row of the two columns.

Note that when setting up the columns, a horizontal line is drawn only when a 0 does not
eventually appear in the left column.

TRY YOUR TURN 2

Sometimes integration by parts must be applied more than once, as in the next
example.

Integration by Parts

Find 

SOLUTION

Choose

Then

Substitute these values into the formula for integration by parts.

Now apply integration by parts to the last integral, letting

dv 5 e23x dx  and  u 5 x,

5 2 12x2 1 5 2 a
e23x

3
b 1

4

33
xe23x dx

 3 12x2 1 5 2e23x dx 5 12x2 1 5 2 a
2e23x

3
b 2 3 a

2e23x

3
b4x dx

 3u dv 5 uv 2 3v du

v 5
2e23x

3
  and  du 5 4x dx.

dv 5 e23x dx  and  u 5 2x2 1 5.

e 12x2 1 5 2e23x dx.

 5 x ln x 2 x 1 C.

 5 x ln x 2 3  dx

 3ln x dx 5 1 ln x 2x 2 3  
1
x

. x dx

1

x21 /x

1ln x

D I

EXAMPLE  3

Method 1
Standard Method

YOUR TURN 2
Find eln 2x dx.

Method 2
Column Integration

D I

ln x 1

x1 /x
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so

Choose � 5 as the part to be differentiated, and put in the integration column.e23x2x2

5 1218x2 2 12x 2 49 2  

e23x

27
1 C

5 32 12x2 1 5 2 1 9 2 2 4x 1 3 2 2 4 4  
e23x

27
1 C

5 2 12x2 1 5 2 a
e23x

3
 b 2

4

9
 xe23x 2

4

27
 e23x 1 C

5 2 12x2 1 5 2 a
e23x

3
 b 1

4

3
c2 

x

3
 e23x 2 a

e23x

9
b d 1 C

5 2 12x2 1 5 2 a
e23x

3
b  1

4

3
cxa

2e23x

3
b 2 3 a

2e23x

3
b dx d

 3 12x2 1 5 2e23x dx 5 2 12x2 1 5 2 a  

e23x

3
 b 1

4

3
 3xe23x dx

v 5
2e23x

3
  and  du 5 dx.

Factor out .

Simplify.

e23x /27

Multiplying and adding as before yields

.

TRY YOUR TURN 3

With the functions discussed so far in this book, choosing u and dv (or the parts to be differ-
entiated and integrated) is relatively simple. In general, the following strategy should be used.

First see if the integration can be performed using substitution. If substitution does not
work:

■ See if ln x is in the integral. If it is, set u � ln x and dv equal to the rest of the integral.
(Equivalently, put ln x in the D column and the rest of the function in the I column.)

■ If ln x is not present, see if the integral contains xk, where k is any positive integer, or any
other polynomial. If it does, set u � xk (or the polynomial) and dv equal to the rest of the
integral. (Equivalently, put xk in the D column and the rest of the function in the I column.)

Definite Integral

Find 

SOLUTION First find the indefinite integral using integration by parts by the standard
method. (You may wish to verify this using column integration.) Whenever ln x is present,
it is selected as u, so let

u 5 ln x  and  dv 5
1

x2 dx.

3

e

1

 
ln x

x2  dx.

5 1218x2 2 12x 2 49 2  

e23x

27
1 C

 3 12x2 1 5 2e23x dx 5 12x2 1 5 2 12e23x /3 2 2 4x 1 e23x /9 2 1 4 12e23x /27 2 1 C

Method 2
Column Integration

� 5

4x

4

0 2e23x /27

e23x /91

2e23x /32

e23x12x2

D I

EXAMPLE  4

YOUR TURN 3

Find 3 1 3x2 1 4 2e2x dx.
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Then

Substitute these values into the formula for integration by parts, and integrate the second
term on the right.

Now find the definite integral.

TRY YOUR TURN 4

Definite integrals can be found with a graphing calculator using the function integral feature or by
finding the area under the graph of the function between the limits. For example, using the fnInt
feature of the TI-84 Plus calculator to find the integral in Example 4 gives 0.2642411177. Using the
area under the graph approach gives 0.26424112, the same result rounded.

Many integrals cannot be found by the methods presented so far. For example, con-
sider the integral

Substitution of will not help, because , and there is no x in the
numerator of the integral. We could try integration by parts, using and

Integration gives and differentiation gives ,
with

The integral on the right is more complicated than the original integral, however. A second
use of integration by parts on the new integral would only make matters worse. Since we
cannot choose because it cannot be integrated by the methods studied
so far, integration by parts is not possible for this problem.

This integration can be performed using one of the many techniques of integration
beyond the scope of this text.* Tables of integrals can also be used, but technology is rapidly

dv 5 14 2 x2 221 dx

3  
1

4 2 x2 dx 5
x

4 2 x2 2 3  
2x2

14 2 x2 2 2
 dx.

du 5 2x dx / 14 2 x2 2 2v 5 xu 5 14 2 x2 221.
dv 5 dx

du 5 22x dxu 5 4 2 x2

3  
1

4 2 x2 dx.

 5
22
e

1 1 < 0.2642411177

 5 a
21 2 1

e
b 2 a

0 2 1

1
b

 3

e

1

 
ln x

x2  dx 5
2ln x 2 1

x
`
e

1

 5
2ln x 2 1

x
1 C

 5 2 

ln x
x

2
1
x

1 C

 5 2 

ln x
x

1 3  
1

x2 dx

 3  
ln x

x2  dx 5 1 ln x 2  

21
x

2 3 a2 

1
x

. 1
x
b dx

 3u dv 5 uv 2 3v du

du 5
1
x

 dx  and  v 5 2 

1
x

 .

FOR REVIEW
Recall that 

so 
121 2 1 Cx21 /ex22 dx 5

e1 /x2 dx 5n 2 21,
1n 1 1 2 1 C for allxn11 /

exn dx 5

YOUR TURN 4

Find 3

e

1

x2
 ln x dx.

*For example, see Thomas, George B., Maurice D. Weir, and Joel Hass, Thomas’ Calculus, 12th ed., Pearson,
2010.

TECHNOLOGY NOTE

5 21 /x 1 C.
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making such tables obsolete and even reducing the importance of techniques of integration.
The following example shows how the table of integrals given in the appendix of this book
may be used.

Tables of Integrals

Find 

SOLUTION Using formula 7 in the table of integrals in the appendix, with gives

TRY YOUR TURN 5

We mentioned in the previous chapter how computer algebra systems and some calculators can per-
form integration. Using a TI-89, the answer to the above integral is

(The C is not included.) Verify that this is equivalent to the answer given in Example 5.

If you don’t have a calculator or computer program that integrates symbolically, there
is a Web site (http://integrals.wolfram.com), as of this writing, that finds indefinite integrals
using the computer algebra system Mathematica. It includes instructions on how to enter
your function. When the previous integral was entered, it returned the answer

Note that Mathematica does not include the C or the absolute value, and that natural loga-
rithms are written as log. Verify that this answer is equivalent to the answer given by the
TI-89 and the answer given in Example 5.

Unfortunately, there are integrals that cannot be antidifferentiated by any technique, in
which case numerical integration must be used. (See the last section of the previous chapter.)
In this book, for simplicity, all integrals to be antidifferentiated can be done with substitution
or by parts, except for Exercises 23–28 in this section.

 
1

4
 1 log 12x 2 2 2 2  log 1x 2 2 2 2 .

lna
0 x 1 2 0
0 x 2 2 0

b

4
 .

3  
1

4 2 x2 dx 5
1

4
. ln `

2 1 x

2 2 x
` 1 C.

a 5 2,

3  
1

4 2 x2 dx.

YOUR TURN 5

Find 3
1

x"4 1 x2
  dx.

Use integration by parts to find the integrals in Exercises 1–10.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. 3

2

1

ln 5x dx3

9

1

ln 3x dx

3

3

0

 
3 2 x

3ex  dx3

1

0

 
2x 1 1

ex  dx

3x3 ln x dx3x ln x dx

3 1 6x 1 3 2e22x dx3 14x 2 12 2e28x dx

3 1x 1 6 2ex dx3xex dx

11. Find the area between and the x-axis from
to 

12. Find the area between and the x-axis from
to 

Exercises 13–22 are mixed—some require integration by parts,
while others can be integrated by using techniques discussed in
the chapter on Integration.

13. 14.

15. 16.

17. 18. 3x3ex4

 dx3 1 8x 1 10 2  ln 1 5x 2  dx

3 12x 2 1 2  ln 1 3x 2  dx3x2
 "x 1 4 dx

3  
x2 dx

2x3 1 13x2e2x dx

x 5 e.x 5 1
y 5 1x 1 1 2  ln x

x 5 4.x 5 2
y 5 1x 2 2 2ex

EXAMPLE  5

8.1 EXERCISES

TECHNOLOGY NOTE

http://integrals.wolfram.com
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19. 20.

21. 22.

Use the table of integrals, or a computer or calculator with sym-
bolic integration capabilities, to find each indefinite integral.

23. 24.

25. 26.

27. 28.

29. What rule of differentiation is related to integration by parts?

30. Explain why the two methods of solving Example 2 are
equivalent.

31. Suppose that u and v are differentiable functions of x with

and the following functional values.3

1

0

v du 5 4

3  "x2 1 15 dx3  
26

x 14x 1 6 2 2
 dx

3  
2

3x 1 3x 2 5 2
 dx3  

3

x "121 2 x2
 dx

3  
10

x2 2 25
 dx3  

16

"x2 1 16
 dx

3

5

0

x "3 x2 1 2 dx3

1

0

 
x3 dx

"3 1 x2

3

1

0

 
x2 dx

2x3 1 13

2

1

1 1 2 x2 2e2x dx
35. Use integration by parts to derive the following formula from

the table of integrals.

36. Use integration by parts to derive the following formula from
the table of integrals.

37. a. One way to integrate is to use integration by
parts. Do so to find the antiderivative.

b. Another way to evaluate the integral in part a is by using the
substitution Do so to find the antiderivative.

c. Compare the results from the two methods. If they do not
look the same, explain how this can happen. Discuss the
advantages and disadvantages of each method.

38. Using integration by parts,

Subtracting from both sides we conclude that 
What is wrong with this logic? Source: Sam Northshield.

APPLICATIONS
Business and Economics

39. Rate of Change of Revenue The rate of change of revenue (in dol-
lars per calculator) from the sale of x calculators is

Find the total revenue from the sale of the first 12 calculators.
(Hint: In this exercise, it simplifies matters to write an anti-
derivative of as rather than

Life Sciences

40. Reaction to a Drug The rate of reaction to a drug is given by

where t is the number of hours since the drug was administered.
Find the total reaction to the drug from to

41. Growth of a Population The rate of growth of a microbe pop-
ulation is given by

where t is time in days. What is the total accumulated growth
during the first 2 days?

42. APPLY IT Rate of Growth The area covered by a patch of
moss is growing at a rate of

per day, for Find the additional amount of area cov-
ered by the moss between 4 and 9 days.

t $ 1.cm2

A r 1 t 2 5 "t ln t

m r 1 t 2 5 27te3t,

t 5 6.t 5 1

r r 1 t 2 5 2t2e2t,

x2 /2 1 x. 21x 1 1 2 2 /2x 1 1

R r 1x 2 5 1x 1 1 2  ln 1x 1 1 2 .

0 5 1.e 1
x dx

 5 1 1 3  
1

x
 dx.

 5
1

x
. x 2 3 a2 

1

x2bx dx

 3  
1

x
 dx 5 3  

1

x
. 1 dx

u 5 x 1 1.

ex "x 1 1 dx

3xneax dx 5
xneax

a
2

n

a3
xn21eax dx 1 C, a 2 0

3xn . ln 0 x 0  dx 5 xn11 c
ln 0 x 0
n 1 1

2
1

1n 1 1 2 2
d 1 C, n 2 21

Use this information to determine 

32. Suppose that u and v are differentiable functions of x with

and the following functional values.3

20

1

v du 5 21

3

1

0

u dv.

Use this information to determine 

33. Suppose we know that the functions r and s are everywhere
differentiable and that r(0) � 0. Suppose we also know that for

the area between the x-axis and the nonnegative

function is 5, and that on the same interval,

the area between the x-axis and the nonnegative function 

is 10. Determine r(2)s(2).

34. Suppose we know that the functions u and v are everywhere dif-
ferentiable and that Suppose we also know that for

the area between the x-axis and the nonnegative 

function is 15, and that on the same interval, 

the area between the x-axis and the nonnegative function 

is 20. Determine u(1)v(1).v 1x 2  
du

dx

k 1x 2  5
h 1x 2 5 u 1x 2  

dv

dx

1 # x # 3,
u 1 3 2 5 0.

r 1x 2  
ds

dx

k 1x 2 5

h 1x 2 5 s 1x 2  
dr

dx

0 # x # 2,

3

20

1

u dv.

0 2 1

1 3 �4

x u(x) v(x)

1 5 �2

20 15 6

x u(x) v(x)
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43. Thermic Effect of Food As we saw in an earlier chapter, a per-
son’s metabolic rate tends to go up after eating a meal and then,
after some time has passed, it returns to a resting metabolic rate.
This phenomenon is known as the thermic effect of food, and
the effect (in kJ per hour) for one individual is

where t is the number of hours that have elapsed since eating a
meal. Source: American Journal of Clinical Nutrition. Find
the total thermic energy of a meal for the next six hours after a
meal by integrating the thermic effect function between 
and 

44. Rumen Fermentation The rumen is the first division of the
stomach of a ruminant, or cud-chewing animal. An article on
the rumen microbial system reports that the fraction of the sol-
uble material passing from the rumen without being fermented
during the first hour after its ingestion could be calculated by
the integral

3

1

0

ke2kt 1 1 2 t 2dt,

t 5 6.
t 5 0

F 1 t 2 5 210.28 1 175.9te2t/1.3,

where k measures the rate that the material is fermented.
Source: Annual Review of Ecology and Systematics.

a. Determine the above integral, and evaluate it for the following
values of k used in the article: and hour.

b. The fraction of intermediate material left in the rumen at 1
hour that escapes digestion by passage between 1 and
6 hours is given by

Determine this integral, and evaluate it for the values of k
given in part a.

YOUR TURN ANSWERS 

1. 2.

3. 4.

5. 121 /2 2  ln 0 12 1 "4 1 x2 2 /x 0 1 C

12e3 1 1 2 /91 6x2 2 6x 1 11 2e2x /4 1 C

x ln 2x 2 x 1 C2e22x 12x 1 1 2 /4 1 C

3

6

1

ke2kt 1 6 2 t 2 /5 dt.

1 /481 /12, 1 /24,

APPLY IT

Volume and Average Value
If we have a formula giving the price of a common stock as a function of
time, how can we find the average price of the stock over a certain
period of time?
We will answer this question in Example 4 using concepts developed in this section, in
which we will discover how to find the average value of a function, as well as how to
compute the volume of a solid.

8.2

Volume Figure 1 shows the regions below the graph of some function above the
x-axis, and between and We have seen how to use integrals to find the area of such
a region. Suppose this region is revolved about the x-axis as shown in Figure 2. The resulting
figure is called a solid of revolution. In many cases, the volume of a solid of revolution can be
found by integration.

x 5 b.x 5 a
f 1x 2 ,y 5

FIGURE 1 FIGURE 2

0

y = f (x)

xa b

y

0

y

x



8.2 Volume and Average Value 435

To begin, divide the interval into n subintervals of equal width by the points
Then think of slicing the solid into n slices of equal thick-

ness as shown in Figure 3(a). If the slices are thin enough, each slice is very close to being
a right circular cylinder, as shown in Figure 3(b). The formula for the volume of a right circular
cylinder is where r is the radius of the circular base and h is the height of the cylinder. As
shown in Figure 4, the height of each slice is (The height is horizontal here, since the cylin-
der is on its side.) The radius of the circular base of each slice is Thus, the volume of the
slice is closely approximated by The volume of the solid of revolution will be
approximated by the sum of the volumes of the slices:

By definition, the volume of the solid of revolution is the limit of this sum as the thickness
of the slices approaches 0, or

This limit, like the one discussed earlier for area, is a definite integral.

V 5 lim
Dxl0a

n

i51

p 3f 1xi 
2 4 2Dx.

V < a

n

i51

p 3f 1xi 
2 4 2Dx.

p 3f 1xi 
2 4 2Dx.

f 1xi 
2 .

Dx.
pr2h,

Dx,
xn 5 b.xi , * ,x2 , * ,x1 ,a 5 x0 ,

Dx3a, b 4

Δx

f (xi)

FIGURE 4

0

(b)

y

xi

Δx

x

FIGURE 3

Volume of a Solid of Revolution
If is nonnegative and R is the region between and the x-axis from to

the volume of the solid formed by rotating R about the x-axis is given by

The technique of summing disks to approximate volumes was originated by Johannes
Kepler (1571–1630), a famous German astronomer who discovered three laws of planetary
motion. He estimated volumes of wine casks used at his wedding by means of solids of rev-
olution.

Volume

Find the volume of the solid of revolution formed by rotating about the x-axis the region
bounded by and x 5 4.x 5 1,y 5 0,y 5 x 1 1,

V 5 lim
Dxl0

 a
n

i51
p[ f 1 xi 2 \

2Dx 5 3

b

a
p[ f 1 x 2 \2 dx.

x 5 b,
x 5 af 1x 2f 1x 2

EXAMPLE  1

0

(a)

Δx

y = f (x)

xa xi b

y



Volume

Find the volume of the solid of revolution formed by rotating about the x-axis the area
bounded by and the x-axis.

SOLUTION The region and the solid are shown in Figure 6 on the next page. Find a and b
from the x-intercepts. If then or so that and The
volume is

A graphing calculator with the fnInt feature gives the value as 107.2330292, which agrees with
the approximation of to the 7 decimal places shown.512p /15

 5
512p

15
.

 5 pa16x 2
8x3

3
1

x5

5
b `

2

22

 5 3

2

22

p 1 16 2 8x2 1 x4 2  dx

 V 5 3

2

22

p 14 2 x2 2 2 dx

b 5 2.a 5 22x 5 22,x 5 2y 5 0,

f 1x 2 5 4 2 x2
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SOLUTION The region and the solid are shown in Figure 5. Notice that the orientation of
the x-axis is slightly different in Figure 5(b) than in Figure 5(a) to emphasize the three-
dimensionality of the figure. Use the formula given above for the volume, with 

and 

TRY YOUR TURN 1 5
117p

3
5 39p

 5
p

3
1 53 2 23 2

 V 5 3

4

1

p 1x 1 1 2 2 dx 5 p c
1x 1 1 2 3

3
d `

4

1

f 1x 2 5 x 1 1.b 5 4,
a 5 1,

EXAMPLE  2

YOUR TURN 1 Find the 
volume of the solid of revolution
formed by rotating about the x-axis
the region bounded by 

and x 5 1.x 5 21,y 5 0,
y 5 x2 1 1,

x4

x = 4

1

x = 1

3

(a)

2

1

y = x + 1

y = 0

0

y

(b)

0

y

x

FIGURE 5

TECHNOLOGY NOTE
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Volume

Find the volume of a right circular cone with height h and base radius r.

SOLUTION Figure 7(a) shows the required cone, while Figure 7(b) shows an area that
could be rotated about the x-axis to get such a cone. The cone formed by the rotation is
shown in Figure 7(c). Here is the equation of the line through and 
The slope of this line is and since the y-intercept is 0, the equation of the line is

y 5
r

h
 x.

r /h,
1h, r 2 .10, 0 2y 5 f 1x 2

x

f (x)

4

f(x) = 4 – x2

2

(a)

2–2

4

f (x)
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(b)

x
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FIGURE 6
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h

y = – xr
h

(b)
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(c)

h
0

y

r

x

FIGURE 7

Then the volume is

Since and are constants

This is the familiar formula for the volume of a right circular cone.
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3
 .
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r2x3
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 xb
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 dx 5 p3
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EXAMPLE  3
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Average Value of a Function The average of the n numbers 
is given by

For example, to compute an average temperature, we could take readings at equally spaced
intervals and average the readings.

The average value of a function f on can be defined in a similar manner; divide
the interval into n subintervals, each of width Then choose an x-value, in each
subinterval, and find The average function value for the n subintervals and the given
choices of is

Since multiply the expression on the right side of the equation by
and rearrange the expression to get

Now, take the limit as If the limit exists, then

The following definition summarizes this discussion.

Average Value of a Function
The average value of a function f on the interval is

provided the indicated definite integral exists.

In Figure 8 the quantity represents the average height of the irregular region. The
average height can be thought of as the height of a rectangle with base For

this rectangle has area which equals the area under the graph of 
from to so that
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Average Price

A stock analyst plots the price per share of a certain common stock as a function of time
and finds that it can be approximated by the function

where t is the time (in years) since the stock was purchased. Find the average price of the
stock over the first six years.

SOLUTION Use the formula for average value with and The average price is

or approximately $20.15. TRY YOUR TURN 2

< 20.147,

 5
1

6
 1 150 1 500e20.06 2 500 2

 5
1

6
 125t 1 500e20.01t 2 `

6

0

 
1

6 2 0
 3

6

0

125 2 5e20.01t 2  dt 5
1

6
 a25t 2

5

20.01
 e20.01tb `

6

0

b 5 6.a 5 0

S 1 t 2 5 25 2 5e20.01t,

EXAMPLE  4

YOUR TURN 2 Find the 
average value of the function

on the 
interval .31, 4 4
f 1 x 2 5 x 1 !x

APPLY IT 

8.2 EXERCISES
Find the volume of the solid of revolution formed by rotating
about the x-axis each region bounded by the given curves.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. f 1x 2 5
2

"x 1 2
 , y 5 0, x 5 21, x 5 2

f 1x 2 5
2

"x
 , y 5 0, x 5 1, x 5 3

f 1x 2 5 2ex, y 5 0, x 5 22, x 5 1

f 1x 2 5 ex, y 5 0, x 5 0, x 5 2

f 1x 2 5 "4x 1 2 , y 5 0, x 5 0, x 5 2

f 1x 2 5 "2x 1 1 , y 5 0, x 5 1, x 5 4

f 1x 2 5 "x 1 5 , y 5 0, x 5 1, x 5 3

f 1x 2 5 "x , y 5 0, x 5 1, x 5 4

f 1x 2 5
1

2
 x 1 4, y 5 0, x 5 0, x 5 5

f 1x 2 5
1

3
 x 1 2, y 5 0, x 5 1, x 5 3

f 1x 2 5 x 2 4, y 5 0, x 5 4, x 5 10

f 1x 2 5 2x 1 1, y 5 0, x 5 0, x 5 4

f 1x 2 5 3x, y 5 0, x 5 0, x 5 2

f 1x 2 5 x, y 5 0, x 5 0, x 5 3

15.

16.

17.

18.

The function defined by has as its graph a
semicircle of radius r with center at (see the figure). In
Exercises 19–21, find the volume that results when each semicir-
cle is rotated about the x-axis. (The result of Exercise 21 gives a
formula for the volume of a sphere with radius r.)

19. 20.

21. f 1x 2 5 "r2 2 x2

f 1x 2 5 "36 2 x2f 1x 2 5 "1 2 x2

1 0, 0 2
y 5"r 2 2 x 2

f 1x 2 5 2 2 x2, y 5 0

f 1x 2 5 1 2 x2, y 5 0

f 1x 2 5
x2

2
 , y 5 0, x 5 0, x 5 4

f 1x 2 5 x2, y 5 0, x 5 1, x 5 5

y

y = √r2 – x2
(0, r)

(r, 0)(–r, 0) 0 x
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22. Find a formula for the volume of an ellipsoid. See Exercises
19–21 and the following figures.

37. Average Inventory The DeMarco Pasta Company receives
600 cases of imported San Marzano tomato sauce every
30 days. The number of cases of sauce on inventory t days
after the shipment arrives is

Find the average daily inventory.

Life Sciences

38. Blood Flow The figure shows the blood flow in a small artery of
the body. The flow of blood is laminar (in layers), with the veloc-
ity very low near the artery walls and highest in the center of the
artery. In this model of blood flow, we calculate the total flow in
the artery by thinking of the flow as being made up of many layers
of concentric tubes sliding one on the other.

N 1 t 2 5 600 2 20 "30t .

Ellipsoid

0(–a, 0) (a, 0)

(0, b)

x

y

y = – b
a a2 – x2

23. Use the methods of this section to find the volume of a cylinder
with height h and radius r.

Find the average value of each function on the given interval.

24. 25.

26.

27. 28.

29. 30.

31.

In Exercises 32 and 33, use the integration feature on a graph-
ing calculator to find the volume of the solid of revolution by
rotating about the x-axis each region bounded by the given
curves.

32.

33.

APPLICATIONS
Business and Economics

34. Average Price Otis Taylor plots the price per share of a stock
that he owns as a function of time and finds that it can be
approximated by the function

where t is the time (in years) since the stock was purchased.
Find the average price of the stock over the first five years.

35. Average Price A stock analyst plots the price per share of a
certain common stock as a function of time and finds that it can
be approximated by the function

where t is the time (in years) since the stock was purchased.
Find the average price of the stock over the first six years.

36. Average Inventory The Yasuko Okada Fragrance Company
(YOFC) receives a shipment of 400 cases of specialty per-
fume early Monday morning of every week. YOFC sells the
perfume to retail outlets in California at a rate of about
80 cases per day during each business day (Monday through
Friday). What is the average daily inventory for YOFC?
(Hint: Find a function that represents the inventory for any
given business day and then integrate.)

S 1 t 2 5 37 1 6e20.03t,

S 1 t 2 5 t 125 2 5t 2 1 18,

f 1x 2 5 e2x2

, y 5 0, x 5 21, x 5 1

f 1x 2 5
1

4 1 x2  , y 5 0, x 5 22, x 5 2

f 1x 2 5 x2e2x; 30, 2 4

f 1x 2 5 x ln x; 31, e 4f 1x 2 5 ex/7; 30, 7 4
f 1x 2 5 e0.1x; 30, 10 4f 1x 2 5 "x 1 1 ; 33, 8 4

f 1x 2 5 12x 2 1 2 1/2; 31, 13 4
f 1x 2 5 x2 2 4; 30, 5 4f 1x 2 5 2 2 3x2; 31, 3 4

Suppose R is the radius of an artery and r is the distance
from a given layer to the center. Then the velocity of blood in a
given layer can be shown to equal

where k is a numerical constant.
Since the area of a circle is the change in the area

of the cross section of one of the layers, corresponding to a
small change in the radius, can be approximated by differ-
entials. For the differential of the area A is

where is the thickness of the layer. The total flow in the
layer is defined to be the product of velocity and cross-section
area, or

a. Set up a definite integral to find the total flow in the artery.

b. Evaluate this definite integral.

39. Drug Reaction The intensity of the reaction to a certain drug,
in appropriate units, is given by

where t is time (in hours) after the drug is administered. Find
the average intensity during the following hours.

a. Second hour

b. Twelfth hour

c. Twenty-fourth hour

40. Bird Eggs The average length and width of various bird eggs
are given in the following table. Source: NCTM.

R 1 t 2 5 te20.1t,

F 1 r 2 5 2prk 1R2 2 r2 2Dr.

Dr

dA 5 2pr dr 5 2pr Dr,

dr 5 Dr,
Dr,

A 5 pr2,

v 1 r 2 5 k 1R2 2 r2 2 ,

R r

Bird Name Length (cm) Width (cm)

Canada goose 8.6 5.8

Robin 1.9 1.5

Turtledove 3.1 2.3

Hummingbird 1.0 1.0

Raven 5.0 3.3
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a. Assume for simplicity that a bird’s egg is roughly the shape
of an ellipsoid. Use the result of Exercise 22 to estimate the
volume of an egg of each bird.

i. Canada goose

ii. Robin

iii. Turtledove

iv. Hummingbird

v. Raven

b. In Exercise 12 of Section 1.3, we showed that the average
length (in centimeters) of an egg of width w cm is given by

Using this result and the ideas in part a, show that the average
volume of an egg of width w centimeters is given by

Use this formula to calculate the average volume for the bird
eggs in part a, and compare with your results from part a. 

Social  Sciences

41. Production Rate Suppose the number of items a new worker
on an assembly line produces daily after t days on the job is
given by

I 1 t 2 5 45 ln 1 t 1 1 2 .

V 5 p 1 1.585w3 2 0.487w2 2 /6.

l 5 1.585w 2 0.487.

Find the average number of items produced daily by this
employee after the following numbers of days.

a. 5 b. 9 c. 30

42. Typing Speed The function de-
scribes a typist’s speed (in words per minute) over a time inter-
val 

a. Find 

b. Find the maximum W value and the time t when it occurs.

c. Find the average speed over 

Physical  Sciences

43. Earth’s Volume Most people assume that the Earth has a
spherical shape. It is actually more of an ellipsoid shape, but
not an exact ellipsoid, since there are numerous mountains and
valleys. Researchers have found that a datum, or a reference
ellipsoid, that is offset from the center of the Earth can be used
to accurately map different regions. According to one datum,
called the Geodetic Reference System 1980, this reference
ellipsoid assumes an equatorial radius of 6,378,137 m and a
polar radius of 6,356,752.3141 m. Source: Geodesy Informa-
tion System. Use the result of Exercise 22 to estimate the
volume of the Earth.

30, 5 4.

W 10 2 .

30, 5 4.

W 1 t 2 5 23.75t2 1 30t 1 40

APPLY IT

Continuous Money Flow
Given a changing rate of annual income and a certain rate of interest,
how can we find the present value of the income?
We will answer this question in Example 2 using the concept of continuous money flow.

8.3

In an earlier chapter we looked at the concepts of present value and future value when
a lump sum of money is deposited in an account and allowed to accumulate interest. In
some situations, however, money flows into and out of an account almost continuously
over a period of time. Examples include income in a store, bank receipts and payments, and
highway tolls. Although the flow of money in such cases is not exactly continuous, it can be
treated as though it were continuous, with useful results.

Total Income

The income from a soda machine (in dollars per year) is growing exponentially. When the
machine was first installed, it was producing income at a rate of $500 per year. By the end
of the first year, it was producing income at a rate of $510.10 per year. Find the total
income produced by the machine during its first 3 years of operation.

SOLUTION Let t be the time (in years) since the installation of the machine. The assump-
tion of exponential growth, coupled with the initial value of 500, implies that the rate of
change of income is of the form

f 1 t 2 5 500ekt,

EXAMPLE  1

YOUR TURN ANSWERS 

1. 2. 73 /1856p /15



where k is some constant. To find k, use the value at the end of the first year.

Divide by 

Take ln of both sides.

Therefore, we have

Since the rate of change of incomes is given, the total income can be determined by using
the definite integral.

Thus, the soda machine will produce $1545.91 total income in its first three years of
operation. TRY YOUR TURN 1

The money in Example 1 is not received as a one-time lump sum payment of
$1545.91. Instead, it comes in on a regular basis, perhaps daily, weekly, or monthly. In dis-
cussions of such problems it is usually assumed that the income is received continuously
over a period of time.

Total Money Flow Let the continuous function represent the rate of flow of
money per unit of time. If t is in years and is in dollars per year, the area under 
between two points in time gives the total dollar flow over the given time interval.

The function shown in Figure 9, represents a uniform rate of money
flow of $2000 per year. The graph of this money flow is a horizontal line; the total money
flow over a specified time T is given by the rectangular area below the graph of and
above the t-axis between and For example, the total money flow over 
years would be or $10,000.

The area in the uniform rate example could be found by using an area formula from
geometry. For a variable function like the function in Example 1, however, a definite inte-
gral is needed to find the total money flow over a specific time interval. For the function

2000 1 5 2 5 10,000,
T 5 5t 5 T.t 5 0

f 1 t 2

f 1 t 2 5 2000,

f 1 t 2f 1 t 2
f 1 t 2

 5 25,000e0.02t
 `

3

0

5 25,000 1 e0.06 2 1 2 < 1545.91

 5
500

0.02
 e0.02t

 `
3

0

 Total income 5 3

3

0

500e0.02t dt

f 1 t 2 5 500e0.02t.

 < 0.02

 k 5 ln 1.0202

500. ek 5 1.0202

 f 1 1 2 5 500ek112 5 510.10
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YOUR TURN 1 Find the total
income over the first 2 years in
Example 1 with the initial rate
changed to $810 per year and the
rate at the end of the first year
changed to $797.94 per year.
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for example, the total money flow over a 5-year period would be 
given by

or $12,295.62. See Figure 10.

3

5

0

2000e0.08t dt < 12,295.62,

f 1 t 2 5 2000e0.08t,
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f (t) = 2000e0.08t
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FIGURE 10

Total Money Flow
If is the rate of money flow, then the total money flow over the time interval from

to is given by

This “total money flow” does not take into account the interest the money could earn
after it is received. It is simply the total income.

Present Value of Money Flow As mentioned earlier, an amount of money that
can be deposited today at a specified interest rate to yield a given sum in the future is called
the present value of this future sum. The future sum may be called the future value or final
amount. To find the present value of a continuous money flow with interest compounded
continuously, let represent the rate of the continuous flow. In Figure 11 on the next
page, the time axis from 0 to T is divided into n subintervals, each of width The amount
of money that flows during any interval of time is given by the area between the t-axis and
the graph of over the specified time interval. The area of each subinterval is approxi-
mated by the area of a rectangle with height where is the left endpoint of the ith
subinterval. The area of each rectangle is which (approximately) gives the amount
of money flow over that subinterval.

Earlier, we saw that the present value P of an amount A compounded continuously for
t years at a rate of interest r is Letting represent the time and replacing A with

the present value of the money flow over the ith subinterval is approximately
equal to

Pi 5 3f 1 ti 
2Dt 4e2rti.

f 1 ti 
2Dt,

tiP 5 Ae2rt.

f 1 ti 
2Dt,

tif 1 ti 
2 ,

f 1 t 2

Dt.
f 1 t 2

3

T

0
 f 1 t 2  dt.

t 5 Tt 5 0
f 1 t 2
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The total present value is approximately equal to the sum

This approximation is improved as n increases; taking the limit of the sum as n increases
without bound gives the present value

This limit of a summation is given by the following definite integral.

Present Value of Money Flow
If is the rate of continuous money flow at an interest rate r for T years, then the
present value is

To understand present value of money flow, consider an account that earns interest and
has a continuous money flow. The present value of the money flow is the amount that
would have to be deposited into a second account that has the same interest rate but does
not have a continuous money flow, so the two accounts have the same amount of money
after a specified time.

Present Value of Income

A company expects its rate of annual income during the next three years to be given by

What is the present value of this income over the 3-year period, assuming an annual interest
rate of 8% compounded continuously?

SOLUTION Use the formula for present value, with and

P 5 3

3

0

75,000te20.08t dt 5 75,0003

3

0

te20.08t dt

r 5 0.08.T 5 3,f 1 t 2 5 75,000t,

f 1 t 2 5 75,000t, 0 # t # 3.
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 f 1 t 2e

2rt dt.
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FIGURE 11

EXAMPLE  2

APPLY IT 
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Using integration by parts, verify that

Therefore,

or about $288,000. Notice that the actual income over the 3-year period is given by

or $337,500. This means that it would take a lump-sum deposit of $288,064 today paying a
continuously compounded interest rate of 8% over a 3-year period to equal the total cash
flow of $337,500 with interest. This approach is used as a basis for determining insurance
claims involving income considerations. TRY YOUR TURN 2

Accumulated Amount of Money Flow at Time T To find the accu-
mulated amount of money flow with interest at any time t, start with the formula

let , and in place of P substitute the expression for present value of money
flow. The result is the following formula.

Accumulated Amount of Money Flow at Time T
If is the rate of money flow at an interest rate r at time t, the accumulated amount
of money flow at time T is

Here, the accumulated amount of money A represents the accumulated value or final
amount of the money flow including interest received on the money after it comes in.
(Recall, total money flow does not take the interest into account.)

It turns out that most money flows can be expressed as (or at least approximated by)
exponential or polynomial functions. When these are multiplied by the result is a func-
tion that can be integrated. The next example illustrates uniform flow, where is a con-
stant function. (This is a special case of the polynomial function.)

Accumulated Amount of Money Flow

If money is flowing continuously at a constant rate of $2000 per year over 5 years at 6%
interest compounded continuously, find the following.

(a) The total money flow over the 5-year period

SOLUTION The total money flow is given by Here and

The total money flow over the 5-year period is $10,000.
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2000 dt 5 2000t `
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5 2000 1 5 2 5 10,000
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f 1 t 2 5 2000e0

T f 1 t 2  dt.

f 1 t 2
e2rt,

A 5 erT
3

T

0
 f 1 t 2e2rt dt.

f 1 t 2

t 5 TA 5 Pert,

Total money flow 5 3

3

0

75,000t dt 5
75,000t2

2
 `

3

0

5 337,500,

< 288,064,

 < 75,000 1229.498545 2 122.910603 1 156.25 2
 5 75,000 3212.5 1 3 2e20.08132 2 156.25e20.08132 2 10 2 156.25 2 4

 75,0003

3

0

te20.08t dt 5 75,000 1212.5te20.08t 2 156.25e20.08t 2 `
3

0

3te20.08t dt 5 212.5te20.08t 2 156.25e20.08t 1 C.

YOUR TURN 2 Find the 
present value of an income given by

over the next 
5 years if the interest rate is 3.5%.
f 1 t 2 5 50,000t

EXAMPLE  3
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(b) The accumulated amount of money flow, compounded continuously, at time 

SOLUTION At with the amount is

or $11,661.96. The answer to part (a), $10,000, was the amount of money flow over the
5-year period. The $11,661.96 gives that amount with interest compounded continu-
ously over the 5-year period.

(c) The total interest earned

SOLUTION This is simply the accumulated amount of money flow minus the total
amount of flow, or

(d) The present value of the amount with interest

SOLUTION Use with and 

The present value of the amount with interest in 5 years is $8639.39, which can be
checked by substituting $11,661.96 for A in The present value, P, could have
been found by dividing the amount found in (b) by Check that this would
give the same result. TRY YOUR TURN 3

If the rate of money flow is increasing or decreasing exponentially, then 
where C is a constant that represents the initial amount and k is the (nominal) continuous
rate of change, which may be positive or negative.

Accumulated Amount of Money Flow

A continuous money flow starts at a rate of $1000 per year and increases exponentially at
2% per year.

(a) Find the accumulated amount of money flow at the end of 5 years at 10% interest com-
pounded continuously.

SOLUTION Here and so that Using
and

or $6794.38.

 5
1000e0.5

20.08
 1 e20.4 2 1 2 5

1000

20.08
 1 e0.1 2 e0.5 2 < 6794.38,

 5 1000e0.5a
e20.08t

20.08
b `

5

0

e0.02t ? e20.10t 5 e20.08t 5 1 e0.5 2 1 1000 23
5

0

e20.08t dt

 A 5 e10.1025
3

5

0

1000e0.02te20.10t dt

T 5 5,
r 5 0.10f 1 t 2 5 1000e0.02t.k 5 0.02,C 5 1000

f 1 t 2 5 Cekt,

erT 5 e0.3.
A 5 Pert.

 < 8639.39,

 5
2000

20.06
1 e20.3 2 1 2

 P 5 3

5

0

2000e20.06t dt 5 2000a
e20.06t

20.06
b `

5

0

T 5 5.r 5 0.06,f 1 t 2 5 2000,P 5 eT
0  f 1 t 2e2rt dt

$11,661.96 2 $10,000.00 5 $1661.96.

 < 11,661.96,

1 e0.03 2 1 e20.03 2 5 1 5
2000e0.3

20.06
1 e20.3 2 1 2 5

2000

20.06
1 1 2 e0.3 2

 5 1 e0.3 2 12000 23
5

0

e20.06t dt 5 e0.3 12000 2 a
1

20.06
b ae20.06t `

5

0
b

 A 5 erT
3

T

0

f 1 t 2e2rt dt 5 e10.0625
3

5

0

12000 2e20.06t dt

r 5 0.06,T 5 5

T 5 5

YOUR TURN 3 Find the accu-
mulated amount of money flow for
the income and interest rate in Your
Turn 2 in this section.

EXAMPLE  4

FOR REVIEW
In this example we use the follow-
ing two rules for exponents.

1.

2. a0 5 1

am . an 5 am1n
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(b) Find the present value at 5% interest compounded continuously.

SOLUTION Using with and in the present value
expression,

or $4643.07.

If the rate of change of the continuous money flow is given by the polynomial function
the expressions for present value and accumulated

amount can be integrated using integration by parts.

Present Value of Money Flow

The rate of change of a continuous flow of money is given by

Find the present value of this money flow at the end of 10 years at 10% compounded con-
tinuously.

SOLUTION Evaluate

Using integration by parts, verify that

Thus,

TRY YOUR TURN 4  < 163,245.21.

   2 2,000,000e21 2 10 2 10,000 2 2,000,000 2
  5 121,000,000 2 10,000 2e21 2 12,000,000 1 10,000 2e21

    2 2,000,000e20.1t `
10

0

  P 5 1210,000t2 2 1000t 2e20.1t 2 1200,000t 1 10,000 2e20.1t

1210,000t2 2 1000t 2e20.1t 2 1200,000t 1 10,000 2e20.1t 2 2,000,000e20.1t 1 C.

3 1 1000t2 1 100t 2e20.10t dt 5

P 5 3

10

0

1 1000t2 1 100t 2e20.10t dt.

f 1 t 2 5 1000t2 1 100t.

f 1 t 2 5 an tn 1 an21 tn21 1 ) 1 a0 ,

 5
1000

20.03
1 e20.15 2 1 2 < 4643.07,

 5 10003

5

0

e20.03t dt 5 1000a
e20.03t

20.03
 `

5

0
b

 P 5 3

5

0

1000e0.02te20.05t dt

T 5 5r 5 0.05f 1 t 2 5 1000e0.02t

EXAMPLE  5

YOUR TURN 4 Find the pres-
ent value at the end of 8 years of the
continuous flow of money given by

at 5%
compounded continuously.
f 1 t 2 5 200t2 1 100t 1 50

8.3 EXERCISES
Each of the functions in Exercises 1–14 represents the rate of
flow of money in dollars per year. Assume a 10-year period at
8% compounded continuously and find the following: (a) the
present value; (b) the accumulated amount of money flow at

1. 2.

3. 4. f 1 t 2 5 2000f 1 t 2 5 500

f 1 t 2 5 300f 1 t 2 5 1000

t 5 10.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14. f 1 t 2 5 2000t 2 150t2f 1 t 2 5 1000t 2 100t2

f 1 t 2 5 0.05t 1 500f 1 t 2 5 0.01t 1 100

f 1 t 2 5 50tf 1 t 2 5 25t

f 1 t 2 5 1000e20.02tf 1 t 2 5 5000e20.01t

f 1 t 2 5 800e0.05tf 1 t 2 5 400e0.03t



18. Money Flow The rate of a continuous money flow starts at
$1000 and increases exponentially at 5% per year for 4 years.
Find the present value and accumulated amount if interest
earned is 3.5% compounded continuously.

19. Present Value A money market fund has a continuous flow of
money at a rate of reaching 0 in 5 years.
Find the present value of this flow if interest is 5% com-
pounded continuously.

20. Accumulated Amount of Money Flow Find the amount of a
continuous money flow in 3 years if the rate is given by

and if interest is 5% compounded
continuously.
f 1 t 2 5 1000 2 t2

f 1 t 2 5 1500 2 60t2,
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APPLICATIONS
Business and Economics

15. Accumulated Amount of Money Flow An investment is
expected to yield a uniform continuous rate of money flow of
$20,000 per year for 3 years. Find the accumulated amount at
an interest rate of 4% compounded continuously.

16. Present Value A real estate investment is expected to produce
a uniform continuous rate of money flow of $8000 per year for
6 years. Find the present value at the following rates, com-
pounded continuously.

a. 2% b. 5% c. 8%

17. Money Flow The rate of a continuous flow of money starts at
$5000 and decreases exponentially at 1% per year for 8 years.
Find the present value and final amount at an interest rate of
8% compounded continuously.

APPLY IT

Improper Integrals
If we know the rate at which a pollutant is dumped into a stream, how
can we compute the total amount released given that the rate of
dumping is decreasing over time?
In this section we will learn how to answer questions such as this one, which is answered in
Example 3.

8.4

Sometimes it is useful to be able to integrate a function over an infinite period of time.
For example, we might want to find the total amount of income generated by an apartment
building into the indefinite future or the total amount of pollution into a bay from a source
that is continuing indefinitely. In this section we define integrals with one or more infinite
limits of integration that can be used to solve such problems.

The graph in Figure 12(a) shows the area bounded by the curve the 
x-axis, and the vertical line Think of the shaded region below the curve as extending
indefinitely to the right. Does this shaded region have an area?

x 5 1.
f 1x 2 5 x23/2,

0 2 3 41

1

2

3

4

f(x)

f(x) = x–3/2

x = 1

x5 b0 1

1

2

3

4

f(x)

f(x) = x–3/2

x = 1 x = b

x

FIGURE 12
(a) (b)

YOUR TURN ANSWERS 

1. $1595.94 2. $556,653

3. $663,111 4. $28,156.02
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To see if the area of this region can be defined, introduce a vertical line at as
shown in Figure 12(b). This vertical line gives a region with both upper and lower limits of
integration. The area of this new region is given by the definite integral

By the Fundamental Theorem of Calculus,

Suppose we now let the vertical line in Figure 12(b) move farther to the right. That is,
suppose The expression would then approach 0, and

This limit is defined to be the area of the region shown in Figure 12(a), so that

An integral of the form

is called an improper integral. These improper integrals are defined as follows.

Improper Integrals
If f is continuous on the indicated interval and if the indicated limits exist, then

for real numbers a, b, and c, where c is arbitrarily chosen.

If the expressions on the right side exist, the integrals are convergent; otherwise, they are
divergent. A convergent integral has a value that is a real number. A divergent integral does
not, often because the area under the curve is infinitely large.

Improper Integrals

Evaluate each integral.

(a)

SOLUTION A graph of this region is shown in Figure 13. By the definition of an
improper integral,

3

`

1

 
dx
x

5 lim
bl`

 3

b

1

 
dx
x

 .

3

`

1

 
dx
x

 3

`

2`

f 1 x 2  dx 5 3

c

2`
 f 1 x 2  dx 1 3

`

c
 f 1 x 2  dx,

 3

b

2`

f 1 x 2  dx 5 lim
al2`

3

b

a
 f 1 x 2  dx,

 3
`

a
f 1 x 2  dx 5 lim

bl`
3

b

a
 f 1 x 2  dx,

3

`

a

f 1x 2  dx,  3
b

2`

f 1x 2  dx,  or  3
`

2`

f 1x 2  dx

3

`

1

x23/2 dx 5 2.

lim
bl`

a2 2
2

b1/2b 5 2 2 0 5 2.

22 /b1/2bl `.
x 5 b

 5 22b21/2 1 2 5 2 2
2

b1/2  .

 5 22b21/2 2 122 . 121/2 2

 3

b

1

x23/2 dx 5 122x21/2 2 `
b

1

3

b

1

x23/2 dx.

x 5 b,

FOR REVIEW
In Section 3.1 on Limits we saw that
for any positive real number n,

lim
bl`

 

1

bn 5 0.

0 1

1

f(x)

f(x) = x
1

x = 1

x

FIGURE 13

EXAMPLE  1
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Find by the Fundamental Theorem of Calculus.

As so does not exist. Since the limit does not 

exist, is divergent.

(b)

A graph of this region is shown in Figure 14. Since the limit exists, this integral
converges. TRY YOUR TURN 1

It may seem puzzling that the areas under the curves and 
are finite, while has an infinite amount of area. At first glance the graphs of
these functions appear similar. The difference is that although all three functions get small
as x becomes infinitely large, does not become small enough fast enough. In
the graphing calculator screen in Figure 15, notice how much faster becomes small
compared with 

Since graphing calculators provide only approximations, using them to 
find improper integrals is tricky and requires skill and care. Although their 
approximations may be good in some cases, they are wrong in others, and 
they cannot tell us for certain that an improper integral does not exist. See
Exercises 39–41.

Improper Integral

Find 

SOLUTION In the definition of an improper integral with limits of and , the value of
c is arbitrary, so we’ll choose the simple value . We can then write the integral as

and evaluate each of the two improper integrals on the right. If they both converge, the
original integral will equal their sum. To show you all the details while maintaining the
suspense, we will evaluate the second integral first.

By definition,

 5 lim
bl`

a
24

3e3b 1
4

3
b 5 0 1

4

3
5

4

3
 .

 3

`

0

4e23x dx 5 lim
bl`

 3
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0

4e23x dx 5 lim
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a
24

3
 e23xb `

b
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3

`

2`

4e23x dx 5 3

0

2`

4e23x dx 1 3

`

0

4e23x dx

c 5 0
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e2`
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 4e23x dx.

1 /x.
1 /x2

f 1x 2 5 1 /x

f 1x 2 5 1 /x
f 1x 2 5 1 /x2f 1x 2 5 1 /x3/2
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a
1

2
1

1
a
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 3

22
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1

x2 dx 5 lim
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a
21
x
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22

a
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x
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ln 0 b 0bl `, ln 0 b 0 l `,
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1
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x

5 ln 0 x 0 `
b

1

5 ln 0 b 0 2 ln 0 1 0 5 ln 0 b 0 2 0 5 ln 0 b 0

3

b

1
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EXAMPLE  2

YOUR TURN 1 Find each
integral. 

(a) (b) 3

`

8

1

x4/3  dx3

`

8

1

x1/3  dx

0–1

1

f(x)

f(x) = 
x2
1

x–2

FIGURE 14

0 10

0.5

0

y 5 1/x2

y 5 1/x

FIGURE 15

CAUTION

FOR REVIEW
Recall that

and

lim
pl2`

 

1

ep 5 `.

lim
pl`

 

1

ep 5 0
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Similarly, the second integral is evaluated as

Since one of the two improper integrals diverges, the original improper integral
diverges. TRY YOUR TURN 2

The following examples describe applications of improper integrals.

Pollution

The rate at which a pollutant is being dumped into a stream at time t is given by 
where is the rate that the pollutant is initially released into the stream. Suppose

and Find the total amount of the pollutant that will be released into
the stream into the indefinite future.

SOLUTION Find

This integral is similar to one of the integrals used to solve Example 2 and may be evalu-
ated by the same method.

A total of approximately 16,667 units of the pollutant will be released over time.

The capital value of an asset is often defined as the present value of all future net
earnings of the asset. In other words, suppose an asset provides a continuous money flow
that is invested in an account earning a certain rate of interest. A lump sum is invested in a
second account earning the same rate of interest, but with no money flow, so that as

the amounts in the two accounts approach each other. The lump sum necessary to
make this happen is the capital value of the asset. If gives the annual rate at which
earnings are produced by an asset at time t, then the present value formula from Section 3
gives the capital value as

where r is the annual rate of interest, compounded continuously.

Capital Value

Suppose income from a rental property is generated at the annual rate of $4000 per
year. Find the capital value of this property at an interest rate of 10% compounded
continuously.

3

`

0

R 1 t 2e2rt dt,

R 1 t 2
tl `,

 5 lim
bl`

a
1000

20.06e0.06b 2
1000

20.06
 e0b 5

21000

20.06
< 16,667
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 e20.06tb `
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P0 e2kt dt 5 3
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1000e20.06t dt.

k 5 0.06.P0 5 1000
P0

P0 e2kt,

 5 lim
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3e3bb 5 `.
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4e23x dx 5 lim
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3

0

b
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24

3
 e23xb `

0

b

YOUR TURN 2
Find e`

0 5e22x
 dx.

EXAMPLE  3

APPLY IT 

EXAMPLE  4
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SOLUTION This is a continuous income stream with a rate of flow of $4000 per year, so
Also, or 0.1. The capital value is given by

or $40,000.

 5 lim
bl`

1240,000e20.1b 1 40,000 2 5 40,000,

 5 lim
bl`

a
4000

20.1
 e20.1tb `

b

0

 3

`

0

4000e20.1t dt 5 lim
bl`

3

b

0

4000e20.1t dt

r 5 0.10R 1 t 2 5 4000.

8.4 EXERCISES
Determine whether each improper integral converges or diverges,
and find the value of each that converges.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25.

26. (Hint: Recall that lim
xl2`
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27. (Hint: Recall from Exercise 66 in Section 3.1 on
Limits that 

28. (Hint: Recall that when 

29. 30.

Find the area between the graph of the given function and the
x-axis over the given interval, if possible.

31.

32.

33.

34.

35. Find 36. Find 

37. Show that converges if and diverges if 

38. Example 1(b) leads to a paradox. On the one hand, the
unbounded region in that example has an area of so theo-
retically it could be colored with ink. On the other hand, the
boundary of that region is infinite, so it cannot be drawn with a
finite amount of ink. This seems impossible, because coloring
the region automatically colors the boundary. Explain why it is
possible to color the region.

39. Consider the functions and 

a. Use your calculator to approximate for
and 10,000.

b. Based on your answers from part a, would you guess that
is convergent or divergent?e`

1 f 1x 2  dx

b 5 20, 50, 100, 1000,
eb

1 f 1x 2  dx

1 /"1 1 x4.
g 1x 2 5f 1x 2 5 1 /"1 1 x2

1 /2,
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x 2 1
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`
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`
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`
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c. Use your calculator to approximate for
and 10,000.

d. Based on your answers from part c, would you guess that
is convergent or divergent?

e. Show how the answer to parts b and d might be guessed by
comparing the integrals with others whose convergence or
divergence is known. (Hint: For large x, the difference
between and is relatively small.)

Note: The first integral is indeed divergent, and the second
convergent, with an approximate value of 0.9270.

40. a. Use your calculator to approximate for 
and 20.

b. Based on your answers to part a, does appear to
be convergent or divergent? If convergent, what seems to be
its approximate value?

c. Explain why this integral should be convergent by comparing
with for

Note: The integral is convergent, with a value of 

41. a. Use your calculator to approximate for 
and 1000.

b. Based on your answers to part a, does appear
to be convergent or divergent?

c. To what value does the integral actually converge?

APPLICATIONS
Business and Economics

Capital Value Find the capital values of the properties in
Exercises 42–43.

42. A castle for which annual rent of $225,000 will be paid in per-
petuity; the interest rate is 6% compounded continuously

43. A fort on a strategic peninsula in the North Sea; the annual rent
is $1,000,000, paid in perpetuity; the interest rate is 5% com-
pounded continuously

44. Capital Value Find the capital value of an asset that generates
$7200 yearly income if the interest rate is as follows.

a. 5% compounded continuously

b. 10% compounded continuously

45. Capital Value An investment produces a perpetual stream of
income with a flow rate of

.

Find the capital value at an interest rate of 7% compounded
continuously.

46. Capital Value Suppose income from an investment starts (at
time 0) at $6000 a year and increases linearly and continuously
at a rate of $200 a year. Find the capital value at an interest rate
of 5% compounded continuously.

R 1 t 2 5 1200e0.03t

e`
0 e20.00001x dx

50, 100,
b 5 10, eb

0 e20.00001x dx

"p /2.

x . 1.e2xe2x2

e`
0 e2x2

 dx

5, 10,
b 5 1, eb

0 e2x2

 dx

x21 1 x2

e`
1 g 1x 2  dx

b 5 20, 50, 100, 1000,
eb

1 g 1x 2  dx 47. Scholarship The Drucker family wants to establish an ongo-
ing scholarship award at a college. Each year in June $3000
will be awarded, starting 1 year from now. What amount must
the Druckers provide the college, assuming funds will be
invested at 10% compounded continuously?

Social  Sciences

48. Drug Reaction The rate of reaction to a drug is given by

where t is the number of hours since the drug was adminis-
tered. Find the total reaction to the drug over all the time since
it was administered, assuming this is an infinite time interval.
(Hint: for all real numbers k.)

49. Drug Epidemic In an epidemiological model used to study the
spread of drug use, a single drug user is introduced into a pop-
ulation of N non-users. Under certain assumptions, the number
of people expected to use drugs as a result of direct influence
from each drug user is given by

where a, b, and k are constants. Find the value of S. Source:
Mathematical Biology.

50. Present Value When harvesting a population, such as fish, the
present value of the resource is given by

where r is a discount factor, is the net revenue at time t,
and is the harvesting effort. Suppose and

Find the present value. Source: Some Mathe-
matical Questions in Biology.

Physical  Sciences

Radioactive Waste Radioactive waste is entering the atmosphere
over an area at a decreasing rate. Use the improper integral

with to find the total amount of the waste that will enter the
atmosphere for each value of k.

51.

52. k 5 0.04

k 5 0.06

P 5 50

3

`

0

Pe2ktdt

n 1 t 2 5 at 1 b.
y 1 t 2 5 Ky 1 t 2

n 1 t 2

P 5 3

`

0

e2rtn 1 t 2y 1 t 2dt,

S 5 N3

`

0

 
a 1 1 2 e2kt 2

k
 e2bt dt,

lim
tl`

tke2t 5 0

r r 1 t 2 5 2t2e2t,

YOUR TURN ANSWERS 

1. (a) Divergent (b) 3/2 2. 5/2
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Integration by Parts If u and v are differentiable functions, then

.

Volume of a Solid of Revolution If f (x) is nonnegative and R is the region between f (x) and the x-axis from x � a to x � b, the vol-
ume of the solid formed by rotating R about the x-axis is given by

.

Average Value of a Function The average value of a function f on the interval [a, b] is

,

provided the indicated definite integral exists.

Total Money Flow If f (t) is the rate of money flow, then the total money flow over the time interval from t � 0 to t � T
is given by

.

Present Value of Money Flow If f(t) is the rate of continuous money flow at an interest rate r for T years, then the present value is

.

Accumulated Amount of Money If f(t) is the rate of money flow at an interest rate r at time t, the accumulated 
Flow at Time T amount of money flow at time T is

.

Improper Integrals If f is continuous on the indicated interval and if the indicated limits exist, then

for real numbers a, b, and c, where c is arbitrarily chosen.

Capital Value If R(t) gives the annual rate at which earnings are produced by an asset at time t, the capital value is
given by 

where r is the annual rate of interest, compounded continuously.

3

`

0

R 1 t 2e2rt dt,

 3

`

2`

f 1x 2 dx 5 3

c

2`

f 1x 2 dx 1 3

`

c

f 1x 2 dx,

 3

b

2`

f 1x 2 dx 5 lim
al2`

 3

b

a

f 1x 2 dx,

 3

`

a

f 1x 2 dx 5 lim
bl`

 3

b

a

f 1x 2 dx,

A 5 erT 3

T

0

f 1 t 2e2rt dt

P 5 3

T

0

f 1 t 2e2rt dt

3

T

0

f 1 t 2  dt

1

b 2 a
 3

b

a

f 1x 2  dx

V 5 3

b

a

p 3
 
f 1x 2 42 dx

3udv 5 uv 2 3vdu

In this chapter, we introduced another technique of integration and
some applications of integration. The technique is known as
integration by parts, which is derived from the product rule for
derivatives. We also developed definite integral formulas to

calculate the volume of a solid of revolution and the average value
of a function on some interval. We then used definite integrals to
study continuous money flow. Finally, we learned how to evaluate
improper integrals that have upper or lower limits of or .2``

SUMMARY

8 CHAPTER REVIEW
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Determine whether each of the following statements is true or
false, and explain why.

1. Integration by parts should be used to evaluate .

2. Integration by parts should be used to evaluate .

3. We would need to apply the method of integration by parts
twice to determine

.

4. Integration by parts should be used to determine .

5. The average value of the function on [1, 4]
is given by

.

6. The volume of the solid formed by revolving the function
about the x-axis on the interval [1, 2] is

given by

.

7. The volume of the solid formed by revolving the function
about the x-axis on the interval [24, 5] is

given by

.

8. If represents the rate of flow of money for a
vending machine over the first five years of income, then the
total money flow for that time period is given by

.

9. If a company expects an annual flow of money during the next
five years to be , the present value of this
income, assuming an annual interest rate of 4.5% compounded
continuously is given by

.3

5

0

1000e0.005t dt

f 1 t 2 5 1000e0.05t

3

5

0

1000e0.05t dt

f 1 t 2 5 1000e0.05t

3

5

24

p 1x 1 4 2 2 dx

f 1x 2 5 x 1 4

3

2

1

p"x2 1 1 dx

f 1x 2 5 "x2 1 1

1

3
 3

4

1

p 12x
2

1 3 2 2 dx

f 1x 2 5 2x2 1 3

3ln 14x 2  dx

3x3e2x2

dx

3

1

0

xe10x dx

3

1

0

 
x2

x3 1 1
 dx

10.

11. Describe the type of integral for which integration by parts is
useful.

12. Compare finding the average value of a function with finding
the average of n numbers.

13. What is an improper integral? Explain why improper integrals
must be treated in a special way.

Find each integral, using techniques from this or the previous
chapter.

14. 15.

16. 17.

18. 19.

20. 21.

22. 23.

24. Find the area between and the x-axis from
to 

25. Find the area between and the x-axis from
to 

Find the volume of the solid of revolution formed by rotating
each bounded region about the x-axis.

26.

27.

28.

29.

30.

31. f 1x 2 5
x2

4
 , y 5 0, x 5 4

f 1x 2 5 4 2 x2, y 5 0, x 5 21, x 5 1

f 1x 2 5
1

"x 2 1
, y 5 0, x 5 2, x 5 4

f 1x 2 5 e2x, y 5 0, x 5 22, x 5 1

f 1x 2 5 "x 2 4 , y 5 0, x 5 13

f 1x 2 5 3x 2 1, y 5 0, x 5 2

x 5 3.x 5 1
y 5 x3 1x2 2 1 2 1/3

x 5 1.x 5 0
y 5 1 3 1 x2 2e2x

3

1

0

x2ex/2 dx3

e

1

x3 ln x dx

3  
x

"16 1 8x2
 dx3  

x

25 2 9x2 dx

3 1x 2 1 2  ln 0 x 0  dx3ln 0 4x 1 5 0  dx

3 1 3x 1 6 2e23x dx3xex dx

3  
3x

"x 2 2
 dx

3x 1 8 2 x 2 3/2 dx

3

`

2`

xe22x dx 5 lim
cl`

 3

c

2c

xe22x dx

KEY TERMS
8.1
integration by parts
column integration

8.2
solid of revolution
average value of a function

8.3
total money flow
present value of continuous 
money flow

accumulated amount of money 
flow

8.4
improper integral
convergent integral
divergent integral
capital value

REVIEW EXERCISES

CONCEPT CHECK

PRACTICE AND EXPLORATIONS
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Present Value of Money Flow Each function in Exercises 46–49
represents the rate of flow of money (in dollars per year) over the
given time period, compounded continuously at the given annual
interest rate. Find the present value in each case.

46.

47.

48.

49.

Accumulated Amount of Money Flow at Time T Assume that
each function gives the rate of flow of money in dollars per
year over the given period, with continuous compounding at
the given annual interest rate. Find the accumulated amount
of money flow at the end of the time period.

50.

51.

52.

53.

54. Money Flow An investment scheme is expected to produce a
continuous flow of money, starting at $1000 and increasing
exponentially at 5% a year for 7 years. Find the present value at
an interest rate of 11% compounded continuously.

55. Money Flow The proceeds from the sale of a building will
yield a uniform continuous flow of $10,000 a year for 10 years.
Find the final amount at an interest rate of 10.5% compounded
continuously.

56. Capital Value Find the capital value of an office building for
which annual rent of $50,000 will be paid in perpetuity, if the
interest rate is 9%.

Life Sciences

57. Drug Reaction The reaction rate to a new drug t hours after
the drug is administered is

Find the total reaction over the first 5 hours.

58. Oil Leak Pollution An oil leak from an uncapped well is pol-
luting a bay at a rate of gallons per year.
Use an improper integral to find the total amount of oil that
will enter the bay, assuming the well is never capped.

Physical  Sciences

59. Average Temperatures Suppose the temperature (degrees F)
in a river at a point x meters downstream from a factory that is
discharging hot water into the river is given by

Find the average temperature over each interval.

a. b. c. 30, 40 4310, 40 430, 10 4

T 1x 2 5 160 2 0.05x2.

f 1 t 2 5 125e20.025t

r r 1 t 2 5 0.5te2t.

f 1 t 2 5 1000 1 200t, 10 years, 9%

f 1 t 2 5 20t, 6 years, 4%

f 1 t 2 5 500e20.04t, 8 years, 10%

f 1 t 2 5 1000, 5 years, 6%

f 1 t 2 5 15t, 18 months, 8%

f 1 t 2 5 150e0.04t, 5 years, 6%

f 1 t 2 5 25,000, 12 years, 10%

f 1 t 2 5 5000, 8 years, 9%

32. A frustum is what remains of a cone when the top is cut off by a
plane parallel to the base. Suppose a right circular frustum (that
is, one formed from a right circular cone) has a base with radius
r, a top with radius and a height h. (See the figure below.)
Find the volume of this frustum by rotating about the x-axis the
region below the line segment from to 1h, r /2 2 .10, r 2

r /2,

APPLICATIONS

r

–r
2

x

h

33. How is the average value of a function found?

34. Find the average value of over the interval

35. Find the average value of over the
interval 

Find the value of each integral that converges.

36. 37.

38. 39.

40. 41.

Find the area between the graph of each function and the 
x-axis over the given interval, if possible.

42.

43.

44. How is the present value of money flow found? The accumu-
lated amount of money flow?

f 1x 2 5 3e2x, for 30, ` 2

f 1x 2 5
5

1x 2 2 2 2
 , for 12`, 1 4

3

`

4

 ln 1 5x 2  dx3

0

2`

 
x

x2 1 3
 dx

3

`

1

6e2x dx3

`

0

 
dx

1 3x 1 1 2 2

3

25

2`

x22 dx3

`

10

x21 dx

30, 2 4.
f 1x 2 5 7x2 1x3 1 1 2 6

30, 8 4.
f 1x 2 5 "x 1 1

Business and Economics

45. Total Revenue The rate of change of revenue from the sale of
x toaster ovens is

Find the total revenue from the sale of the 50th to the 75th
ovens.

R r 1x 2 5 x 1x 2 50 2 1/2.
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ESTIMATING LEARNING CURVES IN MANUFACTURING 
WITH INTEGRALS

E X T E N D E D APPLICATION

n the previous chapter you have seen how the trapezoidal rule
uses sums of areas of polygons to approximate the area under a
smooth curve, that is, a definite integral. In this Extended Appli-

cation we look at the reverse process, using an integral to estimate
a sum, in the context of estimating production costs.

As a manufacturer produces more units of a new product, the
individual units generally become cheaper to produce, because
with experience, production workers gain skill and speed, and
managers spot opportunities for improved efficiency. This decline
in unit costs is often called an experience curve or learning curve.
This curve is important when a manufacturer negotiates a contract
with a buyer.

Here’s an example, based on an actual contract that came
before the Armed Services Board of Contract Appeals. Source:
Armed Services Board of Contract Appeals. The Navy asked the
ITT Defense Communications Division to bid on the manufacture
of several different kinds of mobile telephone switchboards,
including 280 of the model called the SB 3865. ITT figured that
the cost of making a single SB 3865 was around $300,000. But
they couldn’t submit a bid of or $84 million,
because multiple units should have a lower unit price. So ITT used
a learning curve to estimate an average unit cost of $135,300 for
all 280 switchboards and submitted a bid of or
$37.9 million.

The contract gave the Navy an option to purchase 280 SB
units over three years, but in fact it bought fewer. Suppose the
Navy bought 140 SBs. Should it pay half of the original price of
$37.9 million? No: ITT’s bid was based on the efficiencies of a
280-unit run, so 140 units should be repriced to yield more than
half the full price. A repricing clause in the contract specified that
a learning curve would be used to reprice partial orders, and
when the Navy ordered less than the full amount, ITT invoked
this clause to reprice the switchboards. The question in dispute at
the hearing was which learning curve to use.

There are two common learning curve models. The unit
learning curve model assumes that each time the number of units
doubles, say from n to 2n, the cost of producing the last unit is
some constant fraction r of the cost for the nth unit. Usually the
fraction r is given as a percent. If % (typical for big pieces
of hardware), then the contract would refer to a “90% learning
curve.” The cumulative learning curve model assumes that when
the number of units doubles, the average cost of producing all 2n
units is some constant fraction of the average cost of the first n
units. The Navy’s contract with ITT didn’t specify which model
was to be used—it just referred to “a 90% learning curve.” The
government used the unit model and ITT used the cumulative
average model, and ITT calculated a fair price millions of dollars
higher than the government’s price!

In practice, ITT used a calculator program to make its esti-
mate, and the government used printed tables, but both the pro-
gram and the tables were derived using calculus. To see how the
computation works, we’ll derive the government’s unit learning
curve.

r 5 90

$135,300 3 280

$300,000 3 280

Each unit has a different cost, with the first unit being the
most expensive and the 280th unit the least expensive. So the cost
of the nth unit, call it is a function of n. To find a fair price
for n units we’ll add up all the unit prices. That is, we will compute

Before we can do that,
we need a formula for in terms of n, but all we know about

is that

for every n, with This sort of equation is called a func-
tional equation: It relates two different values of the function with-
out giving an explicit formula for the function. In Exercise 3 you’ll
see how you might discover a solution to this functional equation,
but here we’ll just give the result:

Thus, to find the price for making 280 units, we need to add up all
the values of as n ranges from 1 to 280. There’s just one
problem: We don’t know The only numbers that ITT gave
were the average cost per unit for 280 units, namely $135,300, and
the total price of $37.9 million. But if we write out the formula for
the 280-unit price in terms of we can figure out by
dividing. Here’s how it works.

The cost C is a function of an integer variable n, since the con-
tractor can’t deliver fractional units of the hardware. But the func-
tion is a perfectly good function of the real
variable x, and the sum of the first 280 values of should be
close to In Exercise 4 you’ll
see how to derive the following improved estimate:

The integrand is a power function, so you know how to evaluate
the integral exactly.

Thus, the sum is approximately

Since ITT’s price for 280 units was $37.9 million,

Now that we know we can reprice an order of 140 units by
adding up the first 140 values of An estimate exactly like the
one above tells us that according to the government’s model, a fair
price for 140 units is about $21 million. As we expected, this is
more than half the 280-unit price, in fact about $2 million more.

C 1n 2 .
C 1 1 2 ,

C 1 1 2 5
$37,900,000

139.75
< $271,000.

C 1 1 2 c
1

0.848
 12810.848 2 10.848 2 1

1 2 28120.152

2
d < C 1 1 2 . 139.75.

3

281

1

x20.152 dx 5
1

0.848
 x0.848 `

281

1

5
1

0.848
 12810.848 2 10.848 2

C 1 1 2 a3
281

1

x20.152 dx 1
1 2 28120.152

2
b .

e280
1 C 1x 2  dx 5 C 1 1 2 . e280

1 x20.152 dx.
C 1n 2

C 1x 2 5 C 1 1 2 . x20.152

C 1 1 2C 1 1 2 ,

C 1 1 2 !
C 1 1 2 . nb

C 1n 2 5 C 1 1 2 . nb, where b 5
ln r

ln 2
< 20.152.

r 5 0.90.

C 12n 2 5 r . C 1n 2

C 1n 2
C 1n 2

C 1 1 2 1 C 12 2 1 ) 1 C 1n 2 1 2 1 C 1n 2 .

C 1n 2 ,I
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EXERCISES

1. According to the formula for what is the unit price of the
280th unit, to the nearest thousand dollars?

2. Suppose that instead of using natural logarithms to compute
b, we use logarithms with a base of 10 and define 

Does this change the value of b?

3. All power functions satisfy an equation similar to our functional
equation: If then

How can you choose a and b to make
a solution to the functional equation 

4. Figure 16 indicates how you could use the integral

as an estimate for the sum 

The graph shows the function 

a. Write a justification for the integral estimate. (Your argu-
ment will also justify the integral estimate for the 
sum.) Based on your explanation, does the integral expres-
sion overestimate the sum?

b. You know how to integrate the function Compute the
integral estimate and the actual value. What is the percent-
age error in the estimate?

1 /x.

C 1n 2

y 5
1

x
 .

1

2
1

1

3
1

1

4
 .1 13

5

1

 
1

x
 dx 1

1 2
1

5

2

r . C 1n 2?
C 12n 2 5C 1x 2 5 axb

a2b . xb 5 2b . f 1x 2 .
f 12x 2 5 a 12x 2 b 5f 1x 2 5 axb,

1 log r 2 / 1 log 2 2 .
b 5

C 1n 2 ,

5. Go to the website WolframAlpha.com and enter: “integrate.”
Follow the instructions and use them along with the improved
estimate to verify the fair price for 140 units of about $21
million given in the text. Then enter “sum” into Wolfram|
Alpha and follow the instructions to verify the fair price by
summing the first 140 values of Discuss how the solu-
tion compares with the solutions provided by the integration
and summation features on a graphing calculator, as well as
the solution provided by adding up the values using a spread-
sheet.

DIRECTIONS FOR GROUP PROJECT
Suppose that you and three other students have an internship with
a manufacturing company that is submitting a bid to make several
thousand units of some highly technical equipment. The one prob-
lem with the bid is that the number of units that will be purchased
is only an estimate and that the actual number needed may greatly
vary from the estimate. Using the information given above, pre-
pare a presentation for an internal sales meeting that will
describe the case listed above and its applications to the bid at
hand. Make your presentation realistic in the sense that the prod-
uct you are manufacturing should have a name, average price,
and so on. Then show how integrals can be used to estimate learn-
ing curves in this situation and produce a pricing structure for the
bid. Presentation software, such as Microsoft PowerPoint, should
be used.

C 1n 2 .

0 1

1

2

y

1 – 
5
1

x2 1

1

23 4 5

FIGURE 16
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Safe diving requires an understanding of how the 

increased pressure below the surface affects the 

body’s intake of nitrogen. An exercise in Section 2 

of this chapter investigates a formula for nitrogen 

pressure as a function of two variables, depth and 

dive time. Partial derivatives tell us how this function

behaves when one variable is held constant as the 

other changes. Dive tables based on the formula 

help divers to choose a safe time for a given depth,

or a safe depth for a given time.
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We have thus far limited our study of calculus to functions of one variable.There
are other phenomena that require more than one variable to adequately
model the situation. For example, the price of an electronics device depends

on how long it has been on the market, the number of competing devices, labor costs,
demand, and many other factors. In this case, the price is a function of more than one
variable.To analyze and better understand situations like this, we will extend the ideas of
calculus, including differentiation and integration, to functions of more than one variable.

Functions of Several Variables
How are the amounts of labor and capital needed to produce a certain
number of items related?
We will study this question in Example 8 using a production function that depends on the
two independent variables of labor and capital.

If a company produces x items at a cost of $10 per item, then the total cost of
producing the items is given by

The cost is a function of one independent variable, the number of items produced. If the
company produces two products, with x of one product at a cost of $10 each, and y of
another product at a cost of $15 each, then the total cost to the firm is a function of two
independent variables, x and y. By generalizing notation, the total cost can be written
as where

When and the total cost is written with

A general definition follows.

C 1 5, 12 2 5 10 . 5 1 15 . 12 5 230.

C 1 5, 12 2 ,y 5 12x 5 5

C 1x, y 2 5 10x 1 15y.

C 1x, y 2 ,
f 1x 2

C 1x 2 5 10x.

C 1x 2

APPLY IT

9.1

Function of Two or More Variables
The expression is a function of two variables if a unique value of z is
obtained from each ordered pair of real numbers The variables x and y are inde-
pendent variables, and z is the dependent variable. The set of all ordered pairs 
of real numbers such that exists is the domain of f; the set of all values 
of is the range. Similar definitions could be given for functions of three, four, or
more independent variables.

f 1x, y 2
f 1x, y 21x, y 2

1x, y 2 .
z 5 f 1x, y 2

Evaluating Functions

Let and find the following.

(a)

SOLUTION Replace x with and y with 3.

f 121, 3 2 5 4 121 2 2 1 2 121 2 1 3 2 1
3

3
5 4 2 6 1 1 5 21

21

f 121, 3 2
f 1x, y 2 5 4x2 1 2xy 1 3 /y

EXAMPLE  1
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(b)

SOLUTION Because of the quotient it is not possible to replace y with 0, so
is undefined. By inspection, we see that the domain of the function is the set of

all such that

(c)

SOLUTION Calculate as follows: 

Simplify the numerator.

Factor h from the numerator.

TRY YOUR TURN 1

Volume of a Can

Let r and h represent the radius and height of a can in cm. The volume of the can is then a
function of the two variables r and h given by

Find 

SOLUTION Replace r with 3 and h with 11 to get

.

This says that a can with radius 3 cm and height 11 cm has a volume of approximately 311 cm3.

Evaluating a Function

Let Find 

SOLUTION Replace x with 2, y with and z with 1.

TRY YOUR TURN 2

Graphing Functions of Two Independent Variables Functions of
one independent variable are graphed by using an x-axis and a y-axis to locate points in a
plane. The plane determined by the x- and y-axes is called the xy-plane. A third axis is
needed to graph functions of two independent variables—the z-axis, which goes through
the origin in the xy-plane and is perpendicular to both the x-axis and the y-axis.

Figure 1 shows one possible way to draw the three axes. In Figure 1, the yz-plane is in the
plane of the page, with the x-axis perpendicular to the plane of the page.

Just as we graphed ordered pairs earlier we can now graph ordered triples of the form
For example, to locate the point corresponding to the ordered triple 

start at the origin and go 2 units along the positive x-axis. Then go 4 units in a negative direc-
tion (to the left) parallel to the y-axis. Finally, go up 3 units parallel to the z-axis. The point
representing is shown in Figure 1, together with several other points. The region
of three-dimensional space where all coordinates are positive is called the first octant.

In Chapter 1 we saw that the graph of (where a and b are not both 0) is a
straight line. This result generalizes to three dimensions.

ax 1 by 5 c

12, 24, 3 2

12, 24, 3 2 ,1x, y, z 2 .

f 12, 23, 1 2 5 4 12 2 1 1 2 2 3 12 2 2 123 2 1 2 1 1 2 2 5 8 1 36 1 2 5 46

23,

f 12, 23, 1 2 .f 1x, y, z 2 5 4xz 2 3x2y 1 2z2.

V 1 3, 11 2 5 p . 32 . 11 5 99p < 311 cm3

V 1 3, 11 2 .

V 1 r, h 2 5 pr2h.

5 8x 1 4h 1 2y.

5
h 1 8x 1 4h 1 2y 2

h

5
8xh 1 4h2 1 2hy

h

5
4x2 1 8xh 1 4h2 1 2xy 1 2hy 1 3 /y 2 4x2 2 2xy 2 3 /y

h

f 1x 1 h, y 2 2 f 1x, y 2
h

5
4 1x 1 h 2 2 1 2 1x 1 h 2y 1 3 /y 2 34x2 1 2xy 1 3 /y 4

h

f 1x 1 h, y 2 2 f 1x, y 2
h

y 2 0.1x, y 2
f 12, 0 2

3 /y,

f 12, 0 2

YOUR TURN 1 For the func-
tion in Example 1, find  f 12, 3 2 .

YOUR TURN 2 For the func-
tion in Example 3, find  f 1 1,  2,  3 2 .

EXAMPLE  2

EXAMPLE  3

0

z

y

x

(6, 0, 0)

(2, –4, 3)

(0, 0, 4)
(1, 5, 4)

(4, 7, –3)

(0, 7, 0)

FIGURE 1
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Graphing a Plane

Graph 

SOLUTION The graph of this equation is a plane. Earlier, we graphed straight lines by
finding x- and y-intercepts. A similar idea helps in graphing a plane. To find the x-intercept,
which is the point where the graph crosses the x-axis, let and 

 x 5 3

 2x 1 0 1 0 5 6

z 5 0.y 5 0

2x 1 y 1 z 5 6.

0 3

y

x

2x + 3y = 6

2

Answers

1. 

0

y

x4

x = 4

2. 

0

2

y

x

y = 2

3. 

Plane
The graph of

is a plane if a, b, and c are not all 0.

ax 1 by 1 cz 5 d

YOUR TURN 3 Graph
in the first octant.x 1 2y 1 3z 5 12

EXAMPLE  4

EXAMPLE  5

FOR REVIEW
Graph the following lines. Refer to
Section 1.1 if you need to review.

1.

2.

3. y 5 2

x 5 4

2x 1 3y 5 6

x
y

0

(3, 0, 0)

(0, 6, 0)

(0, 0, 6)

2x + y + z = 6

z

FIGURE 2

(0, 0, 6)

x

y

0

(6, 0, 0)

x + z = 6

z

The point is on the graph. Letting and gives the point while
and lead to The plane through these three points includes the trian-

gular surface shown in Figure 2. This surface is the first-octant part of the plane that is the
graph of The plane does not stop at the axes but extends without bound.

TRY YOUR TURN 3

Graphing a Plane

Graph 

SOLUTION To find the x-intercept, let and giving If 
and we get the point Because there is no y in the equation 
there can be no y-intercept. A plane that has no y-intercept is parallel to the y-axis. The first-
octant portion of the graph of is shown in Figure 3.x 1 z 5 6

x 1 z 5 6,10, 0, 6 2 .y 5 0,
x 5 01 6, 0, 0 2 .z 5 0,y 5 0

x 1 z 5 6.

2x 1 y 1 z 5 6.

10, 0, 6 2 .y 5 0x 5 0
10, 6, 0 2 ,z 5 0x 5 01 3, 0, 0 2

FIGURE 3
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The graph of a function of one variable, is a curve in the plane. If is in
the domain of f, the point on the graph lies directly above or below the number

on the x-axis, as shown in Figure 7.
The graph of a function of two variables, is a surface in three-dimensional

space. If is in the domain of f, the point lies directly above or
below the point in the xy-plane, as shown in Figure 8.1x0 , y0 

2
1x0 , y0 , f 1x0 , y0 

2 21x0 , y0 
2

z 5 f 1x, y 2 ,
x0

1x0 , f 1x0 
2 2

x0y 5 f 1x 2 ,

(0, 4, 0)

y

0

x

z

y = 4

FIGURE 5

(0, 0, 1)

y

0

x

z

z = 1

FIGURE 6

xx0

f(x)

xx0

(x0, f(x0))

(x0, f(x0))

f(x)

z = f (x, y)

y
x (x0, y0)

z

(x0, y0, f(x0, y0))

FIGURE 8FIGURE 7

EXAMPLE  6 Graphing Planes

Graph each equation in the first octant.

(a)

SOLUTION This graph, which goes through can have no y-intercept and no
z-intercept. It is, therefore, a plane parallel to the y-axis and the z-axis and, therefore, to
the yz-plane. The first-octant portion of the graph is shown in Figure 4.

(b)

SOLUTION This graph goes through and is parallel to the xz-plane. The first-
octant portion of the graph is shown in Figure 5.

(c)

SOLUTION The graph is a plane parallel to the xy-plane, passing through Its
first-octant portion is shown in Figure 6.

10, 0, 1 2 .
z 5 1

10, 4, 0 2
y 5 4

1 3, 0, 0 2 ,
x 5 3

FIGURE 4

(3, 0, 0)

y

0

x = 3

x

z



Graphing a Function

Graph 

SOLUTION The yz-plane is the plane in which every point has a first coordinate of 0, so its
equation is When the equation becomes which is the equation of a
parabola in the yz-plane, as shown in Figure 9(a). Similarly, to find the intersection of the sur-
face with the xz-plane (whose equation is , let in the equation. It then becomes

which is the equation of a parabola in the xz-plane, as shown in Figure 9(a). The
xy-trace (the intersection of the surface with the plane is the single point
because is equal to 0 only when and

Next, we find the level curves by intersecting the surface with the planes 
etc. (all of which are parallel to the xy-plane). In each case, the result is a circle:

and so on, as shown in Figure 9(b). Drawing the traces and level curves on the same set of
axes suggests that the graph of is the bowl-shaped figure, called a paraboloid,
that is shown in Figure 9(c).

z 5 x2 1 y2

x2 1 y2 5 1,  x2 1 y2 5 2,  x2 1 y2 5 3,

z 5 3,
z 5 2,z 5 1,

y 5 0.x 5 0x2 1 y2
10, 0, 0 2z 5 0)

z 5 x2,
y 5 0y 5 0)

z 5 y2,x 5 0,x 5 0.

z 5 x2 1 y2.

CHAPTER 9 Multivariable Calculus464

FIGURE 9

EXAMPLE  7

z = x2,  (y = 0)

z = y2,  (x = 0)

x

y

z

(a)

x2 + y2 = 3

x2 + y2 = 2

x2 + y2 = 1

x2 + y2 = 0

x

y

z

(b)

z = x2 + y2

x

y

z

(c)

Figure 10 on the next page shows the level curves from Example 7 plotted in the xy-
plane. The picture can be thought of as a topographical map that describes the surface gen-
erated by just as the topographical map in Figure 11 describes the surface of
the land in a part of New York state.

One application of level curves occurs in economics with production functions. A
production function is a function that gives the quantity z of an item produced
as a function of x and y, where x is the amount of labor and y is the amount of capital
(in appropriate units) needed to produce z units. If the production function has the special
form where A is a constant and the function is called0 , a , 1,z 5 P 1x, y 2 5 Axay12a,

z 5 f 1x, y 2

z 5 x2 1 y2,

Although computer software is available for drawing the graphs of functions of two
independent variables, you can often get a good picture of the graph without it by finding
various traces—the curves that result when a surface is cut by a plane. The xy-trace is the
intersection of the surface with the xy-plane. The yz-trace and xz-trace are defined simi-
larly. You can also determine the intersection of the surface with planes parallel to the xy-
plane. Such planes are of the form where k is a constant, and the curves that result
when they cut the surface are called level curves.

z 5 k,
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a Cobb-Douglas production function. This function was developed in 1928 by econo-
mist Paul H. Douglas (1892–1976), who later became a senator for the state of Illinois, and
mathematician Charles W. Cobb. For production functions, level curves are used to indi-
cate combinations of the values of x and y that produce the same value of production z.

Cobb-Douglas Production Function

Find the level curve at a production of 100 items for the Cobb-Douglas production function

SOLUTION Let to get

Now cube both sides to express y as a function of x.

TRY YOUR TURN 4

The level curve of height 100 found in Example 8 is shown graphed in three dimen-
sions in Figure 12(a) and on the familiar xy-plane in Figure 12(b). The points of the graph
correspond to those values of x and y that lead to production of 100 items.

The curve in Figure 12 is called an isoquant, for iso (equal) and quant (amount). In
Example 8, the “amounts” all “equal” 100.

y 5
1003

x2 5
1,000,000

x2

 
100

x2/3 5 y1/3.

 100 5 x2/3y1/3
z 5 100

z 5 x2/3y1/3.

EXAMPLE  8

APPLY IT 

YOUR TURN 4 Find the level
curve at a production of 27 items in
the form  for the Cobb-
Douglas production function
z 5 x1/4y3/4.

y 5 f 1x 2

z

x y
200

400

100

200

100

200

(a)

0 100 200

y

x

100

200

300

400

y =

z = 100

1,000,000
x 2

(b)
FIGURE 12

FIGURE 10 FIGURE 11

21–2 –1

y

x

2

–2

1

–1

x  + y  = 02 2

x  + y  = 12 2

x  + y  = 22 2

x  + y  = 32 2

710

720

730

740

735

725
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Paraboloid,

xy-trace: point
yz-trace: parabola
xz-trace: parabola

z 5 x2 1 y2

x
y

z

Ellipsoid,

xy-trace: ellipse
yz-trace: ellipse
xz-trace: ellipse

x2

a2 1
y2

b2 1
z2

c2 5 1

z

x
y

Hyperboloid of Two Sheets,

xy-trace: none
yz-trace: hyperbola
xz-trace: hyperbola

2x2 2 y2 1 z2 5 1

x
y

z

Hyperbolic Paraboloid,
(sometimes called a saddle)

xy-trace: two intersecting lines
yz-trace: parabola
xz-trace: parabola

z 5 x2 2 y2

x

y

z

Because of the difficulty of drawing the graphs of more complicated functions, we
merely list some common equations and their graphs. We encourage you to explore why
these graphs look the way they do by studying their traces, level curves, and axis intercepts.
These graphs were drawn by computer, a very useful method of depicting three-dimen-
sional surfaces.
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9.1 EXERCISES
1. Let Find the following.

a. b. c. d. 

2. Let Find the following.

a. b. c. d. 

3. Let Find the following.

a. b. c. d. 

4. Let Find the following.

a. b. 

c. d. 

Graph the first-octant portion of each plane.

5. 6.

7. 8.

9. 10.

11. 12. z 5 4x 5 5

y 1 z 5 5x 1 y 5 4

4x 1 2y 1 3z 5 242x 1 3y 1 4z 5 12

x 1 y 1 z 5 15x 1 y 1 z 5 9

fa
1

10
 , 5bf 1 1000, 0 2

f 1 100, 1 2f 1 10, 2 2

f 1x, y 2 5
"9x 1 5y

log x
 .

h 123, 21 2h 121, 23 2h 12, 4 2h 1 5, 3 2
h 1x, y 2 5 "x2 1 2y2

 .

g 1 5, 1 2g 122, 3 2g 121, 22 2g 122, 4 2
g 1x, y 2 5 x2 2 2xy 1 y3.

f 10, 8 2f 122, 23 2f 124, 1 2f 12, 21 2
f 1x, y 2 5 2x 2 3y 1 5.

Notice that not all the graphs correspond to functions of two variables. In the ellipsoid,
for example, if x and y are both 0, then z can equal c or whereas a function can take on
only one value. We can, however, interpret the graph as a level surface for a function of
three variables. Let

Then produces the level surface of the ellipsoid shown, just as gives level
curves for the function 

Another way to draw the graph of a function of two variables is with a graphing calcu-
lator. Figure 13 shows the graph of generated by a TI-89. Figure 14 shows the
same graph drawn by the computer program Maple™.

z 5 x2 1 y2

z 5 f 1x, y 2 .
z 5 cw 5 1

w 1x, y, z 2 5
x2

a2 1
y2

b2 1
z2

c2  .

2c,

X
Y

Z

MAIN RAD AUTO 3D

F1 
Tools

F2 
Zoom

F3
Trace

F5 
Math

F6 
Draw

F7 
Pen

F4
Regraph

FIGURE 13

z
50

40

30

20

10

–2 2 4
4
yx –4

–4

FIGURE 14

Graph the level curves in the first quadrant of the xy-plane for
the following functions at heights of z � 0, z � 2, and z � 4.

13. 14.

15. 16.

17. Discuss how a function of three variables in the form 
w � might be graphed.

18. Suppose the graph of a plane has a portion
in the first octant. What can be said about a, b, c, and d?

19. In the chapter on Nonlinear Functions, the vertical line test was
presented, which tells whether a graph is the graph of a function.
Does this test apply to functions of two variables? Explain.

20. A graph that was not shown in this section is the hyperboloid
of one sheet, described by the equation 
Describe it as completely as you can.

Match each equation in Exercises 21–26 with its graph in a–f on
the next page

21. 22. z2 2 y2 2 x2 5 1z 5 x2 1 y2

x2 1 y2 2 z2 5 1.

ax 1 by 1 cz 5 d

f 1x, y, z 2

2y 2
x2

3
5 zy2 2 x 5 2z

3x 1 y 1 2z 5 83x 1 2y 1 z 5 24



y

x

z

y

x

z

y
x

z

y

x

z

y

x

z

y

x

z
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c. d.

e. f.

27. Let and find the following.

a.

b.

c.

d.

28. Let and find the following.

a.

b.
f 1x, y 1 h 2 2 f 1x, y 2

h

f 1x 1 h, y 2 2 f 1x, y 2
h

f 1x, y 2 5 5x3 1 3y2,

lim
hl0

 
f 1x, y 1 h 2 2 f 1x, y 2

h

lim
hl0

 
f 1x 1 h, y 2 2 f 1x, y 2

h

f 1x, y 1 h 2 2 f 1x, y 2
h

f 1x 1 h, y 2 2 f 1x, y 2
h

f 1x, y 2 5 4x2 2 2y2,

23. 24.

25. 26.

a. b. 

z 5 5 1x2 1 y2 221/2x2

16
1

y2

25
1

z2

4
5 1

z 5 y2 2 x2x2 2 y2 5 z
c.

d.

29. Let Use a graphing calculator or spread-
sheet to find each of the following and give a geometric inter-
pretation of the results. (Hint: First factor from the limit and
then evaluate the quotient at smaller and smaller values of h.)

a. b. 

30. The following table provides values of the function
However, because of potential errors in measurement, the func-
tional values may be slightly inaccurate. Using the statistical
package included with a graphing calculator or spreadsheet
and critical thinking skills, find the function

that best estimates the table where a, b, and c are
integers. (Hint: Do a linear regression on each column with the
value of y fixed and then use these four regression equations to
determine the coefficient c.)

a 1 bx 1 cy
f 1x, y 2 5

f 1x, y 2 .

lim
hl0

 
f 11, 1 1 h 2 2 f 11, 12

h
lim
hl0

 
f11 1 h, 122 f 11, 12

h

e2

f 1x, y 2 5 xyex21y2

.

lim
hl0

 
f 1x, y 1 h 2 2 f 1x, y 2

h

lim
hl0

 
f 1x 1 h, y 2 2 f 1x, y 2

h

4.02 7.04 9.98 13.00

6.01 9.06 11.98 14.96

7.99 10.95 14.02 17.09

9.99 13.01 16.01 19.02

y 0 1 2 3
x

0

1

2

3

APPLICATIONS
Business and Economics

31. Production Production of a digital camera is given by

where x is the amount of labor in work-hours and y is the
amount of capital. Find the following.

a. What is the production when 32 work-hours and 1 unit of
capital are provided?

b. Find the production when 1 work-hour and 32 units of capi-
tal are provided.

c. If 32 work-hours and 243 units of capital are used, what is
the production output?

Individual Retirement Accounts The multiplier function

compares the growth of an Individual Retirement Account
(IRA) with the growth of the same deposit in a regular savings
account. The function M depends on the three variables n, i,
and t, where n represents the number of years an amount is
left at interest, i represents the interest rate in both types of
accounts, and t represents the income tax rate. Values of 
indicate that the IRA grows faster than the savings account. Let

and find the following.M 5 f 1 n, i, t 2

M + 1

M 5
1 1 1 i 2n 11 2 t 2 1 t

31 1 1  1 2 t 2 i 4 n

P 1x, y 2 5 100a
3

5
 x22/5 1

2

5
 y22/5b

25

,
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32. Find the multiplier when funds are left for 25 years at 5% interest
and the income tax rate is 33%. Which account grows faster?

33. What is the multiplier when money is invested for 40 years at
6% interest and the income tax rate is 28%? Which account
grows faster?

Production Find the level curve at a production of 500 for the
production functions in Exercises 34 and 35. Graph each level
curve in the xy-plane.

34. In their original paper, Cobb and Douglas estimated the pro-
duction function for the United States to be 
where represents the amount of labor and the amount of
capital. Source: American Economic Review.

35. A study of the connection between immigration and the fiscal
problems associated with the aging of the baby boom genera-
tion considered a production function of the form 
where x represents the amount of labor and y the amount of
capital. Source: Journal of Political Economy.

36. Production For the function in Exercise 34, what is the effect
on z of doubling x? Of doubling y? Of doubling both?

37. Cost If labor costs $250 per unit, materials cost $150
per unit, and capital costs $75 per unit, write a function for
total cost.

Life Sciences

38. Heat Loss The rate of heat loss (in watts) in harbor seal pups
has been approximated by

where m is the body mass of the pup (in kg), and T and A are
the body core temperature and ambient water temperature,
respectively (in °C). Find the heat loss for the following data.
Source: Functional Ecology.

a. Body mass � 21 kg; body core temperature � 36°C; ambi-
ent water temperature � 4°C

b. Body mass � 29 kg; body core temperature � 38°C; ambi-
ent water temperature � l6°C

39. Body Surface Area The surface area of a human (in square
meters) has been approximated by

A � 0.024265h0.3964 m0.5378,

where h is the height (in cm) and m is the mass (in kg). Find A
for the following data. Source: The Journal of Pediatrics.

a. Height, 178 cm; mass, 72 kg

b. Height, 140 cm; mass, 65 kg

c. Height, 160 cm; mass, 70 kg

d. Using your mass and height, find your own surface area.

40. Dinosaur Running An article entitled “How Dinosaurs Ran”
explains that the locomotion of different sized animals can be
compared when they have the same Froude number, defined as

F 5
v2

gl
 ,

H 1m, T, A 2 5
15.2m0.67 1T 2 A 2

10.23 ln m 2 10.74
,

1 z 2
1 y 21x 2

z 5 x0.6y0.4,

yx
z 5 1.01x3/4y1/4,

where v is the velocity, g is the acceleration of gravity
and l is the leg length (in meters). Source:

Scientific American.

a. One result described in the article is that different animals
change from a trot to a gallop at the same Froude number,
roughly 2.56. Find the velocity at which this change occurs
for a ferret, with a leg length of 0.09 m, and a rhinoceros,
with a leg length of 1.2 m.

b. Ancient footprints in Texas of a sauropod, a large herbivo-
rous dinosaur, are roughly 1 m in diameter, corresponding to
a leg length of roughly 4 m. By comparing the stride divided
by the leg length with that of various modern creatures, it
can be determined that the Froude number for these
dinosaurs is roughly 0.025. How fast were the sauropods
traveling?

41. Pollution Intolerance According to research at the Great
Swamp in New York, the percentage of fish that are intolerant
to pollution can be estimated by the function

where W is the percentage of wetland, R is the percentage of
residential area, and A is the percentage of agricultural area sur-
rounding the swamp. Source: Northeastern Naturalist.

a. Use this function to estimate the percentage of fish that will
be intolerant to pollution if 5 percent of the land is classified
as wetland, 15 percent is classified as residential, and 0 per-
cent is classified as agricultural. (Note: The land can also be
classified as forest land.)

b. What is the maximum percentage of fish that will be intoler-
ant to pollution?

c. Develop two scenarios that will drive the percentage of fish
that are intolerant to pollution to zero.

d. Which variable has the greatest influence on P?

42. Dengue Fever In tropical regions, dengue fever is a significant
health problem that affects nearly 100 million people each
year. Using data collected from the 2002 dengue epidemic in
Colima, Mexico, researchers have estimated that the incidence
I (number of new cases in a given year) of dengue can be pre-
dicted by the following function.

where p is the precipitation (mm), a is the mean temperature
(°C), m is the maximum temperature (°C), n is the minimum
temperature (°C), and e is the evaporation (mm). Source: Journal
of Environmental Health.

a. Estimate the incidence of a dengue fever outbreak for a
region with 80 mm of rainfall, average temperature of 23°C,
maximum temperature of 34°C, minimum temperature of
16°C, and evaporation of 50 mm.

b. Which variable has a negative influence on the incidence of
dengue? Describe this influence and what can be inferred
mathematically about the biology of the fever.

1 4.46n 1 0.15e 2 2,
I 1p, a, m, n, e 2 5 125.54 1 0.04p 2 7.92a 1 2.62m

P 1W, R, A 2 5 48 2 2.43W 2 1.81R 2 1.22A,

1 9.81 m per sec2 2 ,
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43. Deer-Vehicle Accidents Using data collected by the U.S. Forest
Service, the annual number of deer-vehicle accidents for any
given county in Ohio can be estimated by the function

where A is the estimated number of accidents, L is the road
length (in kilometers), T is the total county land area (in
hundred-acres (Ha)), U is the urban land area (in hundred-
acres), and C is the number of hundred-acres of crop land.
Source: Ohio Journal of Science.

a. Use this formula to estimate the number of deer-vehicle
accidents for Mahoning County, where T �

and The
actual value was 396.

b. Given the magnitude and nature of the input numbers, which
of the variables have the greatest potential to influence the
number of deer-vehicle accidents? Explain your answer.

44. Deer Harvest Using data collected by the U.S. Forest Service,
the annual number of deer that are harvested for any given
county in Ohio can be estimated by the function

where N is the estimated number of harvested deer, R is the
rural land area (in hundred-acres), and C is the number of hun-
dred-acres of crop land. Source: Ohio Journal of Science.

a. Use this formula to estimate the number of harvested deer 
for Tuscarawas County, where and C �

The actual value was 4925 deer harvested. 

b. Sketch the graph of this function in the first octant.

45. Agriculture Pregnant sows tethered in stalls often show high
levels of repetitive behavior, such as bar biting and chain chew-
ing, indicating chronic stress. Researchers from Great Britain
have developed a function that estimates the relationship
between repetitive behavior, the behavior of sows in adjacent
stalls, and food allowances such that

where T is the percent of time spent in repetitive behavior, F is
the amount of food given to the sow (in kilograms per day),
and C is the percent of time that neighboring sows spent bar
biting and chain chewing. Source: Applied Animal Behaviour
Science.

a. Solve the above expression for T.

b. Find and interpret T when and 

General Interest

46. Postage Rates Extra postage is charged for parcels sent by
U.S. mail that are more than 84 in. in length and girth com-
bined. (Girth is the distance around the parcel perpendicular to
its length. See the figure.) Express the combined length and
girth as a function of L, W, and H.

C 5 40.F 5 2

ln 1T 2 5 5.49 2 3.00 ln 1F 2 1 0.18 ln 1C 2 ,

37,960 Ha.
R 5 141,319 Ha

N 1R, C 2 5 329.32 1 0.0377R 2 0.0171C,

C 5 24,870 Ha.U 5 31,697 Ha,107,484 Ha,
L 5 266 km,

2 0.0003C,

 A 1L, T, U, C 2 5 53.02 1 0.383L 1 0.0015T 1 0.0028U

W

H

L

Length

Girth
FIRST CLASS

YOUR TURN ANSWERS 

1. 29

2. 24

3.

4. y 5 81 /x1/3.

Roof line D

H
L

x

z

y

(0, 0, 4)

(0, 6, 0)

(12, 0, 0)

47. Required Material Refer to the figure for Exercise 46. As-
sume L, W, and H are in feet. Write a function in terms of L, W,
and H that gives the total area of the material required to build
the box.

48. Elliptical Templates The holes cut in a roof for vent pipes
require elliptical templates. A formula for determining the
length of the major axis of the ellipse is given by

where D is the (outside) diameter of the pipe and H is the “rise” of
the roof per D units of “run”; that is, the slope of the roof is
(See the figure below.) The width of the ellipse (minor axis)
equals D. Find the length and width of the ellipse required to
produce a hole for a vent pipe with a diameter of 3.75 in. in roofs
with the following slopes.

a. b. 2 /53 /4

H /D.

L 5 f 1H, D 2 5 "H2 1 D2
 ,
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9.2 Partial Derivatives
APPLY IT 

FOR REVIEW
You may want to review Chapter 4
on Calculating the Derivative for
methods used to find some of the
derivatives in this section.

What is the change in productivity if labor is increased by one work-
hour? What if capital is increased by one unit?
We will answer this question in Example 5 using the concept of partial derivatives.

Earlier, we found that the derivative gives the rate of change of y with respect
to x. In this section, we show how derivatives are found and interpreted for multivariable
functions.

A small firm makes only two products, radios and CD players. The profits of the firm
are given by

where x is the number of radios sold and y is the number of CD players sold. How will a
change in x or y affect P?

Suppose that sales of radios have been steady at 10 units; only the sales of CD players
vary. The management would like to find the marginal profit with respect to y, the number
of CD players sold. Recall that marginal profit is given by the derivative of the profit func-
tion. Here, x is fixed at 10. Using this information, we begin by finding a new function,

Let to get

The function shows the profit from the sale of y CD players, assuming that x is fixed
at 10 units. Find the derivative to get the marginal profit with respect to y.

In this example, the derivative of the function was taken with respect to y only; we
assumed that x was fixed. To generalize, let An intuitive definition of the par-
tial derivatives of f with respect to x and y follows.

z 5 f 1x, y 2 .
f 1 y 2

df

dy
5 2100 1 10y

df /dy
f 1 y 2

 5 3920 2 100y 1 5y2.

 f 1 y 2 5 P 1 10, y 2 5 40 1 10 2 2 2 10 1 10 2y 1 5y2 2 80

x 5 10f 1 y 2 5 P 1 10, y 2 .

P 1x, y 2 5 40x2 2 10xy 1 5y2 2 80,

dy /dx

Partial Derivatives (Informal Definition)
The partial derivative of f with respect to x is the derivative of f obtained by treating
x as a variable and y as a constant.

The partial derivative of f with respect to y is the derivative of f obtained by treating y
as a variable and x as a constant.

The symbols (no prime is used), and are used to represent the
partial derivative of with respect to x, with similar symbols used for the partial
derivative with respect to y.

Generalizing from the definition of the derivative given earlier, partial derivatives of a
function are formally defined as follows.z 5 f 1x, y 2

z 5 f 1x, y 2
'f /'xzx ,'z /'x,fx 

1x, y 2



Partial Derivatives (Formal Definition)
Let be a function of two independent variables. Let all indicated limits exist.
Then the partial derivative of f with respect to x is

and the partial derivative of f with respect to y is

If the indicated limits do not exist, then the partial derivatives do not exist.

fy 1 x, y 2 5
ef

ey
5 lim

hl0
 
f 1 x, y 1 h 2 2 f 1 x, y 2

h
 .

fx 1 x, y 2 5
ef

ex
5 lim

hl0
 
f 1 x 1 h, y 2 2 f 1 x, y 2

h
 ,

z 5 f 1x, y 2

Partial Derivatives

Let Find and 

SOLUTION To find treat y as a constant and x as a variable. The derivative of the
first term, is In the second term, the constant coefficient of x is so the
derivative with x as the variable is The derivative of is zero, since we are treating
y as a constant. Thus,

Now, to find treat y as a variable and x as a constant. Since x is a constant, the
derivative of is zero. In the second term, the coefficient of y is and the derivative
of is The derivative of the third term is Thus,

TRY YOUR TURN 1

The next example shows how the chain rule can be used to find partial derivatives.

Partial Derivatives

Let Find and 

SOLUTION Recall the formula for the derivative of a natural logarithm function. If
then Using this formula and the chain rule,

and

TRY YOUR TURN 2

The notation

represents the value of the partial derivative when and as shown in the next
example.

y 5 b,x 5 a

fx 
1a, b 2  or  

'f
'y

 1a, b 2

fy 
1x, y 2 5

1

x2 1 3y
. '
'y
1x2 1 3y 2 5

1

x2 1 3y
. 3 5

3

x2 1 3y
 .

fx 
1x, y 2 5

1

x2 1 3y
. '
'x

 
1x2 1 3y 2 5

1

x2 1 3y
. 2x 5

2x

x2 1 3y
 ,

g r 1x 2 5 1 /x.g 1x 2 5 ln 0 x 0 ,

fy 
1x, y 2 .fx 

1x, y 2f1x, y 2 5 ln 0 x2 1 3y 0 .

fy 
1x, y 2 5 29x 1 18y2.

18y2.29x.29xy
29x4x2

fy 
1x, y 2 ,

fx 
1x, y 2 5 8x 2 9y.

6y329y.
29y,29xy,8x.4x2,

fx 
1x, y 2 ,

fy 
1x, y 2 .fx 

1x, y 2f 1x, y 2 5 4x2 2 9xy 1 6y3.

EXAMPLE  1

EXAMPLE  2

YOUR TURN 1 Let
Find

and  fy 1x, y 2 .fx 1x, y 2
f 1x, y 2 5 2x2y3 1 6x5y4.

YOUR TURN 2 Let
Find  

and fy 1x, y 2 .
fx 1x, y 2f 1x, y 2 5 e3x2y.

Similar definitions could be given for functions of more than two independent variables.
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Evaluating Partial Derivatives 

Let  Find the following.

(a)

SOLUTION First, find by holding constant. 

Now let  and  

(b)

SOLUTION Since  

(c) All values of and such that both and (The importance of
such points will be shown in the next section.)

SOLUTION From parts (a) and (b), 

Solving the first equation for yields Substituting this into the second equa-
tion yields 

Substituting yields Thus, and
when and 

(d) using the formal definition of the partial derivative.

SOLUTION Calculate as follows: 

5 4x 1 2h 1 9y3.

5
h 14x 1 2h 1 9y3 2

h
 

5
4xh 1 2h2 1 9hy3

h
 

5
2x2 1 4xh 12h2 1 9xy3 1 9hy3 1 8y 1 5 22x2 2 9xy3 2 8y 2 5

h

f 1x 1h,  y2 2 f 1x,  y 2
h

5
2 1x 1 h 2 2 1 9 1x 1 h 2y31 8y15 2 12x2 1 9xy3 1 8y 1 5 2

h

fx 1x,  y 2
y 5 2/3.x 5 22/3fy 1x,  y 2 5 0

fx 1x,  y 2 5 0x 5 29y3 /4 5 29 12/3 2 3 /4 5 22/3.y 5 2/3

y 5
2

3
. 

y5 5
32

243

2243y5

4
5 28

2243y5

4
1 8 5 0

27a
29y3

4
b  y2 1 8 5 0

x 5 29y3 /4.x

fx 1x,  y 2 5 4x 1 9y3 5 0  and    fy 1x,  y 2 5 27xy2 1 8 5 0.

fy 1x,  y 2 5 0.fx 1x,  y 2 5 0yx

'f
'y
124, 23 2 5 27 124 2 123 2 2 1 8 5 27 1236 2 1 8 5 2964.

'f/'y 5 27xy2 1 8,

'f
'y
124, 23 2

fx 121,  2 2 5 4 121 2 1 9 12 2 3 5 24 1 72 5 68

y 5 2.x 5 21

fx 1x,  y 2 5 4x 1 9y3

yfx 1x,  y 2

fx 121,  2 2
f 1x,  y 2 5 2x2 1 9xy3 1 8y 1 5.

EXAMPLE  3

Take the fifth root of both sides.

Simplify the numerator.

Factor h from the numerator.



Now take the limit as goes to 0. Thus, 

the same answer we found in part (a). TRY YOUR TURN 3

In some cases, the difference quotient may not simplify as easily as it did in Example
3(d). In such cases, the derivative may be approximated by putting a small value for  into

In Example 3(d), with and the values and
give approximations for as 68.0002 and 68.00002, respectively, compared

with the exact value of 68 found in Example 3(a).
The derivative of a function of one variable can be interpreted as the slope of the tan-

gent line to the graph at that point. With some modification, the same is true of partial
derivatives of functions of two variables. At a point on the graph of a function of two vari-
ables, there may be many tangent lines, all of which lie in the same tangent
plane, as shown in Figure 15.

z 5 f 1x,  y 2 ,

fx 121,  2 21025
h 5 1024y 5 2,x 5 213f1x 1 h 2 2 f1x 2 4 /h.

h

5 4x 1 9y3,

fx 1x,  y 2 5 lim
hl0

f 1x 1 h,  y 2 2 f 1x,  y 2
h

5 lim
hl0

14x 1 2h 1 9y3 2

h
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z = f (x, y)

y

x

z

FIGURE 15

In any particular direction, however, there will be only one tangent line. We use par-
tial derivatives to find the slope of the tangent lines in the x- and y-directions as follows.

Figure 16 shows a surface and a plane that is parallel to the xz-plane. The
equation of the plane is (This corresponds to holding y fixed.) Since for
points on the plane, any point on the curve that represents the intersection of the plane and
the surface must have the form Thus, this curve can be
described as Since b is constant, is a function of one variable.
When the derivative of is evaluated at it gives the slope of the line tan-
gent to this curve at the point as shown in Figure 16. Thus, the partial
derivative of f with respect to x, gives the rate of change of the surface

in the x-direction at the point In the same way, the partial
derivative with respect to y will give the slope of the line tangent to the surface in the 
y-direction at the point 

Rate of Change The derivative of gives the rate of change of y with
respect to x. In the same way, if then gives the rate of change of z
with respect to x, if y is held constant.

fx 
1x, y 2z 5 f 1x, y 2 ,

y 5 f 1x 2

1a, b, f 1a, b 2 2 .

1a, b, f 1a, b 2 2 .z 5 f 1x, y 2
fx 
1a, b 2 ,

1a, b, f 1a, b 2 2 ,
x 5 a,z 5 f 1x, b 2

z 5 f 1x, b 2z 5 f 1x, b 2 .
1x, b, f 1x, b 2 2 .1x, y, z 2  5

y 5 by 5 b.
z 5 f 1x, y 2

(a, b, f (a, b))

Tangent lineSurface
z = f (x, y)

b
a

x

y

z

Plane y = b

FIGURE 16

YOUR TURN 3 Let
Find 

and fy 1 2, 1 2 .
fx 1 2, 1 2f 1x, y 2 5 xyex21y3

.
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Water Temperature

Suppose that the temperature of the water at the point on a river where a nuclear power
plant discharges its hot waste water is approximated by

where x represents the temperature of the river water (in degrees Celsius) before it reaches
the power plant and y is the number of megawatts (in hundreds) of electricity being pro-
duced by the plant.

(a) Find and interpret 

SOLUTION First, find the partial derivative 

This partial derivative gives the rate of change of T with respect to x. Replacing x with
9 and y with 5 gives

Just as marginal cost is the approximate cost of one more item, this result, 7, is the
approximate change in temperature of the output water if input water temperature
changes by 1 degree, from to while y remains constant at 5
(500 megawatts of electricity produced).

(b) Find and interpret 

SOLUTION The partial derivative is

This partial derivative gives the rate of change of T with respect to y as

This result, 14, is the approximate change in temperature resulting from a 1-unit increase
in production of electricity from to (from 500 to 600 megawatts),
while the input water temperature x remains constant at  

As mentioned in the previous section, if gives the output P produced by x units
of labor and y units of capital, is a production function. The partial derivatives of
this production function have practical implications. For example, gives the marginal
productivity of labor. This represents the rate at which the output is changing with respect to
labor for a fixed capital investment. That is, if the capital investment is held constant and
labor is increased by 1 work-hour, will yield the approximate change in the produc-
tion level. Likewise, gives the marginal productivity of capital, which represents the
rate at which the output is changing with respect to a one-unit change in capital for a fixed
labor value. So if the labor force is held constant and the capital investment is increased by
1 unit, will approximate the corresponding change in the production level.

Production Function

A company that manufactures computers has determined that its production function is
given by

P1x, y 2 5 0.1xy2 ln 12x 1 3y 1 2 2 ,

'P/'y

'P/'y
'P/'x

'P/'x
P 1x, y 2

P 1x, y 2

9°C.
y 5 5 1 1 5 6y 5 5

Ty 
1 9, 5 2 5 5 1 9 5 14.

Ty 
1x, y 2 5 5 1 x.

Ty 
1x, y 2

Ty 
1 9, 5 2 .

x 5 9 1 1 5 10,x 5 9

Tx 
1 9, 5 2 5 2 1 5 5 7.

Tx 
1x, y 2 5 2 1 y

Tx 
1x, y 2 .

Tx 
1 9, 5 2 .

T 1x, y 2 5 2x 1 5y 1 xy 2 40,

EXAMPLE  4

EXAMPLE  5



where x is the size of the labor force (measured in work-hours per week) and y is the amount of
capital (measured in units of $1000) invested. Find the marginal productivity of labor and cap-
ital when and and interpret the results.

SOLUTION The marginal productivity of labor is found by taking the derivative of P with
respect to x.

Thus, if the capital investment is held constant at $20,000 and labor is increased from 50 to
51 work-hours per week, production will increase by about 228 units. In the same way, the
marginal productivity of capital is 

If work-hours are held constant at 50 hours per week and the capital investment is increased
from $20,000 to $21,000, production will increase by about 1055 units.

Second-Order Partial Derivatives The second derivative of a function of one
variable is very useful in determining relative maxima and minima. Second-order partial
derivatives (partial derivatives of a partial derivative) are used in a similar way for func-
tions of two or more variables. The situation is somewhat more complicated, however, with
more independent variables. For example, has two first-order
partial derivatives,

Since each of these has two partial derivatives, one with respect to y and one with respect to x,
there are four second-order partial derivatives of function f. The notations for these four
second-order partial derivatives are given below.

fx 
1x, y 2 5 4 1 2xy  and  fy 

1x, y 2 5 x2 1 2.

f 1x, y 2 5 4x 1 x2y 1 2y

'P
'y
1 50, 20 2 5 0.1 c

50 120 2 2

2 1 50 2 1 3 120 2 1 2
. 3 1 2 150 2 120 2  ln 12 1 50 2 1 3 120 2 1 2 2 d < 1055

'P
'y

5 0.1 c
xy2

2x 1 3y 1 2
. 3 1 2xy ln 12x 1 3y 1 2 2 d

'P /'y.

'P
'x
1 50, 20 2 5 0.1 c

50 120 2 2

2 1 50 2 1 3 120 2 1 2
. 2 1 202 ln 12 1 50 2 1 3 120 2 1 2 2 d < 228

'P
'x

5 0.1c
xy2

2x 1 3y 1 2
. 2 1 y2 ln 12x 1 3y 1 2 2d 

y 5 20,x 5 50
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APPLY IT 

Second-Order Partial Derivatives
For a function if the indicated partial derivative exists, then

 
e
ey

 a
ez
ex
b 5

e2z
eyex

5 fxy 
1 x, y 2 5 zxy   

e
ex

 a
ez
ey
b 5

e2z
exey

5 fyx 
1 x, y 2 5 zyx

 
e
ex

 a
ez
ex
b 5

e2z

ex2 5 fxx 
1 x, y 2 5 zxx   

e
ey

 a
ez
ey
b 5

e2z

ey2 5 fyy 
1 x, y 2 5 zyy

z 5 f 1x, y 2 ,

NOTE For most functions found in applications and for all of the functions in this book, the 
second-order partial derivatives and are equal. This is always true when

and are continuous. Therefore, it is not necessary to be particular about the
order in which these derivatives are found.

fyx  
1 x, y 2fxy  

1 x, y 2
fyx  
1 x, y 2fxy  

1 x, y 2

Use the product and chain rules.

Use the product and chain rules.
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Second-Order Partial Derivatives

Find all second-order partial derivatives for

SOLUTION First find and 

To find take the partial derivative of with respect to x.

Take the partial derivative of with respect to y; this gives 

Find by starting with then taking the partial derivative of with
respect to y.

Finally, find by starting with take its partial derivative with respect to x.

TRY YOUR TURN 4

Second-Order Partial Derivatives

Let Find all second-order partial derivatives.

SOLUTION Here and (Recall: If 
then Now find the second-order partial derivatives.

Partial derivatives of functions with more than two independent variables are found in
a similar manner. For instance, to find for hold x and y constant and
differentiate with respect to z.

Second-Order Partial Derivatives

Let Find and

SOLUTION

To find differentiate with respect to z.

Differentiate with respect to z to get 

fyz 
1x, y, z 2 5 4x2z 2 4

fyz 
1x, y, z 2 .fy 

1x, y, z 2

fxz 
1x, y, z 2 5 8xyz

fx 
1x, y, z 2fxz 

1x, y, z 2 ,

 fy 
1x, y, z 2 5 2x2z2 1 6xy 2 4z

 fx 
1x, y, z 2 5 4xyz2 1 3y2

fyz 
1x, y, z 2 .

fxz 
1x, y, z 2 ,fy 

1x, y, z 2 ,fx 
1x, y, z 2 ,f 1x, y, z 2 5 2x2yz2 1 3xy2 2 4yz.

f 1x, y, z 2 ,fz 
1x, y, z 2

 fyy 
1x, y 2 5 216x3   fyx 

1x, y 2 5 248x2y

 fxx 
1x, y 2 5 2ex 2 48xy2   fxy 

1x, y 2 5 248x2y

g r 1x 2 5 ex.)
g 1x 2 5 ex,fy 

1x, y 2 5 216x3y.fx 
1x, y 2 5 2ex 2 24x2y2

f 1x, y 2 5 2ex 2 8x3y2.

fyx 
1x, y 2 5 218xy2

fy 
1x, y 2 ;fyx 

1x, y 2

fxy 
1x, y 2 5 218xy2

fx 
1x, y 2fx 

1x, y 2 ,fxy 
1x, y 2

fyy 
1x, y 2 5 218x2y 1 4

fyy .fy 
1x, y 2

fxx 
1x, y 2 5 224x 2 6y3

fx 
1x, y 2fxx 1x, y 2 ,

fx 
1x, y 2 5 212x2 2 6xy3  and  fy 

1x, y 2 5 29x2y2 1 4y

fy 
1x, y 2 .fx 

1x, y 2

f 1x, y 2 5 24x3 2 3x2y3 1 2y2.

EXAMPLE  6

EXAMPLE  7

EXAMPLE  8

YOUR TURN 4 Let
Find all

second partial derivatives. 
f 1 x, y 2 5 x2e7y 1 x4y5.



Find and for the
following.

37.

38.

39.

40.

41.

42.

In Exercises 43 and 44, approximate the indicated derivative
for each function by using the definition of the derivative with
small values of h.

43.

a. b. 

44.

a. b. fy 
12, 1 2fx 

12, 1 2
f 1x, y 2 5 1x 1 y2 2 2x1y

fy 
1 1, 2 2fx 

1 1, 2 2
f 1x, y 2 5 1x 1 y /2 2x1y/2

f 1x, y, z 2 5 ln 0 8xy 1 5yz 2 x3 0

f 1x, y, z 2 5 ln 0 x2 2 5xz2 1 y4 0

f 1x, y, z 2 5
2x2 1 xy

yz 2 2

f 1x, y, z 2 5
6x 2 5y

4z 1 5

f 1x, y, z 2 5 6x3 2 x2y2 1 y5

f 1x, y, z 2 5 x4 1 2yz2 1 z4

fyz 
1 x, y, z 2fz 

1 x, y, z 2 ,fy 
1 x, y, z 2 ,fx 

1 x, y, z 2 ,
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9.2 EXERCISES
1. Let Find the following

using the formal definition of the partial derivative.

a. b. c. d. 

2. Let Find the following using
the formal definition of the partial derivative.

a. b. c. d. 

In Exercises 3–20, find and . Then find 
and Leave the answers in terms of e in Exercises 7–10,
15–16, and 19–20.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

Find all second-order partial derivatives for the following.

21.

22.

23.

24.

25. 26.

27. 28.

29. 30.

31. 32.

For the functions defined as follows, find all values of x and y
such that both � 0 and � 0.

33.

34.

35.

36. f 1x, y 2 5 2200 1 27x3 1 72xy 1 8y2

f 1x, y 2 5 9xy 2 x3 2 y3 2 6

f 1x, y 2 5 50 1 4x 2 5y 1 x2 1 y2 1 xy

f 1x, y 2 5 6x2 1 6y2 1 6xy 1 36x 2 5

fy 
1 x, y 2fx 

1 x, y 2

z 5 1 y 1 1 2  ln 0 x3y 0z 5 x ln 0 xy 0

k 5 ln 0 5x 2 7y 0r 5 ln 0 x 1 y 0

z 5 26xeyz 5 9yex

k 1x, y 2 5
27x

2x 1 3y
r 1x, y 2 5

6y

x 1 y

h 1x, y 2 5 30y 1 5x2y 1 12xy2

R 1x, y 2 5 4x2 2 5xy3 1 12y2x2

g 1x, y 2 5 5x4y2 1 12y3 2 9x

f 1x, y 2 5 4x2y2 2 16x2 1 4y

f 1x, y 2 5 1 7ex12y 1 4 2 1 ex2

1 y2 1 2 2

f 1x, y 2 5
3x2y

exy 1 2

f 1x, y 2 5 1 7x2 1 18xy2 1 y3 2 1/3

f 1x, y 2 5 "x4 1 3xy 1 y4 1 10

f 1x, y 2 5 y2ex13yf 1x, y 2 5 xex2y

f 1x, y 2 5 ln 0 4x4 2 2x2y2 0f 1x, y 2 5 ln 0 1 1 5x3y2 0

f 1x, y 2 5
3x2y3

x2 1 y2f 1x, y 2 5
x2 1 y3

x3 2 y2

f 1x, y 2 5 8e7x2yf 1x, y 2 5 26e4x23y

f 1x, y 2 5 4e3x12yf 1x, y 2 5 ex1y

f 1x, y 2 5 23x4y3 1 10f 1x, y 2 5 5x2y3

f 1x, y 2 5 9x2y2 2 4y2f 1x, y 2 5 24xy 1 6y3 1 5

fy 
124, 3 2 .

fx 
1 2, 21 2fy 

1 x, y 2fx 
1 x, y 2

gx 
12, 1 2

'z
'y

 123, 0 2
'g

'y

'g
'x

z 5 g 1x, y 2 5 8x 1 6x2y 1 2y2.

fy 
1 1, 22 2

'f
'x

 12, 3 2
'z
'y

'z
'x

z 5 f 1x, y 2 5 6x2 2 4xy 1 9y2.

APPLICATIONS
Business and Economics

45. Manufacturing Cost Suppose that the manufacturing cost of a
personal digital assistant (PDA) is approximated by

where x is the cost of electronic chips and y is the cost of labor.
Find the following.

a. b. c. 

d.

46. Revenue The revenue from the sale of x units of a sedative and
y units of an antibiotic is given by

Suppose 9 units of sedative and 5 units of antibiotic are sold.

a. What is the approximate effect on revenue if 10 units of
sedative and 5 units of antibiotic are sold?

b. What is the approximate effect on revenue if the amount of
antibiotic sold is increased to 6 units, while sedative sales
remain constant?

47. Sales A car dealership estimates that the total weekly sales of
its most popular model is a function of the car’s list price, p,
and the interest rate in percent, i, offered by the manufacturer.
The approximate weekly sales are given by

f 1p, i 2 5 99p 2 0.5pi 2 0.0025p2.

R 1x, y 2 5 5x2 1 9y2 2 4xy.

1'M /'y 2 1 6, 7 2

1'M /'x 2 12, 5 2Mx 
1 3, 6 2My 

14, 2 2

M 1x, y 2 5 45x2 1 40y2 2 20xy 1 50,
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a. Find the weekly sales if the average list price is $19,400 and
the manufacturer is offering an 8% interest rate.

b. Find and interpret and 

c. What would be the effect on weekly sales if the price is
$19,400 and interest rates rise from 8% to 9%?

48. Marginal Productivity Suppose the production function of a
company is given by

where x represents units of labor and y represents units of capital.
Find the following when 6 units of labor and 8 units of capital
are used.

a. The marginal productivity of labor

b. The marginal productivity of capital

49. Marginal Productivity A manufacturer estimates that produc-
tion (in hundreds of units) is a function of the amounts x and y
of labor and capital used, as follows.

a. Find the number of units produced when 16 units of labor
and 81 units of capital are utilized.

b. Find and interpret and 

c. What would be the approximate effect on production of
increasing labor by 1 unit from 16 units of labor with 81
units of capital?

50. Marginal Productivity The production function z for the
United States was once estimated as

where x stands for the amount of labor and y the amount of
capital. Find the marginal productivity of labor and of capital.

51. Marginal Productivity A similar production function for
Canada is

with x, y, and z as in Exercise 50. Find the marginal productiv-
ity of labor and of capital.

52. Marginal Productivity A manufacturer of automobile batter-
ies estimates that his total production (in thousands of units) is
given by

where x is the number of units of labor and y is the number of
units of capital utilized.

a. Find and interpret and if the current
level of production uses 64 units of labor and 125 units of
capital.

b. Use your answer from part a to calculate the approximate
effect on production of increasing labor to 65 units while
holding capital at the current level.

c. Suppose that sales have been good and management wants
to increase either capital or labor by 1 unit. Which option
would result in a larger increase in production?

fy 
1 64, 125 2fx 

1 64, 125 2

f 1x, y 2 5 3x1/3y2/3,

z 5 x0.4y0.6,

z 5 x0.7y0.3,

fy 
1 16, 81 2 .fx 

1 16, 81 2

f 1x, y 2 5 a
1

4
 x21/4 1

3

4
 y21/4b

24

P 1x, y 2 5 250 "x2 1 y2
 ,

fi 
1p, i 2 .fp 

1p, i 2

Life Sciences

53. Calorie Expenditure The average energy expended for an ani-
mal to walk or run 1 km can be estimated by the function

where is the energy used (in kcal per hour), m is the
mass (in g), and v is the speed of movement (in km per hour)
of the animal. Source: Wildlife Feeding and Nutrition.

a. Find 

b. Find and interpret.

c. If a mouse could run at the same speed that an elephant
walks, which animal would expend more energy? How can
partial derivatives be used to explore this question?

54. Heat Loss The rate of heat loss (in watts) in harbor seal pups
has been approximated by

where m is the body mass of the pup (in kg), and T and A are
the body core temperature and ambient water temperature,
respectively (in °C). Find the approximate change in heat
loss under the following conditions. Source: Functional
Ecology.

a. The body core temperature increases from 37°C to 38°,
while the ambient water temperature remains at 8°C and the
body mass remains at 24 kg.

b. The ambient water temperature increases from 10°C to 11°,
while the body core temperature remains at 37°C and the
body mass remains at 26 kg.

55. Body Surface Area The surface area of a human (in square
meters) has been approximated by

where h is the height (in cm) and m is the mass (in kg). Source:
The Journal of Pediatrics.

a. Find the approximate change in surface area when the mass
changes from 72 kg to 73 kg, while the height remains at
180 cm.

b. Find the approximate change in surface area when the
height changes from 160 cm to 161 cm, while the mass
remains at 70 kg.

56. Blood Flow According to the Fick Principle, the quantity of
blood pumped through the lungs depends on the following
variables (in milliliters):

 5 to enter the lungs
 v 5 quantity of oxygen per liter of blood that is about

 5 just gone through the lungs
 a 5 quantity of oxygen per liter of blood that has 

 b 5 quantity of oxygen used by the body in one minute

A 5 0.024265h0.3964m0.5378,

H 1m, T, A 2 5
15.2m0.67 1T 2 A 2

10.23 ln m 2 10.74
,

fm 
1 300, 10 2

f 1 300, 10 2 .

f 1m, v 2

f 1m, v 2 5 25.92m0.68 1
3.62m0.75

v
 ,



59. Drug Reaction The reaction to x units of a drug t hours after it
was administered is given by

for (where a is a constant). Find the following.

a. b. c. d.

e. Interpret your answers to parts a and b.

60. Scuba Diving In 1908, J. Haldane constructed diving tables that
provide a relationship between the water pressure on body tis-
sues for various water depths and dive times. The tables were
successfully used by divers to virtually eliminate decompression
sickness. The pressure in atmospheres for a no-stop dive is given
by the following formula:*

where t is in minutes, l is in feet, and p is in atmospheres (atm).
Source: The UMAP Journal.

a. Find the pressure at 33 ft for a 10-minute dive.

b. Find and and interpret. (Hint:

c. Haldane estimated that decompression sickness for no-stop
dives could be avoided if the diver’s tissue pressure did not
exceed 2.15 atm. Find the maximum amount of time that a
diver could stay down (time includes going down and coming
back up) if he or she wants to dive to a depth of 66 ft.

61. Wind Chill In 1941, explorers Paul Siple and Charles Passel dis-
covered that the amount of heat lost when an object is exposed to
cold air depends on both the temperature of the air and the veloc-
ity of the wind. They developed the Wind Chill Index as a way to
measure the danger of frostbite while doing outdoor activities.
The wind chill can be calculated as follows:

where V is the wind speed in miles per hour and T is the tempera-
ture in Fahrenheit for wind speeds between 4 and 45 mph. Source:
The UMAP Journal.

a. Find the wind chill for a wind speed of 20 mph and 

b. If a weather report indicates that the wind chill is and
the actual outdoor temperature is use a graphing calcu-
lator to find the corresponding wind speed to the nearest
mile per hour.

c. Find and and interpret.

d. Using the table command on a graphing calculator or a
spreadsheet, develop a wind chill chart for various wind
speeds and temperatures.

62. Heat Index The chart on the next page shows the heat index,
which combines the effects of temperature with humidity to
give a measure of the apparent temperature, or how hot it feels to

WT 
120, 10 2WV 

120, 10 2

5°F,
225°F

10°F.

W 1V, T 2 5 91.4 2
1 10.45 1 6.69"V 2 0.447V 2 1 91.4 2 T 2

22

ln 1a 2at.)
Dt 
1at 2 5pt 

1 33, 10 2pl 
1 33, 10 2

p 1 l, t 2 5 1 1
l

33
 1 1 2 22t/5 2 ,

'2R

'x't
'2R

'x2

'R
't

'R
'x

0 # x # a

R 1x, t 2 5 x2 1a 2 x 2 t2e2t,

In one minute,

If C is the number of liters of blood pumped through the
lungs in one minute, then

Source: Anaesthesia UK.

a. Find the number of liters of blood pumped through the lungs
in one minute if and 

b. Find the approximate change in C when a changes from 160
to 161, and 

c. Find the approximate change in C when b changes
from 200 to 201, and 

d. Find the approximate change in C when 
and v changes from 125 to 126.

e. A change of 1 unit in which quantity of oxygen produces the
greatest change in the liters of blood pumped?

57. Health A weight-loss counselor has prepared a program of
diet and exercise for a client. If the client sticks to the program,
the weight loss that can be expected (in pounds per week) is
given by

where c is the average daily calorie intake for the week and n is
the number of 40-minute aerobic workouts per week.

a. How many pounds can the client expect to lose by eating 
an average of 1200 cal per day and participating in four 
40-minute workouts in a week?

b. Find and interpret 

c. The client currently averages 1100 cal per day and does
three 40-minute workouts each week. What would be the
approximate impact on weekly weight loss of adding a
fourth workout per week?

58. Health The body mass index is a number that can be calcu-
lated for any individual as follows: Multiply a person’s weight
by 703 and divide by the person’s height squared. That is,

where w is in pounds and h is in inches. The National Heart,
Lung and Blood Institute uses the body mass index to deter-
mine whether a person is “overweight” or
“obese” Source: The National Institutes of Health.

a. Calculate the body mass index for Miami Dolphins offensive
tackle Jake Long, who weighs 317 lb and is 6
7

 tall.

b. Calculate and and interpret.

c. Using the fact that and 1 lb. � 0.4536 kg.
transform this formula to handle metric units.

1 in. 5 0.0254 m

'B
'h

'B
'w

1B $ 30 2 .
125 # B , 30 2

B 5
703w

h2  ,

'f /'n.

Weight loss 5 f 1n, c 2 5
1

8
 n2 2

1

5
 c 1

1937

8
 ,

b 5 200,a 5 160,

v 5 125.
a 5 160,

v 5 125.b 5 200,

v 5 125.b 5 200,a 5 160,

b 5 1a 2 v 2 . C  or  C 5
b

a 2 v
 .

  3 Liters of blood pumped.
 Amount of oxygen used 5 Amount of oxygen per liter
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*These estimates are conservative. Please consult modern dive tables before
making a dive.
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the body. Source: The Weather Channel. For example, when the
outside temperature is and the relative humidity is 40%,
then the apparent temperature is approximately Let

give the heat index, I, as a function of the tempera-
ture T (in degrees Fahrenheit) and the percent humidity H. Esti-
mate the following.

a. b. c. f 1 80, 75 2f 1 90, 75 2f 1 90, 30 2

I 5 f 1T, H 2
93°F.

90°F
63. Breath Volume The table at the bottom of this page accompa-

nies the Voldyne® 5000 Volumetric Exerciser. The table gives the
typical lung capacity (in milliliters) for women of various ages
and heights. Based on the chart, it is possible to conclude that the
partial derivative of the lung capacity with respect to age and
with respect to height has constant values. What are those values?

Social  Sciences

64. Education A developmental mathematics instructor at a large
university has determined that a student’s probability of suc-
cess in the university’s pass/fail remedial algebra course is a
function of s, n, and a, where s is the student’s score on the
departmental placement exam, n is the number of semesters of
mathematics passed in high school, and a is the student’s
mathematics SAT score. She estimates that p, the probability
of passing the course (in percent), will be

for and Assuming
that the above model has some merit, find the following.

a. If a student scores 6 on the placement exam, has taken
4 semesters of high school math, and has an SAT score of
460, what is the probability of passing the course?

b. Find p for a student with 5 semesters of high school mathe-
matics, a placement score of 4, and an SAT score of 300.

c. Find and interpret and 

Physical  Sciences

65. Gravitational Attraction The gravitational attraction F on a
body a distance r from the center of Earth, where r is greater
than the radius of Earth, is a function of its mass m and the dis-
tance r as follows:

F 5
mgR2

r2  ,

fa 
14, 5, 480 2 .fn 

14, 5, 480 2

0 # n # 8.0 # s # 10,200 # a # 800,

p 5 f 1 s, n, a 2 5 0.05a 1 6 1 sn 2 1/2

A
ir

 t
em

pe
ra

tu
re

Relative humidity (%)

130

120

110

100

90

80

70

60

5040302010 60 70 80 90 100

Heat Index

110
120
130

100

90

80

70

Apparent temperature

Estimate the following by approximating the partial derivative
using a value of in the difference quotient.

d. e. f.

g.

h. Describe in words what your answers in parts d–g mean.

fH 
1 90, 75 2

fT 
1 90, 75 2fH 

1 90, 30 2fT 
1 90, 30 2

h 5 5

20 1900 2100 2300 2500 2700 2900 3100 3300 3500

A 25 1850 2050 2250 2450 2650 2850 3050 3250 3450

G 30 1800 2000 2200 2400 2600 2800 3000 3200 3400

E 35 1750 1950 2150 2350 2550 2750 2950 3150 3350

40 1700 1900 2100 2300 2500 2700 2900 3100 3300

I 45 1650 1850 2050 2250 2450 2650 2850 3050 3250

N 50 1600 1800 2000 2200 2400 2600 2800 3000 3200

55 1550 1750 1950 2150 2350 2550 2750 2950 3150

Y 60 1500 1700 1900 2100 2300 2500 2700 2900 3100

E 65 1450 1650 1850 2050 2250 2450 2650 2850 3050

A 70 1400 1600 1800 2000 2200 2400 2600 2800 3000

R 75 1350 1550 1750 1950 2150 2350 2550 2750 2950

S 80 1300 1500 1700 1900 2100 2300 2500 2700 2900

Height
(in.) 740720700680660640620600580
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where R is the radius of Earth and g is the force of 
gravity—about 32 feet per second per second 

a. Find and interpret and 

b. Show that and Why is this reasonable?

66. Velocity In 1931, Albert Einstein developed the following for-
mula for the sum of two velocities, x and y:

where x and y are in miles per second and c represents the
speed of light, 186,282 miles per second. Source: The Mathe-
matics Teacher.

a. Suppose that, relative to a stationary observer, a new super
space shuttle is capable of traveling at 50,000 miles per second
and that, while traveling at this speed, it launches a rocket that
travels at 150,000 miles per second. How fast is the rocket
traveling relative to the stationary observer?

b. What is the instantaneous rate of change of w with respect to
the speed of the space shuttle, x, when the space shuttle is
traveling at 50,000 miles per second and the rocket is travel-
ing at 150,000 miles per second?

c. Hypothetically, if a person is driving at the speed of light, c,
and she turns on the headlights, what is the velocity of the
light coming from the headlights relative to a stationary
observer?

w 1x, y 2 5
x 1 y

1 1
xy

c2

 ,

Fr , 0.Fm . 0

Fr .Fm

1 ft per sec2 2 .
67. Movement Time Fitts’ law is used to estimate the amount of

time it takes for a person, using his or her arm, to pick up a
light object, move it, and then place it in a designated target
area. Mathematically, Fitts’ law for a particular individual is
given by

where s is the distance (in feet) the object is moved, w is the
width of the area in which the object is being placed, and T is
the time (in msec). Source: Human Factors in Engineering
Design.

a. Calculate 

b. Find and and interpret these values.
(Hint: log2 x 5 ln x / ln 2.)

Tw 
1 3, 0.5 2Ts 

1 3, 0.5 2
T 1 3, 0.5 2 .

T 1 s, w 2 5 105 1 265 log2 a
2s

w
b  ,

9.3 Maxima and Minima
APPLY IT 

YOUR TURN ANSWERS 

1. ; 

2. ; 

3.

4. ;  

;

fxy 1x, y 2 5 fyx 1x,  y 2 5 14xe7y 1 20x3y4

fyy 1x, y 2 5 49x2e7y 1 20x4y3

fxx 1x, y 2 5 2e7y 1 12x2y5

9e5, 8e5

fy 1x, y 2 5 3x2e3x2yfx 1x, y 2 5 6xye3x2y

fy 1x, y 2 5 6x2y2 1 24x5y3fx 1x, y 2 5 4xy3 1 30x4y4

What amounts of sugar and flavoring produce the minimum cost per
batch of a soft drink? What is the minimum cost?
In this section we will learn how to answer questions such as this one, which is answered in
Example 4.

One of the most important applications of calculus is finding maxima and minima of func-
tions. Earlier, we studied this idea extensively for functions of a single independent variable; now
we will see that extrema can be found for functions of two variables. In particular, an extension of
the second derivative test can be defined and used to identify maxima or minima. We begin with
the definitions of relative maxima and minima.

Relative Maxima and Minima
Let be the center of a circular region contained in the xy-plane. Then, for a func-
tion defined for every in the region, is a relative (or local)
maximum if

for all points in the circular region, and is a relative (or local) minimum if

for all points in the circular region.1x, y 2
f 1 a, b 2 " f 1 x, y 2

f 1a, b 21x, y 2

f 1 a, b 2 # f 1 x, y 2

f 1a, b 21x, y 2z 5 f 1x, y 2
1a, b 2

FOR REVIEW
It may be helpful to review 
Section 5.2 on relative extrema 
at this point. The concepts pre-
sented there are basic to what will
be done in this section.
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As before, the word extremum is used for either a relative maximum or a relative minimum.
Examples of a relative maximum and a relative minimum are given in Figures 17 and 18.

NOTE When functions of a single variable were discussed, a distinction was made between
relative extrema and absolute extrema. The methods for finding absolute extrema are quite
involved for functions of two variables, so we will discuss only relative extrema here. In many
practical applications the relative extrema coincide with the absolute extrema. In this brief dis-
cussion of extrema for multivariable functions, we omit cases where an extremum occurs on a
boundary of the domain.

As suggested by Figure 19, at a relative maximum the tangent line parallel to the 
xz-plane has a slope of 0, as does the tangent line parallel to the yz-plane. (Notice the simi-
larity to functions of one variable.) That is, if the function has a relativef 1x, y 2z 5

(a, b, z)

(a, b)

Relative maximum at (a, b)

z

x
y

FIGURE 17

(a, b, z)

(a, b)

Relative minimum at (a, b)

z

x
y

FIGURE 18

Just as with functions of one variable, the fact that the slopes of the tangent lines are 0
is no guarantee that a relative extremum has been located. For example, Figure 20 shows
the graph of Both and and yet 
leads to neither a relative maximum nor a relative minimum for the function. The point

on the graph of this function is called a saddle point; it is a minimum when
approached from one direction but a maximum when approached from another direction. A
saddle point is neither a maximum nor a minimum.

The theorem on location of extrema suggests a useful strategy for finding extrema.
First, locate all points where and Then test each of these
points separately, using the test given after the next example. For a function the
points such that and are called critical points.

NOTE When we discussed functions of a single variable, we allowed critical points to
include points from the domain where the derivative does not exist. For functions of more 
than one variable, to avoid complications, we will only consider cases in which the function 
is differentiable.

fy 
1a, b 2 5 0fx 

1a, b 2 5 01a, b 2
f 1x, y 2 ,

fy 
1a, b 2 5 0.fx 

1a, b 2 5 01a, b 2

10, 0, 0 2

10, 0 2fy 
10, 0 2 5 0,fx 

10, 0 2 5 0z 5 f 1x, y 2 5 x2 2 y2.

Location of Extrema
Let a function have a relative maximum or relative minimum at the point

Let and both exist. Then

fx 
1 a, b 2 5 0  and  fy 

1 a, b 2 5 0.

fy 
1a, b 2fx 

1a, b 21a, b 2 .
z 5 f 1x, y 2

(a, b)

z

x
y

Tangent is
horizontal.

Tangent is
horizontal.

FIGURE 19

z = x2 – y2

x

y

z

FIGURE 20

extremum at then and as stated in the next theorem.fy 
1a, b 2 5 0,fx 

1a, b 2 5 01a, b 2 ,



Critical Points

Find all critical points for

SOLUTION Find all points such that and Here

Set each of these two partial derivatives equal to 0.

These two equations make up a system of linear equations. We can use the substitution
method to solve this system. First, rewrite as follows:

Now substitute for x in the other equation and solve for y.

From the equation The solution of the system of equations is
Since this is the only solution of the system, is the only critical point for

the given function. By the theorem above, if the function has a relative extremum, it will
occur at  TRY YOUR TURN 1

The results of the next theorem can be used to decide whether in Example 1
leads to a relative maximum, a relative minimum, or neither.

124, 2 2

124, 2 2 .

124, 2 2124, 2 2 .
x 5 22 12 2 5 24.x 5 22y,

 y 5 2

 218y 5 236

 218y 1 36 5 0

 224y 1 6y 1 36 5 0

 12 122y 2 1 6y 1 36 5 0

 12x 1 6y 1 36 5 0

22y

 x 5 22y.

 6x 5 212y

 12y 1 6x 5 0

12y 1 6x 5 0

12x 1 6y 1 36 5 0  and  12y 1 6x 5 0

fx 
1x, y 2 5 12x 1 6y 1 36  and  fy 

1x, y 2 5 12y 1 6x.

fy 
1a, b 2 5 0.fx 

1a, b 2 5 01a, b 2

f 1x, y 2 5 6x2 1 6y2 1 6xy 1 36x 2 5.

CHAPTER 9 Multivariable Calculus484

EXAMPLE  1

YOUR TURN 1 Find all 
critical points for  
4x3 1 3xy 1 4y3.

f 1 x, y 2 5

Test for Relative Extrema
For a function let and all exist in a circular region contained in
the xy-plane with center Further, let

Define the number D, known as the discriminant, by

Then
a. is a relative maximum if and 

b. is a relative minimum if and 

c. is a saddle point (neither a maximum nor a minimum) if 

d. if the test gives no information.D 5 0,

D , 0;f 1a, b 2
fxx 
1a, b 2 . 0;D . 0f 1a, b 2

fxx 
1a, b 2 , 0;D . 0f 1a, b 2

D 5 fxx 
1 a, b 2 ? fyy 

1 a, b 2 2 [ fxy 
1 a, b 2 \2.

fx 
1 a, b 2 5 0  and  fy 

1 a, b 2 5 0.

1a, b 2 .
fxyfyy ,fxx ,z 5 f 1x, y 2 ,
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Notice that in parts a and b of the test for relative extrema, it is only necessary to test the
second partial and not This is because if and

must have the same sign.

Relative Extrema

The previous example showed that the only critical point for the function

is Does lead to a relative maximum, a relative minimum, or neither?

SOLUTION Find out by using the test above. From Example 1,

Now find the various second partial derivatives used in finding D. From 
and 

(If these second-order partial derivatives had not all been constants, they would have had to
be evaluated at the point ) Now

Since and part b of the theorem applies, showing that
has a relative minimum at This relative

minimum is A graph of this surface drawn by the computer program
Maple™ is shown in Figure 21.

Saddle Point

Find all points where the function

has any relative maxima or relative minima.

SOLUTION First find any critical points. Here

Set each of these partial derivatives equal to 0.

The substitution method can be used again to solve the system of equations

 3x 5 y2.

 3y 5 x2

 3y 5 x2  3x 5 y2

 9y 5 3x2  9x 5 3y2

 9y 2 3x2 5 0    9x 2 3y2 5 0

 fx 
1x, y 2 5 0  fy 

1x, y 2 5 0

fx 
1x, y 2 5 9y 2 3x2  and  fy 

1x, y 2 5 9x 2 3y2.

f 1x, y 2 5 9xy 2 x3 2 y3 2 6

f 124, 2 2 5 277.
124, 2 2 .f 1x, y 2 5 6x2 1 6y2 1 6xy 1 36x 2 5

fxx 
124, 2 2 5 12 . 0,D . 0

D 5 fxx 
124, 2 2 . fyy 

124, 2 2 2 3fxy 
124, 2 2 4 2 5 12 . 12 2 62 5 108.

124, 2 2 .

fxx 
1x, y 2 5 12,  fyy 

1x, y 2 5 12,  and  fxy 
1x, y 2 5 6.

fy 
1x, y 2 5 12y 1 6x,12x 1 6y 1 36

fx 
1x, y 2 5

fx 
124, 2 2 5 0  and  fy 

124, 2 2 5 0.

124, 2 2124, 2 2 .

f 1x, y 2 5 6x2 1 6y2 1 6xy 1 36x 2 5

fyy 
1a, b 2

fxx 
1a, b 2D . 0,fyy 

1a, b 2 .fxx 
1a, b 2

fxx 
1 a, b 2 + 0fxx 

1 a, b 2 * 0

Relative maximum Relative minimum

No information

Saddle pointD , 0

D 5 0

D . 0

EXAMPLE  2

EXAMPLE  3

FIGURE 21

This test is comparable to the second derivative test for extrema of functions of one inde-
pendent variable. The following table summarizes the conclusions of the theorem. 



The first equation, can be rewritten as Substitute this into the second
equation to get

Solve this equation as follows.

Multiply both sides by 

Factor.

Set each factor equal to 

Take the cube root on both sides.

Use these values of x, along with the equation rewritten as to find y. If
If The critical points are and To

identify any extrema, use the test. Here

Test each of the possible critical points.

For : For :

Since there is a Here and 
saddle point at there is a relative maximum at 

Notice that these values are in accordance with the graph generated by the computer pro-
gram Maple™ shown in Figure 22. TRY YOUR TURN 2

Production Costs

A company is developing a new soft drink. The cost in dollars to produce a batch of the
drink is approximated by

where x is the number of kilograms of sugar per batch and y is the number of grams of fla-
voring per batch. Find the amounts of sugar and flavoring that result in the minimum cost
per batch. What is the minimum cost?

SOLUTION 

Start with the following partial derivatives.

Set each of these equal to 0 and solve for y.

 y 5
9

2
 x y 5

9

8
 x2

 16y 5 72x 272y 5 281x2

 272x 1 16y 5 0 81x2 2 72y 5 0

Cx 
1x, y 2 5 81x2 2 72y  and  Cy 

1x, y 2 5 272x 1 16y

C 1x, y 2 5 2200 1 27x3 2 72xy 1 8y2,

1 3, 3 2 .10, 0 2 .
fxx 
1 3, 3 2 5 218 , 0;D . 0D , 0,

D 5 218 1218 2 2 92 5 243.D 5 0 . 0 2 92 5 281.

fxy 
1 3, 3 2 5 9fxy 

10, 0 2 5 9

fyy 
1 3, 3 2 5 26 1 3 2 5 218fyy 

10, 0 2 5 26 10 2 5 0

fxx 
1 3, 3 2 5 26 1 3 2 5 218fxx 

10, 0 2 5 26 10 2 5 0

1 3, 3 210, 0 2

fxx 
1x, y 2 5 26x,  fyy 

1x, y 2 5 26y,  and  fxy 
1x, y 2 5 9.

1 3, 3 2 .10, 0 2y 5 32 /3 5 3.x 5 3,y 5 02 /3 5 0.x 5 0,
y 5 x2 /3,3y 5 x2,

 x 5 0  or   x 5 3

 x 5 0  or   x3 5 27

0. x 5 0  or   x3 2 27 5 0

  x 1x3 2 27 2 5 0

  x4 2 27x 5 0

9.  27x 5 x4

3x 5 y2 5 a
x2

3
b

2

5
x4

9
 .

y 5 x2 /3.3y 5 x2,
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FIGURE 22

Method 1
Calculating by Hand

APPLY IT 

YOUR TURN 2 Identify each
of the critical points in YOUR
TURN 1 as a relative maximum, 
relative minimum, or saddle point. 

EXAMPLE  4
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Since and both equal y, they are equal to each other. Set them equal, and
solve the resulting equation for x.

Subtract from both sides.

Factor.

Set each factor equal to 

The equation leads to and which cannot be a minimizer of 
since, for example, This fact can also be verified by the test for relative
extrema. Substitute the solution of into to find y.

Now check to see whether the critical point leads to a relative minimum. Here

For 

so that

Since and the cost at is a minimum.
To find the minimum cost, go back to the cost function and evaluate 

The minimum cost for a batch of soft drink is $1336.00. A graph of this surface drawn by
the computer program Maple™ is shown in Figure 23.

Finding the maximum or minimum of a function of one or more variables can be done
using a spreadsheet. The Solver included with Excel is located in the Tools menu and
requires that cells be identified ahead of time for each variable in the problem. (On some
versions of Excel, the Solver must be installed from an outside source. For details, see the
Graphing Calculator and Excel Spreadsheet Manual available with this text.) It also
requires that another cell be identified where the function, in terms of the variable cells, is
placed. For example, to solve the above problem, we could identify cells A1 and B1 to rep-
resent the variables x and y, respectively. The Solver requires that we place a guess for the
answer in these cells. Thus, our initial value or guess will be to place the number 5 in each
of these cells. An expression for the function must be placed in another cell, with x and y
replaced by A1 and B1. If we choose cell A3 to represent the function, in cell A3 we would
type “= 2200 1 27*A1^3 2 72*A1*B1 1 8*B1^2.”

We now click on the Tools menu and choose Solver. This solver will attempt to find a
solution that either maximizes or minimizes the value of cell A3. Figure 24 illustrates the
Solver box and the items placed in it.

 C 14, 18 2 5 2200 1 27 14 2 3 2 72 14 2 1 18 2 1 8 1 18 2 2 5 1336

 C 1x, y 2 5 2200 1 27x3 2 72xy 1 8y2

C 14, 18 2 .
14, 18 2Cxx 

14, 18 2 . 0,D . 0

D 5 1 648 2 1 16 2 2 1272 22 5 5184.

Cxx 
14, 18 2 5 162 14 2 5 648, Cyy 

14, 18 2 5 16, and Cxy 
14, 18 2 5 272,

14, 18 2 ,

Cxx 
1x, y 2 5 162x, Cyy 

1x, y 2 5 16, and Cxy 
1x, y 2 5 272.

14, 18 2

y 5
9

2
 x 5

9

2
 14 2 5 18

y 5 1 9 /2 2xx 2 4 5 0,x 5 4,
C 1 1, 1 2 , C 10, 0 2 .

C 1x, y 2y 5 0,x 5 09x 5 0

0. 9x 5 0  or  x 2 4 5 0

 9x 1x 2 4 2 5 0

 9x2 2 36x 5 0

 9x2 5 36x

 
9

8
 x2 5

9

2
 x

1 9 /2 2x1 9 /8 2x2

FIGURE 23

Method 2
Spreadsheets
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To obtain a solution, click on Solve. The rounded solution and is located
in cells A1 and B1. The minimum cost is located in cell A3.

One must be careful when using Solver because it will not find a maximizer or
minimizer of a function if the initial guess is the exact place in which a saddle
point occurs. For example, in the problem above, if our initial guess was 
the Solver would have returned the value of as the place where a mini-
mum occurs. But is a saddle point. Thus, it is always a good idea to run
the Solver for two different initial values and compare the solutions.

10, 0 2
10, 0 2

10, 0 2 ,

C 14, 18 2 5 1336
y 5 18x 5 4

CAUTION

9.3 EXERCISES
Find all points where the functions have any relative extrema.
Identify any saddle points.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15. f 1x, y 2 5 x2 1 4y3 2 6xy 2 1

f 1x, y 2 5 7x3 1 3y2 2 126xy 2 63

f 1x, y 2 5 3x2 1 2y3 2 18xy 1 42

f 1x, y 2 5 x2 1 xy 1 y2 2 3x 2 5

f 1x, y 2 5 x2 1 xy 2 2x 2 2y 1 2

f 1x, y 2 5 4y2 1 2xy 1 6x 1 4y 2 8

f 1x, y 2 5 4xy 2 10x2 2 4y2 1 8x 1 8y 1 9

f 1x, y 2 5 5xy 2 7x2 2 y2 1 3x 2 6y 2 4

f 1x, y 2 5 x2 1 3xy 1 3y2 2 6x 1 3y

f 1x, y 2 5 2x2 1 3xy 1 2y2 2 5x 1 5y

f 1x, y 2 5 x2 2 xy 1 y2 1 2x 1 2y 1 6

f 1x, y 2 5 x2 1 xy 1 y2 2 6x 2 3

f 1x, y 2 5 3x2 2 4xy 1 2y2 1 6x 2 10

f 1x, y 2 5 3xy 1 6y 2 5x

f 1x, y 2 5 xy 1 y 2 2x

16.

17. 18.

19. Describe the procedure for finding critical points of a function
in two independent variables.

20. How are second-order partial derivatives used in finding extrema?

Figures a–f show the graphs of the functions defined in Exer-
cises 21–26. Find all relative extrema for each function, and
then match the equation to its graph.

21.

22.

23.

24.

25.

26. z 5 2y4 1 4xy 2 2x2 1
1

16

z 5 2x4 1 y4 1 2x2 2 2y2 1
1

16

z 5 22x3 2 3y4 1 6xy2 1
1

16

z 5 y4 2 2y2 1 x2 2
17

16

z 5
3

2
 y 2

1

2
 y3 2 x2y 1

1

16

z 5 23xy 1 x3 2 y3 1
1

8

f 1x, y 2 5 y2 1 2exf 1x, y 2 5 ex 1y112

f 1x, y 2 5 3x2 1 7y3 2 42xy 1 5

FIGURE 24
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a. b. c.

d. e. f.

y

x

z

y

x

z

x

z

y

x

z

y

x

z

y

z

y

x

27. Show that has a relative maximum,
even though D in the theorem is 0.

28. Show that for and that the
function has no relative extrema.

29. A friend taking calculus is puzzled. She remembers that for a
function of one variable, if the first derivative is zero at a point
and the second derivative is positive, then there must be a rela-
tive minimum at the point. She doesn’t understand why that
isn’t true for a function of two variables—that is, why

and doesn’t guarantee a relative
minimum. Provide an explanation.

30. Let . The only critical
points are and Which of the follow-
ing correctly describes the behavior of f at these points?
Source: Society of Actuaries.

a. local (relative) minimum
local (relative) minimum
local (relative) maximum

b. local (relative) minimum
local (relative) maximum
local (relative) maximum1 5, 25 2 :

10, 0 2 :
122, 4 2 :

1 5, 25 2 :
10, 0 2 :
122, 4 2 :

1 5, 25 2 .10, 0 2 ,122, 4 2 ,
f 1x, y 2 5 y2 2 2x2y 1 4x3 1 20x2

fxx 
1x, y 2 . 0fx 

1x, y 2 5 0

f 1x, y 2 5 x3 1 1x 2 y 2 2D 5 0

f 1x, y 2 5 1 2 x4 2 y4 c. neither a local (relative) minimum nor a local
(relative) maximum
local (relative) maximum
local (relative) minimum

d. local (relative) maximum
neither a local (relative) minimum nor a local
(relative) maximum
local (relative) minimum

e. neither a local (relative) minimum nor a local
(relative) maximum
local (relative) minimum
neither a local (relative) minimum nor a local
(relative) maximum

31. Consider the function 

a. For what values of k is the point a critical point?

b. For what values of k is the point a relative
minimum of the function?

32. In Exercise 5 of Section 1.3, we found the least squares line
through a set of n points by1x1 , y1 

2 , 1x2 , y2 
2 , * , 1xn , yn 

2

1x, y 2  5  10, 0 2

1x, y 2  5  10, 0 2
f 1x, y 2 5 x2 1 y 1 1 2 2 1 k 1x 1 1 2 2y2.

1 5, 25 2 :
10, 0 2 :

122, 4 2 :

1 5, 25 2 :

10, 0 2 :
122, 4 2 :

1 5, 25 2 :
10, 0 2 :

122, 4 2 :



choosing the slope of the line m and the y-intercept b to mini-
mize the quantity

where the summation symbol means that we sum over all 
the data points. Minimize S by setting and

and then rearrange the results to derive the
equations from Section 1.3

33. Suppose a function satisfies the criteria for the
test for relative extrema at a point , and 
while  What does this tell you about ?
Based on the sign of and why does this
seem intuitively plausible?

fyy 1a,  b 2 ,fxx 1a,  b 2
f 1a,  b 2fyy 1a,  b 2 , 0.

fxx 1a,  b 2 . 0,1a,  b 2
z 5 f 1x,  y 2

nb 1 QaxRm 5 a y.

QaxRb 1 Qax2Rm 5 axy

Sb 
1m, b 2 5 0,

Sm 
1m, b 2 5 0

S

S 1m, b 2 5 a 1mx 1 b 2 y 2 2,
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APPLICATIONS
Business and Economics

34. Profit Suppose that the profit (in hundreds of dollars) of a cer-
tain firm is approximated by

where x is the cost of a unit of labor and y is the cost of a unit
of goods. Find values of x and y that maximize profit. Find the
maximum profit.

35. Labor Costs Suppose the labor cost (in dollars) for manufac-
turing a precision camera can be approximated by

where x is the number of hours required by a skilled craftsper-
son and y is the number of hours required by a semiskilled per-
son. Find values of x and y that minimize the labor cost. Find
the minimum labor cost.

36. Cost The total cost (in dollars) to produce x units of electrical
tape and y units of packing tape is given by

Find the number of units of each kind of tape that should be
produced so that the total cost is a minimum. Find the mini-
mum total cost.

37. Revenue The total revenue (in hundreds of dollars) from the
sale of x spas and y solar heaters is approximated by

Find the number of each that should be sold to produce maxi-
mum revenue. Find the maximum revenue.

R 1x, y 2 5 15 1 169x 1 182y 2 5x2 2 7y2 2 7xy.

C 1x, y 2 5 2x2 1 2y2 2 3xy 1 4x 2 94y 1 4200.

L 1x, y 2 5
3

2
 x2 1 y2 2 2x 2 2y 2 2xy 1 68,

P 1x, y 2 5 1500 1 36x 2 1.5x2 1 120y 2 2y2,

38. Profit The profit (in thousands of dollars) that Aunt Mildred’s
Metalworks earns from producing x tons of steel and y tons of
aluminum can be approximated by

Find the amounts of steel and aluminum that maximize the
profit, and find the value of the maximum profit.

39. Time The time (in hours) that a branch of Amalgamated Enti-
ties needs to spend to meet the quota set by the main office can
be approximated by

where x represents how many thousands of dollars the factory
spends on quality control and y represents how many thou-
sands of dollars they spend on consulting. Find the amount of
money they should spend on quality control and on consulting to
minimize the time spent, and find the minimum number of
hours.

Social  Sciences

40. Political Science The probability that a three-person jury will
make a correct decision is given by

where is the probability that the person is guilty of
the crime, r is the probability that a given jury member will
vote “guilty” when the defendant is indeed guilty of the crime,
and s is the probability that a given jury member will vote
“innocent” when the defendant is indeed innocent. Source:
Frontiers of Economics.

a. Calculate and and interpret
your answers.

b. Using common sense and without using calculus, what
value of r and s would maximize the jury’s probability of
making the correct verdict? Do these values depend on in
this problem? Should they? What is the maximum probability?

c. Verify your answer for part b using calculus. (Hint: There
are two critical points. Argue that the maximum value occurs
at one of these points.)

Physical  Sciences

41. Computer Chips The table on the following page, which illus-
trates the dramatic increase in the number of transistors in
personal computers since 1985, was given in the chapter on
Nonlinear Functions, Section 4.4, Exercise 54.

a. To fit the data to a function of the form  where is
the number of years since 1985 and  is the number of tran-
sistors (in millions), we could take natural logarithms of both
sides of the equation to get  We could then
let and to form 
Using linear regression, find values for r and s that will fit
the data. Then find the function . (Hint: Take the nat-
ural logarithm of the values in the transistors column and
then use linear regression to find values of r and s that fit the
data. Once you know r and s, you can determine the values of
a and b by calculating and b 5 es.)a 5 er

y 5 abt

w 5 r 1 st.s 5 ln br 5 ln a,w 5 ln y,
ln y 5 ln a 1 t ln b.

y
ty 5 abt,

a

P 10.1, 0.8, 0.4 2P 10.9, 0.5, 0.6 2

0 , a , 1

1 1 1 2 a 2 33s2 1 1 2 s 2 1 s3 4,
P 1a, r, s 2 5 a 33r2 1 1 2 r 2 1 r3 4

T 1x, y 2 5 x4 1 16y4 2 32xy 1 40,

P 1x, y 2 5 36xy 2 x3 2 8y3.
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YOUR TURN ANSWERS 

1. (0, 0) and (�1/4, �1/4)

2. Saddle point at (0, 0); relative maximum at (�1/4, �1/4)

c. Compare your answer to this problem with the one found
with a graphing calculator in the chapter on Nonlinear Func-
tions, Section 4.4, Exercise 54.

General Interest

42. Food Frying The process of frying food changes its quality,
texture, and color. According to research done at the Uni-
versity of Saskatchewan, the total change in color E (which
is measured in the form of energy as kJ/mol) of blanched
potato strips can be estimated by the function

where T is the temperature (in °C) and t is the frying time (in min).
Source: Critical Reviews in Food Science and Nutrition.

a. What is the value of E prior to cooking? (Assume that T 5 0.)

b. Use this function to estimate the total change in color of a
potato strip that has been cooked for 10 minutes at 180°C.

c. Determine the critical point of this function and determine if
a maximum, minimum, or saddle point occurs at that point.
Describe what may be happening at this point.

E 1t, T25 436.16 210.57t 2 5.46T 2 0.02t2 1 0.02T21 0.08Tt,

0 386 0.275

4 486 1.2

8 Pentium 3.1

12 Pentium II 7.5

14 Pentium III 9.5

15 Pentium 4 42

20 Pentium D 291

22 Penryn 820

24 Nehalem 1900

Year Transistors
(since 1985) Chip (in millions)

b. Use the solver capability of a spreadsheet to find a function
of the form that fits the data above. (Hint: Using the
ideas from part a, find values for a and b that minimize the
function

 1 3ln 1 1900 2 2 24 ln b 2 ln a 42. 2
 1 3ln 1 820 2 2 22 ln b 2 ln a 42
 1 3ln 1291 2 2 20 ln b 2 ln a 42
 1 3ln 142 2 2 15 ln b 2 ln a 42
 1 3ln 1 9.5 2 2 14 ln b 2 ln a 42
 1 3ln 1 7.5 2 2 12 ln b 2 ln a 42
 1 3ln 1 3.1 2 2 8 ln b 2 ln a 42
 1 3ln 1 1.2 2 2 4 ln b 2 ln a 42

 f 1a, b 2 5 3ln 10.275 2 2 0 ln b 2 ln a 42

y 5 abt

9.4 Lagrange Multipliers
What dimensions for a new building will maximize the floor space at a
fixed cost?
Using Lagrange multipliers, we will answer this question in Example 2.

In Section 6.2 on Applications of Extrema, it was possible to express problems involv-
ing two variables as equivalent problems requiring only a single variable. This method
works well, provided that it is possible to use algebra to express the one variable in terms of
the other. It is not always possible to do this, however, and most real applications require
more than two variables and one or more additional restrictions, called constraints.

An approach that works well when there is a constraint in the problem uses an addi-
tional variable, called the Lagrange multiplier. For example, in the opening question, sup-
pose a builder wants to maximize the floor space in a new building while keeping the costs
fixed at $500,000. The building will be 40 ft high, with a rectangular floor plan and three sto-
ries. The costs, which depend on the dimensions of the rectangular floor plan, are given by

where x is the width and y the length of the rectangle. Thus, the builder wishes to maximize
the area and satisfy the condition

xy 1 20y 1 20x 1 474,000 5 500,000.

A 1x, y 2 5 xy

Costs 5 xy 1 20y 1 20x 1 474,000,

APPLY IT 
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Lagrange Multipliers
All relative extrema of the function subject to a constraint 
will be found among those points for which there exists a value of such that

where

,

and all indicated partial derivatives exist.

F 1 x, y, l 2 5 f 1 x, y 2 2 l ? g 1 x, y 2

Fx 
1 x, y, l 2 5 0,  Fy 

1 x, y, l 2 5 0,  Fl 
1 x, y, l 2 5 0,

l1x, y 2
g 1x, y 2 5 0,z 5 f 1x, y 2 ,

In addition to maximizing area, then, the builder must keep costs at (or below) $500,000.
We will see how to solve this problem in Example 2 of this section.

Problems with constraints are often solved by the method of Lagrange multipliers,
named for the French mathematician Joseph Louis Lagrange (1736–1813). The method of
Lagrange multipliers is used for problems of the form:

We state the method only for functions of two independent variables, but it is valid for
any number of variables.

subject to g 1x, y 2 5 0.

Find the relative extrema for z 5 f 1x, y 2 ,

In the theorem, the function is called the Lagrange
function; the Greek letter lambda, is the Lagrange multiplier.

If the constraint is not of the form it must be put in that form
before using the method of Lagrange multipliers. For example, if the constraint is

subtract 5 from both sides to get 

Lagrange Multipliers

Find the minimum value of

subject to the constraint 

SOLUTION Go through the following steps.

Step 1 Rewrite the constraint in the form 

In this example, the constraint becomes

with

Step 2 Form the Lagrange function the difference of the function 
and the product of and 

Here,

 5 5x2 1 6y2 2 xy 2 lx 2 2ly 1 24l.

 5 5x2 1 6y2 2 xy 2 l 1x 1 2y 2 24 2
 F 1x, y, l 2 5 f 1x, y 2 2 l . g 1x, y 2

g 1x, y 2 .l
f 1x, y 2F 1x, y, l 2 ,

g 1x, y 2 5 x 1 2y 2 24.

x 1 2y 2 24 5 0,

x 1 2y 5 24

g 1x, y 2 5 0.

x 1 2y 5 24.

f 1x, y 2 5 5x2 1 6y2 2 xy,

x2 1 y3 2 5 5 0.g 1x, y 2  5x2 1 y3 5 5,

g 1x, y 2 5 0,

l,
F 1x, y, l 2 5 f 1x, y 2 2 l . g 1x, y 2

CAUTION

EXAMPLE  1
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Step 3 Find and 

Step 4 Form the system of equations and

(1)

(2)

(3)

Step 5 Solve the system of equations from Step 4 for x, y, and 
One way to solve this system is to begin by solving each of the first two

equations for then set the two results equal and simplify, as follows.

Set the expressions for equal.

Now substitute for x in Equation (3).

Let 

Multiply by 

Since and It is not necessary to find the value of 

Thus, if has a minimum value subject to the constraint
it is at the point The value of is 612.

We need to convince ourselves that f (6, 9) � 612 is indeed a minimum for the function.
How can we tell that it is not a maximum? The second derivative test from the previous sec-
tion does not apply to the solutions found by Lagrange multipliers. (See Exercise 21.) We
could gain some insight by trying a point very close to that also satisfies the constraint

For example, let so Then
f(5.8, 9.1) � which is greater than 612. Because
a nearby point has a value larger than 612, the value 612 is probably not a maximum. Another
method would be to use a computer to sketch the graph of the function and see that it has a
minimum but not a maximum. In practical problems, such as Example 2, it is often obvious
whether a function has a minimum or a maximum. TRY YOUR TURN 1

5 1 5.8 2 2 1 6 1 9.1 2 2 2 1 5.8 2 1 9.1 2 5 612.28,
x 5 24 2 2y 5 24 2 2 1 9.1 2 5 5.8.y 5 9.1,x 1 2y 5 24.

1 6, 9 2

f 1 6, 9 21 6, 9 2 .x 1 2y 5 24,
f 1x, y 2 5 5x2 1 6y2 2 xy

l.x 5 6.y 5 9,x 5 2y /3

 y 5
72

8
5 9

 8y 5 72

23. 2y 1 6y 2 72 5 0

x 5
2y

3
 . 2 

2y

3
2 2y 1 24 5 0

 2x 2 2y 1 24 5 0

2y /3

 x 5
14y

21
5

2y

3

 21x 5 14y

 20x 2 2y 5 2x 1 12y

l 10x 2 y 5
2x 1 12y

2

 12y 2 x 2 2l 5 0  becomes   l 5
2x 1 12y

2

 10x 2 y 2 l 5 0  becomes   l 5 10x 2 y

l,

l.

 2x 2 2y 1 24 5 0

 12y 2 x 2 2l 5 0

 10x 2 y 2 l 5 0

Fl 
1x, y, l 2 5 0.

Fy 
1x, y, l 2 5 0,Fx 

1x, y, l 2 5 0,

 Fl 
1x, y, l 2 5 2x 2 2y 1 24

 Fy 
1x, y, l 2 5 12y 2 x 2 2l

 Fx 
1x, y, l 2 5 10x 2 y 2 l

Fl 
1x, y, l 2 .Fy 

1x, y, l 2 ,Fx 
1x, y, l 2 ,

YOUR TURN 1 Find the 
minimum value of 

subject to
the constraint  2x 1 3y 5 12.
2x 1 9y2 1 3y 1 6xy

f 1 x, y 2 5 x2 1
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NOTE In Example 1, we solved the system of equations by solving each equation with
in it for We then set these expressions for equal and solved for one of the original vari-
ables. This is a good general approach to use in solving these systems of equations, since we
are usually not interested in the value of

Lagrange multipliers give only the relative extrema, not the absolute extrema.
In many applications, the relative extrema will be the absolute extrema, but
this is not guaranteed. In some cases in which the method of Lagrange multi-
pliers finds a solution, there may not even be any absolute extrema. For example,
see Exercises 18 and 19 at the end of this section.

Before looking at applications of Lagrange multipliers, let us summarize the steps
involved in solving a problem by this method.

l.

ll.
l

CAUTION

Using Lagrange Multipliers
1. Write the constraint in the form 

2. Form the Lagrange function

3. Find and 

4. Form the system of equations

.

5. Solve the system in Step 4; the relative extrema for f are among the solutions of the
system.

Fx 
1 x, y, l 2 5 0,  Fy 

1 x, y, l 2 5 0,  Fl 
1 x, y, l 2 5 0

Fl 
1x, y, l 2 .Fy 

1x, y, l 2 ,Fx 
1x, y, l 2 ,

F 1 x, y, l 2 5 f 1 x, y 2 2 l ? g 1 x, y 2 .

g 1x, y 2 5 0.

The proof of this method is complicated and is not given here, but we can explain why
the method is plausible. Consider the curve formed by points in the xy-plane that satisfy

(or just Figure 25 shows how such a curve
might look. Crossing this region are curves for various values of k. Notice that
at the points where the curve is tangent to the curve the largest
and smallest meaningful values of f occur. It can be shown that this is equivalent to

and for some constant In Exercise 20, you
are asked to show that this is equivalent to the system of equations found in Step 4 above.

l.fy 
1x, y 2 5 lgy 

1x, y 2fx 
1x, y 2 5 lgx 

1x, y 2

g 1x, y 2 5 0,f 1x, y 2 5 k
f 1x, y 2 5 k

g 1x, y 2 5 0).Fl 
1x, y, l 2 5 2g 1x, y 2 5 0

f(x, y) = 0

f(x, y) = 1
f(x, y) = 2

f(x, y) = 3

g(x, y) = 0 f(x, y) = 4

f(x, y) = 5

f(x, y) = 6

FIGURE 25

Lagrange multipliers are widely used in economics, where a frequent goal is to maximize
a utility function, which measures how well consumption satisfies the consumers’ desires,
subject to constraints on income or time.
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Lagrange Multipliers

Complete the solution of the problem given in the introduction to this section. Maximize
the area, subject to the cost constraint

SOLUTION Go through the five steps presented earlier.

Step 1

Step 2

Step 3

Step 4 (4)

(5)

(6)

Step 5 Solving Equations (4) and (5) for gives

Now substitute y for x in Equation (6) to get

Use the quadratic formula to find or We eliminate the
negative value because length cannot be negative. Since we know that

The maximum area of will be achieved if the floor plan is a square
with a side of 142.5 ft. You can verify that this answer is a maximum using the method at
the end of Example 1.

As mentioned earlier, the method of Lagrange multipliers works for more than two
independent variables. The next example shows how to find extrema for a function of three
independent variables.

Volume of a Box
Find the dimensions of the closed rectangular box of maximum volume that can be pro-
duced from of material.

SOLUTION In Chapter 6 on Applications of the Derivative, we were able to solve prob-
lems such as this by adding an extra constraint, such as requiring the bottom of the box to
be square. Here we have no such constraint. Let x, y, and z represent the dimensions of the
box, as shown in Figure 26 on the next page. The volume of the box is given by

f 1x, y, z 2 5 xyz.

6 ft2

1 142.5 2 2 < 20,306 ft2

x < 142.5.
x 5 y,

y < 142.5.y < 2182.5

 2y2 2 40y 1 26,000 5 0.

 2y2 2 20y 2 20y 1 26,000 5 0

 x 5 y.

 xy 1 20y 5 xy 1 20x

 y 1x 1 20 2 5 x 1 y 1 20 2

 
y

y 1 20
5

x

x 1 20

l 5
y

y 1 20
  and  l 5

x

x 1 20

l

2xy 2 20y 2 20x 1 26,000 5 0

x 2 lx 2 20l 5 0

y 2 ly 2 20l 5 0

 Fl 
1x, y, l 2 5 2xy 2 20y 2 20x 1 26,000

 Fy 
1x, y, l 2 5 x 2 lx 2 20l

 Fx 
1x, y, l 2 5 y 2 ly 2 20l

F 1x, y, l 2 5 xy 2 l 1xy 1 20y 1 20x 2 26,000 2
g 1x, y 2 5 xy 1 20y 1 20x 2 26,000 5 0

xy 1 20y 1 20x 1 474,000 5 500,000.

A 1x, y 2 5 xy,

EXAMPLE  2

APPLY IT 

EXAMPLE  3

Method 1
Lagrange Multipliers
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As shown in Figure 26, the total amount of material required for the two ends of the box is
2xy, the total needed for the sides is 2xz, and the total needed for the top and bottom is 2yz.
Since of material is available,

In summary, is to be maximized subject to the constraint 
Go through the steps that were given.

Step 1
Step 2
Step 3

Step 4

Step 5 Solve each of the first three equations for You should get

Set these expressions for equal, and simplify as follows. Notice in the second and
last steps that since none of the dimensions of the box can be 0, we can divide both
sides of each equation by x or z.

and

(Setting the first and third expressions equal gives no additional information.) Thus
From the fourth equation in Step 4, with and 

The negative solution is not applicable, so the solution of the system of equations is
In other words, the box with maximum volume under the con-

straint is a cube that measures 1 ft on each side. As in the previous examples, verify
that this is a maximum.

Finding extrema of a constrained function of one or more variables can be done using a
spreadsheet. In addition to the requirements stated in the last section, the constraint must
also be input into the Excel Solver. To do this, we need to input the left-hand or variable
part of the constraint into a designated cell. If A5 is the designated cell, then in cell A5 we
would type “=A1*B1 1 A1*C1 1 B1*C1.”

z 5 1.y 5 1,x 5 1,

 y 5 61.

 y2 5 1

 23y2 5 23

 2y2 2 y2 2 y2 1 3 5 0

 2xy 2 xz 2 yz 1 3 5 0

z 5 y,x 5 yx 5 y 5 z.

 z 5 y y 5 x

 zx 5 yx yz 5 xz

 zx 1 zy 5 yx 1 yz xy 1 yz 5 xy 1 xz

 
z

x 1 z
5

y

x 1 y
 

y

y 1 z
5

x

x 1 z

 
xz

x 1 z
5

xy

x 1 y
 

yz

y 1 z
5

xz

x 1 z

l

l 5
yz

y 1 z
 ,  l 5

xz

x 1 z
 ,  and  l 5

xy

x 1 y
 .

l.

 2xy 2 xz 2 yz 1 3 5 0

 xy 2 lx 2 ly 5 0

 xz 2 lx 2 lz 5 0

 yz 2 ly 2 lz 5 0

 Fl 
1x, y, z, l 2 5 2xy 2 xz 2 yz 1 3

 Fz 
1x, y, z, l 2 5 xy 2 lx 2 ly

 Fy 
1x, y, z, l 2 5 xz 2 lx 2 lz

 Fx 
1x, y, z, l 2 5 yz 2 ly 2 lz

F 1x, y, z, l 2 5 xyz 2 l 1xy 1 xz 1 yz 2 3 2
g 1x, y, z 2 5 xy 1 xz 1 yz 2 3 5 0

yz 5 3.
xy 1 xz 1f 1x, y, z 2 5 xyz

2xy 1 2xz 1 2yz 5 6  or  xy 1 xz 1 yz 5 3.

6 ft2

x

z y

FIGURE 26

Method 2
Spreadsheets
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We now click on the Tools menu and choose Solver. This solver will attempt to find a
solution that either maximizes or minimizes the value of cell A3, depending on which
option we choose. Figure 27 illustrates the Solver box and the items placed in it.

To obtain a solution, click on Solve. The solution and and is
located in cells A1, B1, and C1, respectively. The maximum volume is
located in cell A3.

f 1 1, 1, 1 2 5 1
z 5 1y 5 1x 5 1

YOUR TURN 2 Solve
Example 3 with the box changed so
that the front and the top are missing.

Utility Functions A utility function of two variables is a function in which
and give the quantity of items that a consumer might value, such as cereal and milk, and 
is a measure of the value that the consumer places on the combination of items represented
by the point (Naturally, this definition can be extended to any number of variables,
but for simplicity we will restrict this discussion to two variables.) For example, if

, where represents the number of quarts of milk and represents the
number of pounds of cereal, then 4 quarts of milk and 3 pounds of cereal has a utility of

The consumer would value this combination as much as 36 quarts of milk
and 1 pound of cereal, since this combination also has a utility of but less
so than 3 quarts of milk and 4 pounds of cereal, which has a utility of The
set of points form an indifference curve, since the consumer considers all
points on this curve to be equally desirable.

Now suppose a quart of milk costs $2 and a pound of cereal costs $3, so that the
combination of milk and cereal represented by the point costs Suppose
further that the consumer has $90 to spend. A natural question would be how much of 
each quantity to buy to maximize the consumer’s utility. In other words, the consumer
wishes to maximize subject to the constraint that or

This is exactly the type of problem that Lagrange
multipliers were designed to solve. Use Lagrange multipliers to verify that the function

subject to the constraint has a maximum
value of 36,000,000 when and so the consumer should purchase 15 quarts
of milk and 20 pounds of cereal.

y 5 20,x 5 15
g 1x,  y 2 5 2x 1 3y 2 90 5 0f 1x,  y 2 5 x2y4

g 1x,  y 2 5 2x 1 3y 2 90 5 0.
2x 1 3y 5 90,f 1x,  y 2 5 x2y4

2x 1 3y.1x,  y 2

c 5 f 1x,  y 2
32 . 44 5 2304.

362 . 14 5 1296,
42 . 34 5 1296.

yxz 5 f 1x,  y 2 5 x2y4

1x,  y 2 .

zy
xz 5 f 1x,  y 2

FIGURE 27

TRY YOUR TURN 2

One must be careful when using Solver because the solution may depend on the
initial value. Thus, it is always a good idea to run the Solver for two different ini-
tial values and compare the solutions.

CAUTION
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d. Suppose you erroneously applied the method of finding the
discriminant from the previous section to determine
whether the point found in part a is a minimum. What does
the test erroneously tell you about the point?

22. Discuss the advantages and disadvantages of the method of
Lagrange multipliers compared with solving the equation

for (or ), substituting that expression into 
and then minimizing or maximizing as a function of one
variable. You might want to try some examples both ways and
consider what happens when there are more than two variables.

APPLICATIONS
Business and Economics

f
fxyg 1x,  y 2 5 0

D

9.4 EXERCISES
Find the relative maxima or minima in Exercises 1–10.

1. Maximum of subject to 

2. Maximum of subject to 

3. Maximum of subject to  

4. Maximum of subject to 

5. Minimum of subject to 

6. Minimum of subject to

7. Maximum of subject to 

8. Maximum of subject to 

9. Maximum of subject to 

10. Maximum of subject to

11. Find positive numbers x and y such that and 
is maximized.

12. Find positive numbers x and y such that and
is maximized.

13. Find three positive numbers whose sum is 90 and whose prod-
uct is a maximum. 

14. Find three positive numbers whose sum is 240 and whose
product is a maximum.

15. Find the maximum and minimum values of �

subject to  Be sure to use the
method at the end of Example 1 to determine whether each
solution is a maximum or a minimum.

16. Explain the difference between the two methods we used in
Sections 3 and 4 to solve extrema problems.

17. Why is it unnecessary to find the value of when using the
method explained in this section?

18. Show that the function in Exercise 3, subject to
x 1 2y 5 15, does not have an absolute minimum or maxi-
mum. (Hint: Solve the constraint for x and substitute into f.)

19. Show that the function in Exercise 4, subject
to 3x 2 y 5 9, does not have an absolute minimum or maxi-
mum. (Hint: Solve the constraint for y and substitute into f.)

20. Show that the three equations in Step 4 of the box “Using 
Lagrange Multipliers” are equivalent to the three equations

21. Consider the problem of minimizing �
subject to  

a. Find the solution using the method of Lagrange multipliers.

b. Experiment with points very near the point from part a to
convince yourself that the point from part a actually
gives a minimum. (Hint: See the last paragraph of Example 1.)

c. Solve for and substitute the expression for 
into  Then explain why the resulting expression in 
has a minimum but no maximum.

xf 1x, y 2 .
yyx 1 y 5 1

x 1 y 5 1.9y2 1 4y 1 8xy
f 1x, y 2 5 x2 1 2x

 g 1x, y 2 5 0. fy 
1x, y 2 5 lgy 

1x, y 2 , fx 
1x, y 2 5 lgx 

1x, y 2 ,

f 1x, y 2 5 8x2y

f 1x, y 2 5 xy2

l

x 1 2y 5 12.x3 1 2xy 1 4y2
f 1x, y 2

5x2y 1 10
x 1 y 5 48

3xy2x 1 y 5 24

xyz 5 32
f 1x, y, z 2 5 xy 1 2xz 1 2yz,

x 1 y 1 z 5 6f 1x, y, z 2 5 xyz2,

x 1 y 5 16f 1x, y 25 12xy 2 x2 2 3y2,

x 2 y 5 18f 1x, y 2 5 x2 2 10y2,
2x 1 y 5 21

f 1x, y 2 5 3x2 1 4y2 2 xy 2 2,

x 1 y 5 8f 1x, y 2 5 x2 1 2y2 2 xy,

3x 2 y 5 9f 1x, y 2 5 8x2y,

x 1 2y 5 15f 1x, y 2 5 xy2,

x 1 y 5 20f 1x, y 2 5 2xy 1 4,

x 1 y 5 16f 1x, y 2 5 4xy,

Utility Maximize each of the following utility functions, with
the cost of each commodity and total amount available to spend
given.

23. cost of a unit of is $1, cost of a unit of is $2,
and $60 is available.

24. cost of a unit of is $2, cost of a unit of is
$1, and $80 is available.

25. cost of a unit of is $2, cost of a unit of is
$4, and $60 is available.

26. cost of a unit of is $3, cost of a unit of is
$3, and $42 is available.

27. Maximum Area for Fixed Expenditure Because of terrain diffi-
culties, two sides of a fence can be built for $6 per ft, while the
other two sides cost $4 per ft. (See the sketch.) Find the field of
maximum area that can be enclosed for $1200.

yxf 1x, y 2 5 x3y4,

yxf 1x, y 2 5 x4y2,

yxf 1x, y 2 5 x2y3,

yxf 1x, y 2 5 xy2,

$4 per ft

$4
 p

er
 f

t

$6
 p

er
 f

t

$6 per ft

28. Maximum Area for Fixed Expenditure To enclose a yard, a
fence is built against a large building, so that fencing material
is used only on three sides. Material for the ends costs $15 per
ft; material for the side opposite the building costs $25 per ft.
Find the dimensions of the yard of maximum area that can be
enclosed for $2400.

29. Cost The total cost to produce x large jewelry-making kits and
y small ones is given by

If a total of ten kits must be made, how should production be
allocated so that total cost is minimized?

C 1x, y 2 5 2x2 1 6y2 1 4xy 1 10.
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40. Cost Find the dimensions that will minimize the surface area
(and hence the cost) of a rectangular fish aquarium, open on top,
with a volume of 

41. Container Construction A company needs to construct a box
with an open top that will be used to transport of mate-
rial, in several trips, from one place to another. Two of the sides
and bottom of the box can be made of a free, lightweight material,
but only of the material is available. Because of the nature
of the material to be transported, the two ends of the box must
be made from a heavyweight material that costs 
Each trip costs 10 cents. Source: Geometric Programming.

a. Let x, y, and z denote the length, width, and height of the
box, respectively. If we want to use all of the free material,
show that the total cost in dollars is given by the function

subject to the constraint 

b. Use the Solver feature on a spreadsheet to find the dimen-
sions of the box that minimize the transportation cost, sub-
ject to the constraint.

Social  Sciences 

42. Political Science The probability that the majority of a three-
person jury will convict a guilty person is given by the formula:

subject to the constraint that

where r, s, and t represent each of the three jury members’
probability of reaching a guilty verdict and is some fixed
constant that is generally less than or equal to the number of
jurors. Source: Mathematical Social Sciences.

a. Form the Lagrange function.

b. Find the values of r, s, and t that maximize the probability of
convicting a guilty person when 

c. Find the values of r, s, and t that maximize the probability of
convicting a guilty person when a 5 3.

a 5 0.75.

a

r 1 s 1 t 5 a,

P 1 r, s, t 2 5 rs 1 1 2 t 2 1 1 1 2 r 2st 1 r 1 1 2 s 2 t 1 rst

2xz 1 xy 5 4.

f 1x, y, z 2 5
40

xyz
1 40yz,

$20 per yd2.

4 yd2

400 yd3

32 ft3.

30. Profit The profit from the sale of x units of radiators for automo-
biles and y units of radiators for generators is given by

Find values of x and y that lead to a maximum profit if the firm
must produce a total of 6 units of radiators.

31. Production A manufacturing firm estimates that its total pro-
duction of automobile batteries in thousands of units is

where x is the number of units of labor and y is the number of
units of capital utilized. Labor costs are $80 per unit, and capi-
tal costs are $150 per unit. How many units each of labor and
capital will maximize production, if the firm can spend
$40,000 for these costs?

32. Production For another product, the manufacturing firm in
Exercise 31 estimates that production is a function of labor x
and capital y as follows:

If $25,200 is available for labor and capital, and if the firm’s
costs are $100 and $180 per unit, respectively, how many units
of labor and capital will give maximum production?

33. Area A farmer has 500 m of fencing. Find the dimensions of
the rectangular field of maximum area that can be enclosed by
this amount of fencing.

34. Area Find the area of the largest rectangular field that can be
enclosed with 600 m of fencing. Assume that no fencing is
needed along one side of the field.

35. Surface Area A cylindrical can is to be made that will hold
of candy. Find the dimensions of the can with mini-

mum surface area.

36. Surface Area An ordinary 12-oz beer or soda pop can holds
about Find the dimensions of a can with minimum sur-
face area. Measure a can and see how close its dimensions are
to the results you found.

37. Volume A rectangular box with no top is to be built from
of material. Find the dimensions of such a box that will

enclose the maximum volume.

38. Surface Area A 1-lb soda cracker box has a volume of 
The end of the box is square. Find the dimensions of such a
box that has minimum surface area.

39. Cost A rectangular closed box is to be built at minimum cost to
hold Since the cost will depend on the surface area, find
the dimensions that will minimize the surface area of the box.

125 m3.

185 in3.

500 m2

25 in3.

250p in3

f 1x, y 2 5 12x3/4y1/4.

f 1x, y 2 5 3x1/3y2/3,

P 1x, y 2 5 2x2 2 y2 1 4x 1 8y.

YOUR TURN ANSWERS 

1.

2. The box should be 2 ft wide and 1 ft high and long.

f 1 12,24 2 5 12

9.5 Total Differentials and Approximations
APPLY IT How do errors in measuring the length and radius of a blood vessel

affect the calculation of its volume?
In Example 3 in this section, we will see how to answer this question using a total differential.

In the second section of this chapter we used partial derivatives to find the marginal
productivity of labor and of capital for a production function. The marginal productivity
approximates the change of production for a 1-unit change in labor or capital. To estimate
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Recall that the differential for a function of one variable is used to approxi-
mate the function by its tangent line. This works because a differentiable function appears
very much like a line when viewed closely. Similarly, the differential for a function of two
variables is used to approximate a function by its tangent plane. A differentiable
function of two variables looks like a plane when viewed closely, which is why the earth
looks flat when you are standing on it.

Total Differentials

Consider the function 

(a) Find dz.

SOLUTION First find and 

By the definition,

(b) Evaluate dz when and 

SOLUTION Putting these values into the result from part (a) gives

This result indicates that an increase of 0.01 in x and a decrease of 0.02 in y, when
and will produce an approximate decrease of 2.21 in 

TRY YOUR TURN 1

Approximations Recall that with a function of one variable, the differen-
tial dy approximates the change in y, corresponding to a change in x, or dx. The
approximation for a function of two variables is similar.

DxDy,
y 5 f 1x 2 ,

f 1x, y 2 .y 5 3,x 5 1

 5 22.21.

 5 1221 2 10.01 2 1 1 100 2 120.02 2
 dz 5 327 1 1 2 2 2 16 1 1 2 1 3 2 4 10.01 2 1 328 1 1 2 2 1 12 1 3 2 2 4 120.02 2

dy 5 20.02.dx 5 0.01,y 5 3,x 5 1,

dz 5 127x2 2 16xy 2  dx 1 128x2 1 12y2 2  dy.

fx 
1x, y 2 5 27x2 2 16xy  and  fy 

1x, y 2 5 28x2 1 12y2

fy 
1x, y 2 .fx 

1x, y 2

z 5 f 1x, y 2 5 9x3 2 8x2y 1 4y3.

z 5 f 1x, y 2

y 5 f 1x 2

the change in productivity for a small change in both labor and capital, we can extend the
concept of differential, introduced in an earlier chapter for functions of one variable, to the
concept of total differential.

Total Differential for Two Variables
Let be a function of x and y. Let dx and dy be real numbers. Then the total
differential of z is

(Sometimes dz is written df.)

dz 5 fx 
1 x, y 2 ? dx 1 fy 

1 x, y 2 ? dy.

z 5 f 1x, y 2

Approximations
For small values of and 

where Dz 5 f1x 1 dx, y 1 dy 2 2 f1x, y 2 .

dz ? Dz,

dy,dx

FOR REVIEW
In Chapter 6 on Applications of
the Derivative, we introduced the
differential. Recall that the differ-
ential of a function defined by

is

where dx, the differential of x, is
any real number (usually small).
We saw that the differential dy is
often a good approximation of
where
and Dx 5 dx.

Dy 5 f 1x 1 Dx 2 2 f 1x 2
Dy,

dy 5 f r 1x 2 . dx,

y 5 f 1x 2

YOUR TURN 1 For the function 

find (a) , and (b) the value of 
when , , , 
and dy 5 20.03.

dx 5 0.02y 5 1x 5 4
dzdz

f 1 x, y 2 5 3x2y4 1 6"x2 2 7y2,

EXAMPLE  1
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Approximations

Approximate 

SOLUTION Notice that and and we know that 
We, therefore, let and 

We then use dz to approximate 

Thus, A calculator gives 
The error is approximately 0.000048. TRY YOUR TURN 2

For small values of dx and dy, the values of and dz are approximately equal. Since

or

Replacing dz with the expression for the total differential gives the following result.

 f 1x 1 dx, y 1 dy 2 < f 1x, y 2 1 dz.

 f 1x 1 dx, y 1 dy 2 5 f 1x, y 2 1 Dz

Dz 5 f 1x 1 dx, y 1 dy 2 2 f 1x, y 2 ,
Dz

4.996048.
"2.982 1 4.012 <"2.982 1 4.012 < 5 1 120.004 2 5 4.996.

 5 20.004

 5
3

5
 120.02 2 1

4

5
 10.01 2

 5 a
x

"x2 1 y2
b dx 1 a

y

"x2 1 y2
b dy

 5 a
1

2 "x2 1 y2
. 2xb dx 1 a

1

2 "x2 1 y2
. 2yb dy

 dz 5 fx 
1x, y 2 . dx 1 fy 

1x, y 2 . dy

2 "32 1 42
 .Dz 5 "2.982 1 4.012

 dy 5 0.01.

y 5 4,dx 5 20.02,x 5 3,f 1x, y 2 5 "x2 1 y2
 ,"25 5 5.

"32 1 42 54.01 < 4,2.98 < 3

"2.982 1 4.012
 .

EXAMPLE  2

EXAMPLE  3

YOUR TURN 2
Approximate  "5.032 1 11.992.

Approximations by Differentials
For a function f having all indicated partial derivatives, and for small values of dx and
dy,

or

f 1 x 1 dx, y 1 dy 2 ? f 1 x, y 2 1 fx 
1 x, y 2  ? dx 1 fy 

1 x, y 2 ? dy.

f 1 x 1 dx, y 1 dy 2 ? f 1 x, y 2 1 dz,

Total Differential for Three Variables
If then the total differential dw is

provided all indicated partial derivatives exist.

dw 5 fx 
1 x, y, z 2  dx 1 fy 

1 x, y, z 2  dy 1 fz 
1 x, y, z 2  dz,

w 5 f 1x, y, z 2 ,

The idea of a total differential can be extended to include functions of three or more
independent variables.

Blood Vessels

A short length of blood vessel is in the shape of a right circular cylinder (see Figure 28).

+

42 mm ± 0.9 mm

2.5 mm ± 0.2 mm

FIGURE 28
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(a) The length of the vessel is measured as 42 mm, and the radius is measured as 2.5 mm.
Suppose the maximum error in the measurement of the length is 0.9 mm, with an
error of no more than 0.2 mm in the measurement of the radius. Find the maximum
possible error in calculating the volume of the blood vessel.

SOLUTION The volume of a right circular cylinder is given by To approx-
imate the error in the volume, find the total differential, dV.

Here, and Substitution gives

The maximum possible error in calculating the volume is approximately 

(b) Suppose that the errors in measuring the radius and length of the vessel are at most 1%
and 3%, respectively. Estimate the maximum percent error in calculating the volume.

SOLUTION To find the percent error, calculate 

Because and 

The maximum percent error in calculating the volume is approximately 5%.
TRY YOUR TURN 3

Volume of a Can of Beer

The formula for the volume of a cylinder given in Example 3 also applies to cans of beer,
for which in. and in. How sensitive is the volume to changes in the radius
compared with changes in the height?

SOLUTION Using the formula for dV from the previous example with and 
gives

The factor of 15 in front of dr in this equation, compared with the factor of 2.25 in front of
dh, shows that a small change in the radius has almost 7 times the effect on the volume as a
small change in the height. One author argues that this is the reason that beer cans are so
tall and thin. Source: The College Mathematics Journal. The brewers can reduce the
radius by a tiny amount and compensate by making the can taller. The resulting can appears
larger in volume than the shorter, wider can. (Others have argued that a shorter, wider can
does not fit as easily in the hand.)

dV 5 12p 2 1 1.5 2 1 5 2dr 1 p 1 1.5 2 2dh 5 p 1 15dr 1 2.25dh 2 .

h 5 5r 5 1.5

h < 5r < 1.5

dV

V
5 2 10.01 2 1 0.03 5 0.05.

dh /h 5 0.03,dr /r 5 0.01

dV

V
5
12prh 2dr 1 1pr2 2dh

pr2h
5 2 

dr
r

1
dh

h

dV /V.

149.6 mm3.

dV 5 3 12p 2 12.5 2 142 2 4 10.2 2 1 3p 12.5 2 2 4 10.9 2 < 149.6.

dh 5 0.9.dr 5 0.2,h 5 42,r 5 2.5,

dV 5 12prh 2 . dr 1 1pr2 2 . dh

V 5 pr2h.APPLY IT 

YOUR TURN 3 In Example 3,
estimate the maximum percent error
in calculating the volume if the
errors in measuring the radius and
length of the vessel are at most 4%
and 2%, respectively.

EXAMPLE  4

9.5 EXERCISES
Evaluate dw using the given information.

5.

6.

dx5 0.03, dy 5 0.02, dz 5 20.01

w 5 x ln 1 yz 2 2 y ln 
x
z

 ; x 5 2, y 5 1, z 5 4, 

dy 5 20.03, dz 5 0.02

w 5
5x2 1 y2

z 1 1
 ; x 5 22, y 5 1, z 5 1, dx 5 0.02,

Evaluate dz using the given information.

1.

2.

3.

4. z 5 ln 1x2 1 y2 2 ; x 5 2, y 5 3, dx 5 0.02, dy 5 20.03

z 5
y2 1 3x

y2 2 x
 ; x 5 4, y 5 24, dx 5 0.01, dy 5 0.03

z 5 5x3 1 2xy2 2 4y; x 5 1, y 5 3, dx 5 0.01, dy 5 0.02

z 5 2x2 1 4xy 1 y2; x 5 5, y 5 21, dx 5 0.03, dy 5 20.02
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23. Blood Volume In Exercise 56 of Section 2 in this chapter, we
found that the number of liters of blood pumped through the
lungs in one minute is given by

Suppose and Estimate the change
in C if a becomes 145, b becomes 190, and v changes to 130.

24. Heat Loss In Exercise 54 of Section 2 of this chapter, we
found that the rate of heat loss (in watts) in harbor seal pups
could be approximated by

where m is the body mass of the pup (in kg), and T and A are
the body core temperature and ambient water temperature,
respectively (in ). Suppose m is 25 kg, T is and A is

. Approximate the change in H if m changes to 26 kg, T to
, and A to .

25. Dialysis A model that estimates the concentration of urea in
the body for a particular dialysis patient, following a dialysis
session, is given by

where t represents the number of minutes of the dialysis ses-
sion and g represents the rate at which the body generates urea
in mg per minute. Source: Clinical Dialysis.

a. Find 

b. Using the total differential, estimate the urea concen-
tration if the dialysis session of part a was cut short by
10 minutes and the urea generation rate was 9 mg per minute.
Compare this with the actual concentration. (Hint: First,
replace the variable g with the number 8, thus reducing the
function to one variable. Then use your graphing calculator to
calculate the partial derivative A similar proce-
dure can be done for

26. Horn Volume The volume of the horns from bighorn sheep
was estimated by researchers using the equation

where h is the length of a horn segment (in centimeters) and 
and are the radii of the two ends of the horn segment (in cen-
timeters). Source: Conservation Biology.

a. Determine the volume of a segment of horn that is 40 cm
long with radii of 5 cm and 3 cm, respectively.

b. Use the total differential to estimate the volume of the seg-
ment of horn if the horn segment from part a was actually 
42 cm long with radii of 5.1 cm and 2.9 cm, respectively.
Compare this with the actual volume.

27. Eastern Hemlock Ring shake, which is the separation of the
wood between growth rings, is a serious problem in hemlock
trees. Researchers have developed the following function that esti-
mates the probability P that a given hemlock tree has ring shake.

P 1A, B, D 2 5
1

1 1 e3.6820.016A20.77B20.12D
 ,

r2

r1

V 5
hp

3
1 r2

1 1 r1 r2 1 r2
2 2 ,

Cg 
1 180, 8 2 .)

Ct 
1 180, 8 2 .

C 1 180, 8 2 .

  1
gt

126t 2 900
31 2 10.96 2 1210t/1500221 4,

 C 1 t, g 2 5 0.6 10.96 2 1210t/1500221

10.0°C36.5°
12.0°C

36.0°,°C

H 1m, T, A 2 5
15.2m0.67 1T 2 A 2

10.23 ln m 2 10.74
 ’

v 5 125.b 5 200,a 5 160,

C 5
b

a 2 v
 .

Use the total differential to approximate each quantity. Then
use a calculator to approximate the quantity, and give the
absolute value of the difference in the two results to 4 decimal
places.

7. 8.

9. 10.

11. 12.

13. 0.99 ln 0.98 14. 2.03 ln 1.02

0.98e20.041.03e0.04

12.932 2 0.942 2 1/31 1.922 1 2.12 2 1/3

"4.962 1 12.062"8.052 1 5.972

APPLICATIONS
Business and Economics

15. Manufacturing Approximate the volume of aluminum
needed for a beverage can of radius 2.5 cm and height 
14 cm. Assume the walls of the can are 0.08 cm thick.

16. Manufacturing Approximate the volume of material needed
to make a water tumbler of diameter 3 cm and height 9 cm.
Assume the walls of the tumbler are 0.2 cm thick.

17. Volume of a Coating An industrial coating 0.1 in. thick is
applied to all sides of a box of dimensions 10 in. by 9 in. by
18 in. Estimate the volume of the coating used.

18. Manufacturing Cost The manufacturing cost of a smart-
phone is approximated by

where x is the cost of the parts and y is the cost of labor.
Right now, the company spends $8 on parts and $14 on
labor. Use differentials to approximate the change in cost if
the company spends $8.25 on parts and $13.75 on labor.

19. Production The production function for one country is

where x stands for units of labor and y for units of capital.
At present, 50 units of labor and 29 units of capital are
available. Use differentials to estimate the change in pro-
duction if the number of units of labor is increased to
52 and capital is decreased to 27 units.

20. Production The production function for another country is

where x stands for units of labor and y for units of capital.
At present, 20 units of labor and 18 units of capital are
being provided. Use differentials to estimate the change
in production if an additional unit of labor is provided and
if capital is decreased to 16 units.

Life Sciences

21. Bone Preservative Volume A piece of bone in the shape
of a right circular cylinder is 7 cm long and has a radius of
1.4 cm. It is coated with a layer of preservative 0.09 cm
thick. Estimate the volume of preservative used.

22. Blood Vessel Volume A portion of a blood vessel is meas-
ured as having length 7.9 cm and radius 0.8 cm. If each
measurement could be off by as much as 0.15 cm, estimate
the maximum possible error in calculating the volume of
the vessel.

z 5 x0.8y0.2,

z 5 x0.65y0.35,

M 1x, y 2 5 45x2 1 40y2 2 20xy 1 50,
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where A is the age of the tree (yr), B is 1 if bird pecking is pre-
sent and 0 otherwise, and D is the diameter (in.) of the tree at
breast height. Source: Forest Products Journal.

a. Estimate the probability that a 150-year-old tree, with bird
pecking present and a breast height diameter of 20 in., will
have ring shake.

b. Estimate the probability that a 150-year-old tree, with no
presence of bird pecking and a breast height diameter of 20 in.,
will have ring shake.

c. Develop a statement about what can be said about the influence
that the three variables have on the probability of ring shake.

d. Using the total differential, estimate the probability if the
actual age of the tree was 160 years and the diameter at breast
height was 25 in. Assume that no bird pecking was present.
Compare your answer to the actual value. (Hint: Assume
that B 5 0 and exclude that variable from your calculations.)

e. Comment on the practicality of using differentials in part d.

Physical  Sciences

28. Swimming The amount of time in seconds it takes for a swim-
mer to hear a single, hand-held, starting signal is given by the
formula

where is the location of the starter (in meters), is
the location of the swimmer (in meters), and C is the air tem-
perature (in degrees Celsius). Source: COMAP. Assume that the
starter is located at the point See the diagram.1x, y 2 5 1 5, 22 2 .

10, p 21x, y 2

t 1x, y, p, C 2 5
"x2 1 1 y 2 p 2 2

331.45 1 0.6C
 ,

a. Calculate and Could the
difference in time change the outcome of a race?

b. Calculate the total differential for t if the starter remains sta-
tionary, the swimmer moves from 20 m to 20.5 m away
from the starter in the y direction, and the temperature
decreases from to Interpret your answer.

General Interest

29. Estimating Area The height of a triangle is measured as 37.5 cm,
with the base measured as 15.8 cm. The measurement of the
height can be off by as much as 0.8 cm and that of the base by
no more than 1.1 cm. Estimate the maximum possible error in
calculating the area of the triangle.

30. Estimating Volume The height of a cone is measured as 9.3 cm
and the radius as 3.2 cm. Each measurement could be off by as
much as 0.1 cm. Estimate the maximum possible error in cal-
culating the volume of the cone.

31. Estimating Volume Suppose that in measuring the length,
width, and height of a box, there is a maximum 1% error in
each measurement. Estimate the maximum error in calculating
the volume of the box.

32. Estimating Volume Suppose there is a maximum error of a%
in measuring the radius of a cone and a maximum error of b% in
measuring the height. Estimate the maximum percent error in
calculating the volume of the cone, and compare this value
with the maximum percent error in calculating the volume of a
cylinder.

33. Ice Cream Cone An ice cream cone has a radius of approxi-
mately 1 in. and a height of approximately 4 in. By what factor
does a change in the radius affect the volume compared with a
change in the height?

34. Hose A hose has a radius of approximately 0.5 in. and a length of
approximately 20 ft. By what factor does a change in the radius
affect the volume compared with a change in the length? 

15°C.20°C

t 1 5, 22, 10, 20 2 .t 1 5, 22, 20, 20 2

x

y

p Swimmer

Starter (5, –2)

5

–2

YOUR TURN ANSWERS 

1. (a)
(b)

2. 13.0023 3. 10%

24.7"x2 2 7y2 2dy1 12x2y3 2 42y /
dz 5 1 6xy4 1 6x /"x2 2 7y2 2dx 1

9.6 Double Integrals
APPLY IT How can we find the volume of a bottle with curved sides?

We will answer this question in Example 6 using a double integral, the key idea in this
section.

In an earlier chapter, we saw how integrals of functions with one variable may be used
to find area. In this section, this idea is extended and used to find volume. We found partial
derivatives of functions of two or more variables at the beginning of this chapter by holding
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constant all variables except one. A similar process is used in this section to find antideriva-
tives of functions of two or more variables. For example, in

the notation dy indicates integration with respect to y, so we treat y as the variable and x as
a constant. Using the rules for antiderivatives gives

The constant C used earlier must be replaced with to show that the “constant of inte-
gration” here can be any function involving only the variable x. Just as before, check this
work by taking the derivative (actually the partial derivative) of the answer:

which shows that the antiderivative is correct.
We can use this antiderivative to evaluate a definite integral.

Definite Integral

Evaluate 

SOLUTION

Simplify.

In the second step, we substituted and and subtracted, according to the Funda-
mental Theorem of Calculus. Notice that does not appear in the final answer, just as
the constant does not appear in a regular definite integral. Therefore, from now on we will
not include when we find the antiderivative for a definite integral with respect to y.

TRY YOUR TURN 1

By integrating the result from Example 1 with respect to x, we can evaluate a double
integral.

Definite Integral

Evaluate 

SOLUTION

5
2211

4

5
31

4
. 34 2 3 . 33 1 2 . 3 2 a

31

4
. 04 2 3 . 03 1 2 . 0b

5
31

4
x4 2 3x3 1 2x `

3

0

331x3 2 9x2 1 2 4dx3

3

0
c3

2

1

1 5x3y4 2 6x2y 1 2 2  dy d  dx 5 3

3

0

3

3

0
c3

2

1

1 5x3y4 2 6x2y 1 2 2  dy d  dx.

C 1x 2

C 1x 2
y 5 1y 5 2

5 31x3 2 9x2 1 2

2 3x3 2 3x2 1 2 1 C 1x 2 4
5 32x3 2 12x2 1 4 1 C 1x 2

2 3x315 2 3x212 1 2 . 1 1 C 1x 2 4
5 x325 2 3x222 1 2 . 2 1 C 1x 2

 3

2

1

1 5x3y4 2 6x2y 1 2 2  dy 5 3x3y5 2 3x2y2 1 2y 1 C 1x 2 4 `
2

1

3

2

1

1 5x3y4 2 6x2y 1 2 2  dy.

'
'y
3x3y5 2 3x2y2 1 2y 1 C 1x 2 4 5 5x3y4 2 6x2y 1 2 1 0,

C 1x 2

3 1 5x3y4 2 6x2y 1 2 2  dy 5 x3y5 2 3x2y2 1 2y 1 C 1x 2 .

3 1 5x3y4 2 6x2y 1 2 2  dy

FOR REVIEW
You may wish to review the key
ideas of indefinite and definite
integrals from Chapter 7 on Inte-
gration before continuing with this
section. See the review problems
at the end of that chapter.

Use the indefinite integral 
previously found.

YOUR TURN 1 Evaluate

10y4 1 3 2dy.

3

3

1

1 6x2y2 1 4xy 1 8x3 1

Use the result from Example1.

Use the Fundamental Theorem 
of Calculus.

EXAMPLE  1

EXAMPLE  2
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We can integrate the inner integral with respect to and the outer integral with respect
to , as in Example 2, or in the reverse order. The next example shows the same integral
done both ways.

Definite Integrals

Evaluate each integral.

(a)

SOLUTION

(b)

SOLUTION (This is the same integrand with the same limits of integration as in part (a),
but the order of integration is reversed.)

TRY YOUR TURN 2

5 175 1 750 1 30 2 1 63 1 162 1 18 2 5 712

5 7 . 52 1 6 . 53 1 6 . 5 2 1 7 . 32 1 6 . 33 1 6 . 3 2

5 1 7x2 1 6x3 1 6x 2 `
5

3

5 3

5

3

1 14x 1 18x2 1 6 2dx

2 12x 1 6x2 1 2 2 4dx

5 3

5

3

3 1 16x 1 24x2 1 8 2

2 12x . 13 . 1 6x2 . 12 1 2 . 12 2 4dx

5 3

5

3

3 12x . 23 1 6x2 . 22 1 2 . 22 2

 3

5

3
c3

2

1

1 6xy2 1 12x2y 1 4y 2dy d  dx 5 3

5

3
c 12xy3 1 6x2y2 1 2y2 2 `

2

1
ddx

3

5

3
c3

2

1

1 6xy2 1 12x2y 1 4y 2  dy d  dx

5 712.

5 128 1 800 2 1 16 1 200 2
5 16 . 23 1 200 . 22 2 1 16 . 13 1 200 . 12 2

5 1 16y3 1 200y2 2 `
2

1

5 3

2

1

148y2 1 400y 2dy

2 127y2 1 108y 1 12y 2 4dy

5 3

2

1

3 1 75y2 1 500y 1 20y 2

2 1 3 . 32 . y2 1 4 . 33 . y 1 4 . 3 . y 2 4dy

5 3

2

1

3 1 3 . 52 . y2 1 4 . 53 . y 1 4 . 5 . y 2

c 13x2y2 1 4x3y 1 4xy 2 `
5

3
ddy 3

2

1
c3

5

3

16xy
2
112x

2
y 1 4y 2dx d  dy 5 3

2

1

3

2

1
c3

5

3

1 6xy2 1 12x2y 1 4y 2  dx d  dy

x
y

Integrate with 
respect to y.

YOUR TURN 2 Evaluate 

and then integrate

with the order of integration
changed. 

10y4 1 3 2  dy d  dx,

3

2

0
c3

3

1

1 6x2y2 1 4xy 1 8x3 1

EXAMPLE  3

Integrate with 
respect to x.

Integrate with 
respect to y.

Integrate with
respect to x.
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NOTE In the second step of Example 3 (a), it might help you avoid confusion as to whether to
put the limits of 3 and 5 into or by writing the integral as 

The brackets we have used for the inner integral in Example 3 are not essential because
the order of integration is indicated by the order of For example, if the inte-
gral is written as

we first integrate with respect to x, letting x vary from 3 to 5, and then with respect to y, let-
ting y vary from 1 to 2, as in Example 3(a).

The answers in the two parts of Example 3 are equal. It can be proved that for a large
class of functions, including most functions that occur in applications, the following equa-
tion holds true.

3

2

1

 3

5

3

1 6xy2 1 12x2y 1 4y 2  dx dy,

dx dy or dy dx.

3

2

1
c 1 3x2y2 1 4x3y 1 4xy 2 `

x55

x53
d  dy

yx

Fubini’s Theorem

3

b

a
 3

d

c
f 1 x, y 2  dy dx 5 3

d

c
 3

b

a
f 1 x, y 2  dx dy

Either of these integrals is called an iterated integral since it is evaluated by integrating
twice, first using one variable and then using the other. The fact that the iterated integrals
above are equal makes it possible to define a double integral. First, the set of points 
with and defines a rectangular region R in the plane, as shown in
Figure 29. Then, the double integral over R is defined as follows.

c # y # d,a # x # b
1x, y 2 ,

Double Integral
The double integral of over a rectangular region R is written

and equals either

3

b

a
 3

d

c
f 1 x, y 2  dy dx  or  3

d

c
 3

b

a
f 1 x, y 2  dx dy.

6

R

f 1 x, y 2  dy dx  or  6

R

f 1 x, y 2  dx dy,

f 1x, y 2

x

y

d

0

Rectangle R is given by
a ≤ x ≤ b, c ≤ y ≤ d.

a b

c

FIGURE 29

Extending earlier definitions, is the integrand and R is the region of integration.

Double Integrals

Find over the rectangular region R defined by and 0 # y # 2.0 # x # 46

R

 
3"x . y

y2 1 1
  dx dy

f 1x, y 2

EXAMPLE  4
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SOLUTION Integrate first with respect to x; then integrate the result with respect to y.

As a check, integrate with respect to y first. The answer should be the same.
TRY YOUR TURN 3

Volume As shown earlier, the definite integral can be used to find the area
under a curve. In a similar manner, double integrals are used to find the volume under a
surface. Figure 30 shows that portion of a surface directly over a rectangle R in the
xy-plane. Just as areas were approximated by a large number of small rectangles, volume
could be approximated by adding the volumes of a large number of properly drawn small
boxes. The height of a typical box would be with the length and width given by dx
and dy. The formula for the volume of a box would then suggest the following result.

f 1x, y 2

f 1x, y 2

eb
af 1x 2  dx

 5 8 ln 5 2 8 ln 1 5 8  ln 5

 5 8 ln u|
5
1

 5 83

5

1

du
u

 5 83

2

0

2y

y2 1 1
 dy

 5 3

2

0
a

2 14 2 3/2 . y

y2 1 1
2

2 10 2 3/2 . y

y2 1 1
b dy

 5 3

2

0

2x3/2 . y

y2 1 1
`
4

0

 dy

 6
R

 
3"x . y

y2 1 1
 dx dy 5 3

2

0

 3

4

0

 
3"x . y

y2 1 1
 dx dy

YOUR TURN 3 Find 

over the rectangular region 
defined by and
1 # y # 6.

0 # x # 5
R

6

R

1

"x 1 y 1 3
 dx dy

FIGURE 30

y

x

z

b

Surface z = f (x, y)

Rectangle R

a

dy dx

d

c

Volume
Let be a function that is never negative on the rectangular region R defined
by The volume of the solid under the graph of f and over the
region R is

6

R

f 1 x, y 2  dx dy.

c # y # d.a # x # b,
z 5 f 1x, y 2

Use the power rule with x1/2.

Factor out 43/2 5 8.

Let u � y2 � 1. Change limits 
of integration.
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Volume

Find the volume under the surface shown in Figure 31.

SOLUTION By the equation just given, the volume is

where and R is the region By definition,

TRY YOUR TURN 4

 5
64

3
. 4 1

4

3
. 43 2 0 5

512

3
 .

 5 3

4

0
a

64

3
1 4y2b dy 5 a

64

3
 y 1

4

3
 y3b `

4

0

 5 3

4

0
a

1

3
 x3 1 xy2b `

4

0

 dy

 6
R

f 1x, y 2  dx dy 5 3

4

0

 3

4

0

1x2 1 y2 2  dx dy

0 # y # 4.0 # x # 4,f 1x, y 2 5 x2 1 y2

6

R

f 1x, y 2  dx dy,

z 5 x2 1 y2

EXAMPLE  5

YOUR TURN 4 Find the 
volume under the surface

over the rectangu-
lar region , 0 # y # 1.0 # x # 1
z 5 4 2 x3 2 y3

R

x

y

z
Surface
z = x2 + y2

4

4

0

FIGURE 31

Perfume Bottle

A product design consultant for a cosmetics company has been asked to design a bottle for
the company’s newest perfume. The thickness of the glass is to vary so that the outside of
the bottle has straight sides and the inside has curved sides, with flat ends shaped like
parabolas on the 4-cm sides, as shown in Figure 32. Before presenting the design to man-
agement, the consultant needs to make a reasonably accurate estimate of the amount each
bottle will hold. If the base of the bottle is to be 4 cm by 3 cm, and if a cross section of its
interior is to be a parabola of the form what is its internal volume?z 5 2y2 1 4y,

EXAMPLE  6

4 cm
3 cm

FIGURE 32
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SOLUTION The interior of the bottle can be graphed in three-dimensional space, as shown
in Figure 33, where corresponds to the base of the bottle. Its volume is simply the
volume above the region R in the xy-plane and below the graph of 
This volume is given by the double integral

The bottle holds 

Double Integrals Over Other Regions In this section, we found double
integrals over rectangular regions by evaluating iterated integrals with constant limits of
integration. We can also evaluate iterated integrals with variable limits of integration. (Notice
in the following examples that the variable limits always go on the inner integral sign.)

The use of variable limits of integration permits evaluation of double integrals over the
types of regions shown in Figure 34. Double integrals over more complicated regions are
discussed in more advanced books. Integration over regions such as those in Figure 34 is
done with the results of the following theorem.

32 cm3.

 5 32 2 0 5 32.

 5
32

3
 x `

3

0

 5 3

3

0
a

264

3
1 32 2 0b dx

 3

3

0

 3

4

0

12y2 1 4y 2  dy dx 5 3

3

0
a

2y3

3
1

4y2

2
b `

4

0

 dx

f 1x, y 2 5 2y2 1 4y.
z 5 0

(3, 0, 0)
(0, 4, 0)

f(x, y) = –y2 + 4y

x

z

y
R

FIGURE 33

FIGURE 34

x

y

0

g(x) ≤  h(x) for all x in [a, b]

y = h(x)

y = g(x)

a b

(a)

x

y

0

g(y) ≤  h(y) for all y in [c, d]

x = g(y)

x = h(y)

d

c

(b)

Double Integrals Over Variable Regions
Let be a function of two variables. If R is the region (in Figure 34(a)) defined
by and then

If R is the region (in Figure 34(b)) defined by and then

6

R

f 1 x, y 2  dx dy 5 3

d

c
c3

h1y2

g1y2
f 1 x, y 2  dx d  dy.

c # y # d,g 1 y 2 # x # h 1 y 2

6

R

f 1 x, y 2  dy dx 5 3

b

a
c3

h1x2

g1x2
f 1 x, y 2  dy d  dx.

g1x 2 # y # h 1x 2 ,a # x # b
z 5 f 1x, y 2

APPLY IT 
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Double Integrals

Evaluate 

SOLUTION The region of integration is shown in Figure 35. Integrate first with respect to x,
then with respect to y.

3

2

1

 3

y2

y

xy dx dy.

FIGURE 36

FIGURE 35

EXAMPLE  7

x

y

0 1 2 3 4

(4, 2)

(1, 1)

(2, 2)

x = y
x = y2

2

1

Replace x first with and then with y, and subtract.

TRY YOUR TURN 5

Double Integrals

Let R be the shaded region in Figure 36, and evaluate

SOLUTION Region R is bounded by and with By the
first result in the previous theorem,

 5 3

2

0

3x 12x 2 1 12x 2 2 2 3x . x2 1 1x2 2 2 4 4 dx

 5 3

2

0

1xy 1 y2 2 `
2x

x2

 dx

 6
R

1x 1 2y 2  dy dx 5 3

2

0

 3

2x

x2

1x 1 2y 2  dy dx

0 # x # 2.g 1x 2 5 x2,h 1x 2 5 2x

6

R

1x 1 2y 2  dy dx.

 5
64

12
2

16

8
2

1

12
1

1

8
5

27

8

 5 a
1

12
. 26 2

1

8
. 24b 2 a

1

12
. 16 2

1

8
. 14b

 5 3

2

1
a

1

2
 y5 2

1

2
 y3b dy 5 a

1

12
 y6 2

1

8
 y4b `

2

1

 3

2

1

 3

y2

y

 xy dx dy 5 3

2

1
c
1

2
 1 y2 2 2y 2

1

2
 1 y 2 2y d  dy

y2

3

2

1

 3

y2

y

 xy dx dy 5 3

2

1
a3

y2

y

 xy dxb  dy 5 3

2

1
a

1

2
 x2yb `

y2

y

 dy

YOUR TURN 5 Find 

over the 

region bounded by and
for 0 # x # 2.y 5 x3

y 5 4x

6

R

1x3 1 4y 2  dy dx

EXAMPLE  8

x

y

y = 2x

0 1 2

(2, 4)

y = x2
2

4

R
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Interchanging Limits of Integration Sometimes it is easier to integrate first
with respect to x and then y, while with other integrals the reverse process is easier. The
limits of integration can be reversed whenever the region R is like the region in Figure 36,
which has the property that it can be viewed as either type of region shown in Figure 34. In
practice, this means that all boundaries can be written in terms of y as a function of x, or by
solving for x as a function of y. 

For instance, in Example 8, the same result would be found if we evaluated the double
integral first with respect to x and then with respect to y. In that case, we would need to
define the equations of the boundaries in terms of y rather than x, so R would be defined by

The resulting integral is

Interchanging Limits of Integration

Evaluate

SOLUTION Notice that it is impossible to first integrate this function with respect to x.
Thus, we attempt to interchange the limits of integration.

For this integral, region R is given by A graph of R is
shown in Figure 37.

0 # y # 16."y # x # 4,

3

16

0

 3

4

"y

 "x3 1 4 dx dy.

 5
28

5
.

 5 4 1
4

5
. 45/2 2 24

 5 a
y2

4
1

4

5
 y5/2 2

3

8
 y3b `

4

0

 5 3

4

0
a

y

2
1 2y3/2 2

9

8
 y2b dy

 5 3

4

0
c a

y

2
1 2y "yb 2 a

y2

8
1 2a

y

2
byb d  dy

 3

4

0

 3

"y

y/2
1x 1 2y 2  dx dy 5 3

4

0
a

x2

2
1 2xyb `

"y

y/2
 dy

0 # y # 4.y /2 # x # "y ,

 5 16 2 4 2
32

5
5

28

5
 .

 5 2 . 23 2
1

4
. 24 2

1

5
. 25 2 0

 5 a2x3 2
1

4
 x4 2

1

5
 x5b `

2

0

 5 3

2

0

1 6x2 2 x3 2 x4 2  dx

 5 3

2

0

32x2 1 4x2 2 1x3 1 x4 2 4 dx

x

y

0 4321

x = 4

R
4

8

12

16

y = x2

or
x =      y

FIGURE 37

EXAMPLE  9
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The same region R can be written in an alternate way. As Figure 37 shows, one bound-
ary of R is Solving for y gives Also, Figure 37 shows that 
Since R can be written as the double integral above can be written

Fubini’s Theorem cannot be used to interchange the order of integration when
the limits contain variables, as in Example 9. Notice in Example 9 that after the
order of integration was changed, the new limits were completely different. 
It would be a serious error to rewrite the integral in Example 9 as 

3

4

"y
3

16

0

"x3 1 4 dy dx.

 < 122.83.

 5
2

9
3683/2 2 43/2 4

 5
2

9
 u3/2 `

68

4

 5
1

3
 3

68

4

u1/2du

 5
1

3
 3

4

0

3x2
 "x3 1 4 dx

 5 3

4

0

x2
 "x3 1 4 dx

 3

4

0

 3

x2

0

 "x3 1 4 dy dx 5 3

4

0

y "x3 1 4 `
x2

0

 dx

0 # x # 4,0 # y # x2,
0 # x # 4.y 5 x2.x 5 "y .

CAUTION

9.6 EXERCISES
Evaluate each integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Evaluate each iterated integral. (Many of these use results from
Exercises 1–10.)

11. 12.

13. 14.

15. 16. 3

25

16

 3

7

2

 
3 1 5y

"x
 dy dx3

2

1

 3

9

4 

3 1 5y

"x
 dx dy

3

3

0

 3

5

4

x "x2 1 3y dy dx3

1

0

 3

6

3

x "x2 1 3y dx dy

3

3

0

 3
2

1

1xy3 2 x 2  dy dx3

2

1

 3

5

0

1x4y 1 y 2  dx dy

3

5

1

ye4x1y2

 dx3

3

0

ye4x1y2

 dy

3

1

21

e2x13y dy3

6

2

e2x13y dx

3

7

2

 
3 1 5y

"x
 dy3

9

4

 
3 1 5y

"x
 dx

3

6

3

x "x2 1 3y dx3

5

4

x "x2 1 3y dy

3

2

1

1xy3 2 x 2  dy3

5

0

1x4y 1 y 2  dx
17. 18.

19. 20.

Find each double integral over the rectangular region R with
the given boundaries.

21.

22.

23.

24.

25. 6
R

 
3

1x 1 y 2 2
 dy dx; 2 # x # 4, 1 # y # 6

6

R

x2
 "x3 1 2y dx dy; 0 # x # 2, 0 # y # 3

6

R

 "x 1 y dy dx; 1 # x # 3, 0 # y # 1

6

R

1x2 1 4y3 2  dy dx; 1 # x # 2, 0 # y # 3

6

R

1 3x2 1 4y 2  dx dy; 0 # x # 3, 1 # y # 4

3

4

3

 3

2

1
a

6x

5
1

y

x
b  dx dy3

4

2

 3

5

3
a

x

y
1

y

3
b dx dy

3

5

1

 3
4

2

 
1

y
 dx dy3

3

1

 3
3

1

 
1

xy
 dy dx

Let Change limits
of integration.

u 5 x3 1 4.
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26.

27.

28.

Find the volume under the given surface z � and above
the rectangle with the given boundaries.

29.

30.

31.

32.

33.

34.

35.

36.

Although it is often true that a double integral can be evaluated
by using either dx or dy first, sometimes one choice over the
other makes the work easier. Evaluate the double integrals in
Exercises 37 and 38 in the easiest way possible.

37.

38.

Evaluate each double integral.

39. 40.

41. 42.

43. 44.

45. 46.

Use the region R with the indicated boundaries to evaluate each
double integral.

47.

48.

49.

50. 6
R

 
1

x
  dy dx; 1 # x # 2, 0 # y # x 2 1

6

R

14 2 4x2 2  dy dx; 0 # x # 1, 0 # y # 2 2 2x

6

R

12x 1 6y 2  dy dx; 2 # x # 4, 2 # y # 3x

6

R

1 5x 1 8y 2  dy dx; 1 # x # 3, 0 # y # x 2 1

3

1

0

 3

4x

2x

ex1y dy dx3

4

0

 3

ex

1

x

y
 dy dx

3

4

1

 3

x2

x

 
1

y
 dy dx3

6

2

 3

4y

2y

 
1

x
 dx dy

3

4

1

 3

x

0

 "x 1 y dy dx3

4

0

 3

x

0

 "xy dy dx

3

2

0

 3

3y

0

1x2 1 y 2  dx dy3

4

2

 3

x2

2

1x2 1 y2 2  dy dx

6

R

2x3ex2y dx dy; 0 # x # 1, 0 # y # 1

6

R

xexy dx dy; 0 # x # 2, 0 # y # 1

z 5 ex1y; 0 # x # 1, 0 # y # 1

z 5
xy

1x2 1 y2 2 2
 ; 1 # x # 2, 1 # y # 4

z 5 yx "x2 1 y2; 0 # x # 4, 0 # y # 1

z 5 x "x2 1 y; 0 # x # 1, 0 # y # 1

z 5 "y ; 0 # x # 4, 0 # y # 9

z 5 x2; 0 # x # 2, 0 # y # 5

z 5 3x 1 10y 1 20; 0 # x # 3, 22 # y # 1

z 5 8x 1 4y 1 10; 21 # x # 1, 0 # y # 3

f 1 x, y 2

6

R

x2ex312y dx dy; 1 # x # 2, 1 # y # 3

6

R

yex1y2

 dx dy; 2 # x # 3, 0 # y # 2

6

R

 
y

"2x 1 5y2
 dx dy; 0 # x # 2, 1 # y # 3 51.

52.

53.

54.

55.

56.

Evaluate each double integral. If the function seems too diffi-
cult to integrate, try interchanging the limits of integration, as
in Exercises 37 and 38.

57. 58.

59. Recall from the Volume and Average Value section in the pre-
vious chapter that volume could be found with a single inte-
gral. In this section volume is found using a double integral.
Explain when volume can be found with a single integral and
when a double integral is needed.

60. Give an example of a region that cannot be expressed by either
of the forms shown in Figure 34. (One example is the disk with
a hole in the middle between the graphs of and

in Figure 10.)

The idea of the average value of a function, discussed earlier for
functions of the form y � can be extended to functions of
more than one independent variable. For a function z � 
the average value of f over a region R is defined as

where A is the area of the region R. Find the average value for
each function over the regions R having the given boundaries.

61.

62.

63.

64. f 1x, y 2 5 e2x1y; 1 # x # 2, 2 # y # 3

f 1x, y 2 5 e25y13x; 0 # x # 2, 0 # y # 2

f 1x, y 2 5 x2 1 y2; 0 # x # 2, 0 # y # 3

f 1x, y 2 5 6xy 1 2x; 2 # x # 5, 1 # y # 3

1

A6
R

f 1x, y 2  dx dy,

f 1 x, y 2 ,
f 1 x 2 ,

x2 1 y2 5 2
x2 1 y2 5 1

3

2

0

 3

1

y/2
ex2

 dx dy3

ln 2

0

 3

2

ey
 

1

ln x
 dx dy

6

R

e2y/x dy dx; R bounded by y 5 x2, y 5 0, x 5 2

6

R

 
1

y
  dy dx; R bounded by y 5 x, y 5

1

x
 , x 5 2

6

R

x2y2 dx dy; R bounded by y 5 x, y 5 2x, x 5 1

6

R

x3y dy dx; R bounded by y 5 x2, y 5 2x

6

R

1x2 2 y 2  dy dx; 21 # x # 1, 2x2 # y # x2

6

R

ex/y2

 dx dy; 1 # y # 2, 0 # x # y2

APPLICATIONS
Business and Economics

65. Packaging The manufacturer of a fruit juice drink has decided
to try innovative packaging in order to revitalize sagging sales.
The fruit juice drink is to be packaged in containers in the
shape of tetrahedra in which three edges are perpendicular, as
shown in the figure on the next page. Two of the perpendicular
edges will be 3 in. long, and the third edge will be 6 in. long.
Find the volume of the container. (Hint: The equation of the
plane shown in the figure is z 5 f 1x, y 2 5 6 2 2x 2 2y.)
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66. Average Cost A company’s total cost for operating its two
warehouses is

dollars, where x represents the number of units stored at the
first warehouse and y represents the number of units stored at
the second. Find the average cost to store a unit if the first
warehouse has between 40 and 80 units, and the second has
between 30 and 70 units. (Hint: Refer to Exercises 61–64.)

67. Average Production A production function is given by

where x is the number of units of labor and y is the number of
units of capital. Find the average production level if x varies
from 10 to 50 and y from 20 to 40. (Hint: Refer to Exercises
61–64.)

68. Average Profit The profit (in dollars) from selling x units of
one product and y units of a second product is

The weekly sales for the first product vary from 100 units to
150 units, and the weekly sales for the second product vary
from 40 units to 80 units. Estimate average weekly profit for
these two products. (Hint: Refer to Exercises 61–64.)

P 5 2 1x 2 100 2 2 2 1 y 2 50 2 2 1 2000.

P 1x, y 2 5 500x0.2y0.8,

C 1x, y 2 5
1

9
 x2 1 2x 1 y2 1 5y 1 100

69. Average Revenue A company sells two products. The demand
functions of the products are given by

where units of the first product are demanded at price and
units of the second product are demanded at price The

total revenue will be given by

Find the average revenue if the price varies from $25 to $50
and the price varies from $50 to $75. (Hint: Refer to Exer-
cises 61–64.)

70. Time In an exercise earlier in this chapter, we saw that the
time (in hours) that a branch of Amalgamated Entities needs to
spend to meet the quota set by the main office can be approxi-
mated by

where x represents how many thousands of dollars the factory
spends on quality control and y represents how many thou-
sands of dollars they spend on consulting. Find the average
time if the amount spent on quality control varies from $0 to
$4000 and the amount spent on consulting varies from $0 to
$2000. (Hint: Refer to Exercises 61–64.)

71. Profit In an exercise earlier in this chapter, we saw that the
profit (in thousands of dollars) that Aunt Mildred’s Metalworks
earns from producing x tons of steel and y tons of aluminum
can be approximated by

Find the average profit if the amount of steel produced varies
from 0 to 8 tons, and the amount of aluminum produced varies
from 0 to 4 tons. (Hint: Refer to Exercises 61–64.)

P 1x, y 2 5 36xy 2 x3 2 8y3.

T 1x, y 2 5 x4 1 16y4 2 32xy 1 40,

p2

p1

R 5 q1 p1 1 q2 p2 .

p2 .q2

p1q1

q1 5 300 2 2p1  and  q2 5 500 2 1.2p2 ,

x

z

y

(0, 0, 6)

(0, 3, 0)
(3, 0, 0) R

YOUR TURN ANSWERS 

1. 2.

3. 4. 7/2 5. 5888 /1051 56"14 2 184 2 /3

3644 /352x2 1 16x 1 16x3 1 490

In this chapter, we extended our study of calculus to include func-
tions of several variables. We saw that it is possible to produce
three-dimensional graphs of functions of two variables and that the
process is greatly enhanced using level curves. Level curves are
formed by determining the values of x and y that produce a particu-
lar functional value. We also saw the graphs of several surfaces,
including the

• paraboloid, whose equation is ,

• ellipsoid, whose general equation is 5 1,

• hyperbolic paraboloid, whose equation is , and
• hyperboloid of two sheets, whose equation is .2x2 2 y2 1 z2 5 1

z 5 x2 2 y2

x2

a2 1
y2

b2 1
z2

c2

z 5 x2 1 y2

SUMMARY
Level curves are also important in economics and are used to indi-
cate combinations of the values of x and y that produce the same
value of production z. This procedure was used to analyze the
Cobb-Douglas production function, which has the general form

, where A is constant and 0 , a , 1.

Partial derivatives are the extension of the concept of differentia-
tion with respect to one of the variables while the other variables
are held constant. Partial derivatives were used to identify extrema
of a function of several variables. In particular, we identified all
points where the partial with respect to x and the partial with
respect to y are both zero, which we called critical points. We then

z 5 P 1x, y 2 5 Axay12a

9 CHAPTER REVIEW
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classified each critical point as a relative maximum, a relative
minimum, or a saddle point. Recall that a saddle point is a mini-
mum when approached from one direction but a maximum when
approached from another direction. We introduced the method of
Lagrange multipliers to determine extrema in problems with 
constraints. Differentials, introduced earlier for functions of one

variable, were generalized to define the total differential. We saw
that total differentials can be used to approximate the value of a
function using its tangent plane. We concluded the chapter by
introducing double integrals, which are simply two iterated inte-
grals, one for each variable. Double integrals were then used to
find volume.

Function of Two Variables The expression is a function of two variables if a unique value of z is obtained from
each ordered pair of real numbers . The variables x and y are independent variables, and z
is the dependent variable. The set of all ordered pairs of real numbers such that f 
exists is the domain of f ; the set of all values of f (x, y) is the range.

Plane The graph of is a plane if a, b, and c are not all 0.

Partial Derivatives The partial derivative of f with respect to x is the derivative of f obtained by treating x as
(Informal Definition) a variable and y as a constant.

The partial derivative of f with respect to y is the derivative of f obtained by treating y as a variable
and x as a constant.

Partial Derivatives Let be a function of two independent variables. Let all indicated limits exist.
(Formal Definition) Then the partial derivative of f with respect to x is

and the partial derivative of f with respect to y is

If the indicated limits do not exist, then the partial derivatives do not exist.

Second-Order Partial Derivatives For a function , if the partial derivative exists, then

Relative Extrema Let be the center of a circular region contained in the xy-plane. Then, for a function
defined for every in the region, f is a relative maximum if

for all points in the circular region, and f is a relative minimum if  

for all points in the circular region.

Location of Extrema Let a function have a relative maximum or relative minimum at the point . Let
and both exist. Then

and .

Test for Relative Extrema For a function , let and all exist in a circular region contained in the xy-
plane with center . Further, let

and .

Define D, known as the discriminant, by

.
Then
a. f (a, b) is a relative maximum if D . 0 and ;
b. f (a, b) is a relative minimum if D . 0 and ;
c. f (a, b) is a saddle point (neither a maximum nor a minimum) if D , 0;
d. if D 5 0, the test gives no information.

fxx 1a, b 2 . 0
fxx 1a, b 2 , 0

D 5 fxx 1a, b 2 . fyy 1a, b 2 2 3fxy 1a, b 2 42

fy 1a, b 2 5 0fx 1a, b 2 5 0

1a, b 2
fxyfxx, fyy,z 5 f 1x, y 2

fy 1a, b 2 5 0fx 1a, b 2 5 0

fy 1a, b 2fx 1a, b 2
1a, b 2z 5 f 1x, y 2

1x, y 2
f 1a, b 2 # f 1x, y 2

1a, b 21x, y 2

f 1a, b 2 $ f 1x, y 2

1a, b 21x, y 2z 5 f 1x, y 2
1a, b 2

'
'x

 a
'z
'y
b 5

'2z

'x'y
5 fyx 1x, y 2 5 zyx

'
'y

 a
'z
'x
b 5

'2z

'y'x
5 fxy 1x, y 2 5 zxy

'
'y

 a
'z
'y
b 5

'2z

'y2 5 fyy 1x, y 2 5 zyy

'
'x

 a
'z

'x
b 5

'2z

'x2 5 fxx 1x, y 2 5 zxx

z 5 f 1x, y 2

fy 1x, y 2 5
'f
'y

5 lim
hl0

 
f 1x, y 1 h 2 2 f 1x, y 2

h
.

fx 1x, y 2 5
'f
'x

5 lim
hl0

 
f 1x 1 h, y 2 2 f 1x, y 2

h
,

z 5 f 1x, y 2

ax 1 by 1 cz 5 d

1x, y 21x, y 2
1x, y 2

z 5 f 1x, y 2
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Lagrange Multipliers All relative extrema of the function , subject to the constraint g � 0, will be found
among those points for which there exists a value of such that

, , and ,

where
,

and all indicated partial derivatives exist.

Using Lagrange Multipliers 1. Write the constraint in the form g 5 0.
2. Form the Lagrange function

.

3. Find , , and .
4. Form the system of equations

, , and .

5. Solve the system in Step 4; the relative extrema for f are among the solutions of the system.

Total Differential for Two Variables Let be a function of x and y. Let dx and dy be real numbers. Then the total 
differential of z is

.

(Sometimes dz is written df.)

Approximations For small values of and ,

where .

Approximations by Differentials For a function f having all indicated partial derivatives, and for small values of dx and dy,

,

or
.

If , then the total differential dw is

,

provided all indicated partial derivatives exist.

Double Integral The double integral of f over a rectangular region R defined by is written

or ,

and equals either

or .

Volume Let be a function that is never negative on the rectangular region R defined by
. The volume of the solid under the graph of f and over the region R is

.

Double Integrals over Let be a function of two variables. If R is the region defined by
Variable Regions and , then

If R is the region defined by and , then

.6

R

f 1x, y 2 dx dy 5 3

d

c
c3

h1y2

g1y2
f 1x, y 2 dx ddy

c # y # dg 1 y 2 # x # h 1 y 2

6

R

f 1x, y 2 dy  dx 5 3

b

a
c3

h1x2

g1x2
f 1x, y 2 dy ddx.

g 1x 2 # y # h 1x 2
a # x # bz 5 f 1x, y 2

6

R

f 1x, y 2 dy dx

a # x # b, c # y # d
z 5 f 1x, y 2

3

d

c
3

b

a

f 1x, y 2 dx dy3

b

a
3

d

c

f 1x, y 2  dy dx

6

R

f 1x, y 2 dx dy6

R

f 1x, y 2 dy dx

a # x # b, c # y # d1x, y 2

dw 5 fx 1x, y, z 2 . dx 1 fy 1x, y, z 2 . dy 1 fz 1x, y, z 2 . dz

w 5 f 1x, y, z 2

f 1x 1 dx, y 1 dy 2 < f 1x, y 2 1 fx 1x, y 2 . dx 1 fy 1x, y 2 . dy

f 1x 1 dx, y 1 dy 2 < f 1x, y 2 1 dz

Dz 5 f 1x 1 dx, y 1 dy 2 2 f 1x, y 2

dz < Dz

dydx

dz 5 fx 1x, y 2 . dx 1 fy 1x, y 2 . dy

z 5 f 1x, y 2

Fl 1x, y, l 2 5 0Fy 1x, y, l 2 5 0Fx 1x, y, l 2 5 0

Fl 1x, y, l 2Fy 1x, y, l 2Fx 1x, y, l 2
F 1x, y, l 2 5 f 1x, y 2 2 l . g 1x, y 2

1x, y 2

F 1x, y, l 2 5 f 1x, y 2 2 l . g 1x, y 2

Fl 1x, y, l 2 5 0Fy 1x, y, l 2 5 0Fx 1x, y, l 2 5 0

l1x, y 2
1x, y 2z 5 f 1x, y 2

Total Differential for 
Three Variables
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KEY TERMS
9.1
function of two variables
independent variable
dependent variable
domain
range
ordered triple
first octant
plane
surface
trace
level curves

paraboloid
production function
Cobb-Douglas production 

function
level surface
ellipsoid
hyperbolic paraboloid
hyperboloid of two sheets

9.2
partial derivative
second-order partial derivative

9.3
relative maximum
relative minimum
saddle point
critical point
discriminant

9.4
constraints
Lagrange multiplier 
utility function
indifference curve

9.5
total differential
9.6
Fubini’s Theorem
iterated integral
double integral
integrand
region of integration

REVIEW EXERCISES

CONCEPT CHECK
Determine whether each of the following statements is true or
false, and explain why.

1. The graph of is a plane.

2. The graph of is a plane that is parallel to the z-axis.

3. A level curve for a paraboloid could be a single point.

4. If the partial derivatives with respect to x and y at some point
are both 0, the tangent plane to the function at that point is
horizontal.

5. If , then 
.

6. For a function , suppose that the point has
been identified such that . We can
conclude that a relative maximum or a relative minimum
must exist at (a, b).

7. A saddle point can be a relative maximum or a relative 
minimum.

8. A function of two variables may have both a relative maximum
and an absolute maximum at the same point.

9. The method of Lagrange multipliers tells us whether a point
identified by the method is a maximum or minimum.

10.

11.

12.

PRACTICE AND EXPLORATIONS
13. Describe in words how to take a partial derivative.

14. Describe what a partial derivative means geometrically.

15. Describe what a total differential is and how it is useful.

3

4

0
3

x

1

1x 1 xy2 2 dy dx 5 3

x

1
3

4

0

1x 1 xy2 2 dx dy

3

1

0
3

2

22

xey dy dx 5 3

2

22
3

1

0

xey dx dy

3

4

2
3

5

1

1 3x 1 4y 2 dy dx 5 3

4

2
3

5

1

1 3x 1 4y 2 dx dy

fx 1a, b 2 5 fy 1a, b 2 5 0
1a, b 2z 5 f 1x, y 2

1 2xy 1 h 1 y2
f 1x 1 h, y 2 5 3 1x 1 h 2 2f 1x, y 25 3x2 1 2xy 1 y2

2x 1 4y 5 10

6x 2 2y 1 7z 5 14

16. Suppose you are walking through the region of New York state
shown in the topographical map in Figure 11 in the first section
of this chapter. Assume you are heading north, toward the top
of the map, over the western side of the mountain at the left,
but not directly over the peak. Explain why you reach your
highest point when you are going in the same direction as a
contour line. Explain how this relates to Lagrange multipliers.
(Hint: See Figure 25.)

Find and for the following.

17.

18.

19. 20.

Graph the first-octant portion of each plane.

21. 22.

23. 24.

25. 26.

27. Let Find the following.

a. b. c. 

28. Let Find the following.

a. b. c. 

Find and 

29. 30.

31. 32.

33. 34.

35. 36. f 1x, y 2 5 ln 0 2 2 x2y3 0f 1x, y 2 5 ln 0 2x2 1 y2 0

f 1x, y 2 5 1 y 2 2 2 2ex12yf 1x, y 2 5 x3e3y

f 1x, y 2 5
2x 1 5y2

3x2 1 y2f 1x, y 2 5 "4x2 1 y2

f 1x, y 2 5 5x4y3 2 6x5yf 1x, y 2 5 6x2y3 2 4y

fy 
1 x, y 2 .fx 

1 x, y 2

fxx 
121, 0 2

'z
'x

 10, 2 2
'z
'y

z 5 f 1x, y 2 5
x 1 y2

x 2 y2.

fxy 
12, 21 2

'z
'y

 121, 4 2
'z
'x

z 5 f 1x, y 2 5 3x3 1 4x2y 2 2y2.

y 5 4x 5 3

4x 1 3z 5 125x 1 2y 5 10

x 1 2y 1 6z 5 6x 1 y 1 z 5 4

f 1x, y 2 5
"x2 1 y2

x 2 y
f 1x, y 2 5

x 2 2y

x 1 5y

f 1x, y 2 5 2x2y2 2 7x 1 4y

f 1x, y 2 5 24x2 1 6xy 2 3

f 1 6, 23 2f 121, 2 2



CHAPTER 9 Review 519

Find and 

37. 38.

39. 40.

41. 42.

43. 44.

Find all points where the functions defined below have any rel-
ative extrema. Find any saddle points.

45.

46.

47.

48.

49.

50.

51.

52.

53. Describe the different types of points that might occur when

Use Lagrange multipliers to find the extrema of the functions
defined in Exercises 54 and 55.

54.

55.

56. Find positive numbers x and y, whose sum is 80, such that 
is maximized.

57. Find positive numbers x and y, whose sum is 75, such that 
is maximized.

58. Notice in the previous two exercises that we specified that x
and y must be positive numbers. Does a maximum exist with-
out this requirement? Explain why or why not.

Evaluate dz using the given information.

59.

60.

Use the total differential to approximate each quantity. Then
use a calculator to approximate the quantity, and give the
absolute value of the difference in the two results to 4 decimal
places.

61. 62.

Evaluate the following.

63. 64.

65. 66. 3

3

1

 
y2

"7x 1 11y3
  dy3

5

0

 
6x

"4x2 1 2y2
  dx

3

5

1

e3x15y dx3

4

1

 
4y 2 3

"x
  dx

"4.06 e0.04"5.12 1 12.052

z 5
x 1 5y

x 2 2y
 ; x 5 1, y 5 22, dx 5 20.04, dy 5 0.02

z 5 6x2 2 7y2 1 4xy; x 5 3, y 5 21, dx 5 0.03, dy 5 0.01

xy2

x2y

f 1x, y 2 5 x2 1 y2; x 5 y 2 6

f 1x, y 2 5 x2y; x 1 y 5 4

fx 
1x, y 2 5 fy 

1x, y 2 5 0.

f 1x, y 2 5 7x2 1 y2 2 3x 1 6y 2 5xy

z 5 x3 1 y2 1 2xy 2 4x 2 3y 2 2

f 1x, y 2 5 2x2 1 4xy 1 4y2 2 3x 1 5y 2 15

z 5
1

2
 x2 1

1

2
 y2 1 2xy 2 5x 2 7y 1 10

z 5 x3 2 8y2 1 6xy 1 4

f 1x, y2 5 x2 1 3xy 2 7x 1 5y2 2 16y

z 5 x2 1 y2 1 9x 2 8y 1 1

z 5 2x2 2 3y2 1 12y

f 1x, y 2 5 ln 0 1 1 3xy2 0f 1x, y 2 5 ln 0 2 2 x2y 0

f 1x, y 2 5 yex2

f 1x, y 2 5 4x2e2y

f 1x, y 2 5
3x 1 y

x 2 1
f 1x, y 2 5

3x

2x 2 y

f 1x, y 2 5 23x2y3 1 x3yf 1x, y 2 5 5x3y 2 6xy2

fxy 
1 x, y 2 .fxx 

1 x, y 2 Evaluate each iterated integral.

67.

68.

69. 70.

71. 72.

Find each double integral over the region R with boundaries as
indicated.

73.

74.

75.

76.

Find the volume under the given surface z � f (x, y) and above
the given rectangle.

77.

78.

Evaluate each double integral. If the function seems too diffi-
cult to integrate, try interchanging the limits of integration.

79. 80.

81. 82.

83. 84.

Use the region R, with boundaries as indicated, to evaluate the
given double integral.

85.

86. 6
R

12 2 x2 2 y2 2  dy dx; 0 # x # 1, x2 # y # x

6

R

12x 1 3y 2  dx dy; 0 # y # 1, y # x # 2 2 y

3

8

0

 3

4

x/2
 "y2 1 4 dy dx3

2

0

 3

1

x/2
 

1

y2 1 1
  dy dx

3

1

0

 3

"y

y

x dx dy3

1

0

 3

x

x2
x3y dy dx

3

2

1

 3
2x2

2

y dy dx3

1

0

 3

2x

0

xy dy dx

z 5 x2 1 y2; 3 # x # 5, 2 # y # 4

z 5 x 1 8y 1 4; 0 # x # 3, 1 # y # 2

6

R

yey21x dx dy; 0 # x # 1, 0 # y # 1

6

R

 "y 1 x dx dy; 0 # x # 7, 1 # y # 9

6

R

 "2x 1 y dx dy; 1 # x # 3, 2 # y # 5

6

R

1x2 1 2y2 2  dx dy; 0 # x # 5, 0 # y # 2

3

2

1

 3

2

1

 
1

x
 dx dy3

4

2

 3

4

2

 
1

y
 dx dy

3

2

1

 3

5

3

e2x27y dx dy3

4

3

 3

5

2

 "6x 1 3y dx dy

3

3

0

 3
5

0

12x 1 6y 1 y2 2  dy dx

3

2

0

 3

4

0

1x2y2 1 5x 2  dx dy

APPLICATIONS
Business and Economics

87. Charge for Auto Painting The charge (in dollars) for painting
a sports car is given by

C 1x, y 2 5 4x2 1 5y2 2 4xy 1 "x ,
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where x is the number of hours of labor needed and y is the number
of gallons of paint and sealant used. Find the following.

a. The charge for 10 hours and 5 gal of paint and sealant

b. The charge for 15 hours and 10 gal of paint and sealant

c. The charge for 20 hours and 20 gal of paint and sealant

88. Manufacturing Costs The manufacturing cost (in dollars) for
a certain computer is given by

where x is the memory capacity of the computer in giga-
bytes (GB) and y is the number of hours of labor required. For
640 GB and 6 hours of labor, find the following.

a. The approximate change in cost for an additional 1 GB of
memory

b. The approximate change in cost for an additional hour of
labor

89. Productivity The production function z for one country is

where x represents the amount of labor and y the amount of
capital. Find the marginal productivity of the following.

a. Labor b. Capital

90. Cost The cost (in dollars) to manufacture x solar cells and y
solar collectors is

a. Find values of x and y that produce minimum total cost.

b. Find the minimum total cost.

Utility Maximize each of the following utility functions, with
the cost of each commodity and total amount available to
spend given.

91. cost of a unit of is $2, cost of a unit of is $4,
and $80 is available.

92. cost of a unit of is $10, cost of a unit of is
$6, and $42 is available.

93. Cost The cost (in dollars) to produce x satellite receiving
dishes and y transmitters is given by

Production schedules now call for 15 receiving dishes and 9
transmitters. Use differentials to approximate the change in
costs if 1 more dish and 1 fewer transmitter are made.

94. Production Materials Approximate the volume of material
needed to manufacture a cone of radius 2 cm, height 8 cm, and
wall thickness 0.21 cm.

95. Production Materials A sphere of radius 2 ft is to receive an
insulating coating 1 in. thick. Approximate the volume of the
coating needed.

96. Production Error The height of a sample cone from a produc-
tion line is measured as 11.4 cm, while the radius is measured
as 2.9 cm. Each of these measurements could be off by 0.2 cm.
Approximate the maximum possible error in the volume of the
cone.

C 1x, y 2 5 100 ln 1x2 1 y 2 1 exy/20.

yxf 1x, y 2 5 x5y2,

yxf 1x, y 2 5 xy3,

c 1x, y 2 5 x2 1 5y2 1 4xy 2 70x 2 164y 1 1800.

z 5 x0.7y0.3,

c 1x, y 2 5 2x 1 y2 1 4xy 1 25,

97. Profit The total profit from 1 acre of a certain crop depends
on the amount spent on fertilizer, x, and on hybrid seed, y,
according to the model

The budget for fertilizer and seed is limited to $280.

a. Use the budget constraint to express one variable in terms
of the other. Then substitute into the profit function to get a
function with one independent variable. Use the method
shown in Chapter 6 on Applications of the Derivative to
find the amounts spent on fertilizer and seed that will max-
imize profit. What is the maximum profit per acre? (Hint:
Throughout this exercise you may ignore the coefficient
of 0.01 until you need to find the maximum profit.)

b. Find the amounts spent on fertilizer and seed that will
maximize profit using the first method shown in this
chapter. (Hint: You will not need to use the budget con-
straint.)

c. Use the Lagrange multiplier method to solve the original
problem.

d. Look for the relationships among these methods.

Life Sciences

98. Blood Vessel Volume A length of blood vessel is measured as
2.7 cm, with the radius measured as 0.7 cm. If each of these
measurements could be off by 0.1 cm, estimate the maximum
possible error in the volume of the vessel.

99. Total Body Water Accurate prediction of total body water is
critical in determining adequate dialysis doses for patients
with renal disease. For African American males, total body
water can be estimated by the function

where T is the total body water (in liters), A is age (in
years), M is mass (in kilograms), and S is height (in cen-
timeters). Source: Kidney International.

a. Find 

b. Find and interpret and

100. Brown Trout Researchers from New Zealand have deter-
mined that the length of a brown trout depends on both its
mass and age and that the length can be estimated by

where is the length of the trout (in centimeters), m is
the mass of the trout (in grams), and t is the age of the trout
(in years). Source: Transactions of the American Fisheries
Society.

a. Find 

b. Find and and interpret.

101. Survival Curves The following figure shows survival curves
(percent surviving as a function of age) for people in the
United States in 1900 and 2000. Source: National Vital Sta-
tistics Report. Let give the proportion surviving atf 1x, y 2

Lt 
1450, 7 2Lm 

1450, 7 2
L 1450, 4 2 .

L 1m, t 2

L 1m, t 2 5 10.00082t 1 0.0955 2e1ln m110.492/2.842,

TS 
1A, M, S 2 .

TM 
1A, M, S 2 ,TA 

1A, M, S 2 ,

T 1 65, 85, 180 2 .

T 1A, M, S 2 5 218.37 2 0.09A 1 0.34M 1 0.25S,

P 1x, y 2 5 0.01 12x2 1 3xy 1 160x 2 5y2 1 200y 1 2600 2 .
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age x in year y. Use the graph to estimate the following. Inter-
pret each answer in words.

a. b.

c. d. fx 
1 70, 2000 2fx 

1 60, 1900 2
f 1 70, 2000 2f 1 60, 1900 2

General Interest

102. Area The bottom of a planter is to be made in the shape of
an isosceles triangle, with the two equal sides 3 ft long and
the third side 2 ft long. The area of an isosceles triangle with
two equal sides of length a and third side of length b is

a. Find the area of the bottom of the planter.

b. The manufacturer is considering changing the shape so
that the third side is 2.5 ft long. What would be the approx-
imate effect on the area?

103. Surface Area A closed box with square ends must have a vol-
ume of Use Lagrange multipliers to find the dimen-
sions of such a box that has minimum surface area.

104. Area Use Lagrange multipliers to find the maximum rectangu-
lar area that can be enclosed with 400 ft of fencing, if no fenc-
ing is needed along one side.

125 in3.

f 1a, b 2 5
1

4
 b "4a2 2 b2

 .

Pe
rc

en
t s

ur
vi

vi
ng

Age (in years)

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 1000

1900

2000

USING MULTIVARIABLE FITTING TO CREATE A RESPONSE 
SURFACE DESIGN

E X T E N D E D APPLICATION

Suppose you are designing a flavored drink with orange and
banana flavors. You want to find the ideal concentrations of
orange and banana flavoring agents, but since the con-

centrations could range from 0% to 100%, you can’t try every
possibility. A common design technique in the food industry is to
make up several test drinks using different combinations of fla-
vorings and have them rated for taste appeal by a panel of tasters.
Such ratings are called hedonic responses and are often recorded
on a 10-point scale from 0 (worst) to 9 (best). One combination
will most likely get the highest average score, but since you have
only tried a few of the infinite number of flavor combinations, the
winning combination on the taste test might be far from the mix
that would be the most popular in the market. How can you use
the information from your test to locate the best point on the
flavor plane?

One approach to this problem uses response surfaces, three-
dimensional surfaces that approximate the data points from your
flavor test.* For your test, you might choose mixtures that are
spread out over the flavor plane. For example, you could combine
low, medium, and high orange with low, medium, and high banana
to get 9 different flavors. If you had 15 tasters and used intensities
of 20, 50, and 80 for each fruit, the test data might look like the
table.

Orange 20 3.2 4.9 2.8

Intensity 50 6.0 7.2 5.1

0 to 100 80 4.5 5.5 4.8

Average Hedonic Scores 
Banana Intensity 

20 50 80

1 0 to 100 2
1 n 5 15 2

For example, the table shows that the drink with orange intensity
20 and banana intensity 80 got an average flavor rating of 2.8 from
the test panel (they didn’t like it).

Your test results are points in space, where you can think of
the x-axis as the orange axis, the y-axis as banana, and the 
z-axis as taste score. A three-dimensional bar chart is a common
way of displaying data of this kind. Figure 38 on the next page is a
bar chart of the flavor test results.

Looking at the bar chart, we can guess that the best flavor mix
will be somewhere near the middle. We’d like to “drape” a smooth
surface over the bars and see where that surface has a maximum.
But as with any sample, our tasters are not perfectly representative

*For a brief introduction to response surfaces, see Devore, Jay L. and Nicholas R. Farnum, Applied
Statistics for Engineers and Scientists, Duxbury, 2004.



of the whole population: Our test results give the general shape of
the true population response, but each bar includes an error that
results from our small sample size. The solution is to fit a smooth
surface to the data points. 

A simple type of function for modeling such data sets is a qua-
dratic function. You’ve seen many quadratic functions of two vari-
ables in the examples and exercises for this chapter, and you know
that they can have maxima, minima, and saddle points. We don’t
know in advance which quadratic shape will give us the best fit, so
we’ll use the most general quadratic,

Our job is to find the six coefficients, A through F, that give the
best fit to our nine data points. As with the least squares line for-
mula you used in Section 1.3, there are formulas for these six coef-
ficients. Most statistical software packages will generate them
directly from your data set, and here is the best-fitting quadratic
found by one such program:

In this case the response surface shows how the dependent
variable, taste rating, responds to the two independent variables,
orange and banana intensity. Figures 39 and 40 are two views of

 1 0.21380x 1 0.14768y 2 2.36204.

 G 1x, y 2 5 20.00202x2 2 0.00163y2 1 0.000194xy

G 1x, y 2 5 Ax2 1 By2 1 Cxy 1 Dx 1 Ey 1 F.

the surface together with the data: a surface superimposed on the bar
chart, and the same surface with the data shown as points in space.

In research papers, response surface models are often reported
using level curves. A contour map for the surface we have found
looks like Figure 41, with orange increasing from left to right and
banana from bottom to top.

FIGURE 38

FIGURE 39

FIGURE 40
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It’s quite easy to estimate the location of the maximum by
marking a point in the middle of the central ellipse and finding its
coordinates on the two axes (try it!). You can also use the techniques
you learned in the section on Maxima and Minima, computing par-
tial derivatives of G with respect to x and y and solving the resulting
linear system. The numbers are awkward, but with some help from
a calculator you’ll find that the maximum occurs at approximately

So the quadratic model predicts that the most popular
drink will have an orange concentration of 55.3 and a banana con-
centration of 48.6. The model also predicts the public’s flavor rating
for this drink: We would expect it to be which turnsG 1 55.3, 48.6 2 ,

1 55.3, 48.6 2 .
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out to be about 7.14. When food technologists design a new food,
this kind of modeling is often a first step. The next step might be to
make a new set of test drinks with concentrations clustered around
the point and use further tests to explore this region of
the “flavor plane” in greater detail.

Response surfaces are also helpful for constrained optimization.
In the section on Lagrange Multipliers, you saw how Lagrange
multipliers could solve problems of the form:

Find the relative extrema for 
subject to the constraint 

Sometimes the constraints have a different form: You may have
several dependent variables that respond to the same inputs, and
the design goal is to keep each variable within a given range.
Here’s an example based on the data in U.S. Patent No. 4,276,316,
which is titled Process for Treating Nuts. Source: United States
Patent and Trademark Office. The patent granted to researcher
Shri C. Sharma and assigned to CPC International, Inc. covers a
method for preparing nuts for blanching (that is, having their skins
removed). The patent summary reads in part:

The nuts are heated with a gas at a temperature of 
to for 30 to 180 seconds and then immediately
cooled to below within 5 minutes prior to blanch-
ing. This provides improved blanching, sorting and other
steps in a process for producing products ranging from
nuts per se to peanut butters or spreads.

In support of the effectiveness of the method, the patent offers data
that describe the effects of nine different combinations of air tem-
perature and treatment time on three variables of interest for
blanched peanuts: blanching efficiency, roasted peanut flavor, and
overall flavor. Efficiency is given in percent, and the two hedonic
variables were rated by tasters on a scale of 0 to 9.

35°C
175°C

125°

g 1x, y 2 5 0.
z 5 f 1x, y 2 ,

1 55.3, 48.6 2 ,

The time variable has been converted into a natural logarithm
because treatment time effects typically scale with the log of the
time. The problem is now to pick a temperature and time range that
give the optimum combination of efficiency, roasted flavor, and
overall flavor. Each of these three dependent variables responds to
the inputs in a different way, and the patent documentation
includes quadratic response surfaces for each variable. The lighter
shading in Figures 42–44 indicates higher values, which are more

138 45 3.807 93.18 4.94 5.51

160 120 4.787 94.99 5.24 5.37

149 75 4.317 98.43 5.27 5.10

138 120 4.787 96.42 5.05 5.71

160 45 3.807 96.48 5.17 5.62

127 75 4.317 93.56 4.64 5.04

149 180 5.193 94.99 5.24 5.37

149 30 3.401 87.30 5.43 5.44

171 45 3.807 94.40 4.37 5.18

Air Treatment Log of Roasted
Temperature, Time, Treatment Blanching Peanut Overall

Seconds Time Efficiency Flavor Flavor°C

180160
Blanching efficiency

The innermost contour is 93%

140120

6

3

5

4

180160
Roasted flavor

The innermost contours are 5.2

140120
3

4

5

6

FIGURE 42 FIGURE 43

180160
Overall flavor

The “pointed” contours are 5.5

140120
3

4

5

6

FIGURE 44
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desirable. Temperature is plotted across the bottom, and the log of
treatment time increases from bottom to top.

Sometimes process designers faced with this kind of problem
will combine the dependent variables into a single function by taking
a weighted average of their values, and then use a single response
surface to optimize this function. Here we look at a different sce-
nario. Suppose we set the following process goals: We want blanch-
ing efficiency of at least 93%, a roasted flavor rating of at least 5.2,
and an overall flavor rating of at least 5.5. Is there a combination of
time and temperature that meets these criteria? If so, what is it?

The first step is to identify the “successful” area on each
response surface, which we can do by shading the corresponding
region in the contour plot, shown in Figures 45–47.

Now the strategy is clear: We want to stack the three plots on
top of each other and see if the shaded regions overlap. Figure 48 is
the result.

So we can see that there are two regions on the temperature– time
plane that will work. For example, the upper area of overlap suggests
a processing temperature of to with a processing time
between 90 and 150 seconds (remember that the numbers on the ver-
tical axis are natural logarithms of the time in seconds).

Response surfaces are a standard tool in designing everything
from food to machine parts, and we have touched on only a small
part of the theory here. Frequently a process depends on more than
two independent variables. For example, a soft-drink formula

150°C,140°C

might include three flavorings, an acidifying agent, and a sweet-
ener. The response “surface” now lives in six dimensions and we
can no longer draw nice pictures, but the same multivariable math-
ematics that generated our quadratic response surfaces will lead us
to the optimal combination of variables.

EXERCISES
1. The general quadratic function of two variables has six terms. How

many terms are in the general cubic function of two variables?

2. Use the contour plot of orange-banana flavor to estimate the
“flavor coordinates” of the best-tasting drink.

3. Find the maximum on the flavor response surface by finding
the critical point of the function 

4. Without shading or numbers on the contours, how would you
know that the point you found in Exercises 2 and 3 represents
the best flavor rather than the worst flavor? (Hint: Compute
the discriminant D as described in the section on Maxima and
Minima.)

5. Our best drink has a predicted flavor rating of 7.14, but one of
our test drinks got a higher rating, 7.2. What’s going on?

6. Blanching efficiency has a maximum near the center of the
temperature–time plane. What is going on near the center of
the plane for the roasted flavor and overall flavor response
surfaces? Within the domain plotted, where does overall fla-
vor reach a maximum?

7. In the overall flavor contour plot, if we move one contour
toward higher flavor from the “pointed” 5.5 contours, we find
curved contours that represent an overall flavor rating of
about 5.6. If instead of requiring an overall flavor rating of 5.5
we decided to require a rating of 5.6, what would happen to
our process design?

8. Use the last figure to describe the other region in the temperature–
time plane that delivers a successful process for preparing
nuts for blanching.

9. At the website WolframAlpha.com, you can enter “maximize”
followed by an expression such as , and
you will be told the maximum value of the expression, as well
as the point where the maximum occurs. You will also be
shown a graph of the surface and a contour plot.
Try this for the function given in this Extended Appli-
cation, and compare with your answers to Exercises 2 and 3.

DIRECTIONS FOR GROUP PROJECT
Perform an experiment that is similar to the flavored drink example
from the text on some other product. For example, you could per-
form an experiment where you develop hedonic responses for vari-
ous levels of salt and butter on popcorn. Using technology, to the
extent that it is available to you, carry out the analysis of your
experiment to determine an optimal mixture of each ingredient.

G 1x, y 2
z 5 f 1x, y 2

4 2 x2 2 y2f 1x, y 2 ,

G 1x, y 2 .
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Differential Equations
10.1 Solutions of Elementary and 

Separable Differential Equations

10.2 Linear First-Order Differential Equations

10.3 Euler’s Method

10.4 Applications of Differential Equations

Chapter 10 Review

Extended Application: Pollution of 
the Great Lakes

When these sky divers open their parachutes, their speed

will decrease until air resistance exactly balances the force of

gravity. An exercise at the end of this chapter explores

solutions to the differential equation that describes free fall

with air resistance. The limiting speed with an open

parachute is on the order of 10 miles per hour, slow

enough for a safe landing.

10
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Suppose that an economist wants to develop an equation that will forecast interest
rates. By studying data on previous changes in interest rates, she hopes to find a
relationship between the level of interest rates and their rate of change. A function

giving the rate of change of interest rates would be the derivative of the function
describing the level of interest rates. A differential equation is an equation that
involves an unknown function and a finite number of its derivatives. Solving the
differential equation for y would give the unknown function to be used for forecasting
interest rates.

Differential equations have been important in the study of physical science and
engineering since the eighteenth century. More recently, differential equations have
become useful in the social sciences, life sciences, and economics for solving problems
about population growth, ecological balance, and interest rates. In this chapter, we will
introduce some methods for solving differential equations and give examples of their
applications.

y 5 f 1 x 2

Solutions of Elementary and Separable
Differential Equations
How can we predict the future population of a flock of mountain goats?
Using differential equations, we will answer this question in Example 6.

APPLY IT

10.1

Usually a solution of an equation is a number. A solution of a differential equation,
however, is a function that satisfies the equation.

Solving a Differential Equation

Find all solutions of the differential equation 

(1)

SOLUTION To say that a function is a solution of Equation (1) simply means that the
derivative of the function y is . This is the same as saying that y is an antideriva-
tive of , or

(2)

We can verify that the function given by Equation (2) is a solution by taking its derivative.
The result is the differential equation (1). TRY YOUR TURN 1

Each different value of C in Equation (2) leads to a different solution of Equation (1),
showing that a differential equation can have an infinite number of solutions. Equation (2)
is the general solution of the differential equation (1). Some of the solutions of Equation (1)
are graphed in Figure 1.

y 5 3 1 3x2 2 2x 2  dx 5 x3 2 x2 1 C.

3x2 2 2x
3x2 2 2x

y 1x 2

dy

dx
5 3x2 2 2x.

EXAMPLE  1

YOUR TURN 1 Find all 
solutions of the differential equation
dy

dx
5 12x5 1 "x 1 e5x.

FOR REVIEW
For review on finding antideriv-
atives, see the first two sections
in Chapter 7 on Integration.



The simplest kind of differential equation has the form

Since Equation (1) has this form, the solution of Equation (1) suggests the following
generalization.

dy

dx
5 g 1x 2 .
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EXAMPLE  2

0 3–3

y

x

8

4

–4

–8

y = x  – x  + 23 2

y = x  – x  – 23 2

y = x  – x3 2

y = x  – x  + 63 2

y = x  – x  + 43 2

FIGURE 1

General Solution of 

The general solution of the differential equation is

y 5 3g 1 x 2  dx.

dy

dx
5 g 1x 2

dy

dx
5 g 1 x 2

Population

The population P of a flock of birds is growing exponentially so that

where t is time in years. Find P in terms of t if there were 20 birds in the flock initially.

SOLUTION To solve the differential equation, first determine the antiderivative of 20e0.05t, that is,

Initially, there were 20 birds, so at time We can substitute this information
into the equation to determine the value of C that satisfies this condition.

Therefore, Verify that is a solution to the differential equation by
taking its derivative. The result should be the original differential equation.

PP 5 400e0.05t 2 380.

 2380 5 C

 20 5 400e0 1 C

t 5 0.P 5 20

P 5 320e0.05t dt 5
20

0.05
 e0.05t 1 C 5 400e0.05t 1 C.

dP

dt
5 20e0.05t,



In Example 2, the given information was used to produce a solution with a specific
value of Such a solution is called a particular solution of the differential equation. The
given information, when is called an initial condition. An initial value
problem is a differential equation with a value of given at (or in this case),
where is any real number.

Sometimes a differential equation must be rewritten in the form

before it can be solved.

Initial Value Problem

Find the particular solution of

given that 

SOLUTION This differential equation is not in the proper form, but we can easily fix this
by adding to both sides of the equation. That is,

To find the general solution, integrate this expression, using the substitution 
in the second term.

Now use the initial condition to find the value of . Substituting 8 for and 1 for gives 

The particular solution is Verify that and that dif-
ferentiating y leads to the original differential equation. TRY YOUR TURN 2

So far in this section, we have used a method that is essentially the same as that used in the
section on antiderivatives, when we first started the topic of integration. But not all differential
equations can be solved so easily. For example, if interest on an investment is compounded
continuously, then the investment grows at a rate proportional to the amount of money present.
If A is the amount in an account at time t, then for some constant k, the differential equation

(3)

gives the rate of growth of A with respect to t. This differential equation is different from
those discussed previously, which had the form

Since the right-hand side of Equation (3) is a function of A, rather than a func-
tion of t, it would be completely invalid to simply integrate both sides as we did
before. The previous method only works when the side opposite the derivative is
simply a function of the independent variable.

dy

dx
5 g 1x 2 .

dA

dt
5 kA

y 1 1 2 5 8y 5 x2 1 2"x2 1 3 1 3.

8 5 12 1 2"12 1 3 1 C

8 5 5 1 C

xyC

 5 x2 1 2"x2 1 3 1 C

 5 x2 1 2"u 1 C

 5 x2 1 3
1

"u
 du

y 5 3 a2x 1
2x

"x2 1 3
 bdx

u 5 x2 1 3

dy

dx
5 2x 1

2x

"x2 1 3
.

2x

y 1 1 2 5 8.

dy

dx
2 2x 5

2x

"x2 1 3
,

dy

dx
5 g 1x 2

x0

t 5 t0x 5 x0y
t 5 0,P 5 20

C.
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NOTE
We can write the condition 
when as We will
use this notation from now on.

P 1 0 2 5 20.t 5 0
P 5 20

EXAMPLE  3

du 5 2x dx

Use the power rule with n 5 21 /2.

CAUTION

C 5 3.
YOUR TURN 2 Find the partic-

ular solution of , 

given that y(2) � 60.

dy

dx
2 12x3 5 6x2



Equation (3) is an example of a more general differential equation we will now learn to
solve; namely, those that can be written in the form

Suppose we think of as a fraction dy over dx. This is incorrect, of course; the deriva-
tive is actually the limit of a small change in y over a small change in x, but the notation is
chosen so that this interpretation gives a correct answer, as we shall see. Multiply on both
sides by to get

In this form all terms involving y (including dy) are on one side of the equation and all terms
involving x (and dx) are on the other side. A differential equation that can be put into this
form is said to be separable, since the variables x and y can be separated. After separation, a
separable differential equation may be solved by integrating each side with respect to the
variable given. This method is known as separation of variables.

where P and Q are antiderivatives of p and q. (We don’t need a constant of integration on
the left side of the equation; it can be combined with the constant of integration on the right
side as C.) To show that this answer is correct, differentiate implicitly with respect to x.

This last equation is the one we set out to solve.

Separation of Variables

Find the general solution of

SOLUTION Begin by separating the variables to get

The general solution is found by determining the antiderivatives of each side.

 y2 5
2

3
x3 1 K

 y2 5
2

3
 x3 1 2C

 
y2

2
5

x3

3
1 C

 3y dy 5 3x2 dx

y dy 5 x2 dx.

y 

dy

dx
5 x2.

 
dy

dx
5

p 1x 2
q 1 y 2

 q 1 y 2  

dy

dx
5 p 1x 2

 Q r 1 y 2  

dy

dx
5 P r 1x 2

 Q 1 y 2 5 P 1x 2 1 C,

 3q 1 y 2  dy 5 3p 1x 2  dx

q 1y 2  dy 5 p 1x 2  dx.

q 1 y 2  dx

dy /dx

dy

dx
5

p 1x 2
q 1y 2

 .
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EXAMPLE  4

Use the chain rule on the left side.

is the derivative of and 
is the derivative of .P 1 x 2p 1 x 2

Q 1 y 2q 1 y 2



The constant K was substituted for 2C in the last step. The solution is left in implicit
form, not solved explicitly for y. In general, we will use C for the arbitrary constant, so that
our final answer would be written as It would also be nice to solve for y
by taking the square root of both sides, but since we don’t know anything about the sign of

y, we don’t know whether the solution is or If
y were raised to the third power, we could solve for y by taking the cube root of both sides,
since the cube root is unique. TRY YOUR TURN 3

Separation of Variables 

Find the general solution of the differential equation for interest compounded continuously,

SOLUTION Separating variables leads to

To solve this equation, determine the antiderivative of each side. 

(Here A represents a nonnegative quantity, so the absolute value is unnecessary, but we
wish to show how to solve equations for which this may not be true.) Use the definition of
logarithm to write the equation in exponential form as

Finally, use the definition of absolute value to get 

Because and are constants, replace them with the constant M, which may be
any nonzero real number. (We use M rather than K because we already have a constant k
in this example. We could also relabel M as C, as we did in Example 4.) The resulting
equation,

not only describes interest compounded continuously but also defines the exponential
growth or decay function that was discussed in Chapter 2 on Nonlinear Functions.

Notice that is also a solution to the differential equation in Example 5, but
after we divide by A (which is not possible if ) and integrate, the resulting
equation does not allow y to equal 0. In this example, the lost solu-
tion can be recovered in the final answer if we allow M to equal 0, a value that
was previously excluded. When dividing by an expression in separation of vari-
ables, look for solutions that would make this expression 0 and may be lost.

Recall that equations of the form arise in situations where the rate of change
of a quantity is proportional to the amount present at time t, which is precisely what the dif-
ferential equation (3) describes. The constant k is called the growth constant, while M rep-
resents the amount present at time A positive value of k indicates growth, while a
negative value of k indicates decay. The equation was often written in the form in
Chapter 2 on Nonlinear Functions, where we discussed other applications of this equation,
such as radioactive decay.

y 5 y0e
kt

t 5 0.

A 5 Mekt

0A 0 5 ekt1 C
A 5 0

y 5 0

A 5 Mekt,

2eCeC

A 5 ekteC or A 5 2ekteC.

0A 0 5 ekt1C 5 ekteC.

ln 0A 0 5 kt 1 C

3
1

A
 dA 5 3k dt

1

A
 dA 5 k dt.

dA

dt
5 kA.

y 5 2"12 /3 2x3 1 C.y 5 "12 /3 2x3 1 C

y2 5 12 /3 2x3 1 C.
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YOUR TURN 3 Find the

general solution of 
dy

dx
5

x2 1 1

xy2 .

EXAMPLE  5

FOR REVIEW
In Chapter 2 on Nonlinear Func-
tions, we saw that the amount of
money in an account with interest
compounded continuously is
given by

where P is the initial amount in
the account, r is the annual interest
rate, and t is the time in years.
Observe that this is the same as the
equation for the amount of money
in an account derived here, where
P and r have been replaced with
M and k, respectively. For more
applications of exponential growth
and decay, see Chapter 2 on 
Nonlinear Functions.

A 5 Pert,
CAUTION

Use the property .em1n 5 emen



As a model of population growth, the equation is not realistic over the long
run for most populations. As shown by graphs of functions of the form with both
M and k positive, growth would be unbounded. Additional factors, such as space restric-
tions or a limited amount of food, tend to inhibit growth of populations as time goes on. In
an alternative model that assumes a maximum population of size N, the rate of growth of a
population is proportional to how close the population is to that maximum, that is, to the
difference between N and y. These assumptions lead to the differential equation

whose solution is the limited growth function mentioned in the last section of Chapter 2 on
Nonlinear Functions.

Population

A certain nature reserve can support no more than 4000 mountain goats. Assume that the
rate of growth is proportional to how close the population is to this maximum, with a
growth rate of 20 percent. There are currently 1000 goats in the area.

(a) Solve the general limited growth differential equation, and then write a function
describing the goat population at time t.

SOLUTION To solve the equation 

first separate the variables.

Integrate both sides.

We assume the population is less than N, so 

Apply the function to both sides.

Use the property 

Solve for y.

Relabel the constant as M.

Now apply the initial condition that 

Solve for M.

Substituting this value of M into the previous solution gives 

The graph of this function is shown in Figure 2.
For the goat problem, the maximum population is the initial popula-

tion is and the growth rate constant is 20%, or Therefore, 

y 5 4000 2 14000 2 1000 2e20.2t 5 4000 2 3000e20.2t.

k 5 0.2.y0 5 1000,
N 5 4000,

y 5 N 2 1N 2 y0 2e2kt.

M 5 N 2 y0

e0 5 1y0 5 N 2 Me2k .0 5 N 2 M

y 10 2 5 y0.

e  2Cy 5 N 2 Me2kt

y 5 N 2  e2kt e2C

em1n 5 emen.N 2 y 5 e2kt e2C

exN 2 y 5 e2kt2C

ln 1N 2 y 2 5 2kt 2 C

N 2 y . 0.2ln 1N 2 y 2 5 kt 1 C

3
dy

N 2 y
5 3k dt

dy

N 2 y
5 k dt

dy

dt
5 k 1N 2 y 2 ,

dy

dt
5 k 1N 2 y 2 ,

y 5 Mekt,
y 5 Mekt
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0

0

y

t

N

y

y = N – (N – y )e –kt
0

FIGURE 2 

EXAMPLE  6



(b) What will the goat population be in 5 years?

SOLUTION In 5 years, the population will be

or about 2900 goats. TRY YOUR TURN 4

Logistic Growth Let y be the size of a certain population at time t. In the standard
model for unlimited growth given by Equation (3), the rate of growth is proportional to the
current population size. The constant k, the growth rate constant, is the difference between
the birth and death rates of the population. The unlimited growth model predicts that the
population’s growth rate is a constant, k.

Growth usually is not unlimited, however, and the population’s growth rate is usually
not constant because the population is limited by environmental factors to a maximum size N,
called the carrying capacity of the environment for the species. In the limited growth
model already given,

the rate of growth is proportional to the remaining room for growth, 
In the logistic growth model

(4)

the rate of growth is proportional to both the current population size y and a factor
that is equal to the remaining room for growth, divided by N. Equation (4)

is called the logistic equation. Notice that as and the differential
equation can be approximated as

In other words, when y is small, the growth of the population behaves as if it were unlim-
ited. On the other hand, as so

That is, population growth levels off as y nears the maximum population N. Thus, the
logistic Equation (4) is the unlimited growth Equation (3) with a damping factor

to account for limiting environmental factors when y nears N. Let denote
the initial population size. Under the assumption the general solution of
Equation (4) is

(5)

where (see Exercise 31). This solution, called a logistic curve, is shown
in Figure 3. This function was introduced in Section 4.4 on Derivatives of Exponential
Functions in the form 

G 1 t 2 5
m

1 1 1 m
G0
2e2kmt  ,

b 5 1N 2 y0 
2 /y0

y 5
N

1 1 be2kt  ,

0 , y , N,
y01 1 2 y /N 2

dy

dt
5 ka1 2

y

N
by < k 10 2y 5 0.

y l N,1 1 2 y /N 2 l 0

dy

dt
5 ka1 2

y

N
by < k 1 1 2y 5 ky.

y l 0,1 1 2 y /N 2 l 1
N 2 y,1 1 2 y /N 2

dy

dt
5 ka1 2

y

N
by

N 2 y.

dy

dt
5 k 1N 2 y 2 ,

 < 4000 2 1103.6 5 2896.4,

 y 5 4000 2 3000e210.22152 5 4000 2 3000e21
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YOUR TURN 4 In Example 6,
find the goat population in 5 years if
the reserve can support 6000 goats,
the growth rate is 15%, and there are
currently 1200 goats in the area.

APPLY IT 



where m is the limiting value of the population, G0 is the initial number present, and k is a
positive constant.

As expected, the logistic curve begins exponentially and subsequently levels off.
Another important feature is the point of inflection where is a
maximum (see Exercise 33). Notice that the point of inflection is when the population is
half of the carrying capacity and that at this point, the population is increasing most
rapidly.

dy /dx1 1 ln b 2 /k, N /2 2 ,
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Logistic equations arise frequently in the study of populations. In about 1840 the Belgian
sociologist P. F. Verhulst fitted a logistic curve to U.S. census figures and made predictions
about the population that were subsequently proved to be quite accurate. American biolo-
gist Raymond Pearl (circa 1920) found that the growth of a population of fruit flies in a lim-
ited space could be modeled by the logistic equation

dy

dt
5 0.2y 2

0.2

1035
 y2.

y

t

N

N
2

b > 1,  y  < 0
N
2

0y

y

t

N

N
2

b < 1,       < y 0
N
2

ln b
k

ln b
k

0y

FIGURE 3 

Logistic Curve

Rapid technological advancements in the last 20 years have made many products obsolete
practically overnight. J. C. Fisher and R. H. Pry successfully described the phenomenon of
a technically superior new product replacing another product by the logistic equation

(6)
dz

dt
5 k 1 1 2 z 2z,

Some calculators can fit a logistic curve to a set of data points. For example, the TI-84 Plus has this
capability, listed as Logistic in the STAT CALC menu, along with other types of regression. See
Exercises 40, 47, 48, and 52.

Logistic growth is an example of how a model is modified over time as new insights
occur. The model for population growth changed from the early exponential curve

to the logistic curve

Many other quantities besides population grow logistically. That is, their initial rate of
growth is slow, but as time progresses, their rate of growth increases to a maximum value
and subsequently begins to decline and to approach zero.

y 5
N

1 1 be2kt  .

y 5 Mekt

TECHNOLOGY NOTE

EXAMPLE  7



where z is the market share of the new product and is the market share of the other
product. Source: Technological Forecasting and Social Change. The new product will ini-
tially have little or no market share; that is, Thus, the constant b in Equation (5) will
have to be determined in a different way. Let be the time at which Under the
assumption the general solution of Equation (6) is

(7)

where (see Exercise 32).

Fisher and Pry applied their model to the fraction of fabric consumed in the United States that was
synthetic. Their data is shown in the table below. At the time of the study, natural fabrics in clothing
were being replaced with synthetic fabric. Using the logistic regression function on a TI-84 Plus
calculator, with t as the number of years since 1930, the best logistic function to fit this data can be
shown to be 

A graph of the data and this function is shown in Figure 4(a). Although the data fits the function
well, this function is not of the form studied by Fisher and Pry because it has a numerator of 1.293,
rather than 1. This function predicts that the percentage of fabric that is synthetic approaches 129%!
A more appropriate function can be found by rewriting Equation (7) as 

and then finding the best fit exponential function to the points This leads to the
equation 

As Figure 4(b) shows, this more realistic model also fits the data well. The dangers of extrapolating
beyond the data are illustrated by this equation’s prediction that 95.8% of fabrics in the United
States would be synthetic by 2010. In fact, cotton is still more popular than synthetic fabrics.
Source: Fabrics Manufacturers.

z 5
1

1 1 18.93 10.92703 2 t
5

1

1 1 18.93e1ln 0.927032t
5

1

1 1 18.93e20.07577t.

1 t, 1 /z 2 1 2 .

be2kt 5
1
z

2 1,

z 5
1.293

1 1 21.80e20.06751t  .

b 5 ekt0

z 5
1

1 1 be2kt,

0 , z , 1,
z 5 1 /2.t0

z0 < 0.

1 2 z
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FIGURE 4

Synthetic Fabric as Percent of U.S. Consumption

TECHNOLOGY NOTE

0 40

1.0

0

(a)

0 40

1.0

0

(b)

Year 1930 1935 1940 1945 1950 1955 1960 1965 1967

Fraction synthetic 0.044 0.079 0.10 0.14 0.22 0.28 0.29 0.43 0.47
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10.1 EXERCISES
Find the general solution for each differential equation. Verify
that each solution satisfies the original differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

Find the particular solution for each initial value problem.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31. a. Solve the logistic Equation (4) in this section by observing
that

1

y
1

1

N 2 y
5

N
1N 2 y 2y

 .

dy

dx
5 1x 1 2 2 2ey; y 1 1 2 5 0

dy

dx
5 1 y 2 1 2 2ex21; y 1 1 2 5 2

dy

dx
5 x1/2y2; y 14 2 5 9

dy

dx
5

y2

x
 ; y 1 e 2 5 3

x2
 

dy

dx
5 y; y 1 1 2 5 21

dy

dx
5

2x 1 1

y 2 3
 ; y 10 2 5 4

dy

dx
5

x2 1 5

2y 2 1
 ; y 10 2 5 11

12x 1 3 2y 5
dy

dx
 ; y 10 2 5 1

x2
 

dy

dx
2 y "x 5 0; y 1 1 2 5 e22

dy

dx
5

x3

y
 ; y 10 2 5 5

x 

dy

dx
5 x2e3x; y 10 2 5

8

9

2 

dy

dx
5 4xe2x; y 10 2 5 42

dy

dx
5 4x3 2 3x2 1 x; y 1 1 2 5 0

dy

dx
1 3x2 5 2x; y 10 2 5 5

dy

dx
5

ex

ey

dy

dx
5 y2e2x

dy

dx
5

ey2

y

dy

dx
5

y2 1 6

2y

dy

dx
5

y

x2x . 0
dy

dx
5

y

x
 ,

1 y2 2 y 2  

dy

dx
5 x

dy

dx
5 3x2y 2 2xy

dy

dx
5 x2y

dy

dx
5 2xy

y  

dy

dx
5 x2 2 xy 

dy

dx
5 x2

3x2 2 3 

dy

dx
5 24x3 2 2 

dy

dx
5 0

dy

dx
5 4e23x

dy

dx
5 24x 1 6x2

b. Assume Verify that in Equa-
tion (5), where is the initial population size.

c. Assume for all y. Verify that 

32. Suppose that for all z. Solve the logistic Equation (6)
as in Exercise 31. Verify that where is the time at
which 

33. Suppose that Let and let
for all x. Show the following.

a. for all x.

b. The lines y � 0 and y � N are horizontal asymptotes of the graph.

c. is an increasing function.

d. is a point of inflection of the graph.

e. is a maximum at 

34. Suppose that Let and let

See the figure. Show the following.

a.

b. The lines y � 0 and y � N are horizontal asymptotes of the graph.

c. The line is a vertical asymptote of the graph.

d. is decreasing on and on 

e. is concave upward on and concave down-
ward on 12`, 1 ln b 2 /k 2 .

1 1 ln b 2 /k, ` 2y 1x 2
12`, 1 ln b 2 /k 2 .1 1 ln b 2 /k, ` 2y 1x 2

x 5 1 ln b 2 /k

0 , b , 1

y 1x 2 5
N

1 2 be2kx for all x 2
ln b

k
 .

b 5 1 y0 2 N 2 /y00 , N , y0 .

x0 5 1 ln b 2 /k.dy /dx

1 1 ln b 2 /k, N /2 2

y 1x 2

0 , y 1x 2 , N

y 1x 2 5 N / 1 1 1 be2kx 2
b 5 1N 2 y0 

2 /y0 ,0 , y0 , N.

z 5 1 /2.
x0b 5 ekx0

 ,
0 , z , 1

b 5 1 y0 2 N 2 /y0 .0 , N , y

y0

b 5 1N 2 y0 
2 /y00 , y , N.

y

x

N

ln b
k

y0

y(x) =                , b =
N

1 – be   
y   – N

y  –kx
0

0

APPLICATIONS
Business and Economics

35. Profit The marginal profit of a certain company is given by

where x represents the amount of money (in thousands of dollars)
that the company spends on advertising. Find the profit for each
advertising expenditure if the profit is $1000 when nothing is
spent on advertising.

a. $3000 b. $5000

c. Can advertising expenditures ever reach $8000 according to
this model? Explain why or why not.

dy

dx
5

100

32 2 4x
 ,
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36. Sales Decline Sales (in thousands) of a certain product are
declining at a rate proportional to the amount of sales, with a
decay constant of 15% per year.

a. Write a differential equation to express the rate of sales
decline.

b. Find a general solution to the equation in part a. 

c. How much time will pass before sales become 25% of
their original value?

37. Inflation If inflation grows continuously at a rate of 5% per
year, how long will it take for $1 to lose half its value?

Elasticity of Demand Elasticity of demand was discussed in
Chapter 6 on Applications of the Derivative, where it was
defined as

for demand q and price p. Find the general demand equation
for each elasticity function. (Hint: Set each elasticity 

function equal to then solve for q. Write the constant

of integration as in Exercise 39.)

38. 39.

40. Internet Usage During the early days of the Internet,
growth in the number of users worldwide could be approxi-
mated by an exponential function. The following table gives
the number of worldwide users of the Internet. Source: Internet
World Stats. 

E 5 2E 5
4p2

q2

ln C

2 

p

q
. dq

dp
 ,

q 5 f 1 p2

E 5 2 

p

q
. dq

dp
 ,

b. Use the exponential regression function on your calculator to
determine the exponential equation that best fits the data. Plot
the exponential equation on the same graph as the data points.
Discuss the appropriateness of fitting an exponential function
to these data.

c. Use the logistic regression function on your calculator to
determine the logistic equation that best fits the data.  Plot the
logistic equation on the same graph. Discuss the appropriate-
ness of fitting a logistic function to these data.  Which graph
better fits the data?

d. Assuming that the logistic function found in part c continues
to be accurate, what seems to be the limiting size of the num-
ber of worldwide Internet users?

41. Life Insurance A life insurance company invests $5000 in a bank
account in order to fund a death benefit of $20,000. Growth in the
investment over time can be modeled by the differential equation

where i is the interest rate and A(t) is the amount invested at
time t (in years). Calculate the interest rate that the investment
must earn in order for the company to fund the death benefit in
24 years. Choose one of the following. Source: Society of
Actuaries.

a. b. c. d. e. 

Life Sciences

42. Tracer Dye The amount of a tracer dye injected into the blood-
stream decreases exponentially, with a decay constant of 3% per
minute. If 6 cc are present initially, how many cubic centimeters
are present after 10 minutes? (Here k will be negative.) 

43. Soil Moisture The evapotranspiration index I is a measure of
soil moisture. An article on 10- to 14-year-old heath vegetation
described the rate of change of I with respect to W, the amount of
water available, by the equation

Source: Australian Journal of Botany.

a. According to the article, I has a value of 1 when Solve
the initial value problem.

b. What happens to I as W becomes larger and larger?

44. Fish Population An isolated fish population is limited to 4000 by
the amount of food available. If there are now 320 fish and the popu-
lation is growing with a growth constant of 2% a year, find the
expected population at the end of 10 years.

Dieting A person’s weight depends both on the daily rate of
energy intake, say C calories per day, and on the daily rate of
energy consumption, typically between 15 and 20 calories per
pound per day. Using an average value of 17.5 calories per pound
per day, a person weighing w pounds uses 17.5w calories per day.
If C � 17.5w, then weight remains constant, and weight gain or
loss occurs according to whether C is greater or less than 17.5w.
Source: The College Mathematics Journal.

W 5 0.

dI

dW
5 0.088 12.4 2 I 2 .

ln 2

6

ln 2

12

ln 2

24

2ln 2

24

2ln 2

12

dA

dt
5 Ai

1995 16

1996 36

1997 70

1998 147

1999 248

2000 361

2001 513

2002 587

2003 719

2004 817

2005 1018

2006 1093

2007 1319

2008 1574

2009 1802

Number of Users
Year (in millions)

a. Letting t represent the years since 1990, plot the number
of worldwide users of the Internet on the y-axis against the
year on the t-axis. Discuss the shape of the graph.

Use a calculator with exponential and logistic regression
capabilities to complete the following.
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Day Deaths Day Deaths

14 27 148 3696

28 74 163 4334

43 114 182 4804

57 164 206 6704

71 315 221 8450

84 580 234 9797

99 1049 266 14,024

117 2074 274 14,378

132 2967

45. To determine how fast a change in weight will occur, the
most plausible assumption is that is proportional to the
net excess (or deficit) in the number of calories
per day.

a. Assume C is constant and write a differential equation to
express this relationship. Use k to represent the constant of
proportionality. What does C being constant imply?

b. The units of are pounds per day, and the units of
are calories per day. What units must k have?

c. Use the fact that 3500 calories is equivalent to 1 lb to rewrite
the differential equation in part a. 

d. Solve the differential equation.

e. Let represent the initial weight and use it to express the
coefficient of in terms of and C.

46. (Refer to Exercise 45.) Suppose someone initially weighing
180 lb adopts a diet of 2500 calories per day.

a. Write the weight function for this individual. 

b. Graph the weight function on the window by
What is the asymptote? This value of w is the

equilibrium weight According to the model, can a per-
son ever achieve this weight?

c. How long will it take a dieter to reach a weight just 2 lb
more than 

47. H1N1 Virus The cumulative number of deaths worldwide due
to the H1N1 virus, or swine flu, at various days into the epi-
demic are listed below, where April 21, 2009 was day 1.
Source: BBC.

weq ?

weq .
3120, 200 4.

30, 300 4

w0e20.005t
w0

C 2 17.5w
dw /dt

C 2 17.5w
dw /dt

the number of deaths due to this outbreak of the H1N1
virus?

e. Discuss whether a logistic model is more appropriate than an
exponential model for estimating the number of deaths due to
the H1N1 virus.

48. Population Growth The following table gives the historic and
projected populations (in millions) of China and India. Source:
United Nations.

Use a calculator with logistic regression capability to com-
plete the following.

a. Plot the number of deaths y against the number of days t.
Discuss the appropriateness of fitting a logistic function to
this data.

b. Use the logistic regression function on your calculator to
determine the logistic equation that best fits the data.

c. Plot the logistic regression function from part b on the
same graph as the data points. Discuss how well the logis-
tic equation fits the data.

d. Assuming the logistic equation found in part b contin-
ues to be accurate, what seems to be the limiting size of

Year China India

1950 545 372

1960 646 448

1970 816 553

1980 981 693

1990 1142 862

2000 1267 1043

2010 1354 1214

2020 1431 1367

2030 1462 1485

2040 1455 1565

2050 1417 1614

Use a calculator with logistic regression capability to complete
the following.

a. Letting t represent the years since 1950, plot the Chinese pop-
ulation on the y-axis against the year on the t-axis. Discuss the
appropriateness of fitting a logistic function to these data.

b. Use the logistic regression function on your calculator to deter-
mine the logistic equation that best fits the data. Plot the logis-
tic function on the same graph as the data points. Discuss how
well the logistic function fits the data.

c. Assuming the logistic equation found in part b continues to be
accurate, what seems to be the limiting size of the Chinese
population?

d. Repeat parts a–c using the population for India.

49. U.S. Hispanic Population Arecent report by the U.S. Census Bureau
predicts that the U.S. Hispanic population will increase from 35.6
million in 2000 to 102.6 million in 2050. Source: U.S. Census
Bureau. Assuming the unlimited growth model fits
this population growth, express the population y as a function of the
year t. Let 2000 correspond to

50. U.S. Asian Population (Refer to Exercise 49.) The report also
predicted that the U.S. Asian population would increase from
10.7 million in 2000 to 33.4 million in 2050. Source: U.S. Census
Bureau. Repeat Exercise 49 using this data.

51. Spread of a Rumor Suppose the rate at which a rumor spreads—
that is, the number of people who have heard the rumor over a
period of time—increases with the number of people who have
heard it. If y is the number of people who have heard the rumor,
then

dy

dt
5 ky,

t 5 0.

dy /dt 5 ky
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where t is the time in days.

a. If y is 1 when and y is 5 when find k. 

Using the value of k from part a, find y for each time.

b. c. d. 

52. World Population The following table gives the population
of the world at various times over the last two centuries, plus
projections for this century. Source: The New York Times.

t 5 10t 5 5t 5 3

t 5 2,t 5 0,

Physical  Sciences

54. Radioactive Decay The amount of a radioactive substance de-
creases exponentially, with a decay constant of 3% per month.

a. Write a differential equation to express the rate of change.

b. Find a general solution to the differential equation from part a.

c. If there are 75 g at the start of the decay process, find a particular
solution for the differential equation from part a.

d. Find the amount left after 10 months.

55. Snowplow One morning snow began to fall at a heavy and con-
stant rate. A snowplow started out at 8:00 A.M. At 9:00 A.M. it
had traveled 2 miles. By 10:00 A.M. it had traveled 3 miles.
Assuming that the snowplow removes a constant volume of
snow per hour, determine the time at which it started snowing.
(Hint: Let t denote the time since the snow started to fall, and let
T be the time when the snowplow started out. Let x, the distance
the snowplow has traveled, and h, the height of the snow, be
functions of t. The assumption that a constant volume of snow
per hour is removed implies that the speed of the snowplow
times the height of the snow is a constant. Set up and solve dif-
ferential equations involving and ) Source: The
American Mathematical Monthly.

dh /dt.dx /dt

Year Population (billions)

1804 1

1927 2

1960 3

1974 4

1987 5

1999 6

2011 7

2025 8

2041 9

2071 10

Use a calculator with logistic regression capability to com-
plete the following.

a. Use the logistic regression function on your calculator to
determine the logistic equation that best fits the data.

b. Plot the logistic function found in part a and the original
data in the same window. Does the logistic function seem
to fit the data from 1927 on? Before 1927?

c. To get a better fit, subtract 0.99 from each value of the pop-
ulation in the table. (This makes the population in 1804
small, but not 0 or negative.) Find a logistic function that
fits the new data. 

d. Plot the logistic function found in part c and the modified
data in the same window. Does the logistic function now
seem to be a better fit than in part b?

e. Based on the results from parts c and d, predict the limit-
ing value of the world’s population as time increases. For
comparison, the New York Times article predicts a value
of 10.73 billion. (Hint: After taking the limit, remember
to add the 0.99 that was removed earlier.)

f. Based on the results from parts c and d, predict the limiting
value of the world population as you go further and further
back in time. Does that seem reasonable? Explain.

53. Worker Productivity A company has found that the rate at
which a person new to the assembly line produces items is

where x is the number of days the person has worked on the
line. How many items can a new worker be expected to pro-
duce on the eighth day if he produces none when x 5 0?

dy

dx
5 7.5e20.3y,

Newton’s Law of Cooling Newton’s law of cooling states that the
rate of change of temperature of an object is proportional to the
difference in temperature between the object and the surround-
ing medium. Thus, if T is the temperature of the object after t
hours and is the (constant) temperature of the surrounding
medium, then

where k is a constant. Use this equation in Exercises 56–59.

56. Show that the solution of this differential equation is

where C is a constant.

57. According to the solution of the differential equation for Newton’s
law of cooling, what happens to the temperature of an object after
it has been in a surrounding medium with constant temperature for
a long period of time? How well does this agree with reality?

Newton’s Law of Cooling When a dead body is discovered, one of
the first steps in the ensuing investigation is for a medical exam-
iner to determine the time of death as closely as possible. Have
you ever wondered how this is done? If the temperature of the
medium (air, water, or whatever) has been fairly constant and less
than 48 hours have passed since the death, Newton’s law of cool-
ing can be used. The medical examiner does not actually solve the
equation for each case. Instead, a table based on the formula is
consulted. Use Newton’s law of cooling to work the following
exercises. Source: The College Mathematics Journal.

58. Assume the temperature of a body at death is the temper-
ature of the surrounding air is and at the end of one hour
the body temperature is 

a. What is the temperature of the body after 2 hours?

b. When will the temperature of the body be 

c. Approximately when will the temperature of the body be
within of the surrounding air?0.01°

75°F?

90°F.
68°F,

98.6°F,

T 5 Ce2kt 1 TM ,

dT
dt
5 2k 1T 2 TM 

2 ,

TM
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59. Suppose the air temperature surrounding a body remains at a
constant and 

a. Determine a formula for the temperature at any time t.

b. Use a graphing calculator to graph the temperature T as a
function of time t on the window by 

c. When does the temperature of the body decrease more
rapidly: just after death, or much later? How do you know?

30, 100 4.30, 30 4

k 5 0.24.C 5 88.6,10°F,
d. What will the temperature of the body be after 4 hours?

e. How long will it take for the body temperature to reach 
Use your calculator graph to verify your answer.

40°F?

YOUR TURN ANSWERS

1. 2.

3. 4. 3733y 5 1 1 3 /2 2x2 1 3 ln 0x 0 1 C 2 1/3
y 5 3x4 1 2x3 2 4y 5 2x6 1 12 /3 2x3/2 1 e5x /5 1 C

Linear First-Order Differential Equations
What happens over time to the glucose level in a patient’s bloodstream?

10.2
APPLY IT 

The solution to a linear differential equation gives us an answer in Example 4.

Recall that represents the nth derivative of and that is called an
nth-order derivative. By this definition, the derivative is first-order, is second-
order, and so on. The order of a differential equation is that of the highest-order derivative
in the equation. In this section only first-order differential equations are discussed.

A linear first-order differential equation is an equation of the form

Notice that a linear differential equation has a term, a y term, and a term that is just a
function of x. It does not have terms involving nonlinear expressions such as or , nor
does it have terms involving the product or quotient of y and Many useful models
produce such equations. In this section we develop a general method for solving first-order
linear differential equations.

Linear Differential Equation
Solve the equation

(1)

SOLUTION We need to first get the equation in the form of a linear first-order differential
equation. Thus, should have a coefficient of 1. To accomplish this, we divide both
sides of the equation by x and rearrange the terms to get the linear differential equation

This equation is not separable and cannot be solved by the methods discussed so far.
(Verify this.) Instead, multiply both sides of the equation by (the reason will be
explained shortly) to get

(2)

On the left, the coefficient of y, is the derivative of the coefficient of Recall
the product rule for derivatives:

Dx 
1 uv 2 5 u 

dv

dx
1

du

dx
 v.

dy /dx.x6,6x5,

x6
 

dy

dx
1 6x5y 5 22x9.

x6

dy

dx
1

6
x

 y 5 22x3.

dy /dx

x 

dy

dx
1 6y 1 2x4 5 0.

dy /dx.
eyy2

dy /dx

dy

dx
1 P 1x 2y 5 Q 1x 2 .

fs 1x 2f r 1x 2
f1n2 1x 2f 1x 2 ,f1n2 1x 2

EXAMPLE  1
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If and the product rule gives

which is the left side of Equation (2). Substituting for the left side of Equation (2)
gives

Assuming as usual, both sides of this equation can be integrated with respect to
x and the result solved for y to get

(3)

Equation (3) is the general solution of Equation (2) and, therefore, of Equation (1).

This procedure has given us a solution, but what motivated our choice of the multiplier
To see where came from, let represent the multiplier, and multiply both sides of

the general equation

by :

(4)

The method illustrated above will work only if the left side of the equation is the derivative
of the product function which is

(5)

Comparing the coefficients of y in Equations (4) and (5) shows that must satisfy

or

Integrating both sides of this last equation gives

or

Only one value of is needed, so let so that and use the positive result,
giving

In summary, choosing as and multiplying both sides of a linear first-order dif-
ferential equation by puts the equation in a form that can be solved by integration.I 1x 2

eeP1x2 dxI 1x 2

I 1x 2 5 eeP1x2 dx.

eC 5 1,C 5 0,I 1x 2

 I 1x 2 5 6 eCeeP1x2 dx.

 0 I 1x 2 0 5 eeP 1x2 dx1C

 ln 0 I 1x 2 0 5 3P 1x 2  dx 1 C

 
I r 1x 2
I 1x 2

5 P 1x 2 .

 I r 1x 2 5 I 1x 2P 1x 2 ,

I 1x 2

I 1x 2  

dy

dx
1 I r 1x 2y.

I 1x 2 . y,

I 1x 2  

dy

dx
1 I 1x 2P 1x 2y 5 I 1x 2Q 1x 2 .

I 1x 2

dy

dx
1 P 1x 2y 5 Q 1x 2

I 1x 2x6x6?

 y 5 2 

x4

5
1

C

x6  .

 x6y 5 322x9 dx 5 22a
x10

10
b 1 C 5 2 

x10

5
1 C

y 5 f 1x 2 ,

Dx 
1x6y 2 5 22x9.

Dx 
1x6y 2

Dx 
1x6y 2 5 x6

 

dy

dx
1 6x5y,

v 5 y,u 5 x6



For Equation (1), written as the linear differential equation

and the integrating factor is

This last step used the fact that for all positive a.
In summary, we solve a linear first-order differential equation with the following steps.

eln a 5 a

I 1x 2 5 ee16/x2 dx 5 e6 ln 0 x 0 5 eln 0 x 06 5 eln x6

5 x6.

P 1x 2 5 6 /x,

dy

dx
1

6
x

 y 5 22x3,
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Integrating Factor
The function is called an integrating factor for the differential equation

dy

dx
1 P 1 x 2y 5 Q 1 x 2 .

I 1x 2 5 eeP1x2 dx

Solving a Linear First-Order Differential Equation

1. Put the equation in the linear form 

2. Find the integrating factor 

3. Multiply each term of the equation from Step 1 by 

4. Replace the sum of terms on the left with 

5. Integrate both sides of the equation.

6. Solve for y.

Dx 
3I 1x 2y 4.

I 1x 2 .
I 1x 2 5 eeP1x2 dx.

dy

dx
1 P 1x 2y 5 Q 1x 2 .

Linear Differential Equation

Give the general solution of  

SOLUTION

Step 1 This equation is already in the required form.

Step 2 The integrating factor is

Step 3 Multiplying each term by gives

Step 4 The sum of terms on the left can now be replaced with to get

Step 5 Integrating on both sides gives

or

ex2

y 5
1

2
 ex2

1 C.

ex2

y 5 3xex2

 dx,

Dx 
1 ex2

y 2 5 xex2

.

Dx 
1 ex2

y 2 ,

ex2

 

dy

dx
1 2xex2

y 5 xex2

.

ex2

I 1x 2 5 ee 
2x dx 5 ex2

.

dy

dx
1 2xy 5 x.

EXAMPLE  2



Step 6 Divide both sides by to get the general solution

TRY YOUR TURN 1

Linear Differential Equation

Solve the initial value problem with .

SOLUTION Write the equation in the required form by adding to both sides and divid-
ing both sides by 2:

The integrating factor is

Multiplying each term by gives

or

The left side can now be replaced by to get

Integrating on both sides gives

Now, multiply both sides by to get

the general solution. Find the particular solution by substituting 0 for x and 5 for y:

or

which leads to the particular solution

TRY YOUR TURN 2y 5 2 

ex

4
1

21

4
 e3x.

 
21

4
5 C,

 5 5 2 

e0

4
1 Ce0 5 2 

1

4
1 C

y 5 2 

ex

4
1 Ce3x,

e3x

e23xy 5
1

2
 a

e22x

22
b 1 C.

e23xy 5 3  
1

2
 e22x dx,

Dx 
1 e23xy 2 5

1

2
 e22x.

Dx 
1 e23xy 2

 e23x
 

dy

dx
2 3e23xy 5

1

2
 e22x.

 e23x
 

dy

dx
2 3e23xy 5

1

2
 exe23x,

I 1x 2

I 1x 2 5 ee 
1232 dx 5 e23x.

dy

dx
2 3y 5

1

2
 ex.

ex

y 10 2 5 52a
dy

dx
b 2 6y 2 ex 5 0

y 5
1

2
1 Ce2x2

.

ex2
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YOUR TURN 1
Give the general solution of

x . 0.x 
dy

dx
2 y 2 x2ex 5 0,

EXAMPLE  3

YOUR TURN 2
Solve the initial value problem

with 

y 1 0 2 5 3.

dy

dx
1 2xy 2 xe2x2

5 0



Glucose

Suppose glucose is infused into a patient’s bloodstream at a constant rate of a grams per
minute. At the same time, glucose is removed from the bloodstream at a rate proportional to
the amount of glucose present. Then the amount of glucose, present at time t satisfies

for some constant K. Solve this equation for G. Does the glucose concentration eventually
reach a constant? That is, what happens to G as Source: Ordinary Differential
Equations with Applications.

SOLUTION The equation can be written in the form of the linear first-order differential
equation

(6)

The integrating factor is

Multiply both sides of Equation (6) by 

Write the left side as and solve for G by integrating on both sides.

Multiply both sides by to get

As 

Thus, the glucose concentration stabilizes at  a /K.

lim
tl` 

G 5 lim
tl`

a
a

K
1 Ce2Ktb 5 lim

tl`
a

a

K
1

C

eKtb 5
a

K
 .

tl `,

G 5
a

K
1 Ce2Kt.

e2Kt

 eKtG 5
a

K
 eKt 1 C

 eKtG 5 3aeKtdt 

 Dt 
1 eKtG 2 5 aeKt

Dt 
1 eKtG 2

eKt
 

dG

dt
1 KeKtG 5 aeKt

I 1 t 2 5 eKt.

I 1 t 2 5 eeKdt 5 eKt.

dG

dt
1 KG 5 a.

tl `?

dG

dt
5 a 2 KG

G 1 t 2 ,
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EXAMPLE  4

APPLY IT 

10.2 EXERCISES
Find the general solution for each differential equation.

1. 2.

3. 4.

5. 6. x 

dy

dx
1 2xy 2 x2 5 0x 

dy

dx
2 y 2 x 5 0, x . 0

dy

dx
1 4xy 5 4x

dy

dx
1 2xy 5 4x

dy

dx
1 5y 5 12

dy

dx
1 3y 5 6

7. 8.

9.

10.

11. 12. 2xy 1 x3 5 x 

dy

dx
y 2 x 

dy

dx
5 x3, x . 0

x3
 

dy

dx
2 x2y 5 x4 2 4x3, x . 0

x 

dy

dx
1 2y 5 x2 1 6x, x . 0

3 

dy

dx
1 6xy 1 x 5 02 

dy

dx
2 2xy 2 x 5 0

NOTE
The equation in Example 4 can 
also be solved by separation of
variables. You are asked to do 
this in Exercise 22.
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Solve each differential equation, subject to the given initial
condition.

13.

14.

15.

16.

17.

18.

19.

20.

APPLICATIONS
Life Sciences

21. Population Growth The logistic equation introduced in
Section 1,

(7)

can be written as

(8)

where c and p are positive constants. Although this is a non-
linear differential equation, it can be reduced to a linear
equation by a suitable substitution for the variable y.

a. Letting and rewrite
Equation (8) in terms of z. Solve for z and then for y.

b. Let in part a and find a particular solution
for y.

c. Find the limit of y as This is the saturation level of
the population.

22. Glucose Level Solve the glucose level example (Example 4)
using separation of variables.

23. Drug Use The rate of change in the concentration of a drug
with respect to time in a user’s blood is given by

where is dosage at time t and k is the rate that the drug
leaves the bloodstream. Source: Mathematical Biosciences.

a. Solve this linear equation to show that, if then

C 1 t 2 5 e2kt
3

t

0

ekyD 1 y 2  dy.

C 10 2 5 0,

D 1 t 2

dC

dt
5 2kC 1 D 1 t 2 ,

x l `.

z 10 2 5 1 /y0

dy /dx 5 121/z2 2dz /dx,y 5 1 /z

dy

dx
5 cy 2 py2,

dy

dx
5 ka1 2

y

N
by

dy

dx
1 3x2y 2 2xe2x3

5 0; y 10 2 5 1000

x 

dy

dx
1 1 1 1 x 2y 5 3; y 14 2 5 50

2 

dy

dx
2 4xy 5 5x; y 1 1 2 5 10

x 

dy

dx
1 5y 5 x2; y 12 2 5 12

x 

dy

dx
2 3y 1 2 5 0; y 1 1 2 5 8

dy

dx
2 2xy 2 4x 5 0; y 1 1 2 5 20

dy

dx
1 4y 5 9e5x; y 10 2 5 25

dy

dx
1 y 5 4ex; y 10 2 5 50

(Hint: To integrate both sides of the equation in Step 5 of “Solving
a Linear First-Order Differential Equation,” integrate from 0 to t,
and change the variable of integration to y.)

b. Show that if is a constant D, then

24. Mouse Infection A model for the spread of an infectious dis-
ease among mice is

where N is the size of the population of mice, is the mortality
rate due to infection, b is the mortality rate due to natural
causes for infected mice, is a transmission coefficient for the
rate that infected mice infect susceptible mice, v is the rate the
mice recover from infection, and is the rate that mice lose
immunity. Source: Lectures on Mathematics in the Life Sci-
ences. Show that the solution to this equation, with the initial
condition can be written as

where

Social  Sciences

Immigration and Emigration If population is changed either by
immigration or emigration, the exponential growth model dis-
cussed in Section 1 is modified to

where y is the population at time t and is some (other) func-
tion of t that describes the net effect of the emigration/immigration.
Assume and Solve this differential
equation for y, given the following functions .

25. 26.

27. 28.

Physical  Sciences

29. Newton’s Law of Cooling In Exercises 56–59 in the previous sec-
tion, we saw that Newton’s Law of Cooling states that the rate of
change of the temperature of an object is proportional to the differ-
ence in temperature between the object and the surrounding
medium. This leads to the differential equation 

dT

dt
5 2k 1T 2 TM 2 ,

f 1 t 2 5 tf 1 t 2 5 2t

f 1 t 2 5 e2tf 1 t 2 5 et

f 1 t 2
y 1 0 2 5 10,000.k 5 0.02

f 1 t 2

dy

dt
5 ky 1 f 1 t 2 ,

R 5 a 2 ra1 1
v

b 1 g
b .

N 1 t 2 5
1a 1 b 1 v 2

bR
3 1R 2 a 2ert 1 a 4,

v 2 /b,1a 1 b 1N 10 2  5

g

b

a

dN

dt
5 rN 2

ar 1a 1 b 1 v 2

b ca 2 ra1 1
v

b 1 g
b d

,

C 1 t 2 5
D 1 1 2 e2kt 2

k
 .

D 1 y 2
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where T is the temperature of the object after time t, is the
temperature of the surrounding medium, and k is a constant. In
the previous section, we solved this equation by separation of
variables. Show that this equation is also linear, and find the solu-
tion by the method of this section.

TM YOUR TURN ANSWERS 

1.
2. y 5 1x2 1 6 2 / 12ex2 2

y 5 xex 1 Cx

Euler’s Method
How many people have heard a rumor 3 hours after it is started?

10.3
APPLY IT 

This question will be answered in Exercise 35 at the end of this section.

Applications sometimes involve differential equations such as

that cannot be solved by the methods discussed so far, but approximate solutions to these
equations often can be found by numerical methods. For many applications, these
approximations are quite adequate. In this section we introduce Euler’s method, which is
only one of numerous mathematical contributions made by Leonhard Euler (1707–1783)
of Switzerland. (His name is pronounced “oiler.”) He also introduced the notation
used throughout this text. Despite becoming blind during his later years, he was the most
prolific mathematician of his era. In fact it took nearly 50 years after his death to publish
the works he created in all mathematical fields during his lifetime.

Euler’s method of solving differential equations gives approximate solutions to differ-
ential equations involving where the initial values of x and y are known; that is,
equations of the form

Geometrically, Euler’s method approximates the graph of the solution with a poly-
gonal line whose first segment is tangent to the curve at the point as shown in Figure 5.1x0 , y0 

2 ,
y 5 f 1x 2

dy

dx
5 g1x, y 2 ,  with y 1x0 

2 5 y0 .

y 5 f 1x 2

f 1x 2

dy

dx
5

x 1 y

y

y

x0

h

x0 x1 x2 x3

y = f(x)

(x , y )0 0

FIGURE 5 

FOR REVIEW
In Section 6.6 on Differentials:
Linear Approximation, we
defined to be the actual
change in y as x changed by an
amount :

The differential dy is an
approximation to We find 
by following the tangent line
from the point rather
than by following the actual
function. Then dy is found by
using the formula

where
For example, let

and
Then 

The actual
change in y as x changes from 1
to 1.2 is

 5 0.728.
 5 1.23 2 1
 5 f 1 1.2 2 2 f 1 1 2

f 1x 1 Dx 2 2 f 1x 2

3 1 12 2 10.2 2 5 0.6.
f r 1 x 2  dx 5 3x2 dx 5

dy 5dx 5 Dx 5 0.2.
f 1x 2 5 x3, x 5 1,
dx 5 Dx.
dy 5 1dy /dx 2  dx

1x, f 1x 2 2 ,

dyDy.

Dy 5 f 1x 1 Dx 2 2 f 1x 2 .
Dx

Dy
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To use Euler’s method, divide the interval from to another point into n subinter-
vals of equal width (see Figure 5.) The width of each subinterval is 

Recall from Section 6.6 on Differentials: Linear Approximation that if is a small
change in x, then the corresponding small change in y, is approximated by

The differential dy is the change in y along the tangent line. On the interval from to
note that dy is just where is the approximate solution at We also have

and Putting these into the previous equation yields

Because is given, we can use the equation just derived with to get We can
then use and the same equation with to get and continue in this manner until we
get A summary of Euler’s method follows.yn .

y2 i 5 1y1

y1 .i 5 0y0

 yi11 5 yi 1 g 1xi , yi 
2h.

 yi11 2 yi 5 g 1xi , yi 
2h

Dx 5 h.dy /dx 5 g 1xi , yi 
2

xi .yiyi11 2 yi ,
xi11 ,xi

Dy < dy 5
dy

dx
. Dx.

Dy,
Dx

h 5 1xn 2 x0 
2 /n.

xnx0

Euler’s Method
Let be the solution of the differential equation

for Let , where and

for Then

f 1 xi11 
2 < yi11 .

0 # i # n 2 1.

yi11 5 yi 1 g 1 xi , yi 
2h,

h 5 1xn 2 x0 2 /nxi11 5 xi 1 hx0 # x # xn .

dy

dx
5 g 1 x, y 2 , with y 1 x0 

2 5 y0 ,

y 5 f 1x 2

As the following examples will show, the accuracy of the approximation varies for differ-
ent functions. As h gets smaller, however, the approximation improves, although making h too
small can make things worse. (See the discussion at the end of this section.) Euler’s method is
not difficult to program; it then becomes possible to try smaller and smaller values of h to get
better and better approximations. Graphing calculator programs for Euler’s method are
included in the Graphing Calculator and Excel Spreadsheet Manual available with this book.

Euler’s Method

Use Euler’s method to approximate the solution of with for
Use 

SOLUTION

The general solution of this equation was found in Example 2 of the last section, so the
results using Euler’s method can be compared with the actual solution. Begin by writing
the differential equation in the required form as

Since and 

and

y1 5 y0 1 g 1x0 , y0 
2h 5 1.5 1 0 10.1 2 5 1.5.

g 1x0 , y0 
2 5 0 2 2 10 2 1 1.5 2 5 0,

y0 5 1.5,x0 5 0

dy

dx
5 x 2 2xy,  so that  g 1x, y 2 5 x 2 2xy.

h 5 0.1.30, 1 4.
y 10 2 5 1.5,dy /dx 1 2xy 5 x,

Method 1
Calculating by Hand

EXAMPLE  1



Method 2
Graphing Calculator

Now and Then

The 11 values for and for are shown in the table below, together with the actual
values using the result from Example 2 in the last section. (Since the result was only a general
solution, replace x with 0 and y with 1.5 to get the particular solution )

The results in the table look quite good. The graphs in Figure 6 show that the polygonal
line follows the actual graph of quite closely.f 1x 2

y 5 1 /2 1 e2x2

.

0 # i # 10yixi

y2 5 1.5 1 120.2 2 10.1 2 5 1.48.

g 1x1 , y1 
2 5 0.1 2 2 10.1 2 1 1.5 2 5 20.2.y1 5 1.5,x1 5 0.1,
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FIGURE 6

0 1.5 1.5 0

0.1 1.5 1.49004983 0.0099502

0.2 1.48 1.46078944 0.0192106

0.3 1.4408 1.41393119 0.0268688

0.4 1.384352 1.35214379 0.0322082

0.5 1.31360384 1.27880078 0.0348031

0.6 1.23224346 1.19767633 0.0345671

0.7 1.14437424 1.11262639 0.0317478

0.8 1.05416185 1.02729242 0.0268694

0.9 0.96549595 0.94485807 0.0206379

1.0 0.88170668 0.86787944 0.0138272

Approximate Solution Using h � 0.1
Euler’s Actual
Method Solution Difference

yi 2 f 1 xi 
2f 1 xi 

2yixi

A graphing calculator can readily implement Euler’s method. To do this example on a TI-
84 Plus, start x with the value of by storing in X, store or 1.5, in Y, and put
X � 2X*Y into the function Y1. Then the command X � .1 → X:Y � Y1*.1 → Y gives
the next value of y, which is still 1.5. Continue to press the ENTER key to get subsequent
values of y. For more details, see the Graphing Calculator and Excel Spreadsheet Manual
available with this book.

y0 ,20.1x0 2 h

Method 3
Spreadsheet

Euler’s method can also be performed on a spreadsheet. In Microsoft Excel, for example,
store the values of x in column A and the initial value of y in B1. Then put the command
“=B1�(A1�2*A1*B1)*.1” into B2 to get the next value of y, using the formula for

in this example. Copy this formula into the rest of column B to get subsequent val-
ues of y. For more details, see the Graphing Calculator and Excel Spreadsheet Manual
available with this book.

TRY YOUR TURN 1

g 1x, y 2YOUR TURN 1 Use Euler’s
method to approximate the solution
of with

for [0,1]. Use h 5 0.2.y 1 0 2 5 2,
dy /dx 2 x2y2 5 1,

0 1.2

2

0



Euler’s method produces a very good approximation for this differential equation
because the slope of the solution is not steep in the interval under investigation. The
next example shows that such good results cannot always be expected.

Euler’s Method

Use Euler’s method to solve , with for using 10
subintervals.

SOLUTION This is the differential equation of Example 3 in the last section. The general
solution found there, with the initial condition given above, leads to the particular solution

To solve by Euler’s method, start with and 
For again, and

For this gives

Similarly,

These and the remaining values for the interval are shown in the table below.
In this example the absolute value of the differences grows very rapidly as gets farther

from See Figure 7 on the next page. These large differences come from the term in the
solution; this term grows very quickly as x increases.

e3xx0 .
xi

30, 1 4
 5 8.57025855.

 5 6.55 1 1 19.65 1 0.55258546 2 10.1 2

 y2 5 6.55 1 c3 1 6.55 2 1
1

2
 e0.1 d 10.1 2

 5 5 1 1 15.5 2 10.1 2 5 6.55.

 5 5 1 c3 1 5 2 1
1

2
 1 e0 2 d 10.1 2

 y1 5 y0 1 a3y0 1
1

2
 ex0bh

y1 ,

 yi11 5 yi 1 g 1xi , yi 
2h 5 yi 1 a3yi 1

1

2
 exibh.

h 5 1 1 2 0 2 /10 5 0.1n 5 10,
y0 5 5.x0 5 0,g 1x, y 2 5 3y 1 1 1 /2 2ex,

y 5 2 

1

4
 ex 1

21

4
 e3x.

30, 1 4,y 10 2 5 5,dy /dx 5 3y 1 1 1/2 2ex

f 1x 2
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0 5 5 0

0.1 6.55 6.810466

0.2 8.570259 9.260773

0.3 11.202406 12.575452

0.4 14.630621 17.057658

0.5 19.094399 23.116687

0.6 24.905154 31.305119

0.7 32.467806 42.368954

0.8 42.308836 57.315291

0.9 55.112764 77.503691

1 71.769573 104.769498  232.999925

 222.390927

 215.006455

 29.901147

 26.399965

 24.022289

 22.427037

 21.373045

 20.690514

 20.260466

Approximate Solution Using h � 0.1
Euler’s Actual
Method Solution Difference

yi 2 f 1 xi 
2f 1 xi 

2yixi

EXAMPLE  2



As these examples show, numerical methods may produce large errors. The error often
can be reduced by using more subintervals of smaller width—letting or 1000, for
example. Approximations for the function in Example 3 with and 

are shown in the table below. The approximations are considerably
improved.
1 1 2 0 2 /100 5 0.01

h 5n 5 100
n 5 100
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0 5 5 0

0.1 6.779418 6.810466

0.2 9.177101 9.260773

0.3 12.406341 12.575452

0.4 16.753855 17.057658

0.5 22.605046 23.116687

0.6 30.477945 31.305119

0.7 41.068839 42.368954

0.8 55.313581 57.315291

0.9 74.469995 77.503691

1 100.228621 104.769498  24.540878

 23.033695

 22.001710

 21.300115

 20.827175

 20.511642

 20.303803

 20.169111

 20.083672

 20.031048

Approximate Solution Using h � 0.01
Euler’s Actual
Method Solution Difference

yi 2 f 1 xi 
2f 1 xi 

2yixi

FIGURE 7

We could improve the accuracy of Euler’s method by using a smaller h, but there are
two difficulties. First, this requires more calculations and, consequently, more time. Such
calculations are usually done by computer, so the increased time may not matter. But this
introduces a second difficulty: The increased number of calculations causes more round-off
error, so there is a limit to how small we can make h and still get improvement. The pre-
ferred way to get greater accuracy is to use a more sophisticated procedure, such as the
Runge-Kutta method. Such methods are beyond the scope of this book but are discussed in
numerical analysis and differential equations courses.*

*For example, see Nagle, R. K., E. B. Saff, and A. D. Snider, Fundamentals of Differential Equations, 8th ed.,
Pearson, 2012.

0 1.2

100

0
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10.3 EXERCISES
Use Euler’s method to approximate the indicated function
value to 3 decimal places, using h � 0.1.

1. find 

2. find 

3. find 

4. find 

5. find 

6. find 

7. find 

8. find 

Use Euler’s method to approximate the indicated function
value to 3 decimal places, using h � 0.1. Next, solve the dif-
ferential equation and find the indicated function value to 3
decimal places. Compare the result with the approximation.

9. find 

10. find 

11. find 

12. find 

13. find 

14. find 

15. find 

16. find 

17. find 

18. find 

Use Method 2 or 3 in Example 1 to construct a table like the
ones in the examples for with h � 0.2.

19. 20.
dy

dx
5 y; y 10 2 5 1

dy

dx
5 "3 x ; y 10 2 5 0

0 # x # 1,

y 10.4 2
dy

dx
2 2y 5 e2x; y 10 2 5 10;

y 10.3 2
dy

dx
1 y 5 2ex; y 10 2 5 100;

y 10.6 2
dy

dx
5

2x

y
 ; y 10 2 5 3;

y 10.4 2
dy

dx
5 yex; y 10 2 5 2;

y 10.6 2
dy

dx
5 x2y; y 10 2 5 1;

y 1 1.6 2
dy

dx
5 2xy; y 1 1 2 5 1;

y 1 1.4 2
dy

dx
5

3

x
 ; y 1 1 2 5 2;

y 10.5 2
dy

dx
5 x3; y 10 2 5 4;

y 1 1.5 2
dy

dx
5 4x 1 3; y 1 1 2 5 0;

y 10.4 2
dy

dx
5 24 1 x; y 10 2 5 1;

y 1 1.5 2
dy

dx
5 e2y 1 ex; y 1 1 2 5 1;

y 1 1.5 2
dy

dx
5 2x "1 1 y2

 ; y 1 1 2 5 2;

y 1 1.4 2
dy

dx
5 1 1

y

x
 ; y 1 1 2 5 0;

y 10.4 2
dy

dx
5 x 1 "y ; y 10 2 5 1;

y 10.6 2
dy

dx
5 x 1 y2; y 10 2 5 0;

y 10.6 2
dy

dx
5 1 1 y; y 10 2 5 2;

y 10.5 2
dy

dx
5 xy 1 4; y 10 2 5 0;

y 10.5 2
dy

dx
5 x2 1 y2; y 10 2 5 2;

21.

22.

Solve each differential equation and graph the function y � f (x)
and the polygonal approximation on the same axes. (The approx-
imations were found in Exercises 19–22.)

23. 24.

25.

26.

27. a. Use Euler’s method with to approximate where
is the solution to the differential equation

b. Solve the differential equation in part a using separation of
variables, and discuss what happens to as x approaches 1.

c. Based on what you learned from parts a and b, discuss what
might go wrong when using Euler’s method. (More advanced
courses on differential equations discuss the question of whether
a differential equation has a solution for a given interval in x.)

APPLICATIONS
Solve Exercises 28–35 using Euler’s method.

Business and Economics

28. Bankruptcy Suppose 125 small business firms are threatened by
bankruptcy. If y is the number bankrupt by time t, then 
is the number not yet bankrupt by time t. The rate of change of y
is proportional to the product of y and Let 2010 corre-
spond to Assume 20 firms are bankrupt at 

a. Write a differential equation using the given information.
Use 0.002 for the constant of proportionality.

b. Approximate the number of firms that are bankrupt in 2015,
using 

Life Sciences

29. Growth of Algae The phosphate compounds found in many
detergents are highly water soluble and are excellent fertilizers for
algae. Assume that there are 5000 algae present at time and
conditions will support at most 500,000 algae. Assume that the rate
of growth of algae, in the presence of sufficient phosphates, is pro-
portional both to the number present (in thousands) and to the dif-
ference between 500,000 and the number present (in thousands).

a. Write a differential equation using the given information.
Use 0.01 for the constant of proportionality.

b. Approximate the number present when using h 5 0.5.t 5 2,

t 5 0

h 5 1.

t 5 0.t 5 0.
125 2 y.

125 2 y

f 1x 2

dy

dx
5 y2; y 10 2 5 1.

f 1x 2
f 1 1 2 ,h 5 0.2

dy

dx
5 x 2 2xy; y 10 2 5 1

dy

dx
5 4 2 y; y 10 2 5 0

dy

dx
5 y; y 10 2 5 1

dy

dx
5 "3 x ; y 10 2 5 0

dy

dx
5 x 2 2xy; y 10 2 5 1

dy

dx
5 4 2 y; y 10 2 5 0
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30. Immigration An island is colonized by immigration from
the mainland, where there are 100 species. Let the number of
species on the island at time t (in years) equal y, where

Suppose the rate at which new species immigrate
to the island is

Use Euler’s method with to approximate y when
if there were 10 species initially.

31. Insect Population A population of insects, y, living in a cir-
cular colony grows at a rate

where t is time in weeks. If there were 60 insects initially, use
Euler’s method with to approximate the number of
insects after 6 weeks.

32. Whale Population Under certain conditions a population may
exhibit a polynomial growth rate function. A population of
blue whales is growing according to the function

Here y is the population in thousands and t is measured in
years. Use Euler’s method with to approximate the
population in 4 years if the initial population is 15,000.

33. Goat Growth The growth of male Saanen goats can be app-
roximated by the equation

where W is the weight (in kilograms) after t weeks. Source:
Annales de Zootechnie. Find the weight of a goat at 5
weeks, given that the weight at birth is 3.65 kg. Use Euler’s
method with h 5 1.

dW

dt
5 20.01189W 1 0.92389W0.016,

h 5 1

dy

dt
5 2y 1 0.02y2 1 0.003y3.

h 5 1

dy

dt
5 0.05y 2 0.1y1/2,

t 5 5
h 5 0.5

dy

dt
5 0.02 1 100 2 y1/2 2 .

y 5 f 1 t 2 .

Social  Sciences

34. Learning In an early article describing how people learn, the rate
of change of the probability that a person performs a task cor-
rectly with respect to time is given by

where k and m are constants related to the rate that the person
learns the task. Source: The Journal of General Psychology.
For this exercise, let and 

a. Letting when use Method 2 or 3 in Example 1
to construct a table for and like the ones in the examples
for with 

b. Based on your answer to part a, what does p seem to approach
as t increases? Explain why this answer makes sense.

35. APPLY IT Spread of Rumors A rumor spreads through a com-
munity of 500 people at the rate

where N is the number of people who have heard the rumor at
time t (in hours). Use Euler’s method with to find the
number who have heard the rumor after 3 hours, if only 2 people
heard it initially.

h 5 0.5

dN

dt
5 0.02 1 500 2 N 2N1/2,

h 5 5.0 # x # 30,
piti

t 5 0,p 5 0.1

k 5 0.5.m 5 4

dp

dt
5

2k

"m
 1p 2 p2 2 3/2,

1 t 21p 2

YOUR TURN ANSWER

1. yixi

0 2

0.2 2.2

0.4 2.43872

0.6 2.82903537

0.8 3.60528313

1.0 5.46903563

Applications of Differential Equations
How do the populations of a predator and its prey change over time?

10.4
APPLY IT 

We will answer this question in Example 2 using a pair of differential equations.

Continuous Deposits An amount of money A invested at an annual interest rate r,
compounded continuously, grows according to the differential equation

,
dA

dt
5 rA
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where t is the time in years. Suppose money is deposited into this account at a rate of D dol-
lars per year and that the money is deposited at a rate that is essentially constant and con-
tinuous. The differential equation for the growth of the account then becomes

Continuous Deposits

When Michael was born, his grandfather arranged to deposit $5000 in an account for him at
8% annual interest compounded continuously. Grandfather plans to add to the account
“continuously” at the rate of $1000 a year. How much will be in the account when Michael
is 18?

SOLUTION Here and so the differential equation is

Separate the variables and integrate on both sides.

Use the fact that the initial amount deposited was $5000 to find M.

When Michael is 18, the amount in the account will be

or about $61,400. TRY YOUR TURN 1

A Predator-Prey Model The Austrian mathematician A. J. Lotka (1880–1949) and
the Italian mathematician Vito Volterra (1860–1940) proposed the following simple model
for the way in which the fluctuations of populations of a predator and its prey affect each
other. Source: Elements of Mathematical Biology. Let denote the population ofx 5 f 1 t 2

 < 61,362.18,

 5 212,500 1 17,500e1.44

 A 5 212,500 1 17,500e10.08218

t 5 18,

 A 5 212,500 1 17,500e0.08t

 A 5 212,500 1
1400

0.08
 e0.08t

 1400 5 M

 5000 5 212,500 1
M

0.08
 1 1 2

 5000 5 212,500 1
M

0.08
 e10.0820

 A 5 212,500 1
M

0.08
 e0.08t

M 5 eK 0.08A 5 21000 1 Me0.08t

 0.08A 5 21000 1 e0.08teK

 0.08A 1 1000 5 e0.08t1K

K 5 0.08C ln 10.08A 1 1000 2 5 0.08t 1 K

 
1

0.08
 ln 10.08A 1 1000 2 5 t 1 C

 
1

0.08A 1 1000
 dA 5 dt

dA

dt
5 0.08A 1 1000.

D 5 1000,r 5 0.08

dA

dt
5 rA 1 D.

YOUR TURN 1 Modify 
Example 1 so that the initial amount
is $6000, the interest rate is 5%,
$1200 a year is added continuously,
and Michael must wait until he is 
21 to collect.

EXAMPLE  1

Apply the function to both sides.ex
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the predator and denote the population of the prey at time t. The predator might be
a wolf and its prey a moose, or the predator might be a ladybug and the prey an aphid.

Assume that if there were no predators present, the population of prey would increase at
a rate py proportional to their number, but that the predators consume the prey at a rate qxy
proportional to the product of the number of prey and the number of predators. The net rate
of change of y is the rate of increase of the prey minus the rate at which the prey are
eaten, that is,

(1)

with positive constants p and q.
Assume that if there were no prey, the predators would starve and their population

would decrease at a rate rx proportional to their number, but that in the presence of prey the
rate of growth of the population of predators is increased by an amount sxy. These assump-
tions give a second differential equation,

(2)

with additional positive constants r and s.
Equations (1) and (2) form a system of differential equations known as the Lotka-

Volterra equations. They cannot be solved for x and y as functions of t, but an equation
relating the variables x and y can be found. Dividing Equation (1) by Equation (2) gives the
separable differential equation

or

(3)

Equation (3) is solved for specific values of the constants p, q, r, and s in the next example.

Predator-Prey

Suppose that (hundreds of predators) and (thousands of prey) satisfy
the Lotka-Volterra Equations (1) and (2) with and Suppose
that at a time when there are 100 predators there are 1000 prey Find an
equation relating x and y.

SOLUTION With the given values of the constants, p, q, r, and s, Equation (3) reads

Separating the variables yields

or

Evaluating the integrals gives

2y 2 4 ln y 5 3 ln x 2 x 1 C.

 3 a2 2
4
y
b dy 5 3 a

3
x

2 1b dx.

 
2y 2 4

y
 dy 5

3 2 x
x

 dx,

dy

dx
5

y 1 3 2 x 2
x 12y 2 4 2

 .

1 y 5 1 2 .1x 5 1 2 ,
s 5 2.r 5 4,q 5 1,p 5 3,

y 5 g 1 t 2x 5 f 1 t 2

dy

dx
5

y 1p 2 qx 2
x 1 sy 2 r 2

 .

 
dy

dx
5

dy /dt

dx /dt
5

py 2 qxy

2rx 1 sxy

dx

dt
5 2rx 1 sxy,

dy

dt
5 py 2 qxy,

dy /dt

y 5 g 1 t 2

EXAMPLE  2

APPLY IT 



(It is not necessary to use absolute value for the logarithms since x and y are positive.) Use
the initial conditions and to find C.

The desired equation is

(4)

A graph of Equation (4), in Figure 8, shows that the solution is located on a closed
curve. By looking at the original differential equation for y, 

we can see that when (the left side of the curve), then , so y increases.
Similarly, when (the right side of the curve), y decreases. This means that when there
are few predators, the population of prey increases, but when there are many predators, the
population of prey decreases, as we would expect. Similarly, by looking at the original dif-
ferential equation for x, 

confirm that when there are few prey ( ), the population of predators decreases (as we
would expect, because the predators don’t have enough to eat), and when there are many
prey ( ), the population of predators increases. Convince yourself that, for these rea-
sons, the solution must move clockwise on the curve in Figure 8. The pattern repeats
indefinitely. TRY YOUR TURN 2

1x, y 2
y . 2

y , 2

dx

dt
5 x 12y 2 4 2 ,

x . 3
dy /dt . 0x , 3

dy

dt
5 y 1 3 2 x 2 ,

x 1 2y 2 3 ln x 2 4 ln y 5 3.

 C 5 3

 2 2 4 10 2 5 3 10 2 2 1 1 C

y 5 1x 5 1
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YOUR TURN 2 Letting 
and in Exam-

ple 2, find an equation relating x and
y, given that there was a time when

and y 5 1.x 5 1

s 5 5r 5 3,q 5 1,
p 5 4,

EXAMPLE  3

y

x

x + 2y – 3 ln x – 4 ln y = 3

FIGURE 8 

Epidemics Under certain conditions, the spread of a contagious disease can be
described with the logistic growth model, as in the next example.

Spread of an Epidemic

Consider a population of size N that satisfies the following conditions.

1. Initially there is only one infected individual.

2. All uninfected individuals are susceptible, and infection occurs when an uninfected
individual contacts an infected individual.

3. Contact between any two individuals is just as likely as contact between any other two
individuals.

4. Infected individuals remain infectious.



Let the time (in days) and the number of individuals infected at time t. At any
moment there are possible contacts between an uninfected individual and an
infected individual. Thus, it is reasonable to assume that the rate of spread of the disease satis-
fies the following logistic equation (discussed in Section 10.1):

(5)

As shown in Section 10.1, the general solution of Equation (5) is

(6)

where Since just one individual is infected initially, . Substituting
these values into Equation (6) gives

(7)

as the specific solution of Equation (5).
The infection rate will be a maximum when its derivative is 0, that is, when

Since

we have

Set to get

That is, when 

Notice that since the infection rate when , the maximum infection

rate does not occur there. Also observe that when and when

. Thus, the maximum infection rate occurs when exactly half the total popula-

tion is still uninfected and equals

dy

dt
5 ka1 2

N /2

N
b  

N

2
5

kN

4
 .

N

2
, y , N

d2y

dt2 , 00 , y ,
N

2

d2y

dt2 . 0

y 5 0 or y 5 N
dy

dt
5 0

y 5 0, y 5 N, or y 5
N

2
.

d2y

dt2 5 0

y 5 0, 1 2
y

N
5 0, or 1 2

2y

N
5 0.

d2y

dt2 5 0

5 k2ya1 2
y

N
b a1 2

2y

N
b .

5 ka1 2
2y

N
bka1 2

y

N
by

5 ka1 2
2y

N
b a

dy

dt
b

d2y

dt 2 5 k c a1 2
y

N
b a

dy

dt
b 1 ya2

1

N
b a

dy

dt
b d

dy

dt
5 ka1 2

y

N
by,

d2y /dt2 5 0.
dy /dt

y 5
N

1 1 1N 2 1 2e2kt

y0 5 1b 5 1N 2 y0 
2 /y0 .

y 5
N

1 1 be2kt,

dy

dt
5 ka1 2

y

N
by.

1N 2 y 2y
y 5t 5
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Letting in Equation (7) and solving for t shows that the maximum infection rate
occurs at time

Because y is a function of t, the infection rate is also a function of t. Its graph, shown
in Figure 9, is called the epidemic curve. It is symmetric about the line t � tm.

TRY YOUR TURN 3

dy /dt

tm 5
ln 1N 2 1 2

k
 .

y 5 N /2
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EXAMPLE  4

YOUR TURN 3 Suppose that
an epidemic in a community of
50,000 starts with 80 people
infected, and that 15 days later, 640
are infected. How many are infected
25 days into the epidemic?

ttm

kN
4

dy
dt

(N –1)k
N

FIGURE 9

Mixing Problems The mixing of two solutions can lead to a first-order differential
equation, as the next example shows.

Salt Concentration

Suppose a tank contains 100 gal of a solution of dissolved salt and water, which is kept uni-
form by stirring. If pure water is allowed to flow into the tank at the rate of 4 gal per
minute, and the mixture flows out at the rate of 3 gal per minute (see Figure 10), how much
salt will remain in the tank after t minutes if 15 lb of salt are in the mixture initially?
Source: Ordinary Differential Equations with Boundary Value Problems.

SOLUTION Let the amount of salt present in the tank at any specific time be 
The net rate at which y changes is given by

Since pure water is coming in, the rate of salt entering the tank is zero. The rate at which
salt is leaving the tank is the product of the amount of salt per gallon (in V gallons) and the
number of gallons per minute leaving the tank:

The differential equation, therefore, can be written as

where is the initial amount of salt in the solution. We must take into account the fact
that the volume, V, of the mixture is not constant but is determined by

or

dV

dt
5 1,

dV

dt
5 1Rate of liquid in 2 2 1Rate of liquid out 2 5 4 2 3 5 1,

y 10 2

dy

dt
5 2 

3y

V
 ; y 10 2 5 15,

Rate of salt out 5 a
y

V
 lb per galb 1 3 gal per minute 2 .

dy

dt
5 1Rate of salt in 2 2 1Rate of salt out 2 .

y 5 f 1 t 2 .

FIGURE 10



from which

Because the volume is known to be 100 at time we have and

a separable equation with solution

Since when 

Finally,

TRY YOUR TURN 4 y 5
15 3 106

1 t 1 100 2 3
 .

 5 ln 3 1 t 1 100 223 1 15 3 106 2 4
 ln y 5 ln 1 t 1 100 223 1 ln 1 15 3 106 2

 ln 1 15 3 106 2 5 C.

 ln 15 1 3 ln 102 5 C

 ln 15 5 23 ln 100 1 C

t 5 0,y 5 15

 ln y 5 23 ln 1 t 1 100 2 1 C.

 
dy

y
5

23

t 1 100
 dt

dy

dt
5

23y

t 1 100
 ; y 10 2 5 15,

C1 5 100,t 5 0,

V 1 t 2 5 t 1 C1 .
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YOUR TURN 4 Suppose that a
tank initially contains 500 liters of a
solution of water and 5 kg of salt.
Suppose that pure water flows in at a
rate of 6 L/min, and the solution flows
out at a rate of 4 L/min. How many kg
of salt remain after 20 minutes?

10.4 EXERCISES
APPLICATIONS
Business and Economics

1. Continuous Deposits Kimberly Austin deposits $5000 in an
IRA at 6% interest compounded continuously for her retire-
ment in 10 years. She intends to make continuous deposits at
the rate of $3000 a year until she retires. How much will she
have accumulated at that time?

2. Continuous Deposits In Exercise 1, how long will it take
Kimberly to accumulate $30,000 in her retirement account?

3. Continuous Deposits To provide for a future expansion, a
company plans to make continuous deposits to a savings
account at the rate of $50,000 per year, with no initial
deposit. The managers want to accumulate $500,000. How
long will it take if the account earns 10% interest com-
pounded continuously?

4. Continuous Deposits Suppose the company in Exercise 3
wants to accumulate $500,000 in 3 years. Find the approxi-
mate yearly deposit that will be required.

5. Continuous Deposits An investor deposits $8000 into an account
that pays 6% compounded continuously and then begins to with-
draw from the account continuously at a rate of $1200 per year.

a. Write a differential equation to describe the situation.

b. How much will be left in the account after 2 years?

c. When will the account be completely depleted?

Life Sciences

6. Predator-Prey Explain in your own words why the solution 
(x, y) must move clockwise on the curve in Figure 8.

7. Competing Species The system of equations

describes the influence of the populations (in thousands) of two
competing species on their growth rates.

 
dx

dt
5 23x 1 2xy

 
dy

dt
5 4y 2 2xy
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a. Following Example 2, find an equation relating x and y,
assuming when 

b. Find values of x and y so that both populations are con-
stant. (Hint: Set both differential equations equal to 0.)

8. Symbiotic Species When two species, such as the rhinoceros
and birds pictured below, coexist in a symbiotic (dependent)
relationship, they either increase together or decrease
together. Typical equations for the growth rates of two such
species might be

 
dy

dt
5 23y 1 2xy.

 
dx

dt
5 24x 1 4xy

x 5 1.y 5 1
c. How many are uninfected after 50 days?

d. When will the maximum infection rate occur?

10. Spread of an Epidemic In Example 3, the number of infected
individuals is given by Equation (7).

a. Show that the number of uninfected individuals is given by

b. Graph the equation in part a and Equation (7) on the same axes
when and 

c. Find the common inflection point of the two graphs.

d. What is the significance of the common inflection point?

e. What are the limiting values of y and 

11. Spread of an Epidemic An influenza epidemic spreads at a rate
proportional to the product of the number of people infected and
the number not yet infected. Assume that 100 people are infected at
the beginning of the epidemic in a community of 20,000 people,
and 400 are infected 10 days later.

a. Write an equation for the number of people infected, y, after
t days. 

b. When will half the community be infected?

12. Spread of an Epidemic The Gompertz growth law,

for constants k and a, is another model used to describe the
growth of an epidemic. Repeat Exercise 11, using this differential
equation with 

13. Spread of Gonorrhea Gonorrhea is spread by sexual contact,
takes 3 to 7 days to incubate, and can be treated with antibiotics.
There is no evidence that a person ever develops immunity. One
model proposed for the rate of change in the number of men
infected by this disease is

where y is the fraction of men infected, f is the fraction of men
who are promiscuous, Y is the fraction of women infected, and a
and b are appropriate constants. Source: An Introduction to
Mathematical Modeling.

a. Assume and Choose and
solve for y using when t is 0 as an initial condition.
Round your answer to 3 decimal places. 

b. A comparable model for women is

where F is the fraction of women who are promiscuous and A
and B are constants. Assume and 
Choose and solve for Y, using as an initial
condition.

Y 5 0.01y 5 0.1
F 5 0.03.B 5 1,A 5 1,

dY

dt
5 2AY 1 B 1F 2 Y 2y,

y 5 0.02
Y 5 0.01,f 5 0.5.b 5 1,a 5 1,

dy

dt
5 2ay 1 b 1f 2 y 2Y,

a 5 0.02.

dy

dt
5 kye2at,

N 2 y?

k 5 1.N 5 100

N 2 y 5
N 1N 2 1 2

N 2 1 1 ekt  .

y

x

3

4

2

1

0
5 6 7 8 9 10

a. Find an equation relating x and y if when 

b. Find values of x and y so that both populations are con-
stant. (See Exercise 7.)

c. A graph of the relationship found in part a is shown in the
figure. Based on the differential equations for the growth
rate and this graph, what happens to both populations
when ? When ?y , 1y . 1

y 5 1.x 5 5

9. Spread of an Epidemic The native Hawaiians lived for cen-
turies in isolation from other peoples. When foreigners
finally came to the islands they brought with them diseases
such as measles, whooping cough, and smallpox, which dec-
imated the population. Suppose such an island has a native
population of 5000, and a sailor from a visiting ship intro-
duces measles, which has an infection rate of 0.00005. Also
suppose that the model for spread of an epidemic described
in Example 3 applies.

a. Write an equation for the number of natives who remain
uninfected. Let t represent time in days.

b. How many are uninfected after 30 days?
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Social  Sciences

Spread of a Rumor The equation developed in the text for
the spread of an epidemic also can be used to describe diffu-
sion of information. In a population of size N, let y be the num-
ber who have heard a particular piece of information. Then

for a positive constant k. Use this model in Exercises 14–16.

14. Suppose a rumor starts among 3 people in a certain office
building. That is, Suppose 500 people work in the
building and 50 people have heard the rumor in 2 days.
Using Equation (6), write an equation for the number who
have heard the rumor in t days. How many people will have
heard the rumor in 5 days?

15. A rumor spreads at a rate proportional to the product of the
number of people who have heard it and the number who
have not heard it. Assume that 3 people in an office with 45
employees heard the rumor initially, and 12 people have
heard it 3 days later.

a. Write an equation for the number, y, of people who have
heard the rumor in t days.

b. When will 30 employees have heard the rumor?

16. A news item is heard on the late news by 5 of the 100 people
in a small community. By the end of the next day 20 people
have heard the news. Using Equation (6), write an equation
for the number of people who have heard the news in t days.
How many have heard the news after 3 days?

17. Repeat Exercise 15 using the Gompertz growth law,

for constants k and a, with 

Physical  Sciences

18. Salt Concentration A tank holds 100 gal of water that con-
tains 20 lb of dissolved salt. A brine (salt) solution is flowing

a 5 0.1.

dy

dt
5 kye2at,

y0 5 3.

dy

dt
5 ka1 2

y

N
by

into the tank at the rate of 2 gal per minute while the solution
flows out of the tank at the same rate. The brine solution entering
the tank has a salt concentration of 2 lb per gal.

a. Find an expression for the amount of salt in the tank at any
time.

b. How much salt is present after 1 hour?

c. As time increases, what happens to the salt concentration?

19. Solve Exercise 18 if the brine solution is introduced at the rate of
3 gal per minute while the rate of outflow remains the same.

20. Solve Exercise 18 if the brine solution is introduced at the rate of
1 gal per minute while the rate of outflow stays the same.

21. Solve Exercise 18 if pure water is added instead of brine.

22. Chemical in a Solution Five grams of a chemical is dissolved in
100 liters of alcohol. Pure alcohol is added at the rate of 2 liters
per minute and at the same time the solution is being drained at
the rate of 1 liter per minute.

a. Find an expression for the amount of the chemical in the mix-
ture at any time.

b. How much of the chemical is present after 30 minutes? 

23. Solve Exercise 22 if a 25% solution of the same mixture is added
instead of pure alcohol.

24. Soap Concentration A prankster puts 4 lb of soap in a fountain
that contains 200 gal of water. To clean up the mess a city crew
runs clear water into the fountain at the rate of 8 gal per minute
allowing the excess solution to drain off at the same rate. How
long will it be before the amount of soap in the mixture is
reduced to 1 lb?

YOUR TURN ANSWERS 

1. $61,729.53
2.
3. 2483
4. 4.29 kg

x 1 5y 2 4lnx 2 3lny 5 6

SUMMARY

10 CHAPTER REVIEW

In this chapter, we studied differential equations, which are equations
involving derivatives. Our goal has been to find a function that satis-
fies the equation. We learned to solve two different types of equations:

• separable equations, using separation of variables, and
• linear equations, using an integrating factor.

For equations that cannot be solved by either of the previous two
methods, we introduced a numerical method known as Euler’s method.

Differential equations have a large number of applications; some of
those we studied in this chapter include:

• continuous deposits;
• the logistic equation for populations;
• a predator-prey model;
• and mixing problems.
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General Solution of The general solution of the differential equation is 

.

Separable Differential Equation An equation is separable if it can be written in the form

By separating the variables, it is transformed into the equation 

Solving a Linear First-Order 1. Put the equation in the linear form
Differential Equation

2. Find the integrating factor 

3. Multiply each term of the equation from Step 1 by I(x).

4. Replace the sum of terms on the left with .

5. Integrate both sides of the equation.

6. Solve for y.

Euler’s Method Let be the solution of the differential equation

, with 

for Let , where and 

,

for 

.f 1xi11 2 < yi11

0 # i # n 2 1. Then

yi11 5 yi 1 g 1xi, yi 2h

h 5 1xn 2 x0 2 /nxi11 5 xi 1 hx0 # x # xn.

y 1x0 2 5 y0,
dy

dx
5 g 1x, y 2

y 5 f 1x 2

Dx 3I 1x 2y 4

I 1x 2 5 eeP1x2 dx.

dy

dx
1 P 1x 2y 5 Q 1x 2 .

3q 1 y 2  dy 5 3p 1x 2  dx.

dy

dx
5

p 1x 2
q 1 y 2

.

y 5 3g 1x 2 dx

dy /dx 5 g 1x 2
dy

dx
5 g 1 x 2

differential equation

10.1
general solution
particular solution
initial condition
initial value problem

separable differential 
equation

separation of variables
growth constant
carrying capacity
logistic growth model
logistic equation
logistic curve

10.2
linear first-order

differential equation
integrating factor

10.3
Euler’s method

10.4
Lotka-Volterra equations

KEY TERMS
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REVIEW EXERCISES

CONCEPT CHECK
Determine whether each of the following statements is true or
false, and explain why.

1. To determine a particular solution to a differential equation, you
first must find a general solution to the differential equation.

2. The function satisfies the differential equation

3. The function satisfies the differential equation

4. The differential equation is a first-order

linear differential equation.

5. Every differential equation is either separable or linear. 

6. It is possible to solve the following differential equation using
the method of separation of variables.

7. It is possible to solve the following differential equation using
the method of separation of variables.

8. The function can be used as an integrating factor
for the differential equation

9. The function can be used as an integrating factor
for the differential equation

10. Euler’s method can be used to find the general solution to a
differential equation.

11. If Euler’s method is being used to solve the differential equation

with then 

12. The differential equation describing continuous deposits is
separable.

PRACTICE AND EXPLORATIONS
13. What is a differential equation? What is it used for?

14. What is the difference between a particular solution and a gen-
eral solution to a differential equation?

yi11 5 yi 1 0.1 1xi 1 !yi 1 4 2 .
h 5 0.1,

dy

dx
5 x 1 "y 1 4

x 

dy

dx
1 5y 5 e2x.

I 1x 2 5 e5x

dy

dx
1 3 

y

x
5

1

x2.

I 1x 2 5 x3

dy

dx
5 x2 1 4y2

x 

dy

dx
5 1x 1 1 2 1 y 1 1 2

y 

dy

dx
1 xy 5 2500ey

dy

dt
5 5a1 2

y

100
by.

y 5
100

1 1 99e25t

dy

dx
5 2y.

y 5 e2x 1 5

15. How can you tell that a differential equation is separable? That it
is linear?

16. Can a differential equation be both separable and linear? Explain
why not, or give an example of an equation that is both.

Classify each equation as separable, linear, both, or neither.

17. 18.

19. 20.

21. 22.

23. 24.

Find the general solution for each differential equation.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

Find the particular solution for each initial value problem.
(Some solutions may give y implicitly.)

37.

38.

39.

40.

41.

42.

43.

44.
dy

dx
1 3x2y 5 x2; y 10 2 5 2

ex
 

dy

dx
2 exy 5 x2 2 1; y 10 2 5 42

"x 
dy

dx
5 xy; y 11 2 5 4

dy

dx
5

1 2 2x

y 1 3
 ; y 10 2 5 16

dy

dx
 5 13 2 2x 2y; y 10 2 5 5

dy

dx
5 1x 1 2 2 3ey; y 10 2 5 0

dy

dx
5 5 1 e2x 2 1 2 ; y 10 2 5 17

dy

dx
5 x2 2 6x; y 10 2 5 3

x 

dy

dx
1 2y 2 e2x 5 0x ln x 

dy

dx
1 y 5 2x2

x4
dy

dx
1 3x3y 5 1

dy

dx
1 y 5 x

dy

dx
5

3 2 y

ex

dy

dx
5

2y 1 1

x

dy

dx
5

ex 1 x

y 2 1

dy

dx
5

3x 1 1

y

dy

dx
5

1

3x 1 2

dy

dx
5 4e2x

dy

dx
5 4x3 1 6x5

dy

dx
5 3x2 1 6x

dy

dx
5 x2 1 y2x 

dy

dx
1 y 5 ex 1 1 1 y 2

x

y
 
dy

dx
5 4 1 x3/2

dy

dx
1 x 5 xy

dy

dx
5 xy 1 ex"x 

dy

dx
5

1 1 ln x

y

dy

dx
1 y2 5 xy2y 

dy

dx
5 2x 1 y
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45.

46.

47. When is Euler’s method useful?

Use Euler’s method to approximate the indicated function
value for y � f (x) to 3 decimal places, using h � 0.2.

48. find 

49. find 

50. Let y � f (x) and with Use
Euler’s method with h � 0.1 to approximate y (0.3) to 3 deci-
mal places. Then solve the differential equation and find f (0.3)
to 3 decimal places. Also, find 

51. Let and with Con-
struct a table for and like the one in Section 10.3, Exam-
ple 2, for with Then graph the polygonal
approximation of the graph of 

52. What is the logistic equation? Why is it useful?

APPLICATIONS
Business and Economics

53. Marginal Sales The marginal sales (in hundreds of dollars)
of a computer software company are given by

where x is the number of months the company has been in
business. Assume that sales were 0 initially.

a. Find the sales after 6 months.

b. Find the sales after 12 months.

54. Production Rate The rate at which a new worker in a cer-
tain factory produces items is given by

where y is the number of items produced by the worker per
day, x is the number of days worked, and the maximum pro-
duction per day is 150 items. Assume that the worker pro-
duces 15 items at the beginning of the first day on the job

a. Find the number of items the new worker will produce in
10 days.

b. Determine the number of days for a new worker to produce
100 items per day.

55. Continuous Withdrawals A retirement savings account con-
tains $300,000 and earns 5% interest compounded continu-
ously. The retiree makes continuous withdrawals of $20,000
per year.

1x 5 0 2 .

dy

dx
5 0.1 1 150 2 y 2 ,

dy

dx
5 6e0.3x,

y 5 f 1x 2 .
h 5 0.2.30, 1 4,
yixi

y 10 2 5 0.dy /dx 5 3 1 "y ,y 5 f 1x 2
y3 2 f 1x3 

2 .

y 10 2 5 0.dy /dx 5 1x /2 2 1 4,

y 10.6 2
dy

dx
5 ex 1 y; y 10 2 5 1;

y 1 1 2
dy

dx
5 x 1 y21; y 10 2 5 1;

x2
 

dy

dx
1 4xy 2 e2x3

5 0; y 1 1 2 5 e2

x 

dy

dx
2 2x2y 1 3x2 5 0; y 1 0 2 5 15

a. Write a differential equation to describe the situation.

b. How much will be left in the account after 10 years?

56. In Exercise 55, approximately how long will it take to use up the
account?

Life Sciences

57. Effect of Insecticide After use of an experimental insecticide,
the rate of decline of an insect population is

where t is the number of hours after the insecticide is applied.
Assume that there were 50 insects initially.

a. How many are left after 24 hours?

b. How long will it take for the entire population to die?

58. Growth of a Mite Population A population of mites grows at a
rate proportional to the number present, y. If the growth constant
is 10% and 120 mites are present at time (in weeks), find
the number present after 6 weeks.

59. Competing Species Find an equation relating x to y given the
following equations, which describe the interaction of two com-
peting species and their growth rates.

Find the values of x and y for which both growth rates are 0.

60. Smoke Content in a Room The air in a meeting room of
has a smoke content of 20 parts per million (ppm). An

air conditioner is turned on, which brings fresh air (with no
smoke) into the room at a rate of per minute and forces
the smoky air out at the same rate. How long will it take to
reduce the smoke content to 5 ppm?

61. In Exercise 60, how long will it take to reduce the smoke content
to 10 ppm if smokers in the room are adding smoke at the rate of
5 ppm per minute?

62. Spread of Influenza A small, isolated mountain community
with a population of 700 is visited by an outsider who carries
influenza. After 6 weeks, 300 people are uninfected.

a. Write an equation for the number of people who remain unin-
fected at time t (in weeks).

b. Find the number still uninfected after 7 weeks.

c. When will the maximum infection rate occur?

63. Population Growth Let

If y is and at times and (that is, at
three equally spaced times), then prove that

N 5
1 /y1 1 1 /y3 2 2 /y2

1 / 1 y1 y3 
2 2 1 /y2

2 .

t3 5 2t2 2 t1t2 ,t1 ,y3y2 ,y1 ,

y 5
N

1 1 be2kt.

1200 ft3

15,000 ft3

 
dy

dt
5 20.3y 1 0.4xy

 
dx

dt
5 0.2x 2 0.5xy

t 5 0

dy

dt
5

210

1 1 5t
 ,
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64. Use Exercise 63 and the table to find the following.

a. Find N using the years 1800, 1850, and 1900.

b. Find N using the years 1850, 1900, and 1950.

c. Find N using the years 1870, 1920, and 1970.

d. Explain why different values of N were obtained in parts
a–c. What does this suggest about the validity of this
model and others?

65. Let correspond to 1870, and let every decade corre-
spond to an increase in t of 1.

a. Use 1870, 1920, and 1970 to find N, 1870 to find b, and
1920 to find k in the equation

b. Estimate the population of the United States in 2010 and
compare your estimate to the actual population in 2010. 

c. Predict the populations of the United States in 2030 and
2050.

66. Let correspond to 1790, and let every decade corre-
spond to an increase in t of 1. Use a calculator with logistic
regression capability to complete the following.

a. Plot the data points. Do the points suggest that a logistic
function is appropriate here?

b. Use the logistic regression function on your calculator to
determine the logistic equation that best fits the data.

c. Plot the logistic equation from part a on the same graph as
the data points. How well does the logistic equation seem
to fit the data?

d. What seems to be the limiting size of the U.S. population?

t 5 0

y 5
N

1 1 be2kt  .

t 5 0

Social  Sciences

67. Education Researchers have proposed that the amount a full-
time student is educated changes with respect to the stu-
dent’s age t according to the differential equation

where k is a constant measuring the rate that education de-
preciates due to forgetting or technological obsolescence. Source:
Operations Research.

a. Solve the equation using the method of separation of vari-
ables.

b. Solve the equation using an integrating factor. 

c. What does x approach over time?

68. Spread of a Rumor A rumor spreads through the offices of a
company with 200 employees, starting in a meeting with 10 peo-
ple. After 3 days, 35 people have heard the rumor.

a. Write an equation for the number of people who have heard
the rumor in t days. (Hint: Refer to Exercises 14–16 in Section
10.4.)

b. How many people have heard the rumor in 5 days?

Physical  Sciences

69. Newton’s Law of Cooling A roast at a temperature of is put
in a oven. After 1 hour the roast has reached a temperature
of Newton’s law of cooling states that

where T is the temperature of an object, the surrounding medium
has temperature at time t, and k is a constant. Use Newton’s law
to find the temperature of the roast after 2 hours.

70. In Exercise 69, how long does it take for the roast to reach a tem-
perature of 

71. Air Resistance In Section 7.1 on Antiderivatives, we saw that the
acceleration of gravity is a constant if air resistance is ignored.
But air resistance cannot always be ignored, or parachutes would
be of little use. In the presence of air resistance, the equation for
acceleration also contains a term roughly proportional to the
velocity squared. Since acceleration forces a falling object down-
ward and air resistance pushes it upward, the air resistance term
is opposite in sign to the acceleration of gravity. Thus,

where g and k are positive constants. Future calculations will be
simpler if we replace g and k by the squared constants and

giving

a. Use separation of variables and the fact that

1

G2 2 K2v2 5
1

2G
 a

1

G 2 Kv
1

1

G 1 Kv
b

dv

dt
5 G2 2 K2v2.

K2,
G2

a 1 t 2 5
dv

dt
5 g 2 kv2,

250°F?

TM

dT

dt
5 k 1T 2 TM 

2 ,

150°F.
300°F

40°F

dx

dt
5 1 2 kx,

1x 2
Year y Year y

1790 3.9 1910 92.0

1800 5.3 1920 105.7

1810 7.2 1930 122.8

1820 9.6 1940 131.7

1830 12.9 1950 150.7

1840 17.1 1960 179.3

1850 23.2 1970 203.3

1860 31.4 1980 226.5

1870 39.8 1990 248.7

1880 50.2 2000 281.4

1890 62.9 2010 308.7

1900 76.0

Population Growth In the following table of U.S. Census figures,
y is the population in millions. Source: U.S. Census Bureau.



E X T E N D E D APPLICATION
POLLUTION OF THE GREAT LAKES

ndustrial nations are beginning to face the problems of water pol-
lution. Lakes present a problem, because a polluted lake contains
a considerable amount of water that must somehow be cleaned.

The main cleanup mechanism is the natural process of gradually
replacing the water in the lake. This application deals with pollu-
tion in the Great Lakes. The basic idea is to regard the flow in the
Great Lakes as a mixing problem.

We make the following assumptions.

1. Rainfall and evaporation balance each other, so the average
rates of inflow and outflow are equal.

2. The average rates of inflow and outflow do not vary much
seasonally.

3. When water enters the lake, perfect mixing occurs, so that the
pollutants are uniformly distributed.

4. Pollutants are not removed from the lake by decay, sedimenta-
tion, or in any other way except outflow.

5. Pollutants flow freely out of the lake; they are not retained (as
DDT is).

(The first two are valid assumptions; however, the last three are
questionable.)

We will use the following variables in the discussion to follow.

 t 5 time in years

 r 5 rate of flow

 5 to the lake at time t
 Pi 5 pollution concentration in the inflow

 PL 5 pollution concentration in the lake at time t

 V 5 volume of the lake

By the assumptions stated above, the net change in total pollutants
during the time interval is (approximately)

where is the change in the pollution concentration. Dividing
this equation by and by V and taking the limit as we get
the differential equation

Since we are treating V and r as constants, we replace with k, so
the equation can be written as the first-order linear equation

The solution is

(1)

Figure 11 shows values of for each lake (except Huron)
measured in years. If the model is reasonable, the numbers in the
figure can be used in Equation (1) to determine the effect of vari-
ous pollution abatement schemes. Lake Ontario is excluded from
the discussion because about 84% of its inflow comes from Erie
and can be controlled only indirectly.

1 /k

PL 
1 t 2 5 e2kt cPL 

10 2 1 k3

t

0

Pi 
1 x 2ekx dx d .

dPL

dt
1 kPL 5 kPi .

r /V

dPL

dt
5
1Pi 2 PL 

2r
V

 .

Dtl 0,Dt
DPL

V . DPL 5 1Pi 2 PL 
2 1 r . Dt 2 ,

Dt

to solve the differential equation above. Assume
which is certainly true when the object starts

falling (with ). Write your solution in the form of v
as a function of t.

b. Find where is the solution you found in 

part a. What does this tell you about a falling object in the
presence of air resistance?

v 1 t 2lim
tl`

v 1 t 2 ,

v 5 0
v , G /K,

c. According to Harper’s Index, the terminal velocity of a cat
falling from a tall building is 60 mph. Source: Harper’s. Use
your answers from part b, plus the fact that ft per
second and g, the acceleration of gravity, is 
to find a formula for the velocity of a falling cat (in ft per sec-
ond) as a function of time (in seconds). (Hint: Find K in terms
of G. Then substitute into the answer from part a.)

32 ft per second2,
60 mph 5 88

I

Source: An Introduction to Mathematical Modeling.
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The fastest possible cleanup will occur if all pollution inflow
ceases. This means that In this case, Equation (1) leads to

From this we can tell the length of time necessary to reduce pollu-
tion to a given percentage of its present level. For example, from
the figure, for Lake Superior Thus, to reduce pollution
to 50% of its present level, we want

from which

The following figures, representing years, were found in this way. 
Fortunately, the pollution in Lake Superior is quite low at present.

As mentioned before, assumptions 3, 4, and 5 are questionable.
For persistent pollutants like DDT, the estimated cleanup times
may be too low. For other pollutants, how assumptions 4 and 5
affect cleanup times is unclear. However, the values of given in
the figure probably provide rough lower bounds for the cleanup
times of persistent pollutants.

1 /k

t 5 189 ln 2 < 131.

PL 
1 t 2

PL 
10 2

5 0.5  or  
PL 
10 2

PL 
1 t 2

5 2,

PL 
10 2 ,
1 /k 5 189.

t 5
1

k
 lna

PL 
10 2

PL 
1 t 2
b.

Pi 5 0.

2. Repeat Exercise 1 for Lake Michigan.

3. Repeat Exercise 1 for Lake Superior.

4. We claim that Equation (1) is a solution of the differential
equation

where t measures time from the present. The constant
measures how quickly the water in the lake is

replaced through inflow and corresponding outflow. The con-
stant is the current pollution level.

a. To show that Equation (1) does define a solution of the dif-
ferential equation, multiply both sides of Equation (1) by

and then differentiate both sides with respect to t.
Remember from the section on the Fundamental Theorem
of Calculus that you can differentiate an integral by using
the version of the Fundamental Theorem that says

b. When you substitute into the right-hand side of
Equation (1), you should get Do you? What hap-
pens to the integral? What happens to the factor of

c. The map indicates a value of 30.8 for Lake Michigan.
What value of k does this correspond to? What percent of
the water in Lake Michigan is replaced each year by
inflow? Which lake has the biggest annual water
turnover?

5. Suppose that instead of assuming that all pollution inflow
immediately ceases, we model by a decaying exponential
of the form where p is a constant that tells us how fast
the inflow is being cleaned of pollution. To simplify things,
we’ll also assume that initially the inflow and the lake have
the same pollution concentration, so Now substi-
tute for in Equation (1), and evaluate the
integral as a function of t.

6. When you simplify the right-hand side of Equation (1) using
your new expression for the integral, and then factor out and
divide by you’ll get the following nice expression for
the ratio :

a. Suppose that for Lake Michigan the constant p is equal
to 0.02. Use a graph of the ratio to estimate
how long it will take to reduce pollution to 50% of its cur-
rent value. How does this compare with the time, assuming
pollution-free inflow?

b. If the constant p has the value 0 for Lake Michigan, what
does that tell you about the pollution level in the inflow? In
this case, what happens to the ratio over
time?

PL 
1 t 2 /PL 

10 2

PL 
1 t 2 /PL 

10 2

PL 
1 t 2

PL 
10 2

5
1

k 2 p
 1 ke2pt 2 pe2kt 2 .

PL 
1 t 2 /PL 

10 2
PL 
10 2 ,

Pi 
1 x 2PL 

10 2e2px
a 5 PL 

10 2 .

a . e2pt,
Pi 
1 t 2

e2kt?
PL 
10 2 .

t 5 0

d

dt
 3

t

a

f 1x 2  dx 5 f 1 t 2 .

ekt

PL 
10 2

k 5 r /V

dPL

dt
1 kPL 

1 t 2 5 kPi 
1 t 2 ,
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Lake 50% 20% 10% 5%

Erie 2 4 6 8

Michigan 21 50 71 92

Superior 131 304 435 566

Superior
189

Huron
?

M
ic

hi
ga

n
30

.8

Erie 2.6

Ontario 7.8

FIGURE 11

EXERCISES
1. Calculate the number of years to reduce pollution in Lake Erie

to each level.

a. 40%

b. 30%



DIRECTIONS FOR GROUP PROJECT
Suppose you and three others are employed by an agency that is
concerned about the environmental health of one of the Great
Lakes. Choose one of the lakes, and collect information about levels
of pollution in it. Then, using the information you collected along
with the information given in this application, prepare a public pre-
sentation for a local community organization that describes the lake
and gives possible timelines for reducing pollution in the lake. Use
presentation software such as Microsoft PowerPoint.

7. At the website Wolfram Alpha.com, you can enter 
“ ” to solve the initial value
problem in this Extended Application, where we have used

to represent to represent , and a to rep-
resent Try this, and verify that the solution is equiva-
lent to Equation (1).

8. Repeat Exercise 7, but in place of put ,
the form of used in Exercises 5 and 6. Verify that the
solution is equivalent to the solution given in Exercise 6.

9. Repeat Exercise 8, trying other functions of t in place of 
such as . Find which functions give a recognizable answer,
and verify that answer using Equation (1).

t3
f 1 t 2 ,

PL 1 t 2
 a * e �  12p * t 2f 1 t 2 ,

PL 10 2 .
Pi 1 t 2f 1 t 2PL 1 t 2 ,y 1 t 2

y 10 2 5 a* k,y r 1 t 2 5 1f 1 t 2 2 y 2
0

566



Probability and Calculus
11.1 Continuous Probability Models

11.2 Expected Value and Variance of
Continuous Random Variables

11.3 Special Probability Density Functions

Chapter 11 Review

Extended Application:
Exponential Waiting Times

Though earthquakes may appear to strike at random, the

times between quakes can be modeled with an

exponential density function. Such continuous probability

models have many applications in science, engineering, and

medicine. In an exercise in Section 1 of this chapter we’ll

use an exponential density function to describe the times

between major earthquakes in Southern California, and in

Section 3 we will compute the mean and standard

deviation for this distribution.

11

567
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In recent years, probability has become increasingly useful in fields ranging from
manufacturing to medicine, as well as in all types of research.The foundations of
probability were laid in the seventeenth century by Blaise Pascal (1623–1662) and

Pierre de Fermat (1601–1665), who investigated the problem of the points.This problem
dealt with the fair distribution of winnings in an interrupted game of chance between two
equally matched players whose scores were known at the time of the interruption.

Probability has advanced from a study of gambling to a well-developed, deductive
mathematical system. In this chapter we give a brief introduction to the use of calculus 
in probability.

APPLY IT

Continuous Probability Models
What is the probability that there is a bird’s nest within 0.5 kilometers
of a given point?
In Example 3, we will answer the question posed above.

11.1

In this section, we show how calculus is used to find the probability of certain events.
Before discussing probability, however, we need to introduce some new terminology.

Suppose that a bank is studying the transaction times of its tellers. The lengths of time
spent on observed transactions, rounded to the nearest minute, are shown in the following
table.

*One definition of the probability of an event is the number of outcomes that favor the event divided by the total
number of equally likely outcomes in an experiment.

The table shows, for example, that 9 of the 75 transactions in the study took 3 minutes, 15
transactions took 5 minutes, and 1 transaction took 10 minutes. Because the time for any
particular transaction is a random event, the number of minutes for a transaction is called
a random variable. The frequencies can be converted to probabilities by dividing each
frequency by the total number of transactions (75) to get the results shown in the next
table.*

Because each value of the random variable is associated with just one probability, this
table defines a function. Such a function is called a probability function, and it has the
following special properties.

Frequency of Transaction Times

Time 1 2 3 4 5 6 7 8 9 10

Frequency 3 5 9 12 15 11 10 6 3 1 (Total: 75)

Probability of Transaction Times

Time 1 2 3 4 5 6 7 8 9 10

Probability 0.04 0.07 0.12 0.16 0.20 0.15 0.13 0.08 0.04 0.01



Probability Function of a Random Variable
If the function f is a probability function with domain and is the
probability that event occurs, then for 

and

Note that implies that event will not occur and implies that
event will occur.

The information in the second table can be displayed graphically with a special kind of
bar graph called a histogram. The bars of a histogram have the same width, and their
heights are determined by the probabilities of the various values of the random variable.
See Figure 1.

xi

f 1xi 2 5 1xif 1xi 2 5 0

f 1 x1 2 1 f 1 x2 2 1P1 f 1 xn 2 5 1.

0 " f 1 xi 2 " 1,

1 # i # n,xi

f 1xi 25x1 , x2 ,  * , xn6,
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The probability function in the second table is a discrete probability function because
it has a finite domain—the integers from 1 to 10, inclusive. A discrete probability function
has a finite domain or an infinite domain that can be listed. For example, if we flip a coin
until we get heads, and let the random variable be the number of flips, then the domain is

On the other hand, the distribution of heights (in inches) of college women
includes infinitely many possible measurements, such as 53, 54.2, 66.5, and so on,
within some real number interval. Probability functions with such domains are called con-
tinuous probability distributions.

Continuous Probability Distribution
A continuous random variable can take on any value in some interval of real numbers.
The distribution of this random variable is called a continuous probability distribution.

Some probability functions are inherently discrete. For example, the number of houses
that a real estate agent sells in a year must be an integer, such as 0, 1, or 2, and could never
take on any value in between. But the bank example discussed earlier is different, because
you could think of it as a simplification of a continuous distribution. It would be possible to
time the teller transactions with greater precision—to the nearest tenth of a minute, or even
to the nearest 1/60 of a minute if desired. Theoretically, at least, t could take on any positive
real-number value between, say, 0 and 11 minutes. The graph of the probabilities of
these transaction times can be thought of as the continuous curve shown in Figure 1. As indi-
cated in Figure 1, the curve was derived from our table by connecting the points at the tops of
the bars in the corresponding histogram and smoothing the resulting polygon into a curve.

f 1 t 2

72.3,
1, 2, 3, 4, * .

f t

t

FIGURE 1



To clarify some concepts in probability, we will follow the common convention of
using capital letters to indicate random variables and lower case letters to indicate the val-
ues that the random variables take on. For example, to indicate the probability that a ran-
dom variable takes on the value 2, we will write P(X � 2). To indicate the probability that a
random variable takes on the arbitrary value x, we will write P(X � x).

For a discrete probability function, the area of each bar (or rectangle) gives the proba-
bility of a particular transaction time. Thus, by considering the possible transaction times T
as all the real numbers between 0 and 11, the area under the curve of Figure 2 between any
two values of T can be interpreted as the probability that a transaction time will be between
those two numbers. For example, the shaded region in Figure 2 corresponds to the proba-
bility that T is between a and b, written P 1a # T # b 2 .
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a b

f t

t

FIGURE 2

It was shown earlier that the definite integral of a continuous function f, where
gives the area under the graph of from to If a function f can

be found to describe a continuous probability distribution, then the definite integral can be
used to find the area under the curve from a to b that represents the probability that x will be
between a and b.

If X is a continuous random variable whose distribution is described by the function f on
then

Probability Density Functions A function f that describes a continuous proba-
bility distribution is called a probability density function. Such a function must satisfy the
following conditions.

Probability Density Function
The function f is a probability density function of a random variable X in the interval

if

1. for all x in the interval and

2.

Intuitively, Condition 1 says that the probability of a particular event can never be
negative. Condition 2 says that the total probability for the interval must be 1; something
must happen.

3

a

b

f 1x 2  dx 5 1.

3a, b 4;f 1x 2 $ 0

3a, b 4

P 1 a " X " b 2 5 3

b

a
f 1 x 2  dx.

3a, b 4,

x 5 b.x 5 af 1x 2f 1x 2 $ 0,
FOR REVIEW
The connection between area and 
the definite integral is discussed 
in Chapter 7 on Integration. For 
example, in that chapter we solved
such problems as the following:

Find the area between the x-axis
and the graph of from

to 

Answer: 3

4

1

x2 dx 5 21

x=4.x=1
f(x)=x2



Probability Density Function

(a) Show that the function defined by is a probability density function
for the interval 

SOLUTION First, note that Condition 1 holds; that is, for the interval 
Next show that Condition 2 holds.

Since both conditions hold, is a probability density function.

(b) Find the probability that X will be between 1 and 2.

SOLUTION The desired probability is given by the area under the graph of 
between and as shown in blue in Figure 3. The area is found by using a
definite integral.

TRY YOUR TURN 1

Earlier, we noted that determining a suitable function is the most difficult part of
applying mathematics to actual situations. Sometimes a function appears to model an appli-
cation well but does not satisfy the requirements for a probability density function. In such
cases, we may be able to change the function into a probability density function by multi-
plying it by a suitable constant, as shown in the next example.

Probability Density Function

Is there a constant k such that is a probability density function for the interval

SOLUTION First,

The integral must be equal to 1 for the function to be a probability density function. To con-
vert it to one, let The function defined by for will be a probability
density function, since for all x in and

TRY YOUR TURN 2

An important distinction is made between a discrete probability function and a proba-
bility density function (which is continuous). In a discrete distribution, the probability that
the random variable, X, will assume a specific value is given in the distribution for every
possible value of X. In a probability density function, however, the probability that X equals
a specific value, say, c, is

For a probability density function, only probabilities of intervals can be found. For example,
suppose the random variable is the annual rainfall for a given region. The amount of rainfall
in one year can take on any value within some continuous interval that depends on the
region; however, the probability that the rainfall in a given year will be some specific
amount, say 33.25 in., is actually zero.

P 1X 5 c 2 5 3

c

c

f 1x 2  dx 5 0.

3

4

0

 
3

64
 x2 5 1.

30, 4 41 3 /64 2x2 $ 0
30, 4 41 3 /64 2x2k 5 3 /64.

3

4

0

kx2 dx 5
kx3

3
`
4

0

5
64k

3
 .

30, 4 4?
f 1x 2 5 kx2

P 11 # X # 2 2 5 3

2

1
 

3

26
 x2 dx 5

3

26
 a

x3

3
b `

2

1

5
7

26

x 5 2,x 5 1
f 1x 2

f 1x 2

3

3

1

 
3

26
 x2dx 5

3

26
 a

x3

3
b `

3

1

5
3

26
 a9 2

1

3
b 5 1

31, 3 4.f 1x 2 $ 0

31, 3 4.
f 1x 2 5 1 3 /26 2x2
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EXAMPLE  1

EXAMPLE  2

f x

x

f (x) =      x3
26

2

FIGURE 3

YOUR TURN 1 Repeat 
Example 1(a) for the function

on [1, 2]. What is the
probability that X will be between

and 2?3 /2

f 1 x 2 5 2 /x2

YOUR TURN 2 Repeat 
Example 2 for the function

on the interval [0, 4].f 1x 2 5 kx3



The definition of a probability density function is extended to intervals such as
or by using improper integrals, as

follows.

Probability Density Functions on
If f is a probability density function for a continuous random variable X on 
then

The total area under the graph of a probability density function of this type must still equal 1.

Location of a Bird’s Nest

Suppose the random variable X is the distance (in kilometers) from a given point to the
nearest bird’s nest, with the probability density function of the distribution given by

for 

(a) Show that is a probability density function.

SOLUTION Since is always positive, and 

and Condition 1 holds.
Use substitution to evaluate the definite integral Let so

that and

Then

and Condition 2 holds.
The function defined by satisfies the two conditions required of a

probability density function.

(b) Find the probability that there is a bird’s nest within 0.5 km of the given point.

SOLUTION Find where This probability is given by

P 10 # X # 0.5 2 5 3

0.5

0

2xe2x2

 dx.

X $ 0.P 1X # 0.5 2

f 1x 2 5 2xe2x2

 5 lim
bl`

 a2 

1

eb2 1 e0b 5 0 1 1 5 1,

 3

`

0

2xe2x2

 dx 5 lim
bl`

 3

b

0

2xe2x2

 dx 5 lim
bl`

12e2x2 2 `
b

0

 5 23eu du 5 2eu 5 2e2x2

.

 32xe2x2

 dx 5 23e2x2 122x dx 2

du 5 22x dx,
u 5 2x2,e`

0 2xe2x2

 dx.

f1x 2 5 2xe2x2

$ 0,

x $ 0,e2x2

5 1 /ex2

f 1x 2

x $ 0.f 1x 2 5 2xe2x2

 P 12` * X * ` 2 5 3

`

2`

f 1 x 2  dx 5 1.

 P 1X # a 2 5 P 1X + a 2 5 3

`

a
f 1 x 2  dx,

 P 1X " b 2 5 P 1X * b 2 5 3

b

2`

f 1 x 2  dx,

12`, ` 2 ,
12`, ` 2

12`, ` 21a, ` 2 ,3a, ` 2 ,12`, b 2 ,12`, b 4,
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EXAMPLE  3

FOR REVIEW
Improper integrals, those with 
one or two infinite limits, were
discussed in Chapter 8 on 
Further Techniques and Applica-
tions of Integration. The type of
improper integral we shall need
was defined as

For example,

 5 0 1 1 5 1.

 5 lim
bl`

 a2  

1

b
1

1

1
b

 5 lim
bl`

 a2  

1

x
 `

b

1
b

 3

`

1

x22 dx 5 lim
bl`

3

b

1

x22 dx

3

`

a

f 1x 2  dx 5 lim
bl`

 3

b

a

f 1x 2  dx.

APPLY IT 



(a) Plot the data.

SOLUTION Figure 4 shows that the plot appears to have the shape of a polynomial.

(b) Find a polynomial equation that models the number of deaths, , as a function of
the number of years, t, since age 50. Use the midpoints and the number of deaths in
each interval from the table above.

SOLUTION The highest degree polynomial that the regression feature on a TI-84 Plus
calculator can find is fourth degree. As Figure 5(a) shows, this roughly captures the
behavior of the data, but it has two drawbacks. For one, it doesn’t reach the highest data
points. Also, it’s decreasing in the beginning when it should be increasing. Higher degree
polynomials can be fit using Excel or using the Multiple Regression tool on the Statistics
with List Editor application for the TI-89. We were thus able to find that the function

fits the data quite well, as shown in Figure 5(b).

  67.867t2 2 110.3t 1 2485.1

 N 1 t 2 5 5.03958 3 1025t6 2 0.006603t5 1 0.2992t4 2 6.0507t3 1

N 1 t 2

Now evaluate the integral. The indefinite integral was found in part (a).

The probability that a bird’s nest will be found within 0.5 km of the given point is
about 0.22. TRY YOUR TURN 3

Computing Mortality

According to the National Center for Health Statistics, if we start with 100,000 people who
are 50 years old, we can expect a certain number of them to die within each 5-year interval,
as indicated by the following table.* Source: National Vital Statistics Reports.

 < 20.7788 1 1 5 0.2212

 5 2e210.522 2 12e0 2 5 2e20.25 1 1

 P 10 # X # 0.5 2 5 3

0.5

0

2xe2x2

 dx 5 12e2x2 2 `
0.5

0
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EXAMPLE  4

YOUR TURN 3 Using the
probability density function of
Example 3, find the probability that
there is a bird’s nest within 1 km of
the given point.

Life Table
Years from Midpoint of Number Dying

Age 50 Interval in Each Interval

0– 5 2.5 2565
5–10 7.5 3659

10–15 12.5 5441
15–20 17.5 7622
20–25 22.5 10,498
25–30 27.5 13,858
30–35 32.5 16,833
35–40 37.5 16,720
40–45 42.5 13,211
45–50 47.5 7068
50–55 52.5 2525

0 55

18,000

0

FIGURE 4

0 55

18,000

0

FIGURE 5

0 55

18,000

0
(a) (b)

*For simplicity, we have placed all those who lived past 100 in the class of those who lived from 100 to 105.

TECHNOLOGY 



(c) Use the answer from part (b) to find a probability density function for the random vari-
able T representing the number of additional years that a 50-year-old person lives.

SOLUTION We will construct a density function by finding a suitable
constant k, as we did in Example 2. The graph of the function turns up after t � 52.5,
which is unlikely for the actual mortality function, so we will restrict the domain of the
density function to the interval [0, 52.5], even though this ignores those who live more
than 102.5 years. Using the integration feature on our calculator, we find that

Notice that this number is close to the product of 5 years (interval length) and 100,000
(the total number of people). This is not a coincidence! We set the above integral equal
to 1 to get k � 1/497,703. The function defined by

is a probability density function for [0, 52.5] because

(d) Find the probability that a randomly chosen 50-year-old person will live at least until
age 70.

SOLUTION Again using the integration feature on our calculator,

Thus a 50-year-old person has a 80.54% chance of living at least until age 70.
Notice that this value could also be estimated from the table by finding the number

of people who have not died by age 70 and then dividing this number by 100,000.
Thus, according to our table, there are 80,713 people still alive at age 70, representing
80.7% of the original population. As you can see, our estimate agrees quite well with
the actual number.

Another important concept in probability is the cumulative distribution function,
which gives the probability that a random variable X is less than or equal to an arbitrary
value x.

Cumulative Distribution Function
If f is a probability density function of a random variable in the interval [a, b], then the
cumulative distribution function is defined as

for Also, F(x) � 0 for x � a.x $ a.

F 1 x 2 5 P 1X " x 2 5 3

x

a
f 1 t 2  dt

P 1T $ 20 2 5 3

52.5

20

S 1 t 2dt < 0.8054.

3

52.5

0

S 1 t 2  dt 5 1,   and S 1 t 2 $ 0 for all t in 30, 52.5 4.

2 6.0507t3 1 67.867t2 2 110.3t 1 2485.1 2

 5
1

497,703
 15.03958 3 1025t6 2 0.006603t5 1 0.2992t4

 S 1 t 2 5
1

497,703
 N 1 t 2

3

52.5

0

S 1 t 2dt 5 k3

52.5

0

N 1 t 2dt 5 497,703k.

S 1 t 2 5 kN 1 t 2
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NOTE
1. We integrate with respect to the variable t in the integral, rather than x, because we are

already using x for the upper limit on the integral. It doesn’t matter what variable of integra-
tion is used in a definite integral, since that variable doesn’t appear in the final answer. We
just need to use a variable that’s not being used for another purpose.

2. If the random variable is defined on the interval (��, �), simply replace a with ��
in the above definition.

Cumulative Distribution Function

Consider the random variable X defined in Example 3, giving the distance (in kilometers)
from a given point to the nearest bird’s nest, with probability density function 
for 

(a) Find the cumulative distribution function for this random variable.

SOLUTION The cumulative distribution function is given by

Use the density function with t
as the variable

Use the antiderivative found in 
Example 3.

for . The cumulative distribution function can be written as for
. Note that for , .

(b) Use the solution to part (a) to calculate the probability that there is a bird’s nest within
0.5 km of the given point.

SOLUTION To find , calculate Notice that
this is the same answer that we found in Example 3(b). TRY YOUR TURN 4

F 10.5 2 5 1 2 e20.5 
2

< 0.2212.P 1X # 0.5 2

F 1x 2 5 0x , 0x $ 0
F 1x 2 5 1 2 e2x2

x $ 0

 5 2e2x2

1 1

 5 2e2t2

`
x

0

 F 1x 2 5 P 1X # x 2 5 3

x

0

2te2t2

dt

x $ 0.
f 1x 2 5 2xe2x2

EXAMPLE  5

YOUR TURN 4 Use part  (a)
of Example 5 to calculate the proba-
bility that there is a bird’s nest
within 1 km of the given point.

11.1 EXERCISES
Decide whether the functions defined as follows are probability
density functions on the indicated intervals. If not, tell why.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

Find a value of k that will make f a probability density function
on the indicated interval.

11. 12. f 1x 2 5 kx3/2; 34, 9 4f 1x 2 5 kx1/2; 31, 4 4

f 1x 2 5
3

13
 x2 2

12

13
 x 1

45

52
 ; 30, 4 4

f 1x 2 5
5

3
 x2 2

5

90
 ; 321, 1 4

f 1x 2 5 2x2; 321, 1 4f 1x 2 5
x2

16
 ; 322, 2 4

f 1x 2 5
x3

81
 ; 30, 3 4f 1x 2 5 4x3; 30, 3 4

f 1x 2 5
3

98
 x2; 33, 5 4f 1x 2 5

x2

21
 ; 31, 4 4

f 1x 2 5
1

3
 x 2

1

6
 ; 33, 4 4f 1x 2 5

1

9
 x 2

1

18
 ; 32, 5 4

13. 14.

15. 16.

17. 18.

Find the cumulative distribution function for the probability
density function in each of the following exercises.

19. Exercise 1 20. Exercise 2

21. Exercise 3 22. Exercise 4

23. Exercise 11 24. Exercise 12

25. The total area under the graph of a probability density function
always equals .

26. In your own words, define a random variable.

27. What is the difference between a discrete probability function
and a probability density function?

28. Why is for any number c in the domain of a
probability density function?

P 1X 5 c 2 5 0

f 1x 2 5 kx3; 32, 4 4f 1x 2 5 kx; 31, 5 4
f 1x 2 5 kx; 32, 3 4f 1x 2 5 kx; 30, 3 4
f 1x 2 5 kx2; 321, 2 4f 1x 2 5 kx2; 30, 5 4



Show that each function defined as follows is a probability 
density function on the given interval; then find the indicated
probabilities.

29.

a. b.

c.

30.

a. b.

c.

31.

a. b.

c.

32.

a. b.

c.

33.

a. b.

c.

34.

a. b.

c.

APPLICATIONS
Business and Economics

35. Life Span of a Computer Part The life (in months) of a cer-
tain electronic computer part has a probability density function
defined by

Find the probability that a randomly selected component will
last the following lengths of time.

a. At most 12 months

b. Between 12 and 20 months

c. Find the cumulative distribution function for this random
variable.

d. Use the answer to part c to find the probability that a ran-
domly selected component will last at most 6 months.

f 1 t 2 5
1

2
 e2t/2 for t in 30, ` 2 .

P 10 # X # 2 2
P 1X $ 1 2P 10 # X # 1 2

f 1x 2 5 μ

20x4

9
if 0 # x # 1

20

9x5 if x . 1

P 1 1 # X # 3 2
P 1X $ 2 2P 10 # X # 2 2

f 1x 2 5 μ

x3

12
if 0 # x # 2

16

3x3 if x . 2

P 1X $ 5 2
P 1 1 # X # 5 2P 10 # X # 1 2

f 1x 2 5
20

1x 1 20 2 2
 ; 30, ` 2

P 1X $ 2 2
P 1 1 # X # 3 2P 10 # X # 1 2

f 1x 2 5 1 1 /2 2e2x/2; 30, ` 2

P 1X # 2 2
P 1 1 # X # 2 2 P 10 # X # 1 2

f 1x 2 5 e2x; 30, ` 2
P 1X $ 5 2

P 1 1 # X # 3 2P 10 # X # 2 2

f 1x 2 5
1

2
 1 1 1 x 223/2; 30, ` 2
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36. Machine Life A machine has a useful life of 4 to 9 years, and its
life (in years) has a probability density function defined by

Find the probabilities that the useful life of such a machine
selected at random will be the following.

a. Longer than 6 years

b. Less than 5 years

c. Between 4 and 7 years

d. Find the cumulative distribution function for this random
variable.

e. Use the answer to part d to find the probability that a 
randomly selected machine has a useful life of at most
8 years.

37. Machine Part The lifetime of a machine part has a continu-
ous distribution on the interval (0, 40) with probability density
function f, where f(x) is proportional to Calculate
the probability that the lifetime of the machine part is less
than 6. Choose one of the following. Source: Society of
Actuaries.

a. 0.04 b. 0.15 c. 0.47 d. 0.53 e. 0.94

38. Insurance An insurance policy pays for a random loss X sub-
ject to a deductible of C, where 0 � C � 1. The loss amount is
modeled as a continuous random variable with density function

Given a random loss X, the probability that the insurance
payment is less than 0.5 is equal to 0.64. Calculate C. 
Choose one of the following. (Hint: The payment is 0 unless
the loss is greater than the deductible, in which case the pay-
ment is the loss minus the deductible.) Source: Society of
Actuaries.

a. 0.1 b. 0.3 c. 0.4 d. 0.6 e. 0.8

Life Sciences

39. Petal Length The length of a petal on a certain flower varies
from 1 cm to 4 cm and has a probability density function
defined by

Find the probabilities that the length of a randomly selected
petal will be as follows.

a. Greater than or equal to 3 cm

b. Less than or equal to 2 cm

c. Between 2 cm and 3 cm

40. Clotting Time of Blood The clotting time of blood is a ran-
dom variable t with values from 1 second to 20 seconds and
probability density function defined by

f 1 t 2 5
1

1 ln 20 2 t
 .

f 1x 2 5
1

2 "x
 .

f 1x 2 5 e
2x for 0 , x , 1

0 otherwise.

1 10 1 x 222.

f 1 t 2 5
1

11
 a1 1

3

"t
b .



Find the following probabilities for a person selected at
random.

a. The probability that the clotting time is between 1 and 
5 seconds

b. The probability that the clotting time is greater than 10 seconds

41. Flour Beetles Researchers who study the abundance of the
flour beetle, Tribolium castaneum, have developed a proba-
bility density function that can be used to estimate the abun-
dance of the beetle in a population. The density function,
which is a member of the gamma distribution, is

where x is the size of the population. Source: Ecology.

a. Estimate the probability that a randomly selected flour bee-
tle population is between 0 and 150.

b. Estimate the probability that a randomly selected flour bee-
tle population is between 100 and 200.

42. Flea Beetles The mobility of an insect is an important part of
its survival. Researchers have determined that the probability
that a marked flea beetle, Phyllotreta cruciferae and Phyl-
lotreta striolata, will be recaptured within a certain distance
and time after release can be calculated from the probability
density function

where t is the time after release (in hours), x is the distance (in
meters) from the release point that recaptures occur, L is the
maximum distance from the release point that recaptures can
occur, and D is the diffusion coefficient. Source: Ecology
Monographs.

a. If and find the probability that a flea
beetle will be recaptured within 3 m of the release point. 

b. Using the same values for t, L, and D, find the probability
that a flea beetle will be recaptured between 1 and 5 m of the
release point.

Social  Sciences

43. Social Network The number of U.S. users (in millions) on
Facebook, a computer social network, in 2009 is given in the
table below. Source: Inside Facebook.

D 5 38.3,L 5 6,t 5 12,

p 1x, t 2 5
e2x2/14Dt2

3

L

0

e2u2/14Dt2 du

,

f 1x 2 5 1.185 3 1029x4.5222e20.049846x,
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a. Plot the data. What type of function appears to best match
this data?

b. Use the regression feature on your graphing calculator to
find a quartic equation that models the number of years, 
t, since birth and the number of Facebook users, .
Use the midpoint value to estimate the point in each
interval for the age of the Facebook user. Graph the func-
tion with the plot of the data. Does the function resemble
the data?

c. By finding an appropriate constant k, find a function
that is a probability density function

describing the probability of the age of a Facebook user.
(Hint: Because the function in part b is negative for values
less than 13.4 and greater than 62.0, restrict the domain of
the density function to the interval [13.4, 62.0]. That is,
integrate the function you found in part b from 13.4 to
62.0.)

d. For a randomly chosen person who uses Facebook, find
the probabilities that the person was at least 35 but less
than 45 years old, at least 18 but less than 35 years old,
and at least 45 years old. Compare these with the actual
probabilities.

44. Time to Learn a Task The time required for a person to learn
a certain task is a random variable with probability density
function defined by

The time required to learn the task is between 3 and 10 minutes.
Find the probabilities that a randomly selected person will
learn the task in the following lengths of time.

a. Less than 4 minutes

b. More than 5 minutes

Physical  Sciences

45. Annual Rainfall The annual rainfall in a remote Middle East-
ern country varies from 0 to 5 in. and is a random variable with
probability density function defined by

Find the following probabilities for the annual rainfall in a ran-
domly selected year.

a. The probability that the annual rainfall is greater than 3 in. 

b. The probability that the annual rainfall is less than 2 in. 

c. The probability that the annual rainfall is between 1 in. and
4 in.

46. Earthquakes The time between major earthquakes in the
Southern California region is a random variable with probabil-
ity density function

f 1 t 2 5
1

960
 e2t/960,

f 1x 2 5
5.5 2 x

15
 .

f 1 t 2 5
8

7 1 t 2 2 2 2
 .

S 1 t 2 5 kN 1 t 2

N 1 t 2

Number of Users
Age Interval Midpoint of in Each Interval

(years) Interval (year) (millions)

13–17 15 6.049

18–25 21.5 19.461

26–34 30 13.423

35–44 39.5 9.701

45–54 49.5 4.582

55–65 60 2.849

Total 56.065



where t is measured in days. Source: Journal of Seismology.

a. Find the probability that the time between a major earth-
quake and the next one is less than 365 days.

b. Find the probability that the time between a major earth-
quake and the next one is more than 960 days.

47. Earthquakes The time between major earthquakes in the
Taiwan region is a random variable with probability density
function

where t is measured in days. Source: Journal of Seismology.

a. Find the probability that the time between a major earth-
quake and the next one is more than 1 year but less than 3
years.

b. Find the probability that the time between a major earth-
quake and the next one is more than 7300 days.

General Interest

48. Drunk Drivers The frequency of alcohol-related traffic fatali-
ties has dropped in recent years but is still high among young
people. Based on data from the National Highway Traffic
Safety Administration, the age of a randomly selected, alcohol-
impaired driver in a fatal car crash is a random variable with
probability density function given by

Find the following probabilities of the age of such a driver.
Source: Traffic Safety Facts. 

a. Less than or equal to 25

b. Greater than or equal to 35

c. Between 21 and 30

d. Find the cumulative distribution function for this random
variable.

e. Use the answer to part d to find the probability that a ran-
domly selected alcohol-impaired driver in a fatal car crash is
at most 21 years old.

49. Driving Fatalities We saw in a review exercise in Chapter 4
on Calculating the Derivative that driver fatality rates were
highest for the youngest and oldest drivers. When adjusted for
the number of miles driven by people in each age group, the
number of drivers in fatal crashes goes down with age, and the
age of a randomly selected driver in a fatal car crash is a ran-
dom variable with probability density function given by

Find the following probabilities of the age of such a driver.
Source: National Highway Traffic Safety Administration.

a. Less than or equal to 25

b. Greater than or equal to 35

c. Between 21 and 30

f 1 t 2 5 0.06049e20.03211t for t in 316, 84 4.

f 1 t 2 5
4.045

t1.532  for t in 316, 80 4.

f 1 t 2 5
1

3650.1
 e2t/3650.1,
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d. Find the cumulative distribution function for this random
variable.

e. Use the answer to part d to find the probability that a ran-
domly selected driver in a fatal crash is at most 21 years old.

50. Length of a Telephone Call The length of a telephone call (in
minutes), t, for a certain town is a continuous random variable
with probability density function defined by

Find the probabilities for the following situations.

a. The call lasts between 1 and 2 minutes.

b. The call lasts between 3 and 5 minutes.

c. The call lasts longer than 3 minutes.

51. Time of Traffic Fatality The National Highway Traffic Safety
Administration records the time of day of fatal crashes. The
following table gives the time of day (in hours since midnight)
and the frequency of fatal crashes. Source: The National
Highway Traffic Safety Administration.

f 1 t 2 5 3t24, for t in 31, ` 2 .

Midpoint of
Time of Day Interval (hours) Frequency

0–3 1.5 4486

3–6 4.5 2774

6–9 7.5 3236

9–12 10.5 3285

12–15 13.5 4356

15–18 16.5 5325

18–21 19.5 5342

21–24 22.5 4952

Total 33,756

a. Plot the data. What type of function appears to best match
this data?

b. Use the regression feature on your graphing calculator to
find a cubic equation that models the time of day, t, and the
number of traffic fatalities, . Use the midpoint value
to estimate the time in each interval. Graph the function
with the plot of the data. Does the graph fit the data?

c. By finding an appropriate constant k, find a function 
that is a probability density function describing the

probability of a traffic fatality at a particular time of day.

d. For a randomly chosen traffic fatality, find the probabilities
that the accident occurred between 12 am and 2 am (t � 0
to t � 2) and between 4 pm and 5:30 pm (t � 16 to 
t � 17.5).

YOUR TURN ANSWERS 

1. 2.

3. 0.6321 4. 0.6321

k 5 1 /64P a
3

2
# X # 2b 5

1

3

kT 1 t 2
S 1 t 2 5

T 1 t 2



It often is useful to have a single number, a typical or “average” number, that repre-
sents a random variable. The mean or expected value for a discrete random variable is
found by multiplying each value of the random variable by its corresponding probability, as
follows.

Expected Value
Suppose the random variable X can take on the n values, Also, suppose
the probabilities that each of these values occurs are, respectively, 
Then the mean, or expected value, of the random variable is

For the banking example in the previous section, the expected value is given by

Thus, the average time a person can expect to spend with the bank teller is 5.09 minutes.
This definition can be extended to continuous random variables by using definite

integrals. Suppose a continuous random variable has probability density function f on
We can divide the interval from a to b into n subintervals of length where

In the ith subinterval, the probability that the random variable takes a
value close to is approximately and so

As the limit of this sum gives the expected value

The variance of a probability distribution is a measure of the spread of the values
of the distribution. For a discrete distribution, the variance is found by taking the expected
value of the squares of the differences of the values of the random variable and the mean. If
the random variable X takes the values with respective probabilities

and mean then the variance of X is

Think of the variance as the expected value of which measures how far X is
from the mean The standard deviation of X is defined as

s 5 "Var 1X 2 .

m.
1X 2 m 2 2,

Var 1X 2 5 a

n

i51

 1xi 2 m 2 2pi .

m,p1 , p2 , p3 , * , pn

x1 , x2 , x3 , * , xn ,

m 5 3

b

a

x f 1 x 2  dx.

nl `,

m < a

n

i51

xif 1 xi 2  Dx.

f 1xi 2  Dx,xi

Dx 5 1b 2 a 2 /n.
Dx,3a, b 4.

 5 5.09.

  1 7 10.13 2 1 8 10.08 2 1 9 10.04 2 1 10 10.01 2
 m 5 1 10.04 2 1 2 10.07 2 1 3 10.12 2 1 4 10.16 2 1 5 10.20 2 1 6 10.15 2

m 5 x1 p1 1 x2 p2 1 x3p3 1P1 xnpn 5 a

n

i51
xipi  .

p1 , p2 , p3 , * , pn .
x1 , x2 , x3 , * , xn .
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APPLY IT

Expected Value and Variance of 
Continuous Random Variables
What is the average age of a drunk driver in a fatal car crash?
You will be asked to answer this question in Exercise 40.

11.2



For the banking example in the previous section, the variance and standard deviation are

and

Like the mean or expected value, the variance of a continuous random variable is an
integral.

To find the standard deviation of a continuous probability distribution, like that of a
discrete distribution, we find the square root of the variance. The formulas for the expected
value, variance, and standard deviation of a continuous probability distribution are summa-
rized here.

Expected Value, Variance, and Standard Deviation
If X is a continuous random variable with probability density function f on then
the expected value of X is

The variance of X is

and the standard deviation of X is

NOTE In the formulas for expected value, variance, and standard deviation, and all other for-
mulas in this section, it is possible that a � �� or b � �, in which case the density function f is
defined on [a, �), (��, b], or (��, �). In this case, the integrals in these formulas become
improper integrals, which are handled according to the procedure described in Section 8.4 on
Improper Integrals. Example 2 will illustrate this procedure.

Geometrically, the expected value (or mean) of a probability distribution represents the
balancing point of the distribution. If a fulcrum were placed at on the x-axis, the figure
would be in balance. See Figure 6.

m

s 5"Var 1X 2  .

Var 1X 2 5 3

b

a

1 x 2 m 2 2 f 1 x 2  dx,

E 1X 2 5 m 5 3

b

a
xf 1 x 2  dx.

3a, b 4,

Var 1X 2 5 3

b

a

1x 2 m 2 2f 1x 2  dx

s 5 "Var 1X 2 < 2.0450.

 5 4.1819

  1 1 10 2 5.09 2 2 10.01 2
  1 1 7 2 5.09 2 2 10.13 2 1 1 8 2 5.09 2 2 10.08 2 1 1 9 2 5.09 2 2 10.04 2
  1 14 2 5.09 2 2 10.16 2 1 1 5 2 5.09 2 2 10.20 2 1 1 6 2 5.09 2 2 10.15 2

 Var 1X 2 5 1 1 2 5.09 2 2 10.04 2 1 12 2 5.09 2 2 10.07 2 1 1 3 2 5.09 2 2 10.12 2
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Expected Value and Variance

Find the expected value and variance of the random variable X with probability density
function defined by on 

SOLUTION By the definition of expected value just given,

or about 2.3077.
The variance is

Square 

Multiply.

Integrate.

From the variance, the standard deviation is The expected 
value and standard deviation are shown on the graph of the probability density function 
in Figure 8. TRY YOUR TURN 1

s <  "0.2592 < 0.5091.

 < 0.2592.
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μ
Small 

μ
Large 

FIGURE 7

YOUR TURN 1 Repeat 
Example 1 for the probability 

density function 

on [1, 2].

f 1 x 2 5
8

3x3

EXAMPLE  1

0 2 31

0.5

1.0

f (x)

x

f (x) =      x3
26

2

 = 0.5091
= 2.3077�

�

1 1

FIGURE 8

The variance and standard deviation of a probability distribution indicate how closely
the values of the distribution cluster about the mean. These measures are most useful for
comparing different distributions, as in Figure 7.



Calculating the variance in the last example was a messy job. An alternative version of the
formula for the variance is easier to compute. This alternative formula is derived as follows.

(1)

By definition,

and, since is a probability density function,

Substitute back into Equation (1) to get the alternative formula,

Alternative Formula for Variance
If X is a random variable with probability density function f on and if 
then

.

Notice that the term comes after the dx and so is not integrated.

Variance

Use the alternative formula for variance to compute the variance of the random variable X
with probability density function defined by for 

SOLUTION To find the variance, first find the expected value:

or 1.5. Now find the variance by the alternative formula for variance:

TRY YOUR TURN 2 5 3 2
9

4
5

3

4
 , or 0.75.
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23
x
b `
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xf 1x 2dx 5 3

`

1

x . 3
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x $ 1.f 1x 2 5 3 /x4
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Var 1X 2 5 3

b
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x2 f 1 x 2  dx 2 m2

E 1X 2 5 m,3a, b 4,

Var 1X 2 5 3

b

a

x2f 1x 2  dx 2 2m2 1 m2 5 3

b

a

x2f 1x 2  dx 2 m2.

3

b

a

f 1x 2  dx 5 1.

f 1x 2

3

b

a

xf 1x 2  dx 5 m,

 5 3

b

a

x2f 1x 2  dx 2 2m3

b
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xf 1x 2  dx 1 m2
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CAUTION

EXAMPLE  2

YOUR TURN 2 Repeat 
Example 2 for the probability 
density function 
for x � 1.

f 1x 2 5 4 /x5



Passenger Arrival

A recent study has shown that airline passengers arrive at the gate with the amount of time
(in hours) before the scheduled flight time given by the probability density function

for 

(a) Find and interpret the expected value for this distribution.

SOLUTION The expected value is

This result indicates that passengers arrive at the gate an average of 1 hour before the
scheduled flight time.

(b) Compute the standard deviation.

SOLUTION First compute the variance. We use the alternative formula.

The standard deviation is 

(c) Calculate the probability that passengers will arrive at the gate within one standard
deviation of the mean.

SOLUTION Since the mean, or expected value, is 1 and the standard deviation is
approximately 0.45, we are calculating the probability that passengers will arrive
between 

and 

before the scheduled flight time. The probability is given by

.

Evaluating the integral gives

.

The probability that passengers will arrive within one standard deviation of the mean
is about 0.63.

3

1.45

0.55

3

4
 12t 2 t2 2dt 5

3

4
 at2 2

t3

3
 b `

1.45

0.55

< 0.6294

P 10.55 # T # 1.45 2 5 3

1.45

0.55

3

4
 12t 2 t2 2dt

m 1 s 5 1 1 0.45 5 1.45 hours

m 2 s 5 1 2 0.45 5 0.55 hours

s 5 "1 /5 < 0.45.
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Life Expectancy

In the previous section of this chapter we used statistics compiled by the National Center
for Health Statistics to determine a probability density function that can be used to study
the proportion of all 50-year-olds who will be alive in t years. The function is given by

for 

(a) Find the life expectancy of a 50-year-old person.

SOLUTION Since this is a complicated function that is tedious to integrate analyti-
cally, we will employ the integration feature on a TI-84 Plus calculator to calculate

According to life tables, the life expectancy of a person between the ages of 50 and 55 is
30.6 years. Our estimate is remarkably accurate given the limited number of data points
and the function used in our original analysis. Life expectancy is generally calculated
with techniques from life table analysis. Source: National Center for Health Statistics.

(b) Find the standard deviation of this probability function.

SOLUTION Using the alternate formula, we first calculate the variance.

Thus, 

As we mentioned earlier, the expected value is also referred to as the mean of the ran-
dom variable. It is a type of average. There is another type of average, known as the median,
that is often used. It is the value of the random variable for which there is a 50% probability
of being larger and a 50% probability of being smaller. The precise definition is as follows.

Median
If X is a random variable with probability density function f on [a, b], then the median
of X is the number m such that

The median is particularly useful when the random variable is not distributed symmet-
rically about the mean. An example of this would be a random variable representing the
price of homes in a city. There is a small probability that a home will be much more expen-
sive than most of the homes in the city, and this tends to make the mean abnormally high.
The median price is a better representation of the average price of a home.

Median

Find the median for the random variable described in Example 2, with density function
defined by for x � 1.

SOLUTION According to the formula,

3

m

1

3

x4   dx 5
1

2
.

f 1x 2 5 3 /x4

3

m

a
f 1 x 2  dx 5

1
2

.

s 5 "Var 1T 2 < 11.61 years.

Var 1T 2 5 3

52.5

0

t2S 1 t 2dt 2 m2 5 1057.7195 2 1 30.38 2 2 < 134.775

m 5 3

52.5

0

tS 1 t 2dt < 30.38 years.

0 # t # 52.5.

2 6.0507t3 1 67.867t2 2 110.3t 1 2485.1 2

S 1 t 2 5
1

497,703
 1 5.03958 3 1025t6 2 0.006603t 

5 1 0.2992t4
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Evaluating the integral on the left, we have

Set this equal to .

Subtract 1/2 from both sides, and add 1/m3.

m3 � 2 Cross multiply.

The median value is, therefore, . Notice that this is smaller than the mean of
1.5 found in Example 2. This is because the random variable can take on arbitrarily large
values, which pulls up the mean but doesn’t affect the median. TRY YOUR TURN 3

Using the notion of cumulative distribution function from the previous section, we can
say that the median m is the value for which the cumulative distribution function is 0.5; that
is, F(m) � 0.5.

"3 2 < 1.2599

m 5 "3 2

1

2
5

1

m3

2
1

m3 1 1 5
1

2

1 /2

2
1

x3
 `

m

1

5 2
1

m3 1 1.

YOUR TURN 3 Repeat 
Example 5 for the probability 
density function 
for x � 1.

f 1x 2 5 4 /x5

In Exercises 1–8, a probability density function of a random
variable is defined. Find the expected value, the variance, and 
the standard deviation. Round answers to the nearest hundredth.

1. 2.

3. 4.

5.

6.

7. 8.

9. What information does the mean (expected value) of a contin-
uous random variable give?

10. Suppose two random variables have standard deviations
of 0.10 and 0.23, respectively. What does this tell you about
their distributions?

In Exercises 11–14, the probability density function of a random
variable is defined.

a. Find the expected value to the nearest hundredth.

b. Find the variance to the nearest hundredth.

c. Find the standard deviation. Round to the nearest hundredth.

f 1x 2 5 3x24; 31, ` 2f 1x 2 5 4x25; 31, ` 2

f 1x 2 5
1

11
 a1 1

3

"x
b; 34, 9 4

f 1x 2 5 1 2
1

"x
 ; 31, 4 4

f 1x 2 5 2 1 1 2 x 2 ; 30, 1 4f 1x 2 5
x

8
2

1

4
 ; 32, 6 4

f 1x 2 5
1

10
 ; 30, 10 4f 1x 2 5

1

4
 ; 33, 7 4

d. Find the probability that the random variable has a value
greater than the mean.

e. Find the probability that the value of the random variable is
within 1 standard deviation of the mean. Use the value of the
standard deviation to the accuracy of your calculator.

11. 12.

13.

14.

For Exercises 15–20, (a) find the median of the random variable
with the probability density function given, and (b) find the
probability that the random variable is between the expected
value (mean) and the median. The expected value for each of
these functions was found in Exercises 1–8.

15. 16.

17. 18.

19. 20. f 1x 2 5 3x24; 31, ` 2f 1x 2 5 4x25; 31, ` 2

f 1x 2 5 2 1 1 2 x 2 ; 30, 1 4f 1x 2 5
x

8
2

1

4
 ; 32, 6 4

f 1x 2 5
1

10
 ; 30, 10 4f 1x 2 5

1

4
 ; 33, 7 4

f 1x 2 5
3

16
 14 2 x2 2 ; 30, 2 4

f 1x 2 5
1

4
 x3, 30, 2 4

f 1x 2 5
x21/3

6
 ; 30, 8 4f 1x 2 5

"x

18
 ; 30, 9 4
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Find the expected value, the variance, and the standard devia-
tion, when they exist, for each probability density function.

21.

22.

23. Let X be a continuous random variable with density function

Calculate the expected value of X. Source: Society of Actuaries.
Choose one of the following.

a. b. c. 1 d. e.

APPLICATIONS
Business and Economics

24. Life of a Light Bulb The life (in hours) of a certain kind of
light bulb is a random variable with probability density func-
tion defined by

a. What is the expected life of such a bulb?

b. Find 

c. Find the probability that one of these bulbs lasts longer than
1 standard deviation above the mean.

d. Find the median life of these bulbs.

25. Machine Life The life (in years) of a certain machine is a ran-
dom variable with probability density function defined by

a. Find the mean life of this machine.

b. Find the standard deviation of the distribution.

c. Find the probability that a particular machine of this kind
will last longer than the mean number of years.

26. Life of an Automobile Part The life span of a certain automo-
bile part (in months) is a random variable with probability den-
sity function defined by

a. Find the expected life of this part.

b. Find the standard deviation of the distribution.

c. Find the probability that one of these parts lasts less than the
mean number of months.

d. Find the median life of these parts.

f 1 t 2 5
1

2
 e2t/2 for t in 30, ` 2 .

f 1 t 2 5
1

11
 a1 1

3

"t
b for t in 34, 9 4.

s.

f 1 t 2 5
1

58 "t
 for t in 31,900 4.

12 /528 /153 /51 /5

f 1x 2 5 c 0 x 010
for 22 # x # 4

   
0 otherwise.

f 1x 2 5 d20x4

9
 if 0 # x # 1

20

9x5 if x . 1

f 1x 2 5 d x3

12
if 0 # x # 2

16

3x3 if x . 2
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27. Losses After Deductible A manufacturer’s annual losses fol-
low a distribution with density function

To cover its losses, the manufacturer purchases an insurance pol-
icy with an annual deductible of 2. What is the mean of the man-
ufacturer’s annual losses not paid by the insurance policy?
Choose one of the following. (Hint: The loss not paid by the
insurance policy will equal the actual loss if the actual loss is
less than the deductible. Otherwise it will equal the deductible.)
Source: Society of Actuaries.

a. 0.84 b. 0.88 c. 0.93 d. 0.95 e. 1.00

28. Insurance Reimbursement An insurance policy reimburses a
loss up to a benefit limit of 10. The policyholder’s loss, Y,
follows a distribution with density function:

What is the expected value of the benefit paid under the insur-
ance policy? Choose one of the following. (Hint: The benefit
paid will be equal to the actual loss if the actual loss is less
than the limit. Otherwise it will equal the limit.) Source: Society
of Actuaries.

a. 1.0 b. 1.3 c. 1.8 d. 1.9 e. 2.0

29. Insurance Claims An insurance company’s monthly claims are
modeled by a continuous, positive random variable X, whose
probability density function is proportional to ,
where 0 � x � �. Determine the company’s expected monthly
claims. Choose one of the following. Source: Society of
Actuaries.

a. 1/6 b. 1/3 c. 1/2 d. 1 e. 3

30. Dental Insurance An insurance policy reimburses dental
expense, X, up to a maximum benefit of 250. The probability
density function for X is

where c is a constant. Calculate the median benefit for this
policy. Choose one of the following. (Hint: As long as the
expenses are less than 250, the expenses and the benefit are
equal.) Source: Society of Actuaries.

a. 161 b. 165 c. 173 d. 182 e. 250

Life Sciences

31. Blood Clotting Time The clotting time of blood (in seconds) is
a random variable with probability density function defined by

a. Find the mean clotting time.

b. Find the standard deviation.

f 1 t 2 5
1

1 ln 20 2 t
 for t in 31, 20 4.

f 1x 2 5 e
ce20.004x for x $ 0

0 otherwise,

1 1 1 x 224

f 1 y 2 5 c 2

y3 for y . 1

0 otherwise.

f 1x 2 5 c2.5 10.6 2 2.5

x3.5
for x . 0.6

0 otherwise.



c. Find the probability that a person’s blood clotting time is
within 1 standard deviation of the mean.

d. Find the median clotting time.

32. Length of a Leaf The length of a leaf on a tree is a random
variable with probability density function defined by

a. What is the expected leaf length?

b. Find for this distribution.

c. Find the probability that the length of a given leaf is within 1
standard deviation of the expected value.

33. Petal Length The length (in centimeters) of a petal on a cer-
tain flower is a random variable with probability density func-
tion defined by

a. Find the expected petal length.

b. Find the standard deviation.

c. Find the probability that a petal selected at random has a
length more than 2 standard deviations above the mean. 

d. Find the median petal length.

34. Flea Beetles As we saw in Exercise 42 of the previous section,
the probability that a marked flea beetle, Phyllotreta cruciferae
and Phyllotreta striolata, will be recaptured within a certain
distance and time after release can be calculated from the prob-
ability density function

where t is the time (in hours) after release, x is the distance (in
meters) from the release point that recaptures occur, L is the
maximum distance from the release point that recaptures can
occur, and D is the diffusion coefficient. If and

find the expected recapture distance. Source: Ecology
Monographs.

35. Flour Beetles As we saw in Exercise 41 of the previous section,
a probability density function has been developed to estimate
the abundance of the flour beetle, Tribolium castaneum. The
density function, which is a member of the gamma distri-
bution, is

where x is the size of the population. Calculate the expected
size of a flour beetle population. (Hint: Use 1000 as the upper
limit of integration.) Source: Ecology.

Social  Sciences

36. Time to Learn a Task In Exercise 44 of the previous section,
the probability density function for the time required for a per-
son to learn a certain task was given by 

,f 1 t 2 5
8

7 1 t 2 2 2 2

f 1x 2 5 1.185 3 1029x4.5222e20.049846x,

D 5 38.3,
L 5 6,t 5 12,

p 1x, t 2 5
e2x2/14Dt2

3

L

0

e2u2/14Dt2 du

 ,

f 1x 2 5
1

2 "x
 for x in 31, 4 4.

s

f 1x 2 5
3

32
 14x 2 x2 2 for x in 30, 4 4.
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for 3 ≤ t ≤ 10 minutes.  Find the median time for a person to
learn the task.

37. Social Network In Exercise 43 of the previous section, the
probability density function for the number of U.S. users of
Facebook, a computer social network, was found to be 

where t was the number of years since birth on [13.4, 62.0].
Calculate the expected age of a Facebook user, as well as the
standard deviation. Source: Inside Facebook. 

Physical  Sciences

38. Earthquakes The time between major earthquakes in the
Southern California region is a random variable with probabil-
ity density function defined by

where t is measured in days. Source: Journal of Seismology.
Find the expected value and the standard deviation of this
probability density function.

39. Annual Rainfall The annual rainfall in a remote Middle Eastern
country is a random variable with probability density function
defined by

a. Find the mean annual rainfall.

b. Find the standard deviation.

c. Find the probability of a year with rainfall less than 1 standard
deviation below the mean.

General Interest

40. Drunk Drivers In the last section, we saw that the age of a ran-
domly selected, alcohol-impaired driver in a fatal car crash is a
random variable with probability density function given by

Source: Traffic Safety Facts.

a. APPLY IT Find the expected age of a drunk driver in a fatal
car crash.

b. Find the standard deviation of the distribution.

c. Find the probability that such a driver will be younger than 1
standard deviation below the mean.

d. Find the median age of a drunk driver in a fatal car crash.

41. Driving Fatalities In the last section, we saw that the age of a
randomly selected driver in a fatal car crash is a random vari-
able with probability density function given by

Source: National Highway Traffic Safety Administration.

f 1 t 2 5 0.06049e20.03211t for t in 316, 84 4.

f 1 t 2 5
4.045

t1.532  for t in 316, 80 4.

f 1x 2 5
5.5 2 x

15
 , for x in 30, 5 4.

f 1 t 2 5
1

960
 e2t/960,

1 18.18t 2 137.5 2

S 1 t 2 5
1

466.26
 12 0.00007445t4 1 0.01243t3 2 0.7419t2



a. Find the expected age of a driver in a fatal car crash.

b. Find the standard deviation of the distribution.

c. Find the probability that such a driver will be younger than 1
standard deviation below the mean.

d. Find the median age of a driver in a fatal car crash.

42. Length of a Telephone Call The length of a telephone call (in
minutes), t, for a certain town is a continuous random variable
with probability density function defined by 

for t in [1, ). Find the expected length of a phone call. `

f 1 t 2 5 3t24
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43. Time of Traffic Fatality In Exercise 51 of the previous section,
the probability density function for the number of fatal traffic
accidents was found to be

where t is the number of hours since midnight on [0, 24].
Calculate the expected time of day at which a fatal accident
will occur. Source: The National Highway Traffic Safety
Administration.

YOUR TURN ANSWERS 

1. , 0.0706 2. 3. "4 2 < 1.18922 /94 /3

S 1 t 2 5
1

101,370
 12 2.564t3 1 99.11t2 2 964.6t 1 5631 2

In practice, it is not feasible to construct a probability density function for every experi-
ment. Instead, a researcher uses one of several probability density functions that are well
known, matching the shape of the experimental distribution to one of the known distribu-
tions. In this section we discuss some of the most commonly used probability distributions.

Uniform Distribution The simplest probability distribution occurs when the prob-
ability density function of a random variable remains constant over the sample space. In this
case, the random variable is said to be uniformly distributed over the sample space. The
probability density function for the uniform distribution is defined by

where a and b are constant real numbers. The graph of is shown in Figure 9.f 1x 2

f 1x 2 5
1

b 2 a
 for x in 3a, b 4,

APPLY IT

Special Probability Density Functions
What is the probability that the maximum outdoor temperature will be
higher than 24°C? What is the probability that a flashlight battery will
last longer than 40 hours?
These questions, presented in Examples 1 and 2, can be answered if the probability density
function for the maximum temperature and for the life of the battery are known. 

11.3

0 ba

f(x)

x

f(x) = 1
b – a

1
b – a

x in [a, b]

Uniform distribution

FIGURE 9



Since is positive, and

Therefore, the function is a probability density function.
The expected value for the uniform distribution is

The variance is given by

Thus

Factor.

and

These properties of the uniform distribution are summarized below.

Uniform Distribution
If X is a random variable with probability density function

,

then

.

Daily Temperature

A couple is planning to vacation in San Francisco. They have been told that the maximum
daily temperature during the time they plan to be there ranges from to Assume
that the probability of any temperature between and is equally likely for any
given day during the specified time period.

(a) What is the probability that the maximum temperature on the day they arrive will be
higher than 24°C?

27°C15°C
27°C.15°C

m 5
1
2

 1 b 1 a 2  and  s 5
1

"12
 1 b 2 a 2

f 1 x 2 5
1

b 2 a
 for x in [a, b\

 s 5
1

"12
 1b 2 a 2 .

 Var 1X 2 5
1

12
 1b 2 a 2 2,

Get a common denominator;
subtract. 5

b2 2 2ab 1 a2

12
 .

b3 2 a3 5 1 b 2 a 2 1 b2 1 ab 1 a2 2 5
b2 1 ab 1 a2

3
2

b2 1 2ab 1 a2

4

 5
1

3 1b 2 a 2
 1b3 2 a3 2 2

1

4
 1b 1 a 2 2

 5 a
1

b 2 a
b  

x3

3
`
b

a

2
1b 1 a 2 2

4

 Var 1X 2 5 3

b

a
a

1

b 2 a
bx2 dx 2 a

b 1 a

2
b

2

b2 2 a2 5 1 b 2 a 2 1 b 1 a 2 5
1

2 1b 2 a 2
 1b2 2 a2 2 5

1

2
 1b 1 a 2 .

 m 5 3

b

a
a

1

b 2 a
bx dx 5 a

1

b 2 a
b  

x2

2
`
b

a

3

b

a

 
1

b 2 a
 dx 5

1

b 2 a
 x `

b

a

5
1

b 2 a
 1b 2 a 2 5 1.

f 1x 2 $ 0,b 2 a
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EXAMPLE  1



SOLUTION If the random variable T represents the maximum temperature on a given
day, then the uniform probability density function for T is defined by for
the interval By definition,

(b) What average maximum temperature can they expect?

SOLUTION The expected maximum temperature is

or 

(c) What is the probability that the maximum temperature on a given day will be one stan-
dard deviation or more below the mean?

SOLUTION First find 

One standard deviation below the mean indicates a temperature of 

The probability is about 0.21 that the temperature will not exceed 
TRY YOUR TURN 1

Exponential Distribution The next distribution is very important in reliability and
survival analysis. When manufactured items and living things have a constant failure rate over
a period of time, the exponential distribution is used to describe their probability of failure. In
this case, the random variable is said to be exponentially distributed over the sample space.
The probability density function for the exponential distribution is defined by

where a is a positive constant. The graph of is shown in Figure 10.f 1x 2

f 1x 2 5 ae2ax
   for x in 30, ` 2 ,

17.5°C.

P 1T # 17.536 2 5 3

17.536

15

 
1

12
 dt 5

1

12
 t `

17.536

15

< 0.2113

21 2 3.464 5 17.536°C.

s 5
1

"12
 127 2 15 2 5

12

"12
5 "12 5 2 "3 < 3.464.

s.

21°C.

m 5
1

2
 127 1 15 2 5 21,

P 1T . 24 2 5 3

27

24

 
1

12
 dt 5

1

12
 t `

27

24

5
1

4
 .

315, 27 4.
f 1 t 2 5 1 /12
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YOUR TURN 1 The next vaca-
tion for the couple in Example 1 is
to a desert with a maximum daily
temperature that uniformly ranges
from 27˚C to 42˚C. Find the
expected maximum temperature and
the probability that the maximum
temperature will be within one
standard deviation of the mean.

0

f(x)

x

f(x) = ae
0 � x � � 

Exponential distribution

a

–ax

FIGURE 10 

Here since and a are both positive for all values of x. Also,

so the function is a probability density function.

 5 lim
bl`

12e2ax 2 `
b

0

5 lim
bl`

a
21

eab 1
1

e0b 5 1,

 3

`

0

ae2ax dx 5 lim
bl`

3

b

0

ae2ax dx

e2axf 1x 2 $ 0,

APPLY IT 



The expected value and the standard deviation of the exponential distribution can be
found using integration by parts. The results are given below. (See Exercise 20 at the end of
this section.)

Exponential Distribution
If X is a random variable with probability density function

,
then

,

Flashlight Battery

Suppose the useful life (in hours) of a flashlight battery is the random variable T, with prob-
ability density function given by the exponential distribution

(a) Find the probability that a particular battery, selected at random, has a useful life of
less than 100 hours.

SOLUTION The probability is given by

(b) Find the expected value and standard deviation of the distribution.

SOLUTION Use the formulas given above. Both and equal and since
here,

This means that the average life of a battery is 20 hours, and no battery lasts less than 1
standard deviation below the mean.

(c) What is the probability that a battery will last longer than 40 hours?

SOLUTION The probability is given by

or about 14%. TRY YOUR TURN 2

Normal Distribution The normal distribution, with its well-known bell-shaped
graph, is undoubtedly the most important probability density function. It is widely used in
various applications of statistics. The random variables associated with these applications
are said to be normally distributed. The probability density function for the normal distrib-
ution has the following characteristics.

P 1T . 40 2 5 3

`

40

 
1

20
 e2t/20 dt 5 lim

bl`
12e2t/20 2 `

b

40

5
1

e2 < 0.1353,

m 5 20  and  s 5 20.

a 5 1 /20
1 /a,sm

 < 1 2 0.0067 5 0.9933.

 5 2 1 e2100/20 2 e0 2 5 2 1 e25 2 1 2

 P 1T # 100 2 5 3

100

0

 
1

20
 e2t/20 dt 5

1

20
 1220e2t/20 2 `

100

0

f 1 t 2 5
1

20
 e2t/20 for t $ 0.

m 5
1
a
  and  s 5

1
a

 

f 1 x 2 5 ae2ax
  for x in [0, ` 2
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YOUR TURN 2 Repeat 
Example 2 for a flashlight battery with
a useful life given by the probability

density function 
for t � 0.

f 1 t 2 5
1

25
 e2t/25

EXAMPLE  2

APPLY IT 



Normal Distribution
If and are real numbers, and if X is a random variable with probability
density function defined by

,

then

, with standard deviation

Notice that the definition of the probability density function includes which is the
standard deviation of the distribution.

Advanced techniques can be used to show that

Deriving the expected value and standard deviation for the normal distribution also
requires techniques beyond the scope of this text.

Each normal probability distribution has associated with it a bell-shaped curve, called
a normal curve, such as the one in Figure 11. Each normal curve is symmetric about a ver-
tical line through the mean, Vertical lines at points and from the mean show
the inflection points of the graph. (See Exercise 22 at the end of this section.) A normal
curve never touches the x-axis; it extends indefinitely in both directions.

21s11sm.

3

`

2`

 
1

s "2p
 e21x2m22/12s22 dx 5 1.

s,

s.E 1X 2 5 m  and  Var 1X 2 5 s2

f 1 x 2 5
1

s"2p
 e21x2m2

2/12s22 for x in 12`, ` 2

s . 0,sm
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0

f(x)

x

x in (– �, �)

Normal distribution

f(x) = e
1

�2
–(x –   ) /(2    )� 22

Inflection
point

Inflection
point

+– � ��

� �

FIGURE 11

The development of the normal curve is credited to the Frenchman Abraham De
Moivre (1667–1754). Three of his publications dealt with probability and associated topics:
Annuities upon Lives (which contributed to the development of actuarial studies), Doctrine
of Chances, and Miscellanea Analytica.

Many different normal curves have the same mean. In such cases, a larger value of 
produces a “flatter” normal curve, while smaller values of produce more values near the
mean, resulting in a “taller” normal curve. See Figure 12 on the next page.

It would be far too much work to calculate values for the normal probability distribu-
tion for various values of and Instead, values are calculated for the standard normals.m

s
s



Probabilities for the standard normal distribution come from the definite integral

Since does not have an antiderivative that can be expressed in terms of func-
tions used in this course, numerical methods are used to find values of this definite integral.
A table in the appendix of this book gives areas under the standard normal curve, along
with a sketch of the curve. Each value in this table is the total area under the standard nor-
mal curve to the left of the number z.

If a normal distribution does not have and we use the following theo-
rem, which is proved in Exercise 21.

z-Scores Theorem
Suppose a normal distribution has mean and standard deviation The area under the
associated normal curve that is to the left of the value x is exactly the same as the area
to the left of

for the standard normal curve.

z 5
x 2 m

s

s.m

s 5 1,m 5 0

f 1x 2 5 e2x2/2

3

b

a

 
1

"2p
 e2x2/2 dx.

11.3 Special Probability Density Functions 593
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FIGURE 12

f(x)

x

Standard normal distribution

= 1–     = – 1
= 0�

f(x) = e–x /221

�2   

x in (– �, �)

�

FIGURE 13

Using this result, the table can be used for any normal distribution, regardless of the values
of and The number z in the theorem is called a z-score.s.m

distribution, which has and The graph of the standard normal distribution is
shown in Figure 13.

s 5 1.m 5 0



Life Spans

According to actuarial tables, life spans in the United States are approximately normally
distributed with a mean of about 75 years and a standard deviation of about 16 years. By
computing the areas under the associated normal curve, find the following probabilities.
Source: Psychological Science.

(a) Find the probability that a randomly selected person lives less than 88 years.

SOLUTION Let T represent the life span of a random individual. To find P(T � 88), we
calculate the corresponding z-score using t � 88, � 75, and � 16. Round to the
nearest hundredths, since this is the extent of our normal curve table.

Look up 0.81 in the normal curve table in the Appendix. The corresponding area
is 0.7910. Thus, the shaded area shown in Figure 14 is 0.7910. This means that the
probability of a randomly selected person living less than 88 years is P(T � 88) �
P(Z � 0.81) � 0.7910, or about 79%.

z 5
88 2 75

16
5

13

16
< 0.81

sm
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EXAMPLE  3

tz = –0.5

Unshaded area
= 0.3085

Shaded area
= 1 – 0.3085
= 0.6915

f (t)

FIGURE 15

f (t)

tz = 0.81

Shaded area
= 0.7910

FIGURE 14

(b) Find the probability that a randomly selected person lives more than 67 years.

SOLUTION To calculate P(T � 67), first find the corresponding z-score.

From the normal curve table, the area to the left of is 0.3085. Therefore, the
area to the right is P(T � 67) � P(Z � �0.5) � 1 � 0.3085 � 0.6915. See Figure 15.
Thus, the probability of a randomly selected person living more than 67 years is 0.6915,
or about 69%.

z 5 20.5

z 5
67 2 75

16
5 20.5

(c) Find the probability that a randomly selected person lives between 61 and 70 years.

SOLUTION Find z-scores for both values.

z 5
61 2 75

16
5 20.88  and  z 5

70 2 75

16
5 20.31



Start with the area to the left of and subtract the area to the left of
Thus,

The required area is shaded in Figure 16. The probability of a randomly selected person
living between 61 and 70 years is about 19%. TRY YOUR TURN 3

P 1 61 # T # 70 2 5 P 120.88 # Z # 20.31 2 5 0.3783 2 0.1894 5 0.1889.

z 5 20.88.
z 5 20.31
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YOUR TURN 3 Using the
information provided in Example 3,
find the probability that a randomly
selected person lives (a) more than
79 years and (b) between 67 and 
83 years.

tz = –0.31z = –0.88

Shaded area
= 0.3783 – 0.1894
= 0.1889

f (t)

FIGURE 16

It’s worth noting that there is always some error in approximating a discrete distribu-
tion with a continuous distribution. For example, when T is the life span of a randomly
selected person, then P(T � 65) is clearly positive, but if T is a normal random variable,
then P(T � 65) � 0, since it represents no area. The problem is that a person’s age jumps
from 65 to 66, but a continuous random variable takes on all real numbers in between. If we
were to measure a person’s age to the nearest nanosecond, the probability that someone’s
age is exactly 65 years and 0 nanoseconds would be virtually 0.

Furthermore, a bit of thought shows us that the approximation of life spans by a nor-
mal distribution can’t be perfect. After all, three standard deviations to the left and right of
75 give 75 � 3 	 16 � 27 and 75 � 3 	 16 � 123. Because of the symmetry of the normal
distribution, P(T � 27) and P(T � 123) should be equal. Yet there are people who die
before the age of 27, and no human has been verified to live beyond the age of 123.

As an alternative to using the normal curve table, we can use a graphing calculator. Enter the formula
for the normal distribution into the calculator, using � 75 and � 16. Plot the function on a win-
dow that contains at least four standard deviations to the left and right of ; for Example 3(a), we will
let 0 � t � 140. Then use the integration feature (under CALC on a TI- Plus) to find the area under
the curve to the left of 88.

The result is shown in Figure 17. In place of ��, we have used t � 0 as the left endpoint. This
is far enough to the left of � 75 that it can be considered as �� for all practical purposes. It also
makes sense in this application, since life span can’t be a negative number. You can verify that
choosing a slightly different lower limit makes little difference in the answer. In fact, the answer
of 0.79174622 is more accurate than the answer of 0.7910 that we found in Example 3(a), where
we needed to round 13/16 � 0.8125 to 0.81 in order to use the table.

We could get the answer on a TI-84 Plus without generating a graph using the command
fnInt and entering (Y )dx, where Y is the formula for the normal distribution with � 75
and  � 16.

The numerical integration method works with any probability density function. In addition, many
graphing calculators are programmed with information about specific density functions, such as the
normal. We can solve the first part of Example 3 on the TI-84 Plus by entering normalcdf
(�1E99,88,75,16). The calculator responds with 0.7917476687. (�1E99 stands for 
which the calculator uses for ��.) If you use this method in the exercises, your answers will differ
slightly from those in the back of the book, which were generated using the normal curve table in the
Appendix.

21 3 1099,

m11e880

m

84
m

sm

0 140

0.03

0
ef(x)dx5.79174622

FIGURE 17

TECHNOLOGY NOTE



The z-scores are actually standard deviation multiples; that is, a z-score of 2.5 corre-
sponds to a value 2.5 standard deviations above the mean. For example, looking up

and in the table shows that

so that 68.26% of the area under a normal curve is within 1 standard deviation of the mean.
Also, using and 

meaning 95.44% of the area is within 2 standard deviations of the mean. These results,
summarized in Figure 18, can be used to get a quick estimate of results when working with
normal curves.

0.9772 2 0.0228 5 0.9544,

z 5 22.00,z 5 2.00

0.8413 2 0.1587 5 0.6826,

z 5 21.00z 5 1.00
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f (x)

x– 3� � – 2 � –  � +  � + 2 � + 3�

68.26% of area

95.44% of area

99.74% of area

FIGURE 18

Manufacturers make use of the fact that a normal random variable is almost always within
3 standard deviations of the mean to design control charts. When a sample of items produced
by a machine has a mean farther than 3 standard deviations from the desired specification, the
machine is assumed to be out of control, and adjustments are made to ensure that the items pro-
duced meet the tolerance required.

Lead Poisoning

Historians and biographers have collected evidence suggesting that President Andrew Jackson
suffered from lead poisoning. Recently, researchers measured the amount of lead in sam-
ples of Jackson’s hair from 1815. The results of this experiment showed that Jackson had a
mean lead level of 130.5 ppm. Source: JAMA.

(a) Levels of lead in hair samples from that time period follow a normal distribution with
mean 93 and standard deviation 16. Source: Science. Find the probability that a ran-
domly selected person from this time period would have a lead level of 130.5 ppm or
higher. Does this provide evidence that Jackson suffered from lead poisoning during
this time period? 

SOLUTION

Since this probability is so low, it is likely that Jackson suffered from lead poisoning
during this time period.*

P 1X $ 130.5 2 5 PaZ $
130.5 2 93

16
b 5 P 1Z $ 2.34 2 5 0.0096

*Although this provides evidence that Andrew Jackson had elevated lead levels, the authors of the paper con-
cluded that Andrew Jackson did not die from lead poisoning.

EXAMPLE  4
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(b) Today’s normal lead levels follow a normal distribution with approximate mean of 
10 ppm and standard deviation of 5 ppm. Source: Clinical Chemistry. By today’s
standards, calculate the probability that a randomly selected person from today would
have a lead level of 130.5 ppm or higher. From this, can we conclude that Andrew
Jackson had lead poisoning? 

SOLUTION

By today’s standards, which may not be valid for this experiment, Jackson certainly
suffered from lead poisoning.

P 1X $ 130.5 2 5 PaZ $
130.5 2 10

5
b 5 P 1Z $ 24.1 2 < 0

11.3 EXERCISES
Find (a) the mean of the distribution, (b) the standard deviation
of the distribution, and (c) the probability that the random variable
is between the mean and 1 standard deviation above the mean.

1. The length (in centimeters) of the leaf of a certain plant is a
continuous random variable with probability density function
defined by

2. The price of an item (in hundreds of dollars) is a continuous
random variable with probability density function defined by

3. The length of time (in years) until a particular radioactive par-
ticle decays is a random variable t with probability density
function defined by

4. The length of time (in years) that a seedling tree survives is a
random variable t with probability density function defined by

5. The length of time (in days) required to learn a certain task is a
random variable t with probability density function defined by

6. The distance (in meters) that seeds are dispersed from a certain
kind of plant is a random variable x with probability density
function defined by

Find the proportion of observations of a standard normal distri-
bution that are between the mean and the given number of
standard deviations above the mean.

7. 3.50 8. 1.68

Find the proportion of observations of a standard normal distri-
bution that are between the given z-scores.

9. 1.28 and 2.05 10. and 20.0422.13

f 1x 2 5 0.1e20.1x for x in 30, ` 2 .

f 1 t 2 5
e2t/3

3
 for t in 30, ` 2 .

f 1 t 2 5 0.05e20.05t for t in 30, ` 2 .

f 1 t 2 5 4e24t for t in 30, ` 2 .

f 1x 2 5 4 for x in 32.75, 3 4.

f 1x 2 5
5

7
 for x in 33, 4.4 4.

Find a z-score satisfying the conditions given in Exercises
11–14. (Hint: Use the table backwards.)

11. 10% of the total area is to the left of z.

12. 2% of the total area is to the left of z.

13. 18% of the total area is to the right of z.

14. 22% of the total area is to the right of z.

15. Describe the standard normal distribution. What are its charac-
teristics?

16. What is a z-score? How is it used?

17. Describe the shape of the graph of each probability distribution.

a. Uniform b. Exponential c. Normal

In the second section of this chapter, we defined the median of a
probability distribution as an integral. The median also can be
defined as the number m such that 

18. Find an expression for the median of the uniform distribution.

19. Find an expression for the median of the exponential distribution.

20. Verify the expected value and standard deviation of the expo-
nential distribution given in the text.

21. Prove the z-scores theorem. (Hint: Write the formula for the
normal distribution with mean and standard deviation 
using t instead of x as the variable. Then write the integral rep-
resenting the area to the left of the value x, and make the sub-
stitution 

22. Show that a normal random variable has inflection points at
and 

23. Use Simpson’s rule with or use the integration fea-
ture on a graphing calculator, to approximate the following
integrals.

a. b.

c. 

24. Use your results from Exercise 23 to verify that, for the expo-
nential distribution with the total probability is 1, and
both the mean and the standard deviation are equal to 1 /a.

a 5 0.5,

3

35

0

0.5x2e20.5x dx

3

35

0

0.5xe20.5x dx3

35

0

0.5e20.5x dx

n 5 140,

x 5 m 1 s.x 5 m 2 s

u 5 1 t 2 m 2 /s.)

s,m

P 1X " m 2 5 P 1X # m 2 .



25. Use Simpson’s rule with or the integration feature on
a graphing calculator, to approximate the following for the
standard normal probability distribution. Use limits of and
6 in place of and .

a. The mean b. The standard deviation

26. A very important distribution for analyzing the reliability of
manufactured goods is the Weibull distribution, whose proba-
bility density function is defined by

where a and b are constants. Notice that when this
reduces to the exponential distribution. The Weibull distribu-
tion is more general than the exponential, because it applies
even when the failure rate is not constant. Use Simpson’s rule
with or the integration feature on a graphing calcula-
tor, to approximate the following for the Weibull distribution
with and Use a limit of 3 in place of .

a. The mean b. The standard deviation

27. Determine the cumulative distribution function for the uniform
distribution.

28. Determine the cumulative distribution function for the expo-
nential distribution.

APPLICATIONS
Business and Economics

29. Insurance Sales The amount of insurance (in thousands of
dollars) sold in a day by a particular agent is uniformly distrib-
uted over the interval 

a. What amount of insurance does the agent sell on an average
day?

b. Find the probability that the agent sells more than $50,000
of insurance on a particular day.

30. Fast-Food Outlets The number of new fast-food outlets open-
ing during June in a certain city is exponentially distributed,
with a mean of 5.

a. Give the probability density function for this distribution.

b. What is the probability that the number of outlets opening is
between 2 and 6?

31. Sales Expense A salesperson’s monthly expenses (in thou-
sands of dollars) are exponentially distributed, with an average
of 4.25 (thousand dollars).

a. Give the probability density function for the expenses.

b. Find the probability that the expenses are more than
$10,000.

In Exercises 32–34, assume a normal distribution.

32. Machine Accuracy A machine that fills quart bottles with
apple juice averages 32.8 oz per bottle, with a standard devia-
tion of 1.1 oz. What are the probabilities that the amount of
juice in a bottle is as follows?

a. Less than 1 qt

b. At least 1 oz more than 1 qt

310, 85 4.

`b 5 1.5.a 5 4

n 5 100,

b 5 1,

f 1x 2 5 abxb21e2axb

 for x in 30, ` 2 ,

`2`

26

n 5 40,
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33. Machine Accuracy A machine produces screws with a mean
length of 2.5 cm and a standard deviation of 0.2 cm. Find the
probabilities that a screw produced by this machine has lengths
as follows.

a. Greater than 2.7 cm

b. Within 1.2 standard deviations of the mean

34. Customer Expenditures Customers at a certain pharmacy
spend an average of $54.40, with a standard deviation of
$13.50. What are the largest and smallest amounts spent by the
middle 50% of these customers?

35. Insured Loss An insurance policy is written to cover a loss, X,
where X has a uniform distribution on [0, 1000]. At what level
must a deductible be set in order for the expected payment to be
25% of what it would be with no deductible? Choose one of the
following. (Hint: Use a variable, such as D, for the deductible.
The payment is 0 if the loss is less than D, and the loss minus D
if the loss is greater than D.) Source: Society of Actuaries.

a. 250 b. 375 c. 500 d. 625 e. 750

36. High-Risk Drivers The number of days that elapse between the
beginning of a calendar year and the moment a high-risk driver is
involved in an accident is exponentially distributed. An insurance
company expects that 30% of high-risk drivers will be involved
in an accident during the first 50 days of a calendar year. What
portion of high-risk drivers are expected to be involved in an
accident during the first 80 days of a calendar year? Choose one
of the following. Source: Society of Actuaries.

a. 0.15 b. 0.34 c. 0.43 d. 0.57 e. 0.66

37. Printer Failure The lifetime of a printer costing $200 is expo-
nentially distributed with mean 2 years. The manufacturer
agrees to pay a full refund to a buyer if the printer fails during
the first year following its purchase, and a one-half refund if it
fails during the second year. If the manufacturer sells 100
printers, how much should it expect to pay in refunds? Choose
one of the following. Source: Society of Actuaries.

a. 6321 b. 7358 c. 7869 d. 10,256 e. 12,642

38. Electronic Device The time to failure of a component in an
electronic device has an exponential distribution with a median
of four hours. Calculate the probability that the component will
work without failing for at least five hours. Choose one of the
following. Source: Society of Actuaries.

a. 0.07 b. 0.29 c. 0.38 d. 0.42 e. 0.57

Life Sciences

39. Insect Life Span The life span of a certain insect (in days) is
uniformly distributed over the interval 

a. What is the expected life of this insect?

b. Find the probability that one of these insects, randomly
selected, lives longer than 30 days.

40. Location of a Bee Swarm A swarm of bees is released from a
certain point. The proportion of the swarm located at least 2 m
from the point of release after 1 hour is a random variable that
is exponentially distributed with 

a. Find the expected proportion under the given conditions. 

b. Find the probability that fewer than of the bees are located
at least 2 m from the release point after 1 hour.

1 /3

a 5 2.

320, 36 4.



41. Digestion Time The digestion time (in hours) of a fixed
amount of food is exponentially distributed with 

a. Find the mean digestion time.

b. Find the probability that the digestion time is less than 30
minutes.

42. Pygmy Heights The average height of a member of a certain
tribe of pygmies is 3.2 ft, with a standard deviation of 0.2 ft. If the
heights are normally distributed, what are the largest and small-
est heights of the middle 50% of this population? 

43. Finding Prey H. R. Pulliam found that the time (in minutes)
required by a predator to find a prey is a random variable that
is exponentially distributed, with Source: American
Naturalist.

a. According to this distribution, what is the longest time
within which the predator will be 90% certain of finding a
prey?

b. What is the probability that the predator will have to spend
more than 1 hour looking for a prey?

44. Life Expectancy According to the National Center for Health
Statistics, the life expectancy for a 55-year-old African Ameri-
can female is 26.1 years. Assuming that from age 55, the sur-
vival of African American females follows an exponential
distribution, determine the following probabilities. Source:
National Vital Statistics Report.

a. The probability that a randomly selected 55-year-old
African American female will live beyond 80 years of age
(at least 25 more years)

b. The probability that a randomly selected 55-year-old
African American female will live less than 20 more years

45. Life Expectancy According to the National Center for Health
Statistics, life expectancy for a 70-year-old African American
male is 12.3 years. Assuming that from age 70, the survival of
African American males follows an exponential distribution,
determine the following probabilities. Source: National Vital
Statistics Report.

a. The probability that a randomly selected 70-year-old African
American male will live beyond 90 years of age

b. The probability that a randomly selected 70-year-old
African American male will live between 10 and 20 more
years

46. Mercury Poisoning Historians and biographers have collected
evidence that suggests that President Andrew Jackson suffered
from mercury poisoning. Recently, researchers measured the
amount of mercury in samples of Jackson’s hair from 1815. The
results of this experiment showed that Jackson had a mean mer-
cury level of 6.0 ppm. Source: JAMA.

a. Levels of mercury in hair samples from that time period
followed a normal distribution with mean 6.9 and stan-
dard deviation 4.6. Source: Science of the Total Environ-
ment. Find the probability that a randomly selected person
from that time period would have a mercury level of 6.0
ppm or higher. Discuss whether this provides evidence that
Jackson suffered from mercury poisoning during this time
period.

m 5 25.

a 5 1.
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b. Today’s accepted normal mercury levels follow a normal
distribution with approximate mean 0.6 ppm and standard
deviation 0.3 ppm. Source: Clinical Chemistry. By today’s
standards, how likely is it that a randomly selected person
from today would have a mercury level of 6.0 ppm or
higher? Discuss whether we can conclude from this that
Andrew Jackson suffered from mercury poisoning.

Social  Sciences

47. Dating a Language Over time, the number of original basic
words in a language tends to decrease as words become obso-
lete or are replaced with new words. In 1950, C. Feng and 
M. Swadesh established that of the original 210 basic ancient
Chinese words from 950 A.D., 167 were still being used. The
proportion of words that remain after t millennia is a random
variable that is exponentially distributed with 
Source: The UMAP Journal.

a. Find the life expectancy and standard deviation of a Chinese
word.

b. Calculate the probability that a randomly chosen Chinese
word will remain after 2000 years.

Physical  Sciences

48. Rainfall The rainfall (in inches) in a certain region is uni-
formly distributed over the interval 

a. What is the expected number of inches of rainfall? 

b. What is the probability that the rainfall will be between 38
and 40 in.?

49. Dry Length Days Researchers have shown that the number
of successive dry days that occur after a rainstorm for partic-
ular regions of Catalonia, Spain, is a random variable that is
distributed exponentially with a mean of 8 days. Source:
International Journal of Climatology.

a. Find the probability that 10 or more successive dry days
occur after a rainstorm.

b. Find the probability that fewer than 2 dry days occur after a
rainstorm.

50. Earthquakes The proportion of the times (in days) between
major earthquakes in the north-south seismic belt of China is a
random variable that is exponentially distributed, with

Source: Journal of Seismology.

a. Find the expected number of days and the standard devia-
tion between major earthquakes for this region.

b. Find the probability that the time between a major earth-
quake and the next one is more than 1 year.

General Interest

51. Soccer The time between goals (in minutes) for the Wolves
soccer team in the English Premier League during a recent sea-
son can be approximated by an exponential distribution with 
a � 1/90. Source: The Mathematical Spectrum.

a. The Wolves scored their first goal of the season 71 minutes
into their first game. Find the probability that the time for a
goal is no more than 71 minutes.

a 5 1 /609.5.

332, 44 4.

a 5 0.229.



Probability Density Function 1. f(x) � 0 for all x in the interval [a, b].
on [a, b]

2.

3. for c, d in [a, b].

Cumulative Distribution Function

Expected Value for a Density 

Variance for a Density Function 

Alternative Formula for Variance

Standard Deviation

Median The value m such that 3

m

a

f 1x 2  dx 5
1

2
.

s 5 "Var 1X 2

Var 1X 2 5 3

b

a

x2f 1x 2  dx 2 m2

Var 1X 2 5 3

b

a

1x 2 m 2 2f 1x 2  dx

E 1X 2 5 m 5 3

b

a

xf 1x 2  dx

F 1x 2 5 P 1X # x 2 5 3

x

a

f 1 t 2  dt

P 1 c # X # d 2 5 3

d

c

f 1x 2dx

3

b

a

f 1x 2  dx 5 1.

b. It was 499 minutes later (in game time) before the Wolves
scored their next goal. Find the probability that the time for
a goal is 499 minutes or more.

52. Football The margin of victory over the point spread (defined
as the number of points scored by the favored team minus the
number of points scored by the underdog minus the point
spread, which is the difference between the previous two, as
predicted by oddsmakers) in National Football League games
has been found to be normally distributed with mean 0 and
standard deviation 13.861. Suppose New England is favored
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over Miami by 3 points. What is the probability that New England
wins? (Hint: Calculate the probability that the margin of victory
over the point spread is greater than �3.) Source: The American
Statistician.

YOUR TURN ANSWERS 

1. 34.5�C, 0.5774
2. (a) 0.9817, (b) 25 and 25, (c) 0.2019
3. (a) 0.4013  (b) 0.3830

In this chapter, we gave a brief introduction to the use of calculus
in the study of probability. In particular, the idea of a random
variable and its connection to a probability density function and a
cumulative distribution function were given. We explored four
important concepts:

• expected value (the average value of a random variable that
we would expect in the long run),

• variance (a measure of the spread of the values of a distribution),
• standard deviation (the square root of the variance), and
• median (the value of a random variable for which there is a

50% probability of being larger and a 50% probability of
being smaller).

Integration techniques were used to determine probabilities,
expected value, and variance of continuous random variables.
Three probability density functions that have a wide range of
applications were studied in detail:

• uniform (when the probability density function remains con-
stant over the sample space),

• exponential (for items that have a constant failure rate over
time), and

• normal (for random variables with a bell-shaped distribution).

SUMMARY

11 CHAPTER REVIEW

Function on [a, b]

on [a, b]
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Determine whether each of the following statements is true or
false, and explain why.

1. A continuous random variable can take on values greater than 1.

2. A probability density function can take on values greater 
than 1.

3. A continuous random variable can take on values less than 0.

4. A probability density function can take on values less than 0.

5. The expected value of a random variable must always be at
least 0.

6. The variance of a random variable must always be at least 0.

7. The expected value of a uniform random variable is the aver-
age of the endpoints of the interval over which the density
function is positive.

8. For an exponential random variable, the expected value and
standard deviation are always equal.

9. The normal distribution and the exponential distribution have
approximately the same shape.

10. In the standard normal distribution, the expected value is 1 and
the standard deviation is 0.

Uniform Distribution on [a, b]

and

Exponential Distribution on [0, �)

and

Normal Distribution on (��, �)

E(X) � and
z-Scores Theorem For a normal curve with mean m and standard deviation s, the area to the left of x is the same as

the area to the left of

for the standard normal curve.

z 5
x 2 m

s

Var 1X 2 5 s2m

f 1x 2 5
1

s"2p
 e21x2m22/12s22

s 5
1

a
m 5

1

a

f 1x 2 5 ae2ax

s 5
1

"12
1b 2 a 2m 5

1

2
1b 1 a 2

f 1x 2 5
1

b 2 a

KEY TERMS
11.1
random variable
probability function
histogram
discrete probability function
continuous random variable

continuous probability
distribution

probability density 
function

cumulative distribution 
function

11.2
mean
expected value
variance
standard deviation
median

11.3
uniform distribution
exponential distribution
normal distribution
normal curve
standard normal distribution
z-score

REVIEW EXERCISES

CONCEPT CHECK

11. In a probability function, the y-values (or function values)
represent _____________.

12. Define a continuous random variable.

13. Give the two conditions that a probability density function for
must satisfy.

14. In a probability density function, the probability that X equals a
specific value, is _____________.

Decide whether each function defined as follows is a probabil-
ity density function for the given interval.

15.

16.

17.

18. f 1x 2 5 0.4; 34, 6.5 4
f 1x 2 5 0.7e20.7x; 30, ` 2

f 1x 2 5
1

27
 12x 1 4 2 ; 31, 4 4

f 1x 2 5 "x; 34, 9 4

P 1X 5 c 2 ,

3a, b 4

PRACTICE AND EXPLORATIONS



In Exercises 19 and 20, find a value of k that will make 
define a probability density function for the indicated interval.

19. 20.

21. The probability density function of a random variable X is
defined by

Find the following probabilities.

a. b. c. 

22. The probability density function of a random variable X is
defined by

Find the following probabilities.

a. b. c. 

23. Describe what the expected value or mean of a probability dis-
tribution represents geometrically.

24. The probability density functions shown in the graphs have the
same mean. Which has the smallest standard deviation?

a.

b.

c.

For the probability density functions defined in Exercises 25–28,
find (a) the expected value, (b) the variance, (c) the standard
deviation, (d) the median, and (e) the cumulative distribution
function.

25. 26.

27.

28. f 1x 2 5
1

20
 a1 1

3

"x
b; 31, 9 4

f 1x 2 5 5x26; 31, ` 2

f 1x 2 5
1

5
 ; 34, 9 4f 1x 2 5

2

9
 1x 2 2 2 ; 32, 5 4

x�

x�

x�

P 1 3 # X # 4 2P 1X # 4 2P 1X $ 3 2

f 1x 2 5 1 2
1

"x 2 1
 for x in 32, 5 4.

P 1 10.8 # X # 16.2 2P 1X $ 31 /2 2P 1X # 12 2

f 1x 2 5
1

10
 for x in 310, 20 4.

f 1x 2 5 k "x; 34, 9 4f 1x 2 5 kx2; 31, 4 4

f 1 x 2
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29. The probability density function of a random variable is defined
by for x in Find the following for the
distribution.

a. The mean b. The standard deviation

c. The probability that the value of the random variable will be
less than the mean

d. The probability that the value of the random variable will be
within 1 standard deviation of the mean

30. Find the median of the random variable of Exercise 29. Then
find the probability that the value of the random variable will
lie between the median and the mean of the distribution.

For Exercises 31 and 32, find (a) the mean of the distribution,
(b) the standard deviation of the distribution, and (c) the proba-
bility that the value of the random variable is within 1 standard
deviation of the mean.

31.

32.

In Exercises 33–40, find the proportion of observations of a
standard normal distribution for each region.

33. The region to the left of 

34. The region to the right of 

35. The region between and 

36. The region between and 

37. The region that is 1.2 standard deviations or more below the mean

38. The region that is up to 2.5 standard deviations above the mean

39. Find a z-score so that 52% of the area under the normal curve
is to the right of z.

40. Find a z-score so that 21% of the area under the normal curve
is to the left of z.

The topics in this short chapter involved much of the mater-
ial studied earlier in this book, including functions, domain
and range, exponential functions, area and integration,
improper integrals, integration by parts, and numerical inte-
gration. For the following special probability density func-
tions, give

a. the type of distribution;

b. the domain and range;

c. the graph;

d. the mean and standard deviation;

e.

41.

42.

43. (Hint:

44. The chi-square distribution is important in statistics for testing
whether data comes from a specified distribution and for test-
ing the independence of two characteristics of a set of data.

s 5 1 /"2 .)f 1x 2 5
e2x2

"p
 for x in 12`, ` 2

f 1x 2 5 e2x for x in 30, ` 2
f 1x 2 5 0.05 for x  in 310, 30 4

P 1m 2 s " X " m 1 s 2 .

z 5 1.28z 5 21.39

z 5 20.09z 5 21.17

z 5 1.62

z 5 20.43

f 1x 2 5
5

112
 1 1 2 x23/2 2 for x in 31, 25 4

f 1x 2 5 0.01e20.01x for x in 30, ` 2

30, 1 4.f 1x 2 5 4x 2 3x2



When a quantity called the degrees of freedom is equal to 4, the
probability density function is given by

a. Verify that this is a probability density function by noting
that f (x) � 0 and by finding P(0 � X � �).

b. Find P(0 � X � 3).

45. When the degrees of freedom in the chi-square distribution
(see the previous exercise) is 1, the probability density func-
tion is given by

Calculating probabilities is now complicated by the fact that
the density function cannot be antidifferentiated. Numerical
integration is complicated because the density function
becomes unbounded as x approaches 0.

a. Show that one application of integration by parts (or column
integration with just two rows, similar to Example 2 in
Section 8.1 on Integration by Parts) allows P(0 , X # b) to
be rewritten as

b. Using Simpson’s rule with n � 12 in the result from part a,
approximate P(0 � X � 1).

c. Using Simpson’s rule with n � 12 in the result from part a,
approximate P(0 � X � 10).

d. What should be the limit as of the expression in part a?
Do the results from parts b and c support this?

APPLICATIONS
Business and Economics

46. Mutual Funds The price per share (in dollars) of a particular
mutual fund is a random variable x with probability density
function defined by

a. Find the probability that the price will be less than $8.50.

b. Find the expected value of the price.

c. Find the standard deviation.

47. Machine Repairs The time (in years) until a certain machine
requires repairs is a random variable t with probability density
function defined by

a. Find the probability that no repairs are required in the first
three years by finding the probability that a repair will be
needed in years 4 through 25.

b. Find the expected value for the number of years before the
machine requires repairs.

c. Find the standard deviation.

f 1 t 2 5
5

112
 1 1 2 t23/2 2 for t in 31, 25 4.

f 1x 2 5
3

4
 1x2 2 16x 1 65 2 for x in 38, 9 4.

bl `

1

"2p
 c2x1/2e2x/2 `  

b

0

1 3

b

0

x1/2e2x/2 dx d .

f 1x 2 5
x21/2e2x/2

"2p
 for x in 10, ` 2 .

f 1x 2 5
xe2x/2

4
 for x in 30, ` 2 .
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48. Retail Outlets The number of new outlets for a clothing man-
ufacturer is an exponential distribution with probability den-
sity function defined by

Find the following for this distribution.

a. The mean

b. The standard deviation

c. The probability that the number of new outlets will be
greater than the mean

49. Product Repairs The number of repairs required by a new
product each month is exponentially distributed with an aver-
age of 8.

a. What is the probability density function for this distribution?

b. Find the expected number of repairs per month.

c. Find the standard deviation.

d. What is the probability that the number of repairs per month
will be between 5 and 10?

50. Useful Life of an Appliance Part The useful life of a certain
appliance part (in hundreds of hours) is 46.2, with a standard devi-
ation of 15.8. Find the probability that one such part would last for
at least 6000 (60 hundred) hours. Assume a normal distribution.

51. Equipment Insurance A piece of equipment is being insured
against early failure. The time from purchase until failure of
the equipment is exponentially distributed with mean 10 years.
The insurance will pay an amount x if the equipment fails dur-
ing the first year, and it will pay 0.5x if failure occurs during
the second or third year. If failure occurs after the first three
years, no payment will be made. At what level must x be set if
the expected payment made under this insurance is to be 1000?
Source: Society of Actuaries. Choose one of the following.

a. 3858 b. 4449 c. 5382 d. 5644 e. 7235

Life Sciences

52. Weight Gain of Rats The weight gain (in grams) of rats fed a
certain vitamin supplement is a continuous random variable
with probability density function defined by

a. Find the mean of the distribution.

b. Find the standard deviation of the distribution.

c. Find the probability that the value of the random variable is
within 1 standard deviation of the mean.

53. Movement of a Released Animal The distance (in meters)
that a certain animal moves away from a release point is expo-
nentially distributed, with a mean of 100 m. Find the probabil-
ity that the animal will move no farther than 100 m away.

54. Snowfall The snowfall (in inches) in a certain area is uni-
formly distributed over the interval 

a. What is the expected snowfall?

b. What is the probability of getting more than 20 inches of
snow?

32, 30 4.

f 1x 2 5
8

7
 x22 for x in 31, 8 4.

f 1x 2 5
1

6
 e2x/6 for x in 30, ` 2 .



55. Body Temperature of a Bird The body temperature (in de-
grees Celsius) of a particular species of bird is a continu-
ous random variable with probability density function defined
by

a. What is the expected body temperature of this species?

b. Find the probability of a body temperature below the mean.

56. Average Birth Weight The average birth weight of infants in
the United States is 7.8 lb, with a standard deviation of 1.1 lb.
Assuming a normal distribution, what is the probability that a
newborn will weigh more than 9 lb?

57. Heart Muscle Tension In a pilot study on tension of the heart
muscle in dogs, the mean tension was 2.2 g, with a standard
deviation of 0.4 g. Find the probability of a tension of less than
1.9 g. Assume a normal distribution.

58. Life Expectancy According to the National Center for Health
Statistics, the life expectancy for a 65-year-old American male
is 17.0 years. Assuming that from age 65, the survival of
American males follows an exponential distribution, determine
the following probabilities. Source: National Vital Statistics
Report. 

a. The probability that a randomly selected 65-year-old American
male will live beyond 80 years of age (at least 15 more
years)

b. The probability that a randomly selected 65-year-old Ameri-
can male will live less than 10 more years

59. Life Expectancy According to the National Center for Health
Statistics, the life expectancy for a 50-year-old American
female is 32.5 years. Assuming that from age 50, the survival
of American females follows an exponential distribution,
determine the following probabilities. Source: National Vital
Statistics Report. 

a. The probability that a randomly selected 50-year-old Ameri-
can female will live beyond 90 years of age (at least 40 more
years)

b. The probability that a randomly selected 50-year-old
American female will live between 30 and 50 more years

Social  Sciences

60. Assaults The number of deaths in the United States caused by
assault (murder) for each age group is given in the following
table. Source: National Vital Statistics.

a. Plot the data. What type of function appears to best match
this data?

f 1x 2 5
3

19,696
 1x2 1 x 2 for x in 338, 42 4.
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Age Interval Midpoint of Number Dying  
(years) Interval (year) in Each Interval

0–14 7 1096
15–24 19.5 5729
25–34 29.5 4729
35–44 39.5 3013
45–54 49.5 2207
55–64 59.5 1011
65–74 69.5 397
75–84 79.5 274

89.5 (est) 32
Total 18,488
85 1

b. Use the regression feature on your graphing calculator to
find a quartic equation that models the number of years, t,
since birth and the number of deaths caused by assault,

Use the midpoint value to estimate the point in each
interval when the person died. Graph the function with the
plot of the data. Does the function resemble the data?

c. By finding an appropriate constant k, find a function
that is a probability density function describ-

ing the probability of death by assault. (Hint: Because the
function in part b is negative for values less than 5.2 and
greater than 88.9, restrict the domain of the density function
to the interval That is, integrate the function you
found in part b from 5.2 to 88.9.)

d. For a randomly chosen person who was killed by assault, find
the probabilities that the person killed was less than 25 years
old, at least 45 but less than 65 years old, and at least 75 years
old, and compare these with the actual probabilities.

e. Estimate the expected age at which a person will die by
assault.

f. Find the standard deviation of this distribution.

Physical  Sciences

61. Earthquakes The time between major earthquakes in the Taiwan
region is a random variable with probability density function
defined by

where t is measured in days. Find the expected value and stan-
dard deviation of this probability density function. Source:
Journal of Seismology.

General Interest

62. State-Run Lotteries The average state “take” on lotteries is
40%, with a standard deviation of 13%. Assuming a normal
distribution, what is the probability that a state-run lottery will
have a “take” of more than 50%?

f 1 t 2 5
1

3650.1
 e2t/3650.1,

35.2, 88.9 4.

S 1 t 2 5 kN 1 t 2

N 1 t 2 .



E X T E N D E D APPLICATION
EXPONENTIAL WAITING TIMES

We have seen in this chapter how probabilities that are
spread out over continuous time intervals can be mod-
eled by continuous probability density functions. The

exponential distribution you met in the last section of this chapter
is often used to model waiting times, the gaps between events that
are randomly distributed in time, such as decays of a radioactive
nucleus or arrivals of customers in the waiting line at a bank. In
this application we investigate some properties of the exponential
family of distributions.

Suppose that in a badly run subway system, the times
between arrivals of subway trains at your station are exponentially
distributed with a mean of 10 minutes. Sometimes trains arrive
very close together, sometimes far apart, but if you keep track over
many days, you’ll find that the average time between trains is 10
minutes. According to the last section of this chapter, the exponen-
tial distribution with density function has mean 
so the probability density function for our interarrival times is

First let’s see what these waiting times look like. We have
used a random-number generator from a statistical software pack-
age to draw 25 waiting times from this distribution. Figure 19
shows cumulative arrival times, which is what you would observe
if you recorded the arrival time of each train measured in minutes
from an arbitrary 0 point.

You can see that 25 trains arrive in a span of about 260 min-
utes, so the average interarrival time was indeed close to 10 min-
utes. You may also notice that there are some large gaps and some
cases where trains arrived very close together.

To get a better feeling for the distribution of long and short
interarrival times, look at the following list, which gives the 25
interarrival times in minutes, sorted from smallest to largest.

0.016 4.398 15.659

0.226 4.573 15.954

0.457 5.415 16.403

0.989 9.570 18.978

1.576 10.413 20.736

1.988 10.916 33.013

2.738 13.109 39.073

3.133 13.317

3.895 14.622

f 1 t 2 5
1

10
 e2t/10.

1 /a,f 1 t 2 5 ae2at

You can see that there were some very short waits. (In fact, the
shortest time between trains is only 1 second, which means our
model needs to be adjusted somehow to allow for the time trains
spend stopped in the station.) The longest time between trains was
39 minutes, almost four times as long as the average! Although the
exponential model exaggerates the irregularities of typical subway
service, the problem of pile-ups and long gaps is very real for public
transportation, especially for bus routes that are subject to unpre-
dictable traffic delays. Anyone who works at a customer service job
is also familiar with this behavior: The waiting line at a bank may
be empty for minutes at a stretch, and then several customers walk
in at nearly the same time. In this case, the customer interarrival
times are exponentially distributed.

Planners who are involved with scheduling need to under-
stand this “clumping” behavior. One way to explore it is to find
probabilities for ranges of interarrival times. Here integrals are the
natural tool. For example, if we want to estimate the fraction of
interarrival times that will be less than 2 minutes, we compute

So on average, 18% of the interarrival times will be less than
2 minutes, which indicates that clustering of trains will be a prob-
lem in our system. (If you have ridden a system like the one in
New York City, you may have boarded a train that was ordered to
“stand by” for several minutes to spread out a cluster of trains.)
We can also compute the probability of a gap of 30 minutes or
longer. It will be

So in a random sample of 25 interarrival times we might
expect one or two long waits, and our simulation, which includes
times of 33 and 39 minutes, is not a fluke. Of course, the rider’s
experience depends on when she arrives at the station, which is
another random input to our model. If she arrives in the middle of a
cluster, she’ll get a train right away, but if she arrives at the begin-
ning of a long gap she may have a half-hour wait. So we would
also like to model the rider’s waiting time, the time between the
rider’s arrival at the station and the arrival of the next train.

A remarkable fact about the exponential distribution is that if
our passenger arrives at the station at a random time, the distribu-
tion of the rider’s waiting times is the same as the distribution of

1

10
 3

`

30

e2t/10 dt 5 e23 < 0.0498.

1

10
 3

2

0

e2t/10 dt 5 1 2 e21/5 < 0.1813.
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interarrival times (that is, exponential with mean 10 minutes). At
first this seems paradoxical; since she usually arrives between
trains, she should wait less, on average, than the average time
between trains. But remember that she’s more likely to arrive at the
station in one of those long gaps. In our simulation, 72 out of 260
minutes is taken up with long gaps, and even if the rider arrives at
the middle of such a gap she’ll still wait longer than 15 minutes.
Because of this feature the exponential distribution is often called
memoryless: If you dip into the process at random, it is as if you
were starting all over. If you arrive at the station just as a train
leaves, your waiting time for the next one still has an exponential
distribution with mean 10 minutes. The next train doesn’t “know”
anything about the one that just left.*

Because the riders’ waiting times are exponential, the calcula-
tions we have already made tell us what riders will experience: A
wait of less than 2 minutes has probability about 0.18. The average
wait is 10 minutes, but long waits of more than 30 minutes are not
all that rare (probability about 0.05).

Customers waiting for service care about the average wait, but
they may care even more about the predictability of the wait. In this
chapter we stated that the standard deviation for an exponential dis-
tribution is the same as the mean, so in our model the standard devia-
tion of riders’ waiting times will be 10 minutes. This indicates that a
wait of twice the average length is not a rare event. (See Exercise 3.)

Let’s compare the experience of riders on our exponential sub-
way with the experience of riders of a perfectly regulated service in
which trains arrive exactly 10 minutes apart. We’ll still assume that
the passenger arrives at random. But now the waiting time is uni-
formly distributed on the time interval 
This uniform distribution has density function

The mean waiting time is

and the standard deviation of the waiting times is

Clearly the rider has a better experience on this system. Even
though the same average number of trains is running per hour as in
the exponential subway, the average wait for the uniform subway is
only 5 minutes with a standard deviation of 2.89 minutes, and no
one ever waits longer than 10 minutes!

Ç3
10

0

 
1 t 2 5 2 2

10
 dt 5

Å
25

3
< 2.89 minutes.

3

10

0

 
1

10
. tdt 5 5  minutes

f 1 t 2 5 c 1

10
 for 0 # t # 10

0  otherwise

30 minutes, 10 minutes 4.

Any subway run is subject to unpredictable accidents and
variations, and this random input is always pushing the riders’
waiting times toward the exponential model. Indeed, even with
uniform scheduling of trains, there will be service bottlenecks
because the exponential distribution is also a reasonable model
(over a short time period) for interarrival times of passengers
entering the station. The goal of schedulers is to move passengers
efficiently in spite of random train delays and random input of pas-
sengers. One proposed solution, the PRT or personal rapid transit
system, uses small vehicles holding just a few passengers that can
be scheduled to match a fluctuating demand.

The subway scheduling problem is part of a branch of statis-
tics called queueing theory, the study of any process in which
inputs arrive at a service point and wait in a line or queue to be
served. Examples include telephone calls arriving at a customer
service center, our passengers entering the subway station, packets
of information traveling through the Internet, and even pieces of
code waiting for a processor in a multiprocessor computer. The fol-
lowing Web sites provide a small sampling of work in this very
active research area.

■ http://web2.uwindsor.ca/math/hlynka/queue.html (A collection
of information on queueing theory)

■ http://faculty.washington.edu/jbs/itrans/ingsim.htm (an article
on scheduling a PRT)

EXERCISES
1. If X is a continuous random variable, is the

same as Since these are different events, how
can they have the same probability?

2. Someone who rides the subway back and forth to work each
weekday makes about 40 trips a month. On the exponential
subway, how many times a month can this commuter expect a
wait longer than half an hour?

3. Find the probability that a rider of the exponential subway
waits more than 20 minutes for a train; that is, find the proba-
bility of a wait more than twice as long as the average.

4. On the exponential subway, what is the probability that a ran-
domly arriving passenger has a wait of between 9 and 10 min-
utes? What is the corresponding probability on the uniform
subway?

5. If our system is aiming for an average interarrival time of 10
minutes, we might set a tolerance of plus or minus 2 min-
utes and try to keep the interarrival times between 8 and 12
minutes. Under the exponential model, what fraction of
interarrival times fall in this range? How about under the
uniform model?

P 1a , X , b 2 .
P 1a # X # b 2

CHAPTER 11 Probability and Calculus606
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*See Chapter 1 in Volume 2 of Feller, William, An Introduction to Probability
Theory and Its Applications, 2nd ed., New York: Wiley, 1971.

http://web2.uwindsor.ca/math/hlynka/queue.html
http://faculty.washington.edu/jbs/itrans/ingsim.htm
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6. Most mathematical software includes routines for generat-
ing “pseudo-random” numbers (that is, numbers that behave
randomly even though they are generated by arithmetic).
That’s what we used to simulate the exponential waiting
times for our subway system. But a source on the Internet
(http://www.fourmilab.ch/hotbits/) delivers random num-
bers based on the times between decay events in a sample
of Krypton-85. As noted above, the waiting times between
decay events have an exponential distribution, so we can
see what nature’s random numbers look like. Here’s a short
sample:

DIRECTIONS FOR GROUP PROJECT
Find a situation in which you and your group can gather actual
wait times, such as a bus stop, doctor’s office, teller line at a bank,
or check-out line at a grocery store. Collect data on
interarrival/service times and determine the mean service time.
Using this average, determine whether the data appears to follow
an exponential distribution. Develop a table that lists the percent-
age of the time that particular waiting times occur using both the
data and the exponential function. Construct a poster that could be
placed near the location where people wait that estimates the wait-
ing time for service.

10 15 20 2550

Actually, this source builds its random numbers from random
bits, that is, 0’s and 1’s that occur with equal probability. See if
you can think of a way of turning a sequence of exponential wait-
ing times into a random sequence of 0’s and 1’s.

http://www.fourmilab.ch/hotbits/
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APPLY IT

Geometric Sequences
If a person saved 1¢ on June 1, 2¢ on June 2, 4¢ on June 3, and so forth,
continuing the pattern of saving twice as much each day as the previous
day, how much would she have saved by the last day of June?
We will answer this question in Example 6 of this section.

12.1

12.1 Geometric Sequences 609

A function whose domain is the set of natural numbers, such as

is a sequence. The sequence can be written by listing its terms,
The letter n is used instead of x as a variable to emphasize the fact that the domain

includes only natural numbers. For the same reason, a is used instead of f to name the
function.

Sequences have many different applications; one example is the sequence of payments
used to pay off a car loan or a home mortgage. (For most practical problems, the domain
is a subset of the set of natural numbers.) This use of sequences is discussed in Section 12.2.
The remaining sections of this chapter cover topics related to sequences.

2n, * .
2, 4, 6, 8, * ,a 1 n 2 5 2n

a 1n 2 5 2n, for   n 5 1, 2, 3, 4, *

In our definition of sequence we used the example The range values of this
sequence function,

are called the elements or terms of the sequence. Instead of writing for the fifth term
of a sequence, it is customary to write for the sequence above

In the same way, for the sequence above, and

The symbol is used for the general or nth term of a sequence. For example, for the
sequence the general term might be given by This formula
for can be used to find any term of the sequence that might be needed. For example, the
first three terms of the sequence are

and

Also, and 

Sequence

Find the first four terms of the sequence having general term 

SOLUTION Replace n, in turn, with 1, 2, 3, and 4.

The first four terms of this sequence are and TRY YOUR TURN 1214.22, 26, 210,

 If n 5 4,  a4 5 24 14 2 1 2 5 216 1 2 5 214.

 If n 5 3,  a3 5 24 1 3 2 1 2 5 212 1 2 5 210.

 If n 5 2,  a2 5 24 12 2 1 2 5 28 1 2 5 26.

 If n 5 1,  a1 5 24 1 1 2 1 2 5 24 1 2 5 22.

an 5 24n 1 2.

a12 5 37.a8 5 25

  a3 5 1 1 3 1 3 2 5 10.a1 5 1 1 3 1 1 2 5 4,  a2 5 1 1 3 12 2 5 7,  

an

an 5 1 1 3n.4, 7, 10, 13, 16, *

an

a51 5 102.
a20 5 40,a8 5 16,a2 5 4,a1 5 2,

a5 5 10.

a5 ;
a 1 5 2

a 1 1 2 5 2, a 12 2 5 4, a 1 3 2 5 6, * ,

a 1n 2 5 2n.

YOUR TURN 1 Find the first
four terms of the sequence having
general term an � 3n – 6.

EXAMPLE  1
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A sequence in which each term after the first is found by multiplying the preceding
term by the same number is called a geometric sequence. The ratio of any two consecutive
terms is a constant r,

called the common ratio. For example, to find r in the following sequence:

take or or etc. and get Thus, it is a geometric sequence in
which each term after the first is found by multiplying the preceding term by the number

the common ratio.
If a is the first term of a geometric sequence and r is the common ratio, then the second

term is given by and the third term by Also, and
These results are generalized below.

General Term of a Geometric Sequence
If a geometric sequence has first term a and common ratio r, then

Geometric Sequences

Find the indicated term for each geometric sequence.

(a) Find for 

SOLUTION Here To verify that the sequence is geometric, divide each
term except the first by the preceding term.

Since the ratio is constant, the sequence is geometric with To find use the
formula for with and 

(b) Find for 

SOLUTION As before, verify that 
Here so

TRY YOUR TURN 2

Depreciation

A new machine is purchased for $150,000. Each year the machine loses 25% of its value.
Find its value at the end of the sixth year.

SOLUTION Since the machine loses 25% of its value each year, it retains 75% of its value.
At the end of its first year, its value is 75% of $150,000. Its value at the end of each of the
following years is 75% of the previous year’s value. These values form a geometric
sequence, with r = 0.75. If we let then the value at the end of the first
year is , at the end of the second year is , and so on. The value at the end of the sixth
year is 

.

The value of the machine is $26,696.78 at the end of the sixth year. TRY YOUR TURN 3

a7 5 150,000 10.75 2 721 5 150,000 10.75 2 6 5 26,696.77734

a3a2

a 5 a1 5 150,000

a6 5 8 122 2 621 5 8 122 2 5 5 8 1232 2 5 2256.

a 5 a1 5 8,22.
128/ 1264 25r 5 216 /8 5 32 / 1216 2 5 264/32 5

8, 216, 32, 264, 128, * .a6

a7 5 6 14 2 721 5 6 14 2 6 5 6 14096 2 5 24,576

r 5 4.a 5 6,n 5 7,an

a7 ,r 5 4.

24

6
5

96

24
5

384

96
5 4

a 5 a1 5 6.

6, 24, 96, 384, * .a7

an 5 ar n21.

a5 5 ar4.
a4 5 ar3a3 5 a2 r 5 ar2.a2 5 ar

22,

r 5 22.224 /12,12 / 126 226 /3

3, 26, 12, 224, 48, 296, *

r 5
an11

an
 , where n $ 1,

EXAMPLE  2

EXAMPLE  3

YOUR TURN 2 Find a7 for 2,
–6, 18, –54, . . . .

YOUR TURN 3 A machine
purchased for $10,000 loses 10% of
its value each year. Find its value at
the end of its tenth year.
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In the next section we will need to know how to find the sum of the first n terms of a
geometric sequence. To get a general rule for finding such a sum, begin by writing the sum

of the first n terms of a geometric sequence with first term and common ratio r as

Since this sum can be written as

(1)

If all the terms are equal to a, and the correct result for this case. If
multiply both sides of Equation (1) by r, obtaining

(2)

Now subtract corresponding sides of Equation (1) from Equation (2):

Factoring yields

and dividing by on both sides gives

This result is summarized below.

Sum of The First n Terms of a Geometric Sequence
If a geometric sequence has first term a and common ratio r, then the sum of the first n
terms, is given by

Summing Terms of a Geometric Sequence

Find the sum of the first six terms of the geometric sequence 

SOLUTION Here and Find the sum of the first six terms, by the for-
mula above.

Let 

The sum of a sequence can be conveniently calculated on a TI-84 Plus calculator using the
command sum(seq(3*4^N, N, 0, 5)) as shown in Figure 1. Notice that to find the
sum of the first six terms of the sequence we begin with N = 0 and end with N = 5 for a
total of 4095.

TRY YOUR TURN 4

5 4095

5
3 14096 2 1 2

3

n 5 6, a 5 3, r 5 4. S6 5
3 146 2 1 2

4 2 1

S6 ,r 5 4.a 5 a1 5 3

3, 12, 48, * .

Sn 5
a 1 r n 2 1 2

r 2 1
 , where r u 1.

Sn ,

Sn 5
a 1 rn 2 1 2

r 2 1
 .

r 2 1

Sn 
1 r 2 1 2 5 a 1 rn 2 1 2 ,

rSn 2 Sn 5 arn 2 a.

rSn 5 ar 1 ar2 1 ar3 1 ) 1 arn.

r 2 1,
Sn 5 n . a,r 5 1,

Sn 5 a 1 ar 1 ar2 1 ) 1 arn21.

an 5 arn21,

Sn 5 a1 1 a2 1 a3 1 ) 1 an .

a 5 a1Sn

EXAMPLE  4

Method 1
Using the Formula

Method 2
Graphing Calculator

sum(seq(3p4n,N,0,5))
4095

FIGURE 1

YOUR TURN 4 Find the sum
of the first seven terms of the geo-
metric sequence 2, –8, 32, . . . .
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Using summation notation, we can write as

Summing Terms of a Geometric Sequence

Use the formula for the sum of the first n terms of a geometric sequence to evaluate the
following sum.

SOLUTION Here and . The summation is from i � 0 to n�1 � 8, so n � 9.
Using the formula gives

TRY YOUR TURN 5

Savings

A person saved 1¢ on June 1, 2¢ on June 2, 4¢ on June 3, and so forth, continuing the pat-
tern of saving twice as much each day as the previous day. How much would she have
saved by the end of June?

SOLUTION This is a geometric sequence with and We want to find

By the end of June, the person will have saved 1,073,741,823 cents, or $10,737,418.23!

S30 5
1 1230 2 1 2

2 2 1
5 1,073,741,823

S30 .r 5 2.a 5 1

S9 5
1
2 3 122 2 9 2 1 4

22 2 1
5

1
2 12512 2 1 2

23
5

1
2 12513 2

23
5 85.5.

r 5 22a 5 1 /2

a

8

i50

1

2
 122 2 i

Sn 5 a

n21

i50

ari.

Sn 5 a 1 ar 1 ar2 1 ) 1 arn21

YOUR TURN 5

Evaluate the sum .a

4

i50

81a
1

3
b

i

EXAMPLE  5

EXAMPLE  6

APPLY IT 

12.1 EXERCISES
List the first n terms of the geometric sequence satisfying the
following conditions.

1. 2.

3. 4.

5. 6.

Find and for the following geometric sequences.

7. 8.

9. 10.

11. 12.

13. 14.

For each sequence that is geometric, find r and 

15. 16.

17. 18.

19. 20. 6, 8, 10, 12, 14, *4, 8, 216, 32, 64, 2128, *

27, 25, 23, 21, 1, 3, *3 /4, 3 /2, 3, 6, 12, *

4, 16, 64, 256, *6, 12, 24, 48, *

an .

a4 5 81, r 5 23a4 5 64, r 5 24

a3 5 2, r 5 1 /3a2 5 12, r 5 1 /2

a1 5 24, r 5 22a1 5 23, r 5 25

a1 5 8, r 5 4a1 5 4, r 5 3

ana5

a2 5 9, a3 5 3, n 5 4a3 5 6, a4 5 12, n 5 5

a1 5 2 /3, r 5 6, n 5 3a1 5 1 /2, r 5 4, n 5 4

a1 5 4, r 5 2, n 5 5a1 5 2, r 5 3, n 5 4

21.

22.

Find the sum of the first five terms of each geometric sequence.

23. 24.

25. 26.

27. 28.

29. 30.

Use the formula for the sum of the first n terms of a geometric
sequence to evaluate the following sums.

31. 32.

33. 34. a
9

i50

 
3

4
 12 2 ia

8

i50

 
3

2
 14 2 i

a

6

i50

4 1 3 2 ia

7

i50

8 12 2 i

a1 5 22.772, r 5 21.335a1 5 6.324, r 5 2.598

a1 5 25, r 5 4a1 5 3, r 5 22

18, 23, 1 /2, 21 /12, *12, 26, 3, 23 /2, *

5, 20, 80, 320, *3, 6, 12, 24, *

7 /4, 27 /12, 7 /36, 27 /108, *

25 /8, 5 /12, 25 /18, 5 /27, *



as many times as in the preceding minute. How many
times will the wheel rotate in the fifth minute after the rider’s
feet are removed from the pedals?

General Interest

46. Thickness of a Paper Stack A piece of paper is 0.008 in. thick.

a. Suppose the paper is folded in half, so that its thickness dou-
bles, for 12 times in a row. How thick is the final stack of
paper?

b. Suppose it were physically possible to fold the paper 50 times
in a row. How thick would the final stack of paper be?

47. Sports In the NCAA Men’s Basketball Tournament, 64 teams
are initially paired off. By playing a series of single-elimination
games, a champion is crowned. Source: Mathematics Teacher.

a. Write a geometric sequence whose sum determines the number
of games that must be played to determine the champion team.

b. How many games must be played to produce the champion?

c. Generalize parts a and b to a tournament where teams are
initially present.

d. Discuss a quick way to determine the answers to parts b
and c, based on the fact that each game produces one loser,
and all teams except the champion lose one game.

48. Game Shows Some game shows sponsor tournaments where
in each game, three individuals play against each other, yield-
ing one winner and two losers. The winners of three such
games then play each other, until the final game of three play-
ers produces a tournament winner. Suppose 81 people begin
such a tournament. Source: Mathematics Teacher.

a. Write a geometric sequence whose sum determines the num-
ber of games that must be played to determine the tourna-
ment champion.

b. How many games must be played to produce the champion?

c. Generalize parts a and b to a tournament where players are
initially present.

d. Further generalize parts a and b to a tournament where 
players are initially present.

tn

3n

2n

3 /4

12.2 Annuities: An Application of Sequences 613

35. 36.

37. 38.

APPLICATIONS
Business and Economics

39. Depreciation A certain machine annually loses 20% of the
value it had at the beginning of that year. If its initial value is
$12,000, find its value at the following times.

a. The end of the fifth year

b. The end of the eighth year

40. Income An oil well produced $4,000,000 of income its first
year. Each year thereafter, the well produced 3/4 as much
income as the previous year. What is the total amount of
income produced by the well in 8 years?

41. Savings Suppose you could save $1 on January 1, $2 on
January 2, $4 on January 3, and so on. What amount would
you save on January 31? What would be the total amount of
your savings during January?

42. Depreciation Each year a machine loses 30% of the value it
had at the beginning of the year. Find the value of the machine
at the end of 6 years if it cost $200,000 new.

Life Sciences

43. Population The population of a certain colony of bacteria
increases by 5% each hour. After 7 hours, what is 
the percent increase in the population over the initial 
population?

Physical  Sciences

44. Radioactive Decay The half-life of a radioactive substance is
the time it takes for half the substance to decay. Suppose the
half-life of a substance is 3 years and that molecules of the
substance are present initially. How many molecules will be
unchanged after 15 years?

45. Rotation of a Wheel A bicycle wheel rotates 400 times per
minute. If the rider removes his or her feet from the pedals, the
wheel will start to slow down. Each minute, it will rotate only

1015

a

6

i50

81a
2

3
b

i

a

8

i50

64a
1

2
b

i

a

5

i50

 
3

2
 122 2 i

APPLY IT

Annuities: An Application of Sequences
Suppose $1500 is deposited at the end of each year for the next 6 years
in an account paying 8% per year, compounded annually. How much will
be in the account after 6 years?

12.2

Such a sequence of equal payments made at equal periods of time is called an annuity. If
each payment is made at the end of a period, and if the frequency of payments is the same
as the frequency of compounding, the annuity is called an ordinary annuity. The time
between payments is the payment period, and the time from the beginning of the first
period to the end of the last period is called the term of the annuity. The amount of the

YOUR TURN ANSWERS 

1. –3, 0, 3, 6 2. 1458 3. $3486.78 4. 6554 5. 121
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annuity, the final sum on deposit in the account, is defined as the sum of the compound
amounts of all the payments, compounded to the end of the term.

Figure 2 shows the annuity described above. To find the amount of this annuity, look at
each of the $1500 payments separately. The first of these payments will produce a com-
pound amount of

at the end of 6 years. Use 5 as the exponent instead of 6 because the money is deposited at
the end of the first year and thus earns interest for only 5 years.

1500 1 1 1 0.08 2 5 5 1500 1 1.08 2 5

APPLY IT 

FOR REVIEW
The formula for the compound
amount, A, is 
where P is the principal, i is the
rate per period, and n is the total
number of compounding periods.

A 5 P 1 1 1 i 2n

21 3

End of year

Term of the annuity

The $1500 is paid at the end of the year.

4 5

Period 2Period 1

$1500 $1500 $1500 $1500 $1500 $1500

Period 3 Period 4 Period 5

6

Period 6

FIGURE 2

The second payment of $1500 will produce a compound amount (at the end of 5 years)
of As shown in Figure 3, the total amount of the annuity is

(1) 1 1500 1 1.08 2 1 1 1500.

 1500 1 1.08 2 5 1 1500 1 1.08 24 1 1500 1 1.08 2 3 1 1500 1 1.08 2 2
1500 1 1.08 24.

(The last payment earns no interest.) Reversing the order of the terms, so the last term is
first, shows that Equation (1) is the sum of the terms of a geometric sequence with

and Using the formula for the sum of the first n terms of a geo-
metric sequence gives

To generalize this result, suppose that R dollars are paid into an account at the end of
each period for n periods, at a rate of interest i per period. The first payment of R dollars
will produce a compound amount of dollars, the second payment will produceR 1 1 1 i 2n21

   < $11,003.89.

 1 1500 1 1.08 24 1 1500 1 1.08 2 5 5
1500 1 1.086 2 1 2

1.08 2 1

 1500 1 1500 1 1.08 2 1 1 1500 1 1.08 2 2 1 1500 1 1.08 2 3

n 5 6.r 5 1.08,a 5 1500,

Year 1 32 4 5 6

$1500 $1500$1500 $1500 $1500 $1500

$1500.00

  1620.00 � 1500(1.08)1

  1749.60 � 1500(1.08)2

  1889.57 � 1500(1.08)3

  2040.73 � 1500(1.08)4

  2203.99 � 1500(1.08)5

Total $11,003.89

Deposit

FIGURE 3
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dollars, and so on; the final payment earns no interest and contributes just R
dollars to the total. If S represents the future value (or sum) of the annuity, then

or, written in reverse order,

This is the sum of the first n terms of the geometric sequence having first term R and com-
mon ratio Using the formula for the sum of the first n terms of a geometric sequence
gives

The quantity in brackets is commonly written (read “s-angle-n at i”), so that

Values of can be found by a calculator. The TI-84 Plus has a special Finance menu with this
formula built in. For more details, see the Graphing Calculator and Excel Spreadsheet Manual avail-
able with this book.

Our work with annuities can be summarized as follows.

Amount of Annuity
The amount S of an annuity of payments of R dollars each, made at the end of each period for
n consecutive interest periods at a rate of interest i per period, is given by

NOTE In this section we are assuming that each payment is made at the end of a period, as
is the case in an ordinary annuity. There are situations in which each payment is made at the
beginning of a period; this is known as an annuity due. The details are slightly different, and
we will not go into them here. For more information, see Chapter 5 of our other textbook,
Finite Mathematics, by Lial, Greenwell, and Ritchey.

Annuity

Erin D’Aquanni is an athlete who feels that her playing career will last 7 more years. To
prepare for her future, she deposits $22,000 at the end of each year for 7 years in an account
paying 8% compounded annually. How much will she have on deposit after 7 years?

SOLUTION Her deposits form an ordinary annuity with and 
The amount of this annuity is (by the formula above)

The number in brackets, is 8.92280336, so that

or $196,301.67. TRY YOUR TURN 1

S 5 22,000 1 8.92280336 2 5 196,301.67,

s 700.08 ,

S 5 22,000 c
1 1.08 2 7 2 1

0.08
d .

i 5 0.08.n 5 7,R 5 22,000,

S 5 R c
1 1 1 i 2n 2 1

i
d  or  S 5 R ? s n0 i .

s n0 i

S 5 R . s n0 i .

s n0 i

S 5
R 3 1 1 1 i 2n 2 1 4
1 1 1 i 2 2 1

5
R 3 1 1 1 i 2n 2 1 4

i
5 R c

1 1 1 i 2n 2 1

i
d .

1 1 i.

S 5 R 1 R 1 1 1 i 2 1 1 R 1 1 1 i 2 2 1 ) 1 R 1 1 1 i 2n21.

S 5 R 1 1 1 i 2n21 1 R 1 1 1 i 2n22 1 R 1 1 1 i 2n23 1 ) 1 R 1 1 1 i 2 1 R,

R 1 1 1 i 2n22

TECHNOLOGY NOTE

EXAMPLE  1

YOUR TURN 1 In Example 1,
how much will Erin have on deposit
after 7 years if she deposits $22,000
annually and earns only 5% interest?
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Annuity

Suppose $1000 is deposited at the end of each 6-month period for 5 years in an account
paying 6% per year compounded semiannually. Find the amount of the annuity.

SOLUTION Interest of is earned semiannually. In 5 years there are
semiannual periods. Since the $1000

deposits will produce a total of

or $11,463.88. TRY YOUR TURN 2

The formula for S involves the variables R, i, and n. The next example shows how to
solve for one of these other variables.

Annuity

Melissa Abruzese wants to buy an expensive video camera three years from now. She plans
to deposit an equal amount at the end of each quarter for three years in order to accumulate
enough money to pay for the camera. Melissa expects the camera to cost $2400 at that time.
The bank pays 6% interest per year compounded quarterly. Find the amount of each of the
12 equal deposits she must make.

SOLUTION This example describes an ordinary annuity with Since interest is
compounded quarterly,  and periods. The unknown here
is the amount of each payment, R. By the formula for the amount of an annuity given
above,

Divide both sides by 13.04121.

or $184.03. TRY YOUR TURN 3

Sinking Fund A sinking fund is a fund set up to receive periodic payments; these
periodic payments plus the interest on them are designed to produce a given total at some
time in the future. As an example, a corporation might set up a sinking fund to receive
money that will be needed to pay off a loan in the future. The deposits in Examples 1 and 3
form sinking funds.

Sinking Fund

The Toussaints are close to retirement. They agree to sell an antique urn to a local museum
for $17,000. Their tax adviser suggests that they defer receipt of this money until they
retire, 5 years in the future. (At that time, they might well be in a lower tax bracket.) The
museum agrees to pay them the $17,000 in a lump sum in 5 years. Find the amount of each
payment the museum must make into a sinking fund so that it will have the necessary
$17,000 in 5 years. Assume that the museum can earn 8% compounded annually on its
money and that the payments are made annually.

SOLUTION These payments make up an ordinary annuity. The annuity will amount to
$17,000 in 5 years at 8% compounded annually, so

 R 5
17,000
s 500.08

5
17,000

5.86660
< 2897.76,

 17,000 5 R . s 500.08

 R 5 184.03,

 2400 5 R 1 13.04121 2

 2400 5 R c
1.01512 2 1

0.015
d

 2400 5 R . s 1200.015 

n 5 3 . 4 5 12i 5 0.06/4 5 0.015
S 5 2400.

S 5 1000 1 11.46388 2 5 11,463.88,

s 1000.03 5 3 1 1.03 2 10 2 1 4 /0.03 5 11.46388,5 3 2 5 10
i 5 0.06 /2 5 0.03YOUR TURN 2 Suppose $125

is deposited monthly for 5 years into
an account paying 2% per year com-
pounded monthly. Find the amount
of the annuity.

YOUR TURN 3 Repeat 
Example 3 if the interest rate is only
2.5% compounded quarterly.

EXAMPLE  2

EXAMPLE  3

EXAMPLE  4
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or $2897.76. If the museum deposits $2897.76 at the end of each year for 5 years in an
account paying 8% compounded annually, it will have the needed $17,000. This result is
shown in the following table. In other cases, the last payment might differ slightly from the
others due to rounding R to the nearest penny.

EXAMPLE  5

Sinking Fund Amounts
Payment Amount of Interest Total in
Number Deposit Earned Account

1 $2897.76 $0 $2897.76

2 $2897.76 $231.82 $6027.34

3 $2897.76 $482.19 $9407.29

4 $2897.76 $752.58 $13,057.63

5 $2897.76 $1044.61 $17,000.00

Present Value of an Annuity As shown above, if a deposit of R dollars is made
at the end of each period for n periods, at a rate of interest i per period, then the account will
contain

dollars after n periods. Now suppose we want to find the lump sum P that must be deposited
today at a rate of interest i per period in order to produce the same amount S after n periods.

First recall that P dollars deposited today will amount to dollars after n periods
at a rate of interest i per period. This amount, should be the same as S, the
amount of the annuity. Substituting for S in the formula above gives

To solve this equation for P, multiply both sides of the equation by 

Use the distributive property and the fact that 

The amount P is called the present value of the annuity. The quantity in brackets is abbre-
viated as 

Present Value of an Annuity
The present value P of an annuity of payments of R dollars each, made at the end of
each period for n consecutive interest periods at a rate of interest i per period is given
by

Present Value

What lump sum deposited today at 6% interest compounded annually will yield the same
total amount as payments of $1500 at the end of each year for 12 years, also at 6% com-
pounded annually?

P 5 R c
1 2 1 1 1 i 22n

i
d  or  P 5 R ? a n0 i 

.

a n0 i .

P 5 R c
1 1 1 i 22n 1 1 1 i 2n 2 1 1 1 i 22n

i
d 5 R c

1 2 1 1 1 i 22n

i
d

1 1 1 i 22n 1 1 1 i 2n 5 1.

P 5 R 1 1 1 i 22n c
1 1 1 i 2n 2 1

i
d

1 1 1 i 22n.

P 1 1 1 i 2n 5 R c
1 1 1 i 2n 2 1

i
d .

P 1 1 1 i 2n
P 1 1 1 i 2n,

P 1 1 1 i 2n

S 5 R . s n0 i 5 R c
1 1 1 i 2n 2 1

i
d
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SOLUTION Find the present value of an annuity of $1500 per year for 12 years at 6%
compounded annually. From the present value formula, 
� 8.383844, so

or $12,575.77. A lump sum deposit of $12,575.77 today at 6% compounded annually will
yield the same total after 12 years as deposits of $1500 at the end of each year for 12 years
at 6% compounded annually.

Check this result as follows. The compound amount in 12 years of a deposit of
$12,575.77 today at 6% compounded annually can be found by the formula :

or $25,304.91. On the other hand, a deposit of $1500 into an annuity at the end of each year
for 12 years, at 6% compounded annually, gives an amount of

or $25,304.91.
In summary, there are two ways to have $25,304.91 in 12 years at 6% compounded

annually—a single deposit of $12,575.77 today, or payments of $1500 at the end of each
year for 12 years. TRY YOUR TURN 4

The formula above can be used if the lump sum is known and the periodic payment of
the annuity must be found. The next example shows how to do this.

Payments

A used car costs $6000. After a down payment of $1000, the balance will be paid off in
36 monthly payments with interest of 12% per year, compounded monthly. Find the
amount of each payment.

SOLUTION A single lump sum payment of $5000 today would pay off the loan, so $5000
is the present value of an annuity of 36 monthly payments with interest of 12% %
per month. We can find R, the amount of each payment, by using the formula

and replacing P with 5000, n with 36, and i with 0.01. From the present value formula,
so

or $166.07. Monthly payments of $166.07 each will be needed. TRY YOUR TURN 5

Amortization A loan is amortized if both the principal and interest are paid by a
sequence of equal periodic payments. In Example 6 above, a loan of $5000 at 12% interest
compounded monthly could be amortized by paying $166.07 per month for 36 months, or
(it turns out) $131.67 per month for 48 months.

Amortization

A speculator agrees to pay $15,000 for a parcel of land. Payments will be made twice each
year for 4 years at an interest rate of 12% compounded semiannually.

 R < 166.07

 5000 5 R 1 30.10751 2
a 3600.01 5 30.10751,

P 5 R . a n0 i

/12 5 1

1500 3 1 1.06 2 12 2 1 4 /0.06 5 1500 1 16.86994 2 5 25,304.91,

12,575.77 1 1.06 2 12 5 1 12,575.77 2 12.012196 2 < 25,304.91,

A 5 P1 1 1 i 2n

P 5 1500 1 8.383844 2 5 12,575.77,

31 2 1 1.06 2212 4 /0.06a 1200.06 5

YOUR TURN 4 Repeat
Example 5 if the annual interest rate
is 4.5% and the payments are $2500
at the end of each year for 12 years.

YOUR TURN 5 A used car
costs $11,000, and there is no down
payment. The car will be paid off in
48 monthly payments with interest
of 6% per year, compounded
monthly. Find the amount of each
payment.

EXAMPLE  6

EXAMPLE  7
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(a) Find the amount of each payment.

SOLUTION If the speculator immediately paid $15,000, there would be no need for
any payments at all. Thus, $15,000 is the present value of an annuity of R dollars, with

periods, and per period. If P is the present value of an
annuity,

In this example, with

or

or $2415.54. Each payment is $2415.54.

(b) Find the portion of the first payment that is applied to the reduction of the debt.

SOLUTION Interest is 12% per year, compounded semiannually. During the first
period, the entire $15,000 is owed. Interest on this amount for 6 months year) is
found by the formula for simple interest, so that

or $900. At the end of 6 months, the speculator makes a payment of $2415.54; since
$900 of this represents interest, a total of

is applied to the reduction of the original debt.

(c) Find the balance due after 6 months.

SOLUTION The original balance due is $15,000. After 6 months, $1515.54 is applied
to reduction of the debt. The debt owed after 6 months is

(d) How much interest is owed for the second 6-month period? How much will be applied
to the debt?

SOLUTION A total of $13,484.46 is owed for the second 6 months. Interest on this
amount is

or $809.07. A payment of $2415.54 is made at the end of this period; a total of

is applied to the reduction of the debt.

$2415.54 2 $809.07 5 $1606.47

I 5 13,484.46 10.12 2 a
1

2
b < 809.07,

$15,000 2 $1515.54 5 $13,484.46.

$2415.54 2 $900 5 $1515.54

I 5 15,000 10.12 2 a
1

2
b 5 900,

I 5 Prt,
(1 /2

 5
15,000

6.20979
< 2415.54,

 R 5
15,000
a 800.06

 .

 15,000 5 R . a 800.06

P 5 15,000,

P 5 R . a n0 i .

i 5 0.12 /2 5 0.062 . 4 5 8
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Continuing this process gives the amortization schedule shown below. As the sched-
ule shows, each payment is the same, except perhaps for a small adjustment in the final
payment. Payment 0 represents the original amount of the loan. 

The unpaid balance of a loan after x payments is equivalent to the present value of an annu-
ity after consecutive payments and is given by the function

For Example 7, the unpaid balance after two payments is

or $11,877.99.
This formula can also be used to produce a graph of the unpaid balance. For Example

7, the graph of

is shown in Figure 4.

y 5 2415.54 c
1 2 1 1 1 0.12 /2 22182x2

0.12 /2
d

y 5 2415.54 c
1 2 1 1 1 0.12 /2 2218222

0.12 /2
d < 11,877.99,

y 5 R c
1 2 1 1 1 i 221n2x2

i
d

n 2 x

Amortization Schedule

Payment Amount of Interest Portion to Principal at End
Number Payment for Period Principal of Period

0 — — — $15,000.00

1 $2415.54 $900 $1515.54 $13,484.46

2 $2415.54 $809.07 $1606.47 $11,877.99

3 $2415.54 $712.68 $1702.86 $10,175.13

4 $2415.54 $610.51 $1805.03 $8370.10

5 $2415.54 $502.21 $1913.33 $6456.77

6 $2415.54 $387.41 $2028.13 $4428.64

7 $2415.54 $265.72 $2149.82 $2278.82

8 $2415.54 $136.73 $2278.82 $0

Amortization

The Millers buy a house for $174,000, with a down payment of $26,000. Interest is charged
at 7.25% per year for 30 years compounded monthly. Find the amount of each monthly
payment to amortize the loan.

EXAMPLE  8

y

x2 4 6 8

5000

0

10,000

15,000

FIGURE 4

y 5 2415.54 c
1 2 1 1 1 0.12 /2 22182x2

0.12 /2
d
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SOLUTION Here, the present value, P, is 148,000 (or Also,
and The monthly payment R must be

found. From the formula for the present value of an annuity,

or

Monthly payments of $1009.62 will be required to amortize the loan.

We can find the monthly payments to amortize this loan using the Finance Application of a
TI-84 Plus calculator. To solve this problem, press the APPS button on the calculator and
then select the Finance option. To input the particular information into the application,
select the TVM Solver as shown in Figure 5 and then press ENTER. Then input the rele-
vant values needed for the Solver, as shown in Figure 6. Note that the value of PMT is zero
in TVM Solver. At this point, the particular value of PMT does not matter since we are
going to calculate that value. Once the information is input into the solver, you must press
2nd QUIT to leave TVM Solver. To find the payment, press APPS, then Finance, and
then select the tvm_Pmt button and press ENTER twice. The result shown in Figure 7
agrees with our work above.

TRY YOUR TURN 6

 R < 1009.62.

 5 Ra
0.8856459603

0.0060416667
b,

 5 Ra
1 2 0.1143540397

0.0060416667
b

 5 R c
1 2 1 1 1 0.0060416667 22360

0.0060416667
d

 148,000 5 R . a 36000.0060416667

n 5 12 . 30 5 360.i 5 0.0725 /12 < 0.0060416667,
174,000 2 26,000).

Method 2
Graphing Calculator

CALC VARS
TVM Solver...1:1:

2: tvm_Pmt
3: tvm_I%
4: tvm_PV
5: tvm_N
6: tvm_FV
7:  npv(

FIGURE 5

N5360
I%57.25
PV5148000
PMT50
FV50
P/Y512
C/Y512
PMT: END BEGIN

FIGURE 6

tvm_Pmt
-1009.620894

FIGURE 7

YOUR TURN 6 In Example 8,
suppose the house costs $256,000,
and the Millers make a down pay-
ment of $32,000. If interest is
charged at 4.9% per year for 30
years compounded monthly, find the
amount of each monthly payment.

12.2 EXERCISES
Find the amount of each ordinary annuity. (Interest is com-
pounded annually.)

1.

2.

3.

4.

5.

6. R 5 $13,400, i 5 0.045, n 5 25

R 5 $11,500, i 5 0.055, n 5 30

R 5 $80,000, i 5 0.07, n 5 24

R 5 $9000, i 5 0.06, n 5 18

R 5 $1500, i 5 0.04, n 5 12

R 5 $120, i 5 0.05, n 5 10

Find the amount of each ordinary annuity based on the infor-
mation given.

7. 10% interest compounded semiannually for 
7 years

8. 6% interest compounded semiannually for 
11 years

9. 8% interest compounded quarterly for 12 years

10. 4% interest compounded quarterly for 9 yearsR 5 $5300,

R 5 $1800,

R 5 $4200,

R 5 $10,500,

Method 1
Calculation by Hand
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Find the periodic payments that will amount to the given sums
under the given conditions.

11. interest is 8% compounded annually; payments
are made at the end of each year for 12 years.

12. interest is 6% compounded semiannually; pay-
ments are made at the end of each semiannual period for 9 years.

13. interest is 12% compounded quarterly; payments
are made at the end of each quarter for 8 years.

14. S � $8000; interest is 4% compounded monthly; payments are
made at the end of each month for 5 years.

Find the present value of each ordinary annuity.

15. Payments of $5000 are made annually for 11 years at 6% com-
pounded annually.

16. Payments of $1280 are made annually for 9 years at 7% com-
pounded annually.

17. Payments of $1400 are made semiannually for 8 years at 6%
compounded semiannually.

18. Payments of $960 are made semiannually for 16 years at 5%
compounded semiannually.

19. Payments of $50,000 are made quarterly for 10 years at 8%
compounded quarterly.

20. Payments of $9800 are made quarterly for 15 years at 4% com-
pounded quarterly.

Find the lump sum deposited today that will yield the same
total amount as payments of $10,000 at the end of each year for
15 years, at the following interest rates. Interest is compounded
annually.

21. 4% 22. 5%

23. 6% 24. 8%

Find the payments necessary to amortize each loan.

25. $2500, 16% compounded quarterly, 6 quarterly payments

26. $1000, 8% compounded annually, 9 annual payments

27. $90,000, 8% compounded annually, 12 annual payments

28. $41,000, 12% compounded semiannually, 10 semiannual pay-
ments

29. $55,000, 6% compounded monthly, 36 monthly payments

30. $6800, 12% compounded monthly, 24 monthly payments

APPLICATIONS
Business and Economics

31. Amount of an Annuity Sara Swangard wants to deposit $12,000
at the end of each year for 9 years into an annuity.

a. Sara’s local bank offers an account paying 5% interest
compounded annually. Find the final amount she will have
on deposit.

b. Sara’s brother-in-law works in a bank that pays 3%
compounded annually. If she deposits her money in this bank
instead, how much money will she have in her account?

S 5 $50,000;

S 5 $80,000;

S 5 $10,000;

c. How much would Sara lose over 9 years by using her
brother-in-law’s bank instead of her local bank?

32. Amount of an Annuity For 8 years, Tobi Casper deposits
$100 at the end of each month into an annuity paying 6%
annual interest compounded monthly.

a. Find the total amount Tobi deposits into the account over the
8 years.

b. Find the final amount Tobi will have on deposit at the end of
the 8 years.

c. How much interest did Tobi earn?

33. Sinking Fund Steve Day wants $20,000 in 8 years.

a. What amount should he deposit at the end of each quarter at
6% annual interest compounded quarterly to accumulate the
$20,000?

b. Find his quarterly deposit if the money is deposited at 4%
compounded quarterly.

34. Sinking Fund Megan Donnelly wants to buy a car that she esti-
mates will cost $24,000 in 5 years. How much money must she
deposit at the end of each quarter at 5% interest compounded
quarterly in order to have enough in 5 years to pay for her car?

35. Sinking Fund Harv’s Meats will need to buy a new deboner
machine in 4 years. At that time Harv expects the machine to
cost $12,000. To accumulate enough money to pay for the
machine, Harv decides to deposit a sum of money at the end of
each 6-month period in an account paying 4% compounded
semiannually. How much should each payment be?

36. Sinking Fund A firm must pay off $40,000 worth of bonds in 
7 years.

a. Find the amount of each annual payment to be made into a
sinking fund, if the money earns 6% compounded annually.

b. What annual payment should be made if the firm can get
interest of 8% compounded annually?

Individual Retirement Accounts With Individual Retirement
Accounts (IRAs), a worker whose income does not exceed certain
limits can deposit up to a certain amount annually, with taxes
deferred on the principal and interest. To attract depositors, banks
have been advertising the amount that would accumulate by
retirement. Suppose a 40-year-old person deposits $2000 per year
until age 65. Find the total in the account with the interest rates
stated in Exercises 37–40. Assume semiannual compounding with
payments of $1000 made at the end of each semiannual period.

37. 6% 38. 8% 39. 10% 40. 12%

41. Sinking Fund Rebecca Nasman sells some land in Nevada.
She will be paid a lump sum of $60,000 in 7 years. Until then,
the buyer pays 8% interest, compounded quarterly.

a. Find the amount of each quarterly interest payment.

b. The buyer sets up a sinking fund so that enough money will
be present to pay off the $60,000. The buyer wants to make
semiannual payments into the sinking fund; the account
pays 6% compounded semiannually. Find the amount of
each payment into the fund.

c. Prepare a table showing the amount in the sinking fund after
each deposit.



46. Lottery Winnings In the “Million Dollar Lottery,” a winner is
paid a million dollars at the rate of $50,000 per year for
20 years. Assume that these payments form an ordinary annuity
and that the lottery managers can invest money at 6%
compounded annually. Find the lump sum that the manage-
ment must put away to pay off the “million dollar” winner.

47. Lottery Winnings In most states, the winnings of million-dollar
lottery jackpots are divided into equal payments given annually
for 20 years. (In Colorado, the results are distributed over 25
years.) This means that the present value of the jackpot is worth
less than the stated prize, with the actual value determined by
the interest rate at which the money could be invested. Source:
The New York Times Magazine.

a. Find the present value of a $1 million lottery jackpot distrib-
uted in equal annual payments over 20 years, using an inter-
est rate of 5%.

b. Find the present value of a $1 million lottery jackpot distrib-
uted in equal annual payments over 20 years, using an inter-
est rate of 9%.

c. Calculate the answer for part a using the 25-year distribu-
tion time in Colorado.

d. Calculate the answer for part b using the 25-year distribu-
tion time in Colorado.

48. Car Payments Kristina Walters buys a new car costing
$22,000. She agrees to make payments at the end of each
month for 4 years. If she pays 9% interest, compounded
monthly, what is the amount of each payment? Find the total
amount of interest Kristina will pay.

House Payments Find the monthly house payment necessary to
amortize each of the loans in Exercises 49–52. Then find the
unpaid balance after 5 years for each loan. Assume that interest
is compounded monthly.

49. $249,560 at 7.75% for 25 years

50. $170,892 at 8.11% for 30 years

51. $353,700 at 7.95% for 30 years

52. $196,511 at 7.57% for 25 years

53. Annuity When Ms. Thompson died, she left $25,000 to her
husband, which he deposited at 6% compounded annually.
He wants to make annual withdrawals from the account so
that the money (principal and interest) is gone in exactly
8 years.

a. Find the amount of each withdrawal.

b. Find the amount of each withdrawal if the money must last
12 years.

54. Annuity The trustees of a college have accepted a gift of
$150,000. The donor has directed the trustees to deposit the
money in an account paying 6% per year, compounded semi-
annually. The trustees may withdraw an equal amount of
money at the end of each 6-month period; the money must last
5 years.

a. Find the amount of each withdrawal.

b. Find the amount of each withdrawal if the money must last 
7 years.
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42. Sinking Fund Jerry Higgins bought a rare stamp for his collec-
tion. He agreed to pay a lump sum of $4000 after 5 years. Until
then, he pays 6% interest, compounded semiannually.

a. Find the amount of each semiannual interest payment.

b. Jerry sets up a sinking fund so that enough money will be
present to pay off the $4000. He wants to make annual
payments into the fund. The account pays 8% com-
pounded annually. Find the amount of each payment into
the fund.

c. Prepare a table showing the amount in the sinking fund after
each deposit.

43. Investment In 1995, Oseola McCarty donated $150,000 to
the University of Southern Mississippi to establish a scholar-
ship fund. What is unusual about her is that the entire amount
came from what she was able to save each month from her
work as a washer woman, a job she began in 1916 at the age of
8, when she dropped out of school. Source: The New York
Times.

a. How much would Ms. McCarty have to put into her savings
account at the end of every 3 months to accumulate
$150,000 over 79 years? Assume she received an interest
rate of 5.25% compounded quarterly.

b. Answer part a using a 2% and a 7% interest rate.

44. Present Value of an Annuity What lump sum deposited today
at 5% compounded annually for 8 years will provide the same
amount as $1000 deposited at the end of each year for 8 years
at 6% compounded annually?

45. Present Value of an Annuity In his will the late Mr. Hudspeth
said that each child in his family could have an annuity of
$2000 at the end of each year for 9 years or the equivalent
present value. If money can be deposited at 8% compounded
annually, what is the present value?
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55. Amortization An insurance firm pays $4000 for a new printer
for its computer. It amortizes the loan for the printer in 4 annual
payments at 8% compounded annually. Prepare an amortiza-
tion schedule for this machine.

56. Amortization Certain large semitrailer trucks cost $72,000
each. Ace Trucking buys such a truck and agrees to pay for it
with a loan that will be amortized with 9 semiannual payments
at 9.5% compounded semiannually. Prepare an amortization
schedule for this truck.

57. Amortization A printer manufacturer charges $1048 for a
high-speed printer. A firm of tax accountants buys 8 of these
machines. They make a down payment of $1200 and agree to
amortize the balance with monthly payments at 10.5% com-
pounded monthly for 4 years. Prepare an amortization sched-
ule showing the first six payments.

58. Amortization When Barbara Essenmacher opened her law
office, she bought $14,000 worth of law books and $7200
worth of office furniture. She paid $1200 down and agreed to
amortize the balance with semiannual payments for 5 years at
8% compounded semiannually. Prepare an amortization schedule
for this purchase.

YOUR TURN ANSWERS

1. $179,124.19 2. $7880.92

3. $193.22 4. $22,796.45

5. $258.34 6. $1188.83

Taylor Polynomials at 0
How can we determine the length of time before a machine part must
be replaced?

12.3
APPLY IT 

We shall see in Exercise 39 that a Taylor polynomial can be used to approximate the
answer to this question.

Although exponential and logarithmic functions are quite different from polynomials,
they can be closely approximated by polynomials. These approximating polynomials are
called Taylor polynomials after British mathematician Brook Taylor (1685–1731), who
published his work on them in 1715.

One of the most useful nonpolynomial functions is the exponential function
Let us begin our discussion of Taylor polynomials by finding polynomials that

approximate for values of x close to 0. As a first approximation to choose the straight
line that is tangent to the graph of at the point (See Figure 8.) Since the
slope of a tangent line is given by the derivative of the function, and the derivative of

is the slope of the tangent line at is 
The tangent line goes through and has slope By the

point-slope form of the equation of a line, the equation of the tangent line is

or, after substituting 1 for and 1 for 

If is used to represent then

is called the Taylor polynomial of degree 1 for at x 5 0.f 1x 2 5 ex

P1 
1x 2 5 1 1 x

1 1 x,P1 
1x 2

y 5 1 1 x.

f r 10 2 ,f 10 2

 y 5 f 10 2 1 f r 10 2 . x,

 y 2 f 1 0 2 5 f 9 1 0 2 1x 2 0 2
 y 2 y1 5 m 1x 2 x1 

2

f r 10 2 5 1.10, f 10 2 2 5 10, 1 2
f r 10 2 5 e0 5 1.x 5 0f r 1x 2 5 ex,f 1x 2 5 ex

10, 1 2 .f 1x 2 5 ex
ex,ex

f 1x 2 5 ex.

f(x) = ex

x

Tangent at (0,1)

(0,1)

y

0

FIGURE 8
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This table agrees with the graph in Figure 8: the polynomial is a good approximation
for only when x is close to 0.

For the polynomial 

that is, and are equal at 0 and their derivatives are equal at 0. A better approxi-
mation could be found with a curve. Since is first-degree, we use a second-degree
polynomial and require the second derivatives to be equal at 0. If is written as

with and then a second-degree polynomial can be written as

Just as above, we want

but we also want

Since and then Also, so 
Since we also must have Finally, Since 

and so that

Our second approximation, the Taylor polynomial of degree 2 for at is
thus

P2 
1x 2 5 1 1 x 1

1

2
 x2.

x 5 0,f 1x 2 5 ex

 a2 5
1

2
 .

 2a2 5 1

fs 10 2 5 1,P2s 
10 2 5 2a2ex,

fs 1x 2 5P2s 
1x 2 5 2a2 .a1 5 1.f r 10 2 5 e0 5 1,

P2r  
10 2 5 a1 .P2r  

1x 2 5 a1 1 2a2 x,a0 5 1.f 10 2 5 1,P2 
10 2 5 a0 ,

P2s 
10 2 5 fs 10 2 .

P2 
10 2 5 f 10 2  and  P2r  

10 2 5 f r 10 2 ,

P2 
1x 2 5 a0 1 a1 x 1 a2 x2.

a1 5 f r 10 2 ,a0 5 f 10 2

P1 
1x 2 5 a0 1 a1 x,

P1 
1x 2

P1 
1x 2

f 1x 2P1 
1x 2

P1 
10 2 5 f 10 2  and  P1r 

10 2 5 f r 10 2 ;

P1 
1x 2 ,

f 1x 2 5 ex
P1 
1x 2

21 0 0.3678794412

20.1 0.9 0.904837418

20.01 0.99 0.9900498337

20.001 0.999 0.9990004998

0 1 1

0.001 1.001 1.0010005

0.01 1.01 1.010050167

0.1 1.1 1.105170918

1 2 2.718281828

Approximations and Exact Values of ex

x f 1 x 2 5 exP1 
1 x 2 5 1 1 x

To be useful, should approximate for values of x close to 0. To check the accu-
racy of this approximation, compare values of and values of for x close to 0, in the
following table.

ex,P1 
1x 2

exP1 
1x 2
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Although the approximations provided by are better than those provided by
they are still accurate only for values of x close to 0. A better approximation would

be given by a polynomial that equals when and has the first, second, and
third derivatives of and equal when If we let

we can find the first three derivatives:

Letting in and in each derivative, in turn, yields

P3 
10 2 5 a0 ,  P3

112
 
10 2 5 a1 ,  P3

122
 
10 2 5 2a2 ,  P3

132
 
10 2 5 6a3 .

P3 
1x 2x 5 0

 P3
132

 
1x 2 5 6a3 .

 P3
122

 
1x 2 5 2a2 1 6a3 x

 P3
112

 
1x 2 5 a1 1 2a2 x 1 3a3 x2

P3 
1x 2 5 a0 1 a1 x 1 a2 x2 1 a3 x3,

x 5 0.f 1x 2 5 exP3 
1x 2

x 5 0f 1x 2P3 
1x 2

P1 
1x 2 ,

P2 
1x 2

y

x–5 –4 –3 –2 –1

–1

–2

–3

3

2

1

5

4

1 2 30

f(x) = ex

P2(x) = 1 + x +   x21
2

FIGURE 9 

21 0 0.5 0.3678794412

20.1 0.9 0.905 0.9048374180

20.01 0.99 0.99005 0.9900498337

20.001 0.999 0.9990005 0.9990004998

0 1 1 1

0.001 1.001 1.0010005 1.001000500

0.01 1.01 1.01005 1.010050167

0.1 1.1 1.105 1.105170918

1 2 2.5 2.718281828

Approximations and Exact Values of ex

x f 1 x 2 5 exP2 
1 x 2 5 1 1 x 1

1
2

 x2P1 
1 x 2 5 1 1 x

FOR REVIEW
Recall that represents the 

nth derivative of P3 1x 2 .
P3
1n2

 
1x 2

A graph of this polynomial, along with the graph of is shown in Figure 9.f 1x 2 5 ex,

As above, the accuracy of this approximation can be checked with a table comparing val-
ues of with those of and as shown.f 1x 2 ,P1 

1x 2P2 
1x 2
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Since and for 

with

.

A graph of and is shown in Figure 10.P3 
1x 2f 1x 2 5 ex

P3 
1x 2 5 1 1 x 1

1

2
 x2 1

1

6
 x3.

a0 5 1,  a1 5 1,  a2 5
1

2
 ,  and  a3 5

1

6
 ,

f 1x 2 5 ex,f 132 10 2 5 1f 122 10 2 5 1,f 112 10 2 5 1,f 10 2 5 1,

y

x–5 –4 –3 –2 –1

–1

–2

–3

3

2

1

5

4

1 2 30

f(x) = ex

P3(x) = 1 + x + +x21
2

x31
6

FIGURE 10

To generalize the work above, let be approximated by

where

Taking derivatives of gives

 Pn
1n2

 
1x 2  5 n 1n 2 1 2 1n 2 2 2 1n 2 3 2  ) 3 . 2 . 1 . an 5 n!an .

 .
 .
 .

 Pn
132

 
1x 2  5 2 . 3a3 1 ) 1 n 1n 2 1 2 1n 2 2 2an xn23

 Pn
122

 
1x 2  5 2a2 1 2 . 3a3 x 1 ) 1 n 1n 2 1 2an xn22

 Pn
112

 
1x 2  5 a1 1 2a2 x 1 3a3 x2 1 ) 1 n . an xn21

Pn 
1x 2

 Pn
1n2

 
10 2 5 f 1n2 10 2 .

 .
 .
 .

 Pn
112

 
10 2 5 f 112 10 2

 Pn 
10 2 5 f 10 2 ,

Pn 
1x 2 5 a0 1 a1 x 1 a2 x2 1 ) 1 an xn,

f 1x 2 5 ex
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The symbol n! (read “n-factorial”) is used for the product

For example, while By convention, * If we use factori-
als and replace x with 0, the various derivatives of become

For every value of n, Setting corresponding derivatives equal gives

from which

Finally, the Taylor polynomial of degree n for at is

Using the convention that the zeroth derivative of is just f itself, and using to
represent a sum, we can write this result in the following way.

Sy 5 f 1x 2

Pn 
1 x 2 5 1 1

1
1!

 x 1
1
2!

 x2 1
1
3!

 x3 1P1
1
n!

 xn.

x 5 0f 1x 2 5 ex

a1 5
1

1!
 , a2 5

1

2!
 , a3 5

1

3!
 , ) , an 5

1

n!
 .

 n!an 5 1,
 .
 .
 .
 3!a3 5 1

 2!a2 5 1

 1!a1 5 1

f 1n2 10 2 5 1.

 Pn
1n2

 
10 2 5 n!an .

 .
 .
 .

 Pn
132

 
10 2  5 3!a3

 Pn
122

 
10 2  5 2!a2

 Pn
112

 
10 2  5 1!a1

Pn 
1x 2

0! 5 1.5! 5 120.3! 5 3 . 2 . 1 5 6,

n 1n 2 1 2 1n 2 2 2 1n 2 3 2  ) 3 . 2 . 1.

*The symbol n! for the product

came into use during the late 19th century, although it was by no means the only symbol for n-factorial. Another
popular symbol was The exclamation point notation has won out, probably because it is more convenient for
printers of textbooks.

0n.

n 1n 2 1 2 1n 2 2 2 1n 2 3 2  ) 3 . 2 . 1

Taylor Polynomial for
The Taylor polynomial of degree n for at is

Pn 
1 x 2 5 a

n

i50
 
f 1i2 1 0 2

i!
 xi 5 a

n

i50
 
1
i!

 xi.

x 5 0f 1x 2 5 ex
f 1 x 2 5 ex
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Taylor Polynomial

Use a Taylor polynomial of degree 5 to approximate 

SOLUTION In the work above, we found Taylor polynomials for at As the graphs
in Figure 11 suggest, these polynomials can be used to find approximate values of for values
of x near 0. The Taylor polynomial of degree 5 for is

Replacing x with gives

Using a calculator to evaluate directly gives 0.8187308, which agrees with our
approximation to 6 decimal places. TRY YOUR TURN 1

Generalizing our work in finding the Taylor polynomials for leads to the
following definition of Taylor polynomials for any appropriate function f.

f 1x 2 5 ex

e20.2

< 0.8187307.1 
1

5!
 120.2 2 5

1 1
1

1!
 120.2 2 1

1

2!
 120.2 2 2 1

1

3!
 120.2 2 3 1

1

4!
 120.2 24 

20.2

P5 
1x 2 5 1 1

1

1!
 x 1

1

2!
 x2 1

1

3!
 x3 1

1

4!
 x4 1

1

5!
 x5.

f 1x 2 5 ex
ex

x 5 0.ex

e20.2.

y

x

P

P P

P

P

P P

P

PP

f x ex

FIGURE 11

YOUR TURN 1 Use a Taylor
polynomial of degree 5 to 
approximate . e2 0.15

Taylor Polynomial of Degree n
Let f be a function that can be differentiated n times at 0. The Taylor polynomial of
degree n for f at 0 is

5 a

n

i50
 
f 1n2 10 2

i!
 xi.Pn 

1 x 2 5 f 10 2 1
f 112 10 2

1!
 x 1

f 122 10 2

2!
 x2 1

f 132 10 2

3!
 x3 1P1

f 1n2 10 2

n!
 xn

EXAMPLE  1

Taylor polynomials of degree up to 10 for are shown in Figure 11.f 1x 2 5 ex

Graphing calculators simplify the creation of a sequence of Taylor polynomials. For example, to create
Taylor polynomials of degree 1, 2, and 3 for on a TI-84 Plus, let Y1 = 1 � X, Y2 = Y1 � X2/2,
and Y3 = Y2 � X3/6.

ex

TECHNOLOGY NOTE

NOTE
Because of the term, a Taylor
polynomial of degree n has 
terms.

n 1 1
f 10 2
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Taylor Polynomial

Let Find the Taylor polynomial of degree 4 at 

SOLUTION To find the Taylor polynomial of degree 4, use the first four derivatives of f,
evaluated at 0. Arrange the work as follows.

x 5 0.f 1x 2 5 "x 1 1.

 f 142 10 2 5 2 

15

16
 f 142 1x 2 5 2 

15

16
 1x 1 1 227/2 5

215

16 1x 1 1 2 7/2

 f 132 10 2 5
3

8
 f 132 1x 2 5

3

8
 1x 1 1 225/2 5

3

8 1x 1 1 2 5/2

 f 122 10 2 5 2 

1

4
 f 122 1x 2 5 2 

1

4
 1x 1 1 223/2 5

21

4 1x 1 1 2 3/2

 f 112 10 2 5
1

2
 f 112 1x 2 5

1

2
 1x 1 1 221/2 5

1

2 1x 1 1 2 1/2

 f 10 2 5 1 f 1x 2 5 "x 1 1 5 1x 1 1 2 1/2

Calculations for Taylor Polynomial
Derivative Value at 0

Now use the definition of a Taylor polynomial.

TRY YOUR TURN 2

Approximation

Use the result of Example 2 to approximate 

SOLUTION To approximate we must evaluate 

Using from Example 2, with gives

Thus, A calculator gives a value of 0.9486832981 for the square
root of 0.9. TRY YOUR TURN 3

Taylor Polynomial

Find the Taylor polynomial of degree n at for

f 1x 2 5
1

1 2 x
 .

x 5 0

"0.9 < 0.948683594.

 5 1 2 0.05 2 0.00125 2 0.0000625 2 0.000003906 5 0.948683594.

 P4 
120.1 2 5 1 1

1

2
 120.1 2 2

1

8
 120.1 2 2 1

1

16
 120.1 2 3 2

5

128
 120.1 24

x 5 20.1,P4 
1x 2

"0.9.f 120.1 2 5 "20.1 1 1  5"0.9,

"0.9.

 5 1 1
1

2
 x 2

1

8
 x2 1

1

16
 x3 2

5

128
 x4

 5 1 1
1 /2

1!
 x 1

21 /4

2!
 x2 1

3 /8

3!
 x3 1

215 /16

4!
 x4

 P4 
1x 2 5 f 10 2 1

f 112 10 2
1!

 x 1
f 122 10 2

2!
 x2 1

f 132 10 2
3!

 x3 1
f 142 10 2

4!
 x4

YOUR TURN 2 Let 

. Find the Taylor
polynomial of degree 4 at x � 0.
f 1 x 2 5 "x 1 4

YOUR TURN 3 Use the result
of Your Turn 2 to approximate 

."4.05

EXAMPLE  3

EXAMPLE  4

EXAMPLE  2
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Continuing this process,

By the definition of Taylor polynomials,

Approximation
Use a Taylor polynomial of degree 4 to approximate 

SOLUTION Use the function f from Example 4, with to get

Based on the result obtained in Example 4,

with

A calculator gives 1 /0.98 5 1.020408163.

 5 1.02040816.

 5 1 1 0.02 1 0.0004 1 0.000008 1 0.00000016

 P4 
10.02 2 5 1 1 10.02 2 1 10.02 2 2 1 10.02 2 3 1 10.02 24

 P4 
1x 2 5 1 1 x 1 x2 1 x3 1 x4,

f 10.02 2 5
1

1 2 0.02
5

1

0.98
 .

x 5 0.02,

1 /0.98.

 5 1 1 x 1 x2 1 x3 1 x4 1 ) 1 xn.

 Pn 
1x 2 5 1 1

1!

1!
 x 1

2!

2!
 x2 1

3!

3!
 x3 1

4!

4!
 x4 1 ) 1

n!

n!
 xn

f 1n2 1x 2 5 n! 1 1 2 x 2212n  and  f 1n2 10 2 5 n!.

EXAMPLE  5

12.3 EXERCISES
For the functions defined as follows, find the Taylor polynomials
of degree 4 at 0.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. f 1x 2 5 x2exf 1x 2 5 xe2x

f 1x 2 5 ln 1 1 2 x3 2f 1x 2 5 ln 1 1 1 2x2 2

f 1x 2 5 ln 1 1 1 2x 2f 1x 2 5 ln 1 1 2 x 2

f 1x 2 5 "4 x 1 16f 1x 2 5 "4 x 1 1

f 1x 2 5 "3 x 1 8f 1x 2 5 "3 x 2 1

f 1x 2 5 "x 1 16f 1x 2 5 "x 1 9

f 1x 2 5 e2xf 1x 2 5 ex11

f 1x 2 5 e3xf 1x 2 5 e22x

17. 18.

19. 20.

Use Taylor polynomials of degree 4 at found in Exercises
1–14 above, to approximate the quantities in Exercises 21–34.
Round answers to 4 decimal places.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. "4 15.88"4 1.06

"3 7.91"3 21.05

"16.3"8.92

e20.07e1.02

e0.06e20.04

x 5 0,

f 1x 2 5
1

x 2 1
f 1x 2 5

1

1 1 x

f 1x 2 5 1 1 1 x 2 3/2f 1x 2 5 1 9 2 x 2 3/2

Calculations for Taylor Polynomial 
Derivative Value at 0

 f 142 10 2 5 4! f 142 1x 2 5 4! 1 1 2 x 225

 f 132 10 2 5 3! f 132 1x 2 5 3! 1 1 2 x 224

 f 122 10 2 5 2 5 2! f 122 1x 2 5 2 1 1 2 x 223

 f 112 10 2 5 1 5 1! f 112 1x 2 5 21 1 1 2 x 222 121 2 5 1 1 2 x 222

 f 10 2 5 1 f 1x 2 5
1

1 2 x
5 1 1 2 x 221

SOLUTION As above, find the first n derivatives, and evaluate each at 0. 
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31. ln 0.97 32. ln 1.06

33. ln 1.008 34. ln 0.992

35. Find a polynomial of degree 3 such that 
and 

36. Find a polynomial of degree 4 such that 
and Generalize this

result to a polynomial of degree n, assuming that 

37. a. Generalize the result of Example 2 to show that if x is small
compared with a,

b. Use the result of part a to approximate to 5 decimal
places, and compare with the actual value. 

APPLICATIONS
Business and Economics

38. Duration Let D represent duration, a term in finance that
measures the length of time an investor must wait to receive
half of the value of a cash flow stream totaling S dollars. Let r
be the rate of interest and V the value of the investment. The
value of S can be calculated by two formulas that are approxi-
mately equal:

and

a. Show that the first approximation follows from the second by
using the Taylor polynomial of degree 1 for the function

Source: Robert D. Campbell.

b. For and calculate and com-
pare the two expressions for S. 

39. APPLY IT Replacement Time for a Part A book on man-
agement science gives the equation

to determine N, the time until a particular part can be expected
to need replacing. and k are constants for a particular
machine.) To find a useful approximate value for N when is
near 0, go through the following steps.

a. Find a Taylor polynomial of degree 2 at for 

b. Substitute this polynomial into the given equation and solve
for N.

In Exercises 40–44, use a Taylor polynomial of degree 2 at
to approximate the desired value. Compare your answers

with the results obtained by direct substitution.

40. Profit The profit (in thousands of dollars) when x thousand
tons of apples are sold is

Find 

41. Profit The profit (in thousands of dollars) from the sale of x
thousand packages of note paper is 

Find if ln 100 is given as 4.605.P 10.6 2
P 1x 2 5 ln 1 100 1 3x 2 .

P 10.3 2 .

P 1x 2 5
20 1 x2

50 1 x
 .

x 5 0

elN.N 5 0

lN
(l

elN

l
2 N 5

1

l
1 k

D 5 3.2,r 5 0.1,V 5 $1000,

f 1 r 2 5 1 1 1 r 2D.

S < V 1 1 1 r 2D.

S < V 1 1 1 rD 2

"3 66

1a 1 x 2 1/n < a1/n 1
xa1/n

na
 .

f 1n2 10 2 5 n!
f 142 10 2 5 24.ft 10 2 5 6,fs 10 2 5 2,

f r 10 2 5 1,f 10 2 5 1,

ft 10 2 5 24.fs 10 2 5 12,
f r 10 2 5 6,f 10 2 5 3,

42. Cost For a certain electronic part, the cost to make the part
declines as more parts are made. Suppose that the cost (in dol-
lars) to manufacture the xth part is

Find 

43. Revenue Revenue from selling agricultural products often
increases at a slower and slower rate as more of the products
are sold. Suppose the revenue from the xth unit of a product is

Find if ln 4 is given as 1.386.

Life Sciences

44. Amount of a Drug in the Bloodstream The amount (in milli-
liters) of a certain drug in the bloodstream x minutes after
being administered is

Find 

45. Species Survival According to a text on species survival, the
probability P that a certain species survives is given by

where k is a constant. Use a Taylor polynomial to show that if k
is small, P is approximately 2k.

Physical  Sciences

46. Electric Potential In the Extended Application for Chapter 4,
the electric potential at a distance z from an electrically
charged disk of radius R was given as

where k1 is a constant.

a. Suppose z is much larger than R. By writing as

and using the Taylor polynomial of degree 1

for show that the potential can be approximated by

the result given in the Extended Application, where k2 is a
constant.

b. Suppose z is much smaller than R. By writing as

and using the Taylor polynomial of degree 1

for show that the potential can be approximated by

the result given in the Extended Application.

V < k1aR 2 z 1
z2

2R
b,

"1 1 x,

R"1 1 z2 /R2

"z2 1 R2

V <
k2

z
,

"1 1 x,

z"1 1 R2 /z2

"z2 1 R2

V 5 k1 1"z2 1 R2 2 z 2 ,

P 5 1 2 e22k,

A 10.05 2 .

A 1x 2 5
6x

1 1 10x
 .

R 1 10 2

R 1x 2 5 500 lna4 1
x

50
b .

C 1 5 2 .
C 1x 2 5 e2x/50.

YOUR TURN ANSWERS

1. 0.860708
2.
3. 2.0124612

1 1
512x3 2 5

16,384x4P4 1 x 2 5 2 1 1
4x 2 1

64x2
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Infinite Series
If some fraction of a particular gene in a population experiences a
mutation each generation, can we expect that the entire population will
have this mutation over time?

12.4
APPLY IT 

The answer to this question is found in Example 5 by considering the sum of an infinite series.

A repeating decimal such as is really the sum of an infinite number of terms:

In this section we will show how an infinite number of terms can sometimes be added to get
a finite sum by a limit process. To do this, we need the following definition.

 5
6

10
1

6

102 1
6

103 1
6

104 1 ).

 0.66666 * 5 0.6 1 0.06 1 0.006 1 0.0006 1 )

0.66666 *

Infinite Series
An infinite series is an expression of the form

a1 1 a2 1 a3 1 a4 1P1 an 1P5 a

`

i51
ai .

To find the sum first find the sum of the first n
terms, called the nth partial sum. For example,

Partial Sums

Find the first five partial sums for the sequence

SOLUTION By the definition of partial sum,

TRY YOUR TURN 1 S5 5 1 1
1

2
1

1

4
1

1

8
1

1

16
5

31

16
 .

 S4 5 1 1
1

2
1

1

4
1

1

8
5

15

8

 S3 5 1 1
1

2
1

1

4
5

7

4

 S2 5 1 1
1

2
5

3

2

 S1 5 1

1, 
1

2
 , 

1

4
 , 

1

8
 , 

1

16
 , * .

 Sn 5 a1 1 a2 1 a3 1 ) 1 an 5 a

n

i51

ai .

 .
 .
 .

 S3 5 a1 1 a2 1 a3

 S2 5 a1 1 a2

 S1 5 a1

Sna1 1 a2 1 a3 1 a4 1 ) 1 an 1 ) ,

YOUR TURN 1 Find the first
five partial sums for the sequence 
1, 1/4, 1/9, 1/16, 1/25, . . .

EXAMPLE  1
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As n gets larger, the partial sum includes more and more
terms from the infinite series. It is thus reasonable to define the sum of the infinite series as

if it exists.lim
nl`

Sn ,

Sn 5 a1 1 a2 1 ) 1 an

Sum of the Infinite Series
Let be the nth partial sum for the series 

Suppose

for some real number L. Then L is called the sum of the infinite series
and the infinite series converges. If no such limit exists, then the

infinite series has no sum and diverges.
a3 1 ) 1 an 1 ) ,

a1 1 a2 1

lim
nl`

Sn 5 L

a3 1 ) 1 an 1 ) .
a1 1 a2 1Sn 5 a1 1 a2 1 a3 1 ) 1 an

Infinite Geometric Series Some good examples of convergent and divergent series
come from the study of infinite geometric series, which are the sums of the terms of
geometric sequences, discussed in this chapter’s first section. For example,

is a geometric sequence with first term and common ratio The first five
partial sums for this sequence were found in Example 1. To find the nth partial sum,
use the formula given in the first section: The sum of the first n terms of a geometric
sequence having first term and common ratio r is

For any value of n, can be found for the geometric sequence by using the formula with
and 

As n gets larger and larger, that is, as the value of gets closer and closer to
0, so that

Using properties of limits from Chapter 3,

lim
nl`

Sn 5 lim
nl`

2 c1 2 a
1

2
b

n

d 5 2 1 1 2 0 2 5 2.

lim
nl`

a
1

2
b

n

5 0.

1 1 /2 2nnl `,

 5
a

1

2
b

n

2 1

2 

1

2

5 22 c a
1

2
b

n

2 1 d 5 2 c1 2 a
1

2
b

n

d

 Sn 5
a 1 rn 2 1 2

r 2 1
5

1 c a
1

2
b

n

2 1 d

1

2
2 1

r 5 1 /2.a 5 1
Sn

Sn 5
a 1 rn 2 1 2

r 2 1
 .

a 5 a1

Sn ,
r 5 1 /2.a1 5 1

1, 
1

2
 , 

1

4
 , 

1

8
 , 

1

16
 , ) , 

1

2n  , )



Geometric Series

Determine if the following geometric series converge. Give the sum of each convergent
series.

(a)

SOLUTION This is a geometric series, with and Since r is in
the series converges and has sum

a

1 2 r
5

3

1 2 1 /8
5

3

7 /8
5 3 . 8

7
5

24

7
 .

121, 1 2 ,
r 5 1 /8.a 5 a1 5 3

3 1
3

8
1

3

64
1

3

512
1 )
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By the definition of the sum of an infinite series,

and the series converges.
To generalize from this example, start with the formula for the sum of the first n terms

of a geometric sequence.

If r is in the interval then (Consider what happens to a small number

as you raise it to a larger and larger power.) In that case,

On the other hand, if then (Consider what happens to a large 

number as you raise it to a larger and larger power.) In that case,

and the series diverges because the terms of the series are getting larger and larger. If
then does not exist, because becomes larger and larger in magnitude

while alternating in sign, and the same thing happens to the partial sums, so the series
diverges. If all the terms of the series equal a, so the series diverges (except in the triv-
ial case when Finally, if the terms of the series alternate between a and 
and the partial sums alternate between a and 0, so the series diverges.

2a,r 5 21,a 5 0.)
r 5 1,

rnlim
nl`

rnr , 21,

lim
nl`

Sn 5 `,

lim
nl`

rn 5 `.r . 1,

 5
a

1 2 r
 .

lim
nl`

Sn 5 lim
nl`

 
a 1 rn 2 1 2

r 2 1
5

a 10 2 1 2
r 2 1

lim
nl`

rn 5 0.121, 1 2 ,

Sn 5
a 1 rn 2 1 2

r 2 1
 .

1 1
1

2
1

1

4
1

1

8
1 ) 5 2,

Sum of a Geometric Series
The infinite geometric series

converges, if r is in to the sum

The series diverges if r is not in 121, 1 2 .

a
1 2 r

 .

121, 1 2 ,

a 1 ar 1 ar 2 1 ar 3 1P

EXAMPLE  2
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(b)

SOLUTION This geometric series has and Since r is in
the series converges. The sum of the series is

(c)

SOLUTION This is a geometric series with common ratio r � 1.1. Since r � 1, the
series diverges. (The partial sum Sn will eventually exceed any preassigned number, no
matter how large.) TRY YOUR TURN 2

Trains

Suppose a train leaves a station at noon travelling at 50 mph. Two hours later, on an adja-
cent track, a second train leaves the station heading in the same direction with a velocity of
60 mph. Determine the time at which the trains are both the same distance from the station.

(a) Solve this problem using algebra.

SOLUTION Let t be the number of hours since 2:00 pm. Since the first train left 
2 hours earlier and has already traveled 100 miles, the total distance that the first train
has traveled is d1 � 100 � 50t. The second train has traveled d2 � 60t. The two trains
will be the same distance from the station when d1 � d2. Setting the two equations
equal to each other and solving for t gives 

The trains are equal distances from the station 10 hours after 2:00 pm, or at midnight.

(b) Solve this problem using a geometric series.

SOLUTION At 2:00 pm, the first train is 100 miles from the station. Since the second train
is traveling at 60 mph, it will take hours to make up the 100 miles. But, dur-
ing that hours, the first train will travel another miles. So the second
train will have to travel another hours to travel
this distance. In the meantime, the first train has now traveled another miles.
It will take the second train hours to make up this time, and so on. The
total time that it takes for the trains to be an equal distance apart is found by summing the
sequence of times it will take the second train to make up the distance. That is,

This is a geometric series, with and . Since r is in (–1, 1), the
series converges and the sum is

Thus, the trains will be an equal distance from the station 10 hours after 2:00, or at
midnight. TRY YOUR TURN 3

Multiplier Effect

Suppose a company spends $1,000,000 on payroll in a certain city. Suppose also that the
employees of the company reside in the city. Assume that on the average the inhabitants of
this city spend 80% of their income in the same city. Then 80% of the original $1,000,000,

5/3
1 2 5/6

5
5/3
1/6

5 10.

r 5 5/6a 5 a1 5 5/3

t 5 5/3 1 1 5/3 2 1 5/6 2 1 1 5/3 2 1 5/6 22 1 1 5/3 2 1 5/6 2 3 1 )

1 5 /3 2 1 5 /6 2 1 5 /6 2
50 1 5 /3 2 1 5 /6 2

1250 /3 2 /60 5 50 1 5 /3 2 /60 5 1 5 /6 2 1 5 /3 2
50 1 5 /3 2 5 250 /35 /3

100 /60 5 5 /3

t 5 10
100 5 10t

100 1 50t 5 60t
d1 5 d2

1 1 1.1 1 1 1.1 22 1 1 1.1 2 3 1 1 1.1 24 1 ) 1 1 1.1 2n21 1 )

3 /4

1 2 123 /4 2
5

3 /4

1 1 3 /4
5

3 /4

7 /4
5

3

7
 .

121, 1 2 ,
r 5 23 /4.a 5 a1 5 3 /4

3

4
2

9

16
1

27

64
2

81

256
1 )

YOUR TURN 2 Determine if
the following geometric series 
converge. Give the sum of each con-
vergent series.

(a)  

(b)  

(c)  
2 1 1.01 2 3 1 )
2 2 2 1 1.01 2 1 2 1 1.01 2 2 2

5 2 5 /4 1 5 /16 2 5 /64 1 )

2 1 2 /3 1 2 /9 1 2 /27 1 )

EXAMPLE  3

EXAMPLE  4

YOUR TURN 3 Suppose Turtle
starts a race at 8:00 am and travels
at 15 feet per minute. Rabbit, who is
much faster than Turtle, starts the
race 6 hours later, traveling at 
45 feet per minute. Determine the
time when Rabbit catches up with
Turtle.
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or will be spent in that city. An additional 80% of this
$800,000, or $640,000, will in turn be spent in the city, as will 80% of the $640,000, and so
on. Find the total expenditure in the city initiated by the original $1,000,000 payroll.

SOLUTION These amounts, $1,000,000, $800,000, $640,000, $512,000, and so on, form
an infinite series with and The sum of these amounts is

The original $1,000,000 payroll leads to a total expenditure of $5,000,000 in the city. 
In economics, the quotient of these numbers, is called the
multiplier.

Mutation

Retinoblastoma is a kind of cancer of the eye in children. Medical researchers believe that
the disease depends on a single dominant gene, say A. Let a be the normal gene. It is
believed that a fraction m of the population, per generation will experience
mutation, a sudden unaccountable change, of a into A. (We exclude the possibility of back
mutations of A into a.) With medical care, approximately 70% of those affected with the
disease survive. According to past data, the survivors reproduce at half the normal rate. The
net fraction of affected persons who produce offspring is thus Since gene
A is extremely rare, practically all the affected persons are of genotype Aa, so that we may
neglect the few individuals of genotype AA. Find the total fraction of the population having
the disease.

SOLUTION We start by defining the following variables.

of population with disease due to mutation in this generation

of population with disease due to mutation in the previous 
generation

of population with disease due to mutation two generations ago

of population with disease due to mutation n generations ago

The total fraction p of the population having the disease in this generation is thus

Use the formula for the sum of an infinite geometric series to find

The fraction of the population having retinoblastoma is about or about 50% more
than the fraction of each generation that experiences mutation.

3 3 1025,

p 5
m

1 2 r
5

2 3 1025

1 2 0.35
< 3.1 3 1025.

p 5 m 1 mr 1 mr2 1 ) 1 mrn 1 )

 mrn 5 fraction

 mr2 5 fraction

 mr 5 fraction

 m 5 fraction

r 5 35% 5 0.35.

m 5 2 3 1025,

$5,000,000 /$1,000,000 5 5,

a

1 2 r
5

$1,000,000

1 2 0.80
5 $5,000,000.

r 5 0.80.a 5 a1 5 $1,000,000

10.80 2 1$1,000,000 2 5 $800,000

APPLY IT 

Identify which geometric series converge. Give the sum of each
convergent series.

1.

2.

3.

4. 3 1 6 1 12 1 24 1 )

2 1 6 1 18 1 54 1 )

1 1 0.8 1 0.64 1 0.512 1 )

20 1 10 1 5 1
5

2
1 )

5.

6.

7.

8.

9.
5

4
1

5

8
1

5

16
1 )

44 1 22 1 11 1 )

100 1 10 1 1 1 )

64 1 16 1 4 1 1 1 )

27 1 9 1 3 1 1 1 )

EXAMPLE  5

12.4 EXERCISES
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10.

11.

12.

13.

14.

The nth term of a sequence is given. Calculate the first five
partial sums.

15. 16.

17. 18.

19.

20.

21. The repeating decimal 0.222222 . . . can be expressed as infi-
nite geometric series

By finding the sum of the series, determine the rational num-
ber whose decimal expansion is 0.222222. . . .

22. The repeating decimal 0.18181818 . . . can be expressed as
the infinite geometric series

Determine the rational number whose decimal expression is
0.18181818 . . . .

23. The following classical formulas for computing the value of
were developed by François Viète (1540–1603) and Got-

tfried von Leibniz (1646–1716), respectively:

and

Sources: Mathematics Teacher and A History of Mathe-
matics.

a. Multiply the first three terms of Viète’s formula together, and
compare this with the sum of the first four terms of Leibniz’s
formula. Which formula is more accurate? 

b. Use the table function on a graphing calculator or a spread-
sheet to determine how many terms of the second formula
must be added together to produce the same accuracy as the
product of the first three terms of the first formula. [Hint: On
a TI-84 Plus, use the command Y1=4*sum(seq
((21)^(N21)/(2N21),N,1,X)).]

p

4
5 1 2

1

3
1

1

5
2

1

7
1 ) .

2

p
5
"2

2
. #2 1 "2

2
. $2 1 #2 1 "2

2
 *

p

0.18 1 0.18a
1

100
b 1 0.18a

1

100
b

2

1 0.18a
1

100
b

3

1 ).

0.2 1 0.2a
1

10
b 1 0.2a

1

10
b

2

1 0.2a
1

10
b

3

1 ).

an 5
1

1n 1 3 2 12n 1 1 2

an 5
1

1n 1 1 2 1n 1 2 2

an 5
1

3n 2 1
an 5

1

2n 1 5

an 5
1

n 1 1
an 5

1

n

e 1 e2 1 e3 1 e4 1 )

e 2 1 1
1

e
2

1

e2 1 )

1 1
1

1.01
1

1

1 1.01 2 2
1 )

1

3
2

2

9
1

4

27
2

8

81
1 )

4

5
1

2

5
1

1

5
1 ) APPLICATIONS

Business and Economics

24. Production Orders A sugar factory receives an order for 1000
units of sugar. The production manager thus orders production of
1000 units of sugar. He forgets, however, that the production of
sugar requires some sugar (to prime the machines, for example),
and so he ends up with only 900 units of sugar. He then orders an
additional 100 units, and receives only 90 units. A further order for
10 units produces 9 units. Finally seeing he is wrong, the manager
decides to try mathematics. He views the production process as an
infinite geometric series with and

a. Using this, find the number of units of sugar that he should
have ordered originally.

b. Afterwards, the manager realizes a much simpler solution to
his problem. If x is the amount of sugar he orders, and he only
gets 90% of what he orders, he should solve 
What is the solution?

c. Explain why the answers to parts a and b are the same.

25. Tax Rebate The government claims to be able to stimulate the
economy substantially by giving each taxpayer a $200 tax
rebate. They reason that 90% of this amount, or (0.90)($200) �
$180, will be spent. An additional 90% of this $180 will then
be spent, and so on.

a. If the government claim is true, how much total expenditure
will result from this $200 rebate?

b. Calculate the value of the multiplier. (See Example 4.)

26. Present Value In Section 8.3, we computed the present value of a
continuous flow of money. Suppose that instead of a continuous
flow, an amount C is deposited each year, and the annual interest
rate is r. Then the present value of the cash flow over n years is

a. Show that the present value can be simplified to

b. Show that the present value, taken over an infinite amount of
time, is given by 

27. Malpractice Insurance An insurance company determines it can-
not write medical malpractice insurance profitably and stops selling
the coverage. In spite of this action, the company will have to pay
claims for many years on existing medical malpractice policies.
The company pays 60 for medical malpractice claims the year after
it stops selling the coverage. Each subsequent year’s payments are
20% less than those of the previous year. Calculate the total med-
ical malpractice payments that the company pays in all years after it
stops selling the coverage. Choose one of the following. (Hint:
When the problem says “pays 60,” you can think of it as paying
$60,000, but the units do not actually matter.) Source: Society of
Actuaries.

a. 94

b. 150

c. 240

d. 300

e. 360

P 5 C /r.

P 5 C
1 1 1 r 2n 2 1

r 1 1 1 r 2n
 .

 1 C 1 1 1 r 22n.

 P 5 C 1 1 1 r 221 1 C 1 1 1 r 222 1 C 1 1 1 r 223 1 )

0.9x 5 1000.

r 5 0.1.a1 5 1000
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28. Automobile Insurance In modeling the number of claims
filed by an individual under an automobile policy during
a three-year period, an actuary makes the simplifying

assumption that for all integers where pn

represents the probability that the policyholder files n claims dur-
ing the period. Under this assumption, what is the probability that
a policyholder files more than one claim during the period?
Choose one of the following. (Hint: The total probability must
equal 1.) Source: Society of Actuaries.

a. 0.04

b. 0.16

c. 0.20

d. 0.80

e. 0.96

Physical  Sciences

29. Distance Mitzi drops a ball from a height of 10 m and notices
that on each bounce the ball returns to about of its previous
height. About how far will the ball travel before it comes to
rest?

30. Rotation of a Wheel After a person pedaling a bicycle
removes his or her feet from the pedals, the wheel rotates 400
times the first minute. As it continues to slow down, in each
minute it rotates only as many times as in the previous
minute. How many times will the wheel rotate before coming
to a complete stop?

31. Pendulum Arc Length A pendulum bob swings through an arc
40 cm long on its first swing. Each swing thereafter, it swings
only 80% as far as on the previous swing. How far will it swing
altogether before coming to a complete stop?

General Interest

32. Perimeter A sequence of equilateral triangles is constructed as
follows: The first triangle has sides 2 m in length. To get the next
triangle, midpoints of the sides of the previous triangle are con-
nected. If this process could be continued indefinitely, what
would be the total perimeter of all the triangles?

33. Area What would be the total area of all the triangles of Exer-
cise 32, disregarding the overlaps?

3 /4

3 /4

pn11 5
1

5
 pn,n $ 0,

34. Trains Suppose a train leaves a station at noon traveling 
100 mph. Two hours later, on an adjacent track, a second train
leaves the station heading in the same direction traveling 125
mph. Determine when both trains are the same distance from
the station.

a. Solve this problem using algebra.

b. Solve this problem using a geometric series. (See Example 3.)

35. Zeno’s Paradox In the fifth century B.C., the Greek philosopher
Zeno posed a paradox involving a race between Achilles (the
fastest runner at the time) and a tortoise. The tortoise was given a
head start, but once the race began, Achilles quickly reached the
point where the tortoise had started. By then the tortoise had
moved on to a new point. Achilles quickly reached that second
point, but the tortoise had now moved to another point. Zeno
concluded that Achilles could never reach the tortoise because
every time he reached the point where the tortoise had been, the
tortoise had moved on to a new point. This conclusion was
absurd, yet people had trouble finding an error in Zeno’s logic.

Suppose Achilles runs 10 m per second, the tortoise runs 1
m per second, and the tortoise has a 10-m head start. 

a. Solve this problem using a geometric series. (See Example 3.)

b. Solve this problem using algebra.

c. Explain the error in Zeno’s reasoning.

36. Bikers A famous story about the outstanding mathematician
John von Neumann (1903–1957) concerns the following prob-
lem: Two bicyclists start 20 miles apart and head toward each
other, each going 10 miles per hour. At the same time, a fly trav-
eling 15 miles per hour leaves the front wheel of one bicycle,
flies to the front wheel of the other bicycle, turns around and flies
back to the wheel of the first bicycle, and so on, continuing in this
manner until trapped between the two wheels. What total dis-
tance did the fly fly? There is a quick way to solve this problem.
However, von Neumann allegedly solved this problem instantly
by summing an infinite series. Solve this problem using both
methods. Source: American Mathematical Monthly.

YOUR TURN ANSWERS 

1. 1, 5/4, 49/36, 205/144, 5269/3600
2. (a)  Converges to 3  (b)  Converges to 4  (c)  Diverges
3. 5 pm

Taylor Series
How many years will it take to double an amount invested at 9% annual
interest?

12.5
APPLY IT 

Using Taylor series, we derive the rule of 70 and the rule of 72 to answer this question in
Example 5.

As we saw in the previous section, the sum of the infinite geometric series having first
term a and common ratio r is

a

1 2 r
 for r in 121, 1 2 .
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If the first term of an infinite geometric series is and the common ratio is x, then the
series is written

If x is in then by the formula for the sum of an infinite geometric series, the sum of
this series is

That is,

The interval is called the interval of convergence for the series. This series is not
an approximation for the sum of the series is actually equal to for
any x in 

Earlier in this chapter, we found that the Taylor polynomial of degree n at for
is

Since the series given above for is just an extension of this Taylor polynomial, it
seems natural to call the series a Taylor series.

1 / 1 1 2 x 2
Pn 
1x 2 5 1 1 x 1 x2 1 x3 1 x4 1 ) 1 xn.

1 / 1 1 2 x 2
x 5 0

121, 1 2 .
1 / 1 1 2 x 21 / 1 1 2 x 2 ;

121, 1 2

1

1 2 x
5 1 1 x 1 x2 1 x3 1 x4 1 ) for x in 121, 1 2 .

1

1 2 x
 .

121, 1 2 ,

1 1 x 1 x2 1 x3 1 x4 1 ) 1 xn21 1 ) .

a 5 1

Taylor Series
If all derivatives of a function f exist at 0, then the Taylor series for f at 0 is defined to
be

f 1 0 2 1 f 112 1 0 2x 1
f 122 1 0 2

2!
 x2 1

f 132 1 0 2

3!
 x3 1P .

The particular Taylor series at 0 is also called a Maclaurin series. Scotsman Colin Maclaurin
(1698–1746) used this series in his work Treatise of Fluxions, published in 1742. In this
text, we will only consider Taylor series at 0. Taylor series at other points, as well as methods
for finding the interval of convergence, are beyond the scope of this text. For more infor-
mation, see Thomas’ Calculus, 12th ed., by Maurice D. Weir and Joel R. Hass, Addison-
Wesley, 2010.

Taylor Series

Find the Taylor series for at 0.

SOLUTION Work as in Section 12.3. The result is in the table to the left. Using the defini-
tion given in this section, the Taylor series for is

While we cannot prove it here, the interval of convergence is

The process for finding the interval of convergence for a given Taylor series is dis-
cussed in more advanced calculus courses. Three of the most common Taylor series are
listed below, along with their intervals of convergence. Note that these three functions are
equal to their respective Taylor series expansion for all values of x contained in the given

12`, ` 2 .

1 1 x 1
1

2!
 x2 1

1

3!
 x3 1

1

4!
 x4 1 ) 1

1

n!
 xn 1 ) .

f 1x 2 5 ex

f 1x 2 5 ex

 f 1n2 10 2  5 1 f 1n2 1x 2  5 ex

 . .
 . .
 . .
 f 132 10 2  5 1 f 132 1x 2  5 ex

 f 122 10 2  5 1 f 122 1x 2  5 ex

 f 112 10 2  5 1 f 112 1x 2  5 ex

   f 10 2 5 1   f 1x 2 5 ex

Calculations for Taylor Series

Derivative Value at 0

EXAMPLE  1
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Operations on Taylor Series The first n terms of a Taylor series form a poly-
nomial. Because of this, we would expect many of the operations on polynomials to gener-
alize to Taylor series; some properties of series concerning these operations are given in the
following theorems.

Common Taylor Series
Interval of

Taylor Series Convergence

121, 1 21 1 x 1 x2 1 x3 1 ) 1 xn 1 )
1

1 2 x

121, 1 4x 2
x2

2
1

x3

3
2

x4

4
1 ) 1

121 2nxn11

n 1 1
1 )ln 1 1 1 x 2

12`, ` 21 1 x 1
1

2!
 x2 1

1

3!
 x3 1 ) 1

1

n!
 xn 1 )ex

f 1x 2

Operations on Taylor Series
Let f and g be functions having Taylor series with

and

1. The Taylor series for is

for all x in the interval of convergence of both f and g. (Convergent series may be
added term by term.)

2. For a real number c, the Taylor series for is

for all x in the interval of convergence of f.

3. For any positive integer k, the Taylor series for is

for all x in the interval of convergence of f.

 5 a0 xk 1 a1 xk11 1 a2 xk12 1P1 an xk1n 1P ,

 a0  xk 1 a1 xk ? x 1 a2 xk ? x2 1P1 an xk ? xn 1P

xk . f 1x 2

c ? a0 1 c ? a1 x 1 c ? a2 x2 1P1 c ? an xn 1P ,

c . f 1x 2

 1 1 an 1 bn 
2xn 1P ,

 1 a0 1 b0 
2 1 1 a1 1 b1 

2x 1 1 a2 1 b2 
2x2 1P

f 1 g

g 1 x 2 5 b0 1 b1 x 1 b2 x2 1 b3 x3 1P1 bn xn 1P .

f 1 x 2 5 a0 1 a1 x 1 a2 x2 1 a3 x3 1P1 an xn 1P

These properties follow from the properties of derivatives and from the definition of a
Taylor series.

interval of convergence. (As is customary, these series are written so that the initial term is
a zeroth term.)
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Taylor Series

Find Taylor series for the following functions.

(a)

SOLUTION Use property 2, with along with the Taylor series for 
given earlier. The Taylor series for is

for all x in 

(b)

SOLUTION Use the Taylor series for with Property 3. With this
gives the Taylor series for 

TRY YOUR TURN 1

To see why the properties are so useful, try writing the Taylor series for 
directly from the definition of a Taylor series.

The final property of Taylor series is perhaps the most useful of all.

x3 ln 1 1 1 x 2

 5 x4 2
1

2
 x5 1

1

3
 x6 2

1

4
 x7 1 ) 1

121 2nx41n

n 1 1
1 )

 x3 . x 2 x3 . 1

2
 x2 1 x3 . 1

3
 x3 2 x3 . 1

4
 x4 1 ) 1

x3 121 2n . xn11

n 1 1
1 )

x3 ln 1 1 1 x 2 .
k 5 3,ln 1 1 1 x 2

f 1x 2 5 x3 ln 1 1 1 x 2
12`, ` 2 .

 5 5 1 5x 1
5

2!
 x2 1

5

3!
 x3 1 ) 1

5

n!
 xn 1 )

 5 . 1 1 5 . x 1 5 . 1

2!
 x2 1 5 . 1

3!
 x3 1 ) 1 5 . 1

n!
 xn 1 )

5ex
f 1x 2 5 exc 5 5,

f 1x 2 5 5ex

YOUR TURN 1 Find Taylor
series for the following functions.
(a)

(b) g 1 x 2 5 x2 / 1 1 2 x 2
f 1x 2 5 27 ln 1 1 1 x 2

EXAMPLE  2

Composition with Taylor Series
Let a function f have a Taylor series such that

Then replacing each x with for some constant c and positive integer k gives
the Taylor series for 

The interval of convergence of this new series may be different from that of the first series.

a0 1 a1 g 1 x 2 1 a2 
[g 1 x 2 \2 1 a3 

[g 1 x 2 \3 1P1 an 
[g 1 x 2 \n 1P .

f 3g 1x 2 4:
g 1x 2 5 cxk

f 1 x 2 5 a0 1 a1 x 1 a2 x2 1 a3 x3 1P1 an xn 1P .

Composition with Taylor Series

Find the Taylor series for each function.

(a)

SOLUTION We know that the Taylor series for is

for all x in Use the composition property, and replace each x with to
get the Taylor series for 

 5 1 2
1

2
 x2 1

1

2!22  x4 2
1

3!23  x6 1 ) 1
121 2n

n!2n  x2n 1 )

 1 1 a2 

x2

2
b 1

1

2!
 a2 

x2

2
b

2

1
1

3!
 a2 

x2

2
b

3

1 ) 1
1

n!
 a2 

x2

2
b

n

1 )

e2x2/2.
2x2 /212`, ` 2 .

1 1 x 1
1

2!
 x2 1

1

3!
 x3 1 ) 1

1

n!
 xn 1 )

ex

f 1x 2 5 e2x2/2

EXAMPLE  3
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The Taylor series for has the same interval of convergence, as the Taylor
series for 

(b)

SOLUTION Write as

which is with x replaced with Start with

which converges for x in and replace each x with to get

The interval of convergence of the original series is or Replac-
ing x with gives

or

so that the interval of convergence of the new series is 

(c)

SOLUTION This function most nearly matches To get 1 in the denomina-
tor, instead of 2, divide the numerator and denominator by 2.

Thus, we can find the Taylor series for by starting with the Taylor series
for multiplying each term by and replacing each x with 

The Taylor series for is valid when Replacing x with 
gives

This inequality is satisfied by any x in the interval
TRY YOUR TURN 2

12 "2,"2 2 .

21 ,
x2

2
, 1 or 22 , x2 , 2.

x2 /221 , x , 1.1 / 1 1 2 x 2

 5
1

2
1

x2

4
1

x4

8
1

x6

16
1 ) 1

x2n

2n11 1 )

 5
1

2
. 1 1

1

2
. a

x2

2
b 1

1

2
a

x2

2
b

2

1
1

2
 a

x2

2
b

3

1 ) 1
1

2
 a

x2

2
b

n

1 )

 
1

2 2 x2 5
1 /2

1 2 x2 /2

x2 /2.1 /2,1 / 1 1 2 x 2 ,
1 / 12 2 x2 2

1

2 2 x2 5
1 /2

1 2 x2 /2

1 / 1 1 2 x 2 .

f 1x 2 5
1

2 2 x2

121 /4, 1 /4 2 .

2 
1

4
, x ,

1

4
 ,21 , 24x , 1

24x
21 , x , 1.121, 1 2 ,

 5 1 2 4x 1 16x2 2 64x3 1 ) 1 121 2n4nxn 1 ) .

 5 1 1 124x 2 1 124x 22 1 124x 2 3 1 ) 1 124x 2n 1 )

 
1

1 1 4x
5

1

1 2 124x 2

24x121, 1 2 ,

1

1 2 x
5 1 1 x 1 x2 1 x3 1 ) 1 xn 1 ) ,

24x.1 / 1 1 2 x 2

1

1 1 4x
5

1

1 2 124x 2
 ,

1 / 1 1 1 4x 2

f 1x 2 5
1

1 1 4x

ex.
12`, ` 2 ,e2x2/2

YOUR TURN 2 Find the Taylor
series for each function.
(a)

(b) g 1x 2 5
3

4 2 x2

f 1 x 2 5 ln 1 2x2 1 1 2
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Although we do not go into detail in this book, the Taylor series we discuss may be dif-
ferentiated and integrated term by term. This result is used in the next example.

Integrating a Taylor Series

The standard normal curve of statistics is given by

Find the area bounded by this curve and the lines and the x-axis.

SOLUTION The desired area is shown in Figure 12 below. By earlier methods, this area is
given by the definite integral

3

1

0

1

"2p
 e2x2/2dx 5

1

"2p
 3

1

0

e2x2/2dx.

x 5 1,x 5 0,

f 1x 2 5
1

"2p
 e2x2/2.

f (x)

x

0.1

10

0.2

0.3

0.4
f(x) = e–x2/21

√2π

FIGURE 12 

This integral cannot be evaluated by any method we have used, but recall that Example 3(a)
gave the Taylor series for 

An approximation to can be found by integrating this series term by term.

Using, say, the first six terms of this series gives

This result agrees with the value 0.3413 obtained from the normal curve table in the
Appendix. We could have obtained a more accurate result by using more terms of the
Taylor series.

 < 0.3413.

 <
1

"2 1 3.1416 2
 10.855623 2

 5
1

"2p
 a1 2

1

6
1

1

40
2

1

336
1

1

3456
2

1

42,240
2 0b

 5
1

"2p
 ax 2

1

6
 x3 1

1

40
 x5 2

1

336
 x7 1

1

3456
 x9 2

1

42,240
 x11b `

1

0

 5
1

"2p
 3

1

0
a1 2

1

2
 x2 1

1

8
 x4 2

1

48
 x6 1

1

384
 x8 2

1

3840
 x10b dx

 
1

"2p
 3

1

0

e2x2/2 dx <
1

"2p
 3

1

0
a1 2

1

2
 x2 1

1

2!22  x4 2
1

3!23  x6 1
1

4!24  x8 2
1

5!25  x10b
 

dx

3

1

0

e2x2/2dx

e2x2/2 5 1 2
1

2
 x2 1

1

2!22  x4 2
1

3!23  x6 1 ) 1
121 2n

n!2n  x2n 1 ) .

f 1x 2 5 e2x2/2:

EXAMPLE  4
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In Example 4, we used terms of the Taylor series for up to the term con-
taining . This is exactly the same as finding the Taylor polynomial of degree 10 for the
function. In general, taking terms up to degree n of a Taylor series is the same as finding the
Taylor polynomial of degree n.

In Section 2.5, we saw that the doubling time (in years) for a quantity that increases at
an annual rate r is given by

and we approximated n using the rule of 70 and the rule of 72. Now we can derive these
rules by using a Taylor series. As shown in the list of common Taylor series,

for x in Further,

because each term in parentheses is positive for x in Therefore, for the
doubling time,

is just slightly larger than the quotient

Since the actual value of

is slightly smaller than r for the quotients

give good approximations for the doubling time, the rule of 70 and the rule of 72, discussed
in Section 2.5.

70

100r
  and  

72

100r

0 , r , 1,

ln 1 1 1 r 2 5 r 2
r2

2
1

r3

3
2

r4

4
1 )

ln 2
r
<

0.693
r

5
69.3

100r
 .

n 5
ln 2

ln 1 1 1 r 2
5

ln 2

r 2
r2

2
1

r3

3
2

r4

4
1 )

,

0 , r , 1,121, 1 4.

ln 1 1 1 x 2 5 x 2 a
x2

2
2

x3

3
b 2 a

x4

4
2

x5

5
b 2 ) , x

121, 1 4.

ln 1 1 1 x 2 5 x 2
x2

2
1

x3

3
2

x4

4
1 )

n 5
ln 2

ln 1 1 1 r 2
,

x10
f 1x 2 5 e2x2/2

Rule of 70 and Rule of 72
Rule of 70 If a quantity is increasing at a constant rate r compounded annually, where

Rule of 72 If a quantity is increasing at a constant rate r compounded annually, where
then

Doubling time ?
72

100r
 years.

0.05 , r # 0.12,

Doubling time ?
70

100r
 years.

0.001 # r # 0.05,

The rule of 70 is used by demographers because populations usually grow at rates of
less than 5 percent. The rule of 72 is preferred by economists and investors, since money fre-
quently grows at a rate of between 5 percent and 12 percent. Because the difference between
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compounding continuously and compounding several times a year is small, both the rule of
70 and the rule of 72 can be used to approximate the doubling time in any interval.

Doubling Time

Find the doubling time for an investment at each interest rate.

(a) 9%

SOLUTION By the formula for doubling time, at an interest rate of 9%, money will
double in

8 years.

(b) 1%

SOLUTION At an interest rate of 1%, money will double in

70 years.

(c) Use the rule of 70 and the rule of 72 to verify the results in parts (a) and (b).

SOLUTION The rule of 70 predicts that at a growth rate of 1%, a population will double in
70 years, in agreement with part (b). The rule of 72 predicts that at an interest rate of 9%,
money will double in 8 years, in agreement with part (a). TRY YOUR TURN 3

The following table gives the actual doubling time n in years for various growth rates r,
together with the approximate doubling times given by the rules of 70 and 72. 

ln 2

ln 1 1 1 0.01 2
<

ln 2

ln 1 1 1 0.09 2
<

YOUR TURN 3 Repeat Example
5(c) for interest rates of 3.5% and 8%.

Doubling Times

r 0.001 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

n 693 139 69.7 35.0 23.4 17.7 14.2 11.9 10.2 9.0 8.0 7.3 6.6 6.1

700 140 70 35 23.3 17.5 14 11.7 10 8.8 7.8 7.0 6.4 5.8

720 144 72 36 24 18 14.4 12 10.3 9 8 7.2 6.5 6
72

100r

70

100r

The last row in the table is particularly easy to compute because 72 has so many integral
divisors. Therefore, the rule of 72 is frequently used by economists and investors for any
interest rate r.

It can be shown that the rule of 70 will give the doubling time with an error of 2% or less
if and the rule of 72 will give the doubling time with a 2% error or less if

The above table shows the accuracy of the approximations, and the graph in
Figure 13 shows that the graphs of

are virtually indistinguishable over the domains just indicated.

ln 2

ln 1 1 1 r 2
 ,  

70

100r
 ,  and  

72

100r

0.05 , r # 0.12.
0.001 # n # 0.05,

APPLY IT 

EXAMPLE  5
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r

r

r r

r

FIGURE 13 

Find the Taylor series for the functions defined as follows.
Give the interval of convergence for each series.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. Use the fact that

to find a Taylor series for 1 1 1 x 2 / 1 1 2 x 2 .

1 1 x

1 2 x
5

1

1 2 x
1

x

1 2 x

f 1x 2 5 ln 1 1 2 5x2 2f 1x 2 5 ln 1 1 1 2x4 2

f 1x 2 5
ex 2 e2x

2
f 1x 2 5

ex 1 e2x

2

f 1x 2 5
6

3 1 x2f 1x 2 5
2

1 1 x2

f 1x 2 5 x4e2xf 1x 2 5 x3e2x

f 1x 2 5 e23x2

f 1x 2 5 e4x2

f 1x 2 5 lna1 2
x

2
bf 1x 2 5 ln 1 1 1 4x 2

f 1x 2 5
9x4

1 2 x
f 1x 2 5

x2

4 2 x

f 1x 2 5
7x

1 1 2x
f 1x 2 5

8x

1 1 3x

f 1x 2 5
23

4 2 x
f 1x 2 5

5

2 2 x

f 1x 2 5 x5exf 1x 2 5 x2ex

f 1x 2 5
23

1 2 x
f 1x 2 5

6

1 2 x

24. By properties of logarithms,

Use this to find a Taylor series for 

25. Use the Taylor series for to suggest that

for all x close to zero.

26. Use the Taylor series for to suggest that

for all x close to zero.

27. Use the Taylor series for to show that

for all x.

28. Use the Taylor series for e–x to show that

for all x.

Use the method in Example 4 (with five terms of the appropriate
Taylor series) to approximate the areas of the following regions.

29. The region bounded by and the
x-axis

x 5 1 /3,x 5 0,f 1x 2 5 ex2

,

e2x $ 1 2 x

ex $ 1 1 x

ex

e2x < 1 2 x 1
x2

2

e2x

ex < 1 1 x 1
x2

2

ex

ln 3 1 1 1 x 2 / 1 1 2 x 2 4.

lna
1 1 x

1 2 x
b 5 ln 1 1 1 x 2 2 ln 1 1 2 x 2 .

12.5 EXERCISES
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30. The region bounded by 
and the x-axis

31. The region bounded by 
and the x-axis

32. The region bounded by and the
x-axis

As mentioned in Example 4, the equation of the standard nor-
mal curve is

Use the method in Example 4 (with five terms of the Taylor
series) to approximate the area of the region bounded by the
normal curve, the x-axis, and the values of x in Exer-
cise 33 and 34.

33. 34.

APPLICATIONS
Business and Economics

35. Investment Ray Mesing has invested $12,000 in a certifi-
cate of deposit that has a 4.75% annual interest rate. Deter-
mine the doubling time for this investment using the
doubling-time formula. How does this compare with the esti-
mate given by the rule of 70?

36. Investment It is anticipated that a bank stock that Katie
Vales has invested $15,000 in will achieve an annual interest
rate of 6%. Determine the doubling time for this investment
using the doubling-time formula. How does this compare
with the estimate given by the rule of 72?

Life Sciences

37. Infant Mortality Infant mortality is an example of a rela-
tively rare event that can be described by the Poisson
distribution, for which the probability of x occurrences is
given by

a. Verify that f describes a probability distribution by show-
ing that

b. Calculate the expected value for f, given by

c. In 2010, the U.S. infant mortality rate was estimated at
6.14 per 1000 live births. Assuming that this is the
expected value for a Poisson distribution, find the proba-
bility that in a random sample of 1000 live births, there

a

`

x50

xf 1x 2 .

a

`

x50

f 1x 2 5 1.

f 1x 2 5
lxe2l

x!
 ,  x 5 0, 1, 2, *

x 5 0.6x 5 0.4

x 5 0,

f 1 x 2 5
1

"2p
 e2x2/ 2.

x 5 1,x 5 0,f 1x 2 5 e"x,

x 5 1 /3,
x 5 1 /4,f 1x 2 5 1 / 1 1 2 "x 2 ,

x 5 1 /2,
x 5 0,f 1x 2 5 1 / 1 1 2 x3 2 , were fewer than 4 cases of infant mortality. Source: Central

Intelligence Agency.

General Interest

38. Baseball In the year 2010, the proportion of U.S. major league
baseball players who were foreign born was 231 out of 833.
Suppose we begin to randomly select major league players until
we find one who is foreign born. Such an experiment can be
described by the geometric distribution, for which the probabil-
ity of success after x tries is given by

where p is the probability of success on a given try. (Note: This
formula is only accurate if the number of baseball players is very
large, compared with the number that we select before meeting
one who is foreign born.) Source: Major League Baseball.

a. Verify that f describes a probability distribution by showing
that

b. Calculate the expected value for f, given by

(Hint: Let and evaluate 

c. On average, how many major league baseball players would you
expect to meet before meeting one who is foreign born? 

d. What is the probability that you meet a foreign-born player
within the first three major league players that you meet? 

39. Trouble In the Milton Bradley game Trouble™, each player
takes turns pressing a “popper” that contains a single die. To
begin moving a game piece around the board a player must first
pop a 6 on the die. The number of tries required to get a 6 can be
described by the geometric distribution. (See Exercise 38.)

a. Using the result of Exercise 38b, what is the expected number
of times a popper must be pressed before a success occurs?

b. What is the probability that you will have to press the popper
four or more times before a 6 pops up?

g r 1 1 2 p 2 .)g 1 z 2 5 pg
`

x51z
x,

a

`

x51

xf 1x 2 .

a

`

x51

f 1x 2 5 1.

f 1x 2 5 1 1 2 p 2x21p, x 5 1, 2, 3, *

YOUR TURN ANSWERS 

1. (a) �7x � 7x2 2 � 7x3 3 � 7x4 4 � . . . � � . . . ,
for all x in (�1, 1]

(b) x2 � x3 � x4 � . . . � xn � . . ., for all x in (�1, 1)

2. (a) � . . . �

� . . ., for all 

(b) 3 4 � 3x2 16 � 3x4 64 � 3x6 256 � . . . �

� . . ., for all 

3. 20 yr; 9 yr

x in 12 2, 2 2

3x2n

4n11////

x in c 2
1

"2,
  

1

"2
d

121 2n11 2nx2n

n

2x2 2 2x4 1 1 8 /3 2x6 2 4x8

7 121 2n xn

n
///
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Newton’s Method
How can the true interest rate be found, given the amount loaned, the
number of payments, and the amount of each payment?

12.6
APPLY IT 

We will answer this question in Exercise 34 using a technique developed in this section.

Given a function f, a number r such that is called a zero of f. For example, if
then and so that both 3 and 1 are zeros of f.

The zeros of linear and quadratic functions can be found with the methods of algebra. More
complicated methods exist for finding zeros of third-degree or fourth-degree polynomial
functions, but there is no general method for finding zeros of higher-degree polynomials.

In practical applications of mathematics, it is seldom necessary to find exact zeros of a
function; usually a decimal approximation is all that is needed. We have seen earlier how a
graphing calculator may be used to find approximate values of zeros. In this section, we will
explore a calculus-based method to do the same. The method provides a sequence of values, 

whose limit is the true value in a wide variety of applications. Of course, you may sim-
ply prefer to use the zero feature on your graphing calculator, but Newton’s method is the
basis for some of the techniques used by mathematicians to solve more complex problems.

The zeros of a differentiable function f can be approximated as follows. Find a closed
interval so that and are of opposite sign, one positive and one negative.
As suggested by Figure 14, this means there must exist at least one value c in the interval

such that This number c is a zero of the function f.f 1 c 2 5 0.1a, b 2

f 1b 2f 1a 23a, b 4

c2 , * ,
c1 ,

f 1 1 2 5 0,f 1 3 2 5 0f 1x 2 5 x2 2 4x 1 3,
f 1 r 2 5 0

f (x)

f (a) > 0,  f (b) < 0
f (c) = 0

x
a c b

f (x)

f (a) < 0,  f (b) > 0
f (c) = 0

x
a c b

FIGURE 14
To find an approximate value for c, first make a guess for c. Let be the initial guess.

(See Figure 15.) Then locate the point on the graph of and identify
the tangent line at this point. This tangent line will cut the x-axis at a point The number

is often a better approximation of c than was
To locate first find the equation of the tangent line through The slope of

this tangent line is The point-slope form of the equation of the tangent line is

y 2 f 1 c1 
2 5 f r 1 c1 

2 1x 2 c1 
2 .

f r 1 c1 
2 .

1 c1 , f 1 c1 
2 2 .c2 ,

c1 .c2

c2 .
y 5 f 1x 21 c1 , f 1 c1 

2 2
c1

x

f (x)

a c1 c2c b

(c1, f (c1))

FIGURE 15 



CHAPTER 12 Sequences and Series650

When we know that Substituting into the equation of the tangent line gives

or

from which

If should be 0, the tangent line would be horizontal and not cut the x-axis. For this
reason, assume This new value, is usually a better approximation to c than
was To improve the approximation further, locate the tangent line to the curve at

Let this tangent cut the x-axis at (See Figure 16.) Find by a process simi-
lar to that used above: if

c3 5 c2 2
f 1 c2 

2
f r 1 c2 

2  .

f r 1 c2 
2 2 0,

c3c3 .1 c2 , f 1 c2 
2 2 .

c1 .
c2 ,f r 1 c1 

2 2 0.
f r 1 c1 

2

 c2 5 c1 2
f 1 c1 

2
f r 1 c1 

2  .

 2 

f 1 c1 
2

f r 1 c1 
2 5 c2 2 c1 ,

 0 2 f 1 c1 
2 5 f r 1 c1 

2 1 c2 2 c1 
2

y 5 0.x 5 c2 ,

x

f (x)

a c1

(c1, f(c1))

(c2, f(c2))

c3 c2 b

c

FIGURE 16

The approximation to c often can be improved by repeating this process as many times
as desired. In general, if is an approximation to c, a better approximation, fre-
quently can be found by the following formula.

cn11 ,cn

Newton’s Method
If then

cn11 5 cn 2
f 1 cn 

2

f9 1 cn 
2
.

f r 1 cn 
2 2 0,

This process of first obtaining a rough approximation for c, then replacing it succes-
sively by approximations that are often better, is called Newton’s method, named after Sir
Isaac Newton, the codiscoverer of calculus. An early version of this method appeared in his
work Method of Fluxions, published in 1736.

Newton’s Method

Approximate a solution for the equation

in the interval 31, 2 4.

3x3 2 x2 1 5x 2 12 5 0

EXAMPLE  1
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SOLUTION Let so that Check
that with Since and have opposite signs, there is a solution
for the equation in the interval As an initial guess, let A better guess, can
be found as follows.

A third approximation, can now be found.

In the same way,

Subsequent approximations yield no further accuracy, either to the 4 decimal places to
which we have rounded or to the digits displayed in a TI-84 Plus calculator. Thus

is a reasonably accurate solution of (The exact solu-
tion is TRY YOUR TURN 14 /3.)

5x 2 12 5 0.3x3 2 x2 1x 5 1.3333

c4 5 1.3373 2
0.072895

18.421
5 1.3333  and  c5 5 1.3333 2

26.111 3 1024

18.333
5 1.3333.

c3 5 c2 2
f 1 c2 

2
f r 1 c2 

2 5 1.4167 2
1.6066

20.230
5 1.3373

c3 ,

c2 5 c1 2
f 1 c1 

2
f r 1 c1 

2 5 1 2
25

12
5 1.4167

c2 ,c1 5 1.1 1, 2 2 .
f 12 2f 1 1 2f 12 2 . 0.f 1 1 2 , 0

f r 1x 2 5 9x2 2 2x 1 5.f 1x 2 5 3x3 2 x2 1 5x 2 12,

YOUR TURN 1 Approximate 
a solution for the equation

on [1, 3].2x3 2 5x2 1 6x 2 10 5 0

TECHNOLOGY NOTE Newton’s method is easily implemented on a graphing calculator. For the previous example on a
TI-84 Plus, start by storing 1 in X, the function in Y1, and the function in Y2. The
command X 2 Y1/Y2 → X gives the next value of x. Continue to press the ENTER key for subse-
quent calculations.

f r 1x 2f 1x 2

In Example 1 we had to go through five steps to get the degree of accuracy that we
wanted. The solutions of similar polynomial equations usually can be found in about as
many steps, although other types of equations might require more steps, particularly if the
initial guess is far from the true solution.

In any case, if a solution can be found by Newton’s method, it usually can be found by
a computer in a small fraction of a second. But in some cases, the method will not find the
solution, or will only do so for a good initial guess. Figure 17 shows an example in which
Newton’s method does not give a solution. Because of the symmetry of the graph in Figure
17, all the odd steps and so forth) give while all the even steps and so
forth) give so the approximations never approach the true solution. Such cases are rare
in practice. If you find that Newton’s method is not producing a solution, verify that there is
a solution, and then try a better initial guess.

c2 ,
c6 ,(c4 ,c1 ,c5 ,(c3 ,

x

f (x)

c2
c

c1 = c3

FIGURE 17 

Newton’s method also can be used to approximate the values of radicals, as shown by
the next example.
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Approximation

Approximate to the nearest thousandth.

SOLUTION First, note that is a solution of the equation Therefore, let
so that Since use as the first approx-

imation to A better approximation is given by :

Now find and 

Since to the nearest thousandth, TRY YOUR TURN 2"12 5 3.464.c3 5 c4 5 3.464,

 c4 5 3.464 2
20.0007

6.928
5 3.464.

 c3 5 3.5 2
0.25

7
5 3.464,

c4 :c3

 c2 5 3 2
23

6
5 3.5.

c2 "12.
c1 5 33 , "12 , 4,f r 1x 2 5 2x.f 1x 2 5 x2 2 12,

x2 2 12 5 0."12

"12

YOUR TURN 2 Approximate

to the nearest thousandth."3 15

EXAMPLE  2

Use Newton’s method to find a solution for each equation 
in the given intervals. Find all solutions to the nearest 
hundredth.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Use Newton’s method to find each root to the nearest
thousandth.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. "3 121"3 100

"3 15"3 9

"300"250

"15"11

"3"2

2 ln x 1 x 2 3 5 0; 31, 4 4
ln x 1 x 2 2 5 0; 31, 4 4
x2e2x 1 x2 2 2 5 0; 323, 0 4
x2e2x 1 x2 2 2 5 0; 30, 3 4
e2x 1 3x 2 4 5 0; 30, 3 4
ex 1 x 2 2 5 0; 30, 3 4
4x1/3 2 2x2 1 4 5 0; 30, 3 4

4x1/3 2 2x2 1 4 5 0; 323, 0 4

3x4 1 4x3 2 6x2 2 2x 2 12 5 0; 323, 22 4, 31, 2 4
2x4 2 2x3 2 3x2 2 5x 2 8 5 0; 322, 21 4, 32, 3 4
4x3 2 5x2 2 6x 1 6 5 0; 31, 2 4
23x3 1 5x2 1 3x 1 2 5 0; 32, 3 4
2x3 1 4x2 2 5x 1 4 5 0; 32, 3 4
2x3 2 6x2 2 x 1 2 5 0; 33, 4 4
2x2 2 8x 1 3 5 0; 33, 4 4
5x2 2 3x 2 3 5 0; 31, 2 4

Use Newton’s method to find the critical points for the functions
defined as follows. Approximate them to the nearest hundredth.
Decide whether each critical point leads to a relative maximum
or a relative minimum.

27.

28.

29.

30.

31. Use Newton’s method to attempt to find a solution for the
equation

by starting with a value very close to 1, which is obviously the
true solution. Verify that the approximations get worse with each
iteration of Newton’s method. This is one of those rare cases in
which Newton’s method doesn’t work at all. Discuss why this is
so by considering what happens to the tangent line at x � 1.

APPLICATIONS
Business and Economics

32. Break-Even Point For a particular product, the revenue and cost
functions are

Approximate the break-even point to the nearest hundredth.

33. Manufacturing A new manufacturing process produces savings
of

S 1x 2 5 x2 1 40x 1 20

R 1x 2 5 10x2/3 and C 1x 2 5 2x 2 9

f 1x 2 5 1x 2 1 2 1/3 5 0

f 1x 2 5 x4 1 2x3 2 5x 1 2

f 1x 2 5 x4 2 3x3 1 6x 2 1

f 1x 2 5 x3 1 9x2 2 6x 1 4

f 1x 2 5 x3 2 3x2 2 18x 1 4

12.6 EXERCISES
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dollars after x years, with increased costs of

dollars. For how many years, to the nearest hundredth,
should the process be used?

34. APPLY IT True Annual Interest Rate Federal govern-
ment regulations require that people loaning money to con-
sumers disclose the true annual interest rate of the loan. The
formulas for calculating this interest rate are very complex.
For example, suppose P dollars is loaned, with the money
to be repaid in n monthly payments of M dollars each. Then
the true annual interest rate is found by solving the equation

for i, the monthly interest rate, and then multiplying i by 12
to get the true annual rate. This equation can best be solved

1 2 1 1 1 i 22n

i
2

P

M
5 0

C 1x 2 5 x3 1 5x2 1 9

by Newton’s method. (This is how the financial function IRR
(Internal Rate of Return) is computed in Microsoft Excel.)

a. Let Find 

b. Form the quotient 

c. Suppose that and Let the ini-
tial guess for i be Use Newton’s method and find 

d. Find (Note: For the accuracy required by federal law, it is
usually sufficient to stop after two successive values of i differ
by no more than 

Find and 

35.

36. P 5 $15,000, M 5 $337, n 5 60, i1 5 0.01

P 5 $600, M 5 $57, n 5 12, i1 5 0.02

i3.i2

1027.)

i3 .

i2 .i1 5 0.01.
M 5 $197.n 5 24,P 5 $4000,

f 1 i 2 /f r 1 i 2 .

f r 1 i 2 .f 1 i 2 5
1 2 1 1 1 i 22n

i
2

P

M
 .

YOUR TURN ANSWERS 

1. 2.177 2. 2.466

L’Hospital’s Rule12.7
We began our study of calculus with a discussion of limits. For example,

which can be found by direct substitution using the limit rules for a rational function from
Section 3.1. In this section we will use derivatives to find limits of quotients of functions
that could not easily be found using the techniques of Chapter 3.

If we try to find

by evaluating the numerator and denominator at we get

an indeterminate form. Any attempt to assign a value to leads to a meaningless result.
The limit exists, however; as shown earlier, it is found by factoring.

As a second example,

also leads to the indeterminate form Selecting values of x close to 1 and using a calcu-
lator gives the following table.

0 /0.

lim
xl1

 
ln x

1x 2 1 2 2

lim
xl1

 
x2 2 1

x 2 1
5 lim

xl1
 
1x 1 1 2 1x 2 1 2

x 2 1
5 lim

xl1
1x 1 1 2 5 2

0 /0

12 2 1

1 2 1
5

0

0
 ,

x 5 1,

lim
xl1

 
x2 2 1

x 2 1

lim
xl1

 
x2 1 1

x 1 4
5

2

5
 ,

x 0.99 0.999 0.9999 1.0001 1.001 1.01

9999.5 999.5 99.5210,000.521000.52100.5
ln x

1x 2 1 2 2

As this table suggests, does not exist.lim
xl1

1 ln x 2 / 1x 2 1 2 2



CHAPTER 12 Sequences and Series654

In the first example, trying to find by evaluating the expression

at led to the indeterminate form but factoring the expression led to the actual
limit, 2. Evaluating in the second example led to the indeterminate

form but using a table of values showed that this limit did not exist. L’Hospital’s rule
gives a quicker way to decide whether a quotient with the indeterminate form has a
limit.

0 /0
0 /0,

lim
xl1

1 ln x 2 / 1x 2 1 2 2
0 /0,x 5 1

lim
xl1

1x2 2 1 2 / 1x 2 1 2

L’Hospital’s Rule
Let f and g be functions and let a be a real number such that

or

Let f and g have derivatives that exist at each point in some open interval containing a.

If then

If does not exist because becomes large without bound

for values of x near a, then also does not exist.lim
xla

 
f 1x 2
g 1x 2

 

`
f r 1x 2
g r 1x 2

`lim
xla

 
f r 1x 2
g r 1x 2

lim
xla

 
f 1x 2
g 1x 2

5 L.lim
xla

 
f r 1x 2
g r 1x 2

5 L,

lim
xla 

f 1 x 2 5 6`  and  lim
xla 

g 1 x 2 5 6`.

lim
xla 

f 1 x 2 5 0  and  lim
xla 

g 1 x 2 5 0,

A partial proof of this rule is given at the end of this section. L’Hospital’s rule is another
example of a mathematical misnomer. Although named after the Marquis de l’Hospital
(1661–1704), it was actually developed by Johann Bernoulli (1667–1748) in a textbook
published in 1696. (Johann Bernoulli was the brother of Jakob Bernoulli, mentioned in the
section on Antiderivatives.) L’Hospital was a student of Bernoulli and published, with a
financial arrangement, the works of his teacher under his own name.

L’Hospital’s Rule

Find 

SOLUTION It is very important to first make sure that the conditions of l’Hospital’s rule
are satisfied. Here

Since the limits of both numerator and denominator are 0, l’Hospital’s rule applies. Now
take the derivatives of both numerator and denominator separately. (Do not use the quotient
rule for derivatives.)

For we have 

For we have g r 1x 2 5
1

2"2 1 x
.g 1x 2 5 "2 1 x 2 2,

f r 1x 2 5 3.f 1x 2 5 3x 2 6,

lim
xl2

1 3x 2 6 2 5 0  and  lim
xl2

1"2 1 x 2 2 2 5 0.

lim
xl2

 
3x 2 6

"2 1 x 2 2
 .

EXAMPLE  1
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Find the limit of the quotient of the derivatives.

By l’Hospital’s rule, this result is the desired limit:

TRY YOUR TURN 1

L’Hospital’s Rule

Find

SOLUTION Make sure that l’Hospital’s rule applies.

Since the conditions of l’Hospital’s rule are satisfied, we can now take the derivatives of the
numerator and denominator separately.

Next, we find the limit of the quotient of these derivatives:

By l’Hospital’s rule, this means that

TRY YOUR TURN 2

Before looking at more examples of l’Hospital’s rule, consider the following summary.

lim
xl1

 
ln x

1x 2 1 2 2
 does not exist.

lim
xl1

 
1 /x

2 1x 2 1 2
5 lim

xl1
 

1

2x 1x 2 1 2
 does not exist.

Dx 1 ln x 2 5
1
x
  and  Dx 3 1x 2 1 2 2 4 5 2 1x 2 1 2

lim
xl1

 ln x 5 ln 1 5 0  and  lim
xl1

1x 2 1 2 2 5 0

lim
xl1

 
ln x

1x 2 1 2 2
 .

lim
xl2

 
3x 2 6

"2 1 x 2 2
5 12.

lim
xl2

 
f r 1x 2
g r 1x 2

5 lim
xl2

 
3

1 / 12"2 1 x 2
5 lim

xl2 
6"2 1 x 5 12.

EXAMPLE  3 L’Hospital’s Rule

Find 

SOLUTION The limit in the numerator is 0, as is the limit in the denominator, so that l’Hos-
pital’s rule applies. Taking derivatives separately in the numerator and denominator gives

By l’Hospital’s rule,

TRY YOUR TURN 3lim
xl0

 
x3

ex 2 1
5 0.

lim
xl0

 
3x2

ex 5
0

e0 5
0

1
5 0.

lim
xl0

 
x3

ex 2 1
 .

EXAMPLE  2

YOUR TURN 1
Find .lim

xl4
 

3x 2 12

"3 x 1 4 2 2

YOUR TURN 2

Find .lim
xl1

 
ex21 2 1

x2 2 2x 1 1

YOUR TURN 3

Find .lim
xl0

 
x3

ln 1x 1 1 2

Using L’Hospital’s Rule
1. Be sure that leads to the indeterminate form 

2. Take the derivatives of f and g separately.

3. Find ; this limit, if it exists, equals .

4. If necessary, apply l’Hospital’s rule more than once.

lim
xla

 
f 1x 2
g 1x 2

 lim
xla

 
f r 1x 2
g r 1x 2

 

0/0 or 6 `/6 `.lim
xla

 
f 1x 2
g 1x 2
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L’Hospital’s Rule

Find 

SOLUTION Find the limit in both the numerator and denominator to verify that l’Hospital’s
rule applies. Then take derivatives of both the numerator and denominator separately.

The result is still the indeterminate form use l’Hospital’s rule a second time. Taking
derivatives of and 2x gives

Finally, by l’Hospital’s rule,

TRY YOUR TURN 4

L’Hospital’s Rule

Find 

SOLUTION Taking derivatives of the numerator and denominator separately gives

Incorrect

Unfortunately, 4 is the wrong answer. What happened? We did not verify that the condi-
tions of l’Hospital’s rule were satisfied. In fact,

Since l’Hospital’s rule does not apply, we must use another method to find the limit. By
substitution,

L’Hospital’s rule also applies when

and

Limit of 0 � � or � �

Find each of the following limits.

(a)

SOLUTION It is not immediately clear what the limit is. The factor x is getting smaller and
smaller as x approaches 0, but the factor ln x is approaching ��. We have a limit of the
form 0 � �. To evaluate this limit, use the fact that

x 5  
1

1 /x

lim
xl01

 x ln x 

/

lim
xla

 g 1x 2 5 `.lim
xla

 f 1x 2 5 `

lim
xl1

 
x2 2 1

"x
5

12 2 1

"1
5

0

1
5 0.

lim
xl1

1x2 2 1 2 5 0,  but  lim
xl1

 "x 5 1 2 0.

lim
xl1

 
2x

1 1 /2 2x21/2 5 lim
xl1

 4x3/2 5 4 . 13/2 5 4 . 1 5 4.

lim
xl1

 
x2 2 1

"x
 .

lim
xl0

 
ex 2 x 2 1

x2 5
1

2
 .

lim
xl0

 
ex

2
5

e0

2
5

1

2
 .

ex 2 1
0 /0;

lim
xl0

 
ex 2 1

2x
5

e0 2 1

2 . 0
5

1 2 1

0
5

0

0

lim
xl0

 
ex 2 x 2 1

x2  .

EXAMPLE  4

EXAMPLE  5

EXAMPLE  6

YOUR TURN 4

Find .lim
xl0

 
e3x 2 9

2x2 2 3x 2 1

x3
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to rewrite the expression as

.

Now both the numerator and the denominator become infinite in magnitude, and l’Hospital’s
rule applies to limits of the form .

Rewrite as a quotient of the form ���.

Differentiate the numerator and denominator.

Simplify.

Therefore, by l’Hospital’s rule,

(b)

SOLUTION This limit has the form 0 � � and is similar to the limit in part (a), so we will
handle it in the same manner.

Rewrite as a quotient of the form ���.

Differentiate the numerator and denominator.

Simplify.

This problem is similar to what we started with, but with ln x raised to the first power,
rather than the second power. It seems that we have made progress, so let’s try the same
idea again.

Rewrite as a quotient of the form ���.

Differentiate the numerator and denominator.

Simplify.

(We could have avoided this second step by noticing that the limit at the end of the first
step is just �2 times the limit in part (a).) Therefore, by l’Hospital’s rule,

TRY YOUR TURN 5

We could use the same idea as in Example 6 repeatedly to show that

for any positive integer n. This limit was investigated graphically in an exercise in Chapter
3, and used again in the section on Curve Sketching in Chapter 5. We finally have a way to
demonstrate this result. The intuitive reason for this result is that although ln x approaches
�� as x approaches 0 from the right, the logarithm is a very slowly changing function, so it
doesn’t get large very quickly.

Limits at Infinity L’Hospital’s rule also applies to limits at infinity. The next example
illustrates this idea.

lim
xl01

 x 1 ln x 2n 5 0

lim
xl01

 x 1 ln x 2 2 5 0.

 5 0

 5 lim
xl01

2x

 5 lim
xl01

 
22/x

21 /x2  

 lim
xl01

 22x 1 ln x 2 5 lim
xl01

22 ln x

1 /x
 

 5 lim
xl01

22x 1 ln x 2  

 5 lim
xl01

 
2 1 ln x 2 1 1 /x 2

21 /x2  

 lim
xl01

 x 1 ln x 2 2 5 lim
xl01

1 ln x 2 2

1 /x
 

lim
xl01

 x 1 ln x 2 2. 

lim
xl01

x ln x 5 0.

 5 0

 5 lim
xl01 

2x  

 5 lim
xl01

 
1/x

21 /x2  

 lim
xl01

 x ln x 5 lim
xl01

ln x

1 /x
 

` / `

x ln x 5  
ln x

1 /x

YOUR TURN 5 Find
.lim

xl01
x2ln 1 3x 2
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Limit at Infinity

Find each of the following limits.

(a)

SOLUTION As in the previous example, it’s not obvious what the limit is. The factor x is
getting larger and larger, but the factor is getting smaller and smaller. This is another
example of a limit of the form To find out what happens to the product, we will
rewrite the product as a quotient. This converts the problem to a limit of the form , as
in the previous example.

Rewrite as a quotient of the form ���.

Differentiate the numerator and denominator.

Therefore, by l’Hospital’s rule.

(b) , where n is a positive integer

SOLUTION Like the limit in part (a), this limit is of the form , and it can be evaluated
by rewriting the product as a quotient.

Rewrite as a quotient of the form ���.

Differentiate the numerator and denominator.

This leaves us with a new problem similar to the original, but with the numerator of degree
one less. We could continue to apply l’Hospital’s rule until the numerator becomes n!,
which happens to xn when it is differentiated n times. Then

Therefore, by l’Hospital’s rule,

TRY YOUR TURN 6

The limit in Example 7(b) was investigated graphically in an exercise in Chapter 3
and used again in the section on Curve Sketching in Chapter 5. We finally have a way to
demonstrate this result. The intuitive reason for this result is that approaches 0 very
rapidly as x goes to infinity. Alternatively, we could say that gets large much faster
than any power of x as x goes to infinity.

Proof of l’Hospital’s Rule Because the proof of l’Hospital’s rule is too advanced
for this text we will not prove it here. We will, however, prove the theorem for the
special case where f, g, and are continuous on some open interval containing a,
and We will only consider the case in which

.lim
xla

f 1x 2 5 0  and  lim
xla

g 1x 2 5 0

g r 1a 2 2 0.
g rf r,

ex
e2x

lim
xl`

 xne2x 5 0.

lim
xl`

 
n!

ex 5 0.

 5 lim
xl`

 
nxn21

ex  

 lim
xl`

 xne2x 5 lim
xl`

 xn

ex  

0 . `

lim
xl`

 xne2x

lim
xl`

 xe2x 5 0.

 5 0

 5 lim
xl`

 
1

ex  

 lim
xl`

 xe2x 5 lim
xl`

 x

ex 

` / `

0 . `.
e2x

lim
xl`

 xe2x

EXAMPLE  7

YOUR TURN 6
Find and .lim

xl`

lnx

x2
lim
xl`

lnx

ex
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The assumption that f and g are continuous means that both and Thus,

and 

where we subtracted 0 in both the numerator and denominator. Multiplying the numerator
and denominator by gives

By a property of limits, this becomes

By the definition of the derivative, the limit in the numerator is and the limit in the
denominator is From our assumption that both and are continuous, and if

the quotient on the right above becomes

Thus,

which is what we wanted to show.

lim
xla

 
f 1x 2
g 1x 2

5 lim
xla

 
f r 1x 2
g r 1x 2

 ,

f r 1a 2
g r 1a 2

5
lim
xla

f r 1x 2

lim
xla

g r 1x 2
5 lim

xla
 
f r 1x 2
g r 1x 2

 .

g r 1a 2 2 0,
g rf rg r 1a 2 .
f r 1a 2 ,

lim
xla

 
f 1x 2
g 1x 2

5

lim
xla

 
f 1x 2 2 f 1a 2

x 2 a

lim
xla

 
g 1x 2 2 g 1a 2

x 2 a

 .

lim
xla

 
f 1x 2
g 1x 2

5 lim
xla

 

f 1x 2 2 f 1a 2
x 2 a

g 1x 2 2 g 1a 2
x 2 a

 .

1 / 1x 2 a 2

g 1 a 2 5 0f 1 a 2 5 0lim
xla

 
f 1x 2
g 1x 2

5 lim
xla

 
f 1x 2 2 f 1a 2
g 1x 2 2 g 1a 2

 ,

g 1a 2 5 0.f 1a 2 5 0

Use l’Hospital’s rule where applicable to find each limit.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. lim
xl9

 
"x 2 3

x 2 9
lim
xl4

 
"x 2 2

x 2 4

lim
xl0

 
"9 1 x 2 3

x
lim
xl0

 
"2 1 x 2 "2

x

lim
xl0

 
ex

8x5 2 3x4lim
xl0

 
ex

2x3 1 9x2 2 11x

lim
xl0

 
xe2x

2e2x 2 2
lim
xl0

 
xex

ex 2 1

lim
xl0

 
e2x 2 1

5x2 2 x
lim
xl0

 
ex 2 1

x4

lim
xl0

 
ln 1x 1 1 2

x
lim
xl2

 
ln 1x 2 1 2

x 2 2

lim
xl0

 
8x6 1 3x4 2 9x

9x7 2 2x4 1 x3lim
xl0

 
x5 2 2x3 1 4x2

8x5 2 2x2 1 5x

lim
xl3

 
x3 1 x2 2 11x 2 3

x2 2 3x
lim
xl1

 
x3 1 x2 2 x 2 1

x2 2 x

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. lim
xl0

 

1 7 2 x 2 ln 1 1 2 x 2
e2x 2 1

lim
xl0

 
1 5 1 x 2 ln 1x 1 1 2

ex 2 1

lim
xl1

 
"x2 1 5x 1 9

x 2 1
lim
xl0

 
"x2 2 5x 1 4

x

lim
xl0

 
"3 2 x 2 "3 1 x

x
lim
xl0

 
"1 1 x 2 "1 2 x

x

lim
xl0

 
2e5x 2 25x2 2 10x 2 2

5x3lim
xl0

 

1 1
1

3
 x 2 1 1 1 x 2 1/3

x2

lim
xl5

 
"x2 1 11 2 6

x2 2 25
lim
xl3

 
"x2 1 7 2 4

x2 2 9

lim
xl0

 
ex 2 1 1 x

e2x 2 1 2 x
lim
xl0

 
ex 1 e2x 2 2

x

lim
xl2

 
x7 2 5x6 1 5x5 1 32

x 2 2
lim
xl1

 
x9 1 3x8 1 4x5 2 8

x 2 1

lim
xl27

 
"3 x 2 3

x 2 27
lim
xl8

 
"3 x 2 2

x 2 8

12.7 EXERCISES
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33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–46, first get a common denominator; then find
the limits that exist.

43.

44.

45. 46. lim
xl0

 a
2

x
2

ln 1 1 1 2x 2
x2 blim

xl1
 a

x

x 2 1
2

1

lnx
b

lim
xl0

 a
12ex

x3 2
12

x3 2
12

x2 2
6

x
b

lim
xl0

 a
ex

x2 2
1

x2 2
1

x
b

lim
xl`

 
x3 1 1

x2 ln x
lim
xl`

 x5e20.001x

lim
xl`

 
ln 14e"x 2 1 2

3"x
lim
xl`

 
ln 1 ex 1 1 2

5x

lim
xl`

 
e"x

 x3lim
xl`

 
"x

ln 1 ln x 2

lim
xl`

 
1 ln x 2 2

x
lim

xl01
 x ln 1 ex 2 1 2

lim
xl01

 xe1/xlim
xl01

 x2 1 ln x 2 2 47. Explain what is wrong with the following calculation using
l’Hospital’s rule. 

48. Find the following limit, which is the first one given by l’Hospital in
his calculus text Analysis of Infinitely Small Quantities for the Under-
standing of Curves, published in 1696. Source: A History of Mathe-
matics: An Introduction.

lim
xla

  
"2a3x 2 x4 2 a"3 a2x

a 2 "4 ax3

lim
xl0

 
x2

x2 1 3
5 lim

xl0
 
2x

2x
5 1

YOUR TURN ANSWERS 

1. 36
2. Does not exist
3. 0
4. 9/2
5. 0
6. 0; 0

We have provided a brief introduction to the topics of sequences,
series, and l’Hospital’s rule. Geometric sequences are comparatively
simple to analyze and arise in various applications, including annu-
ities. We next investigated infinite series, as well as a particular form
known as Taylor series. Because Taylor series have an infinite 

number of terms, it is often more practical to take a small number of
terms, creating Taylor polynomials. We then discussed Newton’s
method, which produces a sequence that approaches a zero of a 
function. Finally, l’Hospital’s rule provides a method for evaluating
certain limits.

General Term of a 
Geometric Series

Sum of the First n Terms of a
Geometric Series

Sum of an Infinite For

Amount of an Annuity

Present Value of an Annuity

Rule of 70 For a rate of increase r compounded annually, where 0.001 � r � 0.05,

Doubling Time < 
70

100r
 years.

P 5 R c
1 2 1 1 1 i 22n

i
d or P 5 R . an0 i

S 5 R c
1 1 1 i 2n 2 1

i
d or S 5 R . sn0 i

a

`

n51

 arn21 5
a

1 2 r

21 , r , 1,

Sn 5
a 1 rn 2 1 2

r 2 1
 for r 2 1

an 5 arn21

Geometric Series

SUMMARY

12 CHAPTER REVIEW
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Rule of 72 For a rate of increase r compounded annually, where 0.05 � r � 0.12,

Taylor Polynomial at 0

Taylor Series at 0

Taylor Series for e x

Taylor Series for ln (1 + x )

Taylor Series for

Newton’s Method If then

L’Hospital’s Rule If then

lim
xla

 
f 1x 2
g 1x 2

5  lim
xla

 
f' 1x 2
g' 1x 2

.

lim
xla

 f 1x 2 5 lim
xla

 g 1x 2 5 0 or lim
xla

 f 1x 2 5 6` and lim
xla

 g 1x 2 5 6`,

cn11 5 cn 2
f 1 cn 2
f' 1 cn 2

.

f' 1 cn 2 2 0,

1

1 2 x
5 a

`

i50

 xi for 21 , x , 1
1

1 2 x

ln 11 1 x 2 5 a

`

i51

121 2 i11

i
 xi for 21 , x # 1

ex 5 a

`

i50

1

i!
 xi

  for 2` , x , `

f 1x 2 5 a

`

i50

f 1i2 10 2
i!

 xi

Pn 1x 2 5 a

n

i50

f 1i2 10 2
i!

 xi

Doubling Time < 
72

100r
 years.

12.1
sequence
element
term
general term
nth term
geometric sequence
common ratio

12.2
annuity
ordinary annuity

payment period
term of an annuity
amount of an annuity
sinking fund
present value of an 
annuity

amortization

12.3
Taylor polynomial
Taylor polynomial of
degree n

12.4
infinite series
nth partial sum
sum of an infinite 
series

convergence
divergence

12.5
interval of convergence
Taylor series

Maclaurin series
doubling time
rule of 70
rule of 72

12.6
Newton’s method

12.7
indeterminate form
l’Hospital’s rule

KEY TERMS

Determine whether each of the following statements is true or
false, and explain why.

1. In a geometric sequence, the ratio between any two consecu-
tive terms is a constant.

2. The amounts paid into an annuity form a geometric sequence.

3. A loan is amortized if both the principal and interest are paid
by a sequence of equal periodic payments.

4. The Taylor polynomial of degree 4 for f at 0 has the same sec-
ond derivative as f at 0.

5. The Taylor polynomial of degree 4 for f at 0 has the same fifth
derivative as f at 0.

REVIEW EXERCISES

CONCEPT CHECK
6. The Taylor polynomial of a discontinuous function is continuous.

7. An infinite geometric series converges as long as 

8. If an infinite series doesn’t converge, then it diverges.

9. The Taylor series for at 0 converges for all x.

10. The Taylor series for ln (1 � x) at 0 converges for all x.

11. Newton’s method converges as long as there is a real root and
the function is differentiable.

12. L’Hospital’s rule says that to take the derivative of a quotient,
divide the derivative of the numerator by the derivative of the
denominator.

ex
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PRACTICE AND EXPLORATIONS
Find and for the following geometric sequences. Then find
the sum of the first five terms.

13. 14.

15. 16.

Find Taylor polynomials of degree 4 at 0 for the functions
defined as follows.

17. 18.

19. 20.

21. 22.

23. 24.

Use Taylor polynomials of degree 4 at found in Exercises
17–24 above, to approximate the quantities in Exercises 25–32.
Round to 4 decimal places.

25. 26.

27. 28.

29. 30.

31. 32.

Identify the geometric series that converge. Give the sum of
each convergent series.

33.

34.

35.

36.

37.

38.

In Exercises 39–40, the nth term of a sequence is given. Calcu-
late the first five partial sums.

39. 40.

Use the Taylor series given in the text to find the Taylor series
for the functions defined as follows. Give the interval of conver-
gence of each series.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Use l’Hospital’s rule, where applicable, to find each limit.

51. 52.

53. 54. lim
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48
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5
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25
1

2

125
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625
1 )

4 1 4.8 1 5.76 1 6.912 1 )

3 1 9 1 27 1 81 1 )

2 1 1.4 1 0.98 1 0.686 1 )

9 2 6 1 4 2 8 /3 1 )

4.023/20.922/3

ln 3.06ln 2.05

"3 26.94"1.03

5e0.04e1.93

x 5 0,

f 1x 2 5 14 1 x 2 3/2f 1x 2 5 1 1 1 x 2 2/3

f 1x 2 5 ln 1 3 1 2x 2f 1x 2 5 ln 12 2 x 2
f 1x 2 5 "3 x 1 27f 1x 2 5 "x 1 1

f 1x 2 5 5e2xf 1x 2 5 e22x

a1 5 2, r 5 25a1 5 27, r 5 1 /3

a1 5 128, r 5 1 /2a1 5 5, r 5 22

ana4

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–66, first get a common denominator; then find
the limits that exist.

63. 64.

65. 66.

Use Newton’s method to find a solution to the nearest hun-
dredth for each equation in the given interval.

67.

68.

69.

70.

Use Newton’s method to approximate each radical to the nearest
thousandth.

71. 72.

73. 74.

APPLICATIONS
Business and Economics

75. Total Income A mine produced $750,000 of income during its
first year. Each year thereafter, income increased by 18%. Find
the total income produced in the first 8 years of the mine’s life.

76. Sinking Fund In 4 years, Jack McCanna must pay a pledge of
$5000 to his church’s building fund. He wants to set up a sinking
fund to accumulate that amount. What should each semiannual
payment into the fund be at 8% compounded semiannually?

77. Annuity Cathy Schneider deposits $491 at the end of each
quarter for 9 years. If the account pays 9.4% compounded
quarterly, find the final amount in the account.

78. Annuity J. Euclid deposits $1526.38 at the end of each 6-month
period in an account paying 7.6% compounded semiannually.
How much will be in the account after 5 years?

79. Amortization Diane Antaya borrows $20,000 from the bank
to help her expand her business. She agrees to repay the
money in equal payments at the end of each year for 9 years.
Interest is at 8.9% compounded annually. Find the amount of
each payment.

80. Amortization Ross Craycraft wants to expand his pharmacy. To
do this, he takes out a bank loan of $49,275 and agrees to repay it
at 12.2% compounded monthly over 48 months. Find the amount
of each payment necessary to amortize this loan.
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House Payments Find the monthly house payments for the
following mortgages.

81. $156,890 at 7.74% for 25 years

82. $177,110 at 8.45% for 30 years

83. Investment Michael Dew has invested $14,000 in a certificate
of deposit that has a 3.25% annual interest rate. Determine the
doubling time for this investment using the doubling-time for-
mula. How does this compare with the estimate given by the
rule of 70?

84. Investment It is anticipated that a bank stock that Jeff
Marsalis has invested $16,000 in will achieve an annual inter-
est rate of 9%. Determine the doubling time for this investment
using the doubling-time formula. How does this compare with
the estimate given by the rule of 72?

Life Sciences

85. Bacteria At a summer picnic, the number of bacteria in a bowl
of potato salad doubles every 20 minutes. Assume that there
are 1000 bacteria at the beginning of the picnic. How many
bacteria are present after 2 hours, assuming that no one has
eaten any of the potato salad?

Social  Sciences

86. Crime The number of reported crimes in a city was about
22,700 in a recent year. Due to the creation of a neighborhood
crime program, the city hopes the number of crimes decreases
each year by 8%. Let denote the number of crimes in the
city n years after the neighborhood crime program began. Find
a formula for in terms of n. Determine the number of crimes
in the city at the end of five years.

xn

xn

LIVING ASSISTANCE AND SUBSIDIZED HOUSING

E X T E N D E D APPLICATION

r. Jones receives living assistance, in the form of a monthly
stipend from the State of New York. He is also living in
subsidized housing. This means that the amount he pays in

rent depends on his income. He has entered into contracts with the
State of New York and his landlord specifying how his stipend and
rent are computed. The unusual aspect of these contracts is that, to
a degree, each depends on the other. Thus a single change in one
contract leads to a potentially infinite sequence of changes in both
contracts.

The relevant portion of the contract between the State of New
York and Mr. Jones is:

The State of New York agrees to pay Mr. Jones a monthly stipend of
$1000. This figure is arrived at by considering his living expenses.
The stipend will be increased or decreased by 30% of any increase
or decrease in rent.

Mr. Jones is also living in subsidized housing and has worked
out a contract with his landlord that specifies: The monthly rent is
$300. However, if Mr. Jones’s income increases during the period
of the contract, the monthly rent will be increased by 20% of the
change.

The situation gets complicated shortly after Mr. Jones
receives the good news that his stipend from the government is
being increased by $100/month to $1100/month. As required, he
reports to his landlord that his income has increased, and, as speci-
fied in his contract, his rent increases by 20% of $100. Thus his
new rent is $300 � $20 � $320.

Since the contract with the State of New York has a housing
allowance built in to it, he reports his $20 rent increase to the state,
and his monthly stipend of $1100 is increased by 30% of $20 to
$1100 � $6 � $1106.

At this point it becomes clear that Mr. Jones is facing a never
ending sequence of stipend and rent adjustments. Although it looks
like the adjustments are eventually going to be quite small, he
knows he must honor both contracts, and this is going to require a
lot of round trips and paperwork. On his way back to his landlord
with the news that his state stipend had been raised from $1000 to
$1100 to $1106, Mr. Jones decided to consult a lawyer. 

The lawyer took a look at the contracts and decided to consult
a mathematician to see if it is mathematically possible to make
sense of an unending sequence of stipend and rent hikes. As we
shall see, this is exactly what infinite series are made for. 

To help recognize the pattern, notice that the next term in the
infinite series for the state stipend is 30% of the last rent increase,
that is, 0.3 	 20 � $6. In other words, every time the state decides to
increase the stipend by x, the landlord increases the rent by 0.2x, and
the state is obligated to increase the stipend by 0.3 � 0.06x.

The infinite series for the state stipend (in dollars) is 

Stipend � 1000 � 100 � 0.06 � .

After the first term, this is a geometric series with r � 0.06;
thus, the sum is $1000 � $100 � $1,106.38.

The analysis of the rent is similar. Each rent hike of y dollars
is followed by a stipend increase of 0.3y and a subsequent rent
increase 0.2 � 0.06y. Thus, the infinite series for rent (in
dollars) is 

Rent � 300 � 20 � 0.06 � ,

which converges to $300 � $20 � $321.28.
There is a surprising aspect to this problem. The interrelated

nature of the contracts seems to demand an infinite series solution;

/ 1 1 – 0.06 2

10.06 2 2 120 21 . . .120 2

10.3y 2

/ 1 1 – 0.06 2

10.06 2 2 1 100 21 . . .1 100 2

10.2x 2

M
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yet, it can also be solved without using infinite series. How can this
be possible?

The key is to anticipate that the original $100 increase in
stipend is going to necessitate subsequent increases. So we can
express the ultimate stipend as $1000 � $100 � S, where S is yet
to be determined. Similarly, the rent will ultimately be $300 � R,
where R also needs to be determined. The question becomes, can
we find values of S and R such that neither contract is violated?

Mr. Jones’s contract with the state requires that his stipend be
increased by 30% of the change in his rent, that is S � 0.3R. On the
other hand, his contract with his landlord requires that his 20%
stipend increase of 100 � S be included in his rent, or in terms of
equations, 0.2 � R. In Exercise 1, you will show that
solving these simultaneous equations leads to the same stipend and
rent as found with infinite series.

EXERCISES
1. Find values for S and R that satisfy S � 0.3R and 

0.2 � R. Show that these solutions give the same
stipend and rent as found by summing the infinite series.

2. Suppose that instead of a stipend increase of $100, the state
cuts Mr. Jones’s stipend by $50. Assuming that Mr. Jones is
able to convince his landlord that he should have his rent
decreased by 20% of the change, this also leads to an infinite
cycle of stipend and rent changes. Express his stipend and rent
as infinite series, and find the sum of each series.

3. Eastville is located 12 miles from Westville. The town coun-
cils decide to pool resources and build a single fire station to
serve the needs of both towns. The negotiations on where to
build the fire station start with both towns proposing the fire
station be built in their town. The impasse is broken when
Eastville proposes to move the site halfway to Westville, i.e.,
6 miles to the west. Westville in turn proposes to move the site
halfway to the Eastville proposed site, i.e., 3 miles to the east.
This sets off an infinite round of negotiations in which each
party proposes moving the site halfway towards the other’s
previous proposal. Give an infinite series expressing the
changes in location proposed by Eastville, and give a similar

1 100 1 S 2

1 100 1 S 2

series for the changes proposed by Westville. Where is the fire
station eventually located? (Hint: The surest way to recognize
a pattern is to work out a few terms, and this calls for simple,
but careful, record keeping. Initial separation is 12 miles.
Eastville moves 6 miles. Now the separation is 6 miles. Westville
moves 3 miles. Separation is 3 miles. Eastville moves 3/2
miles. Separation is . . .)

4. There was enough money leftover after building the fire sta-
tion in Exercise 3 for a swimming pool. This time, Eastville
and Westville approach the negotiations more warily. East-
ville starts by suggesting the pool be located just of the
way towards Westville. From that point on, Westville agrees
to split the difference, while at every stage, Eastville proposes
moving the pool just of the way towards Westville’s last
proposal. Are the towns able to reach an agreement on the
final location of the pool?

5. The sum of the series for the stipend paid to Mr. Jones is
approximately $1,106.3829787. Understandably, an accountant
for the State of New York would view this as needless preci-
sion. To gain an appreciation of how quickly geometric series
converge, particularly with a small value of R, like 0.06, use a
calculator to answer the following questions. How many terms
of the series do you need to add up so that the sum is within one
dollar of the final answer? How many terms do you need to add
up to be within a dime or a penny of the final answer?

6. Not all series converge as quickly as geometric series. We
know from Section 12.5

ln � 1 – � – � . . . ,

so the nth term of this series is . Use the website
WolframAlpha.com to decide how many terms you need to add
up so the sum is within 0.01 of ln . To sum a series on 
WolframAlpha.com, enter the following:

sum <formula for nth term of your series> from n � <first
value of n> to <final value of n, and this can even be infinity>.

12 2

121 2n11 /n

1 /51 /41 /31 /212 2

1 /3

1 /3
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The Trigonometric Functions
13.1 Definitions of the Trigonometric

Functions

13.2 Derivatives of Trigonometric Functions

13.3 Integrals of Trigonometric Functions

Chapter 13 Review

Extended Application: The Shortest 
Time and the Cheapest Path

The time when the sun sets depends both on your

location on the globe and on the time of year. Because

Earth’s motion around the Sun is periodic, the sunset time

for a particular location is a periodic function of time

measured in days. We explore this trigonometric model in

the exercises for Section 1 in this chapter.

13
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CHAPTER 13 The Trigonometric Functions666

Throughout this book we have discussed many different types of functions, including
linear, quadratic, exponential, and logarithmic functions. In this chapter we introduce
the trigonometric functions, which differ in a fundamental way from those previously

studied: the trigonometric functions describe periodic or repetitive relationships.
An example of a periodic relationship is given by an electrocardiogram (EKG), a

graph of a human heartbeat.The EKG in Figure 1 shows electrical impulses from a heart.
Source: Nancy Schiller. Each small square represents 0.04 second. How often does this
heart beat?

Definitions of the Trigonometric
Functions
How far from a camera should an object be to put it in focus?APPLY IT

13.1

In Exercise 90 in this section, we will use trigonometry to answer this question.

The angle is one of the basic concepts of trigonometry. The definition of an angle
depends on that of a ray: a ray is the portion of a line that starts at a given point and contin-
ues indefinitely in one direction. Figure 2 shows a line through the two points A and B. The
portion of the line AB that starts at A and continues through and past B is called ray AB.
Point A is the endpoint of the ray.

An angle is formed by rotating a ray about its endpoint. The initial position of the ray is
called the initial side of the angle, and the endpoint of the ray is called the vertex of the
angle. The location of the ray at the end of its rotation is called the terminal side of the angle.
See Figure 3.

An angle can be named by its vertex. For example, the angle in Figure 3 can be called
angle A. An angle also can be named by using three letters, with the vertex letter in the mid-
dle. For example, the angle in Figure 3 could be named angle BAC or angle CAB.

An angle is in standard position if its vertex is at the origin of a coordinate system
and if its initial side is along the positive x-axis. The angles in Figures 4 and 5 on the next
page are in standard position. An angle in standard position is said to be in the quadrant of
its terminal side. For example, the angle in Figure 4(a) is in quadrant I, while the angle in
Figure 4(b) is in quadrant II.

FIGURE 1 

Trigonometric functions describe many natural phenomena and are important in the
study of optics, heat, electronics, acoustics, and seismology. Also, many algebraic functions
have integrals involving trigonometric functions.

Line AB
A B

Ray AB
A B

FIGURE 2 

Vertex A
C

B

Initial side

Terminal side

FIGURE 3 



Notice that the angles in Figures 3 and 4 are formed with a counterclockwise rotation
from the positive x-axis. This is true for any positive angle. A negative angle is measured
clockwise from the positive x-axis, as we shall see in Example 5.

Degree Measure The sizes of angles are often indicated in degrees. Degree measure
has remained unchanged since the Babylonians developed it over 4000 years ago. In degree
measure, 360 degrees represents a complete rotation of a ray. One degree, written is

of a rotation. Also, is or of a rotation, and is or of
a rotation. See Figure 5.

1 /2180 /360180°1 /490 /36090°1 /360
1°,

13.1 Definitions of the Trigonometric Functions 667

y

(a)

xVertex Initial side

Acute
angle

Terminal side

FIGURE 4

y

(b)

x

Obtuse
angle

x

y

0

420°

60°

FIGURE 6

y

x

y

x

y

x

FIGURE 5

An angle having a degree measure between and is called an acute angle. An
angle of is a right angle. An angle having measure more than but less than is
an obtuse angle, while an angle of is a straight angle. See Figures 4 and 5.

A complete rotation of a ray results in an angle of measure But there is no reason
why the rotation need stop at By continuing the rotation, angles of measure larger than

can be produced. The angles in Figure 6 have measures and These two angles
have the same initial side and the same terminal side, but different amounts of rotation.

Radian Measure While degree measure works well for some applications, using degree
measurement in calculus is complicated. Fortunately, there is an alternative system, called
radian measure, that helps to keep the formulas for derivatives and antiderivatives as sim-
ple as possible. To see how this system for measuring angles is obtained, look at angle
(the Greek letter theta) in Figure 7(a). The angle is in standard position; Figure 7(a) also
shows a circle of radius 1, known as the unit circle, centered at the origin.

The vertex of is at the center of the circle in Figure 7(a). Angle cuts a piece of the cir-
cle called an arc. The length of this arc is the measure of the angle in radians. In other words,
an angle in radians is the length of arc formed by the angle on a unit circle. The term radian
comes from the phrase radial angle. Two nineteenth century scientists, mathematician
Thomas Muir and physicist James Thomson, are credited with the development of the radian
as a unit of angular measure, although the concept originated over 100 years earlier.

On a circle, the length of an arc is proportional to the radius of the circle. Thus, for a
specific angle , as shown in Figure 7(b), the ratio of the length of arc s to the radius r of the
circle is the same, regardless of the radius of the circle. This allows us to define radian mea-
sure on a circle of arbitrary radius as follows:

Note that the formula gives the same radian measure of an angle, regardless of the size of
the circle, and that one radian results when the angle cuts an arc on the circle equal in
length to the radius of the circle.

Radian measure of u 5
Length of arc

Radius
5

s
r

 .

u

uu

u
u

420°.60°360°
360°.

360°.
180°

180°90°90°
90°0°

1
θ

(a)
s

r

θ

(b)

FIGURE 7 



Since the circumference of a circle is times the radius of the circle, the radius could
be marked off times around the circle. Therefore, an angle of —that is, a complete
circle—cuts off an arc equal in length to times the radius of the circle, or

This result gives a basis for comparing degree and radian measure.
Since an angle of is half the size of an angle of an angle of would have

half the radian measure of an angle of or

180° 5
1

2
 12p 2  radians 5 p radians.

360°,
180°360°,180°

360° 5 2p radians.

2p
360°2p

2p
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This quotient is approximately Since radians, we can find the radian
measure of by dividing by on both sides.180°1°

180° 5 p57.29578°.

1 Radian

1 radian 5 a
180°
p
b

Degree and Radians
180° 5 p radians

1 Degree

1° 5
p

180
  radians

One degree is approximately equal to 0.0174533 radians.
Graphing calculators and many scientific calculators have the capability of changing

from degree to radian measure or from radian to degree measure. If your calculator has this
capability, you can practice using it with the angle measures in Example 1. The most impor-
tant thing to remember when using a calculator to work with angle measures is to be sure
the calculator mode is set for degrees or radians, as appropriate.

Equivalent Angles

Convert degree measures to radians and radian measure to degrees.

(a)

SOLUTION Since radians,

The word radian is often omitted, so the answer could be written as just 45° 5 p /4.

45° 5 45a
p

180
b radians 5

45p

180
  radians 5

p

4
  radians.

1° 5 p /180

45°

EXAMPLE  1

Since divide both sides by to find the degree measure of 1 radian.pp radians 5 180°,



(b)

SOLUTION Since 

TRY YOUR TURN 1

The following table shows the equivalent radian and degree measure for several angles
that we will encounter frequently.

9p

4
  radians 5

9p

4
 a

180°
p
b 5 405°.

1 radian 5 180°/p,

9p

4
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YOUR TURN 1 (a) Convert
210� to radians. (b) Convert 
radians to degrees.

3p /4

Degrees

Radians 0 2p3p /2pp /2p /3p /4p /6

360°270°180°90°60°45°30°0°

Degrees and Radians of Common Angles

The Trigonometric Functions To define the six basic trigonometric functions,
we start with an angle in standard position, as shown in Figure 8. Next, we choose an
arbitrary point P having coordinates located on the terminal side of angle (The
point P must not be the vertex of 

Drawing a line segment perpendicular to the x-axis from P to point Q sets up a right
triangle having vertices at O (the origin), P, and Q. The distance from P to O is r. Since the
distance from P to O can never be negative, The six trigonometric functions of
angle are defined as follows.u

r . 0.

u.)
u.1x, y 2 ,

u

Trigonometric Functions
Let be a point other than the origin on the terminal side of an angle in standard
position. Let r be the distance from the origin to Then

.cotangent u 5 cot u 5
x
y

  1 y u 0 2tangent u 5 tan u 5
y
x
 1 x u 0 2

secant u 5 sec u 5
r
x
 1 x u 0 2cosine u 5 cos u 5

x
r

cosecant u 5 csc u 5
r
y
 1 y u 0 2sine u 5 sin u 5

y
r

1x, y 2 .
u1x, y 2

From these definitions, it is easy to prove the following elementary trigonometric
identities.

y

P x y

y

Q O x

r

x

FIGURE 8

Elementary Trigonometric Identities

These identities are meaningless when the denominator is zero.

sin2 u 1 cos2 u 5 1cot u 5
cos u
sin u

tan u 5
sin u
cos u

cot u 5
1

tan u
sec u 5

1
cos u

csc u 5
1

sin u

1 x

y

�

(cos�, sin�)

FIGURE 9 

If we let in the definitions of the trigonometric functions, then we can think of as
the length of the arc, and cos and as the - and -coordinates, respectively, of a point
on the unit circle, as shown in Figure 9.

yxsin uu
ur 5 1



Values of Trigonometric Functions

The terminal side of an angle (the Greek letter alpha) goes through the point 
Find the values of the six trigonometric functions of angle 

SOLUTION Figure 10 shows angle with terminal side through point and the tri-
angle formed by dropping a perpendicular from the point To find the distance r, use
the Pythagorean theorem:* In a triangle with a right angle, if the longest side of the triangle
(called the hypotenuse) is r and the shorter sides are x and y, then

or

(Recall that represents the positive square root of b.)
Substituting the known values and in the equation gives

We have and The values of the six trigonometric functions of angle
are found by using the definitions.

TRY YOUR TURN 2

Values of Trigonometric Functions

Find the values of the six trigonometric functions for an angle of 

SOLUTION Select any point on the terminal side of an angle of measure radians (or
See Figure 11. Selecting the point gives and Check that 

also. Then

The values of tan and sec are undefined because the denominator is 0.

Methods similar to the procedure in Example 3 can be used to find the values of the six
trigonometric functions for the angles with measure 0, and These results are summa-
rized in the following table. The table shows that the results for are the same as those for 0.2p

3p /2.p,

1p/2 21p/2 2

 csc 
p

2
5

1

1
5 1. cos 

p

2
5

0

1
5 0

 cot 
p

2
5

0

1
5 0 sin 

p

2
5

1

1
5 1

r 5 1y 5 1.x 5 010, 1 290°).
p /2

p /2.

 csc a 5
r
y

5
17

15
 cot a 5

x
y

5
8

15
 cos a 5

x
r

5
8

17

 sec a 5
r
x

5
17

8
 tan a 5

y

x
5

15

8
 sin a 5

y

r
5

15

17

a
r 5 17.y 5 15,x 5 8,

r 5 "82 1 152 5 "64 1 225 5 "289 5 17.

y 5 15x 5 8
"b

r 5"x2 1 y2
 .

r2 5 x2 1 y2,

1 8, 15 2 .
1 8, 15 2a

a.
1 8, 15 2 .a
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EXAMPLE  2
y

x
y
r

x

FIGURE 10

*Although one of the most famous theorems in mathematics is named after the Greek mathematician Pythagoras,
there is much evidence that the relationship between the sides of a right triangle was known long before his time.
The Babylonian mathematical tablet identified as Plimpton 322 has been interpreted by many to be essentially a
list of Pythagorean triples—sets of three numbers a, b, and c that satisfy the equation a2 1 b2 5 c2.

YOUR TURN 2 Find the values
of the six trigonometric functions of
an angle whose terminal side goes
through the point (9, 40).

a

y

x1

(0,1)

radians
or

90°

–1

–1

2
π

0

FIGURE 11

EXAMPLE  3

0 0 1 0 Undefined 1 Undefined

1 0 Undefined 0 Undefined 1

0 21 0 Undefined 21 Undefined

21 0 Undefined 0 Undefined 21

0 1 0 Undefined 1 Undefined 360°2p

 270°3p /2

 180°p

 90°p /2

 0°

Trigonometric Functions at Multiples of 

(in radians) (in degrees) csc usec ucot utan ucos usin u
uu

p /2



NOTE When considering the trigonometric functions, it is customary to use x (rather than 
for the domain elements, as we did with earlier functions, and to write instead of

Special Angles The values of the trigonometric functions for most angles must be
found by using a calculator with trigonometric keys. For a few angles called special
angles, however, the function values can be found exactly. These values are found with the
aid of two kinds of right triangles that will be described in this section. 

y 5 sin u.
y 5 sin x

u)
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x

y

0 x

r
x = √3
y = 1
r = 2y

P

60°

90°30°

FIGURE 12

– – Triangle
In a right triangle having angles of and the hypotenuse
is always twice as long as the shortest side, and the middle side has a
length that is times as long as that of the shortest side. Also, the
shortest side is opposite the angle.30°

"3

90°,60°,30°,
90°60°30°

60°
1

2

90°

30°

√3

Values of Trigonometric Functions

Find the values of the trigonometric functions for an angle of radians.

SOLUTION Since find the necessary values by placing a angle in
standard position, as in Figure 12. Choose a point P on the terminal side of the angle so that

From the description of triangles, P will have coordinates
with and Using the definitions of the trigonometric functions
gives the following results.

We can find the trigonometric function values for angles by using the properties of
a right triangle having two sides of equal length.

45°

 csc 
p

6
5 2 cot 

p

6
5 "3 cos 

p

6
5
"3

2

 sec 
p

6
5

2

"3
5

2 "3

3
 tan 

p

6
5

1

"3
5
"3

3
 sin 

p

6
5

1

2

r 5 2.y 5 1,x 5 "3 ,
1"3 , 1 2 ,30°260°290°r 5 2.

30°p /6 radians 5 30°,

p /6

EXAMPLE  4

45 –45 –90 Triangle
In a right triangle having angles of , , and , the hypotenuse

has a length that is times as long as the length of either of the
shorter (equal) sides.

"2

90°45°45°
°°°

1

1

90° 45°

45°

√2

For a derivation of the properties of the 30�–60�–90� and 45�–45�–90� triangles, see
Exercises 74 and 75.



Values of Trigonometric Functions

Find the trigonometric function values for an angle of 

SOLUTION Place an angle of radians, or in standard position, as in Figure 13.
Choose point P on the terminal side so that By the description of 
triangles, P has coordinates with and 

TRY YOUR TURN 3

For angles other than the special angles of and their multiples, a calculator
should be used. Many calculators have keys labeled sin, cos, and tan. To get the other
trigonometric functions, use the fact that and 

(The key is also useful here.)

Whenever you use a calculator to compute trigonometric functions, check
whether the calculator is set on radians or degrees. If you want one and your cal-
culator is set on the other, you will get erroneous answers. Most calculators have
a way of switching back and forth; check the calculator manual for details. On
the TI-84 Plus, press the MODE button and then select Radian or Degree.

Values of Trigonometric Functions

Use a calculator to verify the following results.

(a) (b)

(c) (d)

(e)

(f) TRY YOUR TURN 4

Values of Trigonometric Functions

Find all values of x between 0 and that satisfy each of the following equations.

(a)

SOLUTION The sine function is positive in quadrants I and II. In quadrant I, we draw
a triangle with an angle whose sine is , as shown in Figure 14 (a). We recognize this
triangle as the 30�–60�–90� triangle, with angle In Figure 14 (b), we show the
same triangle in quadrant II. The angle is now There are two
solutions between 0 and , namely, and 5p/6.x 5 p/62p

x 5 p 2 p/6 5 5p/6.
x 5 p/6.

1 /2

sinx 5 1 /2

2p

sec 0.7679 5 1 /cos 0.7679 < 1 /0.71937 < 1.3901

cot 1.2043 5 1 / tan 1.2043 < 1 /2.6053 < 0.3838

sin 0.2618 < 0.2588tan 82° < 7.1154

cos 48° < 0.6691sin 10° < 0.1736

x211/ tan x.
cot x 5csc x 5 1 /sin x,sec x 5 1 /cos x,

60°,45°,30°,

 csca2 

p

4
b 5 2 "2 cota2 

p

4
b 5 21 cosa2 

p

4
b 5

1

"2
5
"2

2

 seca2 

p

4
b 5 "2 tana2 

p

4
b 5 21 sina2 

p

4
b 5 2 

1

"2
5 2 

"2

2

r 5 "2 .y 5 21,x 5 1,1 1, 21 2 ,
45°245°290°r 5 "2 .

245°,2p /4

2p /4.
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x

y

0 x

r

x = 1
y = –1
r = √2

y

P(1,–1)

90°–45°

45°

FIGURE 13

CAUTION

YOUR TURN 3 Find the
trigonometric function values for an
angle of 7p /6.

YOUR TURN 4 Use a calcula-
tor to find each of the following.
(a) 6� (b) sec 4cos

EXAMPLE  6

x

y

0

2
1

6
π

x

y

0

2
1

6
π π

FIGURE 14 

EXAMPLE  7

(a) (b)

EXAMPLE  5



(b)

SOLUTION The secant function is negative in quadrants II and III. In quadrant II, we
draw a triangle with an angle whose secant is , as shown in Figure 15 (a). We recog-
nize the 30�–60�–90� triangle once again, with angle In Figure 15
(b), we show the same triangle in quadrant III. The angle is now 
There are two solutions between 0 and , namely, and 

TRY YOUR TURN 5

4p/3.x 5 2p/32p
x 5 p 1 p/3 5 4p/3.

x 5 p 2 p/3 5 2p/3.
22

sec x 5 22
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YOUR TURN 5 Find all values
of x between 0 and that satisfy 
the equation cosx 5 2"2 /2.

2p

Graphs of the Trigonometric Functions Because of the way the trigono-
metric functions are defined (using a circle), the same function values will be obtained for
any two angles that differ by radians (or For example,

for any value of x. Because of this property, the trigonometric functions are periodic functions.

sin 1x 1 2p 2 5 sin x  and  cos 1x 1 2p 2 5 cos x

360°).2p

Periodic Function
A function is periodic if there exists a positive real number a such that

for all values of x in the domain of the function. The smallest positive value of a is
called the period of the function.*

f 1 x 2 5 f 1 x 1 a 2

y 5 f 1x 2

Intuitively, a function with period a repeats itself over intervals of length a. Once we
know what the graph looks like over one period of length a, we know what the entire graph
looks like by simply repeating. Because sine is periodic with period the graph is found
by first finding the graph on the interval between 0 and and then repeating as many
times as necessary.

To find values of for values of x between 0 and think of a point moving
counterclockwise around a circle, tracing out an arc for angle x. The value of gradually
increases from 0 to 1 as x increases from 0 to The value of then decreases back to
0 as x goes from to For is negative. A few typical values fromsin xp , x , 2p,p.p /2

sin xp /2.
sin x

2p,y 5 sin x

2p
2p,

*Some authors define the period of the function as any value of a that satisfies f 1x 2 5 f 1x 1 a 2 .

2

–1

3
π

y

x 0

π

2

3
π

y

x 0

π

–1

FIGURE 15 
(a) (b)



these intervals are given in the following table, where decimals have been rounded to the
nearest tenth.
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y

x

–1

y = sin x

1

0
2
ππ π–π–2 π2–

2
π

2
π–3

2
π3

FIGURE 16

x 0

sin x 0 0.7 1 0.7 0 020.72120.7

2p7p /43p /25p /4p3p /4p /2p /4

Values of the Sine Function

Finally, Figure 18 shows the graph of Since is undefined (because of
zero denominators) for and so on, the graph has vertical asymp-
totes at these values. As the graph suggests, the tangent function is periodic, with a
period of p.

2p /2,3p /2,x 5 p /2,
tan xy 5 tan x.

y

x

–1

y = cos x

1

0
2
ππ π–π–2 π2–

2
π

2
π–3

2
π3

FIGURE 17

y

x

–1

y = tan x
Period = π

0

–2

1

2

4
ππ π–π–2 π2–

2
π–

2
π–3

2
π

4
π

2
π3

FIGURE 18

Plotting the points from the table of values and connecting them with a smooth curve
gives the solid portion of the graph in Figure 16. Since is periodic, the graph con-
tinues in both directions indefinitely, as suggested by the dashed lines. The solid portion of
the graph in Figure 16 gives the graph over one period.

y 5 sin x

The graph of in Figure 17 below can be found in much the same way.
Again, the period is (These graphs could also be drawn using a graphing calculator or
a computer.)

2p.
y 5 cos x



The graphs of the secant, cosecant, and cotangent functions are not used as often as
these three, so they are not given here.

Translating Graphs of Sine and Cosine Functions In an earlier section
we saw that the graph of the function was simply the graph
of translated c units horizontally and d units vertically. The same facts hold true
with trigonometric functions. The constants a, b, c, and d affect the graphs of the functions

and in a similar manner.
In addition, the constants a, b, and c have particular properties. Since the sine and

cosine functions range between and 1, the value of a, whose absolute value is called the
amplitude, can be interpreted as half the difference between the maximum and minimum
values of the function.

The period of the function is determined by the constant b, which we will assume to
be greater than 0. Recall that the period of both and is The value of 
will increase or decrease the period, depending on its value. A similar phenomenon occurs
when but it is not covered in this textbook. Thus, the graph of will
look like that of but with a period of The results are similar for

The quantity is called the phase shift and corresponds to the number of units that
the graph of or is shifted horizontally. The constant d determines the vertical
shift of or 

Graphing Trigonometric Functions

Graph each function.

(a)

SOLUTION The graph of this function has amplitude and no vertical or
horizontal shifts. The period of this function is Hence, the
graph of is the same as except that the period is different. See
Figure 19.

y 5 sin xy 5 sin 3x
T 5 2p /b 5 2p /3.

a 5 1

y 5 sin 3x

cos x.sin x
cos bxsin bx

c /b
y 5 cos 1bx 2 .

T 5 2p /b.y 5 sin x,
y 5 sin 1bx 2b , 0,

b . 02p.cos xsin x

21

y 5 a cos 1bx 1 c 2 1 dy 5 a sin 1bx 1 c 2 1 d

y 5 f 1x 2
y 5 f 1x 1 c 2 1 d
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y

x

–1

1

0
6
ππ– π–

3
π–

2
π–

6
π

2
π

3
π

3
π2

6
π5

3
π–2

6
π–5

y = sin 3x y = sin x

FIGURE 19

(b)

SOLUTION The amplitude is The graph of is shifted down 1 unit verti-
cally. The phase shift is This shifts the graph unitsp /2c /b 5 1p /4 2 / 1 1 /2 2 5 p /2.

f 1x 2a 5 4.

f 1x 2 5 4 cosa
1

2
 x 1

p

4
b 2 1

EXAMPLE  8



Music

A change in pressure on the eardrum occurs when a pure musical tone is played. For some
tones, the pressure on the eardrum follows the sine curve

where P is the pressure in pounds per square foot at time t seconds and f is the frequency on the
sound wave in cycles per second. Source: The Physics and Psychophysics of Music: An Intro-
duction. When is positive there is an increase in pressure and the eardrum is pushed
inward; when is negative there is a decrease in pressure and the eardrum is pushed outward.

(a) Graph the pressure on the eardrum for Middle C, which has a frequency of 
cycles per second, on 

SOLUTION A graphing calculator graph of the function 
is given in Figure 21.

(b) Determine analytically the values of t for which on 

SOLUTION Since the sine function is zero for multiples of we can determine the
value(s) of t where by setting where n is an integer,
and solving for t. After some algebraic manipulations,

and when However, only values of or produce
values of t that lie in the interval Thus, when and 0.0035,
corresponding to and respectively.

(c) Determine the period T of What is the relationship between the period and fre-
quency of the tone?

SOLUTION The period is This
implies that the period of the pressure equation is the reciprocal of the frequency. That
is, 

Sunrise

The table on the next page lists the approximate number of minutes after midnight, Eastern
Standard Time, that the sun rises in Boston for specific days of the year. Source: The Old
Farmer’s Almanac.

(a) Plot the data. Is it reasonable to assume that the times of sunrise are periodic?

SOLUTION Figure 22 shows a graphing calculator plot of the data. Because of the cycli-
cal nature of the days of the year, it is reasonable to assume that the data are periodic.

T 5 2p /b 5 2p / 12pf 2 5 1 /f.

T 5 2p /b 5 2p / 1 523.26p 2 5 1 /261.63 < 0.004.

P 1 t 2 .
n 5 2,n 5 1

t < 0.0016P 5 030, 0.005 4.
n 5 2n 5 1n 5 0, 61, 62, * .P 5 0

t 5

n 2
1

7

523.26

523.26pt 1 p /7 5 np,P 5 0
p,

30, 0.005 4.P 5 0

0.004 sin 1 523.26pt 1 p /7 2
P 1t2 5 0.004 sin 12pft 1 p /7 2 5

30, 0.005 4.
f 5 261.63

P 1 t 2
P 1 t 2

P 1 t 2 5 0.004 sina2pft 1
p

7
b,

CHAPTER 13 The Trigonometric Functions676

EXAMPLE  9

0 0.005

0.005

�0.005

P(t) � 0.004 sin �523.26�t �    ��
7

FIGURE 21

EXAMPLE  10

y

x

–5

1

–1

3

π– π–
2
π–

2
π

2
π3

2
π3 π2π–2

y � cos x
y � 4 cos(  x +   ) – 1

2
1

4
π

FIGURE 20

to the left, relative to the graph The period of is
Making these translations on leads to Figure 20.y 5 cos x2p / 1 1 /2 2 5 4p.

f 1x 2g 1x 2 5 cos 1 1 1 /2 2x 2 .

TECHNOLOGY 
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21 428

52 393

81 345

112 293

142 257

173 247

203 266

234 298

265 331

295 365

326 403

356 431

Time of Boston Sunrise
Sunrise (minutes

Day of the Year after midnight)

(b) Find a trigonometric function of the form that models this
data when t is the day of the year and is the number of minutes past midnight,
Eastern Standard Time, that the sun rises. Use the data from the table.

SOLUTION The function derived by a TI-84 Plus using the sine regression func-
tion under the STAT-CALC menu, is given by

Figure 23 shows that this function fits the data well.

(c) Estimate the time of sunrise for days 30, 90, and 240. Round answers to the nearest
minute.

SOLUTION

A.M.

Similarly,

A.M.

A.M.

(d) Estimate the days of the year that the sun rises at 5:45 A.M.

SOLUTION Figure 24 shows the graphs of and (corresponding to a sun-
rise of 5:45 A.M.). These graphs first intersect on day 80. However, because of daylight
savings time, to find the second value we find where the graphs of and

intersect. These graphs intersect on day 233. Thus, the sun rises
at approximately 5:45 A.M. on the 80th and 233rd days of the year.

(e) What is the period of the function found in part (b)?

SOLUTION The period of the function given above is days.
This is close to the true period of about 365 days. The discrepancy could be due to
many factors. For example, the underlying function may be more complex than a
simple sine function.

385.5T 5 2p /0.016297 <

y 5 345 2 60 5 285
s 1 t 2

y 5 345s 1 t 2

 5 5:54 

 s 1240 2 < 294 minutes 1 60 minutes 1daylight savings 2
 s 1 90 2 < 331 minutes 5 5:31 

 5 6 hours 1 0.867 1 60 2  minutes 5 6:52 

 < 412 minutes 5 412 /60 hours < 6.867 hours

 s 1 30 2 5 92.1414 sin 10.016297 1 30 2 1 1.80979 2 1 342.934

s 1 t 2 5 92.1414 sin 10.016297t 1 1.80979 2 1 342.934.

s 1 t 2 ,

s 1 t 2
s 1 t 2 5 a sin 1bt 1 c 2 1 d

0 370

440

230

s(t) � 92.1414 sin(0.016297t � 1.80979) � 342.934

FIGURE 23

0 370

440

230

y 5 345

FIGURE 24

0 370

440

230

FIGURE 22
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Convert the following degree measures to radians. Leave
answers as multiples of 

1. 2. 3. 4.

5. 6. 7. 8.

Convert the following radian measures to degrees.

9. 10. 11. 12.

13. 14. 15. 16.

Find the values of the six trigonometric functions for the
angles in standard position having the points in Exercises 17�20
on their terminal sides.

17. 18.

19. 20.

In quadrant I, x, y, and r are all positive, so that all six
trigonometric functions have positive values. In quadrant II, x
is negative and y is positive (r is always positive). Thus, in
quadrant II, sine is positive, cosine is negative, and so on. For
Exercises 21–24, complete the following table of values for the
signs of the trigonometric functions.

Quadrant of

21. I

22. II

23. III

24. IV

For Exercises 25 �32, complete the following table. Use
the 30	�60	�90	 and 45	�45	�90	 triangles. Do not use
a calculator.

25.

26.

27.

28.

29.

30.

31.

1

csc usec ucot utan ucos usin uu

120, 15 21 7, 224 2

1212, 25 2123, 4 2

5p
7p

12

5p

9

8p

5

2 

p

4
2

13p

6

2p

3

5p

4

510°495°320°270°

135°150°90°60°

p.
Find all values of x between 0 and that satisfy each of the fol-
lowing equations.

49. 50.

51. 52.

53. 54.

Use a calculator to find the following function values.

55. 56.

57. 58.

59. 60.

61. 62.

Find the amplitude (a) and period (T) of each function.

63.

64.

65.

Graph each function defined as follows over a two-period interval.

66. 67.

68. 69.

70. 71. y 5 4 sina
1

2
 x 1 pb 1 2y 5 2 cosa3x 2

p

4
b 1 1

y 5 2 

1

2
 cos xy 5 2sin x

y 5 2 cos xy 5 2 sin x

s 1 t 2 5 3 sin 1 880pt 2 7 2

g 1 t 2 5 2 sina
p

4
 t 1 2b

f 1x 2 5 cos 1 3x 2

sin 1.5359cos 1.2353

tan 1.0123sin 0.3638

tan 54°tan 123°

cos 67°sin 39°

sec x 5 "2sec x 5 22 /"3

tan x 5 "3tanx 5 21

sin x 5 21 /2cos x 5 1 /2

2p

1 1

2

2

22 "3 /32221 /22 "3 /2240°

22"3"3 /321 /2210°

2 "3 /32 "3 /2150°

"22 "22 "2 /2"2 /2135°

2 "3 /32 "3"3 /2120°

"31 /2060°

045°

2 "3 /3"3 /21 /2030°

csc usec ucot utan ucos usin uu

32.

Find the following function values without using a calculator.

33. 34. 35. 36.

37. 38. 39. 40.

41. 42. 43. 44.

45. 46. 47. 48. cos 2 

p

6
sin 2 

7p

6
tan 2 

5p

6
cot 2 

3p

4

cos 5psec 
5p

4
tan 

5p

2
sin 

7p

4

sec pcos 3psin 
3p

2
csc 

p

6

cot 
p

3
tan 

p

4
cos 

p

6
sin 

p

3

72. 73.

74. Consider the triangle shown on the next page, in which the three
angles are equal and all sides have length 2.

a. Using the fact that the sum of the angles in a triangle is 180�,
what are the measures of the three equal angles ? 

b. Suppose the triangle is cut in half as shown by a vertical line. What
are the measures of the angles in the blue triangle on the left?

c. What are the measures of the sides of the blue triangle 
on the left? (Hint: Once you’ve found the length of 

u

u

y 5 23 tan xy 5
1

2
 tan x

13.1 EXERCISES



13.1 Definitions of the Trigonometric Functions 679

the base, use the Pythagorean Theorem to find the
height.)

a. Plot the data, letting t � 1 correspond to January, t � 2 to
February, and so on. Is it reasonable to assume that electrical
consumption is periodic?

b. Use a calculator with trigonometric regression to find a
trigonometric function of the form

that models this data when t is the month and is the
amount of electricity consumed (in trillion BTUs). Graph the
function on the same calculator window as the data.

c. Determine the period, T, of the function found in part b. Discuss
the reasonableness of this period.

d. Use the function from part b to estimate the consumption for the
month of September, and compare it to the actual value.

Life Sciences

78. Monkey Eyes In a study of how monkeys’ eyes pursue a moving
object, an image was moved sinusoidally through a monkey’s
field of vision with an amplitude of and a period of 0.350
seconds. Source: Journal of Neurophysiology.
a. Find an equation giving the position of the image in degrees as

a function of time in seconds.

b. After how many seconds does the image reach its maximum
amplitude?

c. What is the position of the object after 2 seconds?

79. Transylvania Hypothesis The “Transylvania hypothesis” claims
that the full moon has an effect on health-related behavior. A study
investigating this effect found a significant relationship between
the phase of the moon and the number of general practice consul-
tations nationwide, given by

where y is the number of consultations as a percentage of the
daily mean and t is the days since the last full moon. Source:
Family Practice.

a. What is the period of this function? What is the significance of
this period?

b. There was a full moon on October 11, 2011. On what day in
October 2011 does this formula predict the maximum num-
ber of consultations? What percent increase would be pre-
dicted for that day?

c. What does the formula predict for October 28, 2011?

80. Air Pollution The amount of pollution in the air fluctuates with
the seasons. It is lower after heavy spring rains and higher after
periods of little rain. In addition to this seasonal fluctuation, the
long-term trend in many areas is upward. An idealized graph of
this situation is shown in the figure on the next page. Trigono-
metric functions can be used to describe the fluctuating part of
the pollution levels. Powers of the number e can be used to show
the long-term growth. In fact, the pollution level in a certain area
might be given by

where t is time in years, with representing January 1 of the
base year. Thus, July 1 of the same year would be represented
by while October 1 of the following year would bet 5 0.5,

t 5 0

P 1 t 2 5 7 1 1 2 cos 2pt 2 1 t 1 10 2 1 100e0.2t,

y 5 100 1 1.8 cos c
1 t 2 6 2p

14.77
d ,

2°

C 1 t 2

1bt 1 c 2 1 dC 1 t 2 5 a sin

�

� �

22

2

1

1

75. Consider the right triangle shown, in which the two sides
have length 1.
a. Using the Pythagorean Theorem, what is the length of the

hypotenuse?

b. Using the fact that the sum of the angles in a triangle is ,
what are the measures of the three angles?

180+

January 464

February 394

March 362

April 312

May 321

June 390

July 469

August 472

September 393

October 336

November 316

December 421

Electricity
Month (trillion BTUs)

APPLICATIONS
Business and Economics

76. Sales Sales of snowblowers are seasonal. Suppose the sales of
snowblowers in one region of the country are approximated by

where t is time in months, with corresponding to
November. Find the sales for a–e.

a. November b. January c. February

d. May e. August f. Graph 

77. Electricity Consumption The amount of electricity (in tril-
lion BTUs) consumed by U.S. residential customers in 2009
is given in the following table. Source: Energy Information
Administration.

y 5 S 1 t 2 .

t 5 0

S 1 t 2 5 500 1 500 cos a
p

6
 tb,
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represented by Find the pollution levels on the fol-
lowing dates.

a. January 1, base year

b. July 1, base year

c. January 1, following year

d. July 1, following year

81. Air Pollution Using a computer or a graphing calculator,
sketch the function for air pollution given in Exercise 80
over the interval 

Physical  Sciences

Light Rays When a light ray travels from one medium, such as
air, to another medium, such as water or glass, the speed of
the light changes, and the direction that the ray is traveling
changes. (This is why a fish under water is in a different posi-
tion from the place at which it appears to be.) These changes
are given by Snell’s law,

where is the speed in the first medium, is the speed in the
second medium, and and are the angles shown in the
figure.

u2u1

c2c1

c1

c2
5

sin u1

sin u2
 ,

30, 6 4.

t 5 1.75.

represents 0.5, and on the horizontal scale each square repre-
sents 30	.

84.

85.

86. Sound Suppose the A key above Middle C is played as a pure
tone. For this tone,

where is the change of pressure (in pounds per square foot)
on a person’s eardrum at time t (in seconds). Source: The
Physics and Psychophysics of Music: An Introduction.

a. Graph this function on 

b. Determine analytically the values of t for which on
and check graphically.

c. Determine the period T of and the frequency of the A
note.

87. Temperature The maximum afternoon temperature (in degrees
Fahrenheit) in a given city is approximated by

where t represents the month, with representing January,
representing February, and so on. Use a calculator to find

the maximum afternoon temperature for the following months.

a. February b. April c. September 

d. July e. December

88. Temperature A mathematical model for the temperature in Fair-
banks is

where is the temperature (in degrees Fahrenheit) on day t,
with corresponding to January 1 and corresponding
to December 31. Source: Mathematics Teacher. Use a calculator
to estimate the temperature for a–d.

a. March 16 (Day 74) b. May 2 (Day 121) 

c. Day 250 d. Day 325

e. Find maximum and minimum values of T.

f. Find the period, T.

89. Sunset The number of minutes after noon, Eastern Standard
Time, that the sun sets in Boston for specific days of the year is

t 5 364t 5 0
T 1 t 2

T 1 t 2 5 37 sin c
2p

365
 1 t 2 101 2 d 1 25,

t 5 1
t 5 0

T 1 t 2 5 60 2 30 cos 1 t /2 2 ,

P 1 t 2

30, 0.003 4
P 5 0

30, 0.003 4.

P 1 t 2

P 1 t 2 5 0.002 sin 1 880pt 2 ,

Time

Po
llu

tio
n 

le
ve

l

P

t

If this medium is less
dense, light travels at
a faster speed, c1.

If this medium is more
dense, light travels at
a slower speed, c2.

Medium 1

Medium 2

1θ

2θ

In Exercises 82 and 83, assume that c1 � 3 
 108 m per second,
and find the speed of light in the second medium.

82.

83.

Sound Pure sounds produce single sine waves on an oscillo-
scope. Find the period of each sine wave in the photographs
in Exercises 84 and 85. On the vertical scale each square

u1 5 46°, u2 5 31°

u1 5 39°, u2 5 28°
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a. Plot the data. Is it reasonable to assume that the times of
sunset are periodic?

b. Use a calculator with trigonometric regression to find a tri-
gonometric function of the form
that models this data when t is the day of the year and is
the number of minutes past noon, Eastern Standard Time, that
the sun sets.

c. Estimate the time of sunset for days 60, 120, 240. Round
answers to the nearest minute. (Hint: Don’t forget about
daylight savings time.)

d. Use part b to estimate the days of the year that the sun sets
at 6:00 P.M. In reality, the days are close to 82 and 290.

90. APPLY IT Cameras In the Kodak Customer Service Pam-
phlet AA-26, Optical Formulas and Their Applications, the
near and far limits of the depth of field (how close or how far
away an object can be placed and still be in focus) are given by

In these equations, represents the angle between the lens
and the “circle of confusion,” which is the circular image
on the film of a point that is not exactly in focus. (The
pamphlet suggests letting L is the diameter of
the lens opening, which is found by dividing the focal
length by the f-stop. (This is camera jargon you need
not worry about here.) For this problem, let the focal length
be 50 mm, or 0.05 m; if the lens is set at then

Finally, u is the distance to the
object being photographed. Find the near and far limits of the
depth of field when the object being photographed is 6 m
from the camera.

91. Measurement A surveyor standing 65 m from the base of a
building measures the angle to the top of the building and

L 5 0.05 /8 5 0.00625 m.
f /8,

u 5 1 /30°.)

u

w1 5
u2 1 tan u 2

L 1 u 1 tan u 2
  and  w2 5

u2 1 tan u 2
L 2 u 1 tan u 2

 .

s 1 t 2
1 ds 1 t 2 5 a sin 1bt 1 c 2

21 283

52 323

81 358

112 393

142 425

173 445

203 434

234 396

265 343

295 292

326 257

356 255

Sunset (minutes
Day of the Year after noon)

93. Whitewater Rafting A mathematics textbook author rafting down
the Colorado River was told by a guide that the river dropped an
average of 26 ft per mile as it ran through Cataract Canyon. Find
the average angle of the river with the horizontal in degrees. (Hint:
Find the tangent of the angle, and then use a calculator to find the
angle where the tangent has that value. There are 5280 ft in a mile.
Be sure your calculator is set on degrees.)

94. Computer Drawing A mathematics professor wanted to use a
computer drawing program to draw a picture of a regular penta-
gon (a five-sided figure with sides of equal length and with equal
angles). He first made a 1-in. base by drawing a line from 
to (See the figure.) He then needed to find the coordinates
of the other three vertex points. Use trigonometry to find them.
(Hint: The sum of the exterior angles of any polygon is 360°.)

1 1, 0 2 .
10, 0 2

92. Measurement Jenny Crum stands on a cliff at the edge of a canyon.
On the opposite side of the canyon is another cliff equal in height to
the one she is on. (See the figure.) By dropping a rock and timing its
fall, she determines that it is 105 ft to the bottom of the canyon. She
also determines that the angle to the base of the opposite cliff is 
How far is it to the opposite side of the canyon?

27°.

(0, 0) (1, 0)

y

x

approximated in the following table. Source: The Old
Farmer’s Almanac.

finds it to be (See the figure.) Use trigonometry to find the
height of the building.

42.8°.
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General Interest

95. Amusement Rides A proud father is attempting to take a
picture of his daughters while they are riding on a merry-go-
round. Horses on this particular ride move up and down as
the ride progresses according to the function

h 1 t 2 5 sina
t

p
2 2b 1 4,

YOUR TURN ANSWERS 

1. (a) (b) 135�
2.

3.

4. (a) 0.9945 (b) 
5. 5p /43p /4,

21.5299

csc 1 7p /6 2 5 22.
sec 1 7p /6 2 5 22 /"3 5 22"3 /3,

cot 1 7p /6 2 5 "3,tan 1 7p /6 2 5 1 /"3 5 "3 /3,
cos 1 7p /6 2 5 2"3 /2,sin 1 7p /6 2 5 21 /2,

csca 5 41 /40sec a 5 41 /9,cot a 5 9 /40,
tan a 5 40 /9,cos a 5 9 /41,sin a 5 40 /41,

7p /6

Derivatives of Trigonometric Functions
How long must a ladder be to reach over a 9-foot-high fence and lean
against a nearby building?

13.2
APPLY IT 

In Exercise 50 in this section, we will use trigonometry to answer this question.

In this section, we derive formulas for the derivatives of some of the trigonometric func-
tions. All these derivatives can be found from the formula for the derivative of 

We will need to use the following identities, which are listed without proof, to find the
derivatives of the trigonometric functions.

y 5 sin x.

Basic Identities

 cos 1 x 2 y 2 5 cos x cos y 1 sin x sin y

 cos 1 x 1 y 2 5 cos x cos y 2 sin x sin y

 sin 1 x 2 y 2 5 sin x cos y 2 cos x sin y

 sin 1 x 1 y 2 5 sin x cos y 1 cos x sin y

tan x 5
sin x
cos x

sin2 x 1 cos2 x 5 1

The derivative of also depends on the value of

lim
xl0

 
sin x

x
 .

y 5 sin x

where represents the height (in feet) of the horse’s nose at
time t, relative to the merry-go-round platform. However,
because of safety fencing surrounding the ride, it is only possible
to get a good picture when the height of the horse’s nose is
between 3.5 and 4 ft off the merry-go-round platform. Find the
first time interval that the father has to take the picture.

h 1 t 2



To estimate this limit, find the quotient for various values of x close to 0. (Be sure
that your calculator is set for radian measure.) For example, we used the TABLE feature of
the TI-84 Plus calculator to get the values of this quotient shown in Figure 25 as x
approaches 0 from either side. Note that, although the calculator shows the quotient equal to
1 for it is an approximation—the value is not exactly 1. Why does the calcula-
tor show ERROR when

These results suggest, and it can be proved, that

In Example 1, this limit is used to obtain another limit. Then the derivative of
can be found.

Trigonometric Limit

Find 

SOLUTION Use the limit above and some trigonometric identities.

Multiply by 

Therefore,

We can now find the derivative of by using the general definition for the
derivative of a function f given in Chapter 3:

provided this limit exists. By this definition, the derivative of is

Identity for 

Rearrange terms.

Factor.

Limit rule for sums

 5 cos x.

 5 1 sin x 2 10 2 1 1 cos x 2 1 1 2

 f r 1x 2 5 lim
hl0

asin x 

cos h 2 1

h
b 1 lim

hl0
acos x 

sin h

h
b

 5 lim
hl0

 
sin x 1 cos h 2 1 2 1 cos x . sin h

h

 5 lim
hl0

 
1 sin x . cos h 2 sin x 2 1 cos x . sin h

h

sin 1 x 1 h 2 5 lim
hl0

 
sin x . cos h 1 cos x . sin h 2 sin x

h

 f r 1x 2 5 lim
hl0

 
sin 1x 1 h 2 2 sin x

h

f 1x 2 5 sin x

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
 ,

y 5 sin x

 lim
hl0

 
cos h 2 1

h
5 0.

 5 10 2 1 1 2 a
1

1 1 1
b 5 0

 5 lim
hl0

12sin h 2 a
sin h

h
b a

1

cos h 1 1
b

cos2 h 2 1 5 2sin2 h 5 lim
hl0

 
2sin2 h

h 1 cos h 1 1 2

 5 lim
hl0

 
cos2 h 2 1

h 1 cos h 1 1 2

1 5
cos h 1 1
cos h 1 1

 . lim
hl0

 
cos h 2 1

h
5 lim

hl0
 
1 cos h 2 1 2

h
. 1 cos h 1 1 2
1 cos h 1 1 2

lim
hl0

 
cos h 2 1

h
 .

y 5 sin x

lim
xl0

 
sin x

x
5 1.

x 5 0?
x 5 60.001,

1 sin x 2 /x
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EXAMPLE  1

.1

.01

.001

-.001
-.01
-.1

.99833

.99998
1
ERROR
1
.99998
.99833

X50

X Y1

0

FIGURE 25

FOR REVIEW
Recall from Section 3.1 on Limits:
When taking the limit of a prod-
uct, if the limit of each factor
exists, the limit of the product is
simply the product of the limits.



This result is summarized below.

Derivative of 

We can use the chain rule to find derivatives of other sine functions, as shown in the
following examples.

Derivatives of 

Find the derivative of each function.

(a)

SOLUTION By the chain rule,

(b)

SOLUTION By the chain rule,

TRY YOUR TURN 1

Chain Rule

Find 

SOLUTION The expression means By the chain rule,

TRY YOUR TURN 2

The derivative of is found from trigonometric identities and from the fact
that First, use the identity for to get

In the same way, Therefore,

Dx 
1 cos x 2 5 Dx csina

p

2
2 xb d .

cosa
p

2
2 xb 5 sin x.

 5 cos x.

 5 1 . cos x 2 0 . sin x

 sina
p

2
2 xb 5 sin 

p

2
. cos x 2 cos 

p

2
. sin x

sin 1x 2 y 2Dx 
1 sin x 2 5 cos x.

y 5 cos x

 5 4 sin3 x cos x.

 Dx 
1 sin4 x 2 5 4 . sin3 x . Dx 

1 sin x 2
1 sin x 24.sin4 x

Dx 
1 sin4 x 2 .

 
dy

dx
5 90x cos 1 9x2 1 2 2 .

 5 35 cos 1 9x2 1 2 2 418x

 
dy

dx
5 35 cos 1 9x2 1 2 2 4 . Dx 

1 9x2 1 2 2 1 0

y 5 5 sin 1 9x2 1 2 2 1 cosa
p

7
b

 
dy

dx
5 6 cos 6x.

 5 1 cos 6x 2 . 6

 
dy

dx
5 1 cos 6x 2 . Dx 

1 6x 2

y 5 sin 6x

sin x

Dx 
1 sin x 2 5 cos x

sin x
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FOR REVIEW
Recall that the symbol 
means the derivative of 
with respect to x.

f 1 x 2
Dx  
3f 1 x 2 4

EXAMPLE  2

EXAMPLE  3

YOUR TURN 2 Find the 

derivative of y 5 2 sin3 1"x 2 .

YOUR TURN 1 Find the 
derivative of y 5 5 sin 1 3x4 2 .

is a constant.cos a
p

7
b



By the chain rule,

is constant.

Derivative of 

Derivatives of 

Find each derivative.

(a)

(b)

(c)

SOLUTION Use the product rule.

TRY YOUR TURN 3

As mentioned in the list of basic identities at the beginning of this section,
The derivative of can be found by using the quotient rule

to find the derivative of 

The last step follows from the definitions of the trigonometric functions, which could be
used to show that A similar calculation leads to the derivative of 

Derivatives of and 

Derivatives of tan x and cot x

Find each derivative.

(a)

(b)

(c) TRY YOUR TURN 4Dx 
1 ln 0 6 tan x 0 2 5

Dx 
1 6 tan x 2
6 tan x

5
6 sec2 x

6 tan x
5

sec2 x

tan x

Dx 
1 cot6 x 2 5 6 cot5 x . Dx 

1 cot x 2 5 26 cot5 x csc2 x

Dx 
1 tan 9x 2 5 sec2 9x . Dx 

1 9x 2 5 9 sec2 9x

 Dx 
1 cot x 2 5 2csc2 x

 Dx 
1 tan x 2 5 sec2 x

cot xtan x

cot x.1 /cos x 5 sec x.

 5
1

cos2x
5 sec2x

 5
cos2x 1 sin2x

cos2x

 5
cos x 1 cos x 2 2 sin x 12sin x 2

cos2x

 Dx 
1 tan x 2 5 Dx a

sin x
cos x

b 5
cos x . Dx 

1 sin x 2 2 sin x . Dx 
1 cos x 2

cos2x

y 5 1 sin x 2 /cos x.
y 5 tan xtan x 5 1 sin x 2 /cos x.

 5 23x sin x 1 3 cos x

 Dx 
1 3x cos x 2 5 3x 12sin x 2 1 1 cos x 2 1 3 2

Dx 
1 3x cos x 2

 5 24 sin x cos3 x
 Dx 
1 cos4 x 2 5 4 cos3 x . Dx 

1 cos x 2 5 4 cos3 x 12sin x 2  
Dx 
3cos 1 3x 2 4 5 2sin 1 3x 2 . Dx 

1 3x 2 5 23 sin 3x

cos x

Dx 
1 cos x 2 5 2sin x

cos x

 5 2sin x.

 5 2cosa
p

2
2 xb

p /2 5 cosa
p

2
2 xb . 121 2

 Dx csina
p

2
2 xb d 5 cosa

p

2
2 xb . Dx a

p

2
2 xb
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EXAMPLE  4

EXAMPLE  5

YOUR TURN 4 Find the 
derivative of y 5 x tan2x.

YOUR TURN 3 Find the 
derivative of y 5 x cos 1 x2 2 .

cos2x 1 sin2x 5 1



Using the facts that and it is possible to use the quo-
tient rule to find the derivative of each of these functions. In Exercises 34 and 35 at the end
of this section, you will be asked to verify the following.

Derivatives of and 

Derivatives of and 

Find each derivative.

(a)

(b)

TRY YOUR TURN 5

Derivatives of Trigonometric Functions

Find the derivative of each function at the specified value of x.

(a) when 

SOLUTION Using the chain rule, the derivative of is

Thus,

(b) when 

SOLUTION Using the product rule, the derivative of is

Thus,

(c) when 

SOLUTION Using the chain rule, the derivative of is

Thus,

(d) when 

SOLUTION Since In particular, 

TRY YOUR TURN 6k ra
p

4
b 5 0.

k r 1x 2 5 0.k 1x 2 5 tan x cot x 5
sin x
cos x

. cos x

sin x
5 1,

x 5
p

4
 k 1x 2 5 tan x cot x,

h ra
p

4
b 5 sec2 ccota

p

4
b d . c2csc2a

p

4
b d 5 sec2 1 1 2 . 122 2 < 26.851.

h r 1x 2 5 sec2 3cot 1x 2 4 . 32csc2 1x 2 4.

h 1x 2

x 5
p

4
h 1x 2 5 tan 1 cot x 2 ,

 5 1 . 1 . p 1 0 . 1 5 p.

 g r 10 2 5 e0cos 1p0 2p 1 sin 1p0 2e0

g r 1x 2 5 ex cos 1px 2p 1 sin 1px 2ex.

g 1x 2
x 5 0g 1x 2 5 ex sin 1px 2 ,

f r 10 2 5 cos 1pe0 2 . pe0 5 121 2p 1 1 2 5 2p.

f r 1x 2 5 cos 1pex 2 . pex.

f 1x 2
x 5 0f 1x 2 5 sin 1pex 2 ,

 5 22e2x csc e2x cot e2x

 5 2csc e2xcot e2x . 12e2x 2
 Dx 
1 csc e2x 2 5 2csc e2x cot e2x . Dx 

1 e2x 2
Dx 
1x2 sec x 2 5 x2 sec x tan x 1 2x sec x

csc xsec x

 Dx csc x 5 2csc x cot x

 Dx sec x 5 sec x tan x
csc xsec x

csc x 5 1 /sin x,sec x 5 1 /cos x
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YOUR TURN 5 Find the 
derivative of y 5 sec2 1"x 2 .

YOUR TURN 6 Find the 
derivative of 
when x 5 p /2.

f 1 x 2 5 sin 1 cosx 2

EXAMPLE  7

EXAMPLE  6



Carbon Dioxide Levels

At Mauna Loa, Hawaii, atmospheric carbon dioxide levels in parts per million (ppm) have
been measured regularly since 1958. The function defined by

can be used to model these levels, where t is in years and corresponds to 1960.
Source: Greenhouse Earth.

(a) Graph L(t) on [0, 30].

SOLUTION Figure 26 shows a graphing calculator plot of the data. Notice that the overall
trend is upwards. The annual fluctuations are modeled by the sine term in the function.

t 5 0

L 1 t 2 5 0.022t2 1 0.55t 1 316 1 3.5 sin 12pt 2

13.2 Derivatives of Trigonometric Functions 687

EXAMPLE  8

FIGURE 26

0 30

360

310

L(t) � 0.022t2 � 0.55t � 316 � 3.5sin (2�t)

(b) Find and 

SOLUTION

(c) Find 

SOLUTION Since is given by
year.

Volume

The owners of a boarding stable wish to construct a watering trough from which the
horses can drink. They have 9 ft by 9 ft pieces of metal, which they can bend into three
parts to make the bottom and sides of the trough, as shown in Figure 27(a). They can then
weld pieces of scrap metal to the ends to form a trough. At what angle should they bend
the metal to create the largest possible volume? What is the largest possible volume?

u

L9 1 50.2 2 5 0.044 1 50.2 2 1 0.55 1 7p cos 1 100.4p 2 < 9.55 ppm per
L r 1 50.2 2L9 1 t 2 5 0.044t 1 0.55 1 7p cos 12pt 2 ,

L r 1 50.2 2 .
 L 1 50.2 2 5 0.022 1 50.2 2 2 1 0.55 1 50.2 2 1 316 1 3.5 sin 1 100.4p 2 < 402.38 ppm

 L 1 35.5 2 5 0.022 1 35.5 2 2 1 0.55 1 35.5 2 1 316 1 3.5 sin 1 71p 2 < 363.25 ppm,

 L 125 2 5 0.022 125 2 2 1 0.55 125 2 1 316 1 3.5 sin 1 50p 2 5 343.5 ppm,

L 1 50.2 2 .L 1 35.5 2 ,L 125 2 ,

�
3 ft

3 ft

3 ft 9 ft

(a)

FIGURE 27

�

�3 ft

3 ft

x

y

(b)

SOLUTION The volume of the trough is its length, 9 ft, times the cross-sectional area.
(This is true for any shape with parallel ends and straight sides. For example, the volume of
a cylinder is the height times the area of the circular ends, or Notice from Figure 27(b)hpr2.)

EXAMPLE  9



that the cross-sectional area can be broken up into a rectangle with base 3 and height y, and
two triangles, each with base x, height y, and angle Since we have

Similarly, since we have Therefore,

Because the volume is the length times the area,

where To find the maximum volume, set the derivative equal to 0.

Product rule

Use 

Rearrange terms.

Factor.

Notice in the third line of the above derivation that we used a trigonometric identity to put
the expression entirely in terms of To make set either factor equal to 0.

The only value of u for which is where 
and

We must also check the endpoints. At we have while at we have
Thus the maximum volume of about is achieved with  u 5 p /3.105.2 ft3V 5 81.

u 5 p /2,V 5 0,u 5 0,

 5
243 "3

4
< 105.2 ft3

 V 5 81a
"3

2
1

1

2
. "3

2
b

sin u 5 "3 /2,cos u 5 1 /2, u 5 p /3,dV /du 5 0

 u 5
p

3
     No solution on 30, p /2 4

 cos u 5
1

2
   1 1  cos u 5 21

 2 cos u 2 1 5 0     cos u 1 1 5 0

dV /du 5 0,cos u.

 5 81 12 cos u 2 1 2 1 cos u 1 1 2
 5 81 12 cos2 u 1 cos u 2 1 2

sin2 x 1 cos2 x 5 1. 5 81 3cos u 1 cos2 u 2 1 1 2 cos2 u 2 4
 5 81 1 cos u 1 cos2 u 2 sin2 u 2

 
dV

du
5 81 3cos u 1 cos u cos u 1 sin u 12sin u 2 4

0 # u # p /2.

 5 81 1 sin u 1 cos u  sin u 2 ,
 V 5 9A 5 9 . 9 1 sin u 1 cos u  sin u 2

 5 9 1 sin u 1 cos u sin u 2 .
 5 3 1 3 sin u 2 1 1 3 cos u 2 1 3 sin u 2

 A 5 3y 1 2 . 1

2
 xy

y 5 3 sin u.y /3 5 sin u,x 5 3 cos u.
x /3 5 cos u,u.
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13.2 EXERCISES
Find the derivatives of the functions defined as follows.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. y 5 2x sec 4xy 5 26x sin 2x

y 5 3 cot5 xy 5 tan8 x

y 5 29 sin5 xy 5 cos4 x

y 5 24 cos 1 7x2 2 4 2y 5 12 tan 1 9x 1 1 2

y 5 2cos 2x 1 cos 
p

6
y 5

1

2
 sin 8x

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. y 5 ln 0 tan2 x 0y 5 ln 0 sin x2 0
y 5 cos 1 ln 0 2x3 0 2y 5 sin 1 ln 3x4 2
y 5 22ecot xy 5 ecos x

y 5 cos 14e2x 2y 5 sin e4x

y 5
tan x

x 2 1
y 5

csc x

x



21. 22.

23. 24.

25.

26.

In Exercises 27–32, recall that the slope of the tangent line to a
graph is given by the derivative of the function. Find the slope
of the tangent line to the graph of each equation at the given
point. You may wish to use a graphing calculator to support
your answers.

27. 28.

29. 30.

31. 32.

33. Find the derivative of cot x by using the quotient rule and the
fact that 

34. Verify that the derivative of sec x is sec x tan x. (Hint: Use the
fact that

35. Verify that the derivative of csc x is (Hint: Use
the fact that 

36. In the discussion of the limit of the quotient explain
why the calculator gave ERROR for the value of 
when 

APPLICATIONS
Business and Economics

37. Revenue from Seasonal Merchandise The revenue received
from the sale of electric fans is seasonal, with maximum rev-
enue in the summer. Let the revenue (in dollars) received from
the sale of fans be approximated by

where t is time in years, measured from July 1.

a. Find 

b. Find for August 1. (Hint: August 1 is of a year
from July 1.)

c. Find for January 1.

d. Find for June 1.

e. Discuss whether the answers in parts b–d are reasonable for
this model.

Life Sciences

38. Swing of a Runner’s Arm A runner’s arm swings rhythmically
according to the equation

where y denotes the angle between the actual position of the
upper arm and the downward vertical position (as shown in the

y 5
p

8
 cos c3pat 2

1

3
b d ,

Rr 1 t 2

Rr 1 t 2

1 /12Rr 1 t 2

Rr 1 t 2 .

R1 t 2 5 120 cos 2pt 1 150,

x 5 0.
1 sin x 2 /x

1 sin x 2 /x,

csc x 5 1 /sin x.)
2csc x cot x.

sec x 5 1 /cos x.)

cot x 5 cos x /sin x.

y 5 cot x; x 5 p /4y 5 tan x; x 5 0

y 5 cos x; x 5 2p /4y 5 cos x; x 5 25p /6

y 5 sin x; x 5 p /4y 5 sin x; x 5 0

y 5 3sin 3x 1 cot 1x3 2 4 8

y 5 3 tan a
1

4
xb 1 4 cot 2x 2 5 csc x 1 e22x

y 5
Å

cos 4x

cos x
y 5

Å
sin x

sin 3x

y 5
3 cos x

5 2 cos x
y 5

2 sin x

3 2 2 sin x

figure) and where t denotes time (in seconds). Source: Calculus
for the Life Sciences.

a. Graph y as a function of t.

b. Calculate the velocity and the acceleration of the arm.
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y
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R
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c. Verify that the angle y and the acceleration are
related by the differential equation

d. Apply the fact that the force exerted by the muscle as the
arm swings is proportional to the acceleration of y, with a
positive constant of proportionality, to find the direction of
the force (counterclockwise or clockwise) at

and What is the posi-
tion of the arm at each of these times?

39. Swing of a Jogger’s Arm A jogger’s arm swings according to
the equation

Proceed as directed in parts a–d of the preceding exercise,
with the following exceptions: in part c, replace the differen-
tial equation with

and in part d, consider the times 
and seconds.

40. Carbon Dioxide Levels At Barrow, Alaska, atmospheric
carbon dioxide levels (in parts per million) can be modeled
using the function defined by

where t is in years and corresponds to 1960. Source:
Introductory Astronomy and Astrophysics.

a. Graph C on 

b. Find and 

c. Find and interpret.

d. C is the sum of a quadratic function and a sine function.
What is the significance of each of these functions? Dis-
cuss what physical phenomena may be responsible for
each function.

41. Population Growth Many biological populations, both plant
and animal, experience seasonal growth. For example, an ani-
mal population might flourish during the spring and summer

C r 1 50.2 2
C 1 50.2 2 .C 1 35.5 2 ,C 125 2 ,

30, 25 4.

t 5 0

C1 t 2 5 0.04t2 1 0.6t 1 330 1 7.5 sin 12pt 2 ,

t 5 3.52.5 seconds,
t 5t 5 1.5 seconds,

d2y

dt2 1 p2y 5 0,

y 5
1

5
 sin 3p1 t 2 1 2 4.

t 5 5 /3 seconds.t 5 4 /3 seconds,
t 5 1 second,

d2y

dt2 1 9p2y 5 0.

d2y /dt2



and die back in the fall. The population, at time t, is often
modeled by

where is the size of the population when Suppose
that and Find the functional values in
parts a–d.

a. b. c. d. 

e. Use a graphing calculator to graph on [0,11].

f. Find the maximum and minimum values of and the
values of t where they occur.

Physical  Sciences

42. Piston Velocity The distance s of a piston from the center of
the crankshaft as it rotates in a 1937 John Deere B engine with
respect to the angle of the connecting rod, as indicated by the
figure, is given by the formula

where s is measured in inches and in radians. Source: The
AMATYC Review.

u

s 1 u 2 5 2.625 cos u 1 2.625 1 15 1 cos2 u 2 1/2,

u

f 1 t 2
f1 t 2

f
 10.2 2f r 10 2f 1 1 2f 10.2 2

c 5 2.f 10 2 5 1000
t 5 0.f 10 2

f 1 t 2 5 f 10 2ec sin1t2,

f 1 t 2 , 44. Ground Temperature Mathematical models of ground tempera-
ture variation usually involve Fourier series or other sophisti-
cated methods. However, the elementary model

has been developed for temperature at a given location
at a variable time t (in months) and a variable depth x (in cen-
timeters) beneath Earth’s surface, is the annual average sur-
face temperature, and is the amplitude of the seasonal
surface temperature variation. Source: Applications in School
Mathematics 1979 Yearbook.

Assume that and at a certain location.
Also assume that in cgs (centimeter-gram-second)
units.

a. At what minimum depth x is the amplitude of at
most 

b. Suppose we wish to construct a cellar to keep wine at a tem-
perature between and What minimum depth will
accomplish this?

c. At what minimum depth x does the ground temperature
model predict that it will be winter when it is summer at the
surface, and vice versa? That is, when will the phase shift
correspond to year?

d. Show that the ground temperature model satisfies the heat
equation

where k is a constant.

45. Flying Gravel The grooves or tread in a tire occasionally pick
up small pieces of gravel, which then are often thrown into
the air as they work loose from the tire. When following
behind a vehicle on a highway with loose gravel, it is possi-
ble to determine a safe distance to travel behind the vehicle
so that your automobile is not hit with flying debris by ana-
lyzing the function

where y is the height (in feet) of a piece of gravel that leaves the
bottom of a tire at an angle relative to the roadway, x is the
horizontal distance (in feet) of the gravel, and V is the velocity
of the automobile (in feet per second). Source: UMAP Journal.

a. If a car is traveling 30 mph (44 ft per second), find the height
of a piece of gravel thrown from a car tire at an angle of

when the stone is 40 ft from the car.

b. Putting and solving for x gives the distance that the
gravel will fly. Show that the function that gives a relation-
ship between x and the angle for is given by

Hint:

c. Using part b, if the gravel is thrown from the car at an angle
of and initial velocity of 44 ft per second, determine
how far the gravel will travel.

p /3

2 sin a cos a 5 sin 12a 2 . 21

x 5
V2

32
 sin 12a 2 .

y 5 0a

y 5 0

p /4,

a

y 5 x tan a 2
16x2

V2  sec2 a,

'u
't

5 k 

'2u

'x2  ,

1 /2

18°C.14°C

1°C?
u 1x, t 2

a 5 0.00706
A0 5 11°CT0 5 16°C

A0

T0

u 1x, t 2

u 1x, t 2 5 T0 1 A0 e2ax cosa
p

6
 t 2 axb
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sθ

a. Find 

b. Find 

c. Find the value(s) of where the maximum velocity of the
piston occurs.

43. Sound If a string with a fundamental frequency of 110 hertz is
plucked in the middle, it will vibrate at the odd harmonics of

but not at the even harmonics of
The resulting pressure P on the

eardrum caused by the string can be approximated using the
equation

where P is in pounds per square foot at a time of t seconds after
the string is plucked. Source: Fundamentals of Musical
Acoustics and The Physics and Psychophysics of Music: An
Introduction.

a. Graph on 

b. Find and interpret.P' 10.002 2

30, 0.01 4.P 1 t 2

  1
0.003

5
 sin 1 1100pt 2 1

0.003

7
 sin 1 1540pt 2 ,

 P 1 t 2 5 0.003 sin 1220pt 2 1
0.003

3
 sin 1 660pt 2

220, 440, 660, * hertz.
110, 330, 550, * hertz

u

ds

du
 .

sa
p

2
b .



d. Find and use it to determine the value of that gives
the maximum distance that a stone could fly.

e. Find the maximum distance that a stone can fly from a car
that is traveling 60 mph.

46. Engine Velocity As shown in Exercise 42, a formula that can
be used to determine the distance of a piston with respect to the
crankshaft for a 1937 John Deere B engine is

where s is measured in inches and in radians. Source: The
AMATYC Review.

a. Given that the angle is changing with respect to time, that
is, it is a function of t, use the chain rule to find the deriva-
tive of s with respect to t, 

b. Use part a, with and rev per
minute, to find the maximum velocity of the engine. Express
your answer in miles per hour. (Hint: 1340 rev per 

rad per hour. Use this value and then convert your
answer from inches to miles, where 

47. Motion of a Particle A particle moves along a straight line.
The distance of the particle from the origin at time t is given by

Find the velocity at the following times.

a. b. c. 

Find the acceleration at the following times.

d. e. f. 

General Interest

48. Rotating Lighthouse The beacon on a lighthouse 50 m from a
straight shoreline rotates twice per minute. (See the figure.)

a. How fast is the beam moving along the shoreline at the
moment when the light beam and the shoreline are at right
angles? (Hint: This is a related rate exercise. Find an equa-
tion relating the angle between the beam of light and the
line from the lighthouse to the shoreline, and x, the distance
along the shoreline from the point on the shoreline closest to
the lighthouse and the point where the beam hits the shore-
line. You need to express in radians per minute.)du /dt

u,

t 5 pt 5 p /4t 5 0

t 5 3p /2t 5 p /4t 5 0

s 1 t 2 5 sin t 1 2 cos t.

1 mile 5 5280 ft.)
505,168.1

minute 5

du /dt 5 1340u 5 4.944

ds /dt.

u

u

s 1 u 2 5 2.625 cos 1 u 2 1 2.625 1 15 1 cos2 u 2 1/2,

adx /da
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b. In part a, how fast is the beam moving along the shoreline
when the beam hits the shoreline 50 m from the point on the
shoreline closest to the lighthouse?

49. Rotating Camera A television camera on a tripod 60 ft from a
road is filming a car carrying the president of the United States.
(See the figure.) The car is moving along the road at 600 ft per
minute.

x

60 ft

θ

x

θ

9 ft

2 ft

a. How fast is the camera rotating (in revolutions per minute)
when the car is at the point on the road closest to the cam-
era? (See the hint for Exercise 48.)

b. How fast is the camera rotating 6 seconds after the moment
in part a?

50. APPLY IT Ladder A thief tries to enter a building by plac-
ing a ladder over a 9-ft-high fence so it rests against the build-
ing, which is 2 ft back from the fence. (See the figure above.)
What is the length of the shortest ladder that can be used?
(Hint: Let be the angle between the ladder and the ground.
Express the length of the ladder in terms of and then find the
value of that minimizes the length of the ladder.)

51. Ladder A janitor in a hospital needs to carry a ladder around a
corner connecting a 10-ft-wide corridor and a 5-ft-wide corri-
dor. (See the figure on the next page.) What is the longest such
ladder that can make it around the corner? (Hint: Find the

u
u,

u



Integrals of Trigonometric Functions
Given a sales equation, how many snowblowers are sold in a year?
In Exercise 39 in this section, we will use trigonometry and integration to answer this
question.

CHAPTER 13 The Trigonometric Functions692

narrowest point in the corridor by minimizing the length of the
ladder as a function of the angle the ladder makes with the
5-ft-wide corridor.) 

u,

10 ft

5 ftθ

YOUR TURN ANSWERS 

1.

2.
3.
4.

5.
6. 21

sec2 1"x 2 tan 1"x 2 /"x

2x tan x sec2x 1 tan2x
22x2sin 1x2 2 1 cos 1x2 2
3 sin2 1"x 2  cos 1"x 2 /"x

60x3 cos 1 3x4 2

Any differentiation formula leads to a corresponding formula for integration. In
particular, the formulas of the last section lead to the following indefinite integrals.

Basic Trigonometric Integrals

Integrals of Trigonometric Functions

Find each integral.

(a)

SOLUTION Use substitution. Let so that Then

 5 2 

1

7
 cos 7x 1 C.

 5 2 

1

7
 cos u 1 C

 5
1

7
 3sin u du

 3sin 7x dx 5
1

7
 3sin 7x 1 7 dx 2

du 5 7 dx.u 5 7x,

3sin 7x dx

3csc x cot x dx 5 2csc x 1 C3sec x tan x dx 5 sec x 1 C

3csc2
 x dx 5 2cot x 1 C3sec2

 x dx 5 tan x 1 C

3cos x dx 5 sin x 1 C3sin x dx 5 2cos x 1 C

EXAMPLE  1

13.3
APPLY IT 



(b)

SOLUTION Let then This gives

(c)

SOLUTION Let with This gives

Replacing u with gives

(d)

SOLUTION Rewrite the integrand as

If then with

(e)

SOLUTION If then with

        5
1

12
 tan 12x 1 C.

        5
1

12
 3sec2 u du

3sec2 12x  dx 5
1

12
 3sec2 12x 1 12 dx 2

du 5 12 dx,u 5 12x,

3sec2 12x dx

 5 22 cos1/2x 1 C.

 5 22u1/2 1 C

 5 23u21/2 du

 3 1 cos x 221/2 sin x dx 5 23 1 cos x 221/2 12sin x dx 2

du 5 2sin x dx,u 5 cos x,

3 1 cos x 221/2 sin x dx.

3  
sin x

"cos x
 dx

3sin2 x cos x dx 5
1

3
 sin3 x 1 C.

sin x

3sin2 x cos x dx 5 3u2 du 5
1

3
 u3 1 C.

du 5 cos x dx.u 5 sin x,

3sin2 x cos x dx

5
3

2
 sin 

2

3
 x 1 C.

5
3

2
 sin u 1 C

5
3

2
 3cos u du

 3cos 
2

3
 x dx 5

3

2
 3cos 

2

3
 x a

2

3
 dxb

du 5 12 /3 2  dx.u 5 12/3 2x,

3cos 
2

3
 x dx
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(f)

SOLUTION Use substitution. Let so that Then,

TRY YOUR TURN 1

As mentioned earlier, so that

To find let with Then

Replacing u with gives the formula for integrating The integral for is
found in a similar way.

Integrals of and 

Integrals of and 

Find each integral.

(a)

SOLUTION Let so that Then

.   5 2 

1

6
 ln 0 cos 6x 0 1 C

 5 2 

1

6
 ln 0 cos u 0 1 C

     5
1

6
 3tan u du

  3tan 6x dx 5
1

6
 3tan 6x 1 6 dx 2

du 5 6 dx.u 5 6x,

3tan 6x dx

cot xtan x

 3cot x dx 5 ln 0 sin x 0 1 C

 3tan x dx 5 2ln 0 cos x 0 1 C

cot xtan x

cot xtan x.cos x

3tan x dx 5 3  
sin x
cos x

 dx 5 23  
du
u

5 2ln 0 u 0 1 C.

du 5 2sin x dx.u 5 cos x,e tan x dx,

3tan x dx 5 3  
sin x
cos x

 dx.

tan x 5 1 sin x 2 /cos x,

 5
1

3
 sec e3x 1 C.

 5
1

3
 sec u 1 C

 5
1

3
 3sec u tan u du

 3e3x sec e3x tan e3x dx 5
1

3
 3sec e3x tan e3x 1 3e3x dx 2

du 5 3e3x dx.u 5 e3x,

3e3x sec e3x tan e3x dx
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YOUR TURN 1 Find each 

integral. (a)

(b) 36 sec2x"tan x dx

3sin 1x /2 2  dx

EXAMPLE  2



(b)

SOLUTION Let so that Then

TRY YOUR TURN 2

The method of integration by parts discussed in Chapter 8 is often useful for finding
certain integrals involving trigonometric functions.

Integration by Parts

Find 

SOLUTION Let and Then and Use the
formula for integration by parts,

to get

Check the result by differentiating. (This integral could also have been found by using
column integration.) TRY YOUR TURN 3

As in Chapter 7, we can find the area under a curve by setting up an appropriate
definite integral.

Area Under the Curve
Find the shaded area in Figure 28.

 5 22x cos x 1 2 sin x 1 C.

 5 22x cos x 1 23cos x dx

 32x sin x dx 5 22x cos x 2 3 12cos x 2 12 dx 2

3u dv 5 uv 2 3v du,

v 5 2cos x.du 5 2 dxdv 5 sin x dx.u 5 2x

e 2x sin x dx.

 5
1

2
 ln 0 sin x2 0 1 C.

 5
1

2
 ln 0 sin u 0 1 C

 5
1

2
 3cot u du

 3x cot x2 dx 5
1

2
 3 1 cot x2 2 12x dx 2

du 5 2x dx.u 5 x2,

3x cot x2 dx
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YOUR TURN 3

Find .3x cos 1 3x 2  dx

YOUR TURN 2
Find .3tan 1"x 2 /"x dx

x

y

0

y = cos x
1

–1 1 _
2
π_ _

2
π

FIGURE 28

EXAMPLE  3

EXAMPLE  4



SOLUTION The shaded area in Figure 28 is bounded by 
and By the Fundamental Theorem of Calculus, this area is given by

By symmetry, the same area could be found by evaluating

TRY YOUR TURN 4

The area in Example 4 could also be found using the definite integral feature of a graphing calculator,
entering the expression the variable x, and the limits of integration.

Precipitation in Vancouver, Canada

The average monthly precipitation (in inches) for Vancouver, Canada, is found in the
following table. Source: Weather.com.

cos x,

23

p/2

0

cos x dx.

 5 2.

 5 1 2 121 2

 5 sin 
p

2
2 sina2 

p

2
b

 3

p/2

2p/2
cos x dx 5 sin x `

p/2

2p/2

x 5 p /2.
x 5 2p /2,y 5 0,y 5 cos x,
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YOUR TURN 4 Find the area
under the curve 
between and x 5 p.x 5 2p

y 5 sec2 1 x /3 2

(a) Plot the data, letting t � 1 correspond to January, t � 2 to February, and so on. Is it rea-
sonable to assume that average monthly precipitation is periodic?

SOLUTION Figure 29 shows a graphing calculator plot of the data. Because of the
cyclical nature of the four seasons, it is reasonable to assume that the data are periodic.

(b) Find a trigonometric function of the form that models this
data when t is the month and is the amount of precipitation. Use the table.

SOLUTION The function , derived by the sine regression feature on a TI-84 Plus
calculator, is given by

Figure 30 shows that this function fits the data fairly well.

(c) Estimate the amount of precipitation for the month of October, and compare it to the
actual value.

SOLUTION in. The actual value is 4.5 inches.C 1 10 2 < 4.6

C 1 t 2 5 2.56349 sin 10.528143t 1 1.30663 2 1 3.79128.

C 1 t 2
C 1 t 2

C 1 t 2 5 a sin 1bt 1 c 2 1 d

EXAMPLE  5

0 12

10

0

FIGURE 29

0 12

10

0

FIGURE 30

TECHNOLOGY 

TECHNOLOGY NOTE

Precipitation
Month (inches)

January 5.9
February 4.9
March 4.3
April 3.0
May 2.4
June 1.8
July 1.4
August 1.5
September 2.5
October 4.5
November 6.7
December 7.0



Find each integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. 3  
cos x

"sin x
 dx3  3"cos x 1 sin x 2  dx

3sin4 x cos x dx3sin7 x cos x dx

232 csc2 8x dx233 sec2 3x dx

32x cos x2 dx3x sin x2 dx

3 1 9 sin x 1 8 cos x 2  dx3 1 3 cos x 2 4 sin x 2  dx

3sin 5x dx3cos 3x dx
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13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. 37x sin 5x dx326x cos 5x dx

3x4sec x5 tan x5 dx3ex csc ex cot ex dx

3e2x tan e2x dx3ex sin ex dx

3  
x

4
 tana

x

4
b

2

 dx3x5 cot x6 dx

3cota2 

3

8
 xb dx3tan 

1

3
 x dx

3 1x 1 2 24 sin 1x 1 2 2 5 dx32x7 cos x8 dx

3  
cos x

1 2 sin x
 dx3  

sin x

1 1 cos x
 dx

(d) Estimate the rate at which the amount of precipitation is changing in October.

SOLUTION The derivative of is

In October, and

inches per month.

(e) Estimate the total precipitation for the year and compare it to the actual value.

SOLUTION To estimate the total precipitation, we use integration as follows.

inches

The actual value is 45.9 inches.

(f) What would you expect the period of a function that models annual precipitation to be?
What is the period of the function found in part (b)?

SOLUTION If we assume that the annual rainfall in Vancouver is periodic, we would
expect the period to be 12 so that it repeats itself every 12 months. The period for the
function given above is

,

or about 12 months.

T 5 2p /b 5 2p /0.528143 < 11.90

 < 45.75

 5 c2
2.56349

0.528143
 cos 10.528143t 1 1.30663 2 1 3.79128t d `

12

0

 3

12

0

C 1 t 2  dt 5 3

12

0

12.56349 sin 10.528143t 1 1.30663 2 1 3.79128 2  dt

C' 1 10 2 < 1.29

t 5 10

 5 1.35389 cos 10.528143t 1 1.30663 2 .

  C' 1 t 2 5 10.528143 22.56349 cos 10.528143t 1 1.30663 2

C 1 t 2
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27. 28.

29. 30.

Evaluate each definite integral. Use the integration feature of a
graphing calculator, if you wish, to support your answers.

31. 32.

33. 34.

35. 36.

For Exercises 37 and 38, use the integration feature on a graph-
ing calculator and successively larger values of b to estimate

37. 38.

APPLICATIONS
Business and Economics

39. APPLY IT Sales Sales of snowblowers are seasonal. Sup-
pose the sales of snowblowers in one region of the country are
approximated by

where t is time (in months), with corresponding to
November. The figure below shows a graph of S. Use a definite
integral to find total sales over a year.

t 5 0

S 1 t 2 5 500 1 500 cosa
p

6
 tb,

3

b

0

e2x cos x dx3

b

0

e2x sin x dx

e`0 f 1 x 2dx.

3

p/4

p/6
sin x dx3

2p/3

p/2
cos x dx

3

p/2

p/4
cot x dx3

p/6

0

tan x dx

3

0

2p/2
cos x dx3

p/4

0

sin x dx

310x2 sin 
x

2
 dx326x2 cos 8x dx

3211x cos x dx34x sin x dx

b. Use a calculator with trigonometric regression to find a
trigonometric function of the form 

that models this data when is the month and is the
amount of petroleum consumed (in trillions of BTUs). Graph
this function on the same calculator window as the data.

c. Estimate the consumption for the month of September and
compare it to the actual value.

d. Estimate the rate at which the consumption is changing in
September.

e. Estimate the total petroleum consumption for the year for
residential customers and compare it to the actual value.

f. What would you expect the period of a function that models
annual petroleum consumption to be? What is the period of
the function found in part b? Discuss possible reasons for
the discrepancy in the values.

Life Sciences

41. Migratory Animals The number of migratory animals (in hun-
dreds) counted at a certain checkpoint is given by

where t is time in months, with corresponding to July.
The figure below shows a graph of T. Use a definite integral to
find the number of animals passing the checkpoint in a year.

t 5 0

T 1 t 2 5 50 1 50 cosa
p

6
 tb,

C 1 t 2t

C 1 t 2 5 a sin 1bt 1 c 2 1 d

CHAPTER 13 The Trigonometric Functions698

t

T(t)

0 12963

50

100

T(t) = 50 + 50 cos (   t)_
6
ππ

t

S(t)

0 12963

S(t) = 500 + 500 cos (   t)

500

1000

_
6
ππ

40. Petroleum Consumption The monthly residential consump-
tion of petroleum (in trillions of BTUs) in the United States for
2009 is found in the following table. Source: Energy Informa-
tion Administration.

a. Plot the data, letting correspond to January, 
correspond to February, and so on. Is it reasonable to
assume that petroleum consumption is periodic?

t 5 2t 5 1

Petroleum
Month (trillion BTUs)

January 133.4
February 115.6
March 112.9
April 92.8
May 76.1
June 70.9
July 77.8
August 83.3
September 86.7
October 92.4
November 97.0
December 132.1
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Physical  Sciences

42. Voltage The electrical voltage from a standard wall outlet is
given as a function of time t by

This is an example of alternating current, which is electricity
that reverses direction at regular intervals. The common
method for measuring the level of voltage from an alternating
current is the root mean square, which is given by

where T is one period of the current.

a. Verify that for given above.

b. You may have seen that the voltage from a standard wall
outlet is 120 volts. Verify that this is the root mean square
value for given above. (Hint: Use the trigonometric
identity This identity can be
derived by letting in the basic identity for

and then eliminating by using the iden-
tity

43. Length of Day The following function can be used to estimate
the number of minutes of daylight in Boston for any given day
of the year.

where t is the day of the year. Source: The Old Farmer’s
Almanac. Use this function to estimate the total amount of

N 1 t 2 5 183.549 sin 10.0172t 2 1.329 2 1 728.124,

cos2 x 5 1 2 sin2 x.)
cos2 xcos 1x 1 y 2 ,

y 5 x
sin2 x 5 1 1 2 cos 2x 2 /2.
V 1 t 2

V 1 t 2T 5 1 /60 second

Root mean square 5
Å
eT

0 V2 1 t 2  dt

T
 ,

V 1 t 2 5 170 sin 1 120 pt 2 .

daylight in a year and compare it to the total amount of day-
light reported to be 4467.57 hours.

General Interest

Self-Answering Problems The problems in Exercises 44–46 
are called self-answering problems because the answers are
embedded in the question. For example, how many ways can
you arrange the letters in the word “six”? The answer is six.
Source: Math Horizons.

44. At time , water begins pouring into an empty sink so that
the volume of water is changing at a rate . For
time , where , determine the amount of
water in the sink.

45. At time , water begins pouring into an empty tank so that
the volume of water is changing at a rate . For
time , where , determine the amount of
water in the tank.

46. The cost of a widget varies according to the formula
. At time , the cost is $1. For arbitrary

time t, determine a formula for the cost.
t 5 0C' 1 t 2 5 2sin t

0 # k # p /2t 5 k
V' 1 t 2 5 sec2 t

t 5 0

0 # k # p /2t 5 k
V' 1 t 2 5 cos t

t 5 0

YOUR TURN ANSWERS 

1. (a) (b)

2.
3.
4. 6"3

x sin 1 3x 2 /3 1 cos 1 3x 2 /9 1 C

22 ln 0cos 1"x 2 0 1 C

4 1 tan x 2 3/2 1 C22 cos 1x /2 2 1 C

In this chapter, we introduced the trigonometric functions and we
studied some of their properties, including their periodic or repeti-
tive nature. To develop the trigonometric functions, it was necessary
to make the following definitions.

• A ray is the portion of a line that starts at a given point,
called the endpoint, and continues indefinitely in one 
direction.

• An angle is formed by rotating a ray about its 
endpoint.

� The initial position of the ray is called the initial side
of the angle, and the endpoint of the ray is called the
vertex of the angle.

� The location of the ray at the end of its rotation is
called the terminal side of the angle.

SUMMARY

13 CHAPTER REVIEW

• An angle that
� measures between 0° and 90° is an acute angle;
� measures 90° is a right angle;
� measures more than 90° but less than 180° is an

obtuse angle;
� measures 180° is a straight angle.

• An angle measured in radians is the arc length formed by
the angle, on a unit circle.

We saw that trigonometric functions describe many natural
phenomena and have many applications in business, economics, and
science. We extended the techniques of earlier chapters to find deriv-
atives and integrals involving trigonometric functions. We then used
differentiation and integration of trigonometric functions to analyze
a variety of applications.
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1 Radian

1 Degree radians

Degrees/Radians
Degrees

Radians 0

Trigonometric Functions Let (x, y) be a point other than the origin on the terminal side of an angle in standard position. 
Let r be the distance from the origin to (x, y). Then

.

Elementary Trigonometric

Identities

Values of Trigonometric
Functions for Common Angles

Periodic Function A function is periodic if there exists a positive real number a such that 

for all values of x in the domain. The smallest positive value of a is called the period of the function.

Basic Identities

Important Limit

Basic Trigonometric

Derivatives

Basic Trigonometric

3cot x dx 5 ln 0sin x 0 1 C3tan x dx 5 2ln 0cos x 0 1 C

3csc x  cot x dx 5 2csc x 1 C3sec x tan x dx 5 sec x 1 C

3csc2x dx 5 2cot x 1 C3sec2x dx 5 tan x 1 C

3cos x dx 5 sin x 1 C3sin x dx 5 2cos x 1 C

Dx 1 csc x 2 5 2csc x cot xDx 1 sec x 2 5 sec x tan x

Dx 1 cot x 2 5 2csc2 xDx 1 tan x 2 5 sec2 x

Dx 1 cos x 2 5 2sin xDx 1 sin x 2 5 cos x

lim
xl0 

sin x

x
5 1

cos 1x 2 y 2 5 cos x cos y 1 sin x sin y

cos 1x 1 y 2 5 cos x cos y 2 sin x sin y

sin 1x 2 y 2 5 sin x cos y 2 cos x sin y

sin 1x 1 y 2 5 sin x cos y 1 cos x sin y

f 1x 2 5 f 1x 1 a 2
y 5 f 1x 2

sin2 u 1 cos2 u 5 1cot u 5
cos u

sin u
tan u 5

sin u

cos u

cot u 5
1

tan u
sec u 5

1

cos u
csc u 5

1

sin u

cot u 5
x

y
 1 y 2 0 2tan u 5

y

x
 1x 2 0 2

sec u 5
r

x
 1x 2 0 2cos u 5

x

r

csc u 5
r

y
 1 y 2 0 2sin u 5

y

r

u

2p3p /2pp /2p /3p /4p /6

360°270°180°90°60°45°30°0°

1° 5
p

180

1 radian 5 a
180°

p
b

(in radians) (in degrees) sin cos tan cot sec csc 

0 0° 0 1 0 Undefined 1 Undefined
p/2 90° 1 0 Undefined 0 Undefined 1
p 180° 0 21 0 Undefined 21 Undefined

3p/2 270° 21 0 Undefined 0 Undefined 21
2p 360° 0 1 0 Undefined 1 Undefined

uuuuuu
uu

Integrals
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Determine whether each of the following statements is true or
false, and explain why.

1. The function is periodic with a period of .

2. All six of the basic trigonometric functions are periodic.

3. It is reasonable to expect that the Dow Jones Industrial Average
is periodic and can be modeled using a sine function.

4.

5.

6.

7. The cosine function has an infinite number of critical points
where an absolute minimum occurs.

8. The secant function has an infinite number of critical points
where an absolute maximum occurs.

9. The area between the x-axis and the curve on the

interval is given by the definite integral .

10. The method of integration by parts should be used to determine

.3
cos x

5 1 sin x
 dx

3

2p

0

sin x dx30, 2p 4

y 5 sin x

Dx tan 1x2 2 5 sec2 1x2 2

sin2 a
p

7
b 1 cos2 a2p 1

p

7
b 5 1

cos 1a 1 b 2 5 cos a 1 cos b

pf 1x 2 5 cos x

REVIEW EXERCISES

CONCEPT CHECK

13.1
ray
endpoint
angle
initial side
vertex
terminal side

standard position
degree measure
acute angle
right angle
obtuse angle
straight angle
radian measure

unit circle
arc
trigonometric functions
sine
cosine
tangent
cotangent

secant
cosecant
special angles
periodic functions
period
amplitude
phase shift 

KEY TERMS

Convert the following radian measures to degrees.

21. 22. 23.

24. 25. 26.

Find each function value without using a calculator.

27. 28. 29.

30. 31. 32.

33. 34.

35. 36.

Find each function value.

37. 38. 39.

40. 41. sin 2.3581 42. cos 0.8215

43. cos 0.5934 44. tan 1.2915

Graph one period of each function.

45. 46.

47. 48.

49. Because the derivative of is the
slope of varies from to

.

Find the derivative of each function.

50. 51.

52. 53.

54. 55.

56. 57.

58. 59.

60. 61.

62. 63.

64. 65. y 5 ln 0 5 sin x 0y 5 ln 0 cos x 0

y 5
tan x

1 1 x
y 5

6 2 x

sec x

y 5
cos2

 x

1 2 cos x
y 5

sin x 2 1

sin x 1 1

y 5 e22x sin xy 5 x2 csc x

y 5 cos 1 1 1 x2 2y 5 cota
1

2
 x4b

y 5 2 sin4 14x2 2y 5 2 cos5 x

y 5 cot 1 6 2 3x2 2y 5 tan 14x2 1 3 2
y 5 2 tan 5xy 5 24 sin 7x

y 5 sin x
dy /dx 5 cos x,y 5 sin x

y 5 2 
2

3
 sin xy 5 2 tan x

y 5
1

2
 tan xy 5 4 cos x

sin 12123° 2
tan 115°cos 72°sin 47°

csc 
7p

3
sec 

5p

3

cos 
7p

3
sin 

p

6

cot 300°csc 120°sec 150°

cos 1245° 2tan 120°sin 60°

13p

15

13p

20

3p

10

9p

20

3p

4
5p

PRACTICE AND EXPLORATIONS
11. What is the relationship between the degree measure and the

radian measure of an angle?

12. Under what circumstances should radian measure be used
instead of degree measure? Degree measure instead of radian
measure?

13. Describe in words how each of the six trigonometric functions
is defined.

14. At what angles (given as rational multiples of can you deter-
mine the exact values for the trigonometric functions?

Convert the following degree measures to radians. Leave answers
as multiples of 

15. 16. 17.

18. 19. 20. 405°360°270°

225°160°90°

p.

p)



Find each integral.

66. 67.

68. 69.

70. 71.

72. 73.

74. 75.

76. 77.

78. 79.

80.

Find each definite integral.

81. 82.

83. 84.

Business

85. Energy Consumption The monthly residential consumption
of natural gas in Pennsylvania for 2009 is found in the follow-
ing table. Source: Energy Information Administration.

3

p/3

0

1 3 2 3 sin x 2  dx3

2p

0

1 10 1 10 cos x 2  dx

3

2p/3

2p

2sin x dx3

p/2

0

cos x dx

3sec2 5x tan 5x dx

3 1 cos x 224/3 sin x dx3 1 sin x 2 3/2 cos x dx

3x2 cot 8x3 dx3x tan 11x2 dx

3cos8 x sin x dx3  "cos x sin x dx

35x sec 2x2 tan 2x2 dx3x2 sin 4x3 dx

34 csc2 x dx38 sec2 x dx

3sec2 5x dx3tan 7x dx

3cos 5x dx3sin 2x dx
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that models this data when t is the month of the year and
C(t) is the natural gas consumption. Graph the function on
the same calculator window as the data.

c. Estimate the total natural gas consumption for the year for
residential customers in Pennsylvania and compare it to the
actual value.

d. Calculate the period of the function found in part b. Is this
period reasonable?

Life Sciences

86. Blood Pressure A person’s blood pressure at time t (in seconds)
is given by

Find the maximum and minimum values of P on the interval
Graph one period of 

Blood Vessel System The body’s system of blood vessels is made
up of arteries, arterioles, capillaries, and veins. The transport of
blood from the heart through all organs of the body and back to
the heart should be as efficient as possible. One way this can be
done is by having large enough blood vessels to avoid turbulence,
with blood cells small enough to minimize viscosity.

In Exercises 87–100, we will find the value of angle (see
the figure) such that total resistance to the flow of blood is min-
imized. Assume that a main vessel of radius runs along the
horizontal line from A to B. A side artery, of radius heads for
a point C. Choose point B so that CB is perpendicular to AB.
Let and let D be the point where the axis of the branch-
ing vessel cuts the axis of the main vessel.

According to Poiseuille’s law, the resistance R in the sys-
tem is proportional to the length L of the vessel and inversely
proportional to the fourth power of the radius r. That is,

(1)

where k is a constant determined by the viscosity of the blood.
Let and Source: Introduction to
Mathematics for Life Scientists.

87. Use right triangle BDC to find 

88. Solve the result of Exercise 87 for 

89. Find in terms of s and 

90. Solve the result of Exercise 89 for 

91. Write an expression similar to Equation (1) for the resistance
along AD.

92. Write a formula for the resistance along DC.

R1

L1 .

L0 2 L1 .cot u 

L2 .

sin u.

DC 5 L2 .AD 5 L1 ,AB 5 L0 ,

R 5 k ?
L

r4  ,

CB 5 s

r2 ,
r1

u

y 5 P 1 t 2 .30, 1 /72 4.

P 1 t 2 5 90 1 15 sin 144pt.

APPLICATIONS

Consumption 
Month (million cubic feet)

January 47,599
February 40,659
March 30,877
April 19,169
May 8726
June 5317
July 4576
August 4084
September 4711
October 11,175
November 16,944
December 33,740

a. Plot the data, letting t � 1 correspond to January, t � 2 to
February, and so on. Is it reasonable to assume that the
monthly consumption of energy is periodic?

b. Find the trigonometric function of the form 

C 1 t 2 5 a sin 1bt 1 c 2 1 d L0

B

D

C

L1

r1
r2

L0 � L1

L2

θ
A

s



93. The total resistance R is given by the sum of the resistances
along AD and DC. Use your answers to Exercises 91 and 92
to write an expression for R.

94. In your formula for R, replace with the result of Exer-
cise 90 and with the result of Exercise 88. Simplify your
answer.

95. Find Simplify your answer. (Remember that k, 
s, and are constants.)

96. Set equal to 0.

97. Multiply through by 

98. Solve for 

99. Suppose and Find and then
find 

100. Find if and 

Physical  Sciences

101. Simple Harmonic Motion The differential equation 
approximately describes the motion of a pendulum,

known as simple harmonic motion. Verify that

satisfies this differential equation.

102. Temperature The table lists the average monthly tempera-
tures in Vancouver, Canada. Source: Weather.com.

s 1 t 2 5 A cos 1Bt 1 C 2

2B2s 1 t 2
ss 1 t 2 5

r2 5 0.8 cm.r1 5 1.4 cmu

u.
cos ur2 5 1 /4 cm.r1 5 1 cm

cos u.

1 sin2 u 2 /s.

dR /du

r2r1 ,
L0 ,L1 ,dR /du.

L2

L1
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the velocity of the tennis ball when it leaves the server’s
racket. Source: UMAP Journal.

a. If a tennis ball is served from a height of 9 ft and the net is
3 ft high and 39 ft away from the server, does the tennis
ball that is hit with a velocity of 50 mph (approximately
73 ft per second) make it over the net if it is served at an
angle of 

b. When the corresponding value of x gives the total
distance that the tennis ball has traveled while in flight (pro-
vided that it cleared the net). For a serving height of 9 ft, the
equation for calculating the distance traveled is given by

Use the TABLE function on a graphing calculator or a
spreadsheet to determine a range of angles for which the
tennis ball will clear the net and travel between 39 and 60 ft
when it is hit with an initial velocity of 44 ft per second.

c. Because calculating is so complicated analytically,
use a graphing calculator to estimate this derivative when
the initial velocity is 44 ft per second and Inter-
pret your answer.

104. Energy Usage A mathematics textbook author has deter-
mined that her monthly gas usage y approximately follows
the sine curve

where y is measured in thousands of cubic feet (MCF) and t is
the month of the year ranging from 1 to 12.

a. Graph this function on a graphing calculator.

b. Find the approximate gas usage for the months of February
and July.

c. Find when Interpret your answer.

General Interest

105. Area A 6-ft board is placed against a wall as shown in the
figure below, forming a triangular-shaped area beneath it. At
what angle should the board be placed to make the triangu-
lar area as large as possible?

u

t 5 7.dy /dt,

y 5 12.5 sina
p

6
 1 t 1 1.2 2 b 1 14.7,

a 5 p /8.

dx /da

x 5

V2 sin a cos a 6 V2 cos2 a 

Å
tan2 a 1

576

V2  sec2 a

32
.

y 5 0,

p /24?

Month July Aug Sep Oct Nov Dec

Temperature 63 63 58 50 43 38

Month Jan Feb Mar Apr May June

Temperature 37 41 43 48 54 59

These average temperatures cycle yearly and change only
slightly over many years. Because of the repetitive nature of
temperatures from year to year, they can be modeled with a
sine function. Some graphing calculators have a sine regres-
sion feature. If the table is entered into a calculator, the points
can be plotted automatically, as shown in the early chapters
of this book with other types of functions.

a. Use a graphing calculator to plot the ordered pairs
in the interval by 

b. Use a graphing calculator with a sine regression feature to
find an equation of the sine function that models this data.

c. Graph the equation from part b.

d. Calculate the period for the function found in part b. Is
this period reasonable?

103. Tennis It is possible to model the flight of a tennis ball that has
just been served down the center of the court by the equation

where y is the height (in feet) of a tennis ball that is being
served at an angle relative to the horizontal axis, x is the
horizontal distance (in feet) that the ball has traveled, h is the
height of the ball when it leaves the server’s racket and V is

a

y 5 x tan a 2
16x2

V2  sec2 a 1 h,

330, 70 4.30, 12 41month, temperature 2

θ

6 ft

106. Mercator’s World Map Before Gerardus Mercator designed
his map of the world in 1569, sailors who traveled in a fixed
compass direction could follow a straight line on a map only
over short distances. Over long distances, such a course would
be a curve on existing maps, which tried to make area on the



map proportional to the actual area. Mercator’s map greatly sim-
plified navigation: even over long distances, straight lines on the
map corresponded to fixed compass bearings. This was accom-
plished by distorting distances. On Mercator’s map, the distance
of an object from the equator to a parallel at latitude is given by

where k is a constant of proportionality. Calculus had not yet
been discovered when Mercator designed his map; he
approximated the distance between parallels of latitude by
hand. Source: Mathematics Magazine.

a. Verify that

d

dx
 ln 0 sec x 1 tan x 0 5 sec x.

D 1 u 2 5 k3

u

0

 sec x dx,

u

b. Verify that

c. Using parts a and b, give two different formulas for
Explain how they can both be correct.

d. Los Angeles has a latitude of (The represents
3 minutes of latitude. Each minute of latitude is of a
degree.) If Los Angeles is to be 7 in. from the equator on a
Mercator map, how far from the equator should we place
New York City, which has a latitude of ?

e. Repeat part d for Miami, which has a latitude of 

f. If you do not live in Los Angeles, New York City, or Miami,
repeat part d for your town or city. 

25°46 rN.

40°45 rN

1 /60
03 r34°03 rN.

e  sec x dx.

d

dx
 12ln 0 sec x 2 tan x 0 2 5 sec x.

E X T E N D E D APPLICATION
THE SHORTEST TIME AND THE CHEAPEST PATH

In an application at the end of Section 13.1 we stated Snell’s law
relating the angle of refraction when light passes from one
medium to another to the speed of light in each medium. Figure 31

represents the relationship graphically.

Let’s see why the law, or something like it, should be true.
Snell’s law is based on the fact that in traveling from A to B, a
light ray will follow the path that takes the minimum time. If the
speeds and are equal, the shortest path will also be the fastest,
so the best route is a straight line from A to B. In this case the
angles and are equal, since they are vertical angles. But if

the light ray will “do better” by spending more time in the
upper medium, where it travels faster, and less time in the lower
medium. Therefore the point where it crosses the interface will
move to the right, which will make greater than as shown 
in Figure 32.

u2 ,u1

c1 . c2 ,
u2u1

c2c1

   2θθ

   1θθ

interface

A

B

Speed is c1

Speed is c2

FIGURE 31

If the speed of light in the upper medium is and in the lower
medium the speed is then the speeds are related to the angles
(called angles of refraction) by the equation

You might think this law is of interest only to physicists, but the
same minimization problem shows up in other contexts, such as
planning the path of a pipeline or road. First we’ll use some calcu-
lus to derive Snell’s law, and then look at some applications.

c1

c2
5

sin u1

sin u2

 .

c2 ,
c1 ,    2θθ

   1θθ    1 =    2θ       θθ       θ

A

B

c1 = c2

   2θθ

   1θθ

A

B

   1 >    2θ       θθ       θ

c1 > c2

FIGURE 32

The sine is increasing on the interval so implies
and Snell’s law at least agrees with our intuitive

reasoning about how the angles and speeds should be related. 
sin u1 .  sin u2 ,

u1 . u210, p /2 2 ,
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Let’s get a more complete picture of the geometric setup. Figure 33
illustrates the relationship.

we add to the time by making the upper path longer must be
exactly balanced by the amount of time we save by making the
lower path shorter, which means that

Using the two small right triangles, we find that
and so

which is Snell’s law.
Some of the equations in this derivation are only approximate,

and we will look at these approximations more closely in the exer-
cises. But engineers use this kind of reasoning with small incre-
ments all the time, and we could make it precise and rigorous using
the language of differentials introduced in Section 6.6. The argu-
ment with increments shows why the sines of the angles appear in
Snell’s law: They measure the rate at which moving along the inter-
face changes the lengths of the upper and lower path segments.

Let’s use Snell’s law to solve an optimization problem that
involves cost rather than time. A road is to be built from town A to
town B. Part of the region between the towns is swampy land, over
which the road will have to be elevated on a causeway. The rest of
the territory is dry land on which a conventional road can be built.
The territory looks like Figure 35.

c1

c2
5

Dp

2Dq
5

Dx sin u1

Dx sin u2

5
sin u1

sin u2

 ,

2Dq 5 Dx sin u2 ,
Dp 5 Dx sin u1

Dp

c1
5

2Dq

c2
 or 

c1

c2
5

Dp

2Dq
 .

705

   2θθ

   1θθ

A

B

interface

a p

q b

1 – x

x

FIGURE 33

Since time is distance divided by speed, the total transit time from
A to B is

This is the expression we want to minimize, but before we can use the
techniques we learned in Chapter 6 we need to choose a variable. We
might try expressing both distances in terms of x and come up with an
expression for the total time T as a function of x:

The prospect of differentiating this expression with respect to x—
setting the derivative equal to 0—and solving for x is not attractive.
We’ll zoom in on the point where the light ray crosses the interface,
and look at what happens if we move this crossing point a little bit
to the right. Using the delta notation we introduced back in Chapter 1,
the picture looks like Figure 34.

T 1x 2 5
"a2 1 x2

c1
1
"b2 1 1 1 2 x 2 2

c2

p

c1
1

q

c2
 .

   2θθ

   2θθ

   pΔ

   xΔ   1θθ
   1θθ

–   qΔ

FIGURE 34

If we increase x by a small amount, the upper path gets longer
by and the lower path gets shorter by (Since is nega-
tive, we label the triangle side with so that it will be a positive
length.) When we have found the best crossing point, the amount

2Dq
DqDq.Dp

Dx,

x

A

B

N

7 mi

5 mi

3 mi

   2θθ

   1θθ

FIGURE 35

Suppose building a road over a swamp is three times more
expensive per mile than building it over land. We can reduce the
cost by making the road a bit longer than a straight connection and
shortening the portion built over the swamp, but what is the right
tradeoff? Where should the road emerge from the swamp? How
long is the distance x?

This is a classic calculus problem, often solved as an exercise
in simplifying complicated derivative expressions, but now that we
have Snell’s law, the minimization is already done. The preferred
medium is the cheaper one, so our equation will look like this:

1

3
5

sin u1

sin u2

 or sin u2 5 3 sin u1 .
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Of course we don’t know and but we have enough informa-
tion to figure out x. Using the basic identities and writing every-
thing in terms of x, we get

The solver on your calculator will find the root easily; it’s
As we expected, the cheapest route goes almost

perpendicularly across the swamp. The angle has tangent equal
to which means that is about 

EXERCISES
1. In Figure 34, we drew the two rays coming from point A as if

they were nearly parallel. Why can’t they be parallel? If they
were parallel, how would you prove that the two angles
labeled are equal? How could you make the rays more
nearly parallel?

2. In Figure 34, we claim that the segment labeled is the
change in the length of the ray from point A. Is it? How could
you improve the approximation?

3. If you wear glasses, you’ve probably been offered the choice
between glass and “high-index plastic” for your lenses. The typ-
ical high-index plastic lens has an index of refraction of 1.6,
which means that the ratio

is equal to 1.6. What percent of the speed of
light in air is the speed of light in 1.6-index plastic?

4. Without doing the calculation, describe the cheapest route for
the road between A and B in the case where swamp construc-
tion is 100 times as expensive as construction over land.

5. In the road construction example, what would change in the
equation for x if construction over land was actually more
expensive than construction over the swamp? Find the best x

light in plastic 2
1 speed of1 speed of light in air 2 /

Dp

u1

15°.u10.806 /3,
u1

x < 0.806 miles.

7 2 x

"1 7 2 x 2 2 1 52
5 3  

x

"x2 1 32

u2 ,u1 for the case where dry-land construction is twice as expensive
as swamp construction, and show that the corresponding route
lies to the west of the straight-line route.

6. A light ray that reaches you when you look at a sunset is bent
by the same process of refraction that Snell’s law describes.
The higher density and higher water content of the air close to
Earth cause light to travel more slowly closer to Earth, so as it
moves through the atmosphere the light ray is bent down
toward Earth. Rather than happening all at once at a sharp
interface between one medium and another, this atmospheric
refraction happens gradually, so the light follows a curved
path. Light rays coming at an angle of to the vertical (that
is, directly from the horizon) are bent by an angle of about

The diameter of the sun’s disk as we see it is about
When you see the sun begin to set, where is it actually

located?*

7. At the website WolframAlpha.com, enter “Snell’s law.” The
page allows you to calculate the angle of refraction when the
angle of incidence and the index of refraction of the two
media are given, or to calculate the index of refraction when
the angles are given. Experiment with this page, and compare
the results with those of the previous exercises.

DIRECTIONS FOR GROUP PROJECT
Prepare a demonstration of Snell’s law that illustrates the phenome-
non of light refraction. Your demonstration should include an explana-
tion of what Snell’s law is, why it is true, and some of its uses. Assume
that the audience for this presentation has a conceptual understanding
of angles but no formal studies in either trigonometry or calculus. Be
sure to use Exercises 1– 6 in making your presentation. Presentation
software such as Microsoft PowerPoint should be used.

0.53°.
0.57°.

90°

*See the U.S. Naval Observatory’s Web site at http://aa.usno.navy.mil/AA/faq/docs/RST_defs.html.
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Appendix A

A-1

Solutions to Prerequisite Skills Diagnostic Test (with references to Ch. R)

For more practice on the material in questions 1–4, see Beginning and Intermediate Algebra (5th ed.) by Margaret L. Lial, John Hornsby, and
Terry McGinnis, Pearson, 2012. 

1.

2. Get a common denominator.

3. The total number of apples and oranges is so 

4. The sentence can be rephrased as “The number of students is at least four times the number of professors,” or 

5.
Multiply out.
Subtract 8 and 4k from both sides.
Simplify.
Divide both sides by 3.

For more practice, see Sec. R.4.

6.

Subtract x from both sides.

Get a common denominator.

Simplify.

Simplify.

Multiply both sides by the reciprocal of .

For more practice, see Sec. R.4.

7. The interval is written as For more practice, see Sec. R.5. 

8. The interval is written as For more practice, see Sec. R.5. 

9.
Multiply out and simplify.
Subtract 7y from both sides and add 9.
Simplify.
Divide both sides by 3.

10.

Multiply out and simplify.

Subtract from both sides, and add 2.

Simplify and get a common denominator.

Simplify.

Multiply both sides by the reciprocal of .

Simplify.p .
3

2
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.
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For more practice, see Sec. R.5. 

11. . For more practice, see Sec. R.1. 

12. . For more practice,
see Sec. R.1. 

13. . For more practice, see Sec. R.1. 

14. . For more practice, see Sec. R.2. 

15. . For more practice, see Sec. R.2. 

16. Factor.

Simplify.

For more practice, see Sec. R.3. 

17. Factor.

Get a common denominator.

Multiply out.

Add fractions.

For more practice, see Sec. R.3. 

18.
Subtract from both sides.

Use the quadratic formula.

Simplify.

Simplify.

For more practice, see Sec. R.4. 

19. First solve the corresponding equation 

Multiply both sides by .
Multiply out.
Subtract from both sides.
Divide both sides by .

The fraction may also change from being less than 2 to being greater than 2 when the denominator equals 0, namely, at . Testing each of
the intervals determined by the numabers and 0 shows that the fraction on the left side of the inequality is less than or equal to 2 on

. We do not include in the solution because that would make the denominator 0. For more practice, see Sec. R.5. 

20. Simplify.

Simplify.5
x6y

4

421 1x2y3 2 2

x22y5 5
x2 1x4y6 2

4y5

x 5 2312`,23 2 < 31,` 2
23

z 5 23

6z 5 1
2z6z 5 6

8z 5 2z 1 6

1 z 1 3 28z 5 2 1 z 1 3 2

8x

z 1 3
5 2

5
22 6 "7

2

5
24 6 "28

6

x 5
24 6 "42 2 4 . 3 121 2

2 . 3

13x2 1 4x 2 1 5 0
3x2 1 4x 5 1

5
x2 1 5x 2 2

x 1x 2 1 2 1x 1 1 2

5
x2 1 3x

x 1x 2 1 2 1x 1 1 2
1

2x 2 2

x 1x 1 1 2 1x 2 1 2

5
x 1 3

1x 2 1 2 1x 1 1 2
. x

x
1

2

x 1x 1 1 2
. x 2 1

x 2 1

x 1 3

x2 2 1
1

2

x2 1 x
5

x 1 3
1x 2 1 2 1x 1 1 2

1
2

x 1x 1 1 2

5
a 2 6

a 1 2

a2 2 6a

a2 2 4
. a 2 2

a
5

a 1a 2 6 2
1a 2 2 2 1a 1 2 2

. a 2 2

a

3x2 2 x 2 10 5 1 3x 1 5 2 1x 2 2 2
3pq 1 6p2q 1 9pq2 5 3pq 1 1 1 2p 1 3q 2
1a 2 2b 2 2 5 a2 2 4ab 1 4b2

5 x3 2 x2 1 x 1 31x2 2 2x 1 3 2 1x 1 1 2 5 1x2 2 2x 1 3 2x 1 1x2 2 2x 1 3 2 5 x3 2 2x2 1 3x 1 x2 2 2x 1 3

1 5y2 2 6y 2 4 2 2 2 1 3y2 2 5y 1 1 2 5 5y2 2 6y 2 4 2 6y2 1 10y 2 2 5 2y2 1 4y 2 6
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For more practice, see Sec. R.6. 

21. Simplify.

Simplify.

For more practice, see Sec. R.6. 

22. Get a common denominator.

Simplify.

For more practice, see Sec. R.6. 

23. . For more practice, see Sec. R.6. 

24. . For more practice, see Sec. R.7. 

25. . For more practice, see Sec. R.7. 

26. . For more practice, see Sec. R.7. "y2 2 10y 1 25 5 "1 y 2 5 2 2 5 0y 2 5 0

2

4 2 "10
. 4 1 "10

4 1 "10
5

2 14 1 "10 2
16 2 10

5
4 1 "10

3

"3 64b6 5 4b2

5 1x2 1 1 221/2 1 3x2 1 x 1 5 21x2 1 1 221/2 1x 1 2 2 1 3 1x2 1 1 2 1/2 5 1x2 1 1 221/2 3x 1 2 1 3 1x2 1 1 2 4
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m 2 k
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1
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p2q

41/4 1p2/3q21/3 221

421/4p4/3q4/3
5
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Learning Objectives
CHAPTER R: Algebra Reference
R.1: Polynomials

1. Simplify polynomials

R.2: Factoring

1. Factor polynomials

R.3: Rational Expressions

1. Simplify rational expression using properties of rational
expressions and order of operations 

R.4: Equations

1. Solve linear, quadratic, and rational equations

R.5: Inequalities

1. Solve linear, quadratic, and rational inequalities

2. Graph the solution of linear, quadratic, and rational
inequalities

3. Write the solutions of linear, quadratic, and rational
inequalities using interval notation

R.6: Exponents

1. Evaluate exponential expressions

2. Simplify exponential expressions

R.7: Radicals

1. Simplify radical expressions

2. Rationalize the denominator in radical expressions

3. Rationalize the numerator in radical expressions

CHAPTER 1: Linear Functions
1.1: Slopes and Equations of Lines

1. Find the slope of a line

2. Find the equation of a line using a point and the slope

3. Find the equation of parallel and perpendicular lines

4. Graph the equation of a line

5. Solve application problems using linear functions

1.2: Linear Functions and Applications

1. Evaluate linear functions

2. Write equations for linear models

3. Solve application problems

1.3: The Least Squares Line

1. Interpret the different value meanings for linear correlation

2. Draw a scatterplot

Appendix B
3. Calculate the correlation coefficient

4. Calculate the least squares line

5. Compute the response variable in a linear model

CHAPTER 2: Nonlinear Functions 
2.1: Properties of Functions 

1. Evaluate nonlinear functions 

2. Identify the domain and range of functions

3. Classify functions as odd or even

4. Solve application problems 

2.2: Quadratic Functions; Translation and Reflection 

1. Complete the square for a given quadratic function

2. Obtain the vertex, y-intercepts and x-intercepts

3. Perform translation and reflection rules to graphs of 
functions

4. Solve application problems 

2.3: Polynomial and Rational Functions 

1. Perform translation and reflection rules 

2. Identify the degree of a polynomial 

3. Find horizontal and vertical asymptotes 

4. Solve application problems 

2.4: Exponential Functions 

1. Evaluate exponential functions

2. Solve exponential equations

3. Graph exponential functions

4. Solve application problems 

2.5: Logarithmic Functions 

1. Convert expressions between exponential and logarithmic
forms

2. Evaluate logarithmic expressions

3. Simplify expressions using logarithmic properties

4. Solve logarithmic equations

5. Identify the domain of a logarithmic function

6. Solve application problems 

2.6: Applications: Growth and Decay; Mathematics of Finance 

1. Obtain the effective rate 

2. Compute future values 

3. Solve growth and decay application problems

4. Solve finance application problems 

A-4
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CHAPTER 3: The Derivative 
3.1: Limits 

1. Determine if the limit exists 

2. Evaluate limits by completing tables and graphically

3. Use limit rules to evaluate limits 

4. Solve application problems 

3.2: Continuity 

1. Identify and apply the conditions for continuity

2. Find points of discontinuity

3. Solve application problems 

3.3: Rates of Change 

1. Find the average rate of change for functions 

2. Find the instantaneous rate of change

3. Solve application problems 

3.4: Definition of the Derivative 

1. Obtain the slope of the tangent line

2. Obtain the equation of the secant line

3. Find the derivative of a function (using the definition of the
derivative)

4. Evaluate the derivative 

5. Solve application problems 

3.5: Graphical Differentiation 

1. Interpret graph of a function and its derivative

2. Sketch the graph of the derivative

3. Solve application problems 

CHAPTER 4: Calculating the Derivative 
4.1: Techniques for Finding Derivative 

1. Determine the derivative of given functions

2. Find the slope of the tangent line

3. Obtain horizontal tangent points

4. Solve application problems 

4.2: Derivative of Products and Quotients 

1. Apply the product rule to find the derivative

2. Apply the quotient rule to find the derivative

3. Solve application problems 

4.3: The Chain Rule 

1. Find the composition of two functions

2. Find the derivative using the chain rule

3. Solve application problems 

4.4: Derivatives of Exponential Functions 

1. Find the derivative of exponential functions

2. Solve application problems 

4.5: Derivatives of Logarithmic Functions 

1. Find the derivative of logarithmic functions

2. Solve application problems 

CHAPTER 5: Graphs and the Derivative 
5.1: Increasing and Decreasing Functions 

1. Identify increasing and decreasing intervals for functions 

2. Solve application problems 

5.2: Relative Extrema 

1. Identify relative extrema points graphically 

2. Apply the first derivative test 

3. Solve application problems 

5.3: Higher Derivatives, Concavity and the Second Derivative Test 

1. Find higher order derivatives 

2. Identify intervals of upward and downward concavity 

3. Identify inflection points 

4. Apply the second derivative test 

5. Solve application problems 

5.4: Curve Sketching 

1. Graph a function based on derivative (first and second)
information 

CHAPTER 6: Applications of the 
Derivative 

6.1:Absolute Extrema 

1. Identify absolute extrema locations graphically 

2. Find absolute extrema points 

3. Solve application problems 

6.2:Applications of Extrema 

1. Solve maxima/minima application problems 

6.3: Further Business Applications: Economic Lot Size; Economic
Order Quantity; Elasticity of Demand 

1. Solve business and economics application problems 

6.4: Implicit Differentiation 

1. Differentiate functions of two variables implicitly 

2. Find the equation of the tangent line at a given point 

3. Solve application problems 



6.5: Related Rates 

1. Use related rates to solve application problems 

6.6: A Differentials: Linear Approximation 

1. Obtain differentials of dependent variables 

2. Compute approximations using differentials 

3. Solve application problems 

CHAPTER 7: Integration 
7.1: Antiderivative 

1. Obtain the antiderivative of a function 

2. Solve application problems 

7.2: Substitution 

1. Find the indefinite integral using the substitution method 

2. Solve application problems 

7.3: Area and the Definite Integral 

1. Understand the difference between indefinite and definite
integrals 

2. Approximate the area under the graph of a function using
sums 

3. Find the area under the graph of a function by integration 

4. Solve application problems 

7.4: The Fundamental Theorem of Calculus 

1. Evaluate the definite integral of a function 

2. Find the area covered by the graph of a function over 
an interval 

3. Solve application problems 

7.5: The Area Between Two Curves 

1. Find the area between two curves 

2. Solve application problems 

7.6: Numerical Integration 

1. Use approximation rules to evaluate the integral numeri-
cally 

2. Solve application problems 

CHAPTER 8: Further Techniques 
and Applications of 
Integration 

8.1: Integration by Parts 

1. Compute the integral using the integration by parts 
technique

2. Solve application problems 

Appendix BA-6

8.2:Volume and Average Value 

1. Find the volume of a solid formed by rotation about the 
x-axis

2. Find the average value of a function

3. Solve application problems 

8.3: Continuous Money Flow 

1. Compute the present and future value of an annuity
(money flow)

2. Solve application problems 

8.4: Improper Integrals 

1. Determine the convergence or divergence of improper inte-
grals

2. Find the area between the graph of a function over an
infinite interval, when possible

3. Solve application problems 

CHAPTER 9: Multivariable Calculus 
9.1: Functions of Several Variables 

1. Evaluate functions with several variables 

2. Graph functions with several variables

3. Solve application problems 

9.2: Partial Derivatives 

1. Find the partial derivative of functions with several vari-
ables

2. Find the second partial derivative of functions with several
variables

3. Solve application problems 

9.3: Maxima and Minima 

1. Find relative extrema points

2. Solve application problems 

9.4: Lagrange Multipliers 

1. Use Lagrange multipliers to find relative extrema points

2. Solve application problems 

9.5: Total Differentials and Approximations 

1. Find the total differential of functions with several 
variables 

2. Solve application problems 

9.6: Double Integrals 

1. Evaluate double integrals

2. Find the volume under a given surface

3. Solve application problems 
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CHAPTER 10: Differential Equations 
10.1: Solution of Elementary and Separable Differential Equations 

1. Find the general solution of a separable differential equa-
tions 

2. Find the particular solution of a separable differential
equations

3. Solve application problems 

10.2: Linear First-Order Differential Equations 

1. Find the general solution of a linear differential equations 

2. Find the particular solution of a linear differential equa-
tions

3. Solve application problems 

10.3: Euler’s Method 

1. Find approximate solutions to differential equations

2. Find approximate values of functions 

3. Solve application problems 

10.4:Applications of Differential Equations 

1. Solve application problems involving differential equations 

CHAPTER 11: Probability and Calculus 
11.1: Continuous Probability Models 

1. Identify probability density functions

2. Find the cumulative distribution function of probability
density functions

3. Solve application problems 

11.2: Expected Value and Variance of Continuous Random 
Variables 

1. Find the expected value and variance of probability density
functions

2. Find the median of a random variable with a given proba-
bility density function

3. Solve application problems 

11.3: Special Probability Density Functions 

1. Find mean and standard deviation of a probability distribution

2. Compute the z-score

3. Solve application problems 

CHAPTER 12: Sequences and Series 
12.1: Geometric Sequences 

1. Identify the terms of a geometric sequence

2. Find the sum of terms in a geometric sequences

3. Solve application problems 

12.2: Annuities:An Application of Sequences 

1. Find future value of an annuity

2. Find the payment required for an amortized loan

3. Find the present value of an annuity

4. Solve application problems 

12.3: Taylor Polynomials at 0 

1. Identify the Taylor polynomials of different degrees for
given functions

2. Use the Taylor polynomials to approximate values of given
functions

3. Solve application problems 

12.4: Infinite Series 

1. Determine the convergence or divergence of a series

2. Solve application problems 

12.5: Taylor Series 

1. Find the Taylor series for a given function

2. Approximate areas of regions using Taylor series approxi-
mations

3. Solve application problems 

12.6: Newton’s Method 

1. Solve equations using Newton’s method 

2. Solve application problems 

12.7: L’Hospital’s Rule 

1. Find the limit of rational expressions using L’Hospitals
rule 

CHAPTER 13: The Trigonometric 
Functions

13.1: Definitions of the Trigonometric Function 

1. Convert between degrees and radian measurements

2. Evaluate trigonometric functions

3. Find the amplitude and period of trigonometric functions

4. Graph trigonometric functions

5. Solve application problems 

13.2: Derivatives of Trigonometric Functions 

1. Find the derivative of trigonometric functions

2. Solve application problems 

13.3: Integrals of Trigonometric Functions 

1. Find the integral of trigonometric functions

2. Solve application problems 



Appendix C
MathPrint Operating System for TI-84 and TI-84 Plus Silver Edition 

The graphing calculator screens in this text display math in the format of the TI MathPrint
operating system. With MathPrint, the math looks more like that seen in a printed book. You
can obtain MathPrint and install it by following the instructions in the Graphing Calculator
and Spreadsheet Manual. Only the TI-84 family of graphing calculators can be updated with
the MathPrint operating system. If you own a TI-83 graphing calculator, you can use this brief
appendix to help you “translate” what you see in the Classic mode shown on your calculator.

Translating between MathPrint Mode and Classic Mode The following
table compares displays of several types in MathPrint mode and Classic mode (on a calculator
without MathPrint installed).

Improper fractions

Press I and F1 Enter an expression and press L
and select 1: n/d. and select 1: Frac.

Mixed fractions Not Supported

Press I and F1 
and select 2: Un/d.

Absolute values

Press I and F2 Press L and 
and select 1:abs(. and select 1:abs(.

Summation

Press I and F2 Press F and LIST and then 
and select 2:�(. twice and select 5:sum(

for sum, and press F and LIST
and then and select
5:seq( for sequence.

Press I and F2 Press L and select 8:nDeriv(.
and select 3:nDeriv(.

Press I and F2 Press L and select 9:fnInt(.
and select 4:fnInt(.

fnInt(X2,X,1,5)
41.33333333

41.33333333

(X2)dX
5

1

Numerical values 
of integrals

nDeriv(X2,X,3)
6(X2) d

dX
6

X � 3
Numerical 
derivatives

c

c

sum(seq(I2,I,1,10)
                       385

385
I � 1

(I2)�
10

c

abs(10 � 15)
                           5

	10 � 15	
                           5

(3   )2
3

2 �
1
5

121
15

c

2/5 � 1/3 � Frac
1/15�

2
5

1
15

1
3

Feature MathPrint Classic (MathPrint not installed)

(continued)
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Logarithms Evaluating logs with bases other 
than 10 or e cannot be done on a 
graphing calculator if the MathPrint 
operating system is not installed. 

Press I and F2 To evaluate log2 32, use the 
and select 5:logBASE(. change-of-base formula:

log(32)/log(2)
                           5

log
2
(32)

                           5

Feature MathPrint Classic (MathPrint not installed)

Plot 1   Plot 2   Plot 3
   Y1 � fnInt(X2,X,0,X) 
   Y2 �

Plot 1   Plot 2   Plot 3

(X2)dX
x

0
   Y1 � 

   Y2 �

Graphing an
antiderivative 
of y 5 x2

Plot 1   Plot 2   Plot 3
   Y1 � nDeriv(X2,X,X) 
   Y2 �

Plot 1   Plot 2   Plot 3
   Y1 � 

   Y2 �

d
dX

(X2) 
X � X

Graphing the
derivative 
of y 5 x2

Feature MathPrint Classic (MathPrint not installed)

The & Editor MathPrint features can be accessed from the & editor as well
as from the home screen. The following table shows examples that illustrate differences
between MathPrint in the & editor and Classic mode.
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
�3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
�3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
�3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
�3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

�2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

�2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
�1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681
�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
�0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

Area

0 z

Table 2 — Area Under a Normal Curve to the Left of z,where z 5
x 2 m
s

(continued)
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Table 2 — Area Under a Normal Curve (continued)
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Table 3 — Integrals
(C is an arbitrary constant.)
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Table 4 — Integrals Involving 
Trigonometric Functions



Answers to selected writing exercises are provided.

Answers to Prerequisite Skills Test
1. 20% 2. 3. 4. 5. (Sec. R.4) 6. (Sec. R.4) 7. (Sec. R.5)
8. (Sec. R.5) 9. (Sec. R.5) 10. (Sec. R.5) 11. (Sec. R.1)
12. (Sec. R.1) 13. (Sec. R.1) 14. (Sec. R.2) 15.
(Sec. R.2) 16. (Sec. R.3) 17. (Sec. R.3) 18. (Sec. R.4)
19. (Sec. R.5) 20. (Sec. R.6) 21. (Sec. R.6) 22. (Sec. R.6)
23. (Sec. R.6) 24. (Sec. R.7) 25. (Sec. R.7) 26. (Sec. R.7)

Chapter R Algebra Reference
Exercises R.1 (page R-5)
1. 2. 3.
4. 5. 6. 7. 8.
9. 10. 11. 12. 13.
14. 15. 16. 17. 18.
19. 20. 21. 22.
23. 24. 25. 26.

Exercises R.2 (page R-7)
1. 2. 3.
4. 5. 6. 7. 8.
9. 10. 11. 12. 13.
14. 15. 16. 17. 18.
19. 20. 21. 22. 23.
24. Prime 25. 26. 27. 28. 29.
30. 31. 32.

Exercises R.3 (page R-10)
1. 2. 3. 4. 5. 6. 7.
8. 9. 10. 11. 12. 13.
14. 15. 16. 17. 18. 19. 20. 21.
22. 23. 24. 25. 26. 27.
28. 29. 30. 31. 32.
33. 34. 35.
36. 37. 38.

Exercises R.4 (page R-16)

1. 2. 3. 4. 5. 6. 7. 4 8. 9.

10. 11. 7 12. 13. 14. 15. 16. 17. 18.

19. 20.

21. 22. 23. 24. No real

number solutions 25. 26. 27. 28. 29. 30. 6

31. 3 32. 33. 34. 35. 2 36. No solution 37. No solution

Exercises R.5 (page R-21)
1.

2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12. 13. 14.

15. 16. 17. 1 3, ` 2
10

12`, 1 212`, 2 4

x , 0 or x $ 3x # 24 or x $ 40 , x , 822 # x , 6x . 3x # 21

4 # x , 1027 # x # 23
60

36, ` 2
0–9

12`, 29 2

322, 3 4
0 1 2

31, 2 2
0–3

323, ` 2

12`, 4 2

12 /325 /2

259 /612321, 0121 1 "73 2 /6 < 1.257, 121 2 "73 2 /6 < 21.591

1, 5 /214 1 "6 2 /5 < 1.290, 14 2 "6 2 /5 < 0.3105 1 "5 < 7.236, 5 2 "5 < 2.76421.618

121 1 "5 2 /2 < 0.618, 121 2 "5 2 /2 <12 1 "10 2 /2 < 2.581, 12 2 "10 2 /2 < 20.5811 5 2 "13 2 /6 < 0.232

1 5 1 "13 2 /6 < 1.434,0, 424, 1 /223, 32, 521 /4, 2 /322, 5 /221, 3

23, 22210 /1926 /1127 /823 /8123 /4212

15x2 1 4x 2 4 2 / 3x 1x 2 1 2 1x 1 1 2 414a 1 1 2 / 3a 1a 1 2 2 4m 13m 2 19 2 / 3 13m 2 2 2 1m 1 3 2 1m 2 4 2 4
k 1k 2 13 2 / 3 12k 2 1 2 1k 1 2 2 1k 2 3 2 41 y2 1 1 2 / 3 1 y 1 3 2 1 y 1 1 2 1 y 2 1 2 41 7x 1 1 2 / 3 1x 2 2 2 1x 1 3 2 1x 1 1 2 4

23 / 320 1k 2 2 2 414 / 33 1a 2 1 2 41 r 2 6 2 / 3r 12r 1 3 2 413m 2 2 2 / 3m 1m 2 1 2 4137 / 130m 2
1 12 2 15y 2 / 1 10y 216 1 p 2 / 12p 212 12n 2 1 2 / 1 3n 2 5 21m 2 3 2 / 12m 2 3 21m 1 6 2 / 1m 1 3 2

1k 2 2 2 / 1k 1 3 22 / 1r 1 2 22 1a 1 4 2 / 1a 2 3 23 /101 /429 / 1 5c 225p2 /9
3k /512y 1 1 2 / 1y 1 1 21m2 1 4 2 /41z 2 3 2 / 1z 1 2 23 1x 2 1 2 / 1x 2 2 21r 1 2 2 / 1r 1 4 2

1m 2 2 2 / 1m 1 3 24 1y 1 2 2x 2 22 / 1 t 1 2 28 /95p /2v /7

12a 2 3b 2 12a 1 3b 2 14a2 1 9b2 21x 2 y 2 1x 1 y 2 1x2 1 y2 23 1m 1 5 2 1m2 2 5m 1 25 2
1 3r 2 4s 2 1 9r2 1 12rs 1 16s2 21a 2 6 2 1a2 1 6a 1 36 213p 2 4 2 21 s 2 5t 2 21z 1 7y 2 2

10 1x 1 4 2 1x 2 4 213m 1 5 2 13m 2 5 21x 1 8 2 1x 2 8 212x2 1x 2 y 2 12x 1 5y 22a2 14a 2 b 2 13a 1 2b 2
2 12a 1 3 2 1a 1 1 23m 1m 1 3 2 1m 1 1 26 1a 2 10 2 1a 1 2 217m 1 2n 2 13m 1 n 215y 1 2 2 13y 2 1 2

13a 1 7 2 1a 1 1 21 3x 1 7 2 1x 2 1 21y 2 7z 2 1y 1 3z 21s 2 5t 2 1s 1 7t 21a 2 5b 2 1a 2 b 2
1b 2 7 2 1b 2 1 21z 1 4 2 1z 1 5 21x 1 5 2 1x 2 1 21m 1 2 2 1m 2 7 210m2 16m2 2 12mn 1 5n2 2

13p2q 1p2q 2 3p 1 2q 23y 1y2 1 8y 1 3 27a2 1a 1 2 2

27x3 1 27x2y 1 9xy2 1 y3x3 2 6x2y 1 12xy2 2 8y34a2 2 16ab 1 16b2x2 1 4x 1 4
x3 2 2x2 2 5x 1 6x3 1 6x2 1 11x 1 62r2 1 2rs 2 5rt 2 4s2 1 8st 2 3t23x2 1 xy 1 2xz 2 2y2 2 3yz 2 z2

12k4 1 21k3 2 5k2 1 3k 1 28m3 1 115p3 1 13p2 2 10p 2 827p3 2 1115 /16 2r2 2 17 /12 2rs 2 12 /9 2s2

16 /25 2y2 1 111 /40 2yz 1 11 /16 2z236m2 2 254 2 9x218k2 2 7kq 2 q29t2 1 9ty 2 10y2

2 12x4 1 30x2 1 36x218m3 2 27m2 1 9m0.8r2 1 3.6r 2 1.520.327x2 2 2.805x 2 1.4589r2 2 4r 1 19
216q2 1 4q 1 626y2 1 3y 1 102x2 1 x 1 9

0y 2 5 014 1 "10 2 /34b21x2 1 1 221/2 1 3x2 1 x 1 5 2
1m 2 k 2 / 1km 22 / 1p2q 2x6y /432`, 23 2 < 31, ` 2

122 6 "7 2 /31x2 1 5x 2 2 2 / 3x 1x 2 1 2 1x 1 1 2 41a 2 6 2 / 1a 1 2 2
1 3x 1 5 2 1x 2 2 23pq 1 1 1 2p 1 3q 2a2 2 4ab 1 4b2x3 2 x2 1 x 1 3

2y2 1 4y 2 6p . 3 /2y $ 217 /2x # 23

122, 5 4211 /5220 /3s $ 4px 1 y 5 7551 /35

Answers to Selected Exercises

A-15

For exercises . . . 1–6 7–8,15–22 9–14 23–26
Refer to example . . . 2 3 4 5

For exercises . . . 1–4 5–15 16–20 21–32
Refer to example . . . 1 3 2nd CAUTION 4

For exercises . . . 1–12 13–38
Refer to example . . . 1 2

For exercises . . . 1–8 9–26 27–37
Refer to example . . . 2 3–5 6,7

For exercises . . . 1–14 15–26 27–38 39–42 43–54
Refer to example . . . Figure 1, Example 2 2 3 4 5–7



18. 19. 20.

21. 22. 23.

24. 25.

26. 27.

28. 29.

30. 31.

32. 33.

34. 35.

36. 37.

38. 39.

40. 41.

42. 43. 44. 45.

46. 47. 48. 49. 50. 51.

52. 53. 54.

Exercises R.6 (page R-25)
1. 2. 3. 4. 5. 6. 7. 8.
9. 10. 11. 12. 7 13. 14. 15. 16. 17. 18. 19.
20. 21. 22. 23. 24.
25. 26. 27. 11 28. 29. 30. 31. 32. 33. 34. 35.
36. 37. 9 38. 3 39. 64 40. 41. 42. 43. 44. 45. 46.
47. 48. 49. 50. 51. 52.
53. 54. 55.
56.

Exercises R.7 (page R-28)
1. 2. 3. 4. 5. 6. 7. 8. 8
9. 10. 11. 12. 13. 14. 15. 16. 17.
18. 19. 20. 21. 22. 23.
24. 25. Cannot be simplified 26. Cannot be simplified 27. 28. 29. 30.
31. 32. 33. 34. 35.
36. 37. 38. 39.
40. 41. 42.
43. 44.

Chapter 1 Linear Functions

Exercises 1.1 (page 13)
1. 3. Not defined 5. 1

7. 9. Not defined 11. 0 13. 2 15. 17. 19. 21. y 5 6x 2 7 /2y 5 2 11 /3 2x 1 10 /3y 5 27y 5 22x 1 55 /9

3 /5

2 / 3p 1 "p 1p 2 2 2 421 / 32x 2 2"x 1x 1 1 2 1 1 4
1 / 1 3 1  "3 221 / 32 1 1 2  "2 2 43p2 1 p 1 2"p 1p2 2 1 2 2 1 4 / 12p2 1 p 1 1 2

22x 2 2"x 1x 1 1 2 2 11 z 1 "5z 2 "z 2 "5 2 / 1 z 2 5 2"y 1 "55 1"m 1 "5 2 / 1m 2 5 2
1"r 1 "3 2 / 1 r 2 3 21 5 2 "10 2 /33 12 2 "2 225 12 1 "6 2 /223 1 1 1 "2 2

"22"3 /2"10 /25"7 /70 3y 1 5 0
k 4 2 x kb2 "b

46
 "a5p2

 "pq 1pq 2 q4 1 p2 2ab "ab 1b 2 2a2 1 b3 2x2yz2
 "4 y3z3

4xy2z3
 "3 2y24r3s4t6

 "10rsxyz2
 "2x3 "3 55 "3 222 "79 "79 "37 "2

94y2
 "2y20 "55 "22565

14x2 1 1 2 12x 2 1 221/2 1 36x2 2 16x 1 1 2
12x 1 5 2 1x2 2 4 221/2 14x2 1 5x 2 8 23 1 6x 1 2 221/2 127x 1 5 21x2 1 1 221/25x 1x2 2 1 2

6x 1x3 1 7 2 122x3 2 5x 1 7 23x 1x2 1 3x 2 2 1x2 2 5 2m3p /nh1/3t1/5 /k2/5y2 / 1x1/6z5/4 2a2/3b2

1 / 12p2 23k3/2 /8123 /y8rb /a3x4 /y411000 /1331
4 /31 /51 /164 /31 /222543y4 / 1xy 2 1 2 2xy / 1 y 2 x 2

1 3n2 1 4m 2 / 1mn2 22 1m 2 n 2 / 3mn 1m 1 n2 2 41 1 2 ab2 2 /b21a 1 b 2 / 1ab 249 / 1 c6d4 2
a3b6m3 /54x5 / 1 3y3 21 / 1 3z7 223k31x21 /108851 /64

27 /64361 /921 /9111 /811 /64

12`, 22 2 < 122, 2 2 < 34, ` 211, 3 /2 4124, 22 2 < 10, 2 2

122, 0 4 < 1 3, ` 212`, 21 232, 3 212`, 23 /2 2 < 3213 /9, ` 2328, 5 2122, 3 /2 2

12`, 22 212`, 21 2 < 11, ` 2125, 3 4
0 4–1

121, 0 2 < 14, ` 2

1 60
12`, 0 2 < 1 1, 6 2

–3–4 0
12`, 24 4 < 323, 0 4

0–2 2
322, 0 4 < 32, ` 2

0 16
12`, 0 2 < 116, ` 2

12`, 23 4 < 33, ` 2
0 5

3
–2

12`, 22 2 < 15 /3, ` 2

0 1
3

–1
12`, 21 2 < 1 1 /3, ` 2

0 2
5

1
2

–
321 /2, 2 /5 4

12`, 21 4 < 35, ` 2
503

2
–

323 /2, 5 4

12`, 24 2 < 14, ` 2
0–4 1

2

12`, 24 2 < 1 1 /2, ` 2
0 1 2

11, 2 2
0 1–6

12`, 26 4 < 31, ` 2

125, 3 2
0 50

9

12`, 50 /9 4

017
7

–
3217 /7, ` 2

0–1 2
321, 2 4

325, 3 2
0 47

3

37 /3, 4 4124, 6 2

10 1
3

11 /3, ` 2
10 1

5

11 /5, ` 2
10

12`, 1 4

Answers to Selected ExercisesA-16

For exercises . . . 1–8 9–26 27–36 37–50 51–56
Refer to example . . . 1 2 3,4 5 6

For exercises . . . 1–22 23–26 27–40 41–44
Refer to example . . . 1,2 3 4 5

For exercises . . . 1–4 5–8 13,29,30 14,31–34 15–17 18,27 19–24 25,26 28 45–60 61–75
Refer to example . . . 1 3 8 9 4 7 5 2 6 11–13 10,14



29. a. b. 125 tubs, $50 31. D(q) 5 6.9 2 0.4q 33. a. C(x) 5 3.50x 1 90 b. 17 shirts
c. 108 shirts 35. a. C(x) 5 0.097x 1 1.32 b. $1.32 c. $98.32
d. $98.42 e. 9.7¢ f. 9.7¢, the cost of producing one additional cup of
coffee would be 9.7¢. 37. a. 2 units b. $980 c. 52 units
39. Break-even quantity is 45 units; don’t produce;  
41. Break-even quantity is �50 units; impossible to make a profit when

for all positive x; (always a loss)
43. 5 45. a. 14.4�C b. �28.9�C c. 122�C 47. �40�

P 1x 2 5 210x 2 500C 1x 2 . R 1x 2

P 1x 2 5 20x 2 900

For exercises … 1–10 19–22 23–26 27–32 33–36,48 37–44 45–47
Refer to example … 1 4 5 2,3 5 6 7

23. 25. 27. 29. 31. 33. 35. No 39. a 41.

45. 47. 49. 51.

53. 55. 57. 59.

61. a. 12,000 y � 12,000x � 3000 b. 8 years 1 month 63. a. b. 178.4, which is slightly more than the
actual CPI. c. It is increasing at a rate of approximately 4.6 per year. 65. a.

b. 140 to 170 beats per minute. c. 126 to 153 beats per minute. d. The women are 16 and 52.
Their pulse is 143 beats per minute. 67. Approximately 86 yr 69. a. b.
71. a. b. 1,210,670 73. a. There appears to be a linear relationship. b. c. About
780 megaparsecs (about d. About 12.4 billion yr
75. a. Yes, the data are approximately linear.

b. ; the slope 1133.4 indicates that tuition and fees have increased
approximately $1133 per year. c. The year 2025 is too far in the future to rely on this
equation to predict costs; too many other factors may influence these costs by then.

Exercises 1.2 (page 23)
1. 23 3. 22 5. 0 7. 24 9. 7 2 5t 11. True
13. True 19. If R(x) is the cost of renting a snowboard for x hours, then R(x) 5 2.25x 1 10. 21. If C(x) is the cost of parking a
car for x half-hours, then C(x) 5 0.75x 1 2. 23. C(x) 5 30x 1 100 25. C(x) 5 75x 1 550 27. a. $16 b. $11 c. $6
d. 640 watches e. 480 watches f. 320 watches
g. h. 0 watches i. About 1333 watches j. About 2667 watches

k. l. 800 watches, $6

2 4 6 8 10 12 14

2
4
6
8

10
12
14
16

0 q

p

p = 16 – 1.25q

p = 0.75q

(8, 6)

2 4 6 8 10 12 14

2
4
6
8

10
12
14
16

0 q

p

p = 16 – 1.25q

y 5 1133.4t 1 16,072

0
20102004

Year
2006 200820022000

50

Su
bs

cr
ib

er
s

150
100

200
250
300

t

y

1.5 3 1022 mi)
y 5 76.9xy 5 14,792.05t 2 490,416

2022y 5 0.3444t 1 14.1
l 5 0.7 1220 2 x 2 5 154 2 0.7x

u 5 0.85 1220 2 x 2 5 187 2 0.85x, 
y 5 4.612t 1 86.164

30

–7

y

x

3y – 7x = –21

245x 2 y 5 24x 2 y 5 73x 1 2y 5 0x 5 26x 1 2y 5 26x 5 28

Answers to Selected Exercises A-17



Exercises 1.3 (page 32)

3. a. b. 0.993 c. Y 5 0.555x 2 0.5 d. 5.6

5. a. Y 5 0.9783x 1 0.0652, 0.9783 b. Y 5 1.5, 0 c. The point (9,9) is an outlier that has a strong effect 
on the least squares line and the correlation coefficient.

7. a. 0.7746 b.

11. a. Y 5 20.1534x 1 11.36 b. About 6760 c. 2025 d. 20.9890 13. a. Y 5 97.73x 1 1833.3 b. About $97.73 billion
per year c. $3299 billion d. 2023 e. 0.9909
15. a. They lie in a linear pattern. b. r 5 0.693; there is a positive correlation between the price

and the distance. c. Y 5 0.0738x 1 111.83; the marginal cost is 7.38 cents per mile. 
d. In 2000 marginal cost was 2.43 cents per mile; it has increased to 7.38 cents per mile.
e. Phoenix

17. a. b. 0.959, yes c. Y 5 3.98x 1 22.7 19. a. b. 14.2 c. 20.9326

21. a. Y 5 20.08915x 1 74.28, r 5 20.1035. The taller the student, the shorter is the ideal partner's height.
b. Females: Y 5 0.6674x 1 27.89, r 5 0.9459; males: Y 5 0.4348x 1 34.04, r 5 0.7049

23. a. b. Y 5 0.366x 1 0.803; the line seems to fit the data.

c. r 5 0.995 indicates a good fit, which confirms the conclusion in part b. 25. a. 20.995; yes b. Y 5 20.0769x 1 5.91 c. 2.07 points
27. a. 4.298 miles per hour b. ; yes c. Y 5 4.317x 1 3.419 d. 0.9971; yes e. 4.317 miles per hour

0 24

110

0

0 x

y

108642

1

2

3

4

5

6

1
0

2 3

1

2

3

4 5
x

y

55 80

80

60

0 16

90

10

Y 5 20.1175x 1 17.74

0 16

90

10

0 4000

500

0

2
0

4 6

1

2

x

y

0 x

y

108642

1

2

3

4

5

6

0 x

y

108642

1

2

3

4

5

6

Answers to Selected ExercisesA-18

For exercises . . . 3b,4,10d, 3c,10a,11a, 3d,10b,11b, 5ab,6ab, 5c,6c, 10c,11c,
11d,12e,13e, 12a,13a,15c, 12c,13c,18b, 7a,8a, 15e 12d,13d,
15b,16d,17b, 16b,17c,18a, 21d,22bc,23b, 14ab,21ab 18c,23c
18d,19c,20b, 19a,21c,22a, 26c
22d,24c,25d, 23a,24b,
26a 25a,26b

Refer to example . . . 4 1 2 1,4 5 3

0 x

y

108642

2

4

6

8

10



Chapter 1 Review Exercises (page 39)

1. False 2. False 3. True 4. False 5. True 6. False 7. True 8. False 9. False 10. False 11. False 12. True
15. 1 17. 19. 21. 0 23. 5 25. 27. 29. 31.
33. 35.
37. 39. 41. 43.

45. a. E 5 352 1 42x (where x is in thousands) b. R 5 130x (where x is in thousands ) c. More than 4000 chips
47. 49. $41.25, 62.5 diet pills 51. 53. 55. a. 40 pounds
b. $280 57. 59. a. b. c.
d. f. 0.9995 61. a. Y 5 0.9724x 1 31.43 b. About 216 c. 0.9338 63. y 5 1.22t 1 48.9

65. a. 0.6998; yes, but the fit is not very good. b.
c. Y 5 3.396x 1 117.2 d. $3396

0 20

200

0

�5 30

30,000

0

y � 795x � 8525

y � 836x � 7500 and y � 843.7x � 7662

Y 5 843.7x 1 7662y 5 795x 1 8525y 5 836x 1 7500y 5 7.23t 1 11.9
C 1x 2 5 46x 1 120C 1x 2 5 180x 1 2000S 1q 2 5 0.5q 1 10

3

0

y

x

x – 3 = 0

y 5 25x 5 21
2x 2 y 5 10y 5 210y 5 2x 2 3y 5 12 /3 2x 2 13 /324 /322 /11

Answers to Selected Exercises A-19

For exercises . . . 1–6,15–44 7–10,13,45–59b,62,63 11,12,14,59c–61,64,65
Refer to section . . . 1 2 3

Chapter 2 Nonlinear Functions
Exercises 2.1 (page 53) For exercises . . . 1–8 9–16 17–32 33–40 41–56,76,77 57–62 63–70

Refer to example . . . 1,2 3 (b) 3(a), (c)–(e) 2 (d) 4 5 6
71–74 75,78 79,80
7 Dow Jones 8

1. Not a function 3. Function 5. Function 7. Not a function
9.
range: y

x

9

3

3

(3, 9)

(–2, –1)

521, 1, 3, 5, 7, 96
122, 21 2 , 121, 1 2 , 10, 3 2 , 1 1, 5 2 , 12, 7 2 , 1 3, 9 2 ; 11.

range: 

y

x

(3, 4)

–2, –3
2( )

4

2

53 /2, 2, 5 /2, 3, 7 /2, 46
1 1, 3 2 , 12, 7 /2 2 , 1 3, 4 2 ;

122, 3 /2 2 , 121, 2 2 , 10, 5 /2 2 ,
13. (�2, 0), (�1, �1), (0, 0), (1, 3), 
(2, 8), (3, 15); range: {�1, 0, 3, 8, 15}

10

20

y

x

(–2, 0)

(3, 15)

15.
range: 

y

x

5

3

(–2, 4)

(3, 9)

50, 1, 4, 961 1, 1 2 , 12, 4 2 , 1 3, 9 2 ;
122, 4 2 , 121, 1 2 , 10, 0 2 ,

17. 19. 21. 23. 25.
27. 29. 31. 33. Domain:

range: 35. Domain: range: 37. Domain: range:
a. 0 b. 4 c. 3 d. 39. Domain: range: a. b.
c. d. 2.5 41. a. 33 b. c. d. or

e. 0, 4/3 43. a. 7 b. 0 c. if 7 if a 5 4a 2 4,12a 1 1 2 / 1a 2 4 21 12 2 8m 1 m2 2 /m2

12 /m2 2 8 /m 1 13a2 2 4a 1 115 /421
2223323, 2 4322, 4 4;21.5, 1.5, 2.5

30, 4 4322, 4 4;12`, 12 412`, ` 2 ;322, 6 4325, 4 2 ;
12`, 21 2 < 1 1 /3, ` 212`, 21 4 < 35, ` 212`, 24 2 < 14, ` 2

12`, 21 2 < 121, 1 2 < 1 1, ` 233, ` 2322, 2 412`, ` 212`, ` 2

d. if 7 if e. 45. 47.
49. or 51. a. b. c. 2 53. a.
b. c. 55. a. b. c. 57. Function21 / 3x 1x 1 h 2 42h / 3x 1x 1 h 2 41 / 1x 1 h 24x 1 2h 2 44xh 1 2h2 2 4h

2x2 1 4xh 1 2h2 2 4x 2 4h 2 52h2x 1 2h 1 11 9 2 6q 1 5q2 2 /q29 /q2 2 6 /q 1 5
r2 1 2rh 1 h2 2 2r 2 2h 1 56t2 1 12t 1 425m 5 1 /2m 2 1 /2,14 1 m 2 / 12 2 4m 2



Answers to Selected ExercisesA-20

59. Not a Function 61. Function 63. Odd 65. Even 67. Even 69. Odd 71. a. $36 b. $36 c. $64 d. $120
e. $120 f. $148 g. $148 i. x, the number of full and partial days j. S, the cost of renting a saw 73. a. $93,300. Attorneys
can receive a maximum of $93,300 on a jury award of $250,000. b. $124,950. Attorneys can receive a maximum of $124,950 on a
jury award of $350,000. c. $181,950. Attorneys can receive a maximum of $181,950 on a jury award of $550,000.
d. 75. a. About 140 m b. About 250 m 77. a. i. 3.6 kcal/km ii. 61 kcal/km

b. c. 79. a. b.
c.

Exercises 2.2 (page 64)
3. D 5. A 7. C
9. 11. 13. Vertex is axis is 
x-intercepts are �3 and �2; y-intercept is 6.

–6 –4 –2

–4
–2

4
6

y

x0

y = x2 + 5x + 6

x 5 25 /2;125 /2, 21 /4 2 ;12,21 2y 5 22 1x 2 2 2 2 2 1,123 /2, 27 /4 2y 5 3 1x 1 3 /2 2 2 2 7 /4,

0 100

300

0

P � (1000/w) � 2w

10, ` 2P 1w 2 5 1000/w 1 2wy 5 4.4z0.88x 5 g 1 z 2 5 1000z

0
200,000

(150,000, 60,000)

(300,000, 109,950)

(500,000, 169,950)

600,000

40,000

80,000

120,000

160,000

f(x)

x

For exercises . . . 3–8 9–24,58–62,64–67 25–38,47,48 39–46 49–53 54–57,68,69
Refer to example . . . 1–3 4 8 Before Example 8 7 6

15. Vertex is axis is x-intercepts are �4
and �2; y-intercept is .216

x 5 23;123, 2 2 ;

19. Vertex is 
axis is no x-intercepts; 
y-intercept is .5

x 5 1;

1 1, 3 2 ; 21. Vertex is axis is x-intercepts are
or 1.65; y-intercept is .

5 10

–20

–10

0

10

20
y

x

f (x) = –2x2 + 16x – 21

2214 6 "22 /2 < 6.35
x 5 4;14, 11 2 ;

23. Vertex is axis is 

x-intercepts are 
or 0.13; y-intercept is .

2 4 6 80

y

x

1
3

8
3

1
3f (x) = x2 – x +

–4

1 /3
4 6 "15 < 7.87

x 5 4;14, 25 2 ;

17. Vertex is axis is 
x-intercepts are 
or �4.83; y-intercept is .

–6 –4

y

x0

f (x) = 2x2 + 8x – 8

–8

28
22 6 2"2 < 0.83

x 5 22;122, 216 2 ;

35. 37. 39. 41. y

x

y

x
–8 –6 –4 –2

–10

–5

5
y

x

f (x) = –√2 – x – 2

(2, –2)

42 6 8

5

0

y

x

f(x) = √x – 2 + 2

(2, 2)

25. D 27. C 29. E 31. 33. y

x

(1, 4)

(3, –2)

(–5, 0)

y

x

(5, 0)

(–1, –4)

(–3, 2)



Answers to Selected Exercises A-21

43. 45. 47. a. r b. c. 49. a. b. 1 batch
c. $16,000
d. $4000

51. a. b. 2.5 batches c. $31,250 d. $5000 53. Maximum revenue is $9225; 35 seats are unsold.
55. a. b. c. $250 d. $62,500

57. a. b. c. d. 24 e. $78,400 59. a. 87 yr b. 98 yr
61. a. 28.5 weeks b. 0.81 c. 0 weeks or 57 weeks of gestation; no
63. a. b. Quadratic c.

d.

e. 65. 49 yr; 3.98 67. a. 61.70 ft b. 43.08 mph 69. 9025 ft2
y � 0.002726x2 � 0.3133x � 29.33

f(x) � 0.003(x � 60)2 � 20.3

30 110

28

18

f 1x 2 5 0.003 1x 2 60 2 2 1 20.3

30 110

28

18

y � 0.002726x2 � 0.3133x � 29.33
y 5 0.002726x2 2 0.3113x 1 29.33;

30 110

28

18

R 1x 2 5 64,000 1 1200x 2 25x280 2 x800 1 25x

R
ev

en
ue

(i
n 

th
ou

sa
nd

s 
of

 d
ol

la
rs

)

R(x)

x

Demand

72

60

48

36

24

12

200 300100
0

(250, 62,500)

R 1x 2 5 x 1 500 2 x 2 5 500x 2 x2
y

x100

–10

30

20

–30 –20 –10 20

–20

20

0

y

x

2r2ry

x

y

x

71.

(0, 0)

(9, 12)

x

y
12

4

9–9

y 5 14 /27 2x2; 6 "3 ft < 10.39 ft

Exercises 2.3 (page 73)
3. 5.

–6

–2

0

y

x

f (x) = – (x+3)4 + 1

10–1 3 5

1

3

5

y

x

f (x) = (x–2)3 + 3

For exercises . . . 3–6 7–15,21–26 16–20,27–42,57,58 46,47,50–52 54–56,59
Refer to example . . . 1 4 6 7 2,3

7. D 9. E 11. I 13. G 15. A 17. D 19. E 21. 4, 6, etc.
23. 5, 7, etc. 

25. 7, 9, etc. 1 true degree 5 7 2 ; 2
1 true degree 5 5 2 ; 11 true degree 5 4 2 ; 1

27. Horizontal asymptote: verti-
cal asymptote: no x-intercept; 
y-intercept 

–4
x + 2

y =

y

x

x = 2
0

4

5 22
x 5 22;

y 5 0; 29. Horizontal asymptote: vertical
asymptote: no x-intercept;
y-intercept

2
3 + 2xy =

3
2

x = –

y

x

2

–2

–2 10

5 2 /3
x 5 23 /2;

y 5 0; 31. Horizontal asymptote: vertical
asymptote: 

2x
x – 3

y =
y

x

x = 3

y = 2

3

2

y-intercept 5 0
x-intercept 5 0;x 5 3;

y 5 2;



Answers to Selected ExercisesA-22

33. Horizontal asymptote: vertical
asymptote: 

x + 1
x – 4y =

x = 4

y =

y

1
x40

y-intercept 5 21/4
x-intercept 5 21;x 5 4;

y 5 1; 35. Horizontal asymptote: vertical asymptote:

3 – 2x
4x + 20

y =

y

x
x = –5

y = – 1
2

0

2

2

y-intercept 5 3/20x-intercept 5 3 /2;x 5 25;
y 5 21 /2;

37. Horizontal asymptote: vertical asymptote:

– x – 4
3x + 6y =

1
3

y = –

y

–2 2 x

–2

2

x = –2

y-intercept 5 22/3x-intercept 5 24;x 5 22;
y 5 21/3; 39. No asymptotes; hole at

–3

3

0

y

x

y = x2 + 7x + 12
x + 4

y-intercept 5 3
x-intercept 5 23;x 5 24;

41. One possible answer is 43. a. 0 b. d. e.
f. 45. a. Two; one at b. Three; one at one at , and one
at 47. a. $440; $419; $383; $326; $284; $251 b. Vertical asymptote at ; horizontal asymptote at y 5 0x 5 2475x 5 1.442

x 5 1.414x 5 21.414,x 5 21.4 and one at x 5 1.41x 2 a 2
3 1x 1 1 2 1x 2 1 2 1x 1 2 21x 1 1 2 1x 2 1 2 1x 1 2 22, 23y 5 2x / 1x 2 1 2 .

c. d.

2000

y

x

x = –475 C(x) = 220,000
x + 475

200

y 5 463.2 49.

x   (100 – x)
250

f(x) =
2 2

25,000

5000

10 100

y

x

f1 1x 2 5 x 1 100 2 x 2 /25, 51. a. $6700; $15,600; $26,800; $60,300;
$127,300; $328,300; $663,300 b. No
c.

C
os

t (
in

 th
ou

sa
nd

s 
of

 d
ol

la
rs

)

Percent removed

y = 6.7x
100 – x

20

2

7

25 7550 1000

y

x

x = 100

53. a. b. 8.32 (using ) 55. a. b. Close to 2 hours c. About 1.1 to 2.7 hours

0 5

0.1

0

A(x) � 0.003631x3 � 0.03746x2 � 0.1012x � 0.009
k 5 337a 5 337/d

 f 1x 2 5 x2 1 100 2 x 2 2 /250
 f2 1x 2 5 x 1 100 2 x 2 /10,

57. a. b. c. d. The population of the next generation, , gets
smaller when the current generation, x, is larger.

59. a. 220 g; 602.5 g; 1220 g b.
c. d. 41.9 cm

20 50

1200

0

m(c) �         �
c3

100
1500

 c

c , 19.68

f 1x 230, ` 2



Answers to Selected Exercises A-23

61. a. 1.80, 0.812, 0.366 b. c. 2.48 sec d. The period increases by a factor of 
e. which is very close to the function found in part b.

Exercises 2.4 (page 86)
1. 3. E 5. C 7. F
9. A 11. C 13. 5 15. 17. 19. 21. 23. 25. 27.
29. 31. 37. a. $2166.53 b. $2189.94 c. $2201.90 d. $2209.97 e. $2214.03

39. He should choose the 5.9% investment, which would yield $23.74 additional
interest. 41. a. $10.94 b. $11.27 c. $11.62 43. 6.30%
45. a. 1, 0.92, 0.85, 0.78, 0.72, 0.66, 0.61, 0.56, 0.51, 0.47, 0.43
b. c. About $384,000 d. About $98

47. a. The function gives a population of about
3660 million, which is close to the actual population.
b. 6022 million c. 7725 million

49. a. 41.93 million b. 12.48 million c. 2.1%, 2.3%; Asian d. 37.99 million 51. a.
e. Hispanic: 2039; Asian: 2036; Black: 2079

d. 2026 53. a.
b. is the best fit.

55. a. b.

0 10

170,000

0

C � 16,861t � 7461

C � 19,231(1.2647)t

C � 1686t2 � 22,636

C 5 16,861t 1 7461, C 5 1686t2 1 22,636, C 5 19,231 1 1.2647 2 t

0 10,000

1100

200

P � �0.0748x � 1013

P � 1013e�1.34	10�4x

P �
1

2.79 	 10�7x � 9.87 	 10�4

P 5 1013e21.3431024x

P 5 1013e21.3431024x; P 5 20.0748x 1 1013; P 5 1 / 12.79 3 1027x 1 9.87 3 1024 2

0 150

15,000

0

f(x) � 534(1.026)x

y � 13,344

0 85

100

35

b(t) � 0.5116t � 35.43

y � 75.82

0 50

35

10

a(t) � 11.14(1.023)t

y � 25.38

0 50

125

35

h(t) � 37.79(1.021)t

y � 85.38

0 110

7000

0

y

t5 10

0.5

1

0

y = (0.92)t

–1–2 1 2

–20

10
y

x

y = –3e–2x + 2

y =  2

–1 1 2
–10

20

30

40

10

y

x

y = 5ex + 2

y = 2

0, 1 /20, 212, 22212 /521 /42324
2, 4, 8, 16, 32, * , 1024; 1.125899907 3 1015

L 5 0.822T2,
"2.

0 2.5

4

0

L � 1.80T

L � 0.812T 2

L � 0.366T 3

For exercises . . . 3–11,29–32 13–28 37–45,46 47–49 50–55
Refer to example . . . 1,2 3 4,5 6 7

exponentially

b. c. 2.6%f 1x 2 5 534 1 1.026 2x

c. 829 millibars, 232 millibars
d. This is
slightly different from the function
found in part b, which can be rewrit-
ten as P 5 1013 10.99998660 2x.

P 5 1038 10.99998661 2x.

is the best fit.
C 5 19,231 1 1.2647 2 t

c. this is close to the function found in part b.
d. 176,100, 191,200, 201,300, 190,900

C 5 19,250 1 1.2579 2 t;



Answers to Selected ExercisesA-24

Exercises 2.5 (page 98)

1. 3. 5. 7. 9. 11. 13. 2 15. 3
17. 19. 21. 1 23. 25. 27. 29.
31. 33. 5a 35. 37. 2.113 39. 41. 43.
45. 47. 49. No solution 51. 53. 55. x 57.
59. 61. 63. 65.
67. 69. 75. a. 23.4 yr b. 11.9 yr c. 9.0 yr d. 23.3 yr; 12 yr; 9 yr 77. 6.25% 79. 2035
81. a. About 0.693 b. ln 2 c. Yes 83. a. About 1.099 b. About 1.386 85. About every 7 hr, 
87. a. 2039 b. 2036 89. 91. No; 93. a. 1000 times greater b. 1,000,000 times greater

Exercises 2.6 (page 107)

7. 4.06% 9. 8.33% 11. $6209.93 13. $6283.17 15. 9.20% 17. 6.17% 19. a. $257,107.67 b. $49,892.33
c. $68,189.54 d. 14.28% 21. a. The 8% investment compounded quarterly. b. $759.26 c. 8.24% and 8.06% d. 3.71 yr
e. 3.75 yr 23. a. 200 b. About year c. No d. Yes; 1000 25. a. b. 3300 c. No; it is too small.
Exponential growth does not accurately describe population growth for the world over a long period of time.
27. a. b. c. About 18.6 hours 29. a. 17.9 days b. January 17 31. a. 2, 5, 24, and
125 b. 0.061 c. 0.24 d. No, the values of k are different. e. Between 3 and 4 33. About 13 years
35. a. 0.0193 gram b. 69 years 37. a. b. c. 8.0 days 39. a. 19.5 watts
b. 173 days 41. a. 67% b. 37% c. 23 days d. 46 days 43. 45. 1 hour18.02°

y 5 500 1 386 /500 2 t/3y 5 500e20.0863t

y 5 25,000 1 1.048 2 ty 5 25,000e0.047t

0.003285e0.007232t1 /2

1 /10s /n 5 2C/B 2 1
T 5 1 3 ln 5 2 / ln 2

x , 520.09x

e1ln 1021x112x 5 1 ln 1.25 2 / 1 ln 1.2 2 < 1.224x 5 1 ln 3 2 / 1 ln 15/3 2 2 < 2.1507k 5 1 1 ln 6 < 2.7918
x 5 1 ln 6 2 / 1 ln 2 2 < 2.58505 1 /"3e < 0.3502x 5 5x 5 3x 5 1r 5 25

z 5 4 /3x 5 1 /620.2812c 1 3a 1 1ln 3 1 1 1 /2 2  ln 5 2 1 1 /3 2  ln 6
1 1 log3 p 2 log3 5 2 log3 klog5 3 1 log5 klog3 45 /322 /324

105 5 100,000e21 5 1 /e25 5 32log3 
1 1 /9 2 5 22log3 81 5 4log5 125 5 3

For exercises . . . 1–12 13–24 27–36 37–40 41–56 57–64 65–68 69–70
Refer to example . . . 1 2 3 4 5 6 7 first CAUTION

75–77,79,87 75d,76c,78 81–83
8 9 10

For exercises . . . 6,28b,29b 7–10,15–17,21c 11–14,18–20 19d,20d 23,24
Refer to example . . . 3 4 6 7 8

25–28,30,31,42 21d,e,22,29,41 32–40
1 5 2

Chapter 2 Review Exercises (page 113)
1. True 2. False 3. True
4. True 5. False 6. False
7. True 8. False 9. False
10. False 11. False 12. False
13. False 14. True 15. False
16. False 17. True 18. True

For exercises . . .

Refer to section . . . 3 2 4 5 1 6

18,96–100.
102–104

8,23–28,867,10–17,22,
29,30,47–50,
55–82,84,
94–95,121

5,9,43–46,
51–54,83,
88–93,101,108,
111,112,114,
116–118,120

3,4,31–34,
105,109

1,2,6,20,21,35
–42,87,110,
115,122

23. (1, 2), (2, 9), (3, 20);
range: 

3

5

10

15

y

x

521, 0, 2, 5, 9, 14, 206
10, 21 2 ,121, 0 2 ,122, 5 2 ,123, 14 2 , 25. a. 17 b. 4 c. d.

e. f.
g. h. 27.
29. 31. 33.

2 4

5

y

x

y = –x2 + 4x + 2

0
–2 2

2

4

y

x

y = 2x2 + 3x – 1

0

127, ` 2
12`, 0 2 < 10, ` 222x 2 h 1 410x 1 5h

2x2 2 2xh 2 h2 1 4x 1 4h 1 15x2 1 10xh 1 5h2 2 3
29m2 1 12m 1 15k2 2 3

35. 37. 39. 41.

x = – –1
3 f(x) = 4x – 2

3x + 1

y = –4
3

x
0

1 2 3–1 –2 –3

f(x)

2

3

f(x) = –8x

x

8

8

–8

–8

f(x)

–3 3

4

y

x

y = –(x – 1)4 + 4

0

–2 2

4

y

x

f (x) = x3 – 3

0



Answers to Selected Exercises A-25

43. 45. 47. 49.

51. 53. 55. 57. 59. 61. 63. 4 65.
67. 69. 71. 73. 75. 77. 79.
81. 83. a. b. c. 1 d. e. Greater than 1 f. Between 0 and 1 87. a. $28,000
b. $7000 c. $63,000 d. e. No. 89. $921.95 91. $15,510.79 93. $17,901.90 95. 70 quarters or 17.5

years; 111 quarters or 27.75 years 97. 6.17% 99. $1494.52 101. $17,339.86
103. About 9.59% 105. a. b.
c. d. e. f. $75
g. 750 h. $56,250 i. j. The revenue starts at $50,000

when the price is $50, rises to a
maximum of $56,250 when the
price is $75, and falls to 0 when
the price is $150.

20 60

10000

30000

0

y

x

R = p(1500 – 10p)

0 # n # 1000R 5 1 1500n 2 n2 2 /1050 # p # 150
R 5 p 1 1500 2 10p 2n 5 1500 2 10p

C
os

t (
in

 th
ou

sa
nd

s)

Percent removed

7x
100 – x

y =

x50 100

y

20

0

y 5 010, ` 212`, ` 2p 5 3 /4
k 5 2m 5 2.156x 5 23.305m 5 21.807p 5 1.581log3  1 y4 /x2 2log5 

121k4 2
3 /2e4.41763 5 82.925 5 32ln 2.22554 5 0.8log 3 243 5 52625

2

y = –ln(x + 3)x = –3

y

x0

y = log  (x – 1)
2

x = 1

x96

3

–3

0 3

y

y =    –
2x – 31

5 ))

x21–1

y

50

75

100

125

25

0
–4 4

4

8
y = 4x

y

x0

107. a. b. c.
d. 109. The third
day; 104.2°F

1 2 7 / 3x 1x 1 1 2 4
A 1x 2 5 x 1 4 1 7 /x2x 1 5

C(x) = x  + 4x + 72Pr
od

uc
tio

n 
co

st
(i

n 
hu

nd
re

ds
 o

f 
do

lla
rs

)

Hundreds of nails

x53

y
30

5

111. a. b.
c. d. 372, 788, 36 113. 187.9 cm; 345 kg

115. a. 10.915 billion; this is about 
4.006 billion more than the estimate of 
6.909 billion. b. 26.56 billion; 96.32 billion
117. 0.25; 0.69 minutes

119. a. b. c. d. 234, 163
121. a. 0 yr b.
c. As r increases, t increases, but at a slower and slower rate.
As r decreases, t decreases at a faster and faster rate.

1.85 3 109 yr

0 2200

1800

0

S 5 81.26 A0.3011S 5 23.404 1 103.2 ln A

2

0 13

300

0

y � �0.4931t3 � 11.26t2 � 82.00t � 292.9

y � 213.8(0.9149)t

y � 2.384t2 � 42.55t � 269.2

82.00t 1 292.9, y 5 213.8 10.9149 2 ty 5 20.4931t3 1 11.26t2 2y 5 2.384t2 2 42.55t 1 269.2,

0 13

300

0

For exercises . . . 1,7b, 2,7a, 3,5a, 4 5a,6b, 11, 21–30 31–38, 39,40 43–52, 57–63,
8b,9a, 10a, 6a, 8a,9b, 12 41,42 75–81, 65,
82–84 53–56 17–20 10b,15,16 84–93 71–74

Refer to example . . . 5 3 2 4 1 11 6 8 9 12 10

Chapter 3 The Derivative
Exercises 3.1 (page 135)

1. c 3. b 5. a. 3 b. 1 7. a. 0 b. Does not exist 9. a. i. ii. iii. Does not exist; iv. Does not exist

b. i. ii. iii. iv. 11. 3 15. 4 17. 10 19. Does not exist 21. �18 23. 1/3 25. 3

27. 512 29. 2/3 31. 6 33. 35. 37. 39. 41. 2x 43. 3/7 45. 3/2 47. 0 49. (does not

exist) 51. (does not exist) 53. 1 55. a. 2 b. Does not exist 57. 6 59. 1.5 61. a. Does not exist b.
c. If is a vertical asymptote for the graph of then does not exist. 65. a. 0 b. 67. a. (does

not exist) b. 71. 5 73. 0.3333 or 75. a. 1.5 77. a. 79. a. 8 83. a. 3 cents b. 7.25 cents

c. 8.25 cents d. Does not exist e. 8.25 cents 85. $6; the average cost approaches $6 as the number of DVDs produced

becomes very large. 87. 63 items; the number of items a new employee produces gets closer and closer to 63 as the number of

221 /3x 5 0

2`y 5 0lim
xla

 f 1x 2f 1x 2 ,x 5 a

x 5 222`

`1 /1021 /9253 /2

2 1 /22 1 /22 1 /221 /2

2 1 /221;



days of training increases. 89. 91. a. 36.2 cm; the depth of the sediment layer deposited below the bottom of the

lake in 1970 is 36.2 cm. b. 155 cm; the depth of the sediment approaches 155 cm going back in time. 93. a. 0.572 b. 0.526

c. 0.503 d. 0.5; the numbers in a, b, and c give the probability that the legislator will vote yes on the second, fourth, and eighth

votes. In d, as the number of roll calls increases, the probability of a yes vote approaches 0.5 but is never less than 0.5.

Exercises 3.2 (page 146)
1. : a. does not exist. b. c. d.
e. does not exist. 3. a. 2 b. c. d.
e. does not equal the limit. 5. a. does not exist b. (does not exist) c. (does not exist)
d. Limit does not exist. e. does not exist and the limit does not exist; a. does not exist. b. 0 c. 0
d. 0 e. does not exist. 7. limit does not exist; limit does not exist. 9. 11. Nowhere
13. limit does not exist. 15. limit does not exist. 17. (limit does not exist); (limit does not exist).
19. a. b. 2 c. 1, 5 21. a. b. c. 11, 3 23. a.

b. None 25. 2/3 27. 4 31. a. Discontinuous at 33. a 35. a. $500 b. $1500 c. $1000 d. Does not exist
e. Discontinuous at a change in shifts f. 15 37. a. $100 b. $150 c. $125 d. At 39. a. $2.92 b. $3.76
c. Does not exist d. $2.92 e. $10.56 f. $10.56 g. $10.56 h. $10.56 i. 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32, 36, 40,
44, 48, 52, 56, 60 41. About 687 g b. No c.

Exercises 3.3 (page 158)
1. 6 3. �15 5. 1/3 7. 0.4323 9. 17
11. 18 13. 5 15. 2 17. 2 19. 6.773
21. 1.121 25. a. $700 per item b. $500 per item
c. $300 per item d. $1100 per item 27. a. boxes per dollar b. boxes per dollar c. boxes per dollar
d. Demand is decreasing. Yes, a higher price usually reduces demand. 29. a. $56.81 per year b. $72.94 per year c. $64.20
per year 31. a. 17.7 cents per gallon per month b. –48.0 cents per gallon per month c. –11.2 cents per gallon per month
33. a. 6% per day b. 7% per day 35. a. 2; from 1 min to 2 min, the population of bacteria increases, on the average, 2 million
per min. b. �0.8; from 2 min to 3 min, the population of bacteria decreases, on the average, 0.8 million or 800,000 per min.
c. �2.2; from 3 min to 4 min, the population of bacteria decreases, on the average, 2.2 million per min. d. �1; from 4 min to 5 min,
the population decreases, on the average, 1 million per min. e. 2 min f. 3 min 37. a.
b. 81.51 kilojoules per hour per hour c. 18.81 kilojoules per hour per hour
d. 1.3 hours 39. a. �15,760 immigrants per year b. 17,680 immigrants per year
c. 960 immigrants per year d. They are equal; no e. 1,126,000 immigrants
41. a. 4� per 1000 ft b. 1.75� per 1000 ft c. per 1000 ft d. 0� per 1000 ft
e. 3000 ft; 1000 ft; if 7000 ft is changed to 10,000 ft, the lowest temperature would be at
10,000 ft. f. 9000 ft 43. a. 50 mph b. 44 mph

Exercises 3.4 (page 176)
1. a. 0 b. 1 c. d. Does not exist
e. m 3. At 5. 2 7. 1/4 9. 0
11. 3; 3; 3; 3 13.

15. does not exist; �4/3 17. does not exist; does not exist; 19.
21. a. b. 23. a. b. 25. a.
b. 27. �5; �117; 35 29. 7.389; 8,886,112; 0.0498 31. 1/2; 1/128; 2/9 33. does not exist1 / 12"2 2 ; 1 /8;y 5 12 /3 2x 1 6

y 5 14 /7 2x 1 48 /7y 5 2 15 /4 2x 1 5y 5 2 11 /2 2x 1 7 /2y 5 8x 2 9y 5 10x 2 15
6x2; 24; 0; 541 / 12"3 21 / 12"x 2 ;212 /x2; 23;

28x 1 9; 25; 9; 215
x 5 22

21

24 /3°
0 6

100

�20

F(t) � �10.28 � 175.9te�t/1.3

230220225

1 56

3000

0

x 5 100x 5 10;
x 5 1.2

y
10

5
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3 6–6 –3 0 x

21y
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15

5–5 0 x

y

4

8

2 4 6–2 0 x

a 5 1, `a 5 0, 2`a , 1,a 5 22,
a 5 2, limit is 4a 5 2,a 5 0,f 10 2

f 10 2a 5 0:f 125 2
2``f 125 2a 5 25:f 11 2

222222a 5 1:f 121 2
1 /21 /21 /2f 121 2a 5 21

R / 1 i 2 g 2

Answers to Selected ExercisesA-26

For exercises . . . 1–6,34,35 7–18,31–33 19–28 36–41
Refer to example . . . 1 2 3 4

For exercises . . . 1–8 9–18,33, 19–22, 25–27 30–32, 42,43
36,38,44 28,29,37 34,35,

39–41
Refer to example . . . 1 3 6 4 and 5 2 7

For exercises . . . 5–10, 11–14 15, 17, 19, 21–26 27–34, 35–38 49–52,
54,55, 16 18 20 42–45, 56–57
58–61 53

Refer to example . . . 3 4 6 7 5 1 and 9 2 10 8



35. 0 37. �3; �1; 0; 2; 3; 5 39. a. and b. c. and 41. a. Distance b. Velocity
43. 56.66 45. �0.0158 49. a. b. demand is decreasing at a rate of about 44 items for each increase in price
of $1. 51. a. $16 per table b. $15.996 (or $16) c. $15.998 (or $16) d. The marginal revenue gives a good approximation of
the actual revenue from the sale of the 1001st table. 53. Answers are in trillion of dollars. a. 2.54; 2.03; 1.02 b. 0.061;
�0.019; �0.079; �0.120; �0.133 55. 1000; the population is increasing at a rate of 1000 shellfish per time unit. 570; the popula-
tion is increasing more slowly at 570 shellfish per time unit. 250; the population is increasing at a much slower rate of 250 shellfish
per time unit. 57. a. 1690 m per sec b. 4.84 days per m per sec; an increase in velocity from 1700 m per sec to 1701 m per sec
indicates an approximate increase in the age of the cheese of 4.84 days. 59. a. About 270; the temperature was increasing at a rate
of about 270� per hour at 9:00 a.m. b. About �150; the temperature was decreasing at a rate of about 150� per hour at 11:30 a.m.
c. About 0; the temperature staying constant at 12:30 p.m. d. About 11:15 a.m. 61. a. 0; About 0.5 mph/oz

Exercises 3.5 (page 184)
3. 5.

7. 9. 11. 13.

15. 17. 19.

21. 23. About 9 cm; about 2.6 cm less per year

Chapter 3 Review Exercises (page 188)
1. True 2. True 3. True 4. False 5. True 6. False
7. False 8. True 9. True 10. True 11. False 12. False
17. a. 4 b. 4 c. 4 d. 4 19. a. b.
c. Does not exist d. Does not exist 21. 23.
25. 8 27. 29. 31. 2/5 33. 35. Discontinuous at and 37. 0, does not exist, does not exist; does
not exist, does not exist 39. does not exist, does not exist 41. Continuous everywhere 43. a.
b. 1 c. 0, 2 45. 2 47. 126; 18 49. 51. a. b.
53. a. b. 55. 57. 1.332 59.
61. e 63. a. $150 b. $187.50 c. $189
d. e. Discontinuous at 

f. $1.50 g. $1.50 h. $1.35
i. 1.5; when 100 lb are purchased, an
additional pound will cost about $1.50 more. j. 1.35; when 140 lb are purchased, an additional
pound will cost about $1.35 more. 65. b. c. The marginal cost equals the average cost
at the point where the average cost is smallest.

x 5 7.5

x 5 $125

0 10050 150 200

C(x)

x

200

(125, 168.75)

(125, 187.50)

100

Weight
(in pounds)

C
os

t
(i

n 
do

lla
rs

)

f '(x)

42–2–4

x

2

–2

8x 1 3y 5 23x 1 15y 5 2x 1 9
y 5 7x 2 5y 5 13x 2 1718 /499 /77;

f '(x)

42–2–4 x

2

–2

25,
21 /3,x4x23 /81 /6213

19 /9`

2``

–1

–2

–3

–4

11 12 13 14 15 16 17 18

1000

1200

800

600

400

200

108642 141612 18 20 t0

y
(t)

1950 1970 1990 2010

Year

0

10
20
30
40
50
60

Sp
ec

ie
s 

pe
r 

ye
ar

642 14 20 t0

–0.2
–0.3
–0.4
–0.5R

at
e 

of
 C

ha
ng

e 
of

 
C

on
su

m
pt

io
n

x

2

–4

f '(x)

0

f '(x)

–2 4–4 x

2

–2

f'(x)

2 4–4 x

2

–2

f '(x)

2 4–4 x

2

–2

f '(x)

4–4 x

2

–2

f:Y1; f r:Y2f:Y2; f r:Y1

244;24p 2 4
x 5 bx 5 010, b 21b, c 21a, 0 2

Answers to Selected Exercises A-27

For exercises . . . 1–3, 4–6,15, 7–9, 10–12,16, 59–60,67,
17–34, 35–44, 47–50, 51–58,62, 70–72,74
45–46, 63,74 63–65 68–69,73
61,66

Refer to section . . . 1 2 3 4 5

For exercises . . . 2–6 7–24
Refer to example . . . 4 1,2, and 3



67. 69. a. b. c. 3 weeks;
500 cases
d. e. 0
f. 1; 2

71. a. b. 73. a. Nowhere b. 50, 130, 230, 770
c.
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Answers to Selected ExercisesA-28

; about 5.8; about 2

Chapter 4 Calculating the Derivative
Exercises 4.1 (page 207)

1. 3. 5. or 
7. or 9.
11. 13.
15. 17.
19. 21. 23. b 27. or

29. 31. 33. 35. 37. 39.
41. 43. 45. 7 51. a. 30 b. 0 c. �10 53. $990 55. a. 100 b. 1 57. a.
b. c.
59. a. 0.4824 b. 2.216 61. a. 1232.62 cm3 b. 948.08 cm3/yr 63. 5.00l 0.86 65. a. 3 minutes, 58.1 seconds b. 0.118
sec/m; at 100 meters, the fastest possible time increases by 0.118 seconds for each additional meter. c. Yes 67. a. 27.5
b. 23 pounds c. d. ; for a 125-lb female with a height of 65 in. 159502, the BMI decreases by 0.64 for each
additional inch of height. 69. a. b. 71. a. b.
73. 0 ft/sec; �32 ft/sec b. 2 seconds c. 64 ft 75. a. 35, 36 b. When . These 
values are fairly close and represent the rate of change of four years for a dog for one year of a human, for a dog that is actually 
5 years old. c.

Exercises 4.2 (page 216)
1. 3.
5.
7. or 9.
11. 13. 15.
17. 19. 21. or

23. or 
25. 27. 29. 77
31. In the first step, the numerator should be . 33. y 5 22x 1 91x2 2 1 22 2 12x 1 5 2 12x 2

f r 1x 2 5 1 60x3 1  57x2 2 24x 1 13 2 / 1 5x 1 4 2 2h r 1 z 2 5 12z4.4 1  11z1.2 2 / 1 z3.2 1 5 2 2
1 5x 2 6 2 / 12x"x 2dy /dx 5 1 5 /2 2x21/2 2 3x23/212t 2 1 2 / 32"t 1 t 2 1 2 2 4

p r 1 t 2 5 32"t /2 2 1 / 12"t 2 4 / 1 t 2 1 2 2g' 1x 2 5 14x2 1 2x 2 12 2 / 1x2 1 3 2 2f' 1 t 2 5 2t / 1 t2 1 3 2 2
dy /dx 5 1x2 2 2x 2 1 2 / 1x 2 1 2 2dy /dt 5 217 / 14 1 t 2 2f' 1x 2 5 57 / 1 3x 1 10 2 2

p r 1 y 2 5 28y25 1 15y26 1 30y273x1/2 /2 1 1 / 12x1/2 2 1 2dy /dx 5 1 3 /2 2x1/2 1 1 1 /2 2x21/2 1 2
k r 1 t 2 5 4t3 2 4t

dy /dx 5 8x 2 20dy /dx 5 18x2 2 6x 1 4

y 5 4x 1 16

x 5 5, dy1 /dx 5 4.13 and dy2 /dx < 4.32
210; 2195; 2830v 1 t 2 5 29t2 1 8t 2 10213; 167; 347v 1 t 2 5 36t 2 13

20.642175,750 /h3

0.853¢ per yearC 1t2 5 20.0001549t3 1 0.02699t2 2 0.6484t 1 3.212; 0.889¢ per year;0.755¢ per year; 1.09¢ per year
18¢; 36¢122, 224 2121 /2, 219 /2 2

14 6 "37 2 /325, 214 /9, 20 /9 225 /6y 5 228x 1 34228;225 /329 / 12x3/2 2 2 3 /x5/2
2 1 9 /2 2x23/2 2 3x25/2g9 1x 2 5 256x3 2 192x2 1 32xf9 1x 2 5 2x 2 5x22 or 2x 2 5 /x2

dy /dx 5 123 /2 2x25/4 or 23 / 12x5/4 2p9 1x 2 5 5x23/2 2 12x25/2 or 5/x3/2 2 12 /x5/2
dy /dx 5 224x25 1 21x24 2 3x22 or 224 /x5 1 21 /x4 2 3 /x2f9 1 t 2 5 27t22 1 15t24 or 27 / t2 1 15 / t4

dy /dx 5 230x24 2 20x25 2 8 or 230 /x4 2 20 /x5 2 84 /x1/2 1 9 / 12x1/4 2dy /dx 5 4x21/2 1 1 9 /2 2x21/4
21x2.5 2 5 /x0.5f' 1x 2 5 21x2.5 2 5x20.5dy /dx 5 12x3 2 18x2 1 1 1 /4 2xdy /dx 5 36x2 2 16x 1 7

For exercises . . . 1–22,27–30 47,55,56 51,53 52,54 57,58,60–62, 59,63, 31–43
64,68–75 65,67

Refer to example . . . 1,2,3,5 6 7 8 9 4 1 (in 4th section of
previous chapter)

For exercises . . . 1–10,29,34,39, 11–26,31–33,35,40, 27,28,30 41,42
42,44–47,50 43,45,48,49,51–54

Refer to example . . . 1,2 3 4 5 



Answers to Selected Exercises A-29

35. a. b. 39. 0, �1.307, and 1.307 41. a. $22.86 per unit
b. $12.92 per unit c. per unit d.
43. a. b. 8.3; the new employee can assemble about 8.3 additional bicycles per day after 2 days
of training. 1.4; the new employee can assemble about 1.4 additional bicycles per day after 5 days of training.
47. Increasing at a rate of $0.03552 per gallon per month 49. a. b. 51. a. 8.57 min
b. 16.36 min c. 6.12 min2/kcal; 2.48 min2/kcal 53. a. �100 facts/hr b. �0.01 facts/hr

Exercises 4.3 (page 225)

K / 14A 2AK / 1A 1 x 2 2

M r 1d 2 5 2000d / 1 3d2 1 10 2 2
C r 1x 2 5 123x2 2 4x 2 8 2 / 1x2 1 4x 2 21 3x 1 2 2 / 1x2 1 4x 2

f' 1x 2 5 7x4/3 2 4x25/3f' 1x 2 5 1 7x3 2 4 2 /x5/3

For exercises . . . 1–6 7–14,53,59 15–20 21–28,54,57, 29–34,64 35–40,56 58,65 55 60,61 45–50
62,63,66,67

Refer to example . . . 1 2 3 5,6 7 8 9 10 4 1 (in 3rd section
of previous 
chapter)

1. 1767 3. 131 5. 7. 9. 11.

13. 15. If and , then 

17. If and , then 19. If and , then
. 21. 23.

25. 27. 29. m' 1 t 2 5 26 1 5t4 2 1 2 3 1 85t4 2 1 2g r 1 t 2 5 263t2 / 12"7t3 2 1 2s r 1 t 2 5 1 1215 /2 2 t2 1 3t3 2 8 2 1/2
k' 1x 2 5 288x 1 12x2 1 5 227dy /dx 5 4 1 8x4 2 5x2 1 1 2 3 1 32x3 2 10x 2y 5 f 3g 1x 2 4

g 1x 2 5 x2 1 5xf 1x 2 5 x1/3 2 2x2/3 1 7y 5 f 3g 1x 2 4.g 1x 2 5 13 1 7xf 1x 2 5 2"x

y 5 f 3g 1x 2 4.g 1x 2 5 5 2 x2f 1x 2 5 x3/521 /"x 1 1"1x 2 1 2 /x;

8x 1 10"8x2 2 4;1 /x21 /x2;1 3x 1 164 2 /41 6x 1 55 2 /8;320k2 1 224k 1 39

31. 33. 35.
37. 39. 43. a. b.
45. 47. 49. 1, 3 53. 55. a. $101.22 b. $111.86
c. $117.59 57. a. b. 59. 61. a. ; this function
gives the area of the pollution in terms of the time since the pollutants were first emitted. b. ; at 12 P.M. the area of pollution is
changing at the rate of per hour 63. a. b. c. d. Always decreasing; the
derivative is negative for all . 65. a. 34 minutes b.
67. a. b.

Exercises 4.4 (page 232)

x12; 12x11 12x11

2 1 72 /17 2p mm2 per minute2 1 108 /17 2p mm3 per minute,t $ 0
21 /128 < 20.00821 /54 < 20.0220.532p mi2

32p

A 3r 1 t 2 4 5 A 1 t 2 5 4pt2P 3f 1a 2 4 5 18a2 1 24a 1 92$4570.642$10,500
D 1 c 2 5 12c2 1 10c 1 12,475 2 /25y 5 xy 5 1 3 /5 2x 1 16 /5

224 /722dy /dx 5 1218x2 1 2x 1 1 2 / 12x 2 1 2 6r r 1 t 2 5 2 1 5t 2 6 2 3 1 15t2 1 18t 1 40 2 / 1 3t2 1 4 2 2
dy /dx 5 60x2 / 12x3 1 1 2 3q r 1 y 2 5 2y 1 y2 1 1 2 1/4 1 9y2 1 4 2dy /dx 5 3x2 1 3x4 1 1 2 3 1 19x4 1 64x 1 1 2

d. The growth patterns of the two functions are
very similar.

0 2500

525

0

For exercises . . . 1–12,25–30,33,34, 13–16,23,24, 17–22,31,32,51 43,46,47,55,57 58
38,41,44–45,48,50, 39,40,42, 49
51–54,56,59–63 

Refer to example . . . 1 2 3 5 4

1. 3. 5. 7. 9.
11. 13. 15.
17. 19.
21. 23. 25.
27. 29. 31.
33. 39. a. $3.81 b. $0.20 c. approaches zero. 41. a. 100% b. 94%
c. 89% d. 83% e. f. g. The percent of these cars on the road is decreasing but at a slower rate as they age.
43. a. b. 17.8 million; 7.4 million/yr c. 105.2 million; 27.4 million/yr d. 246.2 million; 1.7
million/yr e. It increases for a while and then gradually decreases to 0. 45. a. 51,600,000 b. 1,070,000 people/year
47. a. b. 639, 292 c. 2081, 649 d. 4877, 157 e. It increases for a while and then gradually
decreases to 0. 49. a. 3.857 cm3 b. 0.973 cm c. 18 years d. 1100 cm3 e. 0.282; at 240 months old, the tumor is
increasing in volume at the instantaneous rate of 0.282 cm3/month. 51. a. 0.180 b. 2024 c. The marginal increase in the
proportion per year in 2010 is approximately 0.023. 53. a. 509.7 kg, 498.4 kg b. 1239 days, 1095 days c. 0.22 kg/day, 
0.22 kg/day

5200 / 1 1 1 12e20.52t 2

G 1 t 2 5 250 / 1 1 1 124e20.45t 2
22.86523.045

C r 1x 2f r 1x 2 5 1 9x 1 4 2ex"3x12 / 32"3x 1 2 4
dy /dt 5 3 1 1 2 t 2e3t 2 4e2t 1 1 1 1 t 2et 4 / 1 e2t 1 1 2 2ds /dt 5 1 ln 3 23"t /"tdy /dx 5 6x 1 ln 4 24x212

dy /dx 5 3 1 ln 7 273x11f r 1 z 2 5 4 12z 1 e2z2 2 1 1 2 ze2z2 2dp /dt 5 8000e20.2t / 1 9 1 4e20.2t 2 2
dy /dx 5 3x 1 ex 2 e2x 2 2 1 ex 1 e2x 2 4 /x2dy /dx 5 12xex 2 x2ex 2 /e2x 5 x 12 2 x 2 /ex

dy /dx 5 2 1x 1 3 2 12x 1 7 2e4xdy /dx 5 xex 1 ex 5 ex 1x 1 1 2dy /dx 5 16xe2x224

dy /dx 5 12xe2x2

dy /dx 5 2xex2

dy /dx 5 232e2x11dy /dx 5 224e3xdy /dx 5 4e4x

e. The graphs of the rates of change of the two functions are
also very similar.

0 2500

1

0



For exercises . . . 1,2,4,11–16, 3,17–20,55,56, 5,21–30,51,52, 6–7,31–36,43–46,59,60, 8–10,37–42,47–50,
53,54,73,79–81 74,75,88 57,58,67–70,76,91 71,77,82–87,89,90 61,62,72,78

Refer to section . . . 1 2 3 4 5

43.

55. 57. a. b. $112.48dR /dq 5 100 1 50 1 ln q 2 1 2 / 1 ln q 2 2h 1x 2 5 1x2 1 1 2 5x c
10x2

x2 1 1
1 5 ln 1x2 1 1 2 d

f r 1 t 2 5 3 1 t2 1 1 2  ln 1 t2 1 1 2 2 t2 1 2t 1 1 4 / 5 1 t2 1 1 2 3ln 1 t2 1 1 2 1 1 426

1. False 2. True 3. False 4. True 5. False 6. False 7. False 8. True 9. True 10. False
11. 13. 15. or

17. 19. 21. 23.
25. 27. 29.
31. 33. 35. 37.
39. 41.
43. 45. 47.
49. 51. a. b. 53.
55. 57. 59. 1; 61. 63. No points if 
exactly one point if or if exactly two points if 65. 5%; 5.06%
67. 69. 71.
73. a. 22; sales will increase by $22 million when $1000 more is spent on research. b. 19.5; sales will increase by $19.5 million
when $1000 more is spent on research. c. 18; sales will increase by $18 million when $1000 more is spent on research.
d. As more is spent on research, the increase in sales is decreasing. 75. a. ; costs will decrease by $2201 for the next $100
spent on training. b. ; costs will decrease by $564 for the next $100 spent on training. c. Decreasing
77. $218.65. The balance increases by roughly $218.65 for every 1% increase in the interest rate when the rate is 5%.

20.564
22.201

C r 1 x 2 5 3e2x 1 x 1 1 2 2 10 4 /x2C r 1 x 2 5 1 x2 1 3 2 2 1 5x2 2 3 2 /x2C r 1 x 2 5 12x 2 2 2 / 32x2 1 x 1 1 2 1/2 4
21 /2 # k , 0.k , 2 1 /2;k 5 0

k . 0;1; y 5 x 2 1y 5 x 1 13 /4; y 5 1 3 /4 2x 1 7 /423 /4; y 5 2 1 3 /4 2x 2 9 /4
22; y 5 22x 2 4224 /1123 /2f r 1x 2 5 1x 1 1 2e3x / 1xex 1 1 2 1 2e2x ln 1xex 1 1 2

g r 1 z 2 5 1 3z2 1 1 2 / 3 1 ln 2 2 1 z3 1 z 1 1 2 4dy /dx 5 26x 1 ln 10 2 . 102x2

ds /dt 5 2 1 t2 1 et 2 12t 1 et 2
dy /dx 5 3ex 1 x 1 1 2 1 x2 2 1 2  ln 1 x2 2 1 2 2 2x2ex 4 / 3 1 x2 2 1 2 3ln 1 x2 2 1 2 4 2 4dy /dx 5 1 x 2 3 2 x ln 0 3x 0 2 / 3x 1 x 2 3 2 2 4

dy /dx 5 2x / 12 1 x2 2dy /dx 5 10xe2x 1 5e2x 5 5e2x 12x 1 1 2dy /dx 5 26x2e22x3

dy /dx 5 212e2x

p r 1t2 5 t 1t2 1 1 2 3/2 17t2 1 2 2r r 1t2 5 1215t2 1 52t 2 7 2 / 13t 1 1 24dy /dx 5 3 12x 1 1 2 2 1 8x 1 1 2
dy /dt 5 7t6 / 12t7 2 5 2 1/2f r 1 x 2 5 24x 1 3x2 2 2 2 3dy /dx 5 1 x2 2 2x 2 / 1 x 2 1 2 2k r 1 x 2 5 21 / 14x 1 7 2 2

212 /x5 1 3 /x1/2f r 1 x 2 5 212x25 1 3x21/2dy /dx 5 24x5/3dy /dx 5 15x2 2 14x 2 9

c. To decide whether it is reasonable to sell additional items. 59. a. b. 61. a.
b. 1,307,416 bacteria per hour; the number of bacteria is increasing at a rate of 1,307,416 per hour, 20 hours after the experiment began.

c. d. e.
63. b. i. 3.343 ii. 1.466 c. i. ii. 65. 26.9; 13.1
67. a. 1.567 	 1011 kWh b. 63.4 months c. 4.14 	 10�6

d. dM/dE decreases and approac.hes zero.

Chapter 4 Review Exercises (page 244)

20.051120.172
1000e9.8901 < 19,734,0339.8901;

0 35

20,000,000

0
0 35

12

0

N 1 t 2 5 1000e9.8901e2e 2.5419720.2167t

20.0609920.19396

Answers to Selected ExercisesA-30

For exercises . . . 1,2,59,62,66 3,4,7–10,31,32,56,67 5,6,11–30,33–44, 68
57,58,60,61,64,65

Refer to example . . . 1 2 3 4

55. a. b. 0.109, 0.341 per century c. 0.802, 0.555 per century d. 0.993, 0.0256 per century
e. It increases for a while and then gradually decreases to 0. 57. a. b. 2.444 million 
students; 0.468 million students/yr c. 3.435 million students; 0.509 million students/yr d. 5.247 million students; 0.359 million
students/yr e. The rate increases at first and then decreases toward 0. 59. a. b. amps
61. a. 218.5 seconds b. The record is decreasing by 0.034 seconds per year at the end of 2010. c. 218 seconds. If the 
estimate is correct, then this is the least amount of time that it will ever take for a human to run a mile. 63. a. 625.14 ft
b. 0; yes c. –1.476 ft per ft from center

Exercises 4.5 (page 240)
1. 3.
or 5.
7. 9. 11.
13. 15.
17. 19. 21.
23. 25. 27.
29. 31. 33.
35. 37. 39.
41. f r 1x 2 5 e"x 51 / 32"x 1"x 1 5 2 4 1 ln 1"x 1 5 2 / 32"x 4 6

dw /dp 5 1 ln 2 22p / 3 1 ln 8 2 12p 2 1 2 4dy /dx 5 3 1x 1 1 2 / 3 1 ln 3 2 1x2 1 2x 2 4dy /dx 5 5 / 3 12 ln 5 2 1 5x 1 2 2 4
dy /dx 5 21 / 3 1 ln 10 2 11 2 x 2 4 or 1 / 3 1 ln 10 2 1x 2 1 2 4dy /dx 5 1 / 1x ln 10 2g r 1 z 2 5 3 1 e2z 1 ln z 2 2 12ze2z 1 1 2 /z

dy /dx 5 1xex ln x 2 ex 2 / 3x1 ln x 2 2 4dy /dx 5 ex2

/x 1 2xex2

 ln xdy /dx 5 1/ 1 x ln x 2
dy /dx 5 4 1 ln 0 x 1 1 0 2 3/ 1 x 1 1 2dy /dx 5 16x ln x 2 3x 2 / 1 ln x 2 2dy /dx 5 14x 1 7 2 4x ln x 2 / 3x 14x 1 7 2 2 4

dy /dx 5 32x 2 4 1x 1 3 2  ln 1x 1 3 2 4 / 3x3 1x 1 3 2 4ds /dt 5 t 1 2t ln 0 t 0
dy /dx 5 215x / 1 3x 1 2 2 2 5 ln 13x 1 2 2dy /dx 5 3 12x2 1 5 2 / 3x 1 x2 1 5 2 4dy /dx 5 1 / 32 1 x 1 5 2 4

dy /dx 5 1 8x 2 9 2 / 14x2 2 9x 23 / 1 3x 2 8 2
dy /dx 5 23 / 1 8 2 3x 2dy /dx 5 1/x

1.35*10271V /R 2e2t/RC

G 1 t 2 5 6.8 / 1 1 1 3.242e20.2992t 2
G 1 t 2 5 1 / 1 1 1 270e23.5t 2



Answers to Selected Exercises A-31

Day Weight Rate

50 904 24.90
100 2159 21.87
150 2974 11.08
200 3346 4.59
250 3494 1.76
300 3550 0.66

79. a. 4.839 billion/yr; the volume of mail is increasing by about 4,839,000,000 pieces per year b. –2.582 billion/yr; the volume of
mail is decreasing by about 2,582,000,000 pieces per year 81. a.

b. $0.59/yr, $0.46/yr
83. a. b. 4483; 572 85. a. 3493.76 grams b. 3583 grams c. 84 days d. 1.76 g/day
e. Growth is initially rapid, then tapers off. f.

87. a. 14,612 megawatts/yr b. 47,276 megawatts/yr c. 152,960 megawatts/yr 89. 0.242; the production of corn is increasing at
a rate of 0.242 billion bushels a year in 2000. 91. a. �0.4677 fatalities per 1000 licensed drivers per 100 million miles per year; at
the age of 20, each extra year results in a decrease of 0.4677 fatalities per 1000 licensed drivers per 100 million miles.
b. 0.003672 fatalities per 1000 licensed drivers per 100 million miles per year; at the age of 60, each extra year results in an increase
of 0.003672 fatalities per 1000 licensed drivers per 100 million miles.

0 300

3600

0

M(t) � 3583e�e�0.020(t�66)

G 1 t 2 5 30,000 / 1 1 1 14e20.15t 2
y 5  21.112 3 1026t4 1 2.920 3 1024t3 2 0.02238t2 1 0.6483t 2 4.278

y 5 1.799 3 1025t3 1 3.177 3 1024t2 2 0.06866t 1 2.504,

Chapter 5 Graphs and the Derivative

Exercises 5.1 (page 260)
1. a. b. 3. a.
b. 5. a.
b. 7. a.
b.
9. a. b. 11. a. b. 13. a.
b. c. 15. a. b. c. 17. a.
b. c. 19. a. b. c. 21. a. None
b. None c. 23. a. None b. None c. 25. a. 0 b. c. 27. a. 0
b. c. 29. a. 7 b. c. 31. a. b. c. 33. a.
b. c. 35. a. b. c. 39. Vertex: 

increasing on decreasing on 41. On nowhere; nowhere
43. a. About b. About (0, 567) 45. a. Nowhere b. 47. (0, 2200) 49. a. Increasing on (0, 7.4) or from
2000 to about the middle of 2007 b. Decreasing on (7.4, 50) or from about the middle of 2007 to 2050 51. a. Yes b. April to
July; July to November; January to April and November to December c. January to April and November to December
53. a. b. 55. a. (0, 1) b. 57. a. b. (0, 1.3); 
59. 61. a. (2500, 5750) b. (5750, 6000) c. (2800, 4800) d. (2500, 2800) and (4800, 6000)

Exercises 5.2 (page 271)
1. Relative minimum of at 1 3. Relative maximum
of 3 at 5. Relative maximum of 3 at ;
relative minimum of 1 at 7. Relative maximum
of 3 at ; relative minimum of at and 9. Relative maximum at ; relative minimum at 3 11. Relative maxima at

and ; relative minimum at and 13. Relative minimum of at 5 15. Relative maximum of at ; relative
minimum of at 17. Relative maximum of 827/96 at ; relative minimum of at �5 19. Relative maximum
of at 0; relative minimum of at 3 and 21. Relative maximum of 3 at 23. Relative maximum of 1 at rela-
tive minimum of 0 at 0 25. No relative extrema 27. Relative maximum of 0 at 1; relative minimum of 8 at 5 29. Relative maxi-
mum of at relative minimum of at 0 31. No relative extrema 33. Relative minimum of at
35. 37. Relative maximum of 6.211 at 0.085; relative minimum of at 2.161
39. Relative minimum at 41. a. 13 b. $44 c. $258 43. a. 100 b. $14.72

c. $635.76 45. Relative maximum of 20,470 megawatts at midnight
(t � 0); relative minimum of 20,070 megawatts at 1:40 A.M.; relative
maximum of 30,060 megawatts at 4:44 P.M.; relative minimum of
20,840 megawatts at midnight (t � 24). 47.
49. 120 units 51. 5:04 P.M.; 6:56 A.M. 53. 4.96 years; 458.22 kg
55. 10 57. a. 28 ft b. 2.57 sec

q 5 10; p < $73.58�10 10

30

�15

y � 2|x � 1| � 4|x � 5| � 20
x 5 5

257.6071 3, 13 2
1 / ln 2e ln 22322;22.46

21;28 /32328524
2377 /621 /421212

2328821.52622.528
2122272224

22
2422

24

12`, 0 2 ; 10, ` 2
1 1.3, ` 2F' 1 t 2 5 175.9e2t/1.3 1 1 2 0.769t 211, ` 21 1.85, 5 210, 1.85 2

10, ` 21 567, ` 2
10, ` 2 ;12b / 12a 2 , ` 212`, 2b / 12a 2 2 ,14ac 2 b2 2 / 14a 2 2 ;

12b / 12a 2 ,12 /5, ` 212`, 0 2 ,10, 2 /5 20, 2 /512`, 0 2 , 12 / ln 2, ` 210, 2 / ln 2 2
0, 2 / ln 21 1 /3, ` 212`, 1 /3 21 /31 3, 7 21 7, ` 212`, 0 210, ` 2

12`, 0 210, ` 2121, ` 212`, 21 2 ,12`, ` 2
121, 0 212`, 22 2 ,10, ` 2122, 21 2 ,22, 21, 0123 /2, 4 212`, 23 /2 2 , 1 4, ` 2

23 /2, 4123, 4 212`, 23 2 , 14, ` 223, 41 17 /12, ` 212`, 17 /12 2
17 /12128, 26 2 , 122.5, 21.5 212`, 28 2 , 126, 22.5 2 , 121.5, ` 2121, 3 21 3, ` 212`, 21 2 ,

124, 22 212`, 27 2 ,
122, ` 2127, 24 2 ,124, 22 2
122, ` 212`, 24 2 ,122, ` 2
12`, 22 212`, 1 21 1, ` 2

For exercises . . . 1–8, 13–22,25, 21–24 26–28, 45,54,55 46–48
43,44 29–34,38, 35,36
50,51, 39,42,49,
60,61 52,53,56–59

Refer to example . . . 1 2 4 3 6 5

For exercises . . . 1–8, 13–20, 21–24 25–34, 41–44, 45,55,57
37–39, 35,36, 52–54, 46–49
50 51 56

Refer to example . . . 2 3a 3b 3c 4 1



For exercises . . . 1–16 17–26, 27–48,54, 57–64,79, 72–75 91,92,
76,77 65–68, 81,82, 78, 94,95

70,80, 90,92,93 83,84
85–88

Refer to example . . . 2 3 5 6 7 4

Answers to Selected ExercisesA-32

Exercises 5.3 (page 283)
1. 46
3. 152
5. 6; 6
7. 2; 
9. 11. or does not exist; 
13. 15. does not exist; 
17. 19. 21.
or or 23. or 

or 25. a.
b. or, using factorial notation, 

27. Concave upward on concave downward on inflection point at 29. Concave upward on 
and concave downward on inflection points at and 31. Concave upward on concave
downward on no inflection points 33. Always concave upward; no inflection points 35. Concave upward on

concave downward on inflection point at 37. Concave upward on 1 5, ` 2 ;1 3 /2, 525 /2 21 3 /2, ` 2 ;12`, 3 /2 2 ;
12`, 2 2 ;

12, ` 2 ;1 8, 6 2121, 7 2121, 8 2 ;1 8, ` 2 ;
12`, 21 212, 3 212`, 2 2 ;12, ` 2 ;

f1n2 1x 2 5 121 2n21 1n 2 1 2 ! /xnf1n2 1x 2 5 121 2n21 31 . 2 . 3 ) 1n 2 1 2 4 /xnf152 1x 2 5 24 /x5

f142 1x 2 5 26 /x4;ft 1x 2 5 2 /x3;fs 1x 2 5 21 /x2;f r 1x 2 5 1 /x;144 / 1x 2 2 2 5f142 1x 2 5 144 1x 2 2 225

236 / 1x 2 2 24;ft 1x 2 5 236 1x 2 2 224272 / 1x 1 2 2 5f142 1x 2 5 272 1x 1 2 22518 / 1x 1 2 24;
ft 1x 2 5 18 1x 1 2 224f142 1x 2 5 600x 2 72ft 1x 2 5 300x2 2 72x 1 12;f142 1x 2 5 168ft 1x 2 5 168x 1 36;

20.050fs 1x 2 5 123 1 2 ln x 2 / 14x3 2 ;70e24 < 1.282210;fs 1x 2 5 20x2e2x2

2 10e2x2

;
23 /21/4fs 10 226 /x5/4;f" 1x 2 5 26x25/4f" 1x 2 5 4 / 1x2 1 4 2 3/2; 1 /2; 1 / 14"2 2

2 /27fs 1x 2 5 2 / 1 1 1 x 2 3;
fs 1x 2 5 6;

24;f" 1x 2 5 48x2 2 18x 2 4;
214;f" 1x 2 5 30x 2 14;

concave downward on no inflection points 39. Concave upward on concave downward on 
inflection point at 41. Never concave upward; always concave downward; no inflection points

43. Concave upward on and concave downward on inflection points at and 
45. Concave upward on concave downward on and inflection points at and

47. Concave upward on and concave downward on and inflection points at 

and 49. Concave upward on and concave downward on
inflection points at 0 and 4 51. Concave upward on and concave downward on and ;

inflection points at and 12 53. Choose where For example, has a relative minimum at
and has an inflection point at 55. a. Close to 0 b. Close to 1 57. Relative maximum at �5.

59. Relative maximum at 0; relative minimum at 61. Relative minimum at �3 63. Relative maximum at relative
minimum at 0 65. a. Minimum at about and 4.0; maximum at about 2.4 b. Increasing on about and about

decreasing on about and c. About 0.7 and 3.3 d. Concave upward on about and
concave downward on about 67. a. Maximum at minimum at b. Increasing on ; decreasing

on and c. About �1.7, 0, and about 1.7 d. Concave upward on about (�1.7, 0) and ; concave down-
ward on about 71. 45.6; mid 2045 73. (22, 6517.9) 75. (2.06, 20.8) 79. a. 4 hours b. 1160
million 81. a. After 2 hours b. 83. (38.92, 5000) 85. Inflection point at years; this signifies the
time when the rate of growth begins to slow down, since L changes from concave up to concave down at this inflection point.
87. Always concave down 89. is decreasing and concave up; . 91. a. �96 ft/sec b. �160 ft/sec
c. �256 ft/sec d. �32 ft/sec2 93. v(t) � 256 � 32t; a(t) � �32; 1024 ft; 16 seconds after being thrown 95. t � 6

f r 1 t 2 , 0, f" 1 t 2 . 0f 1 t 2

t 5 1 ln c 2 /k < 2.963 /4%

12`, 21.7 2  and 10, 1.7 2
1 1.7, ` 21 1, ` 212`, 21 2

121, 1 2211;10.7, 3.3 21 3.3, ` 2 ;
12`, 0.7 212.4, 4.0 212`, 20.4 214.0, ` 2 ;

120.4, 2.4 220.4
24 /7;2 /3.

x 5 0.f 1x 2 5 x5/3x 5 0,
f 1x 2 5 x4/31 , k , 2.f 1x 2 5 xk27, 3,

1 3, 12 212`, 27 21 12, ` 2 ;127, 3 210, 4 2 ;
14, ` 2 ;12`, 0 21 e23/2, 23e23 / 12 ln 10 2 212e23/2, 23e23 / 12 ln 10 2 2

10, e23/2 2 ;12e23/2, 0 21 e23/2, ` 2 ;12`, 2e23/2 2
1 1, ln 2 2121, ln 2 21 1, ` 2 ;12`, 21 2121, 1 2 ;

1 1, 23 210, 0 210, 1 2 ;1 1, ` 2 ;12`, 0 2
1210 /3, 2250 /27 212`, 210 /3 2 ;

1210 /3, ` 2 ;12`, 5 2 ;

For exercises . . . 3–10,29–30 11,12 13–20 21–28
Refer to example . . . 1 2 3 4

Exercises 5.4 (page 294)

1. 0 3. 5. 7. 9.

11. 13. 15. 17.

–8

8

f(x)

x

1

–1
f(x) = x

x  + 12

(1, 1/2)

(–1, –1/2)

(√3, √3/4)

(–√3, –√3/4)

(0, 0)–5 1

3

f (x)

x

f (x) = 1
x2 + 4x + 3

(–2, –1)

–5 10

2

f (x)

x

f (x) =

(4, 0)

–x + 4
x + 2

1

0
10

f (x)

x

f (x) = 2x + 10
x

(–√5, –4√5)

(√5, 4√5)

3

–32

–16

f (x)

x

f (x) = x4 – 4x3

(0, 0) (4, 0)

(2, –16)

(3, –27)

200

f (x)

x

f (x) = x4 – 24x2 + 80

(0, 80)

(2, 0)

(–2√5, 0)

(–2, 0)

(–2√3, –64) (2√3, –64)

(2√5, 0)

(       )
–1 1

f(x)

x

2

4

–2
2
3

17
9

–,

0

f(x) = –3x  + 6x  – 4x –13 2

3

(3, 179)

(–1.5, –185.5)

(– 6, –550)

–6

f(x)

x

250

–500

–250

f(x) = –2x  – 9x  + 108x –103 2



Answers to Selected Exercises A-33

19. 21. 23. 25.

27. 29. 31. 3, 7, 9, 11, 15 33. 17, 19, 23, 25, 27

In Exercises 35–39, other answers are possible. 35. 37. 39.

Chapter 5 Review Exercises (page 297)

1

f (x)

x

5

–4 4

f(x)

x
–2

4

0

f (x)

x2 4

2

(–0.2, 0.410) (0.4, 0.326)

y

x–1–2–3–4
–1

10 2 3 4

2

3

1

f (x) = x    – x2/3 5/3

21 3–1
–1

f (x) = (x – 1)e–x

(2, e–2) (3, 2e–3)

y

x

1

21 3–1

(1, e–1)(2, 2e–2)

f (x) = xe–x
y

x

1

–25 9e

y

x

.5

.3

0

f (x) = 1n x
x

(4.48, 0.33)

e, )) 1
e

4–3

y

x

4

–4

1
e

1
e

1
e

1
e

–

–

))

))

,

,

0

f (x) = x 1n  x

–5 4

–2

–0.8

0.8

2
f (x)

x

f (x) =  1
x2 – 9

0, – ( )1
9

1. True 2. False 3. False 4. True 5. False
6. True 7. False 8. False 9. False
10. False 11. True 12. False
17. Increasing on decreasing on 19. Increasing on decreasing on and 
21. Never decreasing; increasing on and 23. Decreasing on and ; increasing on and

25. Relative maximum of at 2 27. Relative minimum of at 2 29. Relative maximum of 101 at relative 
minimum of at 2 31. Relative maximum at relative minimum at 
33. 35.
37.
39. 41. 43. 45.

47. 49. 51. 53.

–2 1

–1

1

2
f (x)

x

f (x) = xe2x

(0, 0)
(–1,–e–2)

1 –1
2e)) ,2

–

f(x)

x
2

f(x) = 2x
3 – x

(0, 0)

3

f(x)

f(x) =

(2, 4)

(–2, –4) x2 + 4
x

x–4 –2 2 4

6

4

0

–4

f (x)

f (x) = x4 + 2x2

x–2

2

(0, 0)

20

10

0

f(x)

f (x) = –4x3 – x2 + 4x + 5

x–1 1

(0, 5)

2 3–2–3

10

–10

5
2.5

–5

, 4.66– (  12          )1

, 6.25 ( 2          )1
, 3.07– (   3          )2

f(x)

f(x) = x – 1
2x + 1

x–3 3

10

–10

(1, 0)

(0, –1)

f(x)

f(x) = x4 –     x3 – 4x2 + 1

x0
–2

3

12

–10

(0, 1)

, –5.12(   3                )1+√7

, 0.11 (   3             )1–√7

–1, –(         3)2

2, –(         3 )29

3
4

f (x)

f (x) = –2x3 –      x2 + x – 3

x

2

0

(0, –3)

–2

–6

6

, –2.80(  
3             )1, –3.375–(   2              )1

, –3.09–(  12            )
2
1

1

1 /23/2 < 0.354; 1 /103/2 < 0.032fs 1 t 2 5 1 t2 1 1 223/2 or 1 / 1 t2 1 1 2 3/2
  ;

f" 1x 2 5 180 1 3x 2 6 223 or 180 / 1 3x 2 6 2 3; 220 /3; 24 /75fs 1x 2 5 36x2 2 10; 26; 314

1 1.618, 13.203 2120.618, 0.206 2 ;224
23;27241 1, ` 2
121, 0 210, 1 212`, 21 21 3, ` 212`, 3 2

1 3, ` 212`, 25 /3 2125 /3, 3 2 ;12`, 29 /2 2129 /2, ` 2 ;

For exercises . . . 1,2,12,13, 3,4,14,15, 5–9,16,33–38, 10,11,
17–24,70 25–32,63,64, 61,62,65,66,71, 39–60,63e,

72,73a,74b,c 73b,74a 67–69
Refer to section . . . 1 2 3 4



55. 57. In Exercise 59, other answers are possible. 59.

61. a. Both are negative. 63. a. b. 7 brushes c. $229 d. $343 e. between 2 and
3 brushes 65. a. The first derivative has many critical numbers b. The curve is always decreasing except at frequent inflection
points. 67. 69. 71. 7.405 yr; the age at which the rate of learning to pass

the test begins to slow down 73. a. At 1965, 1973,
1976, 1983, 1986, and 1988 b. Concave upward; this
means that the stockpile was increasing at an increasingly
rapid rate.

q 5 7 /3;P 1q 2 5 2q3 1 7q2 1 49q

y

x

6

–6

–2 4 6–6 –32

2

f (x)

x

f (x) = 4x1/3 + x4/3

(–1, –3)

(2, 6(2)1/3)

(0, 0)

–6 –4 –2 2 4 6

1

2

3

4
f (x)

x

f (x) = ln(x2 + 4)

0

(0, ln 4)

(2, ln 8)(–2, ln 8)

Answers to Selected ExercisesA-34

Chapter 6 Applications of the Derivative
Exercises 6.1 (page 309)
1. Absolute maximum at no absolute minimum
3. No absolute extrema 5. Absolute minimum at no 
absolute maximum 7. Absolute maximum at absolute 
minimum at 11. Absolute maximum of 12 at absolute minimum of at and 13. Absolute maximum of
19.67 at absolute minimum of at 15. Absolute maximum of 1 at absolute minimum of at

and 17. Absolute maximum of 1/3 at absolute minimum of at 19. Absolute maximum of
0.21 at absolute minimum of 0 at 21. Absolute maximum of 1.710 at absolute minimum of

at 23. Absolute maximum of 7 at absolute minimum of 0 at 25. Absolute maximum of 4.910 at
absolute minimum of at 27. Absolute maximum of 19.09 at absolute minimum of 0.6995 at

29. Absolute maximum of 1.356 at absolute minimum of 0.5 at 31. Absolute minimum of 7
at no absolute maximum 33. Absolute maximum of 137 at no absolute minimum 35. Absolute maximum of 0.1
at absolute minimum of at 37. Absolute maximum of 0.1226 at no absolute minimum
39. a. Absolute minimum of at absolute maximum of 0 at b. Absolute maximum of about at 
absolute minimum of at 41. a. Relative maxima of 8496 in 2001, 7556 in 2004, 6985 in 2006, and 6700 in 2008;  rela-
tive minima of 7127 in 2000, 7465 in 2003, 6748 in 2005, 5933 in 2007, and 5943 in 2009. b. Absolute maximum of 8496 in 2001
and absolute minimum of 5933 in 2007. 43. The maximum profit is $700,000 when 1,000,000 tires are sold. 45. a. 112 b. 162
47. About 11.5 units 49. 100 units 51. 6 mo; 6% 53. About 7.2 mm 55. Maximum of 25 mpg at 45 mph; minimum of 16.1
mpg at 65 mph 57. The piece formed into a circle should have length or about 5.28 ft.

Exercises 6.2 (page 318)
1. a. b.

c. d.

e. f. 8100; 90 and 90 3. a. b. c.

d. e. f. 108,000; 60 and 30

5. 7. a. b. 800 c. $640,000 9. a.

b. c. 350 m d. 11. 13. $960 15. a. 125 passengers b. $156,250

17. In 10 days; $960 19. 4 in. by 4 in. by 2 in. 21. (or 8 in.) 23. 20 cm by 20 cm by 40 cm; $7200

27. 29. 31. 1 mile from point A

33. a. 15 days b. 16.875% 35. 12.98 thousand 37. a. 12 days b. 50 per ml c. 1 day d. 81.365 per ml

height 5 11.58 cmRadius 5 5.242 cm;Radius 5 5.206 cm, height 5 11.75 cm

2 /3 ft

405,000 m2245,000 m2A 1x 2 5 1400x 2 2x2

1400 2 2xR 1x 2 5 160,000x 2 100x2x 5 2.722C 1x 2 5 x2 /2 1 2x 2 3 1 35 /x;

P 1 90 2 5 0P 10 2 5 0, P 1 60 2 5 108,000,x 5 0, x 5 60dP /dx 5 180x 2 3x2;

30, 90 4P 5 x2 1 90 2 x 2y 5 90 2 xP 1 90 2 5 8100P 1 180 2 5 0;P 10 2 5 0;

x 5 90dP /dx 5 180 2 2x;30, 180 4
P 5 x 1 180 2 x 2y 5 180 2 x

12p / 14 1 p 2  ft,

x 5 121
x 5 2;20.76x 5 0x 5 21;25

x 5 e1/3;x 5 2220.5x 5 4;
x 5 3;x 5 2;

x 5 21x 5 0.6085;x 5 1 ln 32 /3
x 5 21;x 5 221.545x 5 4;
x 5 0x 5 1;x 5 021.587

x 5 3;x 5 1x 5 1 1 "2 < 2.4;
x 5 321 /3x 5 0;x 5 3x 5 23

280x 5 0;x 5 121.17x 5 24;
x 5 3x 5 028x 5 5;x2

x1;
x1 ;

x3 ;

For exercises . . . 1–6,31–38 7,8,11–30,39 41–46,51–60 47–50

Refer to example . . . 2 1 3 On Graphical 
Optimization

For exercises . . . 1–8,15–18, 9–14, 25–30 31,32,41, 35,36,
33,34,37,44 19–24,47 42,45,46 38–40,43

Refer to example . . . 1 3 4 2 5



39. 49.37 41. Point P is 43. a. Replace a with er and b with r/P.

b. Shepherd: ; Ricker: Beverton-Holt:
2 c. Shepherd: a; Ricker: a; Beverton-Holt: a; the constant a represents the slope of the graph of

d. 194,000 tons e. 256,000 tons 45. 47. 36 in. by 18 in. by 18 in./7 < 6.7 mi1 56 2 2"21 2f 1S 2  at S 5 0.

f' 1S 2 5 a / 31 1 1S /b 2 4
f' 1S 2 5 ae2bS 1 1 2 bS 2 ;31 1 1S /b 2 c 42f' 1S 2 5 a 31 1 1 1 2 c 2 1S /b 2 c 4 /

from Point A3"7/7 < 1.134 mi

Answers to Selected Exercises A-35

For exercises . . . 1–16,38–40 17–37 41–50
Refer to example . . . 1,2 3 4

For exercises . . . 1,2,9–12, 3,13,14 4,27,32 5,7,8,25,26, 19–24,31
15–18 28–30

Refer to example . . . 1 2 3 4 5

Exercises 6.3 (page 329)
3. c 5. It is negative. 9. 10,000 11. 10
13. 4899 19. a. b. 25
21. a. b. 25,000 23. a. b. 5 25. a. inelastic; total revenue increases as price
increases. b. elastic; total revenue decreases as price increases. 27. 0.06; the demand is inelastic. 29. 2.826; the
demand is elastic. 31. a. 0.071 b. Inelastic c. $1255

Exercises 6.4 (page 334)
1. 3.
5. 7.
9. 11. 13.
15. 17. 19. 21.
23. 25. 27. 29. 31.
33. 35. 37. a.
b.

0

10

–10

5

–5
105–5–10

y

x

(6, –8)

(6, 8)

y 5 1 3 /4 2x 2 25 /2y 5 2 1 3 /4 2x 1 25 /2;y 5 1 8 /9 2x 1 10 /9y 5 2x 1 2

y 5 22x 1 7y 5 1y 5 1 5 /2 2x 2 1 /2x 1 59 /11y 5 2 1 37 /11 2y 5 1 11 /12 2x 2 5 /6

y 5 x /64 1 7 /4y 5 x 1 2y 5 13 /4 2x 1 25 /41 1 2 3x2y3 2dy /dx 5 y 12xy3 2 1 2 /
dy /dx 5 1 5 2 2xyex2y 2 / 1x2ex2y 2 4 2dy /dx 5 14x3y3 1 6x1/2 2 / 1 9y1/2 2 3x4y2 2dy /dx 5 "y / 3"x 1 5"y 2 2 2 4

dy /dx 5 23x 12 1 y 2 2 /2dy /dx 5 15x2 / 1 6y 1 4 2
dy /dx 5 1 8x 2 5y 2 / 1 5x 2 3y 2dy /dx 5 26x / 1 5y 2

E 5 8;
E 5 0.5;E 5 5 /q1 7500 2 p2 2E 5 2p2 /

E 5 p / 1200 2 p 2

39. a. b. c. They are reciprocals.
41. there is no function that satisfies 
43. a. the approximate increase in cost of an additional unit
b. $0; the approximate change in revenue for a unit increase in sales 45 a. 0.44; inelastic
b. 0.44 47. 49. ds /dt 5 14s 2 6t2 1 5 2 / 1 3s2 2 4t 21 / 1 3"3 2

$0.94;
x2 1 y2 1 1 5 0.y 5 f 1x 2dy /dx 5 2x /y;

dv /du 5 2 12v 1 1 2 1/2 / 12u1/2 2du /dv 5 22u1/2 / 12v 1 1 2 1/2

For exercises . . . 1–8, 9–14 15 23,24, 25 26–28,30
16–22 29,31,32

Refer to example . . . 1 5 6 3 2 4

For exercises . . . 1–8 9–16 17–20 21–35 36–41 
Refer to example . . . 1 2 3 4 5

For exercises . . . 1–3, 4,5, 6, 19–30, 7,8, 9,10, 45–48,
11–18 49–54 43,44,56 31–38, 39–42, 57,58,

55,59–61 62,63 64–68
Refer to section . . . 1 3 4 5 6 2

Exercises 6.5 (page 341)
1. 3. 5. 7. 9. $384 per month
11. a. Revenue is increasing at a rate of $180 per day.
b. Cost is increasing at a rate of $50 per day. c. Profit is 
increasing at a rate of $130 per day. 13. Demand is decreasing at a rate of approximately 98 units per unit time.
15. 17. About 19. a. b. About 
21. 23. 24/5 ft/min 25. 27. 2/27 cm/min 29. 31.

Exercises 6.6 (page 348)
1. 3. 0.1 5. 0.060 7. 9. 12.0417; 12.0416; 0.0001
11. 0.995; 0.9950; 0 13. 1.01; 1.0101; 0.0001 15. 0.05; 0.0488; 0.0012 17. a. thousand lb b. thousand lb
19. $60 21. About 23. a. 0.007435 b. 25. a. 0.347 million b. 27.
29. 31. a. About 9.3 kg b. About 9.5 kg 33. 35. 37. 39.
41.

Chapter 6 Review Exercises (page 349)
1. False 2. True 3. False 4. True 5. True
6. True 7. True 8. True 9. True 10. True
11. Absolute maximum of 33 at 4; absolute minimum of 1 at 0 
and 6 13. Absolute maximum of 39 at absolute minimum of at 17. a.
b. 21. 23.
25. 27. 29. 33. 272
35. 37. 41. 0.00204 43. a. (2, ) and (2, 4) b. (2, ) is a relative minimum; (2, 4) is a relative maximum.
c. No 45. a. 600 boxes b. $720 47. 3 in. 49. 1789 51. 80 53. 0.47; inelastic 55.
57. a. b. About the 15th day 59. 61. 63.

65. 67. 10 ft; 18.67 sec1.25 1 2 ln 1.5
6 0.736 in221 /16 5 1.3125 ft per min8 /3 ft per min

3 51

7.5

0

56p ft2 per min
252528e322

y 5 1216 /23 2x 1 94 /231x 2 6x2y3 2 6xy2 2dy /dx 5 12xy4 1 2y3 2 y 2 /dy /dx 5 2 1 30 1 50x 2 /3
dy /dx 5 6"y 2 1 / 3x1/3 1 1 2 "y 2 1 2 41 8y 1 12x3y32dy /dx 5 12x 2 9x2y4 2 /minimum 5 0.13Maximum 5 0.35;

minimum 5 0Maximum 5 0.37;5 /32319/2723;

60.116  in3

61.273 in30.00125 cm0.472 cm327.2p cm380p mm2

1568p mm320.022 million20.0051059600 in3

252.224.4
20.0231.9

"2 < 1.41 ft per sec62.5 ft per min16p ft2 /min25.6 crimes per month
52.89 kcal per day2105.15 m20.25 dm /dt1.9849 g per day0.067 mm per min

23 /21 /529 /7264



Answers to Selected ExercisesA-36

Chapter 7 Integration

Exercises 7.1 (page 366)
1. They differ only by a constant.
5. 7.
9.
11.
13.
15.
17.
19. 21. 23. 25. 27.
29. 31. 33. 35.
37. 39. 41. 43.
45. 47. 49.
51. 53. 55.
57. a. b. Approximately 152.6 billion monthly text messages 59. a.

b. $240 61. 63. a. b. 7537

65. a. b. About 2,082,000 67.

69. ; 20 sec 71. 73. 160 ft/sec, 12 ft

Exercises 7.2 (page 374)

3.
5.
7.
9. 11. 13. 15. 17.

19. 21. 23.
25. 27. 29. 31.
33. 35. 39. a. b. 150 players
41. a. b. Yes 43. a.

b. About 181,000

Exercises 7.3 (page 383)

3. a. 88 b.

5. a. 21 b. 23 c. 22 d. 22 7. a. 10 b. 10 c. 10 d. 11 9. a. 8.22 b. 15.48 c. 11.85 d. 10.96 11. a. 6.70
b. 3.15 c. 4.93 d. 4.17 13. a. 4 b. 4 15. a. 4 b. 5 17. 19. 24 21. b. 0.385 c. 0.33835 d. 0.334334
e. 0.333333 25. Left: 1410 trillion BTUs; right: 3399 trillion BTUs; average: 2404.5 trillion BTUs 27. a. Left: about 582,000
cases; right: about 580,000 cases; average: about 581,000 cases b. Left: about 146,000 cases; right: about 144,000 cases; average:
about 145,000 cases 29. About 1300 ft; yes 31. 2751 ft, 3153 ft, 2952 ft 33. a. About 660 BTU/ft2 b. About 320 BTU/ft2

35. a. 9 ft b. 2 sec c. 4.6 ft d. Between 3 and 3.5 sec 37. 22.5 and 18 ft 39. a. About 75,600 b. About 77,300 

Exercises 7.4 (page 395)
1. 3. 5. 7. 13
9. 11. 76 13. 15.
17.
19. 21.
23. 25. 27. 49 29. 31. 10 33. 76 35.
37. 39. 41. 43.

45. 47. 51. 53. a. c.

55. a. b. c. It is slowly increasing without bound.

57. No 59. a. 0.8778 ft b. 0.6972 ft 61. a. 18.12 b. 8.847 63. b. c. 2 1 513/2 2 263/2 2 /15 < 30.89 million3

60

0

n 1x 2  dx

1 9000 /8 2  1264/3 2 174/3 2 < $37,4771 9000 /8 2 1 174/3 2 24/3 2 < $46,341

f' 1 1 2 < 2.746, and g 1 1 2 5 e < 2.718x5 /5 2 1 /5212283

c

a

f 1x 2 dx 5 3

b

a

f 1x 2 dx 1 3

c

b

f 1x 2 dx

e2 2 2e 1 1 < 2.95223 /3e 2 2 1 1 /e < 1.086e2 2 3 1 1 /e < 4.757
41 /21 /8 2 1 / 32 1 3 1 e2 2 4 < 0.076871 ln 2 2 2 /2 < 0.2402447 /7 < 63.86

91 /3e8 /4 2 e4 /4 2 1 /6 < 731.4
20e0.3 2 20e0.2 1 3 ln 2 2 3 ln 3 < 1.353

108 /254 /5216 /3
28 /323 /2218

4p

3

8

0

12x 1 5 2  dx

1970 1 t 2 1970 2 1.4 /1.4 4 1 61.298
f 1 t 2 5 4.0674 3 1024 3 1 t 2 1970 2 2.4 /2.4 1C 1x 2 5 6 ln 1 5x2 1 e 2 1 4

R 1x 2 5 6 1x2 1 27,0002 1/3 2 18083x211 / 1 6 ln 8 2 1 C1 ln 10 2 1 log x 2 2 /2 1 C

1 1 /2 2  ln 1 e2x 1 5 2 1 C1 1 1 3 ln x 2 3 /9 1 C1x2 1 12x 2 3/2 /3 1 C2 1 u 2 1 2 3/2 /3 1 2 1 u 2 1 2 1/2 1 C

1p 1 1 2 7 /7 2 1p 1 1 2 6 /6 1 C21 / 32 1x2 1 x 2 2 4 1 C3ln 1x4 1 4x2 1 7 2 4 /4 1 C

3ln 1 t2 1 2 2 4 /2 1 C2 e1/z 1 Ce2t2t2

/2 1 Ce2x3

/2 1 C14z2 2 5 2 3/2 /12 1 C
21x2 1 2x 2 4 223 /3 1 C
212m 1 1 222 /2 1 C
2 12x 1 3 2 5 /5 1 C

s 1 t 2 5 2t5/2 1 3e2t 1 1s 1 t 2 5 216t2 1 6400

v 1 t 2 5 5t3 /3 1 4t 1 6B 1 t 2 5 0.02016t3 2 0.6460t2 1 15.86t 1 839.7

N 1 t 2 5 155.3e0.3219t 1 144.7a ln x 2 bx 1 C

P 1x 2 5 25x4 /2 1 10x3 2 40f 1 t 2 5 3.75t2 2 16.8t 1 0.05
p 5 500 2 0.1"xp 5 175 2 0.01x 2 0.01x2C 1x 2 5 5x2 /2 2 ln 0 x 0 2 153.50

C 1x 2 5 3x5/3 /5 1 2x 1 114 /5C 1x 2 5 3e0.01x 1 5C 1x 2 5 2x2 2 5x 1 8
f 1x 2 5 3x5/3 /510x / 1 ln 10 2 1 C6x7/6 /7 1 3x2/3 /2 1 Cx3 /3 1 x2 1 x 1 C

e2u /2 1 2u2 1 C1 1 /4 2 ln 0 t 0 1 t3 /6 1 C23 ln 0 x 0 2 10e20.4x 1 e0.1x 1 C215e20.2x 1 C
21 / 1 3x 2 1 C6t21.5 2 2 ln 0 t 0 1 C2p3 / 12y2 2 2 2"py 1 C27 /z 1 C4u5/2 2 4u7/2 1 C

8v3/2 /3 2 6v5/2 /5 1 C
5x4 /4 2 20x2 1 C
10z3/2 /3 1 "2z 1 C
z4 1 z3 1 z2 2 6z 1 C

2t3 2 4t2 1 7t 1 C
z2 1 3z 1 C6k 1 C

For exercises . . . 5–24, 25,26, 33,34, 43,44 45–52, 53–56 67–74
27,28, 29–32, 37–40, 57–59,

35,36, 61 65
41,42,
60,63,
66

Refer to example . . . 4,5 7,8 6 12 9 10 11

For exercises . . . 3,4,29, 5–8, 9,10,27, 11–16, 17–20, 23–26 39–44
33,34 21,22 28,30 31,35, 32

36
Refer to example . . . 1 3 2 5 4 6 7

For exercises . . . 5–14,17–22 15,16,24–30, 31,32,36–38
33–35,39

Refer to example . . . 1,2 3 4

For exercises . . . 1–6,9–12, 7,8,13,14, 31–44,47 55–61,
15–20, 21,22, 63–72
23,24 27–30,54

Refer to example . . . 1,2,3 4 5, 6 7



Answers to Selected Exercises A-37

65. a. b. 67. b. About 69. a. About 286 million; the total population

aged 0 to 90 b. About 64 million 71. a. b. c. d. About 12.8 yr
e. About 14.4 yr

Exercises 7.5 (page 405)
1. 21 3. 20 5. 7. 366.2
9. 11.
13.

15. 17. 19. 21. 23.
25. 27. a. 8 yr b. About $148 c. About $771 29. a. 39 days b. $3369.18 c. $484.02
d. $2885.16 31. 12,931.66 33. 54
35. a. b. c. $4500 d. $3375 37. a. 12 b. $5616, $1116 c. $1872, $1503

d. $387 39. a. About 71.25 gal b. About 25 hr c. About 105 gal d. About 47.91 hr
41. a. 0.019; the lower 10% of the income producers earn 1.9% of the total income of the 
population. b. 0.184; the lower 40% of the income producers earn 18.4% of the total income of
the population. c. d. 0.15 e. Income is distributed less equally in

2008 than in 1968.

Exercises 7.6 (page 413)
1. a. 12.25 b. 12 c. 12 3. a. 3.35 b. 3.3
c. 5. a. 11.34 b. 10.5 c. 10.5
7. a. 0.9436 b. 0.8374 c. 9. a. 1.236
b. 1.265 c. 11. a. 5.991 b. 6.167
c. 6.283; Simpson’s rule 13. b is true. 15. a. 0.2 b. 0.220703, 0.205200, 0.201302, 0.200325, 0.020703, 0.005200, 0.001302,
0.000325 c. 17. a. 0.2 b. 0.2005208, 0.2000326, 0.2000020, 0.2000001, 0.0005208, 0.0000326, 0.0000020, 0.0000001
c. 19.
21. a. b. 6.3 c. 6.27 23. a. 1.831 b. 1.758 25. About 30 mcg(h)/ml; this represents the total

amount of drug available to the patient for each ml of blood. 27. About 9 mcg(h)/ml; this repre-
sents the total effective amount of the drug available to the patient for each ml of blood.
29. a. b. About 1212 kg; about 1231 kg c. About 1224 kg; about 1250 kg
31. a. b. 71.5 c. 69.0 33. 3979 35. a. 0.6827 b. 0.9545 c. 0.9973

Chapter 7 Review Exercises
(page 417)
1. True 2. False 3. False 4. True
5. True 6. False 7. False 8. True
9. True 10. False 11. True 12. False
13. False 14. True 19.
21. 23. 25. 27. 29. 31.
33. 35. 37. 39. 41. 20 43. 24
45. a. b. is equivalent to the Fundamental Theorem with and because 
is an antiderivative of 47. 12 49. 51. 53. 55.
57. 59. 61. 63. 65. 67. 0.5833; 0.6035 69. 4.187; 4.155 71. 0.6011
73. 4.156 75. a. b. 1.146 c. 1.252 77. a. 0 b. 0 79. 81. $96,000 83. $38,000
85. a. $916.67 b. $666.67 87. a. 17.718 billion barrels b. 17.718 billion barrels d. 17.777 
billion barrels 89. 782 91. a. 0.2784 b. 0.2784 93. a. About 8208 kg b. About 8430 kg c. About 8558 kg
95. s 1 t 2 5 t3 /3 2 t2 1 8.

y 5 20.03545x 1 2.1347;
C 1x 2 5 12x 2 1 2 3/2 1 1454 /3

149 /364 /31 e4 2 1 2 /2 < 26.8013 /325p /4
p /323 1 1 2 e24 2 /2 < 1.47319 /153 ln 5 1 12 /25 < 5.308v 1 t 2 .

s 1 t 2b 5 Ta 5 0eT
0  v 1 t 2  dt 5 s 1T 2 2 s 10 2s 1T 2 2 s 10 2

1 3 ln x 1 2 2 5 /15 1 C2e23x4

/12 1 C2 1x3 1 5 223 /9 1 C1 3 ln 0 x2 2 1 0 2 /2 1 C
e3x2

/6 1 C23e2x /2 1 C2x22 1 C2x3/2 /3 1 9x1/3 1 C2x3/2 1 Cx3 /3 2 3x2 /2 1 2x 1 C
x2 1 3x 1 C

f(x)

x0

20

25

15

10

5

1 32 4 5 6 7

y 5 b0 1 t /7 2 b1e2b2t/70.8

1.2

1.6

0.4

2
0

4 6 8 x

f(x)

S 5 0.8048M 5 0.7355;p 5 4
p 5 2

2 2 2e21 < 1.264
4 /5 5 0.8

3 ln 3 < 3.296

0.8

1.0

0.6

0.4

0.2

0.20 0.4 0.6 0.8 1.0

I(x)

x

I(x) = x

I(x) = 0.9x2 + 0.1x

1 15, 375 2p

q0

400

600

800

200

1000

5 10 15 20 25

D(q) = 900 – 20q – q2

S(q) = q    + 10 q2

21.9241, 20.4164, 0.6650

1 e9 1 e6 1 1 2 /3 < 28363 124/3 2 /2 2 3 127/3 2 /7< 1.6201 /201 /21 e22 1 e4 2 /2 2 2 < 25.37

6 ln 1 3 /2 2 2 6 1 2e21 1 2e < 2.605
2 ln 2 2 ln 6 1 3 /2 < 1.0954 /3

23 /3

30e0.4 2 30 < 14.75 billion3

10

0

 1.2e0.04t dtc r 1 t 2 5 1.2e0.04t

505,000 kJ/W0.670.04k mm per minQ 1R 2 5 pkR4 /2

For exercises . . . 1,2 3–6, 7–10, 27–30, 31–37
11–18,20, 19,21,22, 39,40
23,24 25,26,41,42

Refer to example . . . 1 3 2 4 5

For exercises . . . 1a–12a,15, 1b–12b,17,19,20, 21,22,25–28,
23a–24a,29 23b–24b,29,30, 31,32

33–35
Refer to example . . . 1 2 3

For exercises . . . 1–4, 5,16,17, 6–8,15, 9,10, 11,12, 13,14,
19–30, 31–40, 41–43, 45–62, 63–66, 18, 44,
79,80, 87,94 81,92,96 82,83, 85,86 67–77,
84 89–91, 93

95
Refer to section . . . 1 2 3 4 5 6



Chapter 8 Further Techniques and Applications of Integration

Exercises 8.1 (page 432)

1. 3. 5. 7.

9. 11. 13.

15. or 

17. 19. 21.

23. 25. 27.

31. 33. 15 37. a. b.

39. 41. 43. About 219 kJ

Exercises 8.2 (page 439)

1. 3. 5. 7. 9. 11. 13. 15.
17. 19. 21. 23. 25. 27. 29.
31. 33. 3.758 35. $42.49 37. 200 cases 39. a.
b. c. 41. a. b.
c. 43.

Exercises 8.3 (page 447)

1. a. $6883.39 b. $15,319.26 3. a. $3441.69 b. $7659.63 5. a. $3147.75 b. $7005.46 7. a. $32,968.35
b. $73,372.42 9. a. $746.91 b. $1662.27 11. a. $688.64 b. $1532.59 13. a. $11,351.78 b. $25,263.84
15. $63,748.43 17. $28,513.76, $54,075.81 19. $4560.94 

Exercises 8.4 (page 452)

1. 3. Divergent 5. 7. 10,000 9.
11. 13. 1 15. 1000 17. Divergent 19. 1 21. Divergent
23. Divergent 25. Divergent 27. 0 29. Divergent 31. Divergent 33. 1 35. 0 39. a. 2.808, 3.724, 4.417, 6.720, 9.022
b. Divergent c. 0.8770, 0.9070, 0.9170, 0.9260, 0.9269 d. Convergent 41. a. 9.9995, 49.9875, 99.9500, 995.0166
b. Divergent c. 100,000 43. $20,000,000 45. $30,000 47. $30,000 49. 51. About 833.3

Chapter 8 Review Exercises (page 455)
1. False 2. True 3. False 4. True
5. False 6. False 7. True 8. True
9. True 10. False
15. 17. 19.
21. 23. 25. 27. 29.
31. 35. 37. 39. 41. Divergent 43. 3 45.
47. $174,701.45 49. $15.58 51. $5354.97 53. $30,035.17 55. $176,919.15 57. 0.4798
59. a. 158.3� b. 125� c. 133.3�

16,250 /3 < $5416.676 /e < 2.2071 /52,391,484 /364p /5 < 40.21
p ln 3 < 3.45181p /2 < 127.2234 /7 < 33.4310e1/2 2 16 < 0.48721 1 /8 2"16 1 8x2 1 C

1x2 /2 2 x 2 ln 0 x 0 2 x2 /4 1 x 1 C2 1x 1 2 2e23x 2 1 1 /3 2e23x 1 C6x 1x 2 2 2 1/2 2 4 1x 2 2 2 3/2 1 C

Na / 3b 1b 1 k 2 4

3 /5
1 /10211 /3

1.083 3 1021 m33 1 31 ln 31 2 30 2 /2 < 114.7
5 1 10 ln 10 2 9 2 < 70.139 1 6 ln 6 2 5 2 < 51.76330e22.3 2 340e22.4 < 2.241210e21.1 2 220e21.2 < 3.640

110e20.1 2 120e20.2 < 1.2841 5e4 2 1 2 /8 < 34.00
e 2 1 < 1.71838 /15 < 2.53313 /3 < 4.333pr2h4pr3 /34p /316p /15

3124p /54p ln 3 < 13.81p 1 e4 2 1 2 /2 < 84.1918p15p /2386p /27364p /39p

15e6 1 3 < 60541 169 /2 2  ln 13 2 42 < $174.74

12 /5 2 1x 1 1 2 5/2 2 12 /3 2 1x 1 1 2 3/2 1 C12 /3 2x 1x 1 1 2 3/2 2 14 /15 2 1x 1 1 2 5/2 1 C218

21 / 14x 1 6 2 2 1 1 /6 2  ln 0 x / 14x 1 6 2 0 1 C2 1 3 /11 2  ln 0 1 11 1 "121 2 x2 2 /x 0 1 C16 ln 0 x 1 "x2 1 16 0 1 C

2"3 2 10 /3 < 0.130812e2 /4 2 1 3e2 1 1 2 < 242.8014x2 1 10x 2  ln 5x 2 2x2 2 10x 1 C

12 /3 2x2 1x 1 4 2 3/2 2 1 8 /15 2x 1x 1 4 2 5/2 1 1 16 /105 2 1x 1 4 2 7/2 1 C12 /7 2 1x 1 4 2 7/2 2 1 16 /5 2 1x 1 4 2 5/2 1 1 32 /3 2 1x 1 4 2 3/2 1 C

x2e2x /2 2 xe2x /2 1 e2x /4 1 Ce4 1 e2 < 61.9926 ln 3 2 8 < 20.56

25e21 1 3 < 1.1611x2 ln x 2 /2 2 x2 /4 1 C12x /2 1 23 /16 2  e28x 1 Cxex 2 ex 1 C

For exercises . . . 1–26,31–34,37 27–30,35,36 42–47,50 48,49,51,52
Refer to example . . . 1 2 4 3

For exercises . . . 1–4,36,40,41,43,44 5,6,35,39,42 7–10,20–22 13–19 23–28
Refer to example . . . 1,3 2 4 1–3 5

For exercises . . . 1–4,14–25 5–7,26–35,59 8,9,44–55,57 10,36–43,56,58
Refer to section . . . 1 2 3 4

For exercises . . . 1(a)–8(a),16 1(b)–8(b),15,17,18 9–14,19,20
Refer to example . . . 2 3,4 5

For exercises . . . 1–23,32,33,40,43 24–31,34–37,39,41,42 38
Refer to example . . . 1–3 4 Derivation of volume formula

Answers to Selected ExercisesA-38



Answers to Selected Exercises A-39

Chapter 9 Multivariable Calculus
Exercises 9.1 (page 467)

1. a. 12 b. c. 10 d. 3. a. b. 6 c. d.
5. 7. 9. 11. 

13. 15. 21. c 23. e 25. b 27. a.
b. c. 8x d. 29. a.
slope of tangent line in the direction of x at

b. slope of tangent line in the
direction of y at 31. a. 1987
(rounded) b. 595 (rounded) c. 359,768
(rounded) 33. 1.416; the IRA account 
grows faster.

35.
37. 39. a. 1.89 m2 b. 1.62 m2 c. 1.78 m2

41. a. 8.7% b. 48% c. Multiple solutions: or
d. Wetland percentage 43. a. 397 accidents

45. a. b. 58.82; a tethered sow spends nearly 59% of the time doing
repetitive behavior when she is fed 2 kg of food a day and neighboring sows spend 40% of the
time doing repetitive behavior. 47. g 1L, W, H 2 5 2LW 1 2WH 1 2LH ft2

T 5 242.257 C0.18 /F3

W 5 10, R 5 10, A 5 4.59
W 5 19.75, R 5 0, A 5 0 

C 1x, y, z 2 5 250x 1 150y 1 75z

x

y

1000 1500 20005000

2000

1500

1000

500

y 5 5005/2 /x3/2 < 5,590,170 /x3/2

1 1, 1 2
3e2;1 1, 1 2

3e2;24y24y 2 2h
8x 1 4hz = 0

z = 2
z = 4

x

y

85 731 642

2.5
2

1.5
1

0.5

0
x

y

85 731 642

12
10
8
6
4
2
0

z = 0
z = 2

z = 4

x

z

y

x = 5
5

x

z

y

x + y = 4

4

4

x

z

y

2x + 3y + 4z = 12

4

3

6

x

z

y

x + y + z = 9

9

9

9

"11"19"4321926

1. a. b. c. 12 d. 3. 5.
7. 9.

11.
13. 15. fx 1x, y 2 5 ex2y 12x2y 1 1 2 ;1920 /287960 /41;fy 1x, y2 5 10x3y/ 11 1 5x3y22 ;fx 1x, y2 5 15x2y2/ 11 1 5x3y22 ;

21713 /532928 /49;fy 1x, y 2 5 1 3x3y2 2 y4 1 2x2y 2 / 1x3 2 y2 2 2;fx 1x, y 2 5 12x4 2 2xy2 2 3x2y3 2 / 1x3 2 y2 2 2;18e225224e11;
fy 1x, y2 5 18e4x23y;fx 1x, y2 5 224e4x23y;e21 or 1 /ee1 or e;fy 1x, y 2 5 ex1y;fx 1x, y 2 5 ex1y;2160220;fy 1x, y2 5 15x2y2;

fx 1x, y 2 5 10xy3;1784;fy 1x, y 2 5 24x 1 18y2;fx 1x, y 2 5 24y;24024x 1 18y12x 2 4y

Exercises 9.2 (page 478)

For exercises . . . 1–4,27,28,32, 5–12 13–16 21–26 23–28 31,34–36
33,38–45,48

Refer to example . . . 1–3 4–6 7,8 material after Example 8 5 8

For exercises . . . 1,2,33–36,43,44 3–20 21–32 37–42 45–47,53–67 48–52

Refer to example . . . 3 1–3 6,7 8 4 5

17.

19.
21.

23.

25.
27. 29.
31. 33. 35. 37.

39.
41.

43. a. 6.773 b. 3.386 45. a. 80 b. 150 c. 80 d. 440 47. a. $902,100 b.
the rate at which weekly sales are changing per unit of change in price when the interest rate remains constant or per unit change in
interest rate when the price remains constant c. A weekly sales decrease of $9700 49. a. 50.57 hundred units
b. hundred units and is the rate at which production is changing when labor changes by 1 unit (from 16 to 17) and capital
remains constant; hundred units and is the rate at which production is changing when capital changes by 1 unit (from 81
to 82) and labor remains constant. c. Production would increase by approximately 105 units. 51. 0.6x0.4y20.40.4x20.6y0.6;

fy 116, 81 2 5 0.4162
fx 116, 81 2 5 1.053

1fi 1p, i 2 2
1fp 1p, i 2 2

fi 1p, i 2 5 20.5p;fp 1p, i 2 5 99 2 0.5i 2 0.005p;
fyz 1x, y, z 2 5 40xy3z / 1x2 2 5xz2 1 y4 2 2fz 1x, y, z 2 5 210xz / 1x2 2 5xz2 1 y4 2 ;fy 1x, y, z 2 5 4y3 / 1x2 2 5xz2 1 y4 2 ;

fx 1x, y, z 2 5 12x 2 5z2 2 / 1x2 2 5xz2 1 y4 2 ;fyz 1x, y, z 2 5 20 / 14z 1 5 2 2fz 1x, y, z 2 5 24 1 6x 2 5y 2 / 14z 1 5 2 2;
fy 1x, y, z 2 5 25 / 14z 1 5 2 ;fx 1x, y, z 2 5 6 / 14z 1 5 2 ;fyz 1x, y, z 2 5 4zfz 1x, y, z 2 5 4yz 1 4z3;fy 1x, y, z 2 5 2z2;

fx 1x, y, z 2 5 4x3;or x 5 3, y 5 3x 5 0, y 5 0;x 5 24, y 5 2zxy 5 zyx 5 1 /yzyy 5 2x /y2;zxx 5 1 /x;
rxy 5 ryx 5 21 / 1x 1 y 2 2ryy 5 21 / 1x 1 y 2 2;rxx 5 21 / 1x 1 y 2 2;zxy 5 zyx 5 9exzyy 5 0;zxx 5 9yex;

rxy 1x, y 2 5 ryx 1x, y 2 5 16y 2 6x 2 / 1x 1 y 2 3ryy 1x, y 2 5 212x / 1x 1 y 2 3;rxx 1x, y 2 5 12y / 1x 1 y 2 3;
Rxy 1x, y 2 5 Ryx 1x, y 2 5 215y2 1 48xyRyy 1x, y 2 5 230xy 1 24x2;Rxx 1x, y 2 5 8 1 24y2;

fxy 1x, y 2 5 fyx 1x, y 2 5 16xyfyy 1x, y 2 5 8x2;fxx 1x, y 2 5 8y2 2 32;1 624e212 1 96 2 / 1 e212 1 2 2 2
224 1 e22 1 1 2 / 1 e22 1 2 2 2;fy 1x, y 2 5 33x2 1 exy 1 2 2 2 3x3yexy 4 / 1 exy 1 2 2 2;fx 1x, y 2 5 36xy 1 exy 1 2 2 2 3x2y2exy 4 / 1 exy 1 2 2 2;

fy 1x, y 2 5 1 1 /2 2 1 3x 1 4y3 2 / 1x4 1 3xy 1 y4 1 10 2 1/2; 29 / 12"21 2 ; 48 /"311

fx 1x, y2 5 11 /22 14x3 1 3y2 / 1x4 1 3xy 1 y4 1 10 2 1/2;264e4827e24;fy 1x, y 2 5 x3ex2y;



53. a. 1279 kcal per hr b. 2.906 kcal per hr per g; the instantaneous rate of change of energy usage for a 300-kg animal traveling
at 10 km per hr is about 2.9 kcal per hr per g. 55. a. 0.0142 m2 b. 0.00442 m2 57. a. 4.125 lb b. the rate of
change of weight loss per unit change in workouts c. An additional loss of 3/4 lb 59. a.
b. c. d. e. gives the rate of change of the reaction
per unit of change in the amount of drug administered. gives the rate of change of the reaction for a 1-hour change in the time
after the drug is administered. 61. a. b. 15 mph c. while holding the temperature fixed at 
the wind chill decreases approximately when the wind velocity increases by 1 mph; while holding the wind
velocity fixed at 20 mph, the wind chill increases approximately if the actual temperature increases from to 
d. Sample table

11°F.10°F1.429°F
WT 120, 10 2 5 1.429;1.1°F

10°F,WV 120, 10 2 5 21.114;224.9°F
'R /'t

'R/'x12ax 2 3x2 2 12t 2 t2 2e2t12a 2 6x 2 t2e2tx2 1a 2 x 2 12t 2 t2 2e2t

12ax 2 3x2 2 t2e2t
'f /'n 5 n /4;

63. 65. a. the rate
of change in force per unit change in mass while the distance is held
constant; the rate of change in force per unit
change in distance while the mass is held constant
67. a. 1055 b. If the distance to
move an object increases from 3 ft to 4 ft, while keeping w fixed
at 0.5, the approximate increase in movement time is 127.4 msec.

Ts 1 3, 0.5 2 5 127.4 msec per ft.

Fr 5 22mgR2 /r3;

Fm 5 gR2 /r2;100 ml per in.210 ml per year,

Exercises 9.3 (page 488)

1. Saddle point at 3. Relative minimum at 

5. Relative minimum at 7. Relative minimum at 9. Relative maximum at 11. Saddle point

at 13. Saddle point at relative minimum at 15. Saddle point at relative minimum at 

17. Saddle point at 21. Relative maximum of at saddle point at a 23. Relative minima of 

at and at saddle point at b 25. Relative maxima of at and relative minima of 

at and saddle points at and e 31. a. all values of k b.

35. Minimum cost of $59 when 37. Sell 12 spas and 7 solar heaters for a maximum revenue of $166,600.

39. $2000 on quality control and $1000 on consulting, for a minimum time of 8 hours

41. a. b. Same as a c. Same as ar 5 21.722, s 5 0.3652, y 5 0.1787 1 1.441 2 t

x 5 4, y 5 5

k $ 0121, 21 2 ;10, 0 2 , 121, 1 2 , 1 1, 21 2 , 1 1, 1 2 ,10, 21 2 ;10, 1 2
215 /16121, 0 2 ;1 1, 0 217 /1610, 0 2 ;10, 21 2 ;10, 1 2

233 /1610, 0 2 ;121, 1 2 ;9 /810, 21 2
1 9 /2, 3 /2 210, 0 2 ;127, 9 210, 0 2 ;12, 22 2

12 /3, 4 /3 21 15, 28 2122, 22 2
123, 23 2121, 2 2

T \V 5 10 15 20

30 27 16 9 4
20 16 3
10 6
0 23923222125

22521829
21125

For exercises . . . 1–18,21–28 34–40,42

Refer to example . . . 1–3 4

Exercises 9.4 (page 498)

If the width of the target area increases by while keeping s fixed at 3 ft, the approximate
decrease in movement time is 764.6 msec. 

1 ft,Tw 1 3, 0.5 2 5 2764.6 msec per ft.

1. 3. 5. 7. 9.
11. 13. 30, 30, 30 15. Minimum value of 128 at maximum value of 160 at 
21. a. Minimum value of at d. is a saddle point. 23. Purchase 20 units of and 20 units of for a maxi-
mum utility of 8000. 25. Purchase 20 units of and 5 units of for a maximum utility of 4,000,000.
27. 60 feet by 60 feet 29. 10 large kits and no small kits 31. 167 units of labor and 178 units of capital 33. 125 m by 
125 m 35. 37. 12.91 m by 12.91 m by 6.455 m 39. 5 m by 5 m by 5 m
41. b. 2 yd by 1 yd by 1/2 yd

Exercises 9.5 (page 502)
1. 0.12 3. 0.0311 5.
7. 10.022; 10.0221; 0.0001 9. 2.0067; 2.0080; 0.0013 11. 1.07; 1.0720; 0.0020 13. 15.
17. 19. 0.07694 unit 21. 23. 2.98 liters 25. a. 0.2649 b. Actual 0.2817; approximation 0.2816
27. a. 87% b. 75% d. 89%; 87% 29. 31. 3% 33. 8

Exercises 9.6 (page 513)

1. 630y 3. 5. 7. 9. 11.
13. 15. 21 17. 19. 21. 171 23.
25. 27. 29. 96 31. 33.
35. 37. 39. 41. 43. 45. 47. 34 49.
51. 53. 55. 57. 1 61. 49 63. 65. 9 in3 67. 14,753 units
69. $34,833 71. $32,000

1 e6 1 e210 2 e24 2 1 2 /604 ln 2 2 216 /37 1 e 2 1 2 /3
10 /364 /3ln 16 or 4 ln 2128 /997,632 /105e2 2 31 1 /4 2  ln 1 17 /8 2

12 /15 2 125/2 2 2 240 /31 1 /2 2 1 e7 2 e6 2 e3 1 e2 223 ln 1 3 /4 2  or 3 ln 14 /3 2
14 /15 2 1 33 2 25/2 2 35/2 28 ln 2 1 41 ln 3 2 212 /45 2 1 395/2 2 125/2 2 7533 2

9451 1 /2 2 1 e4x19 2 e4x 21 1 /2 2 1 e1213y 2 e413y 26 1 10y12x /9 2 3 1x2 1 15 2 3/2 2 1x2 1 12 2 3/2 4

26.945 cm2

6.65 cm386.4 in3

20.73 cm320.02; 20.0200; 0
20.335

height 5 10 in.Radius 5 5 in.;

yx
yx1 3,22 21 3,22 2 .25

122,7 212,5 2 ,x 5 8, y 5 16
f 1 3 /2, 3 /2, 3 2 5 81 /4 5 20.25f 120, 2 2 5 360f 1 5, 3 2 5 28f 1 5, 5 2 5 125f 1 8, 8 2 5 256

For exercises . . . 1–8,11,12,15,21 9,10,13,14,37–42 23–26 27–36

Refer to example . . . 1 3 material after Example 3 2

For exercises . . . 1–6,18–20,23–28 7–14 15–17,21,22,29–32 33,34

Refer to example . . . 1 2 3 4

Answers to Selected ExercisesA-40

For exercises . . . 1–10 11–20 21–28,61–64,66–71 29–38,65 39–46 47–56 57,58

Refer to example . . . 1 2,3 4 5,6 7 8 9



Answers to Selected Exercises A-41

Chapter 9 Review Exercises (page 518)

1. True 2. True 3. True 4. True 5. False 6. False 7. False 8. True 9. False 10. False 11. True 12. False
17. 19. 21. 23. 25.

27. a. b. c. 16 29.
31.

33. 35. fx 1x, y 2 5 4x / 12x2 1 y2 2 ; fy 1x, y 2 5 2y / 12x2 1 y2 2fx 1x, y 2 5 3x2e3y; fy 1x, y 2 5 3x3e3yfy 1x, y 2 5 y / 14x2 1 y2 2 1/2
fx 1x, y 2 5 4x / 14x2 1 y2 2 1/2;fy 1x, y 2 5 18x2y2 2 4fx 1x, y 2 5 12xy3;

2129x2 1 8xy

25 /9; 24 /3219; 2255

For exercises . . . 1–5,17–26,87 6,13,14,27–44, 7,8,45–53,90, 9,54–57, 10–12,67–86, 15,59–66,88,
89,98–101 103,104 91,92 100 93–96,98

Refer to section . . . 1 2 3 4 6 5

37. 39.
41. 43.
45. Saddle point at (0, 2) 47. Relative minimum at (2, 1) 49. Saddle point at (3, 1) 51. Saddle point at 
relative minimum at 55. Minimum of 18 at 57. 59. 1.22 61. 13.0846; 13.0848; 0.0002
63. 65. 67. 69.
71. 2 ln 2 or ln 4 73. 110 75. 77. 79. 81. 83. ln 2 85. 3
87. a. b. c. 89. a.
b. 91. Purchase 10 units of and 15 units of for a maximum utility of 33,750. 93. Decrease by $243.82
95. 4.19 ft3 97. a. $200 spent on fertilizer and $80 spent on seed will produce a maximum profit of $266 per acre.
b. Same as a. c. Same as a 99. a. 49.68 liters b. �0.09, the approximate change in total body water if age is increased by 1
yr and mass and height are held constant is �0.09 liters; 0.34, the approximate change in total body water if mass is increased by 1
kg and age and height are held constant is 0.34 liters; 0.25, the approximate change in total body water if height is increased by 1
cm and age and mass are held constant is 0.25 liters. 101. a. 50; in 1900, 50% of those born 60 years earlier are still alive.
b. 75; in 2000, 75% of those born 70 years earlier are still alive. c. �1.25; in 1900, the percent of those born 60 years earlier
who are still alive was dropping at a rate of 1.25 percent per additional year of life. d. �2; in 2000, the percent of those 
born 70 years earlier who are still alive was dropping at a rate of 2 percent per additional year of life. 103. 5 in. by 5 in. by 5 in.

yx0.3x0.7 /y0.7

0.7y0.3 /x0.3$ 12000 1 "20 2 < $2004.47$ 1 800 1 "15 2 < $803.87$ 1 325 1 "10 2 < $328.16
1 /481 /2105 /214 /15 2 1 782 2 85/2 2

12 /135 2 3 142 2 5/2 2 124 2 5/2 2 1 39 2 5/2 1 121 2 5/2 41232 /91 3 /2 2 3 1 100 1 2y2 2 1/2 2 12y2 2 1/2 48y 2 6
x 5 25, y 5 50123, 3 21 1, 1 /2 2

121 /3, 11 /6 2 ;
fxy 1x, y 2 5 24x / 12 2 x2y 2 2fxx 1x, y 2 5 122x2y2 2 4y 2 / 12 2 x2y 2 2;fxy 1x, y 2 5 16xe2yfxx 1x, y 2 5 8e2y;

fxy 1x, y 2 5 126x 2 3y 2 / 12x 2 y 2 3fxx 1x, y 2 5 12y / 12x 2 y 2 3;fxx 1x, y 2 5 30xy; fxy 1x, y 2 5 15x2 2 12y

Chapter 10 Differential Equations
Exercises 10.1 (page 535)

1. y � �2x2 � 2x3 � C 3. y � x4/2 � C 5. y2 � 2x3/3 � C 7. y � 9. y � 11. y � Cx

13. 15. y � �1/(e2x/2 � C ) 17. y � x2 � x3 � 5 19. y � �2xe�x � 2e�x � 44 21. y2 � x4/2 � 25

23. y � 25. y2/2 � 3y � x2 � x � 4 27. y � �3/(3 ln |x| � 4) 29. 35. a. $1011.75

b. $1024.52 c. No 37. About 13.9 yr 39. 41. d 43. a. I � 2.4 b. I approaches 2.4.

45. a. ; the calorie intake per day is constant. b. lb/calorie c.

d. e.

47. a. b. c. d. 25,538

0 300

15,000

0

25,538

1 � 110.28e�0.01819t 
y �

y 5
25,538

1 1 110.28e20.01819t

0 300

15,000

0

w 5 C /17.5 1 1w0 2 C /17.5 2e20.005tw 5 C /17.5 2 e20.005Me20.005t /17.5

dw /dt 5 1C 2 17.5w 2 /3500dw /dt 5 k 1C 2 17.5w 2
2 1.4e20.088Wq 5 C /p2

y 5 1 ex21 2 3 2 / 1 ex21 2 2 2ex213x

ln 1 y2 1 6 2 5 x 1 C

kex32x2

kex2

For exercises . . . 1,2 3,4,17–20 5–16,21–32, 35 36,37,41,42, 40,47,48,52 43–46,56–59
38,39,53 49–51,54

Refer to example . . . 1 3 4,5,6 2 5 7 6



For exercises . . . 1–35

Refer to example . . . 1,2

Exercises 10.2 (page 543)

Exercises 10.3 (page 550)

1. 8.273 3. 4.315 5. 1.491 7. 6.191 9. 11. 4.010; 4.016 13. 3.806; 4.759

15. 3.112; 3.271 17. 73.505; 74.691

19. 21.

23. 25. 27. a. 4.109 b. .
29. a. dy/dt � 0.01y (500 � y) � 5y � 0.01y2

b. About 484 thousand
31. About 75 33. About 8.07 kg
35. About 157 people

`y 5 1 / 1 1 2 x 2 ; y approachesy

x0

0.5
1.0
1.5
2.0
2.5
3.0

0.2 0.4 0.6 0.8 1.0

f(x)

y

x0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

f (x)

20.540; 20.520

For exercises . . . 1–20,25–29

Refer to example . . . 2–41. y � 2 � Ce�3x 3. y � 2 � 5. y � x ln x � Cx 7. y � 1/2 �

9. y � x2/4 � 2x � C/x2 11. y � �x3/2 � Cx 13. y � 2ex � 48e�x 15. y � �2 � 22e � 1 17.

19. 21. a. b. c.

25. 27. 29. T 5 Ce2kt 1 TMy 5 50t 1 2500 1 7500e0.02ty 5 1.02et 1 9999e0.02t 1 rounded 2
c /py 5 cy0 / 3py0 1 1 c 2 py0 2e2cx 4y 5 c / 1p 1 Kce2cx 2y 5 1 3 1 197e42x 2 /x

y 5 x2 /7 1 2560 / 1 7x5 2x2

Cex2/22Ce2x2

0 0 0 0
0.2 0 0.08772053
0.4 0.11696071 0.22104189
0.6 0.26432197 0.37954470
0.8 0.43300850 0.55699066
1.0 0.61867206 0.75000000 20.13132794

20.12398216
20.11522273
20.10408118
20.08772053

yi 2 y 1 xi 2y 1 xi 2yixi

0 0 0 0
0.2 0.8 0.725077 0.07492
0.4 1.44 1.3187198 0.12128
0.6 1.952 1.8047535 0.14725
0.8 2.3616 2.2026841 0.15892
1.0 2.68928 2.5284822 0.16080

yi 2 y 1 xi 2y 1 xi 2yixi

Answers to Selected ExercisesA-42

c. Just after death—the graph shows that the most rapid decrease occurs in the first few
hours. d. About 43.9°F e. About 4.5 hours

49. y � 35.6e0.02117t 51. a. b. 11 c. 55 d. About 3000 53. About 10 55. 7:22:55 A.M. 57. The tempera-
ture approaches TM, the temperature of the surrounding medium. 59. a. b.

0 30

100

0

T � 88.6e�0.24t � 10
T 5 88.6e20.24t 1 10

k < 0.8

For exercises . . . 1–3,6,7,13,14,25–32, 5,15–24 4,8,9,33–36,43–46 10,11,47–51 12,55,56,59–62,68
37–42,52–54,57,58,
63–67,69–71

Refer to section . . . 1 1, 2 2 3 4

Exercises 10.4 (page 557)

1. $50,216.53 3. About 6.9 years 5. a. b. $6470.04

c. 8.51 years 7. a. 2y � 3 ln y � 4 ln x � 2x � 4 b. x � 2, y � 3/2, or x � 0, y � 0 9. a.

b. 3672 c. 91 d. 34th day 11. a. y � 20,000/(1 � 199e�0.14t ) or 20,000e0.14t/(e0.14t � 199) b. About 38 days

13. a. y � 0.005 � 0.015e�1.010t b. Y � 0.00727e�1.1t � 0.00273 15. a. y � 45/(1 � 14e�0.54t) b. About 6 days

17. a. b. About 5.5 days 19. a. b. About 250 lb of salt

c. Increases 21. a. b. About 6 lb of salt c. Decreases 23. a. y � [0.25 (t � 100)2 � 2000]/(t � 100)

b. About 17.1 g

y 5 20e20.02t

y 5 32 1 t 1 100 2 3 2 1,800,000 4 / 1 t 1 100 2 2y 5 347e24.24e20.1t

y 5 24,995,000 / 14999 1 e0.25t 2
dA /dt 5 0.06A 2 1200

For exercises . . . 1–5 6–8 9–17 18–24

Refer to example . . . 1 2 3 4

Chapter 10 Review Exercises (page 561)

1. True 2. False 3. True 4. False 5. False 6. True 7. False 8. True 9. False 10. False 11. True 12. True

17. Neither 19. Separable 21. Both 23. Linear 25. y � x3 � 3x2 � C 27. y � 2e2x � C 29. y2 5 3x2 1 2x 1 C



Answers to Selected Exercises A-43

31. 33. y � x � 1 � Ce�x 35. y � (x2 � C)/ln x 37. y � x3/3 � 3x2 � 3 39. y � �ln [5 � (x � 2)4/4]

41. 43. 45. 49. 2.608

51. 53. a. $10,099 b. $71,196 55. a. dA/dt � 0.05A � 20,000

b. $235,127.87 57. a. About 40 b. About 1.44 	 1010 hours

59.

61. It is not possible (t is negative). 65. a.

b. value of 308.7 million.

c. About 289 million for 2030, about 303 million for 2050

67. a. and b. c. 1/k 69. 213º

71. a. b. G/K
c. v 5 88 1 e0.727t 2 1 2 / 1 e0.727t 1 1 2

v 5 1G /K 2 1 e2GKt 2 1 2 / 1 e2GKt 1 1 2
x 5 1 /k 1 Ce2kt

y < 268 million, which is less than the table

N 5 329, b 5 7.23; k 5 0.247

0.2 ln y 2 0.5y 1 0.3 ln x 2 0.4x 5 C; x 5 3 /4 units, y 5 2 /5 units

y

x

2

3

4

5

1

0.2 0.4 0.6 0.8 1.00

y 5 3 /2 1 27ex2

/2y 5 2 x2e2x /2 2 xe2x /2 1 e2x /4 1 41.75exy2 1 6y 5 2x 2 2x2 1 352

y 5 1Cx2 2 1 2 /2

0 0
0.2 0.6
0.4 1.355
0.6 2.188
0.8 3.084
1.0 4.035

yixi

For exercises . . . 1–10 11–18,29–34 19–24,35c,d,36c,d, 35a,b,36a,b,39–42,44–47, 43,51
48d,e,49d,e 48a,b,c,49a,b,c,50

Refer to example . . . 1 2 5 3 4
1. Yes 3. Yes 5. No; 
7. No; 
9. No; for some x values in 11. 13. 15. 17. k 5 1 /12k 5 2 /9k 5 3 /125k 5 3 /14321, 1 4.f 1x 2 , 0

e2
22x

2 /16 dx 2 1
e3

0 4x3 dx 2 1

Chapter 11 Probability and Calculus
Exercises 11.1 (page 575)

19. 21. 23.
25. 1 29. a. 0.4226 b. 0.2071 c. 0.4082 31. a. 0.3935 b. 0.3834 c. 0.3679 33. a. b. c.
35. a. 0.9975 b. 0.0024 c. d. 0.9502 37. c 39. a. 0.2679 b. 0.4142 c. 0.3178
41. a. 0.8131 b. 0.4901
43. a. polynomial function b.

Yes

c. d. Estimates: 0.1688, 0.5896, 0.1610; actual:

0.1730, 0.5865, 0.1325 45. a. 0.2 b. 0.6 c. 0.6 47. a. 0.1640 b. 0.1353 49. a. 0.2829 b. 0.4853 c. 0.2409
d. e. 0.1671

51. a. A polynomial function 

b.

c. d. 0.09457; 0.07732S 1 t 2 5
1

101,370
12 2.564t3 1 99.11t2 2 964.6t 1 5631 2

0 24

6000

0

T 1 t 2 5 2 2.564t3 1 99.11t2 2 964.6t 1 5631

0 24

6000

0

F 1 t 2 5 1.8838 10.5982 2 e20.03211t 2 , 16 # t # 84

S 1 t 2 5
1

466.26
12 0.00007445t4 1 0.01243t3 2 0.7419t2 1 18.18t 2 137.5 2

0 65

20

0

N 1 t 2 5 20.00007445 t4 1 0.01243t3 2 0.7419t2 1 18.18t 2 137.5

0 65

20

0

F 1 t 2 5 1 2 e2t/2, t $ 0
295 /4322 /31 /3

F 1x 2 5 1x3/2 2 1 2 /7, 1 # x # 4F 1x 2 5 1x3 2 1 2 /63, 1 # x # 4F 1x 2 5 1x2 2 x 2 2 2 /18, 2 # x # 5

For exercises . . . 1–6,11–14 7,8 11d,e–14d,e,24–26,31–33, 15a–20a,24d,26d,31d, 37,43
34,35,38–42 33d,36,40d,41d

Refer to example . . . 1 2 3 5 4

Exercises 11.2 (page 585)

1.
3. 5.
7. 11. a. 5.40 b. 5.55 c. 2.36 d. 0.5352 e. 0.6043 13. a. 1.6
b. 0.11 c. 0.33 d. 0.5904 e. 0.6967 15. a. 5 b. 0 17. a. 4.828 b. 0.0553 19. a. b. 0.1836
21. does not exist; does not exist 23. d 25. a. 6.409 yr b. 1.447 yr c. 0.4910 27. c 29. c 31. a. 6.342 seconds
b. 5.135 sec c. 0.7518 d. 4.472 sec 33. a. 2.333 cm b. 0.8692 cm c. 0 d. 2.25 cm 35. 111 37. 31.75 years; 11.55
years 39. a. 1.806 b. 1.265 c. 0.1886 41. a. 38.51 years b. 17.56 years c. 0.1656 d. 34.26 years 43. About 1 pm

16 /5;

"4 2 < 1.189
m 5 4 /3 < 1.33; Var 1X 2 5 2 /9 < 0.22; s < 0.47

m 5 2.83; Var 1X 2 < 0.57; s < 0.76m 5 14 /3 < 4.67; Var 1X 2 < 0.89; s < 0.94
m 5 5; Var 1X 2 < 1.33; s < 1.15



For exercises . . . 1,2,29,35,39,48 3–6,30,31,36–38,40, 7–14,32–34,42,52 46
41,43–45,47,49–51

Refer to example . . . 1 2 3 4

Answers to Selected ExercisesA-44

Exercises 11.3 (page 597)
1. a. 3.7 cm b. 0.4041 cm c. 0.2886
3. a. 0.25 years b. 0.25 years c. 0.2325
5. a. 3 days b. 3 days c. 0.2325 7. 49.98% 9. 8.01% 11. 13. 0.92 19.
23. a. 1.00000 b. 1.99999 c. 8.00000 25. a. b. 27.
29. a. $47,500 b. 0.4667 31. a. b. 0.0954 33. a. 0.1587 b. 0.7698 35. c 37. d
39. a. 28 days b. 0.375 41. a. 1 hour b. 0.3935 43. a. 58 minutes b. 0.0907 45. a. 0.1967 b. 0.2468
47. a. 4.37 millennia; 4.37 millennia b. 0.6325 49. a. 0.2865 b. 0.2212 51. a. 0.5457 b. 0.0039

f 1x 2 5 0.235e20.235x on 30, ` 2
F 1x 2 5 1x 2 a 2 / 1b 2 a 2 , a # x # bs 5 0.9999999251 < 1m < 0

m 5 12ln 0.5 2 /a or 1 ln 2 2 /a21.28

Chapter 11 Review Exercises (page 601)
1. True 2. True 3. True 4. False 5. False 6. True
7. True 8. True 9. False 10. False 11. probabilities
13. 1. for all x in 2. 
15. Not a probability density function 17. Probability density function 19. 21. a. b.
c. 0.54 25. a. 4 b. 0.5 c. 0.7071 d. 4.121 e. 27. a. 5/4 b.
c. 0.3227 d. 1.149 e. 29. a. 0.5833 b. 0.2444 c. 0.4821 d. 0.6114 31. a. 100
b. 100 c. 0.8647 33. 33.36% 35. 34.31% 37. 11.51% 39. 41. a. Uniform b. Domain: [10, 30], range: {0.05}
c. d. e. 0.577 43. a. Normal b. Domain:

c. d. e. 0.6826 45. b. 0.6819 c. 0.9716
d. 1; yes 47. a. 0.9107 b. 13.57 years c. 6.68 years
49. a. b. 8 c. 8 d. 0.2488 51. d
53. 0.6321 55. a. 40.07°C b. 0.4928 57. 0.2266
59. a. 0.2921 b. 0.1826 61. 3650.1 days; 3650.1 days

f 1x 2 5 e2x/8 /8; 30, ` 2

m 5 0; s 5 1 /"2

12`, ` 2 , range: 10, 1 /"p 4m 5 20; s < 5.77
20.05

F 1x 2 5 1 2 1 /x5, x $ 1
5 /48 < 0.1042F 1x 2 5 1x 2 2 22 /9, 2 # x # 5

9 /20 5 0.451 /5 5 0.2k 5 1 /21
eb

af 1x 2dx 5 13a, b 4;f 1x 2 $ 0

For exercises . . . 1–4,11–22,41, 5,6,23–31,42, 7–10,33–40,43,
46a–47a,60a-d 46b,c–47b,c,52, 48–51,53,54,56,

55,60e,f,61 57–59,62

Refer to section . . . 1 2 3

Chapter 12 Sequences and Series
Exercises 12.1 (page 612)
1. 2, 6, 18, 54 3. 5.
7. 9.
11. 13. 15. 17.
19. Not geometric 21. 23. 93 25. 27. 33 29. 464.4 31. 2040
33. 35. 37. 39. a. $3932 b. $2013 41. or $1,073,741,824; or $2,147,483,647
43. About 41% 45. About 95 times 47. a. b. 63 c.

Exercises 12.2 (page 621)
(Note: Answers in this section may differ by a 
few cents, depending on how calculators are used.)

1. $1509.35 3. $278,150.87 5. $833,008.00
7. $205,785.64 9. $142,836.33 11. $526.95 13. $952.33 15. $39,434.37 17. $17,585.54 19. $1,367,773.96
21. $111,183.87 23. $97,122.49 25. $476.90 27. $11,942.55 29. $1673.21 31. a. $132,318.77 b. $121,909.27
c. $10,409.50 33. a. $491.54 b. $533.42 35. $1398.12 37. $112,796.87 39. $209,348.00

1 1 2 1 22 1 ) 1 2n21 5 2n 2 11 1 2 1 22 1 23 1 24 1 25

$231 2 $1$230511 /4183 /4262,143 /2
33 /4r 5 22 /3; an 5 125 /8 2 122 /3 2n21

r 5 2; an 5 1 3 /4 2 12 2n21r 5 2; an 5 6 12 2n21a5 5 2256; an 5 2 124 2n21a5 5 3 /2; an 5 24 /2n21

a5 5 21875; an 5 23 125 2n21an 5 4 1 3 2n21a5 5 324;
3 /2, 3, 6, 12, 241 /2, 2, 8, 32

For exercises . . . 1–6,31, 7–10,32 11–14, 15–24, 25–30,48, 49–52 55–58
37–40 33–36, 44–47 53,54

41–43
Refer to example . . . 1 2 3,4 5 6 8 7

For exercises . . . 1–6 7–22 23–30 31–38 39,42,43, 40,41,
44–46 47,48

Refer to example . . . 1 2 4 5 3 6



Answers to Selected Exercises A-45

Payment Amount of Interest 
Number Deposit Earned Total

1 $3511.58 $0 $3511.58
2 $3511.58 $105.35 $7128.51
3 $3511.58 $213.86 $10,853.95
4 $3511.58 $325.62 $14,691.15
5 $3511.58 $440.73 $18,643.46
6 $3511.58 $559.30 $22,714.34
7 $3511.58 $681.43 $26,907.35
8 $3511.58 $807.22 $31,226.15
9 $3511.58 $936.78 $35,674.51

10 $3511.58 $1070.24 $40,256.33
11 $3511.58 $1207.69 $44,975.60
12 $3511.58 $1349.27 $49,836.45
13 $3511.58 $1495.09 $54,843.12
14 $3511.59 $1645.29 $60,000.00 

43. a. $32.49 b. $195.52;
$10.97 45. $12,493.78
47. a. $623,110.52
b. $456,427.28 c. $563,757.78
d. $392,903.18 49. $1885.00;
$229,612.44 51. $2583.01;
$336,107.59 53. a. $4025.90
b. $2981.93

41. a. $1200 b. $3511.58 c.

Payment Amount of Interest Portion to Principal at End 
Number Payment for Period Principal of Period

0 — — — $4000
1 $1207.68 $320.00 $887.68 $3112.32
2 $1207.68 $248.99 $958.69 $2153.63
3 $1207.68 $172.29 $1035.39 $1118.24
4 $1207.70 $89.46 $1118.24 $0

55.

57.

Exercises 12.3 (page 631)
1. or
3. or
5.
7. 9.
11. 13. 15. 17.
19. 21. 0.9608 23. 2.7732 25. 2.9866 27. 29. 1.0147 31. 33. 0.0080
35. 37. b. 4.04167; actual value is 4.04124. 39. a. b.
41. $4623; $4623 43. $718; $718

Exercises 12.4 (page 637)
1. Converges to 40 3. Diverges 5. Converges to 7. Converges to 
9. Converges to 11. Converges to 13. Converges to 
15.
17.
19. 21. 23. a. First 3.12; second 2.90 b. 38
25. a. $2000 b. 10 27. d 29. 70 meters 31. 200 centimeters 33. 35. a. sec b. sec10 /910 /94"3 /3 square meters

2 /9S1 5 1 /6; S2 5 1 /4; S3 5 3 /10; S4 5 1 /3; S5 5 5 /14
S1 5 1 /7; S2 5 16 /63; S3 5 239 /693; S4 5 3800 /9009; S5 5 22,003 /45,045
S1 5 1; S2 5 3 /2; S3 5 11 /6; S4 5 25 /12; S5 5 137 /60

e2 / 1 e 1 1 21 /55 /2
1000 /981 /2

N 5 "2k /l1 1 lN 1 l2N2 /2P3 1x 2 5 3 1 6x 1 6x2 1 4x3

20.030521.01641 2 x 1 x2 2 x3 1 x4

27 2 1 9 /2 2x 1 x2 /8 1 x3 /432 1 x4 /10,368x 2 x2 1 x3 /2 2 x4 /62x2 2 2x42x 2 x2 /2 2 x3 /3 2 x4 /4
1 1 x /4 2 1 3 /32 2x2 1 1 7 /128 2x3 2 1 77 /2048 2x421 1 x /3 1 x2 /9 1 1 5 /81 2x3 1 1 10 /243 2x4

3 1 x /6 2 x2 /216 1 x3 /3888 2 1 5 /279,936 2x4

e 1 ex 1 ex2/2 1 ex3/6 1 ex4/24e 1 ex 1 ex2/2! 1 ex3/3! 1 ex4/4!
1 2 2x 1 2x2 2 14 /3 2x3 1 12 /3 2x41 2 2x 1 22x2 /2! 2 23x3 /3! 1 24x4 /4!

Payment Amount of Interest Portion to Principal at End 
Number Payment for Period Principal of Period

0 — — — —
1 $183.93 $62.86 $121.07 $7062.93
2 $183.93 $61.80 $122.13 $6940.80
3 $183.93 $60.73 $123.20 $6817.60
4 $183.93 $59.65 $124.28 $6693.32
5 $183.93 $58.57 $125.36 $6567.96
6 $183.93 $57.47 $126.46 $6441.50

For exercises . . . 1–20,35–39, 21–34,40–44
40–44,45,46

Refer to example . . . 1,2,4 3,5

For exercises . . . 1–14, 15–20 25 34,35,36
21,22,
24,26–33

Refer to example . . . 2 1 4 3



Answers to Selected ExercisesA-46

Exercises 12.5 (page 647)

1. ; (–1, 1)
3.
5.

7.
9.
11.
13.
15.
17.
19.
21.
23. 29. 0.3461 31. 0.1729 33. 0.1554 35. About 14.94 years; about 14.74 years; a
difference of 0.2 years, or about 10 weeks 37. b. � c. 0.1391 39. a. 6 b. 0.5787

Exercises 12.6 (page 652)
1. 1.13 3. 3.06 5. 2.24 7. 9. 11. 0.44 13. 1.25 15. 1.56
17. 1.414 19. 3.317 21. 15.811 23. 2.080 25. 4.642 27. Relative maximum at relative minimum at 3.65
29. Relative minima at and 1.77; relative maximum at 1.19 33. 4.80 years 35.

Exercises 12.7 (page 659)
1. 4 3. 0 5. 1 7. Does not exist 9. 1
11. Does not exist 13. or 15.
17. 19. 53 21. 0 23. 25. 27. 1
29. Does not exist 31. 5 33. 0 35. 0
37. � (does not exist) 39. 41. 0
43. 45. 47. so l’Hospital’s rule does not apply.

Chapter 12 Review Exercises (page 661)
1. True 2. False 3. True 4. True 5. False

6. True 7. False 8. True 9. True 10. False

11. False 12. False 13. –40; ; 55
15. 1; ; 121/3 17.
19. 21.
23. 25. 6.8895 27. 1.0149 29. 0.7178 31. 0.9459 33. Converges to 
35. Diverges 37. Converges to 39.
41.
43.
45.
47.
49. 51. 53. Does not exist
55. 57. 59. Does not exist 61. 0 63. 65. 67. 4.73 69. 2.65 71. 6.132
73. 4.558 75. $11,495,247 77. $27,320.71 79. $3322.43 81. $1184.01 83. About 21.67 years; about 21.54 years; differ
by 0.13 years, or about 7 weeks 85. 64,000 bacteria

289 /221/25 /7
7 /42x3 2 2 . 3x4 1 12 . 32 /2! 2x5 2 12 . 33 /3! 2x6 1 ) 1 121 2n 12 . 3n /n! 2xn13 1 ) ; 12`, ` 2

1 2 2x2 1 122 /2! 2x4 2 123 /3! 2x6 1 ) 1 121 2n 12n /n! 2x2n 1 ) ; 12`, ` 2
22x 2 122 /2 2x2 2 123 /3 2x3 2 124 /4 2x4 2 ) 22n11xn11 / 1n 1 1 2 2 ) ; 321 /2, 1 /2 2
x2 2 x3 1 x4 2 x5 1 ) 1 121 2nxn12 1 ) ; 121, 1 2
4 /3 1 14 /32 2x 1 14 /33 2x2 1 14 /34 2x3 1 ) 1 14 /3n11 2xn 1 ) ; 123, 3 2

S1 5 1; S2 5 4 /3; S3 5 23 /15; S4 5 176 /105; S5 5 563 /3151 /3
27 /51 1 12 /3 2x 2 x2 /9 1 14 /81 2x3 2 1 7 /243 2x4

ln 2 2 x /2 2 x2 /8 2 x3 /24 2 x4 /641 1 x /2 2 x2 /8 1 x3 /16 2 1 5 /128 2x4

e2 2 e2x 1 1 e2 /2! 2x2 2 1 e2 /3! 2x3 1 1 e2 /4! 2x4an 5 27 1 1 /3 2n21

an 5 5 122 2n21

lim
xl0

1x2 1 3 2 2 0,1 /21 /2
1 /5

1 /91 /81 /12
1 /4"2 /41 / 12!2 2

i3 5 0.02075742i2 5 0.02075485;20.71
21.65;

20.5821.13, 2.37

1 1 2x 1 2x2 1 2x3 1 ) 1 2xn 1 )
2x4 2 122 /2 2x8 1 123 /3 2x12 2 124 /4 2x16 1 ) 1 121 2n 2n11x4n14 / 1n 1 1 2 1 ) ; 321 /"4 2, 1 /"4 2 4
1 1 x2 /2! 1 x4 /4! 1 x6 /6! 1 ) 1 x2n / 12n 2 ! 1 ) ; 12`, ` 2
2 2 2x2 1 2x4 2 2x6 1 ) 1 121 2n2x2n 1 ) ; 121, 1 2
x3 2 x4 1 x5 /2! 2 x6 /3! 1 ) 1 121 2nxn13 /n! 1 ) ; 12`, ` 2
1 1 4x2 1 142 /2! 2x4 1 143 /3! 2x6 1 ) 1 14n /n! 2x2n 1 ) ; 12`, ` 2
4x 2 142 /2 2x2 1 143 /3 2x3 2 144 /4 2x4 1 ) 1 121 2n4n11xn11 / 1n 1 1 2 1 ) ; 121 /4, 1 /4 4

x2 /4 1 x3 /42 1 x4 /43 1 x5 /44 1 ) 1 xn12 /4n11 1 ) ; 124, 4 2
8x 2 8 . 3x2 1 8 . 32x3 2 8 . 33x4 1 ) 1 121 2n . 8 . 3nxn11 1 ) ; 121 /3, 1 /3 2
5 /2 1 1 5 /22 2x 1 1 5 /23 2x2 1 1 5 /24 2x3 1 ) 1 1 5 /2n11 2xn 1 ) ; 122, 2 2
x2 1 x3 1 x4 /2! 1 x5 /3! 1 ) 1 xn12 /n! 1 ) ; 12`, ` 2
6 1 6x 1 6x2 1 6x3 1 ) 1 6xn 1 )

For exercises . . . 1–4,23 5–22,24, 29–34 35,36
37–39

Refer to example . . . 2 3 4 5

For exercises . . . 1–16,27–30,32–36 17–26
Refer to example . . . 1 2

For exercises . . . 1, 2,3, 4–6, 7,8, 9,10, 11, 12,
13–16, 76–82 17–32 33–40 41–50, 67–74 51–66
75, 83,84
85,86

Refer to section . . . 1 2 3 4 5 6 7

For exercises . . . 1–3,5,6, 4,7 11,12, 25,26 33–36 37–42
8–10,13–24, 29,30,
27,28,31,32, 47
43–46

Refer to example . . . 1,3 2 5 4 6 7

Chapter 13 The Trigonometric Functions
Exercises 13.1 (page 678)
1. 3. 5.
7. 9. 225° 11. 2390°
13. 288° 15. 105°

Note: In Exercises 17–23 we give the answers in the following order: sine, cosine, tangent, cotangent, secant, and cosecant.
17. 19. 21. 1 1 1 1 1 1

23. 2 2 1 1 2 2 25. 27. 29. 31. 33.
35. 1 37. 2 39. 21 41. 43. 45. 1 47. 49. 51. 53. 5p /6, 7p /63p /4, 7p /4p /3, 5p /31 /22"22"2 /2

"3 /22"3 /2; 22"3 /321; 21"3 /2; "3 /3; 2"3 /3"3 /3; "3; 2
224 /25; 7 /25; 224 /7; 27 /24; 25 /7; 225 /244 /5; 23 /5; 24 /3; 23 /4; 25 /3; 5 /4

11p /4
3p /25p /6p /3

For exercises . . . 1–16 17–20, 21–24 25–48, 49–54 55–62,78, 63–73,76 75,87 77,79,
89,90 74,86 80,81, 82–84

86,88
Refer to example . . . 1 2 5 4,5 6 7 8 10 9



Answers to Selected Exercises A-47

For exercises . . . 1–26 27–32,37,47 33–35 36 38–46 50,51
Refer to example . . . 2–6 7 2–4 1 8 9

17. 19. 21.
23.

25. 27. 1 29. 31. 1 33.
37. a. b. per year c. $ 0 per year d. per year
39. a. b. d. At 

acceleration is negative, arm is moving clockwise and is at an angle of radian from vertical; at
acceleration is positive, arm is moving counterclockwise and is at an angle of radian

from vertical; at acceleration is negative, arm is moving clockwise and is at an angle of 
radian from vertical.

41. a. About 1488 b. About 5381 c. 2000 d. About 2916
e. f. Maximum is 7389 when where n is any integer; minimum is 135 when

43. a. b. The pressure is decreasing at a rate of
per sec when 

45. a. 13.55 ft c. 52.39 ft
d. and x is maxi-
mized when e. 242 fta 5 p /4.

dx /da 5 1V2 /16 2  cos 12a 2

t 5 0.002.1.05 lb per ft2

0 0.01

0.004

�0.004

t 5 3p /2 1 2pn.
t 5 p /2 1 2pn,

0 11

9000

0

f(t) � 1000 e2 sin t

1 /5t 5 3.5,
21 /5t 5 2.5,

1 /5
t 5 1.5,v 5  dy /dt 5 1p /5 2  cos 3p 1 t 2 1 2 4; a 5 d2y /dt2 5 12p2 /5 2  sin 3p 1 t 2 1 2 4

t

y

y =    sin [π(t – 1)]

321

1_
5

1_
5
1_

 
_
5

$120p2$120pR' 1 t 2 5 2240p sin 2pt
2csc2x1 /2dy /dx 5 1 3 /4 2  sec2 1 x /4 2 2 8 csc2 2x 1 5 csc x cot x 2 2e22x

dy /dx 5 "sin 3x 1 sin 3x cos x 2 3 sin x cos 3x 2 / 12"sin x 1 sin2 3x 2 2
dy /dx 5 1 6 cos x 2 / 1 3 2 2 sin x 2 2dy /dx 5 12x cos x2 2 /sin x2 or 2x cot x2dy /dx 5 14 /x 2  cos 1 ln 3x4 2

55. 0.6293 57. 21.5399 59. 0.3558 61. 0.3292 63. 65.
67. 69. 71. 73.

75. a. b. 45°, 45°, 90° 77. a. ; yes

b. ; c. About 6.3 months d. About 383 BTUs

79. a. 29.54; there is a lunar cycle every

29.54 days. b. October 17; 1.8%

c. 98.75%

81. 83. 85. 120° 87. a. 34°F b. 58°F c. 80°F
d. 90°F e. 39°F 89. a. ; yes

b. s(t) 5 94.0872 sin (0.0166t 2 1.2213) 1 347.4158 c. 5:26 P.M.; 7:53 P.M.; 7:22 P.M. d. 82nd and 295th days 91. 60.2 m
93. 0.28° 95. [4.6, 6.3]

Exercises 13.2 (page 688)

1. 3.
5. 7. 9.
11. 13. 15. dy /dx 5 12sin x 2ecos xdy /dx 5 4e4x cos e4xdy /dx 5 2 1x csc x cot x 1 csc x 2 /x2

dy /dx 5 212x cos 2x 2 6 sin 2xdy /dx 5 8 tan7x sec2xdy /dx 5 24  cos3x sin x
dy /dx 5 108 sec2 1 9x 1 1 2dy /dx 5 4 cos 8x

0 365

450

250

2.1 3 108 m per second

0 6

600

0

P(t) � 7[1 � cos(2πt)](t � 10) � 100e0.2t 

0 12

500

0

C(t) � 76.44 sin (0.9953t + 0.5686) + 390.3
C 1 t 2 5 76.44 sin 10.9953t 1 0.5686 2 1 390.3

0 12

500

0

"2

y

y = –3 tan x

x–π π– π
2

π
2

–2
–4π 4π2π

y

x

x + π) + 2y = 4 sin (1
2

0

y

y = –    cos x

x

–2π 2π

–1/2
1
2

1/2

y

y = 2 cos x

x–2π –π 2ππ–2

2

a 5 3; T 5 1 /440a 5 1; T 5 2p /3



Answers to Selected ExercisesA-48

47. a. 1 b. c. 2 d. 22 e. f. 2 49. a. rev per minute
b. rev per minute 51. 20.81 ft

Exercises 13.3 (page 697)
1. 3.
5. 7. 9. 11. 13.
15. 17. 19. 21. 23.
25. 27.
29. 31. 33. 35. 37.
39. 6000 41. 60,000 43. 4430 hours; this result is relatively close to the actual value. 45. tan k (“tank”)

Chapter 13 Review Exercises (page 699)
1. False 2. True 3. False 4. False
5. True 6. False 7. True 8. False 9. False 10. False
15. 17. 19. 21. 23. 25. 27. 29. 31. 33. 35. 2
37. 39. 41. 0.7058 43. 0.8290 45. 47. 49.

51. 53. 55.
57. 59.
61. 63.
65. 67. 69. 71.
73. 75. 77. 79. 81. 1 83.
85. a. ; yes b. ; 

c. 239,389 million cubic feet; 227,577 
million cubic feet d. 19.2 months

87. 89. 91. 93. 95.
97. 99. 103. a. Yes b. in radians or in degrees
c. 0.995 feet/degree; the distance the tennis ball travels will increase by approximately 1 foot by increasing the angle of the tennis
racket by one degree. 105. u 5 p /4 or 45°

10.3 # a # 23.50.18 # a # 0.410.0039; u < 90°k /r1
4

 2 k cos u /r2
4 5 0

dR /du 5 ks csc2
 u /r1

4
 2 ks cos u /r2

4 sin2
 uR 5 k 1L1 /r1

4 1 L2 /r2
4

 
2R1 5 k 1L1 /r1

4
 
21L0 2 L1 2 /ss /L2

0 12

50,000

0

C(t) � 31,188 sin (0.32644t � 2.2787) � 33,057 C 1 t 2 5 31,188 sin 10.32644t 1 2.2787 2 1 33,057

0 12

50,000

0

20p3 1 cos x 221/3 1 C1 1 /24 2  ln 0 sin 8x3 0 1 C121 /9 2  cos9
 x 1 C1 5 /4 2  sec 2x2 1 C

24 cot x 1 C1 1 /5 2  tan 5x 1 C1 1 /5 2  sin 5x 1 Cdy /dx 5 1 cos x 2 / 1 sin x 2  or cot x
dy /dx 5 1 sec2 x 1 x sec2 x 2 tan x 2 / 1 1 1 x 2 2dy /dx 5 122 cos x sin x 1 cos2x sin x 2 / 1 1 2 cos x 2 2

dy /dx 5 e22x
 1 cos x 2 2 sin x 2dy /dx 5 22x sin 1 1 1 x2 2

dy /dx 5 64x sin3 14x2 2  cos 14x2 2dy /dx 5 6x csc2
 1 6 2 3x2 2dy /dx 5 10 sec2 

 5x

21, 1

–2

2

2ππ

y

x

y = 4 cos x

0

22.14450.7314
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BUSINESS AND ECONOMICS
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Air Fares, 34
Amortization, 618–621, 624, 662
Amount of an Annuity, 614–615, 616, 622, 

623, 662
Area, 319, 499
Attorney Fees, 56
Automobile Insurance, 639
Automobile Resale Value, 240
Average Cost, 76, 139, 190–191, 217, 311, 319,

348, 515
Average Inventory, 440
Average Price, 439, 440
Average Production, 515
Average Profit, 217, 515
Average Revenue, 515
Bank Burglaries/Robberies, 310–311
Bankruptcy, 550
Bicycle Sales, 269–270
Break-Even Analysis, 21–22, 24–25, 

40, 652
Can Design, 320
Capitol Value, 451–452, 453, 456
Car Payments, 623
Car Rental, 114, 148
Cat Brushes, 298
Charge for Auto Painting, 519–520
City Revenue, 223–224
Compound Interest, 81, 224, 245
Consumer Credit, 34
Consumer Demand, 138, 185
Consumer Durable Goods, 33
Consumer Price Index, 15, 115
Consumers’ and Producers’ Surplus, 403–405, 

406–407, 419
Container Construction, 499
Container Design, 320
Continuous Compound Interest, 83, 106, 245
Continuous Deposits, 552, 557
Continuous Withdrawals, 562
Cost, 40, 115, 178, 226, 233, 245, 261, 272, 311,

320–321, 341, 346–347, 363, 366, 375,
419, 469, 490, 498, 499, 520, 632

Cost Analysis, 20, 76, 146, 148, 172–173, 190
Cost and Revenue, 335, 341
Cost-Benefit Analysis, 72–73, 76
Cost Function, 21, 45, 460
Cost with Fixed Area, 319
Customer Expenditures, 598
Debt, 375
Decrease in Banks, 33
Delivery Charges, 52–53
Demand, 158, 177, 226, 285, 334, 335, 341, 348,

363–364, 366, 373
Dental Insurance, 586
Depreciation, 226, 610, 613
Digital Cable Subscribers, 33–34
Doubling Time, 89, 96–97, 246, 646
Dow Jones Industrial Average, 46–47
Duration, 632
Effective Rate, 104–105, 107, 108, 114

Elasticity of Demand, 326–329, 330, 335–336,
352, 536

Elderly Employment, 246
Electricity Consumption, 384, 679
Electronic Device, 598
Employee Productivity, 139
Employee Training, 217
Employee Turnover, 106–107
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Fast-Food Outlets, 598
Flashlight Battery, 591
Fuel Economy, 407
Gasoline Prices, 159, 298
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High-Risk Drivers, 598
House Payments, 623, 663
Household Telephones, 151
Housing Starts, 261
Income, 65, 613
Individual Retirement Accounts, 468–469, 622
Inflation, 87, 99, 114, 536
Injured Loss, 598
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Insurance Claims, 586
Insurance Reimbursement, 586
Insurance Sales, 598
Interest, 86, 87, 99, 105, 108, 114, 158–159, 226
Internet Usage, 233, 536
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Investment, 233, 419, 623, 648, 663
Labor Costs, 490
Life Insurance, 536
Life of a Light Bulb, 586
Life of an Automobile Part, 586
Life Span of a Computer Part, 576
Logistic Curve, 533–534
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Lot Size, 323–325, 329–330, 352
Lottery Winnings, 623
Machine Accuracy, 598
Machine Life, 576, 586
Machine Part, 576
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Malpractice Insurance, 638
Management Science, 60–61
Manufacturing, 154–156, 457–458, 503, 652–653
Manufacturing Cost, 478, 503, 520
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Marginal Cost, 24, 204, 217, 241, 245
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Marginal Profit, 205–206
Marginal Revenue, 205, 217
Marginal Sales, 562
Material Requirement, 348
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Medicare Trust Fund, 159
Minimum Average Cost, 215
Minimum Wage, 140

Money, 209
Money Flow, 442–443, 448, 456
Multiplier Effect, 636–637
Mutual Funds, 603
Natural Gas Consumption, 394
Net Savings, 405–406, 419
New Car Cost, 41
New Car Sales, 34
Oil Production, 419–420
Order Quantity, 325–326, 329, 352
Packaging Cost, 320
Packaging Design, 320, 351–352, 514–515
Passenger Arrival, 583
Pay Increases, 99
Payments, 618
Perfume Bottle, 509–510
Petroleum Consumption, 698
Point of Diminishing Returns, 282–283, 285
Pollution, 114
Postage, 139, 148
Postal Rates, 208–209
Power, 272
Preferred Stock, 139
Present Value, 106, 107–108, 114, 443–445, 

447, 448
Present Value of an Annuity, 617–618, 623, 638
Present Value of Money Flow, 447, 456
Price of Gold, 45
Pricing, 319
Printer Failure, 598
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Product Durability, 233
Product Life Cycle, 284
Product Repairs, 603
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Production, 148, 468, 469, 499, 503
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Production Error, 520
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270, 272, 311, 319, 347, 348, 351, 366,
367, 375, 396, 406, 490, 499, 515, 520,
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Profit Analysis, 258–259
Publishing Costs, 24
Rate of Change of Revenue, 433
Rental Car Cost, 56
Replacement Time for a Part, 632
Response Surface Design, 521–524
Retail outlets, 603
Revenue, 65, 114–115, 158, 177, 190, 208, 217,

226, 241, 272, 319, 340, 341, 348, 375,
478, 490, 632

Revenue and Seasonal Merchandise, 689
Revenue/Cost/Profit, 341
Risk Aversion, 285
Rules of 70 and 72, 97, 99
Sales, 14, 108, 159, 185, 208, 233, 245, 419, 471,

478–479, 679, 698



Sales Decline, 536
Sales Expense, 598
Sales Tax, 138
Savings, 401–402, 612, 613
Saw Rental, 55
Scholarship, 453
Simple Interest, 2
Sinking Fund, 616–617, 622, 623, 662
Social Security Assets, 178, 261, 285
Stock Prices, 274, 298
Supply and Demand, 17–19, 23–24, 40
Surface Area, 499
Synthetic Fabric, 534
Tax Rates, 56, 76, 191
Tax Rebate, 638
Teller Transaction Times, 568, 579–580
Text Messaging, 366
Time, 490, 515
Timing Income, 319
Total Cost, 414
Total Income, 441–442, 662
Total Revenue, 415, 456
Total Sales, 414
Transportation, 375–376
True Annual Interest Rate, 653
T-Shirt Cost, 24
U.S. Exports to China, 40
U.S. Imports from China, 40
U.S. Post Office, 246
Unemployment, 191, 261, 273
Use of Cellular Telephones, 15
Use of Materials, 320
Useful Life of an Appliance Part, 603
Utility, 498, 520
Utilization of Reserves, 419
Value of the Dollar, 246
Volume, 499
Volume of a Coating, 503
Wind Energy Consumption, 384
Worker Efficiency, 396

GENERAL INTEREST
Accidental Death Rate, 25–30, 31
Amusement Rides, 682
Area, 53, 312, 337, 352, 521, 639, 703
Athletic Records, 37
Automobile Mileage, 262
Average Expenditure per Pupil versus Test Scores, 32
Ballooning, 236
Baseball, 648
Bikers, 639
Candy, 227
Cats, 247
Dating a Language, 247
Driving Fatalities, 247, 578, 587–588
Drunk Drivers, 578, 587
Education Cost, 25
Elliptical Templates, 470
Energy Consumption, 57
Estimating Area, 504
Estimating Volume, 504
Food Frying, 491
Food Surplus, 247
Football, 37, 600
Game Shows, 613
Hose, 504

Ice Cream Cone, 504
Icicle, 339
Information Content, 312
Ladder, 691–692
Length of a Telephone Call, 578, 588
Maximizing Area, 67, 491–492, 495
Maximizing Volume, 315–316
Measurement Error, 349
Mercator’s World Map, 703–704
Minimizing Area, 316–317
Minimizing Time, 314–315
Music, 676
News/Talk Radio, 16
Package Dimensions, 352
Parabolic Arch, 67
Parabolic Culvert, 67
Perimeter, 57, 639
Playground, 353
Popularity Index, 374
Postage Rates, 470
Postal Regulations, 322
Power Functions, 118–120
Pursuit, 352–353
Race between a Rabbit and Turtle, 636
Recollection of Facts, 259
Required Material, 470
Rotating Camera, 691
Rotating Lighthouse, 691
Running, 38
Self-Answering Problems, 699
Soccer, 599–600
Sports, 613
Sports Cars, 262
State-Run Lotteries, 604
Street Crossing, 243
Surface Area, 521
Surfing, 353
The Gateway Arch, 236
Thickness of a Paper Stack, 613
Time of Traffic Fatality, 578, 588
Tolerance, 349
Track and Field, 235
Trains, 636, 639
Travel Time, 322
Trouble™, 648
Tuition, 12–13, 16
Vehicle Waiting Time, 218
Volume, 352, 461, 495–497, 687–688
Volume of a Can of Beer, 502
Zeno’s Paradox, 639
Zenzizenzicube, 227
Zenzizenzizenzic, 227

HEALTH AND LIFE SCIENCES
Activity Level, 273
Agriculture, 470
Air Pollution, 261, 679–680
Alaskan Moose, 273
Alcohol Concentration, 77, 261, 348
Alligator Teeth, 139, 286
Allometric Growth, 99–100, 341
Amount of a Drug in the Bloodstream, 632
Arctic Foxes, 234, 247
Area of a Bacteria Colony, 348
Area of an Oil Slick, 348
Average Birth Weight, 604

Bacteria Population, 160, 217, 227, 285, 348, 
613, 663

Bacterial Growth, 397
Beagles, 201, 397
Beef Cattle, 234
Bighorn Sheep, 209
Biochemical Excretion, 367
Biochemical Reaction, 336
Bird Eggs, 34–35, 440–441
Bird Migration, 322
Bird Population, 527
Birds, 341–342
Blood Clotting Time, 576–577, 586–587
Blood Flow, 340–341, 397, 440, 479–480
Blood Level Curves, 414–415
Blood Pressure, 367, 702
Blood Sugar and Cholesterol Levels, 41
Blood Sugar Level, 209
Blood Velocity, 341
Blood Vessels, 348, 501–502, 503, 520, 702–703
Blood Volume, 299, 503
Body Mass Index, 185, 192, 210
Body Surface Area, 241, 469, 479
Body Temperature of a Bird, 604
Bologna Sausage, 241–242
Bone Preservation Volume, 503
Brain Mass, 77, 209, 341
Breast Cancer, 234, 286
Breath Volume, 481
Brown Trout, 520
Calcium Usage, 227
Calorie Expenditure, 479
Calves, 415
Cancer, 66, 209
Cancer Research, 109
Carbon Dioxide Levels, 687, 689
Cardiac Output, 77
Cardiology, 262
Cell Division, 397
Cell Growth, 367
Cholesterol, 191, 235
Chromosomal Abnormality, 109, 166
Clam Growth, 285
Clam Population, 234, 285
Competing Species, 557–558, 562
Concentration of a Solute, 367
Contact Lenses, 76–77
Crickets Chirping, 35
Decrease in Bacteria, 108–109
Deer Harvest, 470
Deer-Vehicle Accidents, 470
Dengue Fever, 469
Dentin Growth, 352
Dialysis, 503
Dieting, 536–537
Digestion Time, 599
Dinosaur Running, 469
Disease, 321
Drug Concentration, 100, 116, 140, 261, 285,

300–302, 348
Drug Epidemic, 453
Drug Reaction, 227, 397, 414, 433, 440, 453, 

456, 480
Drug Use, 544
Drugs Administered Intravenously, 193–195
Eastern Hemlock, 503–504
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Eating Behavior, 179
Effect of Insecticide, 562
Electrocardiogram (EKG), 666
Exercise Heart Rate, 15
Exponential Growth, 246
Fever, 115
Finding Prey, 599
Fish, 246–247
Fish Population, 226, 536
Flea Beetles, 577, 587
Flight Speed, 178, 185–186
Flour Beetles, 367, 577, 587
Flu Epidemic, 159
Food Surplus, 84–85
Foot-and-Mouth Epidemic, 385, 415
Fruit Flies, 242, 299
Fungal Growth, 312
Genetics, 166
Giardia, 108
Glucose Concentration, 116
Glucose Level, 543, 544
Goat Growth, 551
Gray Wolves, 349
Growth Models, 77, 217
Growth of a Mite Population, 562
Growth of a Substance, 396
Growth of Algae, 550
Growth of Bacteria, 87, 108, 109
Growth Rate, 414, 433
H1N1 virus, 537
Harvesting Cod, 321–322
Health, 480
Heart, 209
Heart Muscle Tension, 604
Heat Index, 480–481
Heat Loss, 469, 479, 503
Hispanic Population, 247, 537
HIV in Infants, 116
HIV Infection, 15
Holstein Dairy Cattle, 262
Horn Volume, 503
Human Cough, 210
Human Growth, 186, 192
Human Mortality, 397
Human Skin Surface, 352
Immigration, 551
Index of Diversity, 98, 99
Infant Mortality, 648
Infection Rate, 420
Insect Cannibalism, 420
Insect Growth, 233, 285
Insect Life Span, 598
Insect Mating, 242
Insect Population, 551
Insect Species, 99
Insecticide, 185
Insulin in Sheep, 420
Intensity of Light, 116
Lead Poisoning, 596–597
Length of a Leaf, 587
Length of Life, 66
Life Expectancy, 15, 42–43, 584, 599, 604
Life Spans, 594–595
Lizards, 342
Location of a Bee Swarm, 598
Location of a Bird’s Nest, 572–573, 575

Logistic Growth, 246, 352
Mass of Bighorn Yearlings, 160
Maximum Sustainable Harvest, 317–318, 321
Medical Literature, 234
Medical School, 77
Mercury Poisoning, 599
Metabolic Rate, 56, 342
Metabolism Rate, 100
Migratory Animals, 698
Milk Consumption, 273
Milk Production, 420
Minority Population, 87, 100, 233
Molars, 160, 312
Monkey Eyes, 679
Mortality, 234, 573–574
Mountain Goat Population, 531–532
Mouse Infection, 544
Movement of a Released Animal, 603
Muscle Reaction, 217
Mutation, 637
Neuron Communications, 299
Oil Leakage, 382
Oil Pollution, 220–221, 226, 456
Optimal Foraging, 218
Outpatient Visits, 376
Oxygen Concentration, 132–133
Oxygen Consumption, 83–84
Oxygen Inhalation, 384–385
Ozone Depletion, 285
Petal Length, 576, 587
Physical Demand, 87–88
Pigeon Flight, 321
Pigs, 349
Polar Bear Mass, 116
Pollution, 311, 321, 352, 396, 407, 451
Pollution Concentration, 234
Pollution Intolerance, 469
Pollution of the Great Lakes, 564–566
Ponies Trotting, 15
Popcorn, 286
Population Biology, 77
Population Growth, 87, 108, 116, 233, 242, 285,

357, 420, 433, 537, 544, 562, 563, 689–690
Poultry Farming, 148
Predator-Prey, 553–554, 557
Pregnancy, 148
Present Value of a Population, 453
Prevalence of Cigarette Smoking, 9–10
Pronghorn Fawns, 242
Pygmy Heights, 599
Quality Control of Cheese, 179
Rams’ Horns, 397
Respiratory Rate, 116, 336
Rumen Fermentation, 434
Salmon Spawning, 312
Scaling Laws, 299
Scuba Diving, 480
Sediment, 139, 397
Shellfish Population, 178, 185
Size of Hunting Parties, 35
Smoke Content in a Room, 562
Snowfall, 603
Soil Moisture, 536
Species, 116, 117, 336
Species Survival, 632
Splenic Artery Resistance, 66

Spread of a Rumor, 537–538
Spread of a Virus, 191
Spread of an Epidemic, 554–556, 558
Spread of an Oil Leak, 396
Spread of Gonorrhea, 558
Spread of Infection, 261
Spread of Influenza, 562
Sunscreen, 115
Survival Curves, 520–521
Swimming Energy, 56
Swing of a Runner’s/Jogger’s Arm, 689
Symbiotic Species, 558
Thermal Inversion, 227
Thermic Effect of Food, 160, 262, 273, 433
Thoroughbred Horses, 299
Tooth Length, 66
Total Body Water, 520
Tracer Dye, 536
Track and Field, 210
Training Program, 353–354
Transylvania Hypothesis, 679
Tree Growth, 396
U.S. Asian Population, 537
Velocity of a Marine Organism, 209
Volume of a Tumor, 348
Weight Gain, 172, 186
Weight Gain of Rats, 603
Weightlifting, 298
Whale Population, 551
Whales Diving, 56, 191
Wind Chill, 480
Work/Rest Cycles, 217
Worker Productivity, 538
World Health, 41
World Population Growth, 159–160, 538
Yeast Production, 102

PHYSICAL SCIENCES
Acidity of a Solution, 101
Air Conditioning, 36–37
Air Resistance, 563–564
Area, 342
Astronomy, 175
Atmospheric Pressure, 88
Automobile Velocity, 387
Average Speed, 151–152
Average Temperatures, 456
Baseball, 179, 286
Body Temperature, 25
Botany, 109
Cameras, 681
Carbon Dating, 103, 109
Carbon Dioxide, 88
Chemical Dissolution, 110
Chemical Formation, 415
Chemical in a Solution, 559
Chemical Reaction, 286
Coal Consumption, 78
Communications Channel, 101
Computer Chips, 88–89, 490–491
Computer Drawing, 681
Dating Rocks, 117
Dead Sea, 210
Decay of Radioactivity, 110
Depletion Dates for Minerals, 421–424
Distance, 342, 367, 368, 385, 386, 387, 639
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Distance Traveled, 149
Dog’s Human Age, 210–211
Dry Length Days, 599
Earth’s Volume, 441
Earthquake Intensity, 101
Earthquakes, 577–578, 587, 599, 604
Electric Potential and Electric Field, 248–250, 632
Electricity, 235
Energy Usage, 703
Engine Velocity, 691
Flying Gravel, 690–691
Galactic Distance, 16
Gasoline Mileage, 312
Global Warming, 16
Gravitational Attraction, 481–482
Ground Temperature, 690
Half-Life, 109
Heat Gain, 386
Heat Index, 235
Height, 273
Height of a Ball, 286
Ice Cube, 342
Intensity of Sound, 101
Kite Flying, 343
Length of a Pendulum, 36, 78
Length of Day, 699
Light Rays, 680
Linear Motion, 421
Maximizing the Height of an Object, 67
Measurement, 681
Metal Plate, 407
Milk Consumption, 415
Motion of a Particle, 691
Motion under Gravity, 368
Movement Time, 482
Music Theory, 101
Newton’s Law of Cooling, 110, 538–539, 

544–545, 563
Nuclear Energy, 109
Oil Consumption, 398
Oil Production, 117
Oven Temperature, 179
Pendulum Arc Length, 639
Piston Velocity, 690
Planets, 117
Precipitation in Vancouver, Canada, 696–697
Probability, 415

Radioactive Decay, 88, 104, 109, 230, 235, 
538, 613

Radioactive Waste, 453
Rainfall, 577, 587, 599
Richter Scale, 242
Rocket, 368
Rocket Science, 368
Rotation of a Wheel, 613, 639
Running, 387
Salt Concentration, 556–557, 559
Shadow Length, 342
Shortest Time and Cheapest Path, 704–706
Simple Harmonic Motion, 703
Sliding Ladder, 338–339, 342, 352
Snowplow, 538
Soap Concentration, 559
Sound, 680, 690
Spherical Radius, 352
Stopping Distance, 67
Sunrise, 676–677
Sunset, 680–681
Swimming, 504
Temperature, 22–23, 25, 161, 179, 181, 192,

589–590, 680, 703
Tennis, 703
Time, 367
Total Distance, 383, 412–413
Traffic, 387–388
Velocity, 153–154, 157, 161, 210, 336, 342–343,

367, 482
Velocity and Acceleration, 276–277, 286, 300,

364–365
Voltage, 699
Volume, 342, 349
Water Level, 342, 352
Water Temperature, 475
Whitewater Rafting, 681
Wind Energy, 89, 247

SOCIAL SCIENCES
Accident Rate, 66
Age Distribution, 397
Age of Marriage, 66
Assaults, 604
Attitude Change, 273
Automobile Accidents, 385, 420–421
Bachelor’s Degrees, 367

Beer Consumption, 41
Centenarians, 206–207
Child Mortality Rate, 15
Crime, 286, 341, 663
Dating a Language, 599
Degrees in Dentistry, 367
Drug Use, 161
Education, 481, 563
Educational Psychology, 415
Emigration, 544
Evolution of Languages, 100
Film Length, 273
Gender Ratio, 66
Governors’ Salaries, 42
Habit Strength, 235
Head Start, 78
Health Insurance, 15
Ideal Partner Height, 35
Immigration, 16, 160–161, 544
Income Distribution, 398, 407
Learning, 299, 551
Legislative Voting, 140
Living Assistance and Subsidized Housing,

663–664
Marital Status, 41
Marriage, 15–16
Memorization Skills, 341
Memory Retention, 218
Minority Population, 150, 156
Movies, 42
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Nuclear Weapons, 299–300
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Production Rate, 441
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SAT Scores, 35
Sleep-Related Accidents, 252
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Time to Learn a Task, 577, 587
Typing Speed, 441
U.S. Asian Population, 150, 156
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Note: A complete Index of Applications can be found on p. I-1

I-5

Absolute extrema
explanation of, 304
graphical optimization, 308–309
method for finding, 305–307, 349

Absolute maximum, 304, 305–307
Absolute minimum, 304, 305–307, 317
Absolute value, R-27
Absolute value function, 173–174
Absolute value sign, 362
Acceleration, 276–277, 364–365
Acute angles, 667
Addition

in order of operations, R-2
of polynomials, R-2–R-3
of rational expressions, R-8

Addition property
of equality, R-11
of inequality, R-17

Algebra review
equations, R-11–R-16
exponents, R-21–R-25
factoring, R-5–R-7
importance of algebra, R-2
inequalities, R-16–R-21
polynomials, R-2–R-5
radicals, R-25–R-29
rational expressions, R-8–R-11

Amortization, 618–621
Amplitude, 675
Angles

equivalent, 668–669
explanation of, 666
of refraction, 704
radian measure of, 667–669
special, 671–673
terminal side of, 666
trigonometric functions for, 700
types of, 667

Annuities
amount of, 600, 613–615
explanation of, 613–614
ordinary, 613–614
payment period of, 613, 616–617
present value of, 617–618, 660
term of, 613

Antiderivatives. See also Derivatives
evaluation of, 392
explanation of, 356
Fundamental Theorem of Calculus and,

388–394
methods for finding, 356–365

Antidifferentiation, 356
Antidifferentiation formulas, 416
Approximations

by differentials, 501–502, 517
explanation of, 500
linear, 343–347, 350
Newton’s method and, 652
of area, 376–382
of definite integral, 380
Simpson’s rule and, 410–413

Taylor polynomials and, 624–631
trapezoidal rule and, 377

Arc, 667
Archimedes, 376, 378n
Area

approximation of, 376–382
between two curves, 398–405, 416
definite integrals and, 376–383, 392–394
finding of, 394
minimizing, 316–317
under curves, 379, 592–593, 695–696

Area formula, 53
Associative properties, R-2
Asymptotes

explanation of, 71, 111
method for finding, 131–133, 287
oblique, 290

Average cost
cumulative learning model and, 457
explanation of, 73, 215
marginal, 215
minimum, 215

Average rate of change
explanation of, 149–151, 187
formula for, 150

Average value, 438–439, 454
Axes, 2, 58

Basic identities, 682, 700
Bellard, Fabrice, 378n
Bernoulli, Jakob, 358, 654
Bernoulli, Johann, 654
Binomial theorem, 199
Binomials, R-4
Brahmagupta, 378n
Break-even point, 21
Break-even quantity, 21
Briggs, Henry, 92

Calculator exercises. See Graphing calculator
exercises

Calculus
differential, 356
Fundamental Theorem of, 388–394, 

416, 696
historical background of, 123n
integral, 356
multivariable, 459–524

Capital value, 451–452, 454
Carbon dating, 103–104
Carrying capacity, 532
Cartesian coordinate system, 2
Cauchy, Augustin-Louis, 123n
Caution notes, R-5, R-6, R-7, R-9, R-13, R-15, 

R-17, R-19, R-20, R-23, R-27, 4, 26, 28,
49, 51, 91, 93, 94, 105, 123, 131, 132, 145,
152, 169, 174, 182, 214, 222, 229, 256,
258, 265, 269, 271, 275, 280, 282, 304,
313, 338, 360, 362, 374, 392, 411, 450,
488, 492, 494, 497, 513, 528, 530, 582, 672

Celsius, Anders, 22n

Chain rule
alternative form of, 222, 243
composition of functions, 218–220
explanation of, 221, 243
use of, 220–224, 529, 684–685

Change
average rate of, 149–151, 187
instantaneous rate of, 151–157
rate of. See Rates of change
total, 382–383

Change in x, 3
Change in y, 3
Change-of-base theorem

for exponentials, 96–97, 112
for logarithms, 92–93, 112

Circle
circumference of, 668
unit, 667

Closed interval, R-17, 143
Cobb, Charles W., 465
Cobb-Douglas production function, 465–467
Coefficients

explanation of, R-2, 67
leading, 67

Cohen, Bill, 374
Column integration, 427–428
Common denominators, R-10
Common logarithms, 92
Common ratio, 610
Commutative properties, R-2
Completing the square, 59
Composite function, 219
Compound amount, 81
Compound interest

chain rule and, 224
continuous, 82–83, 111
effective rate for, 104–105
explanation of, 80–81

Concave downward, 277–278
Concave upward, 277–278
Concavity

of graphs, 277–280
test for, 279, 287–288, 296

Constant
decay, 102, 300
derivatives of a, 198–199
growth, 102, 530
integration, 357, 359–360

Constant functions, 48, 243
Constant multiple rule, 359–360, 416
Constant rule, 198
Constant times a function, 200, 243
Constraints, 491
Consumers’ surplus, 403–405, 417
Continuity, 140–146

at x = c, 141
explanation of, 141, 187
from right/left, 143
Intermediate Value Theorem and, 146
on an open interval, 142
on closed interval, 143



Continuous compounding
effective rate for, 104, 111
explanation of, 82–83, 111

Continuous deposits, 551–552
Continuous flow of money, 441–447
Continuous functions, 141, 143–144
Continuous probability distributions, 569–570
Continuous probability models, 567–575
Continuous random variables, 569–570, 579–585
Convergence

interval of, 640
of an infinite series, 634

Convergent integrals, 449
Correlation, 30–32, 39
Cosecant, 669. See also Trigonometric functions
Cosine, 669. See also Trigonometric functions
Cosine functions, 675–677
Cost analysis, 20–21, 146
Cost-benefit models, 72–73
Cost function, 21, 382
Cotangent, 669. See also Trigonometric functions
Critical numbers

explanation of, 254
in domain of function, 269
method for finding, 254–255
relative extrema at, 268–269

Critical point theorem, 307, 317
Critical points, 254, 483–484
Cube root, R-23
Cubes

difference of two, R-7
sum of two, R-7

Cubic polynomials, 69
Cumulative distribution function, 574, 600
Cumulative learning curve model, 457
Curve sketching

explanation of, 287–288, 296–297
illustrations of, 288–294

Curves
area between two, 398–405, 416
area under, 379, 592–593, 695–696
epidemic, 556
learning, 107, 457–458
level, 464
logistic, 532, 533–534
normal, 592
slope of, 163

De Moivre, Abraham, 592
Decay constant, 102
Decreasing functions

explanation of, 252–259
test for, 254

Definite integrals
area and, 376–383
explanation of, 380, 416
formulas for, 416
problem solving using, 392–394
properties of, 390, 416
substitution used on, 391–392

Degree measure, 667, 700
Demand

elasticity of, 326–329, 350
inelastic, 326–327

Demand curves, 17–18
Demand functions, 205–207, 334

Denominators
common, R-10
least common, R-10
rationalizing, R-27–R-28

Dependent variables, 17, 460
Depletion date estimation, 421–424
Deposits, continuous, 551–552
Derivative tests

first, 265–266
second, 280–281, 280–283
tangent line and, 162–166
techniques for finding, 197–207
third, 275
total cost model and, 353–354

Derivatives, 121–195
applications of, 303–354
calculation of, 196–250
chain rule for, 218–224
continuity and, 140–146
definition of, 162–175
difference quotient and, 167, 187
economic lot size and, 323–325
economic order quantity and, 325–326
elasticity of demand and, 326–329
existence of, 173–175
explanation of, 162–175
extrema applications and, 304–309
fourth, 275
graphical differentiation and, 180–183
graphs of, 182–183, 251–302
higher, 274, 275
implicit differentiation and, 331–334
increasing and decreasing functions and,

252–259
limits and, 122–135
linear approximation and, 343–347
notations for, 197, 275
of constant, 198–199
of constant times a function, 200
of exponential functions, 228–232, 236
of functions, 166–173
of logarithmic functions, 236–240
of products and quotients, 211–215
of sum, 202
of trigonometric functions, 682–688, 700
on graphing calculators, 169, 171, 174,

182–183, 202–203
partial, 471–477
power rule and, 199–200
rates of change and, 149–157, 274, 474–476
related rates and, 336–341
rules for, 236
second, 274, 275–276

Descartes, Rene, 2n
Difference quotient

derivatives and, 167, 187
explanation of, 152

Differentiable functions, 167
Differential calculus, 356
Differential equations, 525–566

applications of, 551–557
elementary, 526
Euler’s method and, 545–549, 560
explanation of, 526
general solution of, 526–527
linear first-order, 539–543, 560

order of, 539
separable, 526, 529
solutions to, 527–529, 560

Differentials
approximations by, 501, 517
error estimation and, 347
explanation of, 344
linear approximation and, 343–347, 350
total, 500

Differentiation
explanation of, 167
graphical, 180–183
implicit, 331–334, 350

Discontinuity
explanation of, 140–141
removable, 142

Discrete probability functions
explanation of, 569
probability density functions vs., 570

Discriminant, 484
Distribution

exponential, 590–591, 601
normal, 591–597, 601
standard normal, 592–593
uniform, 588–590, 601

Distribution function, cumulative, 574, 600
Distributive properties, R-2
Divergence of an infinite series, 634
Divergent integrals, 449
Division

in order of operations, R-2
of rational expressions, R-8

Domain(s)
agreement on, 49
and range, 49–50, 460
explanation of, 46, 110, 460
of logarithmic functions, 91
restrictions on, 49

Double integrals, 504–513
explanation of, 507, 517
over variable regions, 510–512, 517
volume and, 508–510

Doubling time, 89, 645–647
Douglas, Paul H., 465
Dow Jones Industrial Average, 46, 47
Drugs

concentration model for orally administered
medications, 300–302

intravenous administration of, 193–195

e
explanation of, 82, 111
exponential functions and, 95–96

Economic lot size, 323–325
Economic order quantity, 325–326
Effective rate, 104–105, 111
Elasticity of demand, 326–329, 350
Electric potential and electric field, 248–250
Electrocardiogram (EKG), 666
Elements of sequence, 609
Ellipsoid, 466
Endpoints

limits at, 317
of ray, 666

Epidemic curve, 556
Epidemics, 554–556
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Equality, properties of, R-11
Equations

differential. See Differential equations
exponential, 80, 95–98
functional, 457
linear, R-11–R-12, 4
logarithmic, 93–94
logistic, 532
of lines, 4–8, 38, 163–164
of tangent lines, 173
quadratic, R-12
rational, R-14–R-16
with fractions, R-14–R-16

Equilibrium price, 19
Equilibrium quantity, 19
Error estimation, 347
Euler, Leonhard, 82, 545
Euler’s method

accuracy of, 546, 549
explanation of, 545–546
use of, 545–549, 560

Even functions, 52
Exhaustion, 376
Expected value, 579–585, 600
Experience curves, 457–458
Explicit functions, 331
Exponential distribution

explanation of, 590–591, 601
waiting times and, 605–607

Exponential equations
explanation of, 80
solving of, 80, 95–98

Exponential functions
compound interest and, 80–82
continuity and, 144
continuous compounding and, 82–83
derivatives of, 228–232, 236
e and, 82
explanation of, 79, 111, 244
graphs of, 79–80
indefinite integrals of, 361
integration of, 416

Exponential growth and decay functions, 
102–107, 112

Exponentials, change-of-base theorem for, 
96–97, 112

Exponents
explanation of, R-2, R-21–R-22
integer, R-21–R-23
logarithms as, 89–90
properties of, R-22
rational, R-23–R-24
zero and negative, R-22

Extraneous solutions, R-15
Extrema

absolute, 304–309, 349
applications of, 313–318
location of, 483, 516
relative, 263–271, 483, 516
solving problems of applied, 304–309, 350

Extreme value theorem, solving problems of
applied, 305

Factor(s)
explanation of, R-5
greatest common, R-5

Factoring
difference of two cubes, R-7
difference of two squares, R-7
explanation of, R-5
of polynomials, R-7
of trinomials, R-6–R-8
perfect squares, R-7
simplifying by, R-27
sum of two cubes, R-7

Factoring out, R-6
Fahrenheit, Gabriel, 22n
Fermat, Pierre de, 568
First derivative test

explanation of, 265–266
method for, 265, 296

First octant, 461
Fisher, J. C., 533
Fixed cost, 20
Flavor plane, 521
FOIL method, R-4
Folium of Descartes, 332
Formulas from geometry, A-10
For Review features, 4, 6, 49, 52, 57, 79, 80, 84,

134, 149, 163, 200, 211, 214, 219, 228,
255, 268, 290, 306, 326, 331, 358, 359,
369, 379, 427, 431, 446, 449, 450, 462,
471, 482, 500, 505, 526, 530, 545, 570,
572, 614, 626, 683, 684

Fourth derivative, 275
Fractions

equations with, R-14–R-16
inequalities with, R-19–R-20

Fubini’s Theorem, 507, 513
Function notation, 17
Functional equations, 457
Functions

absolute value, 173–174
antiderivatives of, 356
applications for, 46–47
average value of, 438–439, 454
composite, 219
composition of, 218–220
constant, 48, 243
constant times a, 200, 243
continuous, 141, 143–144
continuous from left, 143
continuous from right, 143
continuous on closed interval, 143
continuous on open interval, 142
cosine, 675–677
cost, 382
cumulative distribution, 574
definite integral of, 380
definition of, 45
demand, 205–207, 334
density, expected value for, 580–581, 600
density, variance for, 579–582, 600
derivative of, 167, 357
differentiable, 167
discontinuous, 140–141
evaluation of, 50–51
even, 52
explanation of, 45, 46, 110
explicit, 331
exponential. See Exponential functions
exponential growth and decay, 102–107

graphing of, 461–467
implicit, 331
increasing and decreasing, 252–259, 287, 296
inverse, 91
limit of, 123–124, 187
linear, 57
linear cost, 45
logarithmic. See Logarithmic functions
logistic, 231
nonlinear, 44–120
odd, 52
of several variables, 460–467
of two variables, 460, 516
parent-progeny, 317
periodic, 673, 700
piecewise, 125, 142
polynomial. See Polynomial functions
power, 68, 118–120
probability density, 570–575, 588–597
quadratic, 57–64, 110, 522
rational, 71–73, 111, 143
relative extrema of, 263–271
root, 143
sine, 675–677
spawner-recruit, 317
step, 53
translations and reflections of, 62–63
trigonometric, 669–671

Fundamental Theorem of Calculus
applications for, 388–394, 449
explanation of, 388, 416, 696

Future value of money flow, 443
f (x) notation, 17

General solution to differential equations, 526–527
General term of sequence, 609
Geometric sequences, explanation of, 609–612
Geometric series

general term of, 660
infinite, 634–637, 660
sum of, 635, 660

Graphical differentiation, 180–183
Graphical optimization, 308–309
Graphing calculator exercises, 34–38, 41, 42, 57,

66, 75–78, 86–89, 99, 115–117, 119, 120,
137, 138, 147, 148, 158, 160, 176–178,
189, 190, 195, 208–210, 217, 232, 234,
240–242, 246, 247, 260, 272, 284, 295,
310, 320, 321, 352, 384, 386, 396, 405,
407, 414, 415, 420, 421, 440, 452, 453,
468, 478, 480, 503, 536–539, 550, 551,
563, 577, 578, 587, 597, 598, 603, 604,
622–624, 638, 679–682, 689, 690, 698,
702, 703

Graphing calculators
absolute maximum and, 307
absolute minimum and, 307, 317
amortization on, 621
approximation of area on, 381
area between two curves and, 400
correlation coefficient on, 31
continuous compounding on, 84–85
degree and radian measure on, 668
derivatives on, 169, 171, 174, 182–183,

202–203
Euler’s method on, 547
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Graphing calculators (Continued )
exact value of vertex and, 60
exponential equations on, 95
exponential regression feature on, 85
extrema on, 267
functions of two variables on, 467
improper integrals on, 450
increasing and decreasing functions on, 258
instantaneous rate of change on, 157
integrals on, 373
least squares line on, 28–29
limitations of, 287
limits on, 125, 127, 131–132
logarithms on, 93, 294
Newton’s method on, 651
normal curves on, 595
number e on, 82
piecewise functions on, 142
plotting data with, 19
probability density functions on, 573–574
rational function on, 72
relative extrema on, 267
sum of sequences on, 611
tangent lines on, 165–166
Taylor polynomials and, 629
technology notes, 12, 13, 19, 20
trapezoidal rule on, 410
trigonometric functions on, 672, 676–677, 683,

687, 696–697
Graphs

concavity of, 277–280
curve sketching and, 288–294
explanation of, R-17, 2
of derivatives, 182–183, 251–302
of equations, 2
of exponential functions, 79–80, 112
of increasing and decreasing functions,

253–258
of intervals, R-17
of linear inequalities, R-18
of lines, 10–13
of logarithmic functions, 91, 112, 

293–294
of planes, 462–464, 516
of polynomial functions, 69–70, 

288–289
of quadratic functions, 57–64, 110
of rational functions, 71–72, 290–293
of sine and cosine functions, 675–677
translations and reflections of, 63–64

Greatest common factor, R-5
Growth, logistic, 532–534
Growth constant, 102, 530
Growth functions

exponential, 102
limited, 106

Gunter, Edmund, 92

Half-life, 102
Half-open interval, R-17
Hedonic responses, 521
Heraclitus, 304
Histograms, 569
Horizontal asymptotes

explanation of, 71, 111
method for finding, 133, 287

Horizontal lines
equation of, 8
graphs of, 11
slope of, 7

Horizontal reflection, 63
Horizontal translation, 59
Hyperbolic paraboloid, 466
Hyperboloid of two sheets, 466

Identities, basic, 682, 700
Implicit differentiation, 331–334, 350
Improper integrals

applications of, 448–452, 454
explanation of, 449

Increasing functions
explanation of, 252–259
test for, 254

Indefinite integrals
explanation of, 357–358, 361
of exponential functions, 361
power rule to find, 358–359

Independent variables, explanation of, 17, 460
Indeterminate form, 130, 653
Index, R-26
Index of diversity, 98
Inequalities

explanation of, R-17
linear, R-17
polynomial, R-18–R-19
properties of, R-17
quadratic, R-18
rational, R-19–R-20
symbols for, R-16
with fractions, R-19–R-20

Infinite series
explanation of, 633–637
sum of, 634

Infinity, limits at, 132–135, 187, 657–658
Inflection points

explanation of, 278
method for finding, 287

Initial conditions, 528
Initial side of angle, 666
Initial value problems, 528–529
Instantaneous rate of change

alternate form of, 153
explanation of, 151–152, 167
formula for, 152, 153

Integer exponents, R-21–R-23
Integral calculus, 356
Integral sign, 357, 510
Integrals, A-13

area between two curves and, 398–405, 416
convergent, 449
definite, 376–383, 390, 416, 430–432, 505–507
divergent, 449
double, 504–513, 517
improper, 448–452, 454
indefinite, 357–358, 361, 505
iterated, 507
learning curves and, 457–458
of trigonometric functions, 692–697, 700
relationship between sums and, 359
tables of, 432

Integrand, 357, 507
Integrating factor, 541

Integration, 355–424
average value and, 438–439
by parts, 426–432, 454, 695
by substitution, 368–376
column, 427–428
continuous money flow and, 442–445
improper integrals and, 448–452
limits of, 380, 512–513
lower limit of, 380
numerical, 408–413
region of, 507
rules of, 359–360
tabular, 427–428
techniques and applications of, 425–458
upper limit of, 380
variable limits of, 510–511

Integration constant, 357, 359–360
Intercepts, 2
Interest

compound, 80–82
continuously compounded, 82–83
explanation of, 80–81
nominal, 104
present value for, 105
rate of, 80
simple, 81, 111
stated, 104

Intermediate Value Theorem, 146
Interpolation, 42
Interval(s)

closed, R-17
half-open, R-17
open, R-17
real number, 569

Interval notation, R-17
Intravenous administration of 

drugs, 193–195
Inventory problems, 325
Inverse functions, 91
Irrational numbers, 378n
Isoquant, 465
Iterated integrals, 507

Jackson, Andrew, 596

Kepler, Johannes, 435

Lagrange, Joseph Louis, 492
Lagrange multipliers

applications for, 492–497, 523
explanation of, 491–492, 517
steps for use of, 492–493, 517

Law of diminishing returns, 282
Leading coefficients, 67
Learning curves, 107, 457–458
Least common denominators, R-10
Least squares line

calculation of, 27–30, 39
correlation and, 30–32
explanation of, 25

Least squares method, 20
Leibniz, Gottfried Wilhelm, 123n, 197, 358
Leibniz notation, 197
Level curves, 464
Level surface, 467
l’Hospital, Marquis de, 654
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l’Hospital’s rule
application of, 654–658
explanation of, 653–654, 661
proof of, 658–659

Like terms, R-2
Limited growth functions, 106
Limits, 122–135

at endpoints, 317
at infinity, 132–135, 657–658
existence of, 127, 187
explanation of, 123–124
from left, 123
from right, 123
in trigonometric functions, 683, 700
methods for determining, 123–127, 131–132
of function, 123–124, 187
of integration, 380, 512–513
on graphing calculators, 125, 127, 131–132
one-sided, 123
rules for, 128
two-sided, 123

Linear approximation, 343–347, 350
Linear cost function, 21, 39
Linear equations

explanation of, R-11, 4
solving of, R-11–R-12

Linear first-order differential equations
explanation of, 539–541
mixing of solutions and, 556–557
solving of, 541–543, 560

Linear functions, 1–43
break-even analysis and, 21–22
cost analysis and, 20–21, 39
explanation of, 17, 57
least squares method and, 20
marginal cost and, 20
supply and demand and, 17–19
temperature and, 22–23

Linear inequalities
explanation of, R-17
solving of, R-17

Linear regression, 20
Lines

equation of tangent, 173
equations of, 4–8, 38, 163–164
graphs of, 10–13
horizontal, 7, 11
parallel, 8–9, 38
perpendicular, 9–10, 38
secant, 162–163
slope of, 3–4, 38, 150
tangent, 162–166, 173
vertical, 7–8

Living assistance and subsized housing, 
663–664

Local extrema. See Relative extrema
Local maximum. See Relative maximum
Local minimum. See Relative minimum
Logarithmic equations

explanation of, 93
solving of, 93–94

Logarithmic functions, 89–98
continuity and, 144
derivatives of, 236–240, 244
explanation of, 90–91, 111, 244
graphs of, 91, 112, 293–294

Logarithms
change-of-base theorem for, 92–93, 112
common, 92
evaluation of, 92–93
explanation of, 89–90, 111
natural, 92
on graphing calculators, 93
properties of, 91–92, 111

Logistic curve, 532, 533–534
Logistic equations, 532
Logistic function, 231
Logistic growth model

application of, 554–556
explanation of, 532

Lotka, A.J., 552
Lotka-Volterra equations, 553

Maclaurin, Colin, 640
Maclaurin series, 640
Marginal analysis, 203–204, 346–347
Marginal cost

average, 215
explanation of, 20, 155, 203
method for finding, 204

Marginal profit, 205–206
Marginal revenue, 205
Marshall, Alfred, 18
Math of finance formulas, 80–82, 111
Mathematical models, 2
Maximum. See also Extrema

absolute, 304, 305–307
relative, 263, 266, 482

Maximum sustainable harvest, 318
Mean. See Expected value
Median, 584–585, 600
Midpoint rule, 377
Minimum. See also Extrema

absolute, 304, 305–307
relative, 263, 266, 482

Minimum average cost, 215
Mixing problems, 556–557
Money flow

accumulated amount of, 445–447, 454
explanation of, 441–442
present value of, 443–445, 447, 454
total, 442–443, 454

Muir, Thomas, 667
Multiplication

of binomials, R-4
of polynomials, R-3–R-5
of rational expressions, R-8
order of operations, R-2

Multiplication property
of equality, R-11
of inequality, R-17

Multiplier effect, 636–637
Multivariable fitting, 521–524
Mutation, 637

n!, 628, 628n
Napier, John, 92
Natural logarithms, 92
Negative exponents, R-22
Newton, Isaac, 123n, 197, 650
Newton’s method, 649–652, 661
Nominal rate, 104

Nonlinear functions, 44–120
explanations of, 46
exponential functions as, 79–85
illustrations of, 45
limited growth, 106
logarithmic functions as, 89–98
polynomial functions as, 67–70
properties of, 45–53
quadratic functions as, 57–64
rational functions as, 71–73

Normal curves
area under, 592
explanation of, 592

Normal distribution
explanation of, 591–597, 601
standard, 592–593

Notation
for derivatives, 197, 275
Leibniz, 197

nth partial sum, 633
nth term of sequence, 609
Numbers

critical, 254, 268–269
irrational, 378n
real, R-2

Numerators, rationalizing, R-28
Numerical analysis, 413
Numerical integration, 408–413

Oblique asymptote, 290
Obtuse angles, 667
Odd functions, 52
Open interval, R-17, 142
Operations, order of, R-2
Order of operations, R-2
Ordered pairs, 2
Ordered triples, 461
Ordinary annuities, 613–614
Origin

explanation of, 2
graph of line through, 11–12

Parabolas
area of segment of, 411
explanation of, 58

Paraboloid, 464, 466
Parallel lines, 8–9, 38
Parent-progeny function, 317
Parentheses, order of operations, R-2
Partial derivatives

evaluation of, 473–474
explanation of, 471–472, 516
rate of change and, 474–476
second-order, 476–477, 516

Particular solutions to differential 
equations, 528

Pascal, Blaise, 568
Payment period of annuities, 613, 616–617
Pearl, Raymond, 533
Perfect squares, R-7
Period of function, 673, 673n
Periodic functions, 673, 700
Perpendicular lines, 9–10, 38
Phase shift, 675
Piecewise functions, 125, 145
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Plane
explanation of, 462
graph of, 462–464, 516
xy-, 461

Plimpton 322, 670n
Point of diminishing returns, 282
Point-slope form, 6, 8
Pollution at Great Lakes, 565–566
Polynomial functions

continuity and, 143
explanation of, 67, 111
graphs of, 288–289
properties of, 70, 111

Polynomial inequalities, R-18–R-19
Polynomials

addition of, R-2–R-3
cubic, 69
explanation of, R-2
factoring of, R-7
graphing of, 69–70
identifying degree of, 70
multiplication of, R-3–R-5
prime, R-7
quartic, 69
subtraction of, R-2–R-3

Popularity Index, 374
Positive root, R-23
Power functions, 68, 118–120
Power rule

antiderivative and, 358–359
explanation of, 199–200, 243, 416

Powers, order of operations, R-2
Predator-Prey model, 552–554
Present value

explanation of, 105
of annuities, 617–618, 660
of continuous money flow, 443–445, 454

Prime polynomials, R-7
Principal, 80
Principal root, R-23
Probability, background of, 568
Probability density functions

discrete probability functions vs., 570
explanation of, 570–575, 600
exponential distribution and, 590–591
normal distribution and, 591–597
special, 588–597
uniform distribution and, 588–590

Probability distributions
continuous, 569–570
expected value of, 579
variance of, 579–580

Probability functions
discrete, 569
explanation of, 568
of random variable, 569

Probability models, continuous, 567–575
Probability of event, 568n
Problem of the points, 568
Producers’ surplus, 404, 417
Product rule, explanation of, 211–213, 214, 243
Production function, 464–465, 475–476
Profit, 21
Proportional, 5
Pry, R-H., 533
Pythagoras, 670n

Pythagorean theorem, 670

Quadrants, 2
Quadratic equations, R-12
Quadratic formula, R-13, 365, 399
Quadratic functions

explanation of, 57, 110
graphs of, 57–64, 110
maximum or minimum of, 61

Quadratic inequalities, R-18
Quartic polynomials, 69
Quirin, Jim, 374
Quotient rule, explanation of, 213–214, 243

Radian, 667, 668, 700
Radian measure, 667–669
Radical sign, R-26
Radicals

explanation of, R-25–R-29
properties of, R-26

Radicand, R-26
Random variables

continuous, 569–570, 579–585
explanation of, 568
probability function of, 569

Range
domain and, 49–50, 460
explanation of, 46

Rates of change
explanation of, 150
formula for average, 150
formula for instantaneous, 152, 153
of derivatives, 167, 274, 474–476

Ratio, common, 610
Rational equations, R-14–R-16
Rational exponents, R-23–R-24
Rational expressions

combining of, R-9–R-11
explanation of, R-8
properties of, R-8
reducing of, R-8–R-9

Rational functions
continuity and, 143
explanation of, 71, 111
graphs of, 71–72, 290–293

Rational inequality, R-19–R-20
Rays, 666
Real number interval, 569
Real numbers, R-2
Real zero, 69
Reflections of functions, 62–63
Region of integration, 507
Related rates, 336–341, 350
Relative extrema

explanation of, 263–264, 516
first derivative test for, 265–266
for realistic problems, 271
methods for finding, 266–271
on graphing calculators, 267
second derivative test for, 281, 296, 485, 516

Relative maximum
explanation of, 263, 266, 482
in functions of two variables, 482–488

Relative minimum
explanation of, 263, 266, 482
in functions of two variables, 482–488

Removable discontinuity, 142
Residuals, 42
Response surfaces, 521–524
Revenue

and elasticity, 328
explanation of, 21

Riemann, Georg, 380n
Riemann integral, 380n
Riemann sum, 380n
Right angles, 667
Root functions, 143
Roots

cube, R-23
positive, R-23
principal, R-23
square, R-23

Rule of 70, 97, 645–646, 660
Rule of 72, 97, 645–646, 661
Runge-Kutta method, 549

Saddle, 466
Saddle points, 483, 485–486
Scatterplots, 12, 29, 32
Secant, 669. See also Trigonometric functions
Secant line, 162–163
Second derivative

explanation of, 274
method for finding, 275–276

Second derivative test, 280–281, 280–283, 296
Second-order derivatives, 476–477, 516
Separable differential equations, 529
Separation of variables, 529–530
Sequences

annuities and, 613–621
explanation of, 610
geometric, 609–612

Series
infinite, 633–637, 660
Maclaurin, 640
Taylor, 639–647, 661

Shortage, 19
Simple interest, 81, 111
Simpson, Thomas, 411
Simpson’s rule, 410–413, 417
Sine, 669. See also Trigonometric functions
Sine functions, 675–677
Sinking fund, 616–617
Slope

explanation of, 3
of curve, 163
of line, 3–4, 38
of tangent line, 162–165, 254, 279

Slope-intercept form, 4–5, 8
Snell’s law, 704, 705
Solid of revolution, 434–437, 454
Spawner-recruit function, 317
Special angles, 671–673
Spreadsheet exercises, 34–38, 41, 42, 195, 234,

247, 250, 354, 386, 468, 480, 491, 499,
550, 551, 622–624, 638

Spreadsheets
approximation of area on, 382
Euler’s method on, 547
extrema on, 487–488, 496–497
least squares line on, 29
trapezoidal rule on, 410
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Square root, R-23
Squares

difference of two, R-7
perfect, R-7

Standard deviation
explanation of, 580, 600
method for finding, 580
normal random variables and, 596

Standard form, R-12
Standard normal distribution, 592–593
Standard position, 666
Stated interest, 104
Step functions, 53
Straight angles, 667
Subsized housing, living assistance and, 663–664
Substitution

explanation of, 372
integration by, 368–376
method of, 372, 416

Subtraction
in order of operations, R-2
of polynomials, R-2–R-3
of rational expressions, R-8

Sum, derivative of, 202
Sum or difference rule

explanation of, 201, 243, 416
indefinite integrals and, 359

Summation notation, 26
Sums

of geometric series, 635, 660
partial, 634

Supply curves, 17–18
Surface

explanation of, 463
volume under a, 508

Surplus, 19

Tabular integration, 427–428
Tangent, 669. See also Trigonometric functions
Tangent line

equation of, 173
explanation of, 162–166
on graphing calculators, 165–166
slope of, 162–165, 279, 333

Taylor, Brook, 624
Taylor polynomials

explanation of, 624–631, 661
of degree n, 629–631

Taylor series
common, 641
composition with, 642–644
explanation of, 640, 661
integrating of, 644–645
operations on, 641
rule of 70 and rule of 72, 645–646, 660–661

Technology exercises. See Graphing calculator
exercises and Spreadsheet exercises

Technology notes
Graphing calculator, 12, 13, 19, 20, 51, 64, 69,

85, 125, 165, 171, 183, 202, 258, 280, 289,
307, 373, 380, 400, 431, 432, 436, 533,
534, 573, 584, 595, 615, 629, 651, 696

Spreadsheet, 145, 157
Temperature, 22–23

Terms
explanation of, R-2
like, R-2
of annuity, 613
of sequence, 609
unlike, R-2

Third derivative, 275
Thomson, James, 667
Time

doubling, 89, 645–647
explanation of, 80
minimizing, 314–315
shortest and cheapest path, 704–706

Total change, 382–383
Total cost model, 353–354
Total differentials

for three variables, 501, 517
for two variables, 499–500, 517

Total money flow, 442–443, 454
Traces, 464
Translations of functions, 62–63
Trapezium, 408n
Trapezoid, 408n
Trapezoidal rule, 377, 408–410, 417
Triangles, right, 671
Trigonometric functions, 665–706

basic identities of, 682
definitions of, 666, 669, 700
derivatives of, 682–688, 700
for common angles, 700
graphs of, 673–675, 675–676
integrals of, 692–697, 700
on graphing calculators, 672, 676–677, 683,

687, 696–697
values of, 670–671

Trigonometric identities, elementary, 
669, 700

Trinomials
explanation of, R-6
factoring of, R-6–R-8

Turning points, 69

Uniform distribution, 588–590, 601
Unit circle, 667
Unit elasticity, 326–327
Unit learning curve model, 457
Unlike terms, R-2

Value
average, 438–439, 454
capital, 451–452, 454
expected, 579–585
future, 443
present, 443–445

Variables
dependent, 17, 460
explanation of, R-2
functions of several, 460–467
functions of two or more, 460
independent, 17, 460
random, 568, 569, 579–585
separation of, 529–530
three, total differential for, 501, 517
two, total differential for, 499–500, 517

Variance
alternative formula for, 582, 600
explanation of, 579–580, 600
for density function, 579–582, 600
of probability distribution, 579–580

Velocity
explanation of, 153, 276–277
integrals and, 364–365

Verhulst, P.F., 533
Vertex, 58, 666
Vertical asymptotes

explanation of, 71, 111
method for finding, 131–132, 287

Vertical line
equation of, 8
slope of, 7–8

Vertical line test, 51–52, 110
Vertical reflection, 58
Vertical translation, 58
Volterra, Vito, 552
Volume

double integrals and, 508–510, 517
maximizing, 315–316
maximum, 687–688
of box, 495–497
of solid of revolution, 434–437, 454
under a surface, 508

Waiting times, exponential, 605–607
Writing exercises, 13–16, 23, 32–39, 41–43,

55–57, 64–66, 73, 75, 77, 78, 86, 87, 
89, 98, 99, 107–109, 113, 115–117, 120,
136–138, 147, 148, 158–161, 176–179,
184, 188, 190, 207–211, 216–218,
225–227, 233, 234, 240–242, 244–247,
250, 260–262, 272, 284, 286, 294, 297,
298, 300, 310–312, 320, 322, 329, 330,
336, 350–352, 366, 374, 375, 383, 384,
387, 388, 396, 397, 407, 414, 417–419,
420, 421, 433, 452, 453, 455, 456, 458,
467, 469, 470, 479, 480, 481, 488, 489,
490, 491, 498, 504, 514, 518–520,
535–539, 550, 551, 557, 558, 561–563,
575, 585, 597, 599, 601, 602, 613, 638,
639, 652, 660, 661, 679, 689, 698, 
701, 704

x
equivalent expressions for change in, 170–171
function of, 45

x-axis, 2
x-coordinate

explanation of, 2
in exponential functions, 85

x-intercept, 2
xy-plane, 461
xy-trace, 464
xz-trace, 464

y-axis, 2
y-coordinate

explanation of, 2
in exponential functions, 85

y-intercept, 2
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Your Turn exercises, R-3, R-4, R-6, R-7, R-9, 
R-10, R-12, R-14, R-15, R-17, R-18, R-20,
R-23, R-24, R-26, R-28, 4–6, 8, 9, 17, 19,
21, 22, 29, 31, 50, 51, 60, 61, 68, 80, 81,
83, 90, 92–96, 102, 103, 105, 106, 122,
124–126, 129, 130, 135, 144, 145, 150,
151, 154, 156, 164, 169, 171–173, 181,
182, 200–202, 204, 205, 213–215, 219,
220, 222, 223, 229, 230, 238, 239, 253,
256, 257, 264, 267–270, 275–277, 280,

281, 289, 291, 292, 294, 306, 307,
314–317, 325–327, 329, 332–334, 337,
339, 340, 345–347, 357, 359–362, 365,
369–372, 382, 383, 389, 391–393,
399–401, 405, 410, 412, 428–432, 436,
439, 442, 445–447, 450, 451, 461, 462,
465, 472, 474, 477, 484, 486, 493, 497,
500–502, 505, 506, 508, 509, 511, 526,
528, 530, 532, 542, 547, 552, 554, 556,
557, 571, 573, 575, 581, 582, 585, 590,

591, 595, 609–612, 615, 616, 618, 621,
629, 630, 633, 636, 642, 643, 646, 651,
652, 655–658, 669, 670, 672, 673,
684–686, 694–696

yz-trace, 464

z-scores, 593–596, 601
Zero-factor property, R-12
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Chapter 1
Section 1.1

1. Example 10 from Morbidity and Mortality
Weekly Report, Centers for Disease Control
and Prevention, Vol. 58, No. 44, Nov. 13,
2009, p. 1227.

2. Example 14 from http://www.trends-
collegeboard.com/college_ pricing/1_3_over_
time_current_dollars.html.

3. Exercise 62 from Time Almanac 2010, p. 150.
4. Exercise 63 from Time Almanac 2010,

pp. 637–638.
5. Exercise 64 from Alcabes, P., A. Munoz, D.

Vlahov, and G. Friedland, “Incubation Period
of Human Immunodeficiency Virus,”
Epidemiologic Review, Vol. 15, No. 2, The
Johns Hopkins University School of Hygiene
and Public Health, 1993, pp. 303–318.

6. Exercise 65 from Hockey, Robert V., Physical
Fitness: The Pathway to Healthful Living,
Times Mirror/ Mosby College Publishing,
1989, pp. 85–87.

7. Exercise 66 from Science, Vol. 253, No. 5017,
July 19, 1991, pp. 306–308.

8. Exercise 67 from Science, Vol. 254, No. 5034,
Nov. 15, 1991, pp. 936–938, and
http://www.cdc.gov/nchs/data.

9. Exercise 68 from World Health Statistics
2010, World Health Organization, 
pp. 56–57.

10. Exercise 69 from The New York Times, Sept.
11, 2009, p. A12.

11. Exercise 70 from U. S. Census Bureau,
http://www.census.gov/ population/socdemo/
hh-fam/ms2.pdf.

12. Exercise 71 from 2008 Yearbook of
Immigration Statistics, Office of Immigration
Statistics, Aug. 2009, p. 5.

13. Exercise 72 from Science News, June 23,
1990, p. 391. 

14. Exercise 73 from Acker, A. and C. Jaschek,
Astronomical Methods and Calculations, John
Wiley & Sons, 1986; Karttunen, H. (editor),
Fundamental Astronomy, Springer-Verlag,
1994.

15. Exercise 74 from http://www.stateofthemedia
.org/2009/narrative_audio_audience.php?
media=10&cat=2#1listeningtoradio.

16. Exercise 75 from http://www.trends-
collegeboard.com/college_ pricing/1_3_
over_time_current_dollars.html.

Section 1.2
1. Page 18 from http://www.agmrc.org/media/

cms/oceanspray_4BB99D38246C8.pdf.
2. Exercise 46 from Science News, Sept. 26,

1992, p. 195, Science News, Nov. 7, 1992, 
p. 399.

3. Exercise 48 from http://www.calstate.edu/
budget/fybudget/2009-2010/supportbook2/
challenges-off-campus-costs.shtml.

Section 1.3
1. Page 25 from U.S. Dept. of Health and

Human Services, National Center for Health
Statistics, found in New York Times 2010
Almanac, p. 394.

2. Example 5 from Public Education Finances
2007, U.S. Census Bureau, July 2009, Table 8.
http://www2.census.gov/govs/school/07f33pub
.pdf; The Nation’s Report Card: Reading
2007, National Center for Education
Statistics, U.S. Department of Education,
Sept. 2007, Table 11. http://nces.ed.gov/
nationsreportcard/pdf/main2007/2007496.pdf.

3. Exercise 4 from “November 1989 Course 120
Examination Applied Statistical Methods” of
the Education and Examination Committee of
The Society of Actuaries. Reprinted by
permission of The Society of Actuaries.

4. Exercise 10 from http://www.bea.gov/
national/FA2004/SelectTable.asp.

5. Exercise 11 from http://www2.fdic.gov/
hsob/hsobRpt.asp.

6. Exercise 12 from http://www.ncta.com/Stats/
CableAvailableHomes.aspx.

7. Exercise 13 from http://www.federalreserve
.gov/releases/g19/Current/.

8. Exercise 14 from http://www.nada.org/NR/
rdonlyres/0FE75B2C-69F0-4039-89FE-
1366B5B86C97/0/NADAData08_no.pdf.

9. Exercise 15 from American Airlines, http://
www.aa.com.

10. Exercise 15 from The New York Times, Jan. 7,
2000.

11. Exercise 16 from www.nctm.org/wlme/
wlme6/five.htm.

12. Exercise 17 from Stanford, Craig B.,
“Chimpanzee Hunting Behavior and Human
Evolution,” American Scientist, Vol. 83,
May–June 1995, pp. 256–261, and Goetz,
Albert, “Using Open-Ended Problems for
Assessment,” Mathematics Teacher, Vol. 99,
No. 1, August 2005, pp. 12–17.

13. Exercise 18 from Pierce, George W., 
The Songs of Insects, Cambridge, Mass.,
Harvard University Press, Copyright © 1948
by the President and Fellows of Harvard
College.

14. Exercise 19 from Digest of Education
Statistics 2006, National Center for Education
Statistics, Table 63.

15. Exercise 20 from Historical Poverty Tables,
U.S. Census Bureau.

16. Exercise 21 from Lee, Grace, Paul Velleman,
and Howard Wainer, “Giving the Finger to
Dating Services,” Chance, Vol. 21, No. 3,
2008, pp. 59–61.

17. Exercise 23 from data provided by Gary
Rockswold, Mankato State University,
Minnesota.

18. Exercise 25 from Carter, Virgil and Robert E.
Machol, Operations Research, Vol. 19, 1971,
pp. 541–545.

19. Exercise 26 from Whipp, Brian J. and Susan
Ward, “Will Women Soon Outrun Men?”
Nature, Vol. 355, Jan. 2, 1992, p. 25. The
data are from Peter Matthews, Track and
Field Athletics: The Records, Guinness,
1986, pp. 11, 44; from Robert W. Schultz
and Yuanlong Liu, in Statistics in Sports,
edited by Bennett, Jay and Jim Arnold,
1998, p. 189; and from The World Almanac
and Book of Facts 2006, p. 880.

20. Exercise 27 from http://www.run100s.com/
HR/.

Review Exercises
1. Exercises 56 and 57 from TradeStats

ExpressTM, http://tse.export.gov.
2. Exercise 58 from U.S. Census Bureau,

Historical Income Tables–Households, Table
H-6, 2008.

3. Exercise 59 from Chicago Tribune, Feb. 4,
1996, Sec. 5, p. 4, and NADA Industry
Analysis Division, 2006.

4. Exercise 60 from Food and Agriculture
Organization Statistical Yearbook, Table D1,
Table G5, http://www.fao.org/economic/ess/
publications-studies/statistical-yearbook/
fao-statistical-yearbook-2009/en/.

5. Exercise 62 from http://www.ers.usda.gov/
Data/FoodConsumption/spreadsheets/mtpcc.xls.

6. Exercise 63 from http://www.census.gov/
population/socdemo/hh-fam/ms1.xls.

7. Exercise 64 from http://www.census.gov/
hhes/www/poverty/histpov/famindex.html.

8. Exercise 65 from http://www.census.gov/
popest/states/NST-ann-est.html; http://doa
.alaska.gov/dop/fileadmin/socc/pdf/bkgrnd_
socc23.pdf.

9. Exercise 66 from Moore, Thomas L.,
“Paradoxes in Film Rating,” Journal of
Statistics Education, Vol. 14, 2006, http://www.
amstat.org/publications/jse/v14n1/datasets.
moore.htm1

Extended Application
1. Page 43 from Health, United States, 2009,

National Center for Health Statistics, U.S.
Department of Health and Human Services,
Table 24, http://www.cdc.gov/nchs/data/hus/
hus09.pdf.

Chapter 2
Section 2.1

1. Page 45 from http://www.finfacts.ie/Private/
curency/goldmarketprice.htm.

2. Page 46 using data from Yahoo! Finance:
www.yahoo.com.

3. Exercise 73 from Gawande, Atul, “The
Malpractice Mess,” The New Yorker, Nov. 14,
2005, p. 65.

4. Exercise 74 from http://www.tax.state.ny.us/
pdf/2009/inc/it150_01i_2009.pdf].

This is a sample of the comprehensive source list available for the tenth edition of Calculus with Applications.  The complete list is available at the Downloadable
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5. Exercise 75 from Peter Tyack, © Woods Hole
Oceanographic Institution.

6. Exercise 76 from Robbins, Charles T., Wildlife
Feeding and Nutrition, 2nd ed., Academic
Press, 1993, p. 125.

7. Exercise 77 from Robbins, Charles T., Wildlife
Feeding and Nutrition, 2nd ed., Academic
Press, 1993, p. 142.

8. Exercise 78 from The New York Times,
Oct. 31, 1999, p. 38.

Section 2.2
1. Exercise 59 from Ralph DeMarr, University of

New Mexico.
2. Exercise 60 from Harris, Edward F., Joseph D.

Hicks, and Betsy D. Barcroft, “Tissue
Contributions to Sex and Race: Differences in
Tooth Crown Size of Deciduous Molars,”
American Journal of Physical Anthropology,
Vol. 115, 2001, pp. 223–237.

3. Exercise 61 from Abuhamad, A. Z. et al.
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No. 44791, 1994. For an introduction to
learning curves see Heizer, Jay and Barry
Render, Operations Management, Prentice-
Hall, 2001, or Argote, Linda and Dennis
Epple, “Learning Curves in Manufacturing,”
Science, Feb. 23, 1990.
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Examination Committee of the Society of
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3. Exercise 24 from Anderson, Roy M., “The
Persistence of Direct Life Cycle Infectious
Diseases Within Populations of Hosts,” in
Lectures on Mathematics in the Life Sciences,
Vol. 12: Some Mathematical Questions in
Biology, American Mathematical Society,
1979, pp. 1–67.
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2. Exercise 34 from Thurstone, L. L., “The
Learning Function,” The Journal of General
Psychology, Vol. 3, No. 4, Oct. 1930,
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Copyright © 1978 by John Wiley and Sons,
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Introduction to Mathematical Modeling.
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Reports, Vol. 54, No. 13, April 19, 2006,
Table 6, p. 25. 
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7. Exercises 46 and 47 from Wang, Jeen-Hwa
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3.1 Rules for Limits Let a, A, and B be real numbers, and let f and g be functions such that

and

1. If k is a constant, then and 

2.

(The limit of a sum or difference is the sum or difference of the limits.)

3.

(The limit of a product is the product of the limits.)

4.

(The limit of a quotient is the quotient of the limits, provided the limit of the denominator is not zero.)

5. If is a polynomial, then 

6. For any real number k, provided this limit exists.

7. if for all 

8. For any real number 

9. For any real number b such that or 
if

3.1 Limits at Infinity For any positive real number n,

and

The instantaneous rate of change for a function f when is

provided this limit exists.

3.4 Derivative The derivative of the function f at x, written is defined as

provided this limit exists.

Rules for Derivatives The following rules for derivatives are valid when all the indicated derivatives exist.

4.1 Constant Rule If where k is any real number, then 

4.1 Power Rule If for any real number n, then 

4.1 Constant Times a Function Let k be a real number. Then the derivative of is

4.1 Sum or Difference Rule If then

f r 1x 2 5 u r 1x 2 6 v r 1x 2 .

f 1x 2 5 u 1x 2 6 v 1x 2 ,

f r 1x 2 5 k . g r 1x 2 .
f 1x 2 5 k . g 1x 2

f r 1x 2 5 nxn21.f 1x 2 5 xn

f r 1x 2 5 0.f 1x 2 5 k,

f r 1x 2 5 lim
hl0

 
f 1x 1 h 2 2 f 1x 2

h
,

f r 1x 2 ,

lim
hl0

 
f 1a 1 h 2 2 f 1a 2

h
,

x 5 a3.3 Instantaneous Rate
of Change

lim
xl2`

 
1

xn 5 0.lim
xl`

 
1

xn 5 0

A . 0.lim
xla

3logb f 1x 2 4 5 logb 3 lim
xla

f 1x 2 4 5 logb A
1 , b,0 , b , 1

lim
xla

bf1x2 5 b3 lim f1x24 5 bA.b . 0,

x 2 a.f 1x 2 5 g 1x 2lim
xla

f 1x 2 5 lim
xla

g 1x 2

lim
xla

3f 1x 2 4k 5 3 lim
xla

f 1x 2 4k 5 Ak,

lim
xla

p 1x 2 5 p 1a 2 .p 1x 2

lim
xla

f 1x 2
g 1x 2

5
lim
xla

f 1x 2

lim
xla

g 1x 2
5

A

B
  if B 2 0

lim
xla

3f 1x 2 . g 1x 2 4 5 3 lim
xla

f 1x 2 4 . 3 lim
xla

g 1x 2 4 5 A . B

lim
xla

3f 1x 2 6 g 1x 2 4 5 lim
xla

f 1x 2 6 lim
xla

g 1x 2 5 A 6 B

lim
xla

3k . f 1x 2 4 5 k . lim
xla

f 1x 2 5 k . A.lim
xla

k 5 k

lim
xla

g 1x 2 5 B.lim
xla

f 1x 2 5 A

xl a



4.2 Product Rule If then

4.2 Quotient Rule If and then

4.3 Chain Rule If y is a function of u, say and if u is a function of x, say then
and

4.3 Chain Rule (Alternate Form) If then 

4.4 Exponential Function

4.5 Logarithmic Function

Let c be a critical number for a function f. Suppose that f is continuous on and differentiable on
except possibly at c, and that c is the only critical number for f in

1. is a relative maximum of f if the derivative is positive in the interval and negative in
the interval 

2. is a relative minimum of f if the derivative is negative in the interval and positive in
the interval 

Let exist on some open interval containing c (except possibly at c itself), and let 

1. If then is a relative minimum.

2. If then is a relative maximum.

3. If does not exist, then the test gives no information about extrema, so use the
first derivative test.

fs 1 c 2 5 0 or fs 1 c 2

f 1 c 2fs 1 c 2 , 0,

f 1 c 2fs 1 c 2 . 0,

f r 1 c 2 5 0.fs5.3 Second Derivative
Test

1 c, b 2 .
1a, c 2f r 1x 2f 1 c 2

1 c, b 2 .
1a, c 2f r 1x 2f 1 c 2

1a, b 2 .1a, b 2
1a, b 25.2 First Derivative Test

 
d

dx
3ln 0 g 1x 2 0 4 5

g r 1x 2
g 1x 2

 
d

dx
3loga 0 g 1x 2 0 4 5

1

ln a
. g r 1x 2

g 1x 2

 
d

dx
3eg1x2 4 5 eg1x2g r 1x 2

 
d

dx
3ag1x2 4 5 1 ln a 2ag1x2g r 1x 2

dy /dx 5 f r 3g 1x 2 4 . g r 1x 2 .y 5 f 3g 1x 2 4,

dy

dx
5

dy

du
. du

dx
.

y 5 f 1 u 2 5 f 3g 1x 2 4,
u 5 g 1x 2 ,y 5 f 1 u 2 ,

f r 1x 2 5
v 1x 2 . u r 1x 2 2 u 1x 2 . v r 1x 2

3v 1x 2 42
.

v 1x 2 2 0,f 1x 2 5 u 1x 2 /v 1x 2 ,

f r 1x 2 5 u 1x 2 . v r 1x 2 1 v 1x 2 . u r 1x 2 .

f 1x 2 5 u 1x 2 . v 1x 2 ,



Each of the following forms can be integrated using the substitution .

Form of the Integral Result

1.

2.

3.

Let f be continuous on the interval and let F be any antiderivative of f. Then

7.6 Trapezoidal Rule Let f be a continuous function on and let be divided into n equal subintervals by the points
Then, by the trapezoidal rule,

7.6 Simpson’s Rule Let f be a continuous function on and let be divided into an even number n of equal subin-
tervals by the points Then, by Simpson’s rule,

8.1 Integration by Parts If u and v are differentiable functions, then

8.4 Improper Integrals If f is continuous on the indicated interval and if the indicated limits exist, then

for real numbers a, b, and c, where c is arbitrarily chosen.

For a function let and all exist in a circular region contained in the
xy-plane with center Further, let

and

Define the number D by

Then

(a) is a relative maximum if and 

(b) is a relative minimum if and fxx 
1a, b 2 . 0;D . 0f 1a, b 2

fxx 
1a, b 2 , 0;D . 0f 1a, b 2

D 5 fxx 
1a, b 2 . fyy 

1a, b 2 2 3fxy 
1a, b 2 42.

fy 
1a, b 2 5 0.fx 

1a, b 2 5 0

1a, b 2 .
fxyfxx , fyy ,z 5 f 1x, y 2 ,9.3 Test for Relative

Extrema
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 b 3f 1x0 2 1 4f 1x1 2 1 2f 1x2 2 1 4f 1x3 2 1 ) 1 2f 1xn22 2 1 4f 1xn21 2 1 f 1xn 2 4.

a 5 x0 , x1 , x2 , * , xn 5 b.
3a, b 43a, b 4

3

b

a

 f 1x 2  dx < a
b 2 a

n
b c

1

2
 f 1x0 2 1 f 1x1 2 1 ) 1 f 1xn21 2 1

1

2
 f 1xn 2 d .

a 5 x0 , x1 , x2 , * , xn 5 b.
3a, b 43a, b 4

3

b

a

 f 1x 2  dx 5 F 1b 2 2 F 1a 2 5 F 1x 2 `
b

a

 .

3a, b 4,7.4 Fundamental 
Theorem of Calculus

3eu  du 5 eu 1 C 5 ef1x2 1 C3ef1x2f r 1x 2   dx

3
1
u

  du 5 ln 0 u 0 1 C 5 ln 0 f 1x 2 0 1 C3
f r 1x 2
f 1x 2

  dx

3un du 5
un11

n 1 1
1 C 5

3  f 1x 2 4n11

n 1 1
1 C3 3  f 1x 2 4nf r 1x 2  dx,     n 2 21

u 5 f 1x 27.2 Substitution 

lim
bl`

lim
al2`



(c) is a saddle point (neither a maximum nor a minimum) if 

(d) if the test gives no information.

9.6 Double Integral The double integral of over a rectangular region R is written

or

and equals either

or

1. Put the equation in the linear form 
2. Find the integrating factor 

3. Multiply each term of the equation from Step 1 by 

4. Replace the sum of terms on the left with 

5. Integrate both sides of the equation.

6. Solve for y.

10.3 Euler’s Method Let be the solution of the differential equation

with

for Let and

for Then

If a geometric sequence has first term a and common ratio r, then the sum of the first n terms, is given
by

where

 3  cot xdx 5 2ln 0sin x 0 1 C 3  tan xdx 5 2ln 0cos x 0 1 C

 3  csc x cot xdx 5 2csc x 1 C 3  sec x tan xdx 5 sec x 1 C

 3  csc2 xdx 5 2cot x 1 C 3  sec2 xdx 5 tan x 1 C

 3  cos xdx 5 sin x 1 C 3  sin xdx 5 2cos x 1 C
13.3 Basic 

Trigonometric 
Integrals

 Dx 1 csc x 2 5 2csc x cot x Dx 1 sec x 2 5 sec x tan x

 Dx 1 cot x 2 5 2csc2 x Dx 1 tan x 2 5 sec2 x

 Dx 1 cos x 2 5 2sin x Dx 1 sin x 2 5 cos x13.2 Basic 
Trigonometric
Derivatives

r 2 1.Sn 5
a 1 rn 2 1 2

r 2 1
,

Sn,12.1 Geometric
Sequence

f 1xi11 2 < yi11.

0 # i # n 2 1.

yi11 5 yi 1 g 1xi, yi 2h,

xi11 5 xi 1 h, where h 5 1xn 2 x0 2 /nx0 # x # xn.

y 1x0 2 5 y0,dy /dx 5 g 1x, y 2 ,

y 5 f 1x 2

Dx 3I 1x 2y 4.
I 1x 2 .

I 1x 2 5 e3P1x2dx.
dy /dx 1 P 1x 2y 5 Q 1x 2 .10.2 Solving a Linear

First-Order 
Differential 
Equation

3

d

c

 3

b

a

 f 1x, y 2 dxdy.3

b

a

 3

d

c

 f 1x, y 2 dydx

6

R

 f 1x, y 2 dxdy,6

R

 f 1x, y 2 dydx

f 1x, y 2

D 5 0,

D , 0;f 1a, b 2
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