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Physics and Measurement

ANSWERS TO QUESTIONS

Q1.1 Atomic clocks are based on electromagnetic waves which atoms
emit. Also, pulsars are highly regular astronomical clocks.

Q1.2 Density varies with temperature and pressure. It would be
necessary to measure both mass and volume very accurately in
order to use the density of water as a standard.

Q1.3 People have different size hands. Defining the unit precisely
would be cumbersome.

Q1.4 (a) 0.3 millimeters (b) 50 microseconds (c) 7.2 kilograms

Q1.5 (b) and (d). You cannot add or subtract quantities of different
dimension.

Q1.6 A dimensionally correct equation need not be true. Example:
1 chimpanzee = 2 chimpanzee is dimensionally correct. If an
equation is not dimensionally correct, it cannot be correct.

Q1.7 If I were a runner, I might walk or run 101 miles per day. Since I am a college professor, I walk about
100  miles per day. I drive about 40 miles per day on workdays and up to 200 miles per day on
vacation.

Q1.8 On February 7, 2001, I am 55 years and 39 days old.

55
365 25

1
39 20 128

86 400
1

1 74 10 109 9 yr
 d

 yr
 d  d

 s
 d

 s  s
.

. ~
F
HG

I
KJ + = F

HG
I
KJ = × .

Many college students are just approaching 1 Gs.

Q1.9 Zero digits. An order-of-magnitude calculation is accurate only within a factor of 10.

Q1.10 The mass of the forty-six chapter textbook is on the order of 100  kg .

Q1.11 With one datum known to one significant digit, we have 80 million yr + 24 yr = 80 million yr.
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2     Physics and Measurement

SOLUTIONS TO PROBLEMS

Section 1.1 Standards of Length, Mass, and Time

No problems in this section

Section 1.2 Matter and Model-Building

P1.1 From the figure, we may see that the spacing between diagonal planes is half the distance between
diagonally adjacent atoms on a flat plane. This diagonal distance may be obtained from the

Pythagorean theorem, L L Ldiag = +2 2 . Thus, since the atoms are separated by a distance

L = 0 200.  nm , the diagonal planes are separated by 
1
2

0 1412 2L L+ = .  nm .

Section 1.3 Density and Atomic Mass

*P1.2 Modeling the Earth as a sphere, we find its volume as 
4
3

4
3

6 37 10 1 08 103 6 3 21 3π πr = × = ×. . m  me j . Its

density is then ρ = =
×

×
= ×

m
V

5 98 10
1 08 10

5 52 10
24

21 3
3 3.

.
.

 kg
 m

 kg m . This value is intermediate between the

tabulated densities of aluminum and iron. Typical rocks have densities around 2 000 to
3 000 3 kg m . The average density of the Earth is significantly higher, so higher-density material
must be down below the surface.

P1.3 With V = base area heighta fb g  V r h= π 2e j  and ρ =
m
V

, we have

ρ
π π

ρ

= =
F
HG

I
KJ

= ×

m
r h2 2

9

4 3

1

19 5 39 0

10
1

2 15 10

 kg

 mm  mm

 mm
 m

 kg m

3

3. .

. .

a f a f

*P1.4 Let V represent the volume of the model, the same in ρ =
m
V

 for both. Then ρ iron  kg= 9 35. V  and

ρgold
gold

=
m

V
. Next, 

ρ

ρ
gold

iron

gold

 kg
=

m

9 35.
 and mgold

3 3

3 kg
19.3 10  kg / m

  kg / m
 kg=

×

×

F
HG

I
KJ =9 35

7 86 10
23 03.

.
. .

P1.5 V V V r ro i= − = −
4
3 2

3
1
3π e j

ρ =
m
V

, so m V r r
r r

= = FHG
I
KJ − =

−
ρ ρ π

π ρ4
3

4

32
3

1
3 2

3
1
3

e j e j
.
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P1.6 For either sphere the volume is V r=
4
3

3π  and the mass is m V r= =ρ ρ π
4
3

3. We divide this equation

for the larger sphere by the same equation for the smaller:

m
m

r
r

r
rs s s

= = =
ρ π
ρ π

4 3
4 3

5
3

3

3

3 .

Then r rs= = =5 4 50 1 71 7 693 . . . cm  cma f .

P1.7 Use 1 u .  g= × −1 66 10 24 .

(a) For He, m0
244 00 6 64 10=

×F
HG

I
KJ = × −. . u

1.66 10  g
1 u

g
-24

 .

(b) For Fe, m0
2355 9 9 29 10=

×F
HG

I
KJ = × −. . u

1.66 10  g
1 u

g
-24

 .

(c) For Pb, m0

24
22207

1 66 10
3 44 10=

×F
HG

I
KJ = ×

−
− u

 g
1 u

g 
.

. .

*P1.8 (a) The mass of any sample is the number of atoms in the sample times the mass m0  of one
atom: m Nm= 0 . The first assertion is that the mass of one aluminum atom is

m0
27 2627 0 27 0 1 66 10 1 4 48 10= = × × = ×− −. . . . u  u  kg  u  kg .

Then the mass of 6 02 1023. ×  atoms is

m Nm= = × × × = =−
0

23 266 02 10 4 48 10 0 027 0 27 0. . . . kg  kg  g .

Thus the first assertion implies the second. Reasoning in reverse, the second assertion can be
written m Nm= 0 .

0 027 0 6 02 1023
0. . kg = × m , so m0 23

260 027
6 02 10

4 48 10=
×

= × −.
.

.
 kg

 kg ,

in agreement with the first assertion.

(b) The general equation m Nm= 0  applied to one mole of any substance gives M NM g  u= ,
where M is the numerical value of the atomic mass. It divides out exactly for all substances,
giving 1 000 000 0 10 1 660 540 2 103 27. .× = ×− − kg   kgN . With eight-digit data, we can be quite
sure of the result to seven digits. For one mole the number of atoms is

N =
F
HG

I
KJ = ×− +1

1 660 540 2
10 6 022 137 103 27 23

.
. .

(c) The atomic mass of hydrogen is 1.008 0 u and that of oxygen is 15.999 u. The mass of one
molecule of H O2  is 2 1 008 0 15 999 18 0. . .b g+ = u  u. Then the molar mass is 18 0.  g .

(d) For CO2 we have 12 011 2 15 999 44 0. . . g  g  g+ =b g  as the mass of one mole.
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P1.9 Mass of gold abraded: ∆m = − = =
F
HG
I
KJ = × −3 80 3 35 0 45 0 45

1
4 5 10 4. . . . . g  g  g  g

 kg
10  g

 kg3b g .

Each atom has mass m0

27
25197 197

1 66 10
1

3 27 10= =
×F

HG
I
KJ = ×

−
− u  u

 kg
 u

 kg
.

. .

Now, ∆ ∆m N m= 0 , and the number of atoms missing is

∆
∆

N
m

m
= =

×

×
= ×

−

−
0

4

25
214 5 10

3 27 10
1 38 10

.
.

.
 kg
 kg

 atoms .

The rate of loss is

∆

∆

∆

∆

N

t

N

t

=
× F

HG
I
KJ
F
HG
I
KJ
F
HG

I
KJ
F
HG
I
KJ

= ×

1 38 10
50

1 1 1 1

8 72 10

21

11

.

. .

 atoms
 yr

 yr
365.25 d

 d
24 h

 h
60 min

 min
60 s

 atoms s

P1.10 (a) m L= = × = × = ×− − −ρ 3 3 6 3 16 197 86 5 00 10 9 83 10 9 83 10.  g cm  cm g  kg e je j. . .

(b) N
m
m

= =
×

×
= ×

−

−
0

19

27
79 83 10

55 9 1 66 10
1 06 10

.

. .
.

 
 

kg

 u  kg 1 u
atoms

e j

P1.11 (a) The cross-sectional area is

A = +

= × −

2 0 150 0 010 0 340 0 010

6 40 10 3

. . . .

. .

 m  m  m  m

 m2

a fa f a fa f
.

The volume of the beam is

V AL= = × = ×− −6 40 10 1 50 9 60 103 3. . . m  m  m2 3e ja f .

Thus, its mass is

m V= = × × =−ρ 7 56 10 9 60 10 72 63 3. . . kg / m  m  kg3 3e je j .

FIG. P1.11

(b) The mass of one typical atom is m0

27
2655 9

1 66 10
1

9 28 10=
×F

HG
I
KJ = ×

−
−.

.
. u

 kg
 u

 kga f . Now

m Nm= 0  and the number of atoms is N
m

m
= =

×
= ×−

0
26

2672 6
9 28 10

7 82 10
.

.
.

 kg
 kg

 atoms .
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P1.12 (a) The mass of one molecule is m0

27
2618 0

1 66 10
2 99 10=

×F
HG

I
KJ = ×

−
−.

.
. u

 kg
1 u

 kg . The number of

molecules in the pail is

N
m

mpail  
 kg

2.99  kg
molecules= =

×
= ×−

0
26

251 20
10

4 02 10
.

. .

(b) Suppose that enough time has elapsed for thorough mixing of the hydrosphere.

N N
m

Mboth pail
pail

total

25(4.02 10  molecules)
 kg

 kg
=
F
HG
I
KJ = ×

×

F
HG

I
KJ

1 20
1 32 1021

.
.

,

or

Nboth  molecules= ×3 65 104. .

Section 1.4 Dimensional Analysis

P1.13 The term x has dimensions of L, a has dimensions of LT−2 , and t has dimensions of T. Therefore, the
equation x ka tm n=  has dimensions of

L LT T= −2e j a fm n  or L T L T1 0 2= −m n m .

The powers of L and T must be the same on each side of the equation. Therefore,

L L1 = m  and m = 1 .

Likewise, equating terms in T, we see that n m− 2  must equal 0. Thus, n = 2 . The value of k, a

dimensionless constant, cannot be obtained by dimensional analysis .

*P1.14 (a) Circumference has dimensions of L.

(b) Volume has dimensions of L3 .

(c) Area has dimensions of L2 .

Expression (i) has dimension L L L2 1 2 2e j /
= , so this must be area (c).

Expression (ii) has dimension L, so it is (a).
Expression (iii) has dimension L L L2 3e j = , so it is (b). Thus, (a) ii;    (b) iii,  (c) i= = = .
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P1.15 (a) This is incorrect  since the units of ax  are m s2 2 , while the units of v  are m s.

(b) This is correct  since the units of y  are m, and cos kxa f  is dimensionless if k  is in m−1 .

*P1.16 (a) a
F

m
∝ ∑  or a k

F
m

= ∑  represents the proportionality of acceleration to resultant force and

the inverse proportionality of acceleration to mass. If k has no dimensions, we have

a k
F
m

= , 
L

T
1

F
M2 = , F

M L
T2=
⋅

.

(b) In units, 
M L
T

kg m
s2 2

⋅
=

⋅
, so 1 1 newton  kg m s2= ⋅ .

P1.17 Inserting the proper units for everything except G,

kg m
s

kg

m2
L
NM
O
QP =

G 2

2 .

Multiply both sides by m 2  and divide by kg 2 ; the units of G are 
m

kg s

3

2⋅
.

Section 1.5 Conversion of Units

*P1.18 Each of the four walls has area 8 00 12 0 96 0. . . ft  ft  ft2a fa f = . Together, they have area

4 96 0
1

3 28
35 72

2

. . ft
 m

.  ft
 m2e jFHG

I
KJ = .

P1.19 Apply the following conversion factors:

1 2 54 in  cm= . , 1 86 400 d  s= , 100 1 cm  m= , and 10 19  nm  m=

1
32

2 54 10 10
9 19

2 9

 in day
 cm in  m cm nm m

86 400 s day
 nm sF

HG
I
KJ =

−.
.

b ge je j
.

This means the proteins are assembled at a rate of many layers of atoms each second!

*P1.20 8 50 8 50
0 025 4

1 39 10
3

4. .
.

. in  in
 m

1 in
 m3 3 3= F

HG
I
KJ = × −
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P1.21 Conceptualize: We must calculate the area and convert units. Since a meter is about 3 feet, we should
expect the area to be about A  m  m  m2≈ =30 50 1 500a fa f .

Categorize: We model the lot as a perfect rectangle to use Area = Length × Width. Use the
conversion: 1 m 3.281 ft= .

Analyze: A LW= = F
HG

I
KJ

F
HG

I
KJ = ×100

1
3 281

150
1

3 281
1 39 103 ft  

 m
 ft

 ft
 m

 ft
=  1 390 m  m2 2a f a f

. .
. .

Finalize: Our calculated result agrees reasonably well with our initial estimate and has the proper
units of m2 . Unit conversion is a common technique that is applied to many problems.

P1.22 (a) V = = ×40.0 m 20.0 m 12.0 m .  m3a fa fa f 9 60 103

V = × = ×9 60 10 3 39 103 5 3.  m 3.28 ft 1 m ft3 3
 b g .

(b) The mass of the air is

m V= = × = ×ρair
3 3 kg m 9.60 10  m .  kg1 20 1 15 103 4.e je j .

The student must look up weight in the index to find

F mgg = = × = ×1.15 10  kg 9.80 m s 1.13 10  N4 2 5e je j .

Converting to pounds,

Fg = × = ×1 13 10 2 54 105 4.  N 1 lb 4.45 N lb e jb g . .

P1.23 (a) Seven minutes is 420 seconds, so the rate is

r = = × −30 0
420

7 14 10 2.
.

 gal
 s

 gal s .

(b) Converting gallons first to liters, then to m3,

r

r

= ×
F
HG

I
KJ
F
HG

I
KJ

= ×

−
−

−

7 14 10
3 786 10

2 70 10

2
3

4

.
.

. .

 gal s
 L

1 gal
 m

1 L

 m s

3

3

e j

(c) At that rate, to fill a 1-m3 tank would take

t =
×

F
HG

I
KJ
F
HG
I
KJ =−

1
2 70 10

1
1 034

 m
 m s

 h
3 600

 h
3

3.
. .
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*P1.24 (a) Length of Mammoth Cave = F
HG

I
KJ = = × = ×348

1 609
1

560 5 60 10 5 60 105 7 mi
 km

 mi
 km  m  cm

.
. . .

(b) Height of Ribbon Falls = F
HG

I
KJ = = = ×1 612

0
1

491 m 0 491 4 91 104 ft
.304 8 m

 ft
 km  cm. . .

(c) Height of Denali = F
HG

I
KJ = = × = ×20 320

0
1

6 6 19 10 6 19 103 5 ft
.304 8 m

 ft
.19 km  m  cm. . .

(d) Depth of King’s Canyon = F
HG

I
KJ = = × = ×8 200

0
1

2 2 50 10 2 50 103 5 ft
.304 8 m

 ft
.50 km  m  cm. . .

P1.25 From Table 1.5, the density of lead is 1 13 104.  kg m3× , so we should expect our calculated value to
be close to this number. This density value tells us that lead is about 11 times denser than water,
which agrees with our experience that lead sinks.

Density is defined as mass per volume, in ρ =
m
V

. We must convert to SI units in the calculation.

ρ =
F
HG

I
KJ
F
HG

I
KJ = ×

23 94
2 10

1
1 000

100
1

1 14 103

3
4.

.
 g

 cm
 kg

 g
 cm

 m
.  kg m3

At one step in the calculation, we note that one million cubic centimeters make one cubic meter. Our
result is indeed close to the expected value. Since the last reported significant digit is not certain, the
difference in the two values is probably due to measurement uncertainty and should not be a
concern. One important common-sense check on density values is that objects which sink in water
must have a density greater than 1 g cm3 , and objects that float must be less dense than water.

P1.26 It is often useful to remember that the 1 600-m race at track and field events is approximately 1 mile
in length. To be precise, there are 1 609 meters in a mile. Thus, 1 acre is equal in area to

1
1

640
1 609

4 05 10
2

3 acre
 mi
 acres

 m
mi

 m
2

2a fFHG
I
KJ
F
HG

I
KJ = ×. .

*P1.27 The weight flow rate is 1 200
2 000 1 1

667 
ton
h

 lb
ton

 h
60 min

 min
60 s

 lb sF
HG

I
KJ
F
HG

I
KJ
F
HG
I
KJ = .

P1.28 1 1 609 1 609 mi  m  km= = . ; thus, to go from mph to km h, multiply by 1.609.

(a) 1 1 609 mi h  km h= .

(b) 55 88 5 mi h  km h= .

(c) 65 104 6 mi h  km h= . . Thus, ∆v = 16 1.  km h .
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P1.29 (a)
6 10 1 1 1

190
12×F

HG
I
KJ
F
HG

I
KJ
F
HG
I
KJ
F
HG

I
KJ =

 $
1 000 $ s

 h
3 600 s

 day
24 h

 yr
365 days

 years

(b) The circumference of the Earth at the equator is 2 6 378 10 4 01 103 7π . .× = × m  me j . The length

of one dollar bill is 0.155 m so that the length of 6 trillion bills is 9 30 1011. ×  m. Thus, the
6 trillion dollars would encircle the Earth

9 30 10
2 32 10

11
4.

.
×
×

= ×
 m

4.01 0  m
 times7 .

P1.30 N
m
matoms

Sun

atom

 kg
1.67  kg

 atoms= =
×

×
= ×−

1 99 10
10

1 19 10
30

27
57.

.

P1.31 V At=  so t
V
A

= =
×

= ×
−

−3 78 10
25 0

1 51 10 151
3

4.
.

.
 m

 m
 m or  m

3

2 µb g

P1.32 V Bh= =

= ×

1
3

13 0 43 560

3
481

9 08 107

.

. ,

 acres  ft acre
 ft

 ft

2

3

a fe j a f

or

V = ×
×F

HG
I
KJ

= ×

−

9 08 10
2 83 10

1

2 57 10

7
2

6

.
.

.

 ft
 m

 ft

 m

3
3

3

3

e j B

h

B

h

FIG. P1.32

P1.33 Fg = × = ×2 50 2 00 10 2 000 1 00 106 10. . . tons block  blocks  lb ton  lbsb ge jb g

*P1.34 The area covered by water is

A A Rw = = = × = ×0 70 3 6 102 14. 0.70 4 0.70 4 6.37 10  m .  mEarth Earth
6 2 2a fe j a fa fe jπ π .

The average depth of the water is

d = = ×2.3 miles 1 609 m l mile .  ma fb g 3 7 103 .

The volume of the water is

V A dw= = × × = ×3 6 10 3 7 10 1 3 1014 2 3 18 3.  m .  m .  me je j

and the mass is

m V= = × = ×ρ 1 000 1 3 10 1 3 103 18 3 21 kg m .  m kg e je j . .
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P1.35 (a) d d
d

dnucleus, scale nucleus, real
 atom, scale

atom, real
 m

 ft
1.06 10  m

 ft=
F
HG

I
KJ = ×

×
F
HG

I
KJ = ×−

−
−2 40 10

300
6 79 1015

10
3. .e j , or

dnucleus, scale  ft  mm 1 ft  mm= × =−6 79 10 304 8 2 073. . .e jb g

(b)
V

V
r

r
d

d

r

r
atom

nucleus

atom

nucleus

atom

nucleus

atom

nucleus

 m
 m

 times as large

= =
F
HG

I
KJ =
F
HG

I
KJ =

×
×

F
HG

I
KJ

= ×

−

−

4
3

4
3

3 3 10

15

3

13

3

3

1 06 10
2 40 10

8 62 10

π

π

.

.

.

*P1.36 scale distance
between

real
distance

scale
factor

 km
 m
 m

 km=
F
HG

I
KJ
F
HG
I
KJ = ×

×
×

F
HG

I
KJ =

−

4 0 10
7 0 10
1 4 10

20013
3

9.
.
.

e j

P1.37 The scale factor used in the “dinner plate” model is

S =
×

= × −0 25
1 0 10

2 105
6.

.
 m

lightyears
.5  m lightyears

 
.

The distance to Andromeda in the scale model will be

D D Sscale actual
6 6

 2.0 10  lightyears 2.5 10 m lightyears  m= = × × =−e je j 5 0. .

P1.38 (a)
A
A

r
r

r
r

Earth

Moon

Earth

Moon
2

Earth

Moon

 

 

m  cm m

cm
= =

F
HG
I
KJ =

×

×

F
H
GG

I
K
JJ =

4
4

6 37 10 100

1 74 10
13 4

2 2 6

8

2

π
π

.

.
.

e jb g

(b)
V
V

r
r

r

r
Earth

Moon

Earth

Moon

3  

 

3
Earth

Moon

m  cm m

cm
= =

F
HG
I
KJ =

×

×

F
H
GG

I
K
JJ =

4
3

4
3

6

8

3

3

6 37 10 100

1 74 10
49 1

π

π

.

.
.

e jb g

P1.39 To balance, m mFe Al=  or ρ ρFe Fe Al AlV V=

ρ π ρ π

ρ
ρ

Fe Fe Al Al

Al Fe
Fe

Al
 cm  cm

4
3

4
3

2 00
7 86
2 70

2 86

3 3

1 3 1 3

F
HG
I
KJ = F

HG
I
KJ

=
F
HG
I
KJ = F

HG
I
KJ =

r r

r r
/ /

.
.
.

. .a f
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P1.40 The mass of each sphere is

m V
r

Al Al Al
Al Al= =ρ

π ρ4
3

3

and

m V
r

Fe Fe Fe
Fe Fe= =ρ

π ρ4
3

3

.

Setting these masses equal,

4
3

4
3

3 3π ρ π ρAl Al Fe Fer r
=  and r rAl Fe

Fe

Al
=

ρ
ρ

3 .

Section 1.6 Estimates and Order-of-Magnitude Calculations

P1.41 Model the room as a rectangular solid with dimensions 4 m by 4 m by 3 m, and each ping-pong ball
as a sphere of diameter 0.038 m. The volume of the room is 4 4 3 48× × =  m3 , while the volume of
one ball is

4
3

0 038
2 87 10

3
5π .

.
 m

2
 m3F

HG
I
KJ = × − .

Therefore, one can fit about 
48

2 87 10
105

6

.
~

× −  ping-pong balls in the room.

As an aside, the actual number is smaller than this because there will be a lot of space in the
room that cannot be covered by balls. In fact, even in the best arrangement, the so-called “best

packing fraction” is 
1
6

2 0 74π = .  so that at least 26% of the space will be empty. Therefore, the

above estimate reduces to 1 67 10 0 740 106 6. . ~× × .

P1.42 A reasonable guess for the diameter of a tire might be 2.5 ft, with a circumference of about 8 ft. Thus,

the tire would make 50 000 5 280 1 3 107 mi  ft mi  rev 8 ft  rev ~ 10  rev7b gb gb g = × .

P1.43 In order to reasonably carry on photosynthesis, we might expect a blade of grass to require at least
1

16
 in 43 10  ft2 5 2= × − . Since 1 acre 43 560 ft2= , the number of blades of grass to be expected on a

quarter-acre plot of land is about

n = =
×

= ×−
total area

area per blade

 acre  ft acre

 ft blade
2.5 10  blades blades

2

2
7

 
0 25 43 560

43 10
105

7
.

~
a fe j

.
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P1.44 A typical raindrop is spherical and might have a radius of about 0.1 inch. Its volume is then
approximately 4 10 3× −  in3 . Since 1 acre 43 560 ft2= , the volume of water required to cover it to a
depth of 1 inch is

1 acre 1 inch 1 acre in
 ft

1 acre
 in

 ft
6.3 10  in6 3a fa f a f= ⋅

F
HG

I
KJ
F
HG

I
KJ ≈ ×

43 560 144
1

2 2

2 .

The number of raindrops required is

n = =
×

×
= ×−

volume of water required
volume of a single drop

in
in

.
 

 

6 3 10
4 10

1 6 10 10
6 3

3 3
9 9.

~ .

*P1.45 Assume the tub measures 1.3 m by 0.5 m by 0.3 m. One-half of its volume is then

V = =0 5 1 3 0 5 0 3 0 10. . . . .a fa fa fa f m  m  m  m3 .

The mass of this volume of water is

m Vwater water
3 3 kg m  m  kg  kg= = =ρ 1 000 0 10 100 102e je j. ~ .

Pennies are now mostly zinc, but consider copper pennies filling 50% of the volume of the tub. The
mass of copper required is

m Vcopper copper
3 3 kg m  m  kg  kg= = =ρ 8 920 0 10 892 103e je j. ~ .

P1.46 The typical person probably drinks 2 to 3 soft drinks daily. Perhaps half of these were in aluminum
cans. Thus, we will estimate 1 aluminum can disposal per person per day. In the U.S. there are ~250
million people, and 365 days in a year, so

250 10 365 106 11× ≅ cans day  days year  canse jb g

are thrown away or recycled each year. Guessing that each can weighs around 1 10  of an ounce, we
estimate this represents

10 0 1 1 1 3 1 1011 5 cans  oz can  lb 16 oz  ton 2 000 lb  tons yeare jb gb gb g. .≈ × . ~105  tons

P1.47 Assume: Total population = 107 ; one out of every 100 people has a piano; one tuner can serve about
1 000 pianos (about 4 per day for 250 weekdays, assuming each piano is tuned once per year).
Therefore,

#  tuners ~
1 tuner

1 000 pianos
1 piano

100 people
people 

F
HG

I
KJ
F
HG

I
KJ =( )10 1007 .
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Section 1.7 Significant Figures

*P1.48 METHOD ONE
We treat the best value with its uncertainty as a binomial 21 3 0 2 9 8 0 1. . . .± ±a f a f cm  cm ,

A = ± ± ±21 3 9 8 21 3 0 1 0 2 9 8 0 2 0 1. . . . . . . .a f a f a f a fa f  cm2 .

The first term gives the best value of the area. The cross terms add together to give the uncertainty
and the fourth term is negligible.

A = ±209 42 2 cm  cm .

METHOD TWO
We add the fractional uncertainties in the data.

A = ± +F
HG

I
KJ = ± = ±21 3 9 8

0 2
21 3

0 1
9 8

209 2% 209 42 2 2. .
.
.

.

.
 cm  cm  cm  cm  cma fa f

P1.49 (a) π π

π

r 2 2

2 2

2 2

10 5 0 2

10 5 2 10 5 0 2 0 2

346 13

= ±

= ± +

= ±

.  m .  m

  m  m  m  m

 m  m

a f
( . ) ( . )( . ) ( . )

(b) 2 2 10 5 0 2 66 0 1 3π πr = ± = ±.  m  .  m  m  ma f . .

P1.50 (a) 3 (b) 4 (c) 3 (d) 2

P1.51 r

m
m

r

= ± = ± ×

= ±

=

−6 50 0 20 6 50 0 20 10

1 85 0 02

2

4
3

3

. .  cm . .  m

. .  kg

a f a f
a f

c hρ
π

also,
δ ρ
ρ

δ δ
= +

m
m

r
r

3
.

In other words, the percentages of uncertainty are cumulative. Therefore,

δ ρ
ρ

= + =
0 02
1 85

3 0 20
6 50

0 103
.
.

.
.

.
a f

,

ρ
π

=
×

= ×
−

1 85

6 5 10
1 61 10

4
3

2 3
3 3.

.
.

c h e j m
 kg m

and

ρ δ ρ± = ± × = ± ×1 61 0 17 10 1 6 0 2 103 3. . . .a f a f kg m  kg m3 3 .
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P1.52 (a) 756.??
  37.2?
    0.83
+ 2.5?
796. /5 /3  = 797

(b) 0 003 2 356 3 1 140 16 1 1. 2 s.f. . 4 s.f. . 2 s.f.  a f a f a f× = = .

(c) 5.620 4 s.f. >4 s.f. 17.656= 4 s.f.  17.66a f a f a f× =π

*P1.53 We work to nine significant digits:

1 1
365 242 199 24 60 60

31 556 926 0 yr  yr
 d

1 yr
 h

1 d
 min
1 h

 s
1 min

 s=
F
HG

I
KJ
F
HG
I
KJ
F
HG

I
KJ
F
HG
I
KJ =

.
. .

P1.54 The distance around is 38.44 m 19.5 m 38.44 m 19.5 m 115.88 m+ + + = , but this answer must be
rounded to 115.9 m because the distance 19.5 m carries information to only one place past the
decimal. 115 9.  m

P1.55 V V V V V

V

V

V

= + = +

= + + =

= =

= + =

2 2 2

17 0 1 0 1 0 1 0 0 09 1 70

10 0 1 0 0 090 0 900

2 1 70 0 900 5 2

1 2 1 2

1

2

3

b g
a fa fa f
a fa fa f
e j

. . . . . .

. . . .

. . .

 m  m  m  m  m  m

 m  m  m  m

 m  m  m

3

3

3 3

δ

δ

δ

δ

1

1

1

1

1

1

0 12
0 0063

0 01
0 010

0 1
0 011

0 006 0 010 0 011 0 027 3%

= =

= =

= =

U

V
|||

W
|||

= + + = =

.
.

.
.

.
.

. . . .

 m
19.0 m

 m
1.0 m

 cm
9.0 cm

w
w

t
t

V
V

FIG. P1.55

Additional Problems

P1.56 It is desired to find the distance x such that

x
x100

1 000
 m

 m
=

(i.e., such that x is the same multiple of 100 m as the multiple that 1 000 m is of x). Thus, it is seen that

x2 5100 1 000 1 00 10= = × m  m  m2a fb g .

and therefore

x = × =1 00 10 3165.  m  m2 .
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*P1.57 Consider one cubic meter of gold. Its mass from Table 1.5 is 19 300 kg. One atom of gold has mass

m0

27
25197 3 27 10=

×F
HG

I
KJ = ×

−
− u

1.66 10  kg
1 u

 kga f . .

So, the number of atoms in the cube is

N =
×

= ×−

19 300
5 90 1025

28 kg
3.27 10  kg

. .

The imagined cubical volume of each atom is

d3
28

291
5 90 10

1 69 10=
×

= × − m
 m

3
3

.
. .

So

d = × −2 57 10 10.  m .

P1.58 A N A
V
V

A
V

r
rtotal drop

total

drop
drop

total
4

= =
F
HG
I
KJ

=
F
H
GG
I
K
JJa fe j e j e jπ

π3

3

24

A
V

rtotal
total

3
2 m

 m
 m= FHG

I
KJ =

×
×

F
HG

I
KJ =

−

−
3

3
30 0 10
2 00 10

4 50
6

5
.
.

.

P1.59 One month is

1 30 24 3 600 2 592 106 mo  day  h day  s h  s= = ×b gb gb g . .

Applying units to the equation,

V t t= +1 50 0 008 00 2. . Mft mo  Mft mo3 3 2e j e j .

Since 1 106 Mft  ft3 3= ,

V t t= × + ×1 50 10 0 008 00 106 6 2. . ft mo  ft mo3 3 2e j e j .

Converting months to seconds,

V t t=
×

×
+

×

×

1 50 10 0 008 00 106 6

2
2. . ft mo

2.592 10  s mo
 ft mo

2.592 10  s mo

3

6

3 2

6e j
.

Thus, V t t ft  ft s  ft s3 3 3 2[ ] . .= + × −0 579 1 19 10 9 2e j e j .
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P1.60 ′α (deg) α(rad) tan αa f sin αa f difference

15.0 0.262 0.268 0.259   3.47%
20.0 0.349 0.364 0.342   6.43%
25.0 0.436 0.466 0.423 10.2%
24.0 0.419 0.445 0.407   9.34%
24.4 0.426 0.454 0.413   9.81%
24.5 0.428 0.456 0.415   9.87%
24.6 0.429 0.458 0.416   9.98% 24.6°
24.7 0.431 0.460 0.418 10.1%

P1.61 2 15 0
2 39

2 39 55 0 3 41

π r
r
h
r
h

=
=

= °

= ° =

.  m
.  m

tan 55.0

.  m ( . )  ma ftan .

55°55°

h

rr

h

FIG. P1.61

*P1.62 Let d represent the diameter of the coin and h its thickness. The mass of the gold is

m V At
d

dh t= = = +
F
HG

I
KJρ ρ ρ

π
π

2
4

2

where t is the thickness of the plating.

m = +
L
N
MM

O
Q
PP ×

=

= × = =

−19 3 2
2 41

4
2 41 0 178 0 18 10

0 003 64

0 003 64 036 4 3 64

2
4.

.
. . .

.

. $10 $0. .

π π
a f a fa f e j
 grams

cost  grams gram  cents

This is negligible compared to $4.98.

P1.63 The actual number of seconds in a year is

86 400 s day 365.25 day yr 31 557 600 s yrb gb g = .

The percent error in the approximation is

π × −
× =

10 31 557 600

31 557 600
100% 0 449%

7  s yr  s yr

 s yr

e j b g
. .
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P1.64 (a) V = L3 , A = L2, h = L

V A h=

L L L L3 2 3= = . Thus, the equation is dimensionally correct.

(b) V R h R h Ahcylinder = = =π π2 2e j , where A R= π 2

V wh w h Ahrectangular object = = =a f , where A w=

P1.65 (a) The speed of rise may be found from

v
D

= = =
Vol rate of flow

(Area:   

 cm s
 cm s

3

 cm

a f
a fπ π2 2

4
6 30

4

16 5
0 529

)

.
.

.
.

(b) Likewise, at a 1.35 cm diameter,

v = =
16 5

11 5
1.35

4

2

.
.

 cm s
 cm s

3

 cmπ a f .

P1.66 (a) 1 cubic meter of water has a mass

m V= = × =−ρ 1 00 10 1 00 10 1 0003 3 3 2 3
.  kg cm .  m  cm m  kge je je j

(b) As a rough calculation, we treat each item as if it were 100% water.

cell:  kg m  m

kg

kidney: .  kg cm  cm

 kg

fly:  kg cm  mm  mm  cm mm

3

 

3

3 2

m V R D

m V R

m D h

= = FHG
I
KJ =
F
HG

I
KJ =

F
HG
I
KJ ×

= ×

= = FHG
I
KJ = × F

HG
I
KJ

=

= FHG
I
KJ = × F

HG
I
KJ

−

−

−

− −

ρ ρ π ρ π π

ρ ρ π π

ρ
π π

4
3

1
6

1 000
1
6

1 0 10

5 2 10

4
3

1 00 10
4
3

4 0

0 27

4
1 10

4
2 0 4 0 10

3 3 6 3

16

3 3 3

2 3 1

e j e j

e j

e j a f a fe

.

.

( . )

.

. . j3

51 3 10= × −.  kg

P1.67 V20 mpg
  

 

10
 

cars mi yr
mi gal

5.0 10 gal yr= = ×
( )( )10 10

20

8 4

V25 mpg
  

 

10
 

cars mi yr
mi gal

4.0 10 gal yr= = ×
( )( )10 10

25

8 4

Fuel saved gal yr25 mpg 20 mpg  = − = ×V V 1 0 1010.
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P1.68 v =
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ = × −5 00

220
1

0 914 4
1

1
14

1
24

1
3 600

8 32 10 4.
.

.
furlongs
fortnight

 yd
 furlong

 m
 yd

 fortnight
 days

 day
 hrs

 hr
 s

 m s

This speed is almost 1 mm/s; so we might guess the creature was a snail, or perhaps a sloth.

P1.69 The volume of the galaxy is

π πr t2 21 2 19 6110 10 10=  m  m  m3e j e j~ .

If the distance between stars is 4 1016×  m , then there is one star in a volume on the order of

4 10 1016 3 50×  m  m3e j ~ .

The number of stars is about 
10

10
10

61

50
11 m

 m star
 stars

3

3 ~ .

P1.70 The density of each material is ρ
π π

= = =
m
V

m
r h

m
D h2 2
4

.

Al:  
 g

 cm  cm

g
cm

The tabulated value 
g

cm
 is  smaller.

Cu:
 g

.23 cm .06 cm

g
cm

The tabulated value 
g

cm
 is  smaller.

Brass:
.54 cm .69 cm

g
cm

Sn:
 g

.75 cm .74 cm

g
cm

Fe:
.89 cm .77 cm

g
cm

3 3

3 3

3

3

3

ρ
π

ρ
π

ρ
π

ρ
π

ρ
π

= = F
HG

I
KJ

= = F
HG

I
KJ

= =

= =

= =

4 51 5

2 52 3 75
2 75 2 70 2%

4 56 3

1 5
9 36 8 92 5%

4 94.4 g

1 5
8 91

4 69 1

1 3
7 68

4 216.1 g

1 9
7 88

2

2

2

2

2

.

. .
. .

.
. .

.

.
.

.

b g
a f a f
b g

a f a f
b g

a f a f
b g

a f a f
b g

a f a f The tabulated value 
g

cm
 is  smaller.37 86 0 3%. .F

HG
I
KJ

P1.71 (a) 3 600 s hr 24 hr day 365.25 days yr  s yrb gb gb g = ×3 16 107.

(b) V r

V
V

mm

cube

mm

18

.  m .  m

 m
m

1.91 10  micrometeorites

= = × = ×

=
×

= ×

− −

−

4
3

4
3

5 00 10 5 24 10

1
5 24 10

3 7 3 19 3

3

19 3

π π e j

.

This would take 
1 91 10

3 16 10
6 05 10

18

7
10.

.
.

×
×

= ×
 

 
micrometeorites

 micrometeorites yr
yr .
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ANSWERS TO EVEN PROBLEMS

P1.2 5 52 103 3. ×  kg m , between the densities
of aluminum and iron, and greater than
the densities of surface rocks.

P1.34 1 3 1021. ×  kg

P1.36 200 km

P1.38 (a) 13.4; (b) 49.1P1.4 23.0 kg

P1.40 r rAl Fe
Fe

Al
=
F
HG
I
KJ

ρ
ρ

1 3P1.6 7.69 cm

P1.8 (a) and (b) see the solution,
NA = ×6 022 137 1023. ; (c) 18.0 g;

P1.42 ~10  rev7
(d) 44.0 g

P1.44 ~109  raindrops
P1.10 (a) 9 83 10 16. × −

 g ; (b) 1 06 107. ×  atoms

P1.46 ~1011  cans; ~105  tons
P1.12 (a) 4 02 1025. ×  molecules;

(b) 3 65 104. ×  molecules P1.48 209 4 2±a f cm

P1.14 (a) ii; (b) iii; (c) i P1.50 (a) 3; (b) 4; (c) 3; (d) 2

P1.16 (a) 
M L
T2
⋅

; (b) 1 1 newton  kg m s2= ⋅ P1.52 (a) 797; (b) 1.1; (c) 17.66

P1.54 115.9 m
P1.18 35 7.  m2

P1.56 316 m
P1.20 1 39 10 4. × −  m3

P1.58 4 50.  m2

P1.22 (a) 3 39 105 3. ×  ft ; (b) 2 54 104. ×  lb
P1.60 see the solution; 24.6°

P1.24 (a) 560 5 60 10 5 60 105 7 km  m  cm= × = ×. . ;
P1.62 3 64.  cents ; no(b) 491 m 0 491 4 91 104= = ×. . km  cm ;

(c) 6 6 19 10 6 19 103 5.19 km  m  cm= × = ×. . ; P1.64 see the solution
(d) 2 2 50 10 2 50 103 5.50 km  m  cm= × = ×. .

P1.66 (a) 1 000 kg; (b) 5 2 10 16. × −
 kg ; 0 27.  kg ;

1 3 10 5. × −
 kg

P1.26 4 05 103. ×  m2

P1.28 (a) 1 1 609 mi h  km h= . ; (b) 88 5.  km h ;
P1.68 8 32 10 4. × −  m s ; a snail(c) 16 1.  km h

P1.70 see the solutionP1.30 1 19 1057. × atoms

P1.32 2 57 106 3. ×  m
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Motion in One Dimension

ANSWERS TO QUESTIONS

Q2.1 If I count 5.0 s between lightning and thunder, the sound has
traveled 331 5 0 1 7 m s  s  kmb ga f. .= . The transit time for the light
is smaller by

3 00 10
331

9 06 10
8

5.
.

×
= ×

 m s
 m s

 times,

so it is negligible in comparison.

Q2.2 Yes. Yes, if the particle winds up in the +x region at the end.

Q2.3 Zero.

Q2.4 Yes. Yes.

Q2.5 No. Consider a sprinter running a straight-line race. His average velocity would simply be the
length of the race divided by the time it took for him to complete the race. If he stops along the way
to tie his shoe, then his instantaneous velocity at that point would be zero.

Q2.6 We assume the object moves along a straight line. If its average
velocity is zero, then the displacement must be zero over the time
interval, according to Equation 2.2. The object might be stationary
throughout the interval. If it is moving to the right at first, it must
later move to the left to return to its starting point. Its velocity must
be zero as it turns around. The graph of the motion shown to the
right represents such motion, as the initial and final positions are
the same. In an x vs. t graph, the instantaneous velocity at any time
t is the slope of the curve at that point. At t0  in the graph, the slope
of the curve is zero, and thus the instantaneous velocity at that time
is also zero.

x

tt0

FIG. Q2.6

Q2.7 Yes. If the velocity of the particle is nonzero, the particle is in motion. If the acceleration is zero, the
velocity of the particle is unchanging, or is a constant.

21



22     Motion in One Dimension

Q2.8 Yes. If you drop a doughnut from rest v = 0a f , then its acceleration is not zero. A common
misconception is that immediately after the doughnut is released, both the velocity and acceleration
are zero. If the acceleration were zero, then the velocity would not change, leaving the doughnut
floating at rest in mid-air.

Q2.9 No: Car A might have greater acceleration than B, but they might both have zero acceleration, or
otherwise equal accelerations; or the driver of B might have tramped hard on the gas pedal in the
recent past.

Q2.10 Yes. Consider throwing a ball straight up. As the ball goes up, its
velocity is upward v > 0a f, and its acceleration is directed down
a < 0a f . A graph of v vs. t for this situation would look like the figure

to the right. The acceleration is the slope of a v vs. t graph, and is
always negative in this case, even when the velocity is positive.

v

t

v0

FIG. Q2.10

Q2.11 (a) Accelerating East (b) Braking East (c) Cruising East

(d) Braking West (e) Accelerating West (f) Cruising West

(g) Stopped but starting to move East

(h) Stopped but starting to move West

Q2.12 No. Constant acceleration only. Yes. Zero is a constant.

Q2.13 The position does depend on the origin of the coordinate system. Assume that the cliff is 20 m tall,
and that the stone reaches a maximum height of 10 m above the top of the cliff. If the origin is taken
as the top of the cliff, then the maximum height reached by the stone would be 10 m. If the origin is
taken as the bottom of the cliff, then the maximum height would be 30 m.

The velocity is independent of the origin. Since the change in position is used to calculate the
instantaneous velocity in Equation 2.5, the choice of origin is arbitrary.

Q2.14 Once the objects leave the hand, both are in free fall, and both experience the same downward
acceleration equal to the free-fall acceleration, –g.

Q2.15 They are the same. After the first ball reaches its apex and falls back downward past the student, it
will have a downward velocity equal to vi . This velocity is the same as the velocity of the second
ball, so after they fall through equal heights their impact speeds will also be the same.

Q2.16 With h gt=
1
2

2 ,

(a) 0 5
1
2

0 707 2. .h g t= a f . The time is later than 0.5t.

(b) The distance fallen is 0 25
1
2

0 5 2. .h g t= a f . The elevation is 0.75h, greater than 0.5h.



Chapter 2     23

Q2.17 Above. Your ball has zero initial speed and smaller average speed during the time of flight to the
passing point.

SOLUTIONS TO PROBLEMS

Section 2.1 Position, Velocity, and Speed

P2.1 (a) v = 2 30.  m s

(b) v
x
t

= =
 m  m

 s
= 16.1 m s

∆
∆

57 5 9 20
3 00

. .
.
−

(c) v
x
t

= =
−

=
∆
∆

57 5 0
11 5

.
.

 m  m
5.00 s

 m s

*P2.2 (a) v
x
t

= = F
HG

I
KJ ×
F
HG

I
KJ = × −∆

∆
20 1 1

3 156 10
2 107

7 ft
1 yr

 m
3.281 ft

 yr
 s

 m s
.

 or in particularly windy times

v
x
t

= = F
HG

I
KJ ×
F
HG

I
KJ = × −∆

∆
100 1 1

3 156 10
1 107

6 ft
1 yr

 m
3.281 ft

 yr
 s

 m s
.

.

(b) The time required must have been

∆
∆

t
x

v
= = F

HG
I
KJ
F
HG

I
KJ = ×

3 000 1 609 10
5 10

3
8 mi

10 mm yr
 m

1 mi
 mm

1 m
 yr .

P2.3 (a) v
x
t

= = =
∆
∆

10
5

 m
2 s

 m s

(b) v = =
5

1 2
 m

4 s
 m s.

(c) v
x x
t t

=
−
−

=
−
−

= −2 1

2 1

5 10
2

2 5
 m  m
4 s  s

 m s.

(d) v
x x
t t

=
−
−

=
− −

−
= −2 1

2 1

5 5
4

3 3
 m  m

7 s  s
 m s.

(e) v
x x
t t

=
−
−

=
−
−

=2 1

2 1

0 0
8 0

0 m s

P2.4 x t= 10 2 : For 
t

x
s
m
a f
a f

=
=

2 0 2 1 3 0
40 44 1 90
. . .

.

(a) v
x
t

= = =
∆
∆

50
50 0

 m
1.0 s

 m s.

(b) v
x
t

= = =
∆
∆

4 1
41 0

.
.

 m
0.1 s

 m s
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P2.5 (a) Let d represent the distance between A and B. Let t1  be the time for which the walker has

the higher speed in 5 00
1

.  m s =
d
t

. Let t2  represent the longer time for the return trip in

− = −3 00
2

.  m s
d
t

. Then the times are t
d

1 5 00
=

.  m sb g  and t
d

2 3 00
=

.  m sb g . The average speed

is:

v
d d d

v

d d d
= =

+
+

=

= =

Total distance
Total time

 m s

 m s
 m s

 m s  m s
 m s

 m s

2 2

2 25 00 3 00
8 00

15 0

2

2 15 0

8 00
3 75

. .
.

.

.

.
.

b g b g b g
e j

e j

(b) She starts and finishes at the same point A. With total displacement = 0, average velocity
= 0 .

Section 2.2 Instantaneous Velocity and Speed

P2.6 (a) At any time, t, the position is given by x t= 3 00 2.  m s2e j .

Thus, at ti = 3 00.  s: xi = =3 00 3 00 27 02. . . m s  s  m2e ja f .

(b) At t tf = +3 00.  s ∆ : x tf = +3 00 3 00 2. . m s  s2e ja f∆ , or

x t tf = + +27 0 18 0 3 00 2. . . m  m s  m s2b g e ja f∆ ∆ .

(c) The instantaneous velocity at t = 3 00.  s  is:

v
x x

t
t

t

f i

t
=

−F
HG

I
KJ = + =

→ →
lim lim . . .
∆ ∆∆

∆
0 0

18 0 3 00 18 0 m s  m s  m s2e je j .

P2.7 (a) at ti = 1 5.  s , xi = 8 0.  m (Point A)
at t f = 4 0.  s , x f = 2 0.  m (Point B)

v
x x

t t
f i

f i
=

−

−
=

−
−

= − = −
2 0 8 0

4 1 5
6 0

2 4
. .

.
.

.
a f
a f

 m
 s

 m
2.5 s

 m s

(b) The slope of the tangent line is found from points C and
D. t xC C= =1 0 9 5. . s,   mb g  and t xD D= =3 5 0.  s,  b g ,

v ≅ −3 8.  m s .

 

FIG. P2.7

(c) The velocity is zero when x is a minimum. This is at t ≅ 4 s .
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P2.8 (a)

(b) At t = 5 0.  s, the slope is v ≅ ≅
58

23
 m

2.5 s
 m s .

At t = 4 0.  s, the slope is v ≅ ≅
54

18 
 m

3 s
m s .

At t = 3 0.  s, the slope is v ≅ ≅
49 m

14 
3.4 s

m s .

At t = 2 0.  s , the slope is v ≅ ≅
36 m

9
4.0 s

.0 m s .

(c) a
v
t

= ≅ ≅
∆
∆

23
5 0

4 6
 m s

 s
 m s2

.
.

(d) Initial velocity of the car was zero .

P2.9 (a) v=
−( )
−( )

=
5 0
1 0

5
 m
 s

 m s

(b) v=
−( )
−( )

= −
5 10
4 2

2 5
 m
 s

 m s.

(c) v=
−( )
−( )

=
5 5
5 4

0
 m  m
 s  s

(d) v=
− −( )

−( )
= +

0 5
8 7

5
 m

 s  s
 m s FIG. P2.9

*P2.10 Once it resumes the race, the hare will run for a time of

t
x x

v
f i

x
=

−
=

−
=

1 000
25

 m 800 m
8 m s

 s .

In this time, the tortoise can crawl a distance

x xf i− = ( )=0 2 25 5 00. . m s  s  ma f .
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Section 2.3 Acceleration

P2.11 Choose the positive direction to be the outward direction, perpendicular to the wall.

v v atf i= + : a
v
t

= =
− −
×

= ×−
∆
∆

22 0 25 0

3 50 10
1 34 103

4. .

.
.

 m s  m s

 s
 m s2a f

.

P2.12 (a) Acceleration is constant over the first ten seconds, so at the end,

v v atf i= + = + ( )=0 2 00 10 0 20 0. . . m s  s  m s2c h .

Then a= 0  so v is constant from t= 10 0.  s  to t= 15 0.  s . And over the last five seconds the
velocity changes to

v v atf i= + = + ( )=20 0 3 00 5 00 5 00. . . . m s  m s  s  m s2c h .

(b) In the first ten seconds,

x x v t atf i i= + + = + + ( ) =1
2

0 0
1
2

2 00 10 0 1002 2. . m s  s  m2c h .

Over the next five seconds the position changes to

x x v t atf i i= + + = + ( )+ =1
2

100 20 0 5 00 0 2002  m  m s  s  m. .a f .

And at t= 20 0.  s ,

x x v t atf i i= + + = + ( )+ − ( ) =1
2

200 20 0 5 00
1
2

3 00 5 00 2622 2 m  m s  s  m s  s  m2. . . .a f c h .

*P2.13 (a) The average speed during a time interval ∆t  is v
t

= distance traveled
∆

. During the first

quarter mile segment, Secretariat’s average speed was

v1
0 250 1 320

52 4 35 6= = =
.

. .
 mi

25.2 s
 ft

25.2 s
 ft s  mi hb g .

During the second quarter mile segment,

v2
1 320

55 0 37 4= =
 ft

24.0 s
 ft s  mi h. .b g .

For the third quarter mile of the race,

v3
1 320

55 5 37 7= =
 ft

23.8 s
 ft s  mi h. .b g ,

and during the final quarter mile,

v4
1 320

57 4 39 0= =
 ft

23.0 s
 ft s  mi h. .b g .

continued on next page
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(b) Assuming that v vf = 4  and recognizing that vi = 0 , the average acceleration during the race

was

a
v vf i=

−
=

−
+ + +( )

=
total elapsed time

 ft s
 s

 ft s257 4 0
25 2 24 0 23 8 23 0

0 598
.

. . . .
. .

P2.14 (a) Acceleration is the slope of the graph of v vs t.

For 0 5 00< <t .  s, a= 0 .

For 15 0 20 0. . s  s< <t , a= 0 .

For 5 0 15 0. . s  s< <t , a
v v

t t
f i

f i
=

−
−

.

a=
− −( )
−

=
8 00 8 00

15 0 5 00
1 60

. .
. .

.  m s2

We can plot a t( ) as shown.

0.0

1.0

1050 15 20
t (s)

1.6

2.0

a (m/s2)

FIG. P2.14

(b) a
v v

t t
f i

f i
=

−
−

(i) For 5 00 15 0. . s  s< <t , ti = 5 00.  s , vi =−8 00.  m s ,

t

v

a
v v

t t

f

f

f i

f i

=

=

=
−

−
=

− −
−

=

15 0

8 00

8 00 8 00
15 0 5 00

1 60

.

.

. .
. .

. .

 s

 m s

 m s2a f

(ii) ti = 0 , vi =−8 00.  m s , t f = 20 0.  s , v f = 8 00.  m s

a
v v

t t
f i

f i
=

−
−

=
− −( )

−
=

8 00 8 00
20 0 0

0 800
. .

.
.  m s2

P2.15 x t t= + −2 00 3 00 2. . , v
dx
dt

t= = −3 00 2 00. . , a
dv
dt

= =−2 00.

At t= 3 00.  s :

(a) x= + −( ) =2 00 9 00 9 00 2 00. . . . m  m

(b) v= −( ) = −3 00 6 00 3 00. . . m s  m s

(c) a= −2 00.  m s2
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P2.16 (a) At t= 2 00.  s , x= ( ) − ( )+ =3 00 2 00 2 00 2 00 3 00 11 02. . . . . . m  m.

At t= 3 00.  s , x = − + =3 00 9 00 2 00 3 00 3 00 24 02. . . . . .a f a f  m  m

so

v
x
t

= = −
−

=∆
∆

24 0 11 0
2 00

13 0
. .

.
.

 m  m
3.00 s  s

 m s .

(b) At all times the instantaneous velocity is

v
d
dt

t t t= − + = −( )3 00 2 00 3 00 6 00 2 002. . . . .c h  m s

At t= 2 00.  s , v= ( )− =6 00 2 00 2 00 10 0. . . . m s  m s .

At t= 3 00.  s , v= ( )− =6 00 3 00 2 00 16 0. . . . m s  m s .

(c) a
v
t

= =
−
−

=∆
∆

16 0 10 0
3 00 2 00

6 00
. .

. .
.

 m s  m s
 s  s

 m s2

(d) At all times a
d
dt

= −( )=6 00 2 00 6 00. . .  m s2 . (This includes both t= 2 00.  s  and t= 3 00.  s ).

P2.17 (a) a
v
t

= = =∆
∆

8 00
6 00

1 3
.

.
.

 m s
 s

 m s2

(b) Maximum positive acceleration is at t= 3 s, and is approximately 2 m s2 .

(c) a= 0 , at t= 6 s , and also for t>10 s .

(d) Maximum negative acceleration is at t= 8 s, and is approximately −1 5.  m s2 .

Section 2.4 Motion Diagrams

P2.18 (a)

(b)

(c)

(d)

(e)

continued on next page
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(f) One way of phrasing the answer: The spacing of the successive positions would change
with less regularity.
Another way: The object would move with some combination of the kinds of motion shown
in (a) through (e). Within one drawing, the accelerations vectors would vary in magnitude
and direction.

Section 2.5 One-Dimensional Motion with Constant Acceleration

P2.19 From v v axf i
2 2 2= + , we have 10 97 10 0 2 2203 2

. × = + ( ) m s  mc h a , so that a= ×2 74 105.  m s2

which is a g= ×2 79 104.  times .

P2.20 (a) x x v v tf i i f− = +1
2
c h  becomes 40

1
2

2 80 8 50 m  m s  s= + ( )vi . .a f  which yields vi = 6 61.  m s .

(b) a
v v

t
f i=
−

=
−

= −
2 80 6 61

8 50
0 448

. .
.

.
 m s  m s

 s
 m s2

P2.21 Given vi = 12 0.  cm s when x ti = =( )3 00 0.  cm , and at t= 2 00.  s , x f =−5 00.  cm,

x x v t atf i i− = + 1
2

2 : − − = ( )+ ( )5 00 3 00 12 0 2 00
1
2

2 00 2. . . . .a

− = +8 00 24 0 2. . a a=− = −32 0
2

16 0
.

.  cm s2 .

*P2.22 (a) Let i be the state of moving at 60 mi h  and f be at rest

v v a x x

a

a

xf xi x f i

x

x

2 2

2

2

0 60 2 121 0
1

3 600
242

5 280 1
21 8

21 8
1 609 1

9 75

= + −

= + −
F
HG

I
KJ

=
− F

HG
I
KJ
F
HG

I
KJ = − ⋅

= − ⋅ FHG
I
KJ
F
HG

I
KJ = −

d i

b g a f mi h  ft
 mi

5 280 ft

 mi
 h

 ft
1 mi

 h
3 600 s

 mi h s

 mi h s
 m

1 mi
 h

3 600 s
 m s

2

2

.

. . .

(b) Similarly,
0 80 2 211 0

6 400 5 280

422 3 600
22 2 9 94

2
= + −

= − ⋅ = − ⋅ = −

 mi h  ft

 mi h s  mi h s  m s2

b g a f
b g
b g

a

a

x

x . . .

(c) Let i be moving at 80 mi h  and f be moving at 60 mi h .

v v a x x

a

a

xf xi x f i

x

x

2 2

2 2

2

60 80 2 211 121

2 800 5 280

2 90 3 600
22 8 10 2

= + −

= + −

= − ⋅ = − ⋅ = −

d i
b g b g a f

b g
a fb g

 mi h  mi h  ft  ft

 mi h s  mi h s  m s2. . .
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*P2.23 (a) Choose the initial point where the pilot reduces the throttle and the final point where the
boat passes the buoy:

xi = 0 , x f =100 m , vxi = 30 m s, vxf = ?, ax =−3 5.  m s2 , t= ?

x x v t a tf i xi x= + + 1
2

2:

100 0 30
1
2

3 5 2 m  m s  m s2= + + −a f c ht t.

1 75 30 100 02.  m s  m s  m2c h a ft t− + = .

We use the quadratic formula:

t
b b ac

a
=− ± −2 4

2

t=
± − ( )

=
±

=
30 900 4 1 75 100

2 1 75

30 14 1
3 5

12 6
 m s  m s  m s  m

 m s

 m s  m s
 m s

 s
2 2 2

2 2

.

.

.
.

.
c h

c h
 or 4 53.  s .

The smaller value is the physical answer. If the boat kept moving with the same acceleration,
it would stop and move backward, then gain speed, and pass the buoy again at 12.6 s.

(b) v v a txf xi x= + = − =30 3 5 4 53 14 1 m s  m s  s  m s2. . .e j

P2.24 (a) Total displacement = area under the v t,a f  curve from t= 0
to 50 s.

∆

∆

x

x

= + −

+

=

1
2

50 15 50 40 15

1
2

50 10

1 875

 m s  s  m s  s

 m s  s

 m

b ga f b ga f

b ga f

(b) From t= 10 s  to t= 40 s , displacement is

∆x = + + =
1
2

50 33 5 50 25 1 457 m s  m s  s  m s  s  mb ga f b ga f .

 

FIG. P2.24

(c) 0 15≤ ≤t  s : a
v
t1

50 0
15 0

3 3= =
−( )

−
=∆

∆
 m s

 s
 m s2.

15 40 s  s< <t : a2 0=

40 50 s  s≤ ≤t : a
v
t3

0 50
50 40

5 0= =
−( )

−
= −∆

∆
 m s

 s  s
 m s2.

continued on next page
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(d) (i) x a t t1 1
2 20

1
2

1
2

3 3= + = .  m s2c h  or x t1
21 67= .  m s2c h

(ii) x t2
1
2

15 50 0 50 15= ( ) − + −( ) s  m s  m s  sa f  or x t2 50 375= − m s  ma f

(iii) For 40 50 s  s≤ ≤t ,

x
v t

t
a t t3 3

2

0
1
2

40 50 40=
=

F
HG

I
KJ+ −( ) + −( )

area under  vs 
from  to 40 s

 s  m s  sa f

or

x t t3
2375 1 250

1
2

5 0 40 50 40= + + − − + − m  m  m s  s  m s  s2.e ja f b ga f

which reduces to

x t t3
2250 2 5 4 375= − − m s  m s  m2b g e j. .

(e) v = = =
total displacement
total elapsed time

 m
 s

 m s
1 875

50
37 5.

P2.25 (a) Compare the position equation x t t= + −2 00 3 00 4 00 2. . .  to the general form

x x v t atf i i= + + 1
2

2

to recognize that xi = 2 00.  m, vi = 3 00.  m s, and a=−8 00.  m s2 . The velocity equation,
v v atf i= + , is then

v tf = −3 00 8 00. . m s  m s2c h .

The particle changes direction when v f = 0 , which occurs at t= 3
8

 s . The position at this

time is:

x= + F
HG
I
KJ−

F
HG
I
KJ =2 00 3 00

3
8

4 00
3
8

2 56
2

. . . . m  m s  s  m s  s  m2a f c h .

(b) From x x v t atf i i= + + 1
2

2 , observe that when x xf i= , the time is given by t
v
a

i=− 2
. Thus,

when the particle returns to its initial position, the time is

t=
−
−

=
2 3 00

8 00
3
4

.

.

 m s

 m s
 s2

a f

and the velocity is v f = − F
HG
I
KJ= −3 00 8 00

3
4

3 00. . . m s  m s  s  m s2c h .
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*P2.26 The time for the Ford to slow down we find from

x x v v t

t
x

v v

f i xi xf

xi xf

= + +

=
+

=
+

=

1
2

2 2 250
71 5 0

6 99

d i
a f∆  m

 m s
 s

.
. .

Its time to speed up is similarly

t=
( )
+

=
2 350

0 71 5
9 79

 m
 m s

 s
.

. .

The whole time it is moving at less than maximum speed is 6 99 5 00 9 79 21 8. . . . s  s  s  s+ + = . The
Mercedes travels

x x v v tf i xi xf= + + = + +

=

1
2

0
1
2

71 5 71 5 21 8

1 558

d i a fb ga f. . .m s  s

 m

while the Ford travels 250 350 600+ = m  m, to fall behind by 1 558 600 958 m  m  m− = .

P2.27 (a) vi = 100 m s , a=−5 00.  m s2 , v v atf i= +  so 0 100 5= − t , v v a x xf i f i
2 2 2= + −c h so

0 100 2 5 00 02=( ) − ( ) −. x fc h . Thus x f = 1 000 m and t= 20 0.  s .

(b) At this acceleration the plane would overshoot the runway: No .

P2.28 (a) Take ti = 0  at the bottom of the hill where xi = 0 , vi = 30 0.  m s, a=−2 00.  m s2 . Use these
values in the general equation

x x v t atf i i= + + 1
2

2

to find

x t tf = + + −0 30 0
1
2

2 00 2. . m s  m s2a f c h

when   t is in seconds

x t tf = −30 0 2.c h m .

To find an equation for the velocity, use v v at tf i= + = + −30 0 2 00. . m s  m s2e j ,

v tf = −( )30 0 2 00. .  m s .

(b) The distance of travel x f  becomes a maximum, xmax , when v f = 0  (turning point in the

motion). Use the expressions found in part (a) for v f  to find the value of t when x f  has its

maximum value:

From v tf = −( )3 00 2 00. .  m s , v f = 0  when t= 15 0.  s . Then

x t tmax . . . .= − =( )( )−( ) =30 0 30 0 15 0 15 0 2252 2c h m  m .
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P2.29 In the simultaneous equations:

v v a t

x x v v t

xf xi x

f i xi xf

= +

− = +

R
S|
T|

U
V|
W|

1
2
c h  we have 

v v

v v

xf xi

xi xf

= − ( )

= + ( )

R
S|
T|

U
V|
W|

5 60 4 20

62 4
1
2

4 20

. .

. .

 m s  s

 m  s

2c h
c h

.

So substituting for vxi  gives 62 4
1
2

56 0 4 20 4 20. . . . m  m s  s  s2= + ( )+ ( )v vxf xfc h

14 9
1
2

5 60 4 20. . . m s  m s  s2= + ( )vxf c h .

Thus

vxf = 3 10.  m s .

P2.30 Take any two of the standard four equations, such as 
v v a t

x x v v t

xf xi x

f i xi xf

= +

− = +

R
S|
T|

U
V|
W|

1
2
c h . Solve one for vxi , and

substitute into the other: v v a txi xf x= −

x x v a t v tf i xf x xf− = − +1
2
c h .

Thus

x x v t a tf i xf x− = − 1
2

2 .

Back in problem 29, 62 4 4 20
1
2

5 60 4 20 2. . . . m  s  m s  s2= ( )− − ( )vxf c h

vxf =
− =62 4 49 4

3 10
. .

.
 m  m
4.20 s

 m s .

P2.31 (a) a
v v

t
f i=
−

= = − = −
632

1 40
662 202

5 280
3 600e j

.
 ft s  m s2 2

(b) x v t atf i= + =
F
HG
I
KJ − = =

1
2

632
5 280
3 600

1 40
1
2

662 1 40 649 1982 2a f a f a fa f. .  ft  m
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P2.32 (a) The time it takes the truck to reach 20 0.  m s  is found from v v atf i= + . Solving for t yields

t
v v

a
f i=
−

=
−

=
20 0 0

2 00
10 0

.
.

.
 m s  m s

 m s
 s2 .

The total time is thus
10 0 20 0 5 00 35 0. . . . s  s  s  s+ + = .

(b) The average velocity is the total distance traveled divided by the total time taken. The
distance traveled during the first 10.0 s is

x vt1
0 20 0

2
10 0 100= = +F

HG
I
KJ( )=.

.  m.

With a being 0 for this interval, the distance traveled during the next 20.0 s is

x v t ati2
21

2
20 0 20 0 0 400= + =( )( )+ =. .  m.

The distance traveled in the last 5.00 s is

x vt3
20 0 0

2
5 00 50 0= = +F

HG
I
KJ( )=.

. .  m.

The total distance x x x x= + + = + + =1 2 3 100 400 50 550 m, and the average velocity is

given by v
x
t

= = =550
35 0

15 7
.

.  m s .

P2.33 We have vi = ×2 00 104.  m s, v f = ×6 00 106.  m s, x xf i− = × −1 50 10 2.  m.

(a) x x v v tf i i f− = +1
2
c h : t

x x

v v
f i

i f
=

−

+
=

×

× + ×
= ×

−
−

2 2 1 50 10

2 00 10 6 00 10
4 98 10

2

4 6
9c h c h.

. .
.

 m

 m s  m s
 s

(b) v v a x xf i x f i
2 2 2= + −d i:

a
v v

x xx
f i

f i
=

−

−
=

× − ×

×
= ×−

2 2 6 2 4 2

2
15

2

6 00 10 2 00 10

2 1 50 10
1 20 10

( )

. .

( . )
.

 m s  m s

m
 m s

 

2e j e j
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*P2.34 (a) v v a x xxf xi x f i
2 2 2= + −c h : 0 01 3 10 0 2 408

2
. × = + ( ) m s  mc h ax

ax =
×

= ×
3 10

80
1 12 10

6 2

11
 m s

 m
 m s2c h

.

(b) We must find separately the time t1  for speeding up and the time t2  for coasting:

x x v v t t

t

f i xf xi− = + = × +

= × −

1
2

40
1
2

3 10 0

2 67 10

1
6

1

1
5

d i e j:  m  m s

 s.

x x v v t t

t

f i xf xi− = + = × + ×

= × −

1
2

60
1
2

3 10 3 10

2 00 10

2
6 6

2

2
5

d i e j:

.

 m  m s  m s

 s

total time = × −4 67 10 5.  s .

*P2.35 (a) Along the time axis of the graph shown, let i= 0  and f tm= . Then v v a txf xi x= +  gives
v a tc m m= +0

a
v
tm

c

m
= .

(b) The displacement between 0 and tm  is

x x v t a t
v
t

t v tf i xi x
c

m
m c m− = + = + =1

2
0

1
2

1
2

2 2 .

The displacement between tm  and t0  is

x x v t a t v t tf i xi x c m− = + = − +1
2

02
0a f .

The total displacement is

∆x v t v t v t v t tc m c c m c m= + − = −FHG
I
KJ

1
2

1
20 0 .

(c) For constant vc  and t0 , ∆x  is minimized by maximizing tm  to t tm = 0 . Then

∆x v t t
v t

c
c

min = −FHG
I
KJ=0 0

01
2 2

.

(e) This is realized by having the servo motor on all the time.

(d) We maximize ∆x  by letting tm  approach zero. In the limit ∆x v t v tc c= − =0 00a f .

(e) This cannot be attained because the acceleration must be finite.
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*P2.36 Let the glider enter the photogate with velocity vi  and move with constant acceleration a. For its
motion from entry to exit,

x x v t a t

v t a t v t

v v a t

f i xi x

i d d d d

d i d

= + +

= + + =

= +

1
2

0
1
2

1
2

2

2∆ ∆ ∆

∆

(a) The speed halfway through the photogate in space is given by

v v a v av ths i i d d
2 2 22

2
= + FHG

I
KJ= + ∆ .

v v av ths i d d= +2 ∆  and this is not equal to vd  unless a= 0 .

(b) The speed halfway through the photogate in time is given by v v a
t

ht i
d= + FHG
I
KJ

∆
2

 and this is

equal to vd  as determined above.

P2.37 (a) Take initial and final points at top and bottom of the incline. If the ball starts from rest,

vi = 0 , a= 0 500.  m s2 , x xf i− = 9 00.  m.

Then
v v a x x

v

f i f i

f

2 2 22 0 2 0 500 9 00

3 00

= + − = +

=

d i e ja f. .

. .

 m s  m

 m s

2

(b) x x v t atf i i− = + 1
2

2

9 00 0
1
2

0 500

6 00

2. .

.

= +

=

 m s

 s

2e jt
t

(c) Take initial and final points at the bottom of the planes and the top of the second plane,
respectively:

vi = 3 00.  m s, v f = 0 , x xf i− = 15 00.  m.

v v a x xf i f i
2 2 2= + −c h gives

a
v v

x x
f i

f i

=
−

−
=

−

( )
= −

2 2
2

2

0 3 00

2 15 0
0 300c h

a f.

.
.

 m s

 m
 m s2 .

(d) Take the initial point at the bottom of the planes and the final point 8.00 m along the second:
vi = 3 00.  m s, x xf i− = 8 00.  m, a=−0 300.  m s2

v v a x x

v

f i f i

f

2 2 2
2 3 00 2 0 300 8 00 4 20

2 05

= + − = + − =

=

d i b g e ja f. . . .

. .

 m s  m s  m  m s

 m s

2 2 2
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P2.38 Take the original point to be when Sue notices the van. Choose the origin of the x-axis at Sue’s car.
For her we have xis = 0 , vis = 30 0.  m s , as =−2 00.  m s2  so her position is given by

x t x v t a t t ts is is s( )= + + = + −1
2

30 0
1
2

2 002 2. . m s  m s2a f c h .

For the van, xiv = 155 m, viv = 5 00.  m s , av = 0  and

x t x v t a t tv iv iv v( )= + + = + +1
2

155 5 00 02 .  m sa f .

To test for a collision, we look for an instant tc  when both are at the same place:

30 0 155 5 00

0 25 0 155

2

2

. .

. .

t t t

t t
c c c

c c

− = +

= − +
From the quadratic formula

tc =
± ( ) − ( )

=
25 0 25 0 4 155

2
13 6

2. .
.  s  or 11 4.  s .

The smaller value is the collision time. (The larger value tells when the van would pull ahead again
if the vehicles could move through each other). The wreck happens at position

155 5 00 11 4 212 m  m s  s  m+ ( )=. .a f .

*P2.39 As in the algebraic solution to Example 2.8, we let t
represent the time the trooper has been moving. We graph

x tcar = +45 45

and

x ttrooper = 1 5 2. .

They intersect at

t = 31 s .

x  (km)

t  (s)
10 20 30 40

0.5

1

1.5

car

police
officer

FIG. P2.39
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Section 2.6 Freely Falling Objects

P2.40 Choose the origin y t= =0 0,a f  at the starting point of the ball and take upward as positive. Then

yi = 0 , vi = 0 , and a g=− =−9 80.  m s2 . The position and the velocity at time t become:

y y v t atf i i− = + 1
2

2 : y gt tf = − = −
1
2

1
2

9 802 2.  m s2e j

and

v v atf i= + : v gt tf =− =− 9 80.  m s2c h .

(a) at t= 1 00.  s : y f =− ( ) = −1
2

9 80 1 00 4 902. . . m s  s  m2c h
at t= 2 00.  s : y f =− ( ) = −1

2
9 80 2 00 19 62. . . m s  s  m2c h

at t= 3 00.  s : y f =− ( ) = −1
2

9 80 3 00 44 12. . . m s  s  m2c h

(b) at t= 1 00.  s : v f =− ( )= −9 80 1 00 9 80. . . m s  s  m s2c h
at t= 2 00.  s : v f =− ( )= −9 80 2 00 19 6. . . m s  s  m s2c h
at t= 3 00.  s : v f =− ( )= −9 80 3 00 29 4. . . m s  s  m s2c h

P2.41 Assume that air resistance may be neglected. Then, the acceleration at all times during the flight is
that due to gravity, a g=− =−9 80.  m s2 . During the flight, Goff went 1 mile (1 609 m) up and then
1 mile back down. Determine his speed just after launch by considering his upward flight:

v v a y y v
v

f i f i i

i

2 2 22 0 2 9 80 1 609
178

= + − = −
=

d i e jb g: .
.

 m s  m
 m s

2

His time in the air may be found by considering his motion from just after launch to just before
impact:

y y v t atf i i− = + 1
2

2 : 0 178
1
2

9 80 2= − − m s  m s2a f c ht t. .

The root t= 0 describes launch; the other root, t= 36 2.  s , describes his flight time. His rate of pay
may then be found from

pay rate = = =
$1.

.
. $99.

00
36 2

0 027 6 3 600 3
 s

 $ s  s h hb gb g .

We have assumed that the workman’s flight time, “a mile”, and “a dollar”, were measured to three-
digit precision. We have interpreted “up in the sky” as referring to the free fall time, not to the
launch and landing times. Both the takeoff and landing times must be several seconds away from
the job, in order for Goff to survive to resume work.
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P2.42 We have y gt v t yf i i=− + +1
2

2

0 4 90 8 00 30 02=− − +. . . m s  m s  m2c h a ft t .

Solving for t,

t= ± +
−

8 00 64 0 588
9 80

. .
.

.

Using only the positive value for t, we find that t= 1 79.  s .

P2.43 (a) y y v t atf i i− = + 1
2

2 : 4 00 1 50 4 90 1 50 2. . . .=( ) −( )( )vi  and vi = 10 0.  m s  upward .

(b) v v atf i= + = −( )( )=−10 0 9 80 1 50 4 68. . . .  m s

v f = 4 68.  m s  downward

P2.44 The bill starts from rest vi = 0  and falls with a downward acceleration of 9 80.  m s2  (due to gravity).
Thus, in 0.20 s it will fall a distance of

∆y v t gti= − = − ( ) =−1
2

0 4 90 0 20 0 202 2. . . m s  s  m2c h .

This distance is about twice the distance between the center of the bill and its top edge ≅ 8 cma f .
Thus,  David will be unsuccessful .

*P2.45 (a) From ∆y v t ati= + 1
2

2  with vi = 0 , we have

t
y

a
= =

−( )
−

=
2 2 23

9 80
2 17

∆a f  m

 m s
 s2.

. .

(b) The final velocity is v f = + − ( )= −0 9 80 2 17 21 2. . . m s  s  m s2c h .

(c) The time take for the sound of the impact to reach the spectator is

t
y

vsound
sound

 m
340 m s

 s= = = × −∆ 23
6 76 10 2. ,

so the total elapsed time is ttotal  s  s  s= + × ≈−2 17 6 76 10 2 232. . . .
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P2.46 At any time t, the position of the ball released from rest is given by y h gt1
21

2
= − . At time t, the

position of the ball thrown vertically upward is described by y v t gti2
21

2
= − . The time at which the

first ball has a position of y
h

1 2
=  is found from the first equation as 

h
h gt

2
1
2

2= − , which yields

t
h
g

= . To require that the second ball have a position of y
h

2 2
=  at this time, use the second

equation to obtain 
h

v
h
g

g
h
gi2

1
2

= −
F
HG
I
KJ . This gives the required initial upward velocity of the second

ball as v ghi = .

P2.47 (a) v v gtf i= − : v f = 0  when t= 3 00.  s , g= 9 80.  m s2 . Therefore,

v gti = = ( )=9 80 3 00 29 4. . . m s  s  m s2c h .

(b) y y v v tf i f i− = +1
2
c h

y yf i− = =
1
2

29 4 3 00 44 1. . . m s  s  mb ga f

*P2.48 (a) Consider the upward flight of the arrow.

v v a y y

y

y

yf yi y f i
2 2

2

2

0 100 2 9 8

10 000
19 6

510

= + −

= + −

= =

d i
b g e j m s  m s

 m s
 m s

 m

2

2 2

2

.

.

∆

∆

(b) Consider the whole flight of the arrow.

y y v t a t

t t

f i yi y= + +

= + + −

1
2

0 0 100
1
2

9 8

2

2 m s  m s2b g e j.

The root t= 0 refers to the starting point. The time of flight is given by

t= =
100
4 9

20 4
 m s

 m s
 s2.

. .

P2.49 Time to fall 3.00 m is found from Eq. 2.12 with vi = 0 , 3 00
1
2

9 80 2. . m  m s2= c ht , t= 0 782.  s.

(a) With the horse galloping at 10 0.  m s, the horizontal distance is vt= 7 82.  m .

(b) t = 0 782.  s
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P2.50 Take downward as the positive y direction.

(a) While the woman was in free fall,

∆y= 144 ft , vi = 0 , and a g= = 32 0.  ft s2 .

Thus, ∆y v t at ti= + → = +1
2

144 0 16 02 2 ft  ft s2.c h  giving tfall  s= 3 00. . Her velocity just

before impact is:

v v gtf i= + = + ( )=0 32 0 3 00 96 0. . . ft s  s  ft s2c h .

(b) While crushing the box, vi = 96 0.  ft s , v f = 0 , and ∆y = =18 0 1 50. . in.  ft . Therefore,

a
v v

y
f i=
−

=
−
( )

=− ×
2 2 2

3

2

0 96 0

2 1 50
3 07 10

∆a f
a f.

.
.

 ft s

 ft
 ft s2 , or a= ×3 07 103.  ft s  upward2 .

(c) Time to crush box: ∆
∆ ∆

t
y

v
y

v vf i
= = =

( )
++

2

2 1 50
0 96 0

.
.

 ft
 ft s

or ∆t= × −3 13 10 2.  s .

P2.51 y t= 3 00 3. : At t= 2 00.  s , y = =3 00 2 00 24 03. . .a f  m and

v
dy
dt

ty = = = A9 00 36 02. .  m s .

If the helicopter releases a small mailbag at this time, the equation of motion of the mailbag is

y y v t gt t tb bi i= + − = + − ( )1
2

24 0 36 0
1
2

9 802 2. . . .

Setting yb = 0 ,

0 24 0 36 0 4 90 2= + −. . .t t .

Solving for t, (only positive values of t count), t= 7 96.  s .

*P2.52 Consider the last 30 m of fall. We find its speed 30 m above the ground:

y y v t a t

v

v

f i yi y

yi

yi

= + +

= + + −

=
− +

= −

1
2

0 30 1 5
1
2

9 8 1 5

30 11 0
12 6

2

2 m  s  m s  s

 m  m
1.5 s

 m s

2. . .

.
. .

a f e ja f

Now consider the portion of its fall above the 30 m point. We assume it starts from rest

v v a y y

y

y

yf yi y f i
2 2

2

2

12 6 0 2 9 8

160
19 6

8 16

= + −

− = + −

=
−

= −

d i
b g e j. .

.
. .

 m s  m s

 m s
 m s

 m

2

2 2

2

∆

∆

Its original height was then 30 8 16 38 2 m  m  m+− =. . .
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Section 2.7 Kinematic Equations Derived from Calculus

P2.53 (a) J
da
dt

= = constant

da Jdt=

a J dt Jt c= = +z 1

but a ai=  when t= 0 so c ai1 = . Therefore, a Jt ai= +

a
dv
dt

dv adt

v adt Jt a dt Jt a t ci i

=

=

= = + = + +z z b g 1
2

2
2

but v vi=  when t= 0, so c vi2 =  and v Jt a t vi i= + +1
2

2

v
dx
dt

dx vdt

x vdt Jt a t v dt

x Jt a t v t c

x x

i i

i i

i

=

=

= = + +F
HG

I
KJ

= + + +

=

z z 1
2

1
6

1
2

2

3 2
3

when t= 0, so c xi3 = . Therefore, x Jt a t v t xi i i= + + +1
6

1
2

3 2 .

(b) a Jt a J t a Ja ti i i
2 2 2 2 2 2= + = + +a f

a a J t Ja ti i
2 2 2 2 2= + +c h

a a J Jt a ti i
2 2 22

1
2

= + +F
HG

I
KJ

Recall the expression for v: v Jt a t vi i= + +1
2

2 . So v v Jt a ti i− = +a f 1
2

2 . Therefore,

a a J v vi i
2 2 2= + −a f .
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P2.54 (a) See the graphs at the right.

Choose x= 0 at t= 0.

At t= 3 s, x= ( )=1
2

8 3 12 m s  s  ma f .

At t= 5 s, x= + ( )=12 8 2 28 m  m s  s  ma f .

At t= 7 s, x= + ( )=28
1
2

8 2 36 m  m s  s  ma f .

(b) For 0 3< <t  s , a= =
8

3
2 67

 m s
 s

 m s2. .

For 3 5< <t  s , a= 0 .

(c) For 5 9 s  s< <t , a=− = −
16

4
4

 m s
 s

 m s2 .

(d) At t= 6 s, x= + ( )=28 6 1 34 m  m s  s  ma f .

(e) At t= 9 s, x= + − ( )=36
1
2

8 2 28 m  m s  s  ma f .

 

FIG. P2.54

P2.55 (a) a
dv
dt

d
dt

t t= = − × + ×5 00 10 3 00 107 2 5. .

a t=− × + ×10 0 10 3 00 107 5. . m s  m s3 2c h

Take xi = 0  at t= 0. Then v
dx
dt

=

x vdt t t dt

x
t t

x t t

t t

− = = − × + ×

= − × + ×

= − × + ×

z z0 5 00 10 3 00 10

5 00 10
3

3 00 10
2

1 67 10 1 50 10

0

7 2 5

0

7
3

5
2

7 3 5 2

. .

. .

. . .

e j

e j e j m s  m s3 2

(b) The bullet escapes when a= 0 , at − × + × =10 0 10 3 00 10 07 5. . m s  m s3 2c ht

t= ×
×

= × −3 00 10
3 00 10

5
3.

.
 s

10.0 10
 s7 .

(c) New v= − × × + × ×− −5 00 10 3 00 10 3 00 10 3 00 107 3 2 5 3. . . .c hc h c hc h

v=− + =450 900 450 m s  m s  m s .

(d) x=− × × + × ×− −1 67 10 3 00 10 1 50 10 3 00 107 3 3 5 3 2
. . . .c hc h c hc h

x=− + =0 450 1 35 0 900. . . m  m  m
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P2.56 a
dv
dt

v= =−3 00 2. , vi = 1 50.  m s

Solving for v, 
dv
dt

v=−3 00 2.

v dv dt

v v
t t

v v

v v

v

t

t

i i

i

−

= =
z z= −

− + = − = −

2

0

3 00

1 1
3 00 3 00

1 1

.

. . . or 

When v
vi=
2

, t
vi

= =1
3 00

0 222
.

.  s .

Additional Problems

*P2.57 The distance the car travels at constant velocity, v0 , during the reaction time is ∆ ∆x v tra f1 0= . The
time for the car to come to rest, from initial velocity v0 , after the brakes are applied is

t
v v

a
v

a
v
a

f i
2

0 00=
−

= − =−

and the distance traveled during this braking period is

∆x vt
v v

t
v v

a
v

a
f ia f2 2 2

0 0 0
2

2
0

2 2
= =

+F
HG

I
KJ =

+F
HG
I
KJ −
F
HG
I
KJ = − .

Thus, the total distance traveled before coming to a stop is

s x x v t
v

arstop = + = −∆ ∆ ∆a f a f1 2 0
0
2

2
.

*P2.58 (a) If a car is a distance s v t
v

arstop = −0
0
2

2
∆  (See the solution to Problem 2.57) from the

intersection of length si  when the light turns yellow, the distance the car must travel before
the light turns red is

∆ ∆x s s v t
v

a
si r i= + = − +stop 0

0
2

2
.

Assume the driver does not accelerate in an attempt to “beat the light” (an extremely
dangerous practice!). The time the light should remain yellow is then the time required for
the car to travel distance ∆x  at constant velocity v0 . This is

∆
∆ ∆

∆t
x

v
v t s

v
t

v
a

s
v

r
v

a i
r

i
light = =

− +
= − +

0

0 2

0

0

0

0
2

2
.

(b) With si = 16 m, v= 60 km h, a = −2 0.  m s2 , and ∆tr = 1 1.  s ,

∆tlight 2
 s

 km h

 m s

 m s
 km h

 m
60 km h

 km h
 m s

 s= −
−

F
HG

I
KJ +

F
HG

I
KJ =1 1

60

2 2 0

0 278
1

16 1
0 278

6 23.
.

.
.

.
e j

.
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*P2.59 (a) As we see from the graph, from about −50 s to 50 s
Acela is cruising at a constant positive velocity in
the +x  direction. From 50 s to 200 s, Acela
accelerates in the +x  direction reaching a top speed
of about 170 mi/h. Around 200 s, the engineer
applies the brakes, and the train, still traveling in
the +x  direction, slows down and then stops at
350 s. Just after 350 s, Acela reverses direction (v
becomes negative) and steadily gains speed in the
−x  direction.

t (s)
100 200 300

–100

100

200

400

∆v

∆t
–50
0

0

FIG. P2.59(a)

(b) The peak acceleration between 45 and 170 mi/h is given by the slope of the steepest tangent
to the v versus t curve in this interval. From the tangent line shown, we find

a
v
t

= = =
−( )

−( )
= =slope

 mi h
 s

 mi h s  m s2∆
∆

155 45
100 50

2 2 0 98. .a f .

(c) Let us use the fact that the area under the v versus
t curve equals the displacement. The train’s
displacement between 0 and 200 s is equal to the
area of the gray shaded region, which we have
approximated with a series of triangles and
rectangles.

∆x0 200

50 50 50 50

160 100

1
2

100

1
2

100 170 160

24 000

→ = + + + +

≈ +

+

+

+ −

=

 s 1 2 3 4 5area area area area area

 mi h  s  mi h  s

mi h  s

50 s  mi h

 s  mi h  mi h

mi h s

b ga f b ga f
b ga f
a fb g
a fb g
b ga f

t (s)
100 200 300

100

200

400

1 2
4 3

5

0
0

FIG. P2.59(c)

Now, at the end of our calculation, we can find the displacement in miles by converting
hours to seconds. As 1 3 600 h  s= ,

∆x0 200
24 000

6 7→ ≈
F
HG

I
KJ = s

 mi
3 600 s

s  mia f . .
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*P2.60 Average speed of every point on the train as the first car passes Liz:

∆
∆

x
t
= =8 60

5 73
.

.
 m

1.50 s
 m s.

The train has this as its instantaneous speed halfway through the 1.50 s time. Similarly, halfway

through the next 1.10 s, the speed of the train is 
8 60

7 82
.

.
 m

1.10 s
 m s= . The time required for the speed

to change from 5.73 m/s to 7.82 m/s is

1
2

1 50
1
2

1 10 1 30. . . s  s  s( )+ ( )=

so the acceleration is: a
v
tx
x= =

−
=∆

∆
7 82 5 73

1 30
1 60

. .
.

.
 m s  m s

 s
 m s2 .

P2.61 The rate of hair growth is a velocity and the rate of its increase is an acceleration. Then

vxi = 1 04.  mm d and ax =
F
HG

I
KJ0 132.

mm d
w

. The increase in the length of the hair (i.e., displacement)

during a time of t= =5 00 35 0. . w  d  is

∆

∆

x v t a t

x

xi x= +

= + ⋅

1
2

1 04 35 0
1
2

0 132 35 0 5 00

2

. . . . . mm d  d  mm d w  d  wb ga f b ga fa f

or ∆x= 48 0.  mm .

P2.62 Let point 0 be at ground level and point 1 be at the end of the engine burn. Let
point 2 be the highest point the rocket reaches and point 3 be just before
impact. The data in the table are found for each phase of the rocket’s motion.

(0 to 1) v f
2 280 0 2 4 00 1 000− =. .a f a fb g so v f =120 m s

120 80 0 4 00= +( ). . t giving t= 10 0.  s

(1 to 2) 0 120 2 9 802−( ) = −( ) −. x xf ic h giving x xf i− = 735 m

0 120 9 80− =− . t giving t= 12 2.  s
This is the time of maximum height of the rocket.

(2 to 3) v f
2 0 2 9 80 1 735− = − −.a fb g

v tf =− = −( )184 9 80. giving t= 18 8.  s

FIG. P2.62

(a) ttotal  s= + + =10 12 2 18 8 41 0. . .

(b) x xf i− =c h
total

 km1 73.

continued on next page
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(c) vfinal  m s= −184

t x v a
0 Launch 0.0 0 80 +4.00

#1 End Thrust 10.0 1 000 120 +4.00
#2 Rise Upwards 22.2 1 735 0 –9.80
#3 Fall to Earth 41.0 0 –184 –9.80

P2.63 Distance traveled by motorist = 15 0.  m sa ft
Distance traveled by policeman = 1

2
2 00 2.  m s2c ht

(a) intercept occurs when 15 0 2. t t= , or t= 15 0.  s

(b) v tofficer  m s  m s2( )= =2 00 30 0. .c h

(c) x tofficer  m s  m2( )= =1
2

2 00 2252.c h

P2.64 Area A1  is a rectangle. Thus, A hw v txi1 = = .

Area A2  is triangular. Therefore A bh t v vx xi2
1
2

1
2

= = −b g .
The total area under the curve is

A A A v t
v v t

xi
x xi= + = +
−

1 2 2
b g

and since v v a tx xi x− =

A v t a txi x= +
1
2

2 .

The displacement given by the equation is: x v t a txi x= +
1
2

2 , the

same result as above for the total area.

vx

vx

vxi

0 t t

A2

A1

FIG. P2.64
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P2.65 (a) Let x be the distance traveled at acceleration a until maximum speed v is reached. If this is
achieved in time t1  we can use the following three equations:

x v v ti= +1
2 1a f , 100 10 2 1− = −x v t.a f and v v ati= + 1 .

The first two give

100 10 2
1
2

10 2
1
2

200
20 4

1 1 1

1 1

= −F
HG

I
KJ = −F
HG

I
KJ

=
−

. .

.
.

t v t at

a
t tb g

For Maggie:   m s

For Judy:   m s

2

2

a

a

= =

= =

200
18 4 2 00

5 43

200
17 4 3 00

3 83

. .
.

. .
.

a fa f

a fa f

(b) v a t= 1

Maggie:   m s

Judy:   m s

v

v

= =

= =

5 43 2 00 10 9

3 83 3 00 11 5

. . .

. . .

a fa f
a fa f

(c) At the six-second mark

x at v t= + −1
2

6 001
2

1.a f

Maggie:   m

Judy:   m

x

x

= + =

= + =

1
2

5 43 2 00 10 9 4 00 54 3

1
2

3 83 3 00 11 5 3 00 51 7

2

2

. . . . .

. . . . .

a fa f a fa f

a fa f a fa f

Maggie is ahead by 2 62.  m .

P2.66 a1 0 100= .  m s2 a2 0 500=− .  m s2

x a t v t a t= = + +1 000
1
2

1
21 1

2
1 2 2 2

2 m t t t= +1 2  and v a t a t1 1 1 2 2= =−

1 000
1
2

1
21 1

2
1 1

1 1

2
2

1 1

2

2

= + −
F
HG
I
KJ +

F
HG
I
KJa t a t

a t
a

a
a t
a

1 000
1
2

11
1

2
1
2= −

F
HG
I
KJa

a
a

t

t1
20 000
1 20

129= =
.

 s

t
a t

a2
1 1

2

12 9
0 500

26=
−

= ≈.
.

 s Total time = =t 155 s
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P2.67 Let the ball fall 1.50 m. It strikes at speed given by

v v a x xxf xi f i
2 2 2= + −c h:

vxf
2 0 2 9 80 1 50= + − −( ). . m s  m2c h

vxf =−5 42.  m s

and its stopping is described by

v v a x x

a

a

xf xi x f i

x

x

2 2

2 2

2
3

2

0 5 42 2 10

29 4
2 00 10

1 47 10

= + −

= − + −

=
−

− ×
= + ×

−

−

d i
b g e j.

.
.

. .

 m s  m

 m s
 m

 m s
2 2

2

Its maximum acceleration will be larger than the average acceleration we estimate by imagining

constant acceleration, but will still be of order of magnitude ~103  m s2 .

*P2.68 (a) x x v t a tf i xi x= + + 1
2

2 . We assume the package starts from rest.

− = + + −145 0 0
1
2

9 80 2 m  m s2.c ht

t=
−( )

−
=

2 145

9 80
5 44

 m

 m s
 s2.

.

(b) x x v t a tf i xi x= + + = + + − ( ) =−1
2

0 0
1
2

9 80 5 18 1312 2. . m s  s  m2c h

distance fallen = =x f 131 m

(c) speed = = + = + − =v v a txf xi x 0 9 8 5 18 50 8. . . m s  s  m s2e j
(d) The remaining distance is

145 131 5 13 5 m  m  m− =. . .

During deceleration,

vxi =−50 8.  m s, vxf = 0, x xf i− =−13 5.  m

v v a x xxf xi x f i
2 2 2= + −c h :

0 50 8 2 13 52= − + −( ). . m s  ma f ax

ax =
−

−
= + =

2 580
2 13 5

95 3 95 3
 m s

 m
 m s  m s  upward

2 2
2 2

.
. .a f .
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P2.69 (a) y v t at t tf i= + = = + ( )1
2 21

2
50 0 2 00

1
2

9 80. . . ,

4 90 2 00 50 0 02. . .t t+ − =

t=
− + − ( )−( )

( )
2 00 2 00 4 4 90 50 0

2 4 90

2. . . .

.

Only the positive root is physically meaningful:

t= 3 00.  s  after the first stone is thrown.

(b) y v t atf i= +2
21

2
 and t= − =3 00 1 00 2 00. . .  s

substitute 50 0 2 00
1
2

9 80 2 002
2. . . .= ( )+ ( )( )vi :

vi2 15 3= .  m s  downward

(c) v v atf i1 1 2 00 9 80 3 00 31 4= + = +( )( )=. . . .  m s  downward

v v atf i2 2 15 3 9 80 2 00 34 8= + = +( )( )=. . . .  m s  downward

P2.70 (a) d t= ( )1
2

9 80 1
2. d t= 336 2

t t1 2 2 40+ = . 336 4 90 2 402 2
2t t= −. .a f

4 90 359 5 28 22 02
2

2. . .t t− + = t2

2359 5 359 5 4 4 90 28 22

9 80
=

± − ( )( ). . . .

.

t2
359 5 358 75

9 80
0 076 5=

±
=

. .
.

.  s so d t= =336 26 42 .  m

(b) Ignoring the sound travel time, d= ( )( ) =1
2

9 80 2 40 28 22. . .  m , an error of 6 82%. .

P2.71 (a) In walking a distance ∆x , in a time ∆t , the length
of rope  is only increased by ∆x sinθ .

∴ The pack lifts at a rate 
∆
∆

x
t

sinθ .

v
x
t

v
x

v
x

x h
= = =

+

∆
∆

sinθ boy boy 2 2

(b) a
dv
dt

v dx
dt

v x
d
dt

= = + F
HG
I
KJ

boy
boy

1

a v
v v x d

dt
= −boy

boy boy
2 , but 

d
dt

v v
x= = boy

∴ = −
F
HG
I
KJ= =

+
a

v x v h h v

x h

boy
2

boy
2

boy
2

1
2

2

2

2

2

2 2 3 2c h
(c)

v

h
boy
2

, 0

(d) vboy , 0

FIG. P2.71
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P2.72 h= 6 00.  m, vboy  m s= 2 00.  v
x
t

v
x v x

x h
= = =

+

∆
∆

sinθ boy
boy

2 2 1 2c h
.

However, x v t= boy : ∴ =
+

=
+

v
v t

v t h

t

t

boy
2

boy
2 2 2 1 2 2 1 2

4

4 36c h c h
.

(a) t vs m s
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

0
0.32
0.63
0.89
1.11
1.28
1.41
1.52
1.60
1.66
1.71

a f b g

FIG. P2.72(a)

(b) From problem 2.71 above, a
h v

x h

h v

v t h t
=

+
=

+
=

+

2

2 2 3 2

2

2 2 3 2 2 3 2
144

4 36

boy
2

boy
2

boy
2c h c h c h

.

t as m s
0
0.5
1
1.5
2
2.5
3.
3.5
4.
4.5
5

0.67
0.64
0.57
0.48
0.38
0.30
0.24
0.18
0.14
0.11
0.09

2a f e j

FIG. P2.72(b)

P2.73 (a) We require x xs k=  when t ts k= + 1 00.

x t t x

t t

t

s k k k

k k

k

= + = =

+ =

=

1
2

3 50 1 00
1
2

4 90

1 00 1 183

5 46

2 2. . .

. .

. .

 m s  m s

 s

2 2e jb g e jb g

(b) xk = =
1
2

4 90 5 46 73 02. . . m s  s  m2e ja f

(c) vk = =4 90 5 46 26 7. . . m s  s  m s2e ja f
vs = =3 50 6 46 22 6. . . m s  s  m s2e ja f
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P2.74 Time
t (s)

Height
h (m)

∆h
(m)

∆t
(s)

v
(m/s)

midpt time
t (s)

0.00 5.00
0.75 0.25 3.00 0.13

FIG. P2.74

0.25 5.75
0.65 0.25 2.60 0.38

0.50 6.40
0.54 0.25 2.16 0.63

0.75 6.94
0.44 0.25 1.76 0.88

1.00 7.38
0.34 0.25 1.36 1.13

1.25 7.72
0.24 0.25 0.96 1.38

1.50 7.96
0.14 0.25 0.56 1.63

1.75 8.10
0.03 0.25 0.12 1.88

2.00 8.13
–0.06 0.25 –0.24 2.13

2.25 8.07
–0.17 0.25 –0.68 2.38

2.50 7.90
–0.28 0.25 –1.12 2.63

2.75 7.62
–0.37 0.25 –1.48 2.88

3.00 7.25
–0.48 0.25 –1.92 3.13

3.25 6.77
–0.57 0.25 –2.28 3.38

3.50 6.20
–0.68 0.25 –2.72 3.63

3.75 5.52
–0.79 0.25 –3.16 3.88

4.00 4.73
–0.88 0.25 –3.52 4.13

4.25 3.85
–0.99 0.25 –3.96 4.38

4.50 2.86
–1.09 0.25 –4.36 4.63

4.75 1.77
–1.19 0.25 –4.76 4.88

5.00 0.58

TABLE P2.74

acceleration = slope of line is constant.

a=− =1 63 1 63. . m s  m s  downward2 2
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P2.75 The distance x and y are always related by x y L2 2 2+ = .
Differentiating this equation with respect to time, we have

2 2 0x
dx
dt

y
dy
dt

+ =

Now 
dy
dt

 is vB , the unknown velocity of B; and 
dx
dt

v=− .

From the equation resulting from differentiation, we have

dy
dt

x
y

dx
dt

x
y

v=− FHG
I
KJ=− −( ).

B

O

y

A
α

x

L

v

x

y

FIG. P2.75

But 
y
x
= tanα  so v vB =

F
HG
I
KJ

1
tanα

. When α = °60 0. , v
v v

vB = °
= =

tan .
.

60 0
3

3
0 577 .

ANSWERS TO EVEN PROBLEMS

P2.2 (a) 2 10 7× −  m s ; 1 10 6× −  m s ; P2.24 (a) 1.88 km; (b) 1.46 km;
(c) see the solution;(b) 5 108×  yr
(d) (i) x t1

21 67= .  m s2e j ;
P2.4 (a) 50 0.  m s ; (b) 41 0.  m s (ii) x t2 50 375= − m s  mb g ;

(iii) x t t3
2250 2 5 4 375= − −m s m s m2b g e j. ;P2.6 (a) 27 0.  m ;

(e) 37 5.  m s(b) 27 0 18 0 3 00 2. . . m m s m s2+ +b g e ja f∆ ∆t t ;

(c) 18 0.  m s
P2.26 958 m

P2.8 (a), (b), (c) see the solution; 4 6.  m s2 ; (d) 0
P2.28 (a) x t tf = −30 0 2.e j m; v tf = −30 0 2.a f m s ;

(b) 225 mP2.10 5.00 m

P2.12 (a) 20 0.  m s ; 5 00.  m s ; (b) 262 m P2.30 x x v t a tf i xf x− = −
1
2

2 ; 3 10.  m s

P2.14 (a) see the solution;
P2.32 (a) 35.0 s; (b) 15 7.  m s(b) 1 60.  m s2 ; 0 800.  m s2

P2.34 (a) 1 12 1011. ×  m s2 ; (b) 4 67 10 5. × −  sP2.16 (a) 13 0.  m s; (b) 10 0.  m s; 16 0.  m s;
(c) 6 00.  m s2 ; (d) 6 00.  m s2

P2.36 (a) False unless the acceleration is zero;
see the solution; (b) TrueP2.18 see the solution

P2.38 Yes; 212 m; 11.4 sP2.20 (a) 6 61.  m s; (b) −0 448.  m s2

P2.40 (a) −4 90.  m; −19 6.  m; −44 1.  m;P2.22 (a) − ⋅ = −21 8 9 75. . mi h s  m s2 ;
(b) −9 80.  m s; −19 6.  m s; −29 4.  m s

(b) − ⋅ = −22 2 9 94. . mi h s  m s2 ;
(c) − ⋅ = −22 8 10 2. . mi h s  m s2

P2.42 1.79 s
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P2.44 No; see the solution P2.60 1 60.  m s2

P2.46 The second ball is thrown at speed
v ghi =

P2.62 (a) 41.0 s; (b) 1.73 km; (c) −184 m s

P2.64 v t a txi x+
1
2

2 ; displacements agree
P2.48 (a) 510 m; (b) 20.4 s

P2.66 155 s; 129 sP2.50 (a) 96 0.  ft s ;
(b) a = ×3 07 103.  ft s  upward2 ;

P2.68 (a) 5.44 s; (b) 131 m; (c) 50 8.  m s ;(c) ∆t = × −3 13 10 2.  s
(d) 95 3.  m s  upward2

P2.52 38.2 m
P2.70 (a) 26.4 m; (b) 6.82%

P2.54 (a) and (b) see the solution; (c) −4 m s2 ;
(d) 34 m; (e) 28 m P2.72 see the solution

P2.74 see the solution; ax = −1 63.  m s2
P2.56 0.222 s

P2.58 (a) see the solution; (b) 6.23 s
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CHAPTER OUTLINE

3.1 Coordinate Systems
3.2 Vector and Scalar
  Quantities
3.3 Some Properties of Vectors
3.4 Components of a Vector
  and Unit Vectors
     
      
     
      
       
       

        
                                         

      

     
     
      

     
     

Vectors

ANSWERS TO QUESTIONS

Q3.1 No. The sum of two vectors can only be zero if they are in
opposite directions and have the same magnitude. If you walk
10 meters north and then 6 meters south, you won’t end up
where you started.

Q3.2 No, the magnitude of the displacement is always less than or
equal to the distance traveled. If two displacements in the same
direction are added, then the magnitude of their sum will be
equal to the distance traveled. Two vectors in any other
orientation will give a displacement less than the distance
traveled. If you first walk 3 meters east, and then 4 meters
south, you will have walked a total distance of 7 meters, but
you will only be 5 meters from your starting point.

Q3.3 The largest possible magnitude of R A B= +  is 7 units, found when A and B point in the same
direction. The smallest magnitude of R A B= +  is 3 units, found when A and B have opposite
directions.

Q3.4 Only force and velocity are vectors. None of the other quantities requires a direction to be described.

Q3.5 If the direction-angle of A is between 180 degrees and 270 degrees, its components are both
negative. If a vector is in the second quadrant or the fourth quadrant, its components have opposite
signs.

Q3.6 The book’s displacement is zero, as it ends up at the point from which it started. The distance
traveled is 6.0 meters.

Q3.7 85 miles. The magnitude of the displacement is the distance from the starting point, the 260-mile
mark, to the ending point, the 175-mile mark.

Q3.8 Vectors A and B are perpendicular to each other.

Q3.9 No, the magnitude of a vector is always positive. A minus sign in a vector only indicates direction,
not magnitude.

55
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Q3.10 Any vector that points along a line at 45° to the x and y axes has components equal in magnitude.

Q3.11 A Bx x=  and A By y= .

Q3.12 Addition of a vector to a scalar is not defined. Think of apples and oranges.

Q3.13 One difficulty arises in determining the individual components. The relationships between a vector
and its components such as A Ax = cosθ , are based on right-triangle trigonometry. Another problem
would be in determining the magnitude or the direction of a vector from its components. Again,

A A Ax y= +2 2  only holds true if the two component vectors, Ax  and Ay , are perpendicular.

Q3.14 If the direction of a vector is specified by giving the angle of the vector measured clockwise from the
positive y-axis, then the x-component of the vector is equal to the sine of the angle multiplied by the
magnitude of the vector.

SOLUTIONS TO PROBLEMS

Section 3.1 Coordinate Systems

P3.1 x r= = °= − = −cos cos .θ 5 50 240 5 50 0 5 2 75.  m .  m .  ma f a fa f
y r= = °= − = −sin sin .θ 5 50 240 5 50 0 866 4 76.  m .  m .  ma f a fa f

P3.2 (a) x r= cosθ  and y r= sinθ , therefore
x1 2 50 30 0= °.  m .a fcos , y1 2 50 30 0= °.  m .a fsin , and

x y1 1 2 17 1 25, . , .   mb g a f=

x2 3 80 120= °. cos ma f , y2 3 80 120= °. sin ma f , and

x y2 2 1 90 3 29, . , .   mb g a f= − .

(b) d x y= + = + =( ) ( ) . . .∆ ∆2 2 16 6 4 16 4 55 m

P3.3 The x distance out to the fly is 2.00 m and the y distance up to the fly is 1.00 m.

(a) We can use the Pythagorean theorem to find the distance from the origin to the fly.

distance  m  m  m  m2= + = + = =x y2 2 2 22 00 1 00 5 00 2 24. . . .a f a f

(b) θ = F
HG
I
KJ = °−tan .1 1

2
26 6 ; r = °2 24 26 6. , . m  
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P3.4 (a) d x x y y= − + − = − − + − −2 1
2

2 1
2 2 22 00 3 00 4 00 3 00b g b g c h a f. . . .

d = + =25 0 49 0 8 60. . .  m

(b) r1
2 22 00 4 00 20 0 4 47= + − = =. . . .a f a f  m

θ 1
1 4 00

2 00
63 4= −FHG

I
KJ = − °−tan

.

.
.

r2
2 23 00 3 00 18 0 4 24= − + = =. . . .a f a f  m

θ 2 135= °  measured from the +x axis.

P3.5 We have 2 00 30 0. .= °r cos

r =
°
=

2 00
30 0

2 31
.

cos .
.

and y r= °= °=sin sin .30 0 2 31 30 0 1 15. . . .

P3.6 We have r x y= +2 2  and θ = F
HG
I
KJ

−tan 1 y
x

.

(a) The radius for this new point is

− + = + =x y x y ra f2 2 2 2

and its angle is

tan−

−
F
HG
I
KJ = °−1 180

y
x

θ .

(b) ( ) ( )− + − =2 2 22 2x y r . This point is in the third quadrant if x y,  b g is in the first quadrant

or in the fourth quadrant if x y,  b g is in the second quadrant. It is at an angle of 180°+θ .

(c) ( ) ( )3 3 32 2x y r+ − = . This point is in the fourth quadrant if x y,  b g is in the first quadrant

or in the third quadrant if x y,  b g is in the second quadrant. It is at an angle of −θ .
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Section 3.2 Vector and Scalar Quantities

Section 3.3 Some Properties of Vectors

P3.7 tan .

tan . .

35 0
100
100 35 0 70 0

°=

= °=

x

x
 m
 m  ma f

FIG. P3.7

P3.8 R =

= °

14

65

 km

 N of Eθ

θ

R 13 km

6 km1 km

FIG. P3.8

P3.9 − = °R 310 km at 57  S of W

(Scale: 1 20 unit  km= )

FIG. P3.9

P3.10 (a) Using graphical methods, place the tail of
vector B at the head of vector A. The new
vector A B+  has a magnitude of

6.1 at 112°  from the x-axis.

(b) The vector difference A B−  is found by
placing the negative of vector B at the
head of vector A. The resultant vector
A B−  has magnitude 14 8.  units at an

angle of 22°  from the + x-axis.

y

x

A + B
A

A — B

B —B

O

FIG. P3.10
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P3.11 (a) d i= − =10 0 10 0. .  m  since the displacement is in a

straight line from point A to point B.

(b) The actual distance skated is not equal to the straight-line
displacement. The distance follows the curved path of the
semi-circle (ACB).

s r= = =
1
2

2 5 15 7π πb g .  m

 C 

B A 
5.00 m 
d 

FIG. P3.11

(c) If the circle is complete, d begins and ends at point A. Hence, d = 0 .

P3.12 Find the resultant F F1 2+  graphically by placing the tail of F2  at the head of F1 . The resultant force
vector F F1 2+  is of magnitude 9 5.  N  and at an angle of 57°  above the -axisx .

 

0 1 2 3 N 

x 

y 

F 2 

F 1 

F 1 F 2 + 

FIG. P3.12

P3.13 (a) The large majority of people are standing or sitting at this hour. Their instantaneous foot-to-
head vectors have upward vertical components on the order of 1 m and randomly oriented

horizontal components. The citywide sum will be ~105  m upward .

(b) Most people are lying in bed early Saturday morning. We suppose their beds are oriented
north, south, east, west quite at random. Then the horizontal component of their total vector
height is very nearly zero. If their compressed pillows give their height vectors vertical
components averaging 3 cm, and if one-tenth of one percent of the population are on-duty
nurses or police officers, we estimate the total vector height as ~ .  m  m10 0 03 10 15 2a f a f+

~103  m upward .
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P3.14 Your sketch should be drawn to scale, and
should look somewhat like that pictured to
the right. The angle from the westward
direction, θ, can be measured to be

4°  N of W , and the distance R from the

sketch can be converted according to the
scale to be 7 9.  m .

15.0 meters

N

EW

S

8.20
meters

3.50
meters

1 m

30.0°

R
θ

FIG. P3.14

P3.15 To find these vector expressions graphically, we
draw each set of vectors. Measurements of the
results are taken using a ruler and protractor.
(Scale: 1 0 5 unit  m= . )

(a) A + B = 5.2 m at 60°

(b) A – B = 3.0 m at 330°

(c) B – A = 3.0 m at 150°

(d) A – 2B = 5.2 m at 300°.

FIG. P3.15

*P3.16 The three diagrams shown below represent the graphical solutions for the three vector sums:
R A B C1 = + + , R B C A2 = + + , and R C B A3 = + + . You should observe that R R R1 2 3= = ,
illustrating that the sum of a set of vectors is not affected by the order in which the vectors are
added.

100 m

C A
B

R2

B

A
R1

C

B

A

R3

C

FIG. P3.16
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P3.17 The scale drawing for the graphical solution
should be similar to the figure to the right. The
magnitude and direction of the final displacement
from the starting point are obtained by measuring
d and θ on the drawing and applying the scale
factor used in making the drawing. The results
should be

d = = − °420 3 ft and θ

(Scale: 1 20 unit  ft= )

FIG. P3.17

Section 3.4 Components of a Vector and Unit Vectors

P3.18 Coordinates of the super-hero are:

x

y

= − ° =

= − ° = −

100 30 0 86 6

100 30 0 50 0

 m  m

 m  m

a f a f
a f a f

cos . .

sin . .

FIG. P3.18

P3.19 A
A

A A A

x

y

x y

= −
=

= + = − + =

25 0
40 0

25 0 40 0 47 22 2 2 2

.
.

. . .a f a f  units

We observe that

tanφ =
A

A
y

x
.

FIG. P3.19

So

φ =
F
HG
I
KJ = = = °− −tan tan

.

.
tan . .1 140 0

25 0
1 60 58 0

A

A
y

x
a f .

The diagram shows that the angle from the +x axis can be found by subtracting from 180°:

θ = °− °= °180 58 122 .

P3.20 The person would have to walk 3 10 1 31. 25.0  km northsin .° =a f , and

3 10 25 0 2 81. .  km eastcos .° =a f .
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P3.21 x r= cosθ  and y r= sinθ , therefore:

(a) x = °12 8 150. cos , y = °12 8 150. sin , and x y,  . .  mb g e j= − +11 1 6 40i j

(b) x = °3 30 60 0. cos . , y = °3 30 60 0. sin . , and x y,   cmb g e j= +1 65 2 86. .i j

(c) x = °22 0 215. cos , y = °22 0 215. sin , and x y,   inb g e j= − −18 0 12 6. .i j

P3.22 x d= = = −cos cosθ 50 0 120 25 0.  m .  ma f a f
y d= = =

= − +

sin sin .

. .

θ 50 0 120 43 3

25 0 43 3

.  m  m

 m  m

a f a f
a f a fd i j

*P3.23 (a) Her net x (east-west) displacement is − + + = +3 00 0 6 00 3 00. . .  blocks, while her net y (north-
south) displacement is 0 4 00 0 4 00+ + = +. .  blocks. The magnitude of the resultant
displacement is

R x y= + = + =net netb g b g a f a f2 2 2 23 00 4 00 5 00. . .  blocks

and the angle the resultant makes with the x-axis (eastward direction) is

θ = F
HG
I
KJ = = °− −tan

.

.
tan . .1 14 00

3 00
1 33 53 1a f .

The resultant displacement is then 5 00 53 1. . blocks at  N of E° .

(b) The total distance traveled is 3 00 4 00 6 00 13 0. . . .+ + =  blocks .

*P3.24 Let i = east  and j = north. The unicyclist’s displacement is, in meters

280 220 360 300 120 60 40 90 70j i j i j i j i j+ + − − + − − + .

R i j= − +

= +

= °

−

110 550

110 550
110
550

561 11 3

2 2 1tan

. .

 m  m  at 
 m
 m

 west of north

 m at  west of north

a f a f

The crow’s velocity is

v
x

= =
°

= °

∆
∆ t

561 11 3
40

14 0 11 3

 m at  W of N
 s

 m s  at  west of north

.

. . .

R

N

E

FIG. P3.24
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P3.25 +x East, +y North

x

y

d x y

y

x

∑
∑

∑ ∑
∑
∑

= °=

= °− = −

= + = + − =

= = − = −

= − °
= °

250 125 30 358

75 125 30 150 12 5

358 12 5 358

12 5
358

0 0349

2 00
358 2 00

2 2 2 2

+  m

+ .  m

 m

.

.
 m at  S of E

cos

sin

.

tan
.

.

c h c h a f a f
c h
c hθ

θ
d

P3.26 The east and north components of the displacement from Dallas (D) to Chicago (C) are the sums of
the east and north components of the displacements from Dallas to Atlanta (A) and from Atlanta to
Chicago. In equation form:

d d d
d d d

DC east DA east AC east

DC north DA north AC north

+ . .  miles.
+ . +560 .  miles.

= = °− °=
= = ° °=

730 5 00 560 21 0 527
730 5 00 21 0 586

cos sin
sin cos

By the Pythagorean theorem, d d d= + =( ) ( )DC east DC north  mi2 2 788 .

Then tanθ = =
d
d
DC north

DC east
.1 11  and θ = °48 0. .

Thus, Chicago is 788 48 0 miles at  northeast of Dallas. ° .

P3.27 (a) See figure to the right.

(b) C A B i j i j i j= + = + + − = +2 00 6 00 3 00 2 00 5 00 4 00. . . . . .

C = + F
HG
I
KJ = °−25 0 16 0 6 401. . tan . at 

4
5

 at 38.7

D A B i j i j i j= − = + − + = − +2 00 6 00 3 00 2 00 1 00 8 00. . . . . .

D = − +
−
F
HG
I
KJ

−1 00 8 00
8 00
1 00

2 2 1. . tan
.
.

a f a f  at 

D = °− ° = °8 06 180 82 9 8 06 97 2. . . . at  at b g
FIG. P3.27

P3.28 d x x x y y y= + + + + +

= − + + + + = =

= F
HG
I
KJ = °−

1 2 3
2

1 2 3
2

2 2

1

3 00 5 00 6 00 2 00 3 00 1 00 52 0 7 21

6 00
4 00

56 3

b g b g
a f a f  m. . . . . . . .

tan
.
.

.θ
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P3.29 We have B R A= − :

A

A

R

R

x

y

x

y

= °= −

= °=

= °=

= °=

150 75 0

150 120 130

140 35 0 115

140 35 0 80 3

 cos120  cm

 cm

 cm

 cm

.

sin

cos .

sin . .

Therefore,
FIG. P3.29

B i j i j

B

= − − + − = −

= + =

= −FHG
I
KJ = − °−

115 75 80 3 130 190 49 7

190 49 7 196

49 7
190

14 7

2 2

1

a f e j. .

.

tan
.

. .

 cm

 cm

θ

P3.30 A i j= − +8 70 15 0. .  and B i j= −13 2 6 60. .

A B C− + =3 0 :
3 21 9 21 6

7 30 7 20

C B A i j

C i j

= − = −

= −

. .

. .

or
Cx = 7 30.  cm ; Cy = −7 20.  cm

P3.31 (a) A B i j i j i j+ = − + − − = −a f e j e j3 2 4 2 6

(b) A B i j i j i j− = − − − − = +a f e j e j3 2 4 4 2

(c) A B+ = + =2 6 6 322 2 .

(d) A B− = + =4 2 4 472 2 .

(e) θ A B+
−= −FHG
I
KJ=− °= °tan .1 6

2
71 6 288

θ A B−
−= F
HG
I
KJ= °tan .1 2

4
26 6

P3.32 (a) D A B C i j= + + = +2 4

D = + = = °2 4 4 47 63 42 2 . . m at θ

(b) E A B C i j= − − + = − +6 6

E = + = = °6 6 8 49 1352 2 .  m at θ
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P3.33 d1 3 50= − . je j m
d2 8 20 45 0 8 20 45 0 5 80 5 80= ° + ° = +. cos . . sin . . .i j i je j m
d3 15 0= − . ie j m

R i j i j= + + = − + + − = − +d d d1 2 3 15 0 5 80 5 80 3 50 9 20 2 30. . . . . .a f a f e j m
(or 9.20 m west and 2.30 m north)

The magnitude of the resultant displacement is

R = + = − + =R Rx y
2 2 2 29 20 2 30 9 48. . .a f a f  m .

The direction is θ =
−
F
HG
I
KJ = °arctan

.
.

2 30
9 20

166 .

P3.34 Refer to the sketch

R A B C i j i

i j

R

= + + = − − +

= −

= + − =

10 0 15 0 50 0

40 0 15 0

40 0 15 0 42 72 2 1 2

. . .

. .

. . .a f a f  yards

A = 10 0.

B = 15 0.

C = 50 0.

R

FIG. P3.34

P3.35 (a) F F F

F i j i j

F i j i j i j

F

= +

= ° + ° − ° + °

= + − + = +

= + =

= F
HG
I
KJ = °−

1 2

2 2

1

120 60 0 120 60 0 80 0 75 0 80 0 75 0

60 0 104 20 7 77 3 39 3 181

39 3 181 185

181
39 3

77 8

cos . sin . . cos . . sin .

. . . .

.

tan
.

.

a f a f a f a f
e j N

 N

θ

(b) F F i j3 39 3 181= − = − −.e j N

P3.36 East West
x y

   0 m   4.00 m
   1.41   1.41
 –0.500 –0.866
+0.914   4.55

R = + = °x y2 2 4 64.  m at 78.6  N of E
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P3.37 A= 3 00.  m, θ A = °30 0. B= 3 00.  m, θB = °90 0.

A Ax A= = °=cos . cos . .θ 3 00 30 0 2 60 m A Ay A= = °=sin . sin . .θ 3 00 30 0 1 50 m

A i j i j= + = +A Ax y . .2 60 1 50e j m
Bx = 0 , By = 3 00.  m so B j= 3 00.  m

A B i j j i j+ = + + = +2 60 1 50 3 00 2 60 4 50. . . . .e j e j m

P3.38 Let the positive x-direction be eastward, the positive y-direction be vertically upward, and the
positive z-direction be southward. The total displacement is then

d i j j k i j k= + + − = + −4 80 4 80 3 70 3 70 4 80 8 50 3 70. . . . . . .e j e j e j cm  cm  cm.

(a) The magnitude is d= ( ) +( ) + −( ) =4 80 8 50 3 70 10 42 2 2. . . . cm  cm .

(b) Its angle with the y-axis follows from cos
.
.

θ = 8 50
10 4

, giving θ = °35 5. .

P3.39 B i j k i j k

B

= + + = + +

= + + =

= F
HG
I
KJ = °

= F
HG
I
KJ = °

= F
HG
I
KJ = °

−

−

−

B B Bx y z . . .

. . . .

cos
.
.

.

cos
.
.

.

cos
.
.

.

4 00 6 00 3 00

4 00 6 00 3 00 7 81

4 00
7 81

59 2

6 00
7 81

39 8

3 00
7 81

67 4

2 2 2

1

1

1

α

β

γ

P3.40 The y coordinate of the airplane is constant and equal to 7 60 103. ×  m  whereas the x coordinate is
given by x v ti=  where vi  is the constant speed in the horizontal direction.

At t= 30 0.  s  we have x= ×8 04 103. , so vi = 268 m s. The position vector as a function of time
is

P i j= + ×268 7 60 103 m s  mb g e jt . .

At t= 45 0.  s , P i j= × + ×1 21 10 7 60 104 3. .  m. The magnitude is

P= × + × = ×1 21 10 7 60 10 1 43 104 2 3 2 4. . .c h c h  m  m

and the direction is

θ = ×
×

F
HG

I
KJ= °arctan

.

.
.

7 60 10
1 21 10

32 2
3

4  above the horizontal .
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P3.41 (a) A i j k= + −8 00 12 0 4 00. . .

(b) B
A

i j k= = + −
4

2 00 3 00 1 00. . .

(c) C A i j k= − = − − +3 24 0 36 0 12 0. . .

P3.42 R i j i j i j= ° + ° + ° + ° + ° + °75 0 240 75 0 240 125 135 125 135 100 160 100 160. cos . sin cos sin cos sin

R i j i j i j= − − − + − +37 5 65 0 88 4 88 4 94 0 34 2. . . . . .

R i j= − +220 57 6.

R= −( ) + F
HG
I
KJ220 57 6

57 6
220

2 2. arctan
.

 at  above the –x-axis

R= °227 paces at 165

P3.43 (a)  C A B i j k= + = − −5 00 1 00 3 00. . .e j m
C = ( ) +( ) +( ) =5 00 1 00 3 00 5 922 2 2. . . . m  m

(b)  D A B i j k= − = − +2 4 00 11 0 15 0. . .e j m
D = ( ) +( ) +( ) =4 00 11 0 15 0 19 02 2 2. . . . m  m

P3.44 The position vector from radar station to ship is

S i j i j= ° + ° = −17 3 136 17 3 136 12 0 12 4. sin . cos . .e j e j km  km.

From station to plane, the position vector is

P i j k= ° + ° +19 6 153 19 6 153 2 20. sin . cos .e j km,

or

P i j k= − +8 90 17 5 2 20. . .e j km.

(a) To fly to the ship, the plane must undergo displacement

D S P i j k= − = + −3 12 5 02 2 20. . .e j km .

(b) The distance the plane must travel is

D= = ( ) +( ) +( ) =D 3 12 5 02 2 20 6 312 2 2. . . . km  km .
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P3.45 The hurricane’s first displacement is 
41 0

3 00
.

.
 km

h
 hF

HG
I
KJ( ) at 60 0. °  N of W, and its second displacement

is 
25 0

1 50
.

.
 km

h
 hF

HG
I
KJ( ) due North. With i  representing east and j  representing north, its total

displacement is:

41 0 60 0 3 00 41 0 60 0 3 00 25 0 1 50 61 5

144

. cos . . . sin . . . . .
km
h

 h
km
h

 h
km
h

 h  km

 km 

°F
HG

I
KJ − + °F

HG
I
KJ + FHG

I
KJ = −

+

a fe j a f a f e ji j j i

j

with magnitude 61 5 144 1572 2.  km  km  km( ) +( ) = .

P3.46 (a) E i j= ° + °17 0 27 0 17 0 27 0. cos . . sin . cm  cma f a f
E i j= +15 1 7 72. .e j cm

(b) F i j= − ° + °17 0 27 0 17 0 27 0. sin . . cos . cm  cma f a f
F i j= − +7 72 15 1. .e j cm

(c) G i j= + ° + °17 0 27 0 17 0 27 0. sin . . cos . cm  cma f a f
G i j= + +7 72 15 1. .e j cm

 

F 

y 

x 

27.0° 

G 

27.0° 

E 
27.0°

FIG. P3.46

P3.47 Ax =−3 00. , Ay = 2 00.

(a) A i j i j= + = − +A Ax y . .3 00 2 00

(b) A = + = −( ) +( ) =A Ax y
2 2 2 23 00 2 00 3 61. . .

tan
.
.

.θ = =
−( )

=−
A

A
y

x

2 00
3 00

0 667 , tan . .− −( )=− °1 0 667 33 7

θ  is in the 2nd quadrant, so θ = °+ − ° = °180 33 7 146.a f .

(c) Rx = 0 , Ry =−4 00. , R A B= +  thus B R A= −  and

B R Ax x x= − = − −( )=0 3 00 3 00. . , B R Ay y y= − =− − =−4 00 2 00 6 00. . . .

Therefore, B i j= −3 00 6 00. . .
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P3.48 Let + =x  East, + =y  North,

x y
   300       0
 –175   303
       0   150
   125   453

(a) θ = = °−tan .1 74 6
y
x

 N of E

(b) R = + =x y2 2 470 km

P3.49 (a)

(b)

R
R

x

y

= °+ °=
= °− °+ =

= +

40 0 45 0 30 0 45 0 49 5
40 0 45 0 30 0 45 0 20 0 27 1

49 5 27 1

. cos . . cos . .

. sin . . sin . . .

. .R i j

R = + =

= F
HG
I
KJ = °−

49 5 27 1 56 4

27 1
49 5

28 7

2 2

1

. . .

tan
.
.

.

a f a f
θ

 

A 

y 

x 

B 

45° 

C 

45° 
O 

FIG. P3.49

P3.50 Taking components along i  and j , we get two equations:

6 00 8 00 26 0 0. . .a b− + =

and

− + + =8 00 3 00 19 0 0. . .a b .

Solving simultaneously,

a b= =5 00 7 00. , . .

Therefore,

5 00 7 00 0. .A B C+ + = .
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Additional Problems

P3.51 Let θ represent the angle between the directions of A and B. Since
A and B have the same magnitudes, A, B, and R A B= +  form an

isosceles triangle in which the angles are 180°−θ , 
θ
2

, and 
θ
2

. The

magnitude of R is then R A= F
HG
I
KJ2

2
cos

θ
. [Hint: apply the law of

cosines to the isosceles triangle and use the fact that B A= .]

Again, A, –B, and D A B= −  form an isosceles triangle with apex
angle θ. Applying the law of cosines and the identity

1 2
2

2− = F
HG
I
KJcos sinθ

θa f

gives the magnitude of D as D A= F
HG
I
KJ2

2
sin

θ
.

The problem requires that R D= 100 .

Thus, 2
2

200
2

A Acos sin
θ θF
HG
I
KJ =

F
HG
I
KJ . This gives tan .

θ
2

0 010F
HG
I
KJ =  and

θ = °1 15. .

A 

B R θ /2 
θ 

A 

D –B 

θ 

FIG. P3.51

P3.52 Let θ represent the angle between the directions of A and B. Since
A and B have the same magnitudes, A, B, and R A B= +  form an

isosceles triangle in which the angles are 180°−θ , 
θ
2

, and 
θ
2

. The

magnitude of R is then R A= F
HG
I
KJ2

2
cos

θ
. [Hint: apply the law of

cosines to the isosceles triangle and use the fact that B A= . ]

Again, A, –B, and D A B= −  form an isosceles triangle with apex
angle θ. Applying the law of cosines and the identity

1 2
2

2− = F
HG
I
KJcos sinθ

θa f

gives the magnitude of D as D A= F
HG
I
KJ2

2
sin

θ
.

The problem requires that R nD=  or cos sin
θ θ
2 2
F
HG
I
KJ =

F
HG
I
KJn  giving

θ = F
HG
I
KJ

−2
11tan
n

.

FIG. P3.52
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P3.53 (a) Rx = 2 00. , Ry = 1 00. , Rz = 3 00.

(b) R = + + = + + = =R R Rx y z
2 2 2 4 00 1 00 9 00 14 0 3 74. . . . .

(c) cos cos .θ θx
x

x
xR R

x= ⇒ =
F
HG
I
KJ= ° +−

R R
1 57 7  from 

cos cos .θ θy
y

y
yR R

y= ⇒ =
F
HG
I
KJ= ° +−

R R
1 74 5  from 

cos cos .θ θz
z

z
zR R

z= ⇒ =
F
HG
I
KJ= ° +−

R R
1 36 7  from 

*P3.54 Take the x-axis along the tail section of the snake. The displacement from tail to head is

240 420 240 180 105 180 75 287 m +  m  m  m 174 mcos sini i j i j− °− ° − ° = −a f a f .

Its magnitude is 287 174 3352 2( ) +( ) = m  m. From v
t

= distance
∆

, the time for each child’s run is

Inge:  
distance  m h  km  s

 km  m  h
 s

Olaf:  
 m s

3.33 m
 s

∆

∆

t
v

t

= = =

=
⋅
=

335 1 3 600

12 1 000 1
101

420
126

a fa fb g
a fb ga f

.

Inge wins by 126 101 25 4− = .  s .

*P3.55 The position vector from the ground under the controller of the first airplane is

r i j k

i j k

1 19 2 25 19 2 25 0 8

17 4 8 11 0 8

= ° + ° +

= + +

. cos . sin .

. . . .

 km  km  km

 km

a fa f a fa f a f
e j

The second is at

r i j k

i j k

2 17 6 20 17 6 20 1

16 5 6 02 1 1

= ° + ° +

= + +

. cos . sin

. . . .

 km  km .1 km

 km

a fa f a fa f a f
e j

Now the displacement from the first plane to the second is

r r i j k2 1 0 863 2 09 0 3− = − − +. . .e j km

with magnitude

0 863 2 09 0 3 2 292 2 2. . . .( ) +( ) +( ) =  km .
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*P3.56 Let A represent the distance from island 2 to island 3. The
displacement is A= A  at 159° . Represent the displacement from 3
to 1 as B=B  at 298° . We have 4.76 km at 37°  + + =A B 0 .

For x-components

4 76 37 159 298 0
3 80 0 934 0 469 0

8 10 1 99

. cos cos cos
. . .

. .

 km
 km

 km

a f °+ °+ °=
− + =

= − +

A B
A B

B A

For y-components,

4 76 37 159 298 0
2 86 0 358 0 883 0

. sin sin sin
. . .

 km
 km

a f °+ °+ °=
+ − =

A B
A B

N

B28°

A

C

69°

37°
1

2

3

E

FIG. P3.56

(a) We solve by eliminating B by substitution:

2 86 0 358 0 883 8 10 1 99 0
2 86 0 358 7 15 1 76 0

10 0 1 40

7 17

. . . . .
. . . .

. .

.

 km  km
 km  km

 km

 km

+ − − + =
+ + − =

=

=

A A
A A

A

A

a f

(b) B=− + ( )=8 10 1 99 7 17 6 15. . . . km  km  km

*P3.57 (a) We first express the corner’s position vectors as sets of components

A i j i j

B i j i j

= ° + ° =

= ° + ° =

10 50 10 50 6 43

12 30 12 30 10 4

 m  m  m +7.66 m

 m  m  m +6.00 m

a f a f
a f a f

cos sin .

cos sin . .

The horizontal width of the rectangle is

10 4 6 43 3 96. . . m  m  m− = .

Its vertical height is

7 66 6 00 1 66. . . m  m  m− = .

Its perimeter is

2 3 96 1 66 11 2. . .+( ) = m  m .

(b) The position vector of the distant corner is B Ax y . .i j i j+ = +10 4 7 662 m +7.66 m = 10.4  m2  at

tan
.

.− = °1 7 66
12 9

 m
10.4 m

 m at 36.4 .
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P3.58 Choose the +x-axis in the direction of the first force. The total force,
in newtons, is then

12 0 31 0 8 40 24 0 3 60 7 00. . . . . .i j i j i j+ − − = +e j e j N .

The magnitude of the total force is

3 60 7 00 7 872 2. . .( ) +( ) = N  N

and the angle it makes with our +x-axis is given by tan
.
.

θ =
( )
( )
7 00
3 60

,

θ = °62 8. . Thus, its angle counterclockwise from the horizontal is
35 0 62 8 97 8. . .°+ °= ° .

 

R 
35.0° 

y 

24 N 

horizontal 

31 N 

8.4 N 

12 N 

x 

FIG. P3.58

P3.59 d i

d j

d i j i j

d i j i j

R d d d d i j

R

1

2

3

4

1 2 3 4

2 2

1

100

300

150 30 0 150 30 0 130 75 0

200 60 0 200 60 0 100 173

130 202

130 202 240

202
130

57 2

180 237

=

= −

= − ° − ° = − −

= − ° + ° = − +

= + + + = − −

= − + − =

= F
HG
I
KJ = °

= + = °

−

cos . sin . .

cos . sin .

tan .

a f a f
a f a f

e j
a f a f

 m

 m

φ

θ φ

FIG. P3.59

P3.60
d
dt

d t

dt
r i j j

j j=
+ −

= + − = −
4 3 2

0 0 2 2 00.
e j b g m s

The position vector at t= 0 is 4 3i j+ . At t= 1 s , the position is 4 1i j+ , and so on. The object is
moving straight downward at 2 m/s, so

d
dt
r

 represents its velocity vector .

P3.61 v i j i j

v i j

v

= + = + ° + °

= +

= °

v vx y cos . sin .

.

300 100 30 0 100 30 0

387 50 0

390

a f a f
e j mi h

 mi h  at 7.37  N of E
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P3.62 (a) You start at point A: r r i j1 30 0 20 0= = −A . .e j m.

The displacement to B is

r r i j i j i jB A− = + − + = +60 0 80 0 30 0 20 0 30 0 100. . . . . .

You cover half of this, 15 0 50 0. .i j+e j to move to r i j i j i j2 30 0 20 0 15 0 50 0 45 0 30 0= − + + = +. . . . . . .

Now the displacement from your current position to C is

r r i j i j i jC − = − − − − = − −2 10 0 10 0 45 0 30 0 55 0 40 0. . . . . . .

You cover one-third, moving to

r r r i j i j i j3 2 23 45 0 30 0
1
3

55 0 40 0 26 7 16 7= + = + + − − = +∆ . . . . . .e j .

The displacement from where you are to D is

r r i j i j i jD − = − − − = −3 40 0 30 0 26 7 16 7 13 3 46 7. . . . . . .

You traverse one-quarter of it, moving to

r r r r i j i j i j4 3 3
1
4

26 7 16 7
1
4

13 3 46 7 30 0 5 00= + − = + + − = +Db g e j. . . . . . .

The displacement from your new location to E is

r r i j i j i jE − = − + − − = − +4 70 0 60 0 30 0 5 00 100 55 0. . . . .

of which you cover one-fifth the distance, − +20 0 11 0. .i j , moving to

r r i j i j i j4 45 30 0 5 00 20 0 11 0 10 0 16 0+ = + − + = +∆ . . . . . . .

The treasure is at 10 0.  m,  16.0 m( ) .

(b) Following the directions brings you to the average position of the trees. The steps we took
numerically in part (a) bring you to

r r r
r r

A B A
A B+ − = +F
HG

I
KJ

1
2 2
a f

then to 
r r r r r r

r r
A B C A B C

A B+
+

−
= + +

+a f a f

2 3 3
2

then to 
r r r r r r r r

r r r
A B C D A B C D

A B C+ +
+

−
= + + +

+ +a f a f

3 4 4
3

and last to 
r r r r r r r r r r

r r r r
A B C D E A B C D E

A B C D+ + +
+

−
= + + + +

+ + +a f a f

4 5 5
4 .

This center of mass of the tree distribution is the same location whatever order we take the
trees in.
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*P3.63 (a) Let T represent the force exerted by each child. The x-
component of the resultant force is

T T T T T Tcos cos cos . .0 120 240 1 0 5 0 5 0+ °+ °= + − + − =a f a f a f .

The y-component is

T T T T Tsin sin sin . .0 120 240 0 0 866 0 866 0+ + = + − = .

Thus,

F∑ = 0.

FIG. P3.63

(b) If the total force is not zero, it must point in some direction. When each child moves one

space clockwise, the total must turn clockwise by that angle, 
360°

N
 . Since each child exerts

the same force, the new situation is identical to the old and the net force on the tire must still
point in the original direction. The contradiction indicates that we were wrong in supposing
that the total force is not zero. The total force must be zero.

P3.64 (a) From the picture, R i j1 = +a b  and R1
2 2= +a b .

(b) R i j k2 = + +a b c ; its magnitude is

R1
2 2 2 2 2+ = + +c a b c .

FIG. P3.64
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P3.65 Since

A B j+ = 6 00. ,

we have

A B A Bx x y y+ + + = +b g e j .i j i j0 6 00

giving
FIG. P3.65

A Bx x+ = 0  or A Bx x=−                                                     [1]

and

A By y+ = 6 00. .                                                            [2]

Since both vectors have a magnitude of 5.00, we also have

A A B Bx y x y
2 2 2 2 25 00+ = + = . .

From A Bx x=− , it is seen that

A Bx x
2 2= .

Therefore, A A B Bx y x y
2 2 2 2+ = +  gives

A By y
2 2= .

Then, A By y=  and Eq. [2] gives

A By y= = 3 00. .

Defining θ as the angle between either A or B and the y axis, it is seen that

cos
.
.

.θ = = = =
A

A

B

B
y y 3 00

5 00
0 600 and θ = °53 1. .

The angle between A and B is then φ θ= = °2 106 .
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*P3.66 Let θ represent the angle the x-axis makes with the horizontal. Since
angles are equal if their sides are perpendicular right side to right
side and left side to left side, θ is also the angle between the weight
and our y axis. The x-components of the forces must add to zero:

− + =0 150 0 127 0. sin . N  Nθ .

(b) θ = °57 9.

 

θ 

y 0.127 N 
x 

θ 

0.150 N 

T y 

FIG. P3.66

(a) The y-components for the forces must add to zero:

+ − °=Ty 0 150 57 9 0. cos . Na f , Ty = 0 079 8.  N .

(c) The angle between the y axis and the horizontal is 90 0 57 9 32 1. . .°− °= ° .

P3.67 The displacement of point P is invariant under rotation of

the coordinates. Therefore, r r= ′  and r r2 2
= ′b g  or,

x y x y2 2 2 2
+ = ′ + ′b g b g . Also, from the figure, β θ α= −

∴
′
′
F
HG
I
KJ =

F
HG
I
KJ −

′
′
=

−

+

− −tan tan

tan

tan

1 1

1

y
x

y
x

y
x

y
x

y
x

α

α

α

e j
e j

x

y

y P

O
t

β

α

θ

β

α

′

r x ′

FIG. P3.67

Which we simplify by multiplying top and bottom by x cosα . Then,

′= +x x ycos sinα α , ′=− +y x ysin cosα α .

ANSWERS TO EVEN PROBLEMS

P3.2 (a) 2 17 1 25. , . m   ma f ; −1 90 3 29. , . m   ma f ; P3.16 see the solution
(b) 4.55 m

P3.18 86.6 m and –50.0 m
P3.4 (a) 8.60 m;

P3.20 1.31 km north; 2.81 km east(b) 4.47 m at − °63 4. ; 4.24 m at 135°

P3.22 − +25 0 43 3. . m  m i jP3.6 (a) r at 180°−θ ; (b) 2r at 180°+θ ; (c) 3r at –θ

P3.8 14 km at 65° north of east P3.24 14 0 11 3. . m s  at  west of north°

P3.10 (a) 6.1 at 112°; (b) 14.8 at 22° P3.26 788 48 0 mi at  north of east. °

P3.12 9.5 N at 57° P3.28 7.21 m at 56.3°

P3.14 7.9 m at 4° north of west P3.30 C i j= −7 30 7 20. . cm  cm 
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P3.32 (a) 4.47 m at 63.4°; (b) 8.49 m at 135° P3.50 a b= =5 00 7 00. , .

P3.34 42.7 yards
P3.52 2

11tan− F
HG
I
KJn

P3.36 4.64 m at 78.6°
P3.54 25.4 s

P3.38 (a) 10.4 cm; (b) 35.5°
P3.56 (a) 7.17 km; (b) 6.15 km

P3.40 1 43 104. ×  m at 32.2° above the horizontal
P3.58 7.87 N at 97.8° counterclockwise from a

horizontal line to the rightP3.42 − + =220 57 6 227.i j  paces at 165°

P3.60 −2 00.  m sb gj ; its velocity vectorP3.44 (a) 3 12 5 02 2 20. . .i j k+ −e j km; (b) 6.31 km

P3.62 (a) 10 0.  m,  16.0 ma f ; (b) see the solution
P3.46 (a) 15 1 7 72. .i j+e j cm;

P3.64 (a) R i j1 = +a b ; R1
2 2= +a b ;(b) − +7 72 15 1. .i je j cm;

(b) R i j k2 = + +a b c ; R2
2 2 2= + +a b c(c) + +7 72 15 1. .i je j cm

P3.66 (a) 0.079 8N; (b) 57.9°; (c) 32.1°P3.48 (a) 74.6° north of east; (b) 470 km
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Motion in Two Dimensions

ANSWERS TO QUESTIONS

Q4.1 Yes. An object moving in uniform circular motion moves at a
constant speed, but changes its direction of motion. An object
cannot accelerate if its velocity is constant.

Q4.2 No, you cannot determine the instantaneous velocity. Yes, you
can determine the average velocity. The points could be widely
separated. In this case, you can only determine the average
velocity, which is

v
x

=
∆
∆ t

.

Q4.3 (a)
a a

a

a

v v
v

v

(b)
a

a

v

v
a va

v
a
v

Q4.4 (a) 10  m si (b) −9 80.  m s2j

Q4.5 The easiest way to approach this problem is to determine acceleration first, velocity second and
finally position.

Vertical: In free flight, a gy = − . At the top of a projectile’s trajectory, vy = 0. Using this, the

maximum height can be found using v v a y yfy iy y f i
2 2 2= + − d i .

Horizontal: ax = 0 , so vx  is always the same. To find the horizontal position at maximum
height, one needs the flight time, t. Using the vertical information found previously, the flight time
can be found using v v a tfy iy y= + . The horizontal position is x v tf ix= .

If air resistance is taken into account, then the acceleration in both the x and y-directions
would have an additional term due to the drag.

Q4.6 A parabola.

79
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Q4.7 The balls will be closest together as the second ball is thrown. Yes, the first ball will always be
moving faster, since its flight time is larger, and thus the vertical component of the velocity is larger.
The time interval will be one second. No, since the vertical component of the motion determines the
flight time.

Q4.8 The ball will have the greater speed. Both the rock and the ball will have the same vertical
component of the velocity, but the ball will have the additional horizontal component.

Q4.9 (a) yes (b) no (c) no (d) yes (e) no

Q4.10 Straight up. Throwing the ball any other direction than straight up will give a nonzero speed at the
top of the trajectory.

Q4.11 No. The projectile with the larger vertical component of the initial velocity will be in the air longer.

Q4.12 The projectile is in free fall. Its vertical component of acceleration is the downward acceleration of
gravity. Its horizontal component of acceleration is zero.

Q4.13 (a) no (b) yes (c) yes (d) no

Q4.14 60°. The projection angle appears in the expression for horizontal range in the function sin 2θ . This
function is the same for 30° and 60°.

Q4.15 The optimal angle would be less than 45°. The longer the projectile is in the air, the more that air
resistance will change the components of the velocity. Since the vertical component of the motion
determines the flight time, an angle less than 45° would increase range.

Q4.16 The projectile on the moon would have both the larger range and the greater altitude. Apollo
astronauts performed the experiment with golf balls.

Q4.17 Gravity only changes the vertical component of motion. Since both the coin and the ball are falling
from the same height with the same vertical component of the initial velocity, they must hit the floor
at the same time.

Q4.18 (a) no (b) yes

In the second case, the particle is continuously changing the direction of its velocity vector.

Q4.19 The racing car rounds the turn at a constant speed of 90 miles per hour.

Q4.20 The acceleration cannot be zero because the pendulum does not remain at rest at the end of the arc.

Q4.21 (a) The velocity is not constant because the object is constantly changing the direction of its
motion.

(b) The acceleration is not constant because the acceleration always points towards the center of
the circle. The magnitude of the acceleration is constant, but not the direction.

Q4.22 (a) straight ahead (b) in a circle or straight ahead
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Q4.23

v
a

aa
a
a

v
a

v
a

v
a

v

v v

v
Q4.24

a

r
r r r

r

aa a a
vv v

Q4.25 The unit vectors r  and θθθθ  are in different directions at different points in the xy plane. At a location
along the x-axis, for example, r i= and θθθθ = j , but at a point on the y-axis, r j=  and θθθθ ==== −−−− i . The unit

vector i  is equal everywhere, and j  is also uniform.

Q4.26 The wrench will hit at the base of the mast. If air resistance is a factor, it will hit slightly leeward of
the base of the mast, displaced in the direction in which air is moving relative to the deck. If the boat
is scudding before the wind, for example, the wrench’s impact point can be in front of the mast.

Q4.27 (a) The ball would move straight up and down as observed by the passenger. The ball would
move in a parabolic trajectory as seen by the ground observer.

(b) Both the passenger and the ground observer would see the ball move in a parabolic
trajectory, although the two observed paths would not be the same.

Q4.28 (a) g downward (b) g downward

The horizontal component of the motion does not affect the vertical acceleration.

SOLUTIONS TO PROBLEMS

Section 4.1 The Position, Velocity, and Acceleration Vectors

P4.1 x m y ma f a f
0

3 000
1 270
4 270

3 600
0

1 270
2 330

−
−
−

−

− m  m

(a) Net displacement 

 km at  S of W

= +

= °

x y2 2

4 87 28 6. .
FIG. P4.1

(b) Average speed
 m s  s  m s  s  m s  s

 s  s  s
 m s=

+ +

+ +
=

20 0 180 25 0 120 30 0 60 0

180 120 60 0
23 3

. . . .

.
.

b ga f b ga f b ga f

(c) Average velocity
 m

360 s
 m s   along =

×
=

4 87 10
13 5

3.
. R
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P4.2 (a) r i j= + −18 0 4 00 4 90 2. . .t t te j

(b) v i j= + −18 0 4 00 9 80 2. . m s .  m s  m sb g e jt

(c) a j= −9 80.  m s2e j

(d) r i j3 00 54 0 32 1. . . s  m  ma f a f a f= −

(e) v i j3 00 18 0 25 4. . . s  m s  m sa f b g b g= −

(f) a j3 00 9 80. . s  m s2a f e j= −

*P4.3 The sun projects onto the ground the x-component of her velocity:

5 00 60 0 2 50. cos . . m s   m s− ° =a f .

P4.4 (a) From x t= −5 00. sinω , the x-component of velocity is

v
dx
dt

d
dt

t tx = = FHG
I
KJ − = −5 00 5 00. sin cosω ω ωb g .

and a
dv
dt

tx
x= =+5.00 2ω ωsin

similarly, v
d
dt

t ty =
F
HG
I
KJ − = +4 00 5 00 0 5 00. . cos sinω ω ωb g .

and a
d
dt

t ty =
F
HG
I
KJ =5 00 5 00 2. sin cosω ω ω ωb g . .

At t = 0 , v i j i j= − + = +5 00 0 5 00 0 5 00 0. .  m sω ω ωcos sin .e j
and a i j i j= + = +5 00 0 5 00 0 0 5 002 2 2. .  m s2ω ω ωsin cos .e j .

(b) r i j j i j= + = + − −x y t t. . sin cos4 00 5 00 m  ma f a fe jω ω

v i j= − +5 00. cos sin ma fω ω ωt t

a i j= +5 00 2. sin cos ma fω ω ωt t

(c) The object moves in a circle of radius 5.00 m centered at   m0 4 00, .a f .



Chapter 4     83

Section 4.2 Two-Dimensional Motion with Constant Acceleration

P4.5 (a) v v a

a
v v i j i j

i j

f i

f i

t

t

= +

=
−

=
+ − −

= +
9 00 7 00 3 00 2 00

3 00
2 00 3 00

. . . .

.
. .

e j e j e j m s2

(b) r r v a i j i jf i it t t t= + + = − + +
1
2

3 00 2 00
1
2

2 00 3 002 2. . . .e j e j
x t t= +3 00 2.e j m  and y t t= −1 50 2 002. .e j m

P4.6 (a) v
r

i j j= = FHG
I
KJ − = −

d
dt

d
dt

t t3 00 6 00 12 02. . .e j  m s

a
v

j j= = FHG
I
KJ − = −

d
dt

d
dt

t12 0 12 0. .e j  m s2

(b) r i j v j= − = −3 00 6 00 12 0. . ; .e j m   m s

P4.7 v i ji = +4 00 1 00. .e j m s  and v i j20.0  m sa f e j= −20 0 5 00. .

(a) a
v
tx
x= =

−
=

∆
∆

20 0 4 00
20 0

0 800
. .

.
. m s  m s2 2

a
v

ty
y

= =
− −

= −
∆

∆
5 00 1 00

20 0
0

. .
.

 m s .300 m s2 2

(b) θ =
−F
HG

I
KJ = − °= ° +−tan

.
.

.1 0 300
0 800

20 6 339  from  axisx

(c) At t = 25 0.  s

x x v t a t

y y v t a t

v v a t

v v a t

v

v

f i xi x

f i yi y

xf xi x

yf yi y

y

x

= + + = + + =

= + + = − + + − = −

= + = + =

= + = − = −

=
F
HG
I
KJ =

−F
HG
I
KJ = −− −

1
2

10 0 4 00 25 0
1
2

0 800 25 0 360

1
2

4 00 1 00 25 0
1
2

0 300 25 0

4 0 8 25 24

1 0 3 25 6 5

6 50
24 0

15 2

2 2

2 2

1 1

. . . . .

. . . . .

.

. .

tan tan
.
.

.

a f a fa f

a f a fa f
a f
a f

 m

72.7 m

 m s

 m s

θ °
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P4.8 a j= 3 00.  m s2 ; v ii = 5 00.  m s ; r i ji = +0 0

(a) r r v a i jf i it t t t= + + = +L
NM

O
QP

1
2

5 00
1
2

3 002 2. .  m

v v a i jf i t t= + = +5 00 3 00. .e j m s

(b) t = 2 00.  s , r i j i jf = + = +5 00 2 00
1
2

3 00 2 00 10 0 6 002. . . . . .a f a fa f e j m
so x f = 10 0.  m , y f = 6 00.  m

v i j i j

v

f

f f xf yfv v v

= + = +

= = + = + =

5 00 3 00 2 00 5 00 6 00

5 00 6 00 7 812 2 2 2

. . . . .

. . .

a f e j
a f a f

 m s

 m s

*P4.9 (a) For the x-component of the motion we have x x v t a tf i xi x= + +
1
2

2.

0 01 0 1 80 10
1
2

8 10

4 10 1 80 10 10 0

1 80 10 4 4 10 10

2 4 10

1 8 10

7 14 2

14 2 7 2

7 2 14 2 2

14

7

2

. .

.

.

.

 m m s m s

m s m s  m

m s 1.8 10 m s m s m

m s

1.84 10 m s
8 10 m s

2

2

7

2

7

14

= + × + ×

× + × − =

=
− × ± × − × −

×

=
− × ± ×

×

−

−

e j e j
e j e j

e j e je j
e j

t t

t t

t

We choose the + sign to represent the physical situation

t =
×

×
= × −4 39 10

5 49 10
5

10.
.

 m s
8 10  m s

 s14 2 .

Here

y y v t a tf i yi y= + + = + + × × = ×− −1
2

0 0
1
2

1 6 10 5 49 10 2 41 102 15 10 2 4. . .m s  s  m2e je j .

So, r i jf = +10 0 0 241. .   mme j .

(b) v v a i i j

i i j

i j

f i t= + = × + × + × ×

= × + × + ×

= × + ×

−1 80 10 8 10 1 6 10 5 49 10

1 80 10 4 39 10 8 78 10

1 84 10 8 78 10

7 14 15 10

7 5 5

7 5

. . .

. . .

. .

m s m s m s  s

m s m s m s

m s m s

2 2e je j
e j e j e j
e j e j

(c) v f = × + × = ×1 84 10 8 78 10 1 85 107 2 5 2
. . .m s m s m s7e j e j

(d) θ =
F
HG
I
KJ =

×
×

F
HG

I
KJ = °− −tan tan

.

.
.1 1

5

7
8 78 10
1 84 10

2 73
v

v
y

x
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Section 4.3 Projectile Motion

P4.10 x v t v t

x

x

y v t gt v t gt

y

xi i i

yi i i

= =

= °

= ×

= − = −

= ° − = ×

cos

cos

.

sin

sin . . .

θ

θ

300 55 0 42 0

7 23 10

1
2

1
2

300 55 0 42 0
1
2

9 80 42 0 1 68 10

3

2 2

2 3

 m s . .  s

m

 m s . .  s  m s  s m

 

2
 

b ga fa f

b ga fa f e ja f

P4.11 (a) The mug leaves the counter horizontally with a velocity vxi

(say). If time t elapses before it hits the ground, then since there
is no horizontal acceleration, x v tf xi= , i.e.,

t
x

v v
f

xi xi
= =

1 40.  ma f

In the same time it falls a distance of 0.860 m with acceleration
downward of 9 80.  m s2 . Then

FIG. P4.11

y y v t a tf i yi y= + +
1
2

2:  0 0 860
1
2

9 80
1 40

2

= + −
F
HG

I
KJ. .

.
 m  m s

 m2e j vxi
.

Thus,

vxi = =
4 90 1 96

3 34
. .

.
 m s  m

0.860 m
 m s

2 2e je j
.

(b) The vertical velocity component with which it hits the floor is

v v a tyf yi y= + = + −
F
HG

I
KJ = −0 9 80

1 40
4 11.

.
. m s

 m
3.34 m s

 m s2e j .

Hence, the angle θ at which the mug strikes the floor is given by

θ =
F
HG
I
KJ =

−F
HG
I
KJ = − °− −tan tan

.
.

.1 1 4 11
3 34

50 9
v

v
yf

xf
.
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P4.12 The mug is a projectile from just after leaving the counter until just before it reaches the floor. Taking
the origin at the point where the mug leaves the bar, the coordinates of the mug at any time are

x v t a t v tf xi x xi= + = +
1
2

02  and y v t a t g tf yi y= + = −
1
2

0
1
2

2 2 .

When the mug reaches the floor, y hf = −  so

− = −h g t
1
2

2

which gives the time of impact as

t
h

g
=

2
.

(a) Since x df =  when the mug reaches the floor, x v tf xi=  becomes d v
h

gxi=
2

 giving the

initial velocity as

v d
g
hxi = 2

.

(b) Just before impact, the x-component of velocity is still

v vxf xi=

while the y-component is

v v a t g
h

gyf yi y= + = −0
2

.

Then the direction of motion just before impact is below the horizontal at an angle of

θ =
F
H
GG
I
K
JJ =

F

H
GG
I

K
JJ =

F
HG
I
KJ

− − −tan tan tan1 1
2

2

1 2v

v

g

d

h
d

yf

xf

h
g

g
h

.
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P4.13 (a) The time of flight of the first snowball is the nonzero root of y y v t a tf i yi y= + +1 1
21

2

0 0 25 0 70 0
1
2

9 80

2 25 0 70 0
9 80

4 79

1 1
2

1

= + ° −

=
°
=

. sin . .

( . ) sin .
.

. .

 m s  m s

 m s
 m s

 s

2

2

b gb g e jt t

t

The distance to your target is

x x v tf i xi− = = ° =1 25 0 70 0 4 79 41 0. cos . . . m s  s  mb g a f .

Now the second snowball we describe by

y y v t a tf i yi y= + +2 2
21

2

0 25 0 4 902 2 2
2= −. sin . m s  m s2b g e jθ t t

t2 25 10= . sin sa f θ
x x v tf i xi− = 2

41 0 25 0 5 10 1282 2 2 2. . cos . sin sin cos m  m s  s  m= =b g a f a fθ θ θ θ

0 321 2 2. sin cos= θ θ

Using sin sin cos2 2θ θ θ=  we can solve 0 321
1
2

2 2. sin= θ

2 0 6432
1θ = −sin .  and θ 2 = °20 0. .

(b) The second snowball is in the air for time t2 25 10 5 10 20 1 75= = °=. sin . sin . s  s  sa f a fθ , so you
throw it after the first by

t t1 2 4 79 1 75 3 05− = − =. . . s  s  s .

P4.14 From Equation 4.14 with R = 15 0.  m, vi = 3 00.  m s, θmax = °45 0.

∴ = = =g
v
R
i
2 9 00

15 0
0 600

.
.

.  m s2
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P4.15 h
v

g
i i=
2 2

2
sin θ

; R
v

g
i i=
2 2sin θb g

; 3h R= ,

so 
3

2
22 2 2v

g
v

g
i i i isin sinθ θ

=
b g

or 
2
3 2 2

2

= =
sin
sin

tanθ
θ

θi

i

i

thus θ i =
F
HG
I
KJ = °−tan .1 4

3
53 1 .

*P4.16 (a) To identify the maximum height we let i be the launch point and f be the highest point:

v v a y y

v g y

y
v

g

yf yi y f i

i i

i i

2 2

2 2

2 2

2

0 2 0

2

= + −

= + − −

=

d i
b gb gsin

sin
.

max

max

θ

θ

To identify the range we let i be the launch and f be the impact point; where t is not zero:

y y v t a t

v t g t

t
v

g

x x v t a t

d v
v

g

f i yi y

i i

i i

f i xi x

i i
i i

= + +

= + + −

=

= + +

= + +

1
2

0 0
1
2

2

1
2

0
2

0

2

2

2

sin

sin

cos
sin

.

θ

θ

θ
θ

b g

For this rock, d y= max

v
g

v
g

i i i i i

i

i
i

i

2 2 2

2
2

4

76 0

sin sin cos

sin
cos

tan

.

θ θ θ

θ
θ

θ

θ

=

= =

= °

(b) Since g divides out, the answer is the same  on every planet.

(c) The maximum range is attained for θ i = °45 :

d
d

v v g
gv v

i i

i i

max cos sin
cos sin

.=
° °
° °

=
45 2 45

76 2 76
2 125 .

So d
d

max =
17

8
.
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P4.17 (a) x v tf xi= = ° =8 00 20 0 3 00 22 6. cos . . .a f  m

(b) Taking y positive downwards,

y v t g t

y

f yi

f

= +

= ° + =

1
2

8 00 20 0 3 00
1
2

9 80 3 00 52 3

2

2. sin . . . . . .a f a fa f  m

(c) 10 0 8 00 20 0
1
2

9 80 2. . sin . .= ° +a f a ft t

4 90 2 74 10 0 0

2 74 2 74 196

9 80
1 18

2

2

. . .

. .

.
.

t t

t

+ − =

=
− ± +

=
a f

 s

*P4.18 We interpret the problem to mean that the displacement from fish to bug is

 2.00 m at 30 2 00 30 2 00 30 1 73 1 00°= ° + ° = +. . . . m cos  m sin  m  ma f a f a f a fi j i j.

If the water should drop 0.03 m during its flight, then the fish must aim at a point 0.03 m above the
bug. The initial velocity of the water then is directed through the point with displacement

1 73 1 03 2 015. . . m  m  ma f a fi j+ =  at 30.7°.

For the time of flight of a water drop we have

x x v t a tf i xi x= + +
1
2

2

1 73 0 30 7 0. cos . m = + ° +v tib g  so

t
vi

=
°

1 73
30 7

.
cos .

 m
.

The vertical motion is described by

y y v t a tf i yi y= + +
1
2

2.

The “drop on its path” is

− = −
°

F
HG

I
KJ3 00

1
2

9 80
1 73

30 7

2

. .
.

cos .
 cm  m s

 m2e j vi
.

Thus,

vi = ° ×
= =−1 73 9 80

2 0 03
2 015 12 8 25 81. .

.
. . .

 m
cos30.7

 m s
 m

 m  s  m s
2

e j .
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P4.19 (a) We use the trajectory equation:

y x
gx

vf f i
f

i i

= −tan
cos

θ
θ

2

2 22
.

With

x f = 36 0.  m, vi = 20 0.  m s, and θ = °53 0.

we find

y f = °−
°
=36 0 53 0

9 80 36 0

2 20 0 53 0
3 94

2

2 2
. tan .

. .

. cos .
. m

 m s  m

 m s
 m

2

a f e ja f
b g a f .

The ball clears the bar by

3 94 3 05 0 889. . .− =a f m  m .

(b) The time the ball takes to reach the maximum height is

t
v

g
i i

1
20 0 53 0

9 80
1 63= =

°
=

sin . .

.
.

θ  m s sin

 m s
 s2

b ga f
.

The time to travel 36.0 m horizontally is t
x

v
f

ix
2 =

t2
36 0

20 0 53 0
2 99=

°
=

.
( . cos .

.
 m

 m s)
 sa f .

Since t t2 1>  the ball clears the goal on its way down .

P4.20 The horizontal component of displacement is x v t v tf xi i i= = cosθb g . Therefore, the time required to

reach the building a distance d away is t
d

vi i
=

cosθ
. At this time, the altitude of the water is

y v t a t v
d

v
g d

vf yi y i i
i i i i

= + =
F
HG

I
KJ −
F
HG

I
KJ

1
2 2

2
2

sin
cos cos

θ
θ θ

.

Therefore the water strikes the building at a height h above ground level of

h y d
gd

vf i
i i

= = −tan
cos

θ
θ

2

2 22
.
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*P4.21 (a) For the horizontal motion, we have

x x v t a t

v

v

f i xi x

i

i

= + +

= + ° +

=

1
2

24 0 53 2 2 0

18 1

2

 m  s

 m s

cos .

. .

a fa f

(b) As it passes over the wall, the ball is above the street by y y v t a tf i yi y= + +
1
2

2

y f = + ° + − =0 18 1 53 2 2
1
2

9 8 2 2 8 132. sin . . . . m s  s  m s  s  m2b ga fa f e ja f .

So it clears the parapet by 8 13 7 1 13. . m  m  m− = .

(c) Note that the highest point of the ball’s trajectory is not directly above the wall. For the
whole flight, we have from the trajectory equation

y x
g

v
xf i f

i i
f= −

F
HG

I
KJtan

cos
θ

θ
b g

2 2 2
2

or

6 53
9 8

2 18 1 53
2 2

2 m
 m s

 m s

2

= ° −
°

F
H
GG

I
K
JJtan

.

. cos
a f

b g
x xf f .

Solving,

0 041 2 1 33 6 01 2. . m  m− − + =e jx xf f

and

x f =
± −

−

1 33 1 33 4 0 0412 6

2 0 0412

2

1

. . .

.

a fa f
e j m

.

This yields two results:

x f = 26 8.  m or 5.44 m

The ball passes twice through the level of the roof.

It hits the roof at distance from the wall

26 8 24 2 79. . m  m  m− = .
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*P4.22 When the bomb has fallen a vertical distance 2.15 km, it has traveled a horizontal distance x f  given by

x

y x
gx

v

f

f f
f

i i

i
i

i i

i

i

= − =

= −

− = −

∴− = − +

∴ − − =

∴ = ± − −F
H

I
K = ±

3 25 2 15 2 437

2

2 150 2 437
9 8 2 437

2 280

2 150 2 437 371 19 1

6 565 4 792 0
1
2

6 565 6 565 4 1 4 792 3 283 3 945

2 2

2

2 2

2

2 2

2

2

2

. . .

tan
cos

tan
.

cos

tan . tan

tan . tan .

tan . . . . . .

 km  km  km

 m  m
 m s  m

 m s

 m  m  m

2

a f a f

b g e jb g
b g

b g a fe j

a f a fa f

θ
θ

θ
θ

θ θ

θ θ

θ

Select the negative solution, since θ i  is below the horizontal.

∴ = −tan .θ i 0 662 , θ i = − °33 5.

P4.23 The horizontal kick gives zero vertical velocity to the rock. Then its time of flight follows from

y y v t a t

t

t

f i yi y= + +

− = + + −

=

1
2

40 0 0 0
1
2

9 80

2 86

2

2. .

.  .

 m  m s

s

2e j

The extra time 3 00 2 86 0 143. . . s  s  s− =  is the time required for the sound she hears to travel straight
back to the player.

It covers distance

343 0 143 49 0 40 02 2 m s  s  m  mb g a f. . .= = +x

where x represents the horizontal distance the rock travels.

x v t t

v

xi

xi

= = +

∴ = =

28 3 0
28 3
2 86

9 91

2.
.

.
.

 m
 m
 s

 m s
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P4.24 From the instant he leaves the floor until just before he lands, the basketball star is a projectile. His
vertical velocity and vertical displacement are related by the equation v v a y yyf yi y f i

2 2 2= + −d i.
Applying this to the upward part of his flight gives 0 2 9 80 1 85 1 022= + − −vyi . . . m s  m2e ja f . From this,

vyi = 4 03.  m s . [Note that this is the answer to part (c) of this problem.]

For the downward part of the flight, the equation gives vyf
2 0 2 9 80 0 900 1 85= + − −. . . m s  m2e ja f .

Thus the vertical velocity just before he lands is

vyf = −4 32.  m s.

(a) His hang time may then be found from v v a tyf yi y= + :

− = + −4 32 4 03 9 80. . . m s  m s  m s2e jt

or t = 0 852.  s .

(b) Looking at the total horizontal displacement during the leap, x v txi=  becomes

2 80 0 852. . m  s= vxi a f

which yields vxi = 3 29.  m s .

(c) vyi = 4.03 m s . See above for proof.

(d) The takeoff angle is: θ =
F
HG
I
KJ =

F
HG

I
KJ = °− −tan tan

.
.1 1 4 03

50 8
v

v
yi

xi

 m s
3.29 m s

.

(e) Similarly for the deer, the upward part of the flight gives
v v a y yyf yi y f i

2 2 2= + −d i:

0 2 9 80 2 50 1 202= + − −vyi . . . m s  m2e ja f

so vyi = 5 04.  m s .

For the downward part, v v a y yyf yi y f i
2 2 2= + −d i yields vyf

2 0 2 9 80 0 700 2 50= + − −. . . m s  m2e ja f
and vyf = −5 94.  m s.

The hang time is then found as v v a tyf yi y= + : − = + −5 94 5 04 9 80. . . m s  m s  m s2e jt  and

t = 1 12.  s .
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*P4.25 The arrow’s flight time to the collision point is

t
x x

v
f i

xi
=

−
=

°
=

150
45 50

5 19
 m

 m s
 sb gcos

. .

The arrow’s altitude at the collision is

y y v t a tf i yi y= + +

= + ° + − =

1
2

0 45 50 5 19
1
2

9 8 5 19 47 0

2

2 m s  s  m s  s  m2b ga f e ja fsin . . . . .

(a) The required launch speed for the apple is given by

v v a y y

v

v

yf yi y f i

yi

yi

2 2

2

2

0 2 9 8 47 0

30 3

= + −

= + − −

=

d i
e ja f.

. .

 m s  m

 m s

2

(b) The time of flight of the apple is given by

v v a t

t
t

yf yi y= +

= −
=

0 30 3 9 8
3 10

. .
. .

 m s  m s
 s

2

So the apple should be launched after the arrow by 5 19 3 10 2 09. . . s  s  s− = .

*P4.26 For the smallest impact angle

θ =
F
HG
I
KJ

−tan 1 v

v
yf

xf
,

we want to minimize vyf  and maximize v vxf xi= . The final y-component

of velocity is related to vyi  by v v ghyf yi
2 2 2= + , so we want to minimize vyi

and maximize vxi . Both are accomplished by making the initial velocity
horizontal. Then v vxi = , vyi = 0 , and v ghyf = 2 . At last, the impact

angle is

θ =
F
HG
I
KJ =

F
HG
I
KJ

− −tan tan1 1 2v

v

gh

v
yf

xf
.

 

FIG. P4.26
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Section 4.4 Uniform Circular Motion

P4.27 a
v
rc = = =
2 220 0

1 06
377

.

.

 m s

 m
 m s2b g

The mass is unnecessary information.

P4.28 a
v
R

=
2

, T = =24 3 600 86 400 h  s h  sb g

v
R

T
= =

×
=

2 2 6 37 10
463

6π π( .  m)
86 400 s

 m s

a =
×

=
463

6 37 10
0 033 76

2 m s

 m
 m s  directed toward the center of Earth

2b g
.

. .

P4.29 r = 0 500.  m;

v
r

T

a
v
R

t = = = =

= = =

2 2 0 500
10 47 10 5

10 47
0 5

219

60 0

2 2

π π .
. .

.
.

.

 m
 m s  m s

 m s  inward

 s
200 rev

2

a f

a f

P4.30 a
v
rc =
2

v a rc= = =3 9 8 9 45 16 7. . . m s  m  m s2e ja f

Each revolution carries the astronaut over a distance of 2 2 9 45 59 4π πr = =. . m  ma f . Then the rotation
rate is

16 7
1

0 281. . m s
 rev

59.4 m
 rev sF

HG
I
KJ = .

P4.31 (a) v r= ω
At 8.00 rev s , v = = =0 600 8 00 2 30 2 9 60.  m .  rev s  rad rev .  m s .  m sa fb gb gπ π .
At 6.00 rev s , v = = =0 900 6 00 2 33 9 10 8.  m .  rev s  rad rev  m s  m sa fb gb gπ π. . .

6 00.  rev s gives the larger linear speed.

(b) Acceleration = = = ×
v
r

2 2
39 60

0 600
1 52 10

.

.
.

π m s

 m
 m s2b g

.

(c) At 6.00 rev s , acceleration = = ×
10 8

0 900
1 28 10

2
3.

.
.

π m s

 m
 m s2b g

.
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P4.32 The satellite is in free fall. Its acceleration is due to gravity and is by effect a centripetal acceleration.

a gc =

so

v
r

g
2

= .

Solving for the velocity, v rg= = + = ×6 400 600 10 8 21 7 58 103 3, . .a fe je j m  m s m s2

v
r

T
=

2π

and

T
r

v

T

= =
×

×
= ×

= × F
HG
I
KJ =

2 2 7 000 10

7 58 10
5 80 10

5 80 10
1

96 7

3

3
3

3

π π ,

.
.

. . .

 m

 m s
 s

 s
 min
60 s

 min

e j

Section 4.5 Tangential and Radial Acceleration

P4.33 We assume the train is still slowing down at the instant in question.

a
v
r

a
v
t

a a a

c

t

c t

= =

= =
−

= −

= + = + −

2

3 1

2 2 2 2

1 29

40 0 10

15 0
0 741

1 29 0 741

.

.

.
.

. .

 m s

 km h  m km

 s
 m s

 m s  m s

2

 h
3 600 s 2

2 2

∆
∆

b ge je j

e j e j

at an angle of tan tan− −F
HG
I
KJ =

F
HG
I
KJ

1 1a
a

t

c

0.741
1.29

a = 1 48.  m s  inward and 29.9  backward2 o

FIG. P4.33

P4.34 (a) at = 0 600.  m s2

(b) a
v
rr = = =
2 24 00

20 0
0 800

.

.
.

 m s

 m
 m s2b g

(c) a a at r= + =2 2 1 00.  m s2

θ = = °−tan .1 53 1
a
a

r

t
 inward from path
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P4.35 r = 2 50.  m, a = 15 0.  m s2

(a) a ac = = ° =cos . . cos .30 0 15 0 30 13 0o 2 2 m s  m se ja f

(b) a
v
rc =
2

so v rac
2 2 50 13 0 32 5= = =. . . m  m s  m s2 2 2e j

v = =32 5 5 70. . m s  m s FIG. P4.35

(c) a a at r
2 2 2= +

so a a at r= − = − =2 2 2
15 0 13 0 7 50.  . .  m s m s m s2 2 2e j e j

P4.36 (a) See figure to the right.

(b) The components of the 20.2 and the 22 5.  m s2  along the rope together
constitute the centripetal acceleration:

ac = °− ° + °=22 5 90 0 36 9 20 2 36 9 29 7. cos . . . cos . . m s  m s  m s2 2 2e j a f e j

(c) a
v
rc =
2

 so v a rc= = =29 7 1 50 6 67. . . m s  m  m s  tangent to circle2 a f
v = °6 67.  m s  at 36.9  above the horizontal

FIG. P4.36

*P4.37 Let i be the starting point and f be one revolution later. The curvilinear motion
with constant tangential acceleration is described by

∆ x v t a t

r a t

a
r

t

xi x

t

t

= +

= +

=

1
2

2 0
1
2

4

2

2

2

π

π

θ
a

at

ar

FIG. P4.37

and v v a txf xi x= + , v a t
r

tf t= + =0
4π

. The magnitude of the radial acceleration is a
v

r
r

t rr
f= =
2 2 2

2
16π

.

Then tanθ
π
π π

= = =
a
a

r t
t r

t

r

4
16

1
4

2

2 2 θ = °4 55. .
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Section 4.6 Relative Velocity and Relative Acceleration

P4.38 (a) v a i j

v i j

v a i j

v i j

v i j i j

v i j

v

H H
2

H

J
2

J

HJ H J

HJ

HJ

+ . .  m s .  s

. .  m s

+ . + .  m s .  s

. + .  m s

. . . .  m s

. .  m s

 m s

= = −

= −

= =

=

= − = − − −

= −

= + =

0 3 00 2 00 5 00

15 0 10 0

0 1 00 3 00 5 00

5 00 15 0

15 0 10 0 5 00 15 0

10 0 25 0

10 0 25 0 262 2

t

t

v v

j

( . ) ( . )

e j a f
e j

e j a f
e j

e j
e j

.9 m s

(b) r a i j

r i j

r i j i j

r r r i j i j

r i j

r

H H
2 2

H

J
2

HJ H J

HJ

HJ

 m s 5.00 s

. .  m

 m s 5.00s  m

. . . .  m

. .  m

m  m

= + + = −

= −

= + = +

= − = − − −

= −

= + =

0 0
1
2

1
2

3 00 2 00

37 5 25 0

1
2

1 00 3 00 12 5 37 5

37 5 25 0 12 5 37 5

25 0 62 5

25 0 62 5 67 3

2

2

2 2

t . .

. . . .

. . .

e j a f
e j
e j a f e j
e j

e j
a f a f

(c) a a a i j i j

a i j

HJ H J
2

HJ
2

. . . .  m s

 m s

= − = − − −

= −

3 00 2 00 1 00 3 00

2 00 5 00. .

e j
e j

*P4.39 v ce =  the velocity of the car relative to the earth.
vwc = the velocity of the water relative to the car.
vwe = the velocity of the water relative to the earth.

These velocities are related as shown in the diagram at the right.

(a) Since vwe  is vertical, v vwc cesin . .60 0 50 0°= =  km h or
vwc = °57 7 60 0. . km h  at  west of vertical .

(b) Since v ce  has zero vertical component,

vce

60°
vwe vwc

v v vwe ce wc= +

FIG. P4.39

v vwe wc= °= °=cos . . cos . .60 0 57 7 60 0 28 9 km h  km h  downwardb g .
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P4.40 The bumpers are initially 100 0 100 m  km= .  apart. After time t the bumper of the leading car travels
40.0 t, while the bumper of the chasing car travels 60.0t.

Since the cars are side by side at time t, we have

0 100 40 0 60 0. . .+ =t t ,

yielding

t = × =−5 00 10 18 03. . h  s .

P4.41 Total time in still water t
d
v

= = = ×
2 000
1 20

1 67 103

.
.  s .

Total time = time upstream plus time downstream:

t

t

up

down

 s

 s

=
−

= ×

=
+

=

1 000
1 20 0 500

1 43 10

1 000
1 20 0 500

588

3

( . . )
.

. .
.

Therefore, ttotal  s= × + = ×1 43 10 588 2 02 103 3. . .

P4.42 v = + =150 30 0 1532 2.  km h

θ = F
HG
I
KJ = °−tan

.
.1 30 0

150
11 3  north of west

P4.43 For Alan, his speed downstream is c + v, while his speed upstream is c v− .

Therefore, the total time for Alan is

t
L

c v
L

c v

L
c

v
c

1

2

1
2

2

=
+

+
−

=
−

.

For Beth, her cross-stream speed (both ways) is

c v2 2− .

Thus, the total time for Beth is t
L

c v

L
c

v
c

2 2 2

22

1
2

2

=
−

=
−

.

Since 1 1
2

2− <
v
c

, t t1 2> , or Beth, who swims cross-stream, returns first.
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P4.44 (a) To an observer at rest in the train car, the bolt accelerates downward and toward the rear of
the train.

a = + =

= =

= °

2 50 9 80 10 1

2 50
9 80

0 255

14 3

2 2. . .

tan
.
.

.

 m s  m s  m s

 m s
 m s

.

 to the south from the vertical

2

2

2

b g b g

θ

θ

(b) a = 9 80.  m s  vertically downward2

P4.45 Identify the student as the S’ observer and the professor as
the S observer. For the initial motion in S’, we have

′

′
= °=

v

v
y

x
tan .60 0 3 .

Let u represent the speed of S’ relative to S. Then because
there is no x-motion in S, we can write v v ux x= ′ + = 0  so
that ′ = − = −v ux 10 0.  m s . Hence the ball is thrown
backwards in S’. Then,

v v vy y x= ′ = ′ =3 10 0 3.  m s .

Using v ghy
2 2=  we find

h = =
10 0 3

2 9 80
15 3

2
.

.
.

 m s

 m s
 m

2

e j
e j

.

FIG. P4.45

The motion of the ball as seen by the student in S’ is shown in diagram (b). The view of the professor
in S is shown in diagram (c).

*P4.46 Choose the x-axis along the 20-km distance. The y-
components of the displacements of the ship and
the speedboat must agree:

26 40 15 50

11 0
50

12 71

 km h  km hb g a f b gt tsin sin

sin
.

. .

°− ° =

= = °−

α

α

The speedboat should head

15 12 7 27 7°+ °= °. .  east of north .

15°

N

E

40° 25°

α

x

y

FIG. P4.46
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Additional Problems

*P4.47 (a) The speed at the top is v vx i i= = °=cos cosθ 143 45 101 m s  m sb g .

(b) In free fall the plane reaches altitude given by

v v a y y

y

y

yf yi y f i

f

f

2 2

2

3

2

0 143 45 2 9 8 31 000

31 000 522
3 28

1
3 27 10

= + −

= ° + − −

= + F
HG

I
KJ = ×

d i
b g e jd i m s  m s  ft

 ft  m
 ft

 m
 ft

2sin .

.
. .

(c) For the whole free fall motion v v a tyf yi y= +

− = + −

=

101 101 9 8

20 6

 m s  m s  m s

 s

2.

.

e jt
t

(d) a
v
rc =
2

  v a rc= = =0 8 9 8 4 130 180. . , m s  m  m s2e j

P4.48 At any time t, the two drops have identical y-coordinates. The distance between the two drops is
then just twice the magnitude of the horizontal displacement either drop has undergone. Therefore,

d x t v t v t v txi i i i i= = = =2 2 2 2a f b g b gcos cosθ θ .

P4.49 After the string breaks the ball is a projectile, and reaches the ground at time t: y v t a tf yi y= +
1
2

2

− = + −1 20 0
1
2

9 80 2. . m  m s2e jt

so t = 0 495.  s.

Its constant horizontal speed is v
x
tx = = =

2 00
4 04

.
.

 m
0.495 s

 m s

so before the string breaks a
v
rc
x= = =
2 2

4 04

0 300
54 4

.

.
.

 m s

 m
 m s2b g

.
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P4.50 (a) y x
g

v
xf i f

i i
f= −tan

cos
θ

θ
b gd i

2 2 2
2

Setting x df = cosφ , and y df = sinφ , we have

d d
g

v
di

i i

sin tan cos
cos

cosφ θ φ
θ

φ= −b gb g b g
2 2 2

2 . FIG. P4.50

Solving for d yields, d
v

g
i i i i=

−2 2

2

cos sin cos sin cos

cos

θ θ φ φ θ

φ

or d
v

g
i i i=

−2 2

2

cos sin

cos

θ θ φ

φ
b g

.

(b) Setting 
dd
d iθ

= 0 leads to θ
φ

i = °+45
2

 and d
v

g
i

max
sin

cos
=

−2

2

1 φ
φ

b g
.

P4.51 Refer to the sketch:

(b) ∆ x v txi= ; substitution yields 130 35 0= °v ti cos .b g .

∆ y v t atyi= +
1
2

2; substitution yields

20 0 35 0
1
2

9 80 2. sin . .= ° + −v t tib g a f .

Solving the above gives t = 3 81.  s .

(a) vi = 41 7.  m s

FIG. P4.51

(c) v v gtyf i i= −sinθ , v vx i i= cosθ

At t = 3 81.  s , vyf = °− = −41 7 35 0 9 80 3 81 13 4. sin . . . .a fa f  m s

v

v v v

x

f x yf

= ° =

= + =

41 7 35 0 34 1

36 72 2

. cos . .

. .

a f  m s

 m s
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P4.52 (a) The moon’s gravitational acceleration is the probe’s centripetal acceleration:
(For the moon’s radius, see end papers of text.)

a
v
r

v

v

=

=
×

= × =

2

2

6

6

1
6

9 80
1 74 10

2 84 10 1 69

.
.

. .

 m s
 m

 m s  km s

2

2 2

e j

(b) v
r

T
=

2π

T
r

v
= =

×
×

= × =
2 2 1 74 10

6 47 10 1 80
6

3π π( .
. .

 m)
1.69 10  m s

 s  h3

P4.53 (a) a
v
rc = = =
2 25 00

1 00
25 0

.

.
.

 m s

 m
 m s2b g

a gt = = 9 80.  m s2

(b) See figure to the right.

(c) a a ac t= + = + =2 2 2 2
25 0 9 80 26 8. . . m s  m s  m s2 2 2e j e j

φ =
F
HG
I
KJ = = °− −tan tan

.
.

.1 1 9 80
25 0

21 4
a
a

t

c

 m s
 m s

2

2
FIG. P4.53

P4.54 x v t v tf ix i= = °cos .40 0

Thus, when x f = 10 0.  m , t
vi

=
°

10 0
40 0

.
cos .

 m
.

At this time, y f  should be 3.05 m  m  m− =2 00 1 05. . .

Thus, 1 05
40 0 10 0

40 0
1
2

9 80
10 0

40 0

2

.
sin . .

cos .
.

.
cos .

 m
 m

 m s
 m2=

°

°
+ −

°
L
NM

O
QP

v

v v
i

i i

b g e j .

From this, vi = 10 7.  m s .
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P4.55 The special conditions allowing use of the horizontal range equation applies.
For the ball thrown at 45°,

D R
v

g
i= =45

2 90sin
.

For the bouncing ball,

D R R
v

g g
i

vi

= + = +1 2

2 2

2

2 2sin sinθ θe j

where θ is the angle it makes with the ground when thrown and when bouncing.

(a) We require:

v
g

v
g

v
g

i i i
2 2 22 2

4

2
4
5

26 6

= +

=

= °

sin sin

sin

.

θ θ

θ

θ FIG. P4.55

(b) The time for any symmetric parabolic flight is given by

y v t gt

v t gt

f yi

i i

= −

= −

1
2

0
1
2

2

2sin .θ

If t = 0  is the time the ball is thrown, then t
v

g
i i=

2 sinθ
 is the time at landing.

So for the ball thrown at 45.0°

t
v

g
i

45
2 45 0

=
°sin .

.

For the bouncing ball,

t t t
v

g g
v

g
i

v

i
i

= + =
°
+

°
=

°
1 2

22 26 6 2 26 6 3 26 6sin . sin . sin .e j
.

The ratio of this time to that for no bounce is

3 26 6

2 45 0
1 34
1 41

0 949
v

g
v

g

i

i

sin .

sin .
.
.

.
°

° = = .
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P4.56 Using the range equation (Equation 4.14)

R
v

g
i i=
2 2sin( )θ

the maximum range occurs when θ i = °45 , and has a value R
v
g
i=
2

. Given R, this yields v gRi = .

If the boy uses the same speed to throw the ball vertically upward, then

v gR gty = −  and y gR t
gt

= −
2

2

at any time, t.

At the maximum height, vy = 0, giving t
R
g

= , and so the maximum height reached is

y gR
R
g

g R
g

R
R R

max = −
F
HG
I
KJ = − =

2 2 2

2

.

P4.57 Choose upward as the positive y-direction and leftward as the
positive x-direction. The vertical height of the stone when released
from A or B is

yi = + ° =1 50 1 20 30 0 2 10. . .  m .  msina f
(a) The equations of motion after release at A are

v v gt t

v v

y t t

x t

y i

x i

A

= °− = −

= °=

= −

=

sin

cos

60 0 1 30 9 80

60 0 0 750

2 10 1 30 4 90

0 750

2

. . .  m s

. .  m s

. + . .  m

.  m

a f

e j
a f∆

vi

B A

vi

30°30° 30°30°1.20 m1.20 m

FIG. P4.57

When y = 0 , t =
− ± +

−
=

1 30 1 30 41 2

9 80
0 800

2. . .

.

a f
.  s . Then, ∆ xA = =0 750 0 800 0 600. .  m  ma fa f . .

(b) The equations of motion after release at point B are

v v gt t

v v

y t t

y i

x i

i

= − ° − = − −

= =

= − −

sin . .

cos

.

60 0 1 30 9 80

60 0 0 750

2 10 1 30 4 90 2

.  m s

. .  m s

. . .  m

a f a f

e j

When y = 0 , t =
+ ± − +

−
=

1 30 1 30 41 2

9 80
0 536

2. . .

.

a f
.  s . Then, ∆ xB = =0 750 0 536 0 402. .  m  ma fa f . .

(c) a
v
rr = = =
2 21 50

1 20
1 87

.

.
.

 m s

 m
 m s  toward the center2b g

(d) After release, a j= − =g .9 80 m s  downward2
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P4.58 The football travels a horizontal distance

R
v

g
i i= =

°
=

2 22 20 0 60 0
9 80

35 3
sin . sin .

.
.

θb g a f a f
 m.

Time of flight of ball is

t
v

g
i i= =

°
=

2 2 20 0 30 0
9 80

2 04
sin ( . ) sin .

.
.

θ
 s .

FIG. P4.58

The receiver is ∆ x  away from where the ball lands and ∆ x = − =35 3 20 0 15 3. . .  m. To cover this
distance in 2.04 s, he travels with a velocity

v = =
15 3
2 04

7 50
.

.
.  m s  in the direction the ball was thrown .

P4.59 (a) ∆ y g t= −
1
2

2 ; ∆ x v ti=

Combine the equations eliminating t:

∆
∆

y g
x

vi
= −
F
HG
I
KJ

1
2

2

.

From this, ∆
∆

x
y

g
vib g2 22

=
−F
HG
I
KJ

FIG. P4.59

thus ∆
∆

x v
y

gi=
−

=
− −

= × =
2

275
2 300
9 80

6 80 10 6 803( )
.

. .  km .

(b) The plane has the same velocity as the bomb in the x direction. Therefore, the plane will be
3 000 m directly above the bomb  when it hits the ground.

(c) When φ is measured from the vertical, tanφ =
∆
∆

x
y

therefore, φ =
∆
∆

F
HG
I
KJ =

F
HG
I
KJ = °− −tan tan .1 1 6 800

3 000
66 2

x
y

.
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*P4.60 (a) We use the approximation mentioned in the problem. The time to travel 200 m horizontally is

t
x

vx
= = =
∆ 200

1 000
0 200

 m
 m s

 s
,

. . The bullet falls by

∆ y v t a tyi y= + = + − = −
1
2

0
1
2

9 8 0 2 0 1962 2. . . m s  s  m2e ja f .

(b) The telescope axis must point below the barrel axis

by θ = = °−tan
.

.1 0 196
200

0 0561
 m

 m
.

(c) t = =
50 0

1 000
0 050 0

.
.

 m
 m s

 s . The bullet falls by only

∆ y = − = −
1
2

9 8 0 05 0 01222. . . m s  s  m2e ja f .

50 150 200 250

barrel axis

bullet path
scope axis

FIG. P4.60(b)

At range 50
1
4

200 m  m= a f, the scope axis points to a location 
1
4

19 6 4 90. . cm  cma f =  above the

barrel axis, so the sharpshooter must aim low  by 4 90 1 22 3 68. . . cm  cm  cm− = .

(d) t

y

= =

= − =

150
1 000

0 150

1
2

9 8 0 15 0 1102

 m
 m s

 s

 m s  s  m2

.

. . .∆ e ja f

Aim low  by 
150
200

19 6 11 0 3 68. . . cm  cm  cma f− = .

(e) t

y

= =

= − =

250
1 000

0 250

1
2

9 8 0 25 0 3062

 m
 m s

 s

 m s  s  m2

.

. . .∆ e ja f

Aim high  by 30 6
250
200

19 6 6. . cm  cm .12 cm− =a f .

(f), (g) Many marksmen have a hard time believing it, but
they should aim low in both cases. As in case (a) above,
the time of flight is very nearly 0.200 s and the bullet
falls below the barrel axis by 19.6 cm on its way. The
0.0561° angle would cut off a 19.6-cm distance on a
vertical wall at a horizontal distance of 200 m, but on a
vertical wall up at 30° it cuts off distance h as shown,
where cos .30 19 6°=  cm h , h = 22 6.  cm. The marksman
must aim low  by 22 6 19 6 3 03. . . cm  cm  cm− = . The

answer can be obtained by considering limiting cases.
Suppose the target is nearly straight above or below
you. Then gravity will not cause deviation of the path
of the bullet, and one must aim low as in part (c) to
cancel out the sighting-in of the telescope.

barrel axis

30°

scope

19.6 cm
h

19.6 cm

scope axis
bullet hits here

30°

FIG. P4.60(f–g)
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P4.61 (a) From Part (c), the raptor dives for 6 34 2 00 4 34. . .  s− =
undergoing displacement 197 m downward and
10 0 4 34 43 4. . .  ma fa f =  forward.

v
d
t

=
+

=
∆
∆

197 43 4

4 34
46 5

2 2a f a f.

.
.  m s

(b) α =
−F
HG
I
KJ = − °−tan

.
.1 197

43 4
77 6

(c) 197
1
2

2= gt , t = 6 34.  s FIG. P4.61

P4.62 Measure heights above the level ground. The elevation yb  of the ball follows

y R gtb = + −0
1
2

2

with x v ti=  so y R
gx
vb

i

= −
2

22
.

(a) The elevation yr of points on the rock is described by

y x Rr
2 2 2+ = .

We will have y yb r=  at x = 0 , but for all other x we require the ball to be above the rock
surface as in y yb r> . Then y x Rb

2 2 2+ >

R
gx

v
x R

R
gx R

v
g x

v
x R

g x
v

x
gx R

v

i

i i

i i

−
F
HG

I
KJ + >

− + + >

+ >

2

2

2
2 2

2
2

2

2 4

4
2 2

2 4

4
2

2

2

2

4

4
.

If this inequality is satisfied for x approaching zero, it will be true for all x. If the ball’s
parabolic trajectory has large enough radius of curvature at the start, the ball will clear the

whole rock: 1 2>
gR
vi

v gRi > .

(b) With v gRi =  and yb = 0 , we have 0
2

2

= −R
gx
gR

or x R= 2 .

The distance from the rock’s base is

x R R− = −2 1e j .
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P4.63 (a) While on the incline

v v a x

v v at

v

t

v

t

f i

f i

f

f

2 2

2

2

0 2 4 00 50 0

20 0 0 4 00

20 0

5 00

− =

− =

− =

− =

=

=

∆

. .

. .

.

.

a fa f

 m s

 s
FIG. P4.63

(b) Initial free-flight conditions give us

vxi = °=20 0 37 0 16 0. cos . .  m s

and

vyi = − °= −20 0 37 0 12 0. sin . .  m s

v vxf xi=  since ax = 0

v a y vyf y yi= − + = − − − + − = −2 2 9 80 30 0 12 0 27 12 2∆ . . . .a fa f a f  m s

v v vf xf yf= + = + − = °2 2 2 216 0 27 1 31 5. . .a f a f  m s  at 59.4  below the horizontal

(c) t1 5=  s ; t
v v

a
yf yi

y
2

27 1 12 0
9 80

1 53=
−

=
− +

−
=

. .
.

.  s

t t t= + =1 2 6 53.  s

(d) ∆x v txi= = =1 16 0 1 53 24 5. . .a f  m

P4.64 Equation of bank:
Equations of motion:

y x
x v t

y g t

i

2

2

16 1
2

1
2

3

=
=

= −

a f
a f
a f

Substitute for t from (2) into (3) y g
x
vi

= −
F
HG
I
KJ

1
2

2

2 . Equate y

from the bank equation to y from the equations of motion:
FIG. P4.64

16
1
2 4

16
4

16 0
2

2

2 2 4

4

2 3

4x g
x
v

g x
v

x x
g x

vi i i

= −
F
HG
I
KJ

L
N
MM

O
Q
PP ⇒ − = −

F
HG

I
KJ = .

From this, x = 0  or x
v

g
i3
4

2
64

=  and x =
F
HG
I
KJ =4

10
9 80

18 8
4

2

1 3

.
.

/

 m . Also,

y g
x
vi

= −
F
HG
I
KJ = − = −

1
2

1
2

9 80 18 8

10 0
17 3

2

2

2

2

. .

.
.

a fa f
a f  m .
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P4.65 (a) Coyote:

Roadrunner:

∆

∆

x at t

x v t v ti i

= =

= =

1
2

70 0
1
2

15 0

70 0

2 2; . .

; .

a f

Solving the above, we get

vi = 22 9.  m s  and t = 3 06.  s .

(b) At the edge of the cliff,

v atxi = = =15 0 3 06 45 8. . .a fa f  m s.

Substituting into ∆ y a ty=
1
2

2 , we find

− = −

=

= + = +

100
1
2

9 80

4 52
1
2

45 8 4 52
1
2

15 0 4 52

2

2 2

.

.

. . . . .

a f

a fa f a fa f

t

t

x v t a txi x

 s

 s  s∆

Solving,

∆ x = 360 m .

(c) For the Coyote’s motion through the air

v v a t

v v a t

xf xi x

yf yi y

= + = + =

= + = − = −

45 8 15 4 52 114

0 9 80 4 52 44 3

. .

. . . .

a f
a f

 m s

 m s

P4.66 Think of shaking down the mercury in an old fever thermometer. Swing your hand through a
circular arc, quickly reversing direction at the bottom end. Suppose your hand moves through one-
quarter of a circle of radius 60 cm in 0.1 s. Its speed is

1
4

2 0 6
9

πa fa f.  m

0.1 s
 m s≅

and its centripetal acceleration is 
v
r

2
29

0 6
10≅

(
.

~
 m s)

 m
 m s

2
2 .

The tangential acceleration of stopping and reversing the motion will make the total acceleration
somewhat larger, but will not affect its order of magnitude.
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P4.67 (a) ∆ x v txi= , ∆ y v t gtyi= +
1
2

2

d tcos . . cos .50 0 10 0 15 0°= °a f
and

− °= ° + −d t tsin . . sin . .50 0 10 0 15 0
1
2

9 80 2a f a f .

Solving, d = 43 2.  m  and t = 2 88.  s .

(b) Since ax = 0 , FIG. P4.67

v v

v v a t

xf xi

yf yi y

= = °=

= + = °− = −

10 0 15 0 9 66

10 0 15 0 9 80 2 88 25.6 

. .  m s

m s

cos .

. sin . . . .a f
Air resistance would decrease the values of the range and maximum height. As an airfoil, he
can get some lift and increase his distance.

*P4.68 For one electron, we have

y v tiy= , D v t a t a tix x x= + ≅
1
2

1
2

2 2 , v vyf yi= , and v v a t a txf xi x x= + ≅ .

The angle its direction makes with the x-axis is given by

θ = = = =− − − −tan tan tan tan1 1 1
2

1

2

v

v

v

a t

v t

a t
y
D

yf

xf

yi

x

yi

x

.
FIG. P4.68

Thus the horizontal distance from the aperture to the virtual source is 2D. The source is at
coordinate x D= − .

*P4.69 (a) The ice chest floats downstream 2 km in time t, so that 2 km = v tw . The upstream motion of
the boat is described by d v vw= −( )15 min. The downstream motion is described by

d v v tw+ = + −2 15 km  min)( )( . We eliminate t
vw

=
2 km

 and d by substitution:

v v v v
v

v v
v

v
v v

v
v

v

v

w w
w

w
w

w

w

w

− + = + −
F
HG

I
KJ

− + = + − −

=

= =

b g b g

a f a f a f a f

a f

15 2
2

15

2 2 2

2
4 00

 min  km
 km

 min

15 min 15 min  km  km  km 15 min 15 min

30 min  2 km

 km
30 min

 km h. .

(b) In the reference frame of the water, the chest is motionless. The boat travels upstream for 15 min
at speed v, and then downstream at the same speed, to return to the same point. Thus it travels
for 30 min. During this time, the falls approach the chest at speed vw , traveling 2 km. Thus

v
x
tw = = =

∆
∆

2
4 00

 km
30 min

 km h. .
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*P4.70 Let the river flow in the x direction.

(a) To minimize time, swim perpendicular to the banks  in the y direction. You are in the

water for time t in ∆ y v ty= , t = =
80

1 5
53 3

 m
 m s

 s
.

. .

(b) The water carries you downstream by ∆ x v tx= = =2 50 53 3 133. . m s  s  mb g .

(c)

vs

vw

v s vw+
vs

vw

v s vw+

vs

vw

vs vw+

To minimize downstream drift, you should swim so that
your resultant velocity v vs w+  is perpendicular to your
swimming velocity vs  relative to the water. This condition
is shown in the middle picture. It maximizes the angle
between the resultant velocity and the shore. The angle

between vs  and the shore is given by cos
.
.

θ =
1 5
2 5

 m s
 m s

,

θ = °53 1. .

v s

vw

vs vw+

θ

= 2.5 m/s i

(d) Now v vy s= = °=sin . sin . .θ 1 5 53 1 1 20 m s   m s

t
y

v

x v t

y

x

= = =

= = − ° =

∆

∆

80
1 2

66 7

2 5 1 5 53 1 66 7 107

 m
 m s

 s

 m s  m s  s  m

.
.

. . cos . . .b g
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*P4.71 Find the highest firing angle θ H  for which the projectile will clear the mountain peak; this will
yield the range of the closest point of bombardment. Next find the lowest firing angle; this will yield
the maximum range under these conditions if both θ H  and θ L  are > °45 ; x = 2500 m, y = 1800 m,
vi = 250 m s.

y v t gt v t gt

x v t v t

f yi i

f xi i

= − = −

= =

1
2

1
2

2 2sin

cos

θ

θ

a f
a f

Thus

t
x

v
f

i
=

cosθ
.

Substitute into the expression for y f

y v
x

v
g

x

v
x

gx

vf i
f

i

f

i
f

f

i

= −
F
HG

I
KJ = −sin

cos cos
tan

cos
θ

θ θ
θ

θ
a f 1

2 2

2 2

2 2

but 
1

12
2

cos
tan

θ
θ= +  so y x

gx

vf f
f

i

= − +tan tanθ θ
2

2
2

2
1e j and

0
2 2

2

2
2

2

2= − + +
gx

v
x

gx

v
yf

i
f

f

i
ftan tanθ θ .

Substitute values, use the quadratic formula and find

tan .θ = 3 905 or 1.197 , which gives θ H = °75 6.  and θ L = °50 1. .

Range at  mθ
θ

H
i Hv

g
b g = = ×

2
32

3 07 10
sin

.  from enemy ship

3 07 10 2 500 300 2703. × − − =  m from shore.

Range at  mθ
θ

L
i Lv

g
b g = = ×

2
32

6 28 10
sin

.  from enemy ship

6 28 10 2 500 300 3 48 103 3. .× − − = ×  from shore.

Therefore, safe distance is < 270 m  or > ×3 48 103.  m  from the shore.

FIG. P4.71
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*P4.72 We follow the steps outlined in Example 4.7, eliminating t
d
vi

=
cos
cos

φ
θ

 to find

v d
v

gd
v

di

i i

sin cos
cos

cos
cos

sin
θ φ

θ
φ
θ

φ− = −
2 2

2 22
.

Clearing of fractions,

2 22 2 2 2v gd vi icos sin cos cos cos sinθ θ φ φ θ φ− = − .

To maximize d as a function of θ, we differentiate through with respect to θ and set 
dd
dθ

= 0 :

2 2 2 22 2 2 2v v g
dd
d

vi i icos cos cos sin sin cos cos cos sin sinθ θ φ θ θ φ
θ

φ θ θ φ+ − − = − −a f a f .

We use the trigonometric identities from Appendix B4 cos cos sin2 2 2θ θ θ= −  and

sin sin cos2 2θ θ θ=  to find cos cos sin sinφ θ θ φ2 2= . Next, 
sin
cos

tan
φ
φ

φ=  and cot
tan

2
1

2
θ

θ
=  give

cot tan tan2 90 2φ φ θ= = °−a f so φ θ= °−90 2  and θ
φ

= °−45
2

.

ANSWERS TO EVEN PROBLEMS

P4.2 (a) r i j= + −18 0 4 00 4 90 2. . .t t te j ; P4.8 (a) r i j= +5 00 1 50 2. .t te j m;

v i j= +5 00 3 00. . te j m s ;(b) v i j= + −18 0 4 00 9 80. .. ta f ;

(c) a j= −9 80.  m s2e j ;
(b) r i j= +10 0 6 00. .e j m; 7 81.  m s

(d) 54 0 32 1. . m  ma f a fi j− ;

(e) 18 0 25 4. . m s  m sb g b gi j− ; P4.10 7 23 10 1 68 103 3. .× ×  m,  me j
(f) −9 80.  m s2e j j

P4.12 (a) d
g
h2

 horizontally;
P4.4 (a) v i j= − +5 00 0. ωe j m s;

a i j= +0 5 00 2. ωe j m s2 ; (b) tan− F
HG
I
KJ

1 2h
d

 below the horizontal

(b) r j= 4 00.  m 

+ − −5 00. sin cos m ω ωt ti je j ;
v i j= − +5 00. cos sin m ω ω ωt te j;
a i j= +5 00 2. sin cos m ω ω ωt te j ;

P4.14 0 600.  m s2

P4.16 (a) 76.0°; (b) the same; (c) 
17

8
d

P4.18 25 8.  m s(c) a circle of radius 5.00 m centered at
0 4 00, .  ma f

P4.20 d
gd

v
i

i i

tan
cos

θ
θ

−
2

2 22e jP4.6 (a) v j= −12 0. t  m s ; a j= −12 0.  m s2 ;

(b) r i j v j= − = −3 00 6 00 12 0. . ; .e j m   m s
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P4.22 33.5° below the horizontal P4.48 2v ti icosθ

P4.24 (a) 0.852 s; (b) 3 29.  m s ; (c) 4.03 m s; P4.50 (a) see the solution;

(b) θ
φ

i = °+45
2

; d
v

g
i

max
sin

cos
=

−2

2

1 φ
φ

b g(d) 50.8°; (e) 1.12 s

P4.26 tan−
F
HG
I
KJ

1 2gh

v P4.52 (a) 1 69.  km s ; (b) 6 47 103. ×  s

P4.54 10 7.  m sP4.28 0 033 7 2.  m s  toward the center of the
Earth

P4.56
R
2P4.30 0 281.  rev s

P4.58 7 50.  m s  in the direction the ball was
thrown

P4.32 7 58 103. × m s; 5 80 103. ×  s

P4.34 (a) 0 600.  m s2  forward; P4.60 (a) 19.6 cm; (b) 0 0561. ° ;
(b) 0 800.  m s2  inward; (c) aim low 3.68 cm; (d) aim low 3.68 cm;
(c) 1 00.  m s2  forward and 53.1° inward (e) aim high 6.12 cm; (f) aim low;

(g) aim low
P4.36 (a) see the solution; (b) 29 7.  m s2 ;

P4.62 (a) gR ; (b) 2 1−e jR(c) 6 67.  m s  at 36.9° above the horizontal

P4.38 (a) 26 9.  m s ; (b) 67 3.  m; P4.64 18 8 17 3. . m;  m−a f
(c) 2 00 5 00. .i j−e j m s2

P4.66 see the solution; ~102  m s2

P4.40 18.0 s
P4.68 x D= −

P4.42 153 km h at 11.3° north of west
P4.70 (a) at 90° to the bank; (b) 133 m;

(c) upstream at 53.1° to the bank; (d) 107 m
P4.44 (a) 10 1.  m s2  at 14.3° south from the

vertical; (b) 9 80.  m s2  vertically
downward

P4.72 see the solution

P4.46 27.7° east of north
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The Laws of Motion

ANSWERS TO QUESTIONS

Q5.1 (a) The force due to gravity of the earth pulling down on
the ball—the reaction force is the force due to gravity
of the ball pulling up on the earth. The force of the
hand pushing up on the ball—reaction force is ball
pushing down on the hand.

(b) The only force acting on the ball in free-fall is the
gravity due to the earth -the reaction force is the
gravity due to the ball pulling on the earth.

Q5.2 The resultant force is zero, as the acceleration is zero.

Q5.3 Mistake one: The car might be momentarily at rest, in the
process of (suddenly) reversing forward into backward motion.
In this case, the forces on it add to a (large) backward resultant.

Mistake two: There are no cars in interstellar space. If the car is remaining at rest, there are
some large forces on it, including its weight and some force or forces of support.

Mistake three: The statement reverses cause and effect, like a politician who thinks that his
getting elected was the reason for people to vote for him.

Q5.4 When the bus starts moving, the mass of Claudette is accelerated by the force of the back of the seat
on her body. Clark is standing, however, and the only force on him is the friction between his shoes
and the floor of the bus. Thus, when the bus starts moving, his feet start accelerating forward, but
the rest of his body experiences almost no accelerating force (only that due to his being attached to
his accelerating feet!). As a consequence, his body tends to stay almost at rest, according to Newton’s
first law, relative to the ground. Relative to Claudette, however, he is moving toward her and falls
into her lap. (Both performers won Academy Awards.)

Q5.5 First ask, “Was the bus moving forward or backing up?” If it was moving forward, the passenger is
lying. A fast stop would make the suitcase fly toward the front of the bus, not toward the rear. If the
bus was backing up at any reasonable speed, a sudden stop could not make a suitcase fly far. Fine
her for malicious litigiousness.

Q5.6 It would be smart for the explorer to gently push the rock back into the storage compartment.
Newton’s 3rd law states that the rock will apply the same size force on her that she applies on it. The
harder she pushes on the rock, the larger her resulting acceleration.

117
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Q5.7 The molecules of the floor resist the ball on impact and push the ball back, upward. The actual force
acting is due to the forces between molecules that allow the floor to keep its integrity and to prevent
the ball from passing through. Notice that for a ball passing through a window, the molecular forces
weren’t strong enough.

Q5.8 While a football is in flight, the force of gravity and air resistance act on it. When a football is in the
process of being kicked, the foot pushes forward on the ball and the ball pushes backward on the
foot. At this time and while the ball is in flight, the Earth pulls down on the ball (gravity) and the ball
pulls up on the Earth. The moving ball pushes forward on the air and the air backward on the ball.

Q5.9 It is impossible to string a horizontal cable without its sagging a bit. Since the cable has a mass,
gravity pulls it downward. A vertical component of the tension must balance the weight for the
cable to be in equilibrium. If the cable were completely horizontal, then there would be no vertical
component of the tension to balance the weight.

Some physics teachers demonstrate this by asking a beefy student to pull on the ends of a
cord supporting a can of soup at its center. Some get two burly young men to pull on opposite ends
of a strong rope, while the smallest person in class gleefully mashes the center of the rope down to
the table. Point out the beauty of sagging suspension-bridge cables. With a laser and an optical lever,
demonstrate that the mayor makes the courtroom table sag when he sits on it, and the judge bends
the bench. Give them “I make the floor sag” buttons, available to instructors using this manual.
Estimate the cost of an infinitely strong cable, and the truth will always win.

Q5.10 As the barbell goes through the bottom of a cycle, the lifter exerts an upward force on it, and the
scale reads the larger upward force that the floor exerts on them together. Around the top of the
weight’s motion, the scale reads less than average. If the iron is moving upward, the lifter can
declare that she has thrown it, just by letting go of it for a moment, so our answer applies also to this
case.

Q5.11 As the sand leaks out, the acceleration increases. With the same driving force, a decrease in the mass
causes an increase in the acceleration.

Q5.12 As the rocket takes off, it burns fuel, pushing the gases from the combustion out the back of the
rocket. Since the gases have mass, the total remaining mass of the rocket, fuel, and oxidizer
decreases. With a constant thrust, a decrease in the mass results in an increasing acceleration.

Q5.13 The friction of the road pushing on the tires of a car causes an automobile to move. The push of the
air on the propeller moves the airplane. The push of the water on the oars causes the rowboat to
move.

Q5.14 As a man takes a step, the action is the force his foot exerts on the Earth; the reaction is the force of
the Earth on his foot. In the second case, the action is the force exerted on the girl’s back by the
snowball; the reaction is the force exerted on the snowball by the girl’s back. The third action is the
force of the glove on the ball; the reaction is the force of the ball on the glove. The fourth action is the
force exerted on the window by the air molecules; the reaction is the force on the air molecules
exerted by the window. We could in each case interchange the terms ‘action’ and ‘reaction.’

Q5.15 The tension in the rope must be 9 200 N. Since the rope is moving at a constant speed, then the
resultant force on it must be zero. The 49ers are pulling with a force of 9 200 N. If the 49ers were
winning with the rope steadily moving in their direction or if the contest was even, then the tension
would still be 9 200 N. In all of these case, the acceleration is zero, and so must be the resultant force
on the rope. To win the tug-of-war, a team must exert a larger force on the ground than their
opponents do.
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Q5.16 The tension in the rope when pulling the car is twice that in the tug-of-war. One could consider the
car as behaving like another team of twenty more people.

Q5.17 This statement contradicts Newton’s 3rd law. The force that the locomotive exerted on the wall is
the same as that exerted by the wall on the locomotive. The wall temporarily exerted on the
locomotive a force greater than the force that the wall could exert without breaking.

Q5.18 The sack of sand moves up with the athlete, regardless of how quickly the athlete climbs. Since the
athlete and the sack of sand have the same weight, the acceleration of the system must be zero.

Q5.19 The resultant force doesn’t always add to zero. If it did, nothing could ever accelerate. If we choose a
single object as our system, action and reaction forces can never add to zero, as they act on different
objects.

Q5.20 An object cannot exert a force on itself. If it could, then objects would be able to accelerate
themselves, without interacting with the environment. You cannot lift yourself by tugging on your
bootstraps.

Q5.21 To get the box to slide, you must push harder than the maximum static frictional force. Once the box
is moving, you need to push with a force equal to the kinetic frictional force to maintain the box’s
motion.

Q5.22 The stopping distance will be the same if the mass of the truck is doubled. The stopping distance will
decrease by a factor of four if the initial speed is cut in half.

Q5.23 If you slam on the brakes, your tires will skid on the road. The force of kinetic friction between the
tires and the road is less than the maximum static friction force. Anti-lock brakes work by “pumping”
the brakes (much more rapidly that you can) to minimize skidding of the tires on the road.

Q5.24 With friction, it takes longer to come down than to go up. On the way up, the frictional force and the
component of the weight down the plane are in the same direction, giving a large acceleration. On
the way down, the forces are in opposite directions, giving a relatively smaller acceleration. If the
incline is frictionless, it takes the same amount of time to go up as it does to come down.

Q5.25 (a) The force of static friction between the crate and the bed of the truck causes the crate to
accelerate. Note that the friction force on the crate is in the direction of its motion relative to
the ground (but opposite to the direction of possible sliding motion of the crate relative to
the truck bed).

(b) It is most likely that the crate would slide forward relative to the bed of the truck.

Q5.26 In Question 25, part (a) is an example of such a situation. Any situation in which friction is the force
that accelerates an object from rest is an example. As you pull away from a stop light, friction is the
force that accelerates forward a box of tissues on the level floor of the car. At the same time, friction
of the ground on the tires of the car accelerates the car forward.



120     The Laws of Motion

SOLUTIONS TO PROBLEMS

The following problems cover Sections 5.1–5.6.

Section 5.1 The Concept of Force

Section 5.2 Newton’s First Law and Inertial Frames

Section 5.3 Mass

Section 5.4 Newton’s Second Law

Section 5.5 The Gravitational Force and Weight

Section 5.6 Newton’s Third Law

P5.1 For the same force F, acting on different masses

F m a= 1 1

and

F m a= 2 2

(a)
m
m

a
a

1

2

2

1

1
3

= =

(b) F m m a m a m= + = =1 2 1 14 3 00a f c h.  m s2

a= 0 750.  m s2

*P5.2 v f = 880 m s , m= 25 8.  kg , x f = 6 m

v ax x
F
mf f f

2 2 2= = F
HG
I
KJ

F
mv

x
f

f
= = ×

2
6

2
1 66 10.  N forward

P5.3 m

m

=

= +

= = +

= + =

∑

∑

3 00

2 00 5 00

6 00 15 0

6 00 15 0 16 22 2

.

. .

. .

. . .

 kg

 m s

 N

 N  N

2a i j

F a i j

F

e j
e j

a f a f
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P5.4 F mgg = =weight of ball

v vrelease =  and time to accelerate = t :

a i= = =
∆
∆
v
t

v
t

v
t

(a) Distance x vt= :

x
v
t

vt= FHG
I
KJ =2 2

(b) F j ip g
gF
F v

gt
− =

F i jp
g

g

F v

gt
F= +

P5.5 m= 4 00.  kg , v ii = 3 00.  m s , v i j8 8 00 10 0= +. .e j m s , t= 8 00.  s

a
v i j

= =
+∆

t
5 00 10 0

8 00
. .

.
 m s2

F a i j= = +m 2 50 5 00. .e j N
F= ( ) +( ) =2 50 5 00 5 592 2. . .  N

P5.6 (a) Let the x-axis be in the original direction of the molecule’s motion.

v v at a

a

f i= + − = + ×

= − ×

−: .

.

670 670 3 00 10

4 47 10

13

15

 m s  m s  s

 m s2

e j

(b) For the molecule, F a=∑ m . Its weight is negligible.

F

F

wall on molecule
2

molecule on wall

 kg  m s  N

 N

= × − × = − ×

= + ×

− −

−

4 68 10 4 47 10 2 09 10

2 09 10

26 15 10

10

. . .

.

e j
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P5.7 (a) F ma∑ =  and v v axf i f
2 2 2= +  or a

v v

x
f i

f
=

−2 2

2
.

Therefore,

F m
v v

x

F

f i

f
∑

∑

=
−

= ×
× − ×L

NM
O
QP = ×− −

2 2

31

5 2 5 2

18

2

9 11 10
7 00 10 3 00 10

2 0 050 0
3 64 10

e j

e j e j
b g.

. .

.
. . kg

 m s  m s

 m
 N

2 2

(b) The weight of the electron is

F mgg = = × = ×− −9 11 10 9 80 8 93 1031 30. . . kg  m s  N2c hc h

The accelerating force is 4 08 1011. ×  times the weight of the electron.

P5.8 (a) F mgg = = = ( )=120 4 448 120 534 lb  N lb  lb  N.a f

(b) m
F

g
g= = =534

54 5
 N

9.80 m s
 kg2 .

P5.9 F mgg = = 900 N , m= =900
91 8

 N
9.80 m s

 kg2 .

Fgc h c h
on Jupiter

2 kg  m s  kN= =91 8 25 9 2 38. . .

P5.10 Imagine a quick trip by jet, on which you do not visit the rest room and your perspiration is just
canceled out by a glass of tomato juice. By subtraction, F mgg p pc h =  and F mgg C Cc h =  give

∆F m g gg p C= −c h .

For a person whose mass is 88.7 kg, the change in weight is

∆Fg = − =88 7 9 809 5 9 780 8 2 55. . . . kg  Nb g .

A precise balance scale, as in a doctor’s office, reads the same in different locations because it
compares you with the standard masses on its beams. A typical bathroom scale is not precise enough
to reveal this difference.
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P5.11 (a) F F F i j∑ = + = +1 2 20 0 15 0. .e j N

F a i j a

a i j
∑ = + =

= +

m : . . .

. .

20 0 15 0 5 00

4 00 3 00e j m s2

or

a= = °5 00 36 9. . m s  at 2 θ

(b) F
F

m

x

y

2

2

2

1 2

15 0 60 0 7 50
15 0 60 0 13 0

7 50 13 0

27 5 13 0 5 00

5 50 2 60 6 08

= °=
= °=

= +

= + = + = =

= + = °

∑

. cos . .

. sin . .

. .

. . .

. . .

 N
 N

 N

 N

 m s  m s  at 25.32 2

F i j

F F F i j a a

a i j

e j
e j

e j

 

FIG. P5.11

P5.12 We find acceleration:

r r v a

i j a a

a i j

f i it t− = +

− =

= −

1
2

4 20 1 20 0 720

5 83 4 58

2

2. . .

. . .

 m 3.30 m =0+
1
2

 s  s

 m s

2

2

a f
e j

Now F a∑ =m  becomes

F F a

F i j j

F i j

g m+ =

= − +

= +

2

2

2

2 80 2 80 9 80

16 3 14 6

. . .

. . .

 kg 5.83 4.58  m s  kg  m s

 N

2 2e j b ge j
e j

P5.13 (a) You and the earth exert equal forces on each other: m g M ay e e= . If your mass is 70.0 kg,

ae = ×
= −

70 0

5 98 10
1024

22
.

.
~

 kg 9.80 m s

 kg
 m s

2
2

a fc h
.

(b) You and the planet move for equal times intervals according to x at= 1
2

2. If the seat is

50.0 cm high,

2 2x

a
x
a

y

y

e

e
=

x
a
a

x
m

m
xe

e

y
y

y

e
y= = =

×
−70 0 0 500

5 98 10
1024

23. .

.
~

 kg  m

 kg
 m

a f
.
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P5.14 F a∑ =m  reads

− + + − − =2 00 2 00 5 00 3 00 45 0 3 75. . . . . .i j i j i ae j e j N  m s2m

where a  represents the direction of a

− − =42 0 1 00 3 75. . .i j ae j e j N  m s2m

F∑ = ( ) +( )42 0 1 002 2. .  N at tan
.

.
− F
HG
I
KJ

1 1 00
42 0

 below the –x-axis

F a∑ = °=42 0 3 75. . N at 181  m s2mc h .

For the vectors to be equal, their magnitudes and their directions must be equal.

(a) ∴ °a is at 181  counterclockwise from the x-axis

(b) m= =42 0
11 2

.
.

 N
3.75 m s

 kg2

(d) v v af i t= + = + °0 3 75 10 0. . m s  at 181  s2e j  so v f = °37 5.  m s  at 181

v i jf = ° + °37 5 181 37 5 181. cos . sinm s  m s   so v i jf = − −37 5 0 893. .e j m s

(c) v f = + =37 5 0 893 37 52 2. . . m s  m s

P5.15 (a) 15 0.  lb up

(b) 5 00.  lb up

(c) 0

Section 5.7 Some Applications of Newton’s Laws

P5.16 v
dx
dt

tx = = 10 , v
dy
dt

ty = = 9 2

a
dv
dtx
x= = 10 , a

dv

dt
ty

y= =18

At t= 2 00.  s , a ax y= =10 0 36 0. , . m s  m s2 2

F max x∑ = : 3 00 10 0 30 0. . . kg  m s  N2e j =
F may y∑ = : 3 00 36 0 108. . kg  m s  N2e j =

F F Fx y∑ = + =2 2 112 N
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P5.17 m
mg

=
=

=

= °

1 00
9 80
0 200

0 458

.
.

tan
.

.

 kg
 N

 m
25.0 m

α

α

Balance forces,

2
9 80
2

613

T mg

T

sin
.
sin

α

α

=

= =
 N

 N

 50.0 m 

0.200 m α 

mg 

TT

FIG. P5.17

P5.18 T Fg3 = (1)

T T Fg1 1 2 2sin sinθ θ+ = (2)

T T1 1 2 2cos cosθ θ= (3)

Eliminate T2  and solve for T1

T
F F

T F

T F

T T

g g

g

g

1
2

1 2 1 2

2

1 2

3

1

2 1
1

2

325

25 0
85 0

296

296
60 0
25 0

163

=
+

=
+

= =

=
°
°

F
HG

I
KJ =

=
F
HG

I
KJ =

°
°

F
HG

I
KJ =

cos

sin cos cos sin

cos

sin

cos .
sin .

cos
cos

cos .
cos .

θ

θ θ θ θ

θ

θ θ

θ
θ

b g b g
 N

 N

 N  N

 

θ 1 

θ 1 θ 2 

F 

θ 2 

T 3 

T 2 
T 1 

g 

FIG. P5.18

P5.19 See the solution for T1 in Problem 5.18.
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P5.20 (a) An explanation proceeding from fundamental physical principles will
be best for the parents and for you. Consider forces on the bit of string
touching the weight hanger as shown in the free-body diagram:

Horizontal Forces: F max x∑ = : − + =T Tx cosθ 0
Vertical Forces: F may y∑ = : − + =F Tg sinθ 0

FIG. P5.20

You need only the equation for the vertical forces to find that the tension in the string is

given by T
Fg=

sinθ
. The force the child feels gets smaller, changing from T to T cosθ , while

the counterweight hangs on the string. On the other hand, the kite does not notice what you
are doing and the tension in the main part of the string stays constant. You do not need a
level, since you learned in physics lab to sight to a horizontal line in a building. Share with
the parents your estimate of the experimental uncertainty, which you make by thinking
critically about the measurement, by repeating trials, practicing in advance and looking for
variations and improvements in technique, including using other observers. You will then
be glad to have the parents themselves repeat your measurements.

(b) T
Fg

= =
°

=
sin

. .

sin .
.

θ

0 132 9 80

46 3
1 79

 kg  m s
 N

2e j

P5.21 (a) Isolate either mass

T mg ma

T mg

+ = =

=

0

.

The scale reads the tension T,

so

T mg= = =5 00 9 80 49 0. . . kg  m s  N2e j .

(b) Isolate the pulley

T T2 1

2 1

2 0

2 2 98 0

+ =

= = =T T mg . . N

(c) F n T g∑ = + + =m 0

Take the component along the incline

n T gx x xm+ + = 0

or

0 30 0 0

30 0
2

5 00 9 80
2

24 5

+ − ° =

= ° = =

=

T mg

T mg
mg

sin .

sin .
. .

. .

a f

 N

FIG. P5.21(a)

FIG. P5.21(b)

FIG. P5.21(c)
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P5.22 The two forces acting on the block are the normal force, n, and the
weight, mg. If the block is considered to be a point mass and the x-
axis is chosen to be parallel to the plane, then the free body
diagram will be as shown in the figure to the right. The angle θ is
the angle of inclination of the plane. Applying Newton’s second
law for the accelerating system (and taking the direction up the
plane as the positive x direction) we have

F n mgy∑ = − =cosθ 0: n mg= cosθ
F mg max∑ =− =sinθ : a g=− sinθ

FIG. P5.22

(a) When θ = °15 0.

a= −2 54.  m s2

(b) Starting from rest

v v a x x ax

v ax

f i f i f

f f

2 2 2 2

2 2 2 54 2 00 3 18

= + − =

= = − − =

d i
e ja f. . . m s  m  m s2

P5.23 Choose a coordinate system with i  East and j  North.

F a∑ = =m 1 00 10 0. . kg  m s2e j at 30 0. °

5 00 10 0 30 0 5 00 8 661. . . . . N  N  N  Na f a f a f a fj F j i+ = ∠ ° = +
∴ = ( )F1 8 66.  N East

FIG. P5.23

*P5.24 First, consider the block moving along the horizontal. The only
force in the direction of movement is T. Thus, F max∑ =

T a= 5 kga f                                                 (1)

Next consider the block that moves vertically. The forces on it are
the tension T and its weight, 88.2 N.

We have F may∑ =

88 2 9.  N  kg− =T aa f                                        (2)

5 kg

n
T

49 N

+x

9 kg

T +y

Fg= 88.2 N

FIG. P5.24

Note that both blocks must have the same magnitude of acceleration. Equations (1) and (2) can be
added to give 88 2 14.  N  kg= b ga . Then

a T= =6 30 31 5. . m s  and  N2 .
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P5.25 After it leaves your hand, the block’s speed changes only
because of one component of its weight:

F ma mg ma
v v a x x

x x

f i f i

∑ = − ° =

= + −

sin .
.

20 0
22 2 d i

Taking v f = 0 , vi = 5 00.  m s, and a g=− °sin .20 0a f gives

0 5 00 2 9 80 20 0 02=( ) − ( ) ° −. . sin .a fc hx f

or

x f = ( ) °
=25 0

2 9 80 20 0
3 73

.
. sin .

.a f  m .
FIG. P5.25

P5.26 m1 2 00= .  kg , m2 6 00= .  kg , θ = °55 0.

(a) F m g T m ax∑ = − =2 2sinθ

and

T m g m a

a
m g m g

m m

− =

=
−

+
=

1 1

2 1

1 2
3 57

sin
.

θ
 m s2

(b) T m a g= + =1 26 7a f .  N
FIG. P5.26

(c) Since vi = 0 , v atf = = ( )=3 57 2 00 7 14. . . m s  s  m s2c h .

*P5.27 We assume the vertical bar is in compression, pushing up
on the pin with force A, and the tilted bar is in tension,
exerting force B on the pin at − °50 .

F B

B

F A

A

x

y

∑

∑

= − °+ ° =

= ×

= − °+ − × ° =

= ×

0 2 500 30 50 0

3 37 10

0 2 500 30 3 37 10 50 0

3 83 10

3

3

3

: cos cos

.

: sin . sin

.

 N

 N

 N  N 

 N

Positive answers confirm that

B A is in tension and  is in compression.

30° 50° 

A B 
2 500 N 

A 

2 500 N cos30° cos50° 

2 500 N sin30° 

B 

sin50°B 

FIG. P5.27
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P5.28 First, consider the 3.00 kg rising mass. The forces on it are
the tension, T, and its weight, 29.4 N. With the upward
direction as positive, the second law becomes

F may y∑ = : T a− =29 4 3 00. . N  kga f                   (1)

The forces on the falling 5.00 kg mass are its weight and T,
and its acceleration is the same as that of the rising mass.
Calling the positive direction down for this mass, we have

F may y∑ = : 49 5 00 N  kg− =T a.a f                     (2)
FIG. P5.28

Equations (1) and (2) can be solved simultaneously by adding them:

T T a a− + − = +29 4 49 0 3 00 5 00. . . . N  N  kg  kga f a f

(b) This gives the acceleration as

a= =19 6
2 45

.
.

 N
8.00 kg

 m s2 .

(a) Then

T− = =29 4 3 00 2 45 7 35. . . . N  kg  m s  N2a fc h .

The tension is

T= 36 8.  N .

(c) Consider either mass. We have

y v t ati= + = + ( ) =1
2

0
1
2

2 45 1 00 1 232 2. . . m s  s  m2c h .

*P5.29 As the man rises steadily the pulley turns steadily and the tension in
the rope is the same on both sides of the pulley. Choose man-pulley-
and-platform as the system:

F ma

T
T

y y∑ =

+ − =
=

950 0
950

 N
 N.

The worker must pull on the rope with force 950 N .

T

950 N

FIG. P5.29
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*P5.30 Both blocks move with acceleration a
m m
m m

g= −
+

F
HG

I
KJ

2 1

2 1
:

a =
−
+

F
HG

I
KJ =

7 2
9 8 5 44

 kg  kg
7 kg 2 kg

 m s  m s2 2. . .

(a) Take the upward direction as positive for m1 .

v v a x x x

x

x

xf xi x f i f

f

f

2 2 2 22 0 2 4 2 5 44 0

5 76

2 5 44
0 529

0 529

= + − = − + −

= − = −

=

d i b g e jd i

e j

: . .

.

.
.

.

 m s  m s

 m s

 m s
 m

 m below its initial level

2 2

2

(b) v v a t v

v

xf xi x xf

xf

= + = − +

=

: . . .

.

2 40 5 44 1 80

7 40

 m s  m s  s

 m s  upward

2e ja f

P5.31 Forces acting on 2.00 kg block:

T m g m a− =1 1                                        (1)

Forces acting on 8.00 kg block:

F T m ax − = 2                                          (2)

(a) Eliminate T and solve for a:

a
F m g
m m

x=
−
+

1

1 2

a F m gx> > =0 19 61 for  N. .

(b) Eliminate a and solve for T:

T
m

m m
F m gx=

+
+1

1 2
2a f

T F m gx= ≤− =−0 78 42 for  N. .
FIG. P5.31

(c) Fx , N –100 –78.4 –50.0 0 50.0 100
ax ,  m s2 –12.5 –9.80 –6.96 –1.96 3.04 8.04
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*P5.32 (a) For force components along the incline, with the upward direction taken as positive,

F ma mg ma

a g
x x x

x

∑ = − =

= − = − ° = −

: sin

sin . sin . .

θ

θ 9 8 35 5 62 m s  m s2 2e j

For the upward motion,

v v a x x

x

x

xf xi x f i

f

f

2 2

2

2

0 5 2 5 62 0

25

2 5 62
2 22

= + −

= + − −

= =

d i
b g e jd i

e j

 m s  m s

 m s

 m s
 m

2

2 2

2

.

.
. .

(b) The time to slide down is given by

x x v t a t

t

t

f i xi x= + +

= + + −

= =

1
2

0 2 22 0
1
2

5 62

2 2 22

5 62
0 890

2

2. .

.

.
. .

 m  m s

 m

 m s
 s

2

2

e j

a f

For the second particle,

x x v t a t

v

v

f i xi x

xi

xi

= + +

= + + −

=
− +

= −

=

1
2

0 10 0 890 5 62 0 890

10 2 22
8 74

8 74

2

2 m  s  m s  s

 m  m
0.890 s

 m s

speed  m s

2. . .

.
.

. .

a f e ja f
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P5.33 First, we will compute the needed accelerations:

1 0

2
1 20 0

0 800
1 50

3 0

4
0 1 20

1 50
0 800

a f
a f

a f
a f

Before it starts to move:

During the first 0.800 s:
 m s

 s
 m s

While moving at constant velocity:

During the last 1.50 s:
 m s
 s

 m s

2

2

a

a
v v

t

a

a
v v

t

y

y
yf yi

y

y
yf yi

=

=
−

=
−

=
=

=
−

=
−

= −

.
.

.

.

.
.

FIG. P5.33
Newton’s second law is: F may y∑ =

+ − =

= +

S a

S a

y

y

72 0 9 80 72 0

706 72 0

. . .

. .

 kg  m s  kg

 N  kg

2b ge j b g
b g

(a) When ay = 0 , S= 706 N .

(b) When ay =1 50.  m s2 , S= 814 N .

(c) When ay = 0 , S= 706 N .

(d) When ay =−0 800.  m s2 , S= 648 N .

P5.34 (a) Pulley P1  has acceleration a2 .
Since m1  moves twice the distance P1 moves in the same
time, m1  has twice the acceleration of P1 , i.e., a a1 22= .

(b) From the figure, and using

F ma m g T m a
T m a m a

T T

∑ = − =
= =

− =

: 2 2 2 2

1 1 1 1 2

2 1

1
2 2

2 0 3

a f
a f
a f FIG. P5.34

Equation (1) becomes m g T m a2 1 2 22− = . This equation combined with Equation (2) yields

T
m

m
m

m g1

1
1

2
22

2
+F

HG
I
KJ=

T
m m

m m
g1

1 2

1
1
2 22

=
+

 and T
m m

m m
g2

1 2

1
1
4 2

=
+

.

(c) From the values of T1  and T2  we find that

a
T
m

m g
m m1

1

1

2

1
1
2 22

= =
+

 and a a
m g

m m2 1
2

1 2

1
2 4

= =
+

.
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Section 5.8 Forces of Friction

*P5.35  

22.0° 
n F ground g /2  = = 85.0 lb 

F  1 F  2 

F g = 170 lb 

22.0° 

+ x 

+ y 
n tip 

f 

F = 45.8 lb 
22.0° 

+ x 

+ y 

Free-Body Diagram of Person Free-Body Diagram of Crutch Tip

FIG. P5.35

From the free-body diagram of the person,

F F Fx∑ = ° − ° =1 222 0 22 0 0sin . sin .a f a f ,

which gives

F F F1 2= = .

Then, F Fy∑ = °+ − =2 22 0 85 0 170 0cos . .  lbs  lbs  yields F= 45 8.  lb.

(a) Now consider the free-body diagram of a crutch tip.

F fx∑ = −( ) °=45 8 22 0 0. sin . lb ,

or

f =17 2.  lb .

F ny∑ = −( ) °=tip  lb45 8 22 0 0. cos . ,

which gives

ntip  lb= 42 5. .

For minimum coefficient of friction, the crutch tip will be on the verge of slipping, so

f f ns s= =a fmax µ tip  and µ s
f

n
= = =

tip

 lb
42.5 lb
17 2

0 404
.

. .

(b) As found above, the compression force in each crutch is

F F F1 2 45 8= = = .  lb .
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P5.36 For equilibrium: f F=  and n Fg= . Also, f n= µ  i.e.,

µ

µ

= =

= =

f
n

F
Fg

s
75 0

25 0 9 80
0 306

.
. .

.
 N

 Na f

and

µ k = ( )
=60 0

0 245
.

.
 N

25.0 9.80  N
.

FIG. P5.36

P5.37 F ma n mg
f n mg

y y

s s s

∑ = + − =
≤ =

: 0
µ µ

This maximum magnitude of static friction acts so long as the tires roll without skidding.

F ma f max x s∑ = − =:

The maximum acceleration is

a gs=−µ .

The initial and final conditions are: xi = 0 , vi = =50 0 22 4. . mi h  m s, v f = 0

v v a x x v gxf i f i i s f
2 2 22 2= + − − = −d i: µ

(a) x
v

gf
i=
2

2µ

x f =
( )

=
22 4

2 0 100 9 80
256

2.

. .

 m s

 m s
 m

2

a f
c h

(b) x
v

gf
i=
2

2µ

x f =
( )

=
22 4

2 0 600 9 80
42 7

2.

. .
.

 m s

 m s
 m

2

a f
c h
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P5.38 If all the weight is on the rear wheels,

(a) F ma mg mas= =: µ
But

∆x
at gts= =

2 2

2 2
µ

so µ s
x

gt
=

2
2

∆
:

µ s = =
2 0 250 1 609

9 80 4 96
3 342

.

. .
.

 mi  m mi

 m s  s2

a fb g
e ja f .

(b) Time would increase, as the wheels would skid and only kinetic friction would act; or
perhaps the car would flip over.

*P5.39 (a) The person pushes backward on the floor. The floor pushes forward
on the person with a force of friction. This is the only horizontal
force on the person. If the person’s shoe is on the point of slipping
the static friction force has its maximum value.

F ma f n ma
F ma n mg

ma mg a g

x x v t a t t

t

x x s x

y y

x s x s

f i xi x

∑
∑

= = =
= − =

= = = =

= + + = + +

=

:
:

. . .

.

.

µ

µ µ

0

0 5 9 8 4 9
1
2

3 0 0
1
2

4 9

1 11

2 2

 m s  m s

 m  m s

 s

2 2

2

e j
e j FIG. P5.39

(b) x gtf s= 1
2

2µ , t
x

g
f

s
= =

( )

( )
=

2 2 3

0 8 9 8
0 875

µ
 m

 m s
 s

2. .
.

c h

P5.40 msuitcase  kg= 20 0. , F= 35 0.  N

F ma F
F ma n F F

x x

y y g

∑
∑

= − + =
= + + − =

: . cos
: sin

20 0 0
0

 N θ
θ

(a) F cos .

cos
.

.

.

θ

θ

θ

=

= =

= °

20 0
20 0

0 571

55 2

 N
 N

35.0 N FIG. P5.40

(b)   n F Fg= − = − ( )sin . .θ 196 35 0 0 821  N

n=167 N
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P5.41 m= 3 00.  kg , θ = °30 0. , x= 2 00.  m, t= 1 50.  s

(a) x at= 1
2

2:

2 00
1
2

1 50

4 00

1 50
1 78

2

2

. .

.

.
.

 m  s

 m s2

=

= =

a

a

a f

a f
FIG. P5.41

F n f g a∑ = + + =m m :

Along :

Along :

x f mg ma
f m g a

y n mg
n mg

0 30 0
30 0

0 30 0 0
30 0

− + ° =
= °−
+ − ° =
= °

sin .
sin .

cos .
cos .

b g

(b) µ k
f
n

m g a

mg
= =

°−
°

sin .

cos .

30 0

30 0
a f

, µ k
a

g
= °−

°
=tan .

cos .
.30 0

30 0
0 368

(c) f m g a= °−sin .30 0a f, f = °− =3 00 9 80 30 0 1 78 9 37. . sin . . .a f  N

(d) v v a x xf i f i
2 2 2= + −c h

where

x xf i− = 2 00.  m

v

v

f

f

2 0 2 1 78 2 00 7 11

7 11 2 67

= + =

= =

. . .

. .

a fa f  m s

 m s  m s

2 2

2 2
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*P5.42 First we find the coefficient of friction:

F n mg
f n mg

F ma v v a x

y

s s

x x f i x

∑

∑

= + − =
= =

= = + =

0 0

2 02 2

:

:

µ µ

∆

− = −

= = =

µ

µ

s
i

s
i

mg
mv

x

v
g x

2

2 2
2

2

88

2 32 1 123
0 981

∆

∆

 ft s

 ft s  ft2

b g
e ja f.

.

n

mg
f

n

mg  sin10°
f

mg  cos10°

FIG. P5.42

Now on the slope

F n mg
f n mg

F ma mg mg
mv

x

x
v

g

y

s s s

x x s
i

i

s

∑

∑

= + − ° =
= = °

= − °+ ° = −

=
°− °

=
°− °

=

0 10 0
10

10 10
2

2 10 10

88

2 32 1 0 981 10 10
152

2

2

2

: cos
cos

: cos sin

cos sin

. . cos sin
.

µ µ

µ

µ

∆

∆ b g
b g

e ja f
 ft s

 ft s
 ft

2

P5.43 T f ak− = 5 00.  (for 5.00 kg mass)

9 00 9 00. .g T a− =  (for 9.00 kg mass)

Adding these two equations gives:

9 00 9 80 0 200 5 00 9 80 14 0

5 60
5 00 5 60 0 200 5 00 9 80
37 8

. . . . . .

.
. . . . .

.

a f a fa f

a f a fa f

− =

=
∴ = +

=

a

a
T

 m s

 N

2

FIG. P5.43
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P5.44 Let a represent the positive magnitude of the acceleration −aj  of

m1 , of the acceleration −ai  of m2 , and of the acceleration +aj  of m3 .
Call T12  the tension in the left rope and T23  the tension in the cord
on the right.

For m1 , F may y∑ = + − =−T m g m a12 1 1

For m2 , F max x∑ = − + + =−T n T m ak12 23 2µ

and F may y∑ = n m g− =2 0

for m3 , F may y∑ = T m g m a23 3 3− =+

we have three simultaneous equations

− + =

+ − − =

+ − =

T a

T T a

T a

12

12 23

23

39 2 4 00

0 350 9 80 1 00

19 6 2 00

. .

. . .

. . .

 N  kg

 N  kg

 N  kg

b g
a f b g

b g

(a) Add them up:

n

T12 T23

m  g 2

f =     n k µ

m  g 1

T12

m  g 3

T23

FIG. P5.44

+ − − =39 2 3 43 19 6 7 00. . . . N  N  N  kga fa

a m m m= 2 31 1 2 3. , m s ,  down for ,  left for  and up for 2 .

(b) Now − + =T12 39 2 4 00 2 31. . . N  kg  m s2a fc h

T12 30 0= .  N

and T23 19 6 2 00 2 31− =. . . N  kg  m s2a fc h

T23 24 2= .  N .

P5.45 (a)

(b)

See Figure to the right

68 0 2 2

1 1

. − − =
− =

T m g m a
T m g m a

µ
µ

(Block #2)
(Block #1)

Adding,

68 0

68 0
1 29

27 2

1 2 1 2

1 2

1 1

.

.
.

.

− + = +

=
+

− =

= + =

µ

µ

µ

m m g m m a

a
m m

g

T m a m g

b g b g

b g  m s

 N

2

T

m 1
m 2

T F

m 1

n 1

T

m  g 1  = 118 N

f  =     n k µ 1  1

m 2

n 2

F

m  g 2  = 176 N

f  =     n k µ 2  2

FIG. P5.45
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P5.46 (Case 1, impending upward motion)
Setting

F P n
f n f P

P P

x

s s s s

∑ = °− =
= = °

= =

0 50 0 0
50 0

0 250 0 643 0 161

: cos .
: cos .

. . .
, , max  maxµ µ

a f
Setting

F P P

P
y∑ = °− − =

=

0 50 0 0 161 3 00 9 80 0

48 6

: sin . . . .

.max

a f
 N

(Case 2, impending downward motion)
As in Case 1,

f Ps, . max = 0 161

Setting

F P P

P
y∑ = °+ − =

=

0 50 0 0 161 3 00 9 80 0

31 7

: sin . . . .

.min

a f
 N

FIG. P5.46

*P5.47 When the sled is sliding uphill

F ma n mg
f n mg

F ma mg mg ma
v v a t
v a t

y y

k k

x x k

f i

i

∑

∑

= + − =
= =

= + + =
= = +
= −

: cos
cos

: sin cos

θ
µ µ θ

θ µ θ

0

0
up

up up

up up

∆

∆

x v v t

x a t t a t

i f= +

= + =

1
2
1
2

0
1
2

d i

e j
up

up up up up up
2

f

n

mg cos θ

mg sin θ

y

x

FIG. P5.47

When the sled is sliding down, the direction of the friction force is reversed:

mg mg ma

x a t

ksin cos

.

θ µ θ− =

=

down

down down
2∆

1
2

Now

t t

a t a t

a a

g g g gk k

k

down up

up up
2

down up

up down

=

=

=

+ = −

=

2

1
2

1
2

2

4

4

5 3

2e j

b gsin cos sin cos

cos sin

θ µ θ θ µ θ

µ θ θ

       µ θk = FHG
I
KJ

3
5

tan
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*P5.48 Since the board is in equilibrium, Fx∑ = 0  and we see that the normal
forces must be the same on both sides of the board. Also, if the
minimum normal forces (compression forces) are being applied, the
board is on the verge of slipping and the friction force on each side is

f f ns s= =a fmax µ .

The board is also in equilibrium in the vertical direction, so

F f Fy g∑ = − =2 0 , or f
Fg=
2

.

The minimum compression force needed is then

n
f F

s

g

s
= = =

( )
=

µ µ2
95 5

72 0
.

.
 N

2 0.663
 N .

f
n

F = 95.5 N

f
n

g

FIG. P5.48

*P5.49 (a) n F
n F

f n Fs s

+ °− ° =
∴ = −

= = −

sin cos
. .

. .,

15 75 25 0
67 97 0 259

24 67 0 094

 N

 max

a f

µ

For equilibrium: F Fcos . . sin15 24 67 0 094 75 25 0°+ − − °= .
This gives F= 8 05.  N .

n

25°

15°
F

fs , max

75 N

FIG. P5.49(a)

(b) F Fcos . . sin15 24 67 0 094 75 25 0°− −( )− °= .

This gives F= 53 2.  N .

n

25°

15°

F

fs , max

75 N

FIG. P5.49(b)

(c) f n Fk k= = −µ 10 6 0 040. . . Since the velocity is constant, the net
force is zero:

F Fcos . . sin15 10 6 0 040 75 25 0°− −( )− °= .

This gives F= 42 0.  N .

n

25°

15°

F

fk

75 N

FIG. P5.49(c)
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*P5.50 We must consider separately the disk when it is in contact with the roof
and when it has gone over the top into free fall. In the first case, we take
x and y as parallel and perpendicular to the surface of the roof:

F ma n mg
n mg

y y∑ = + − =
=

: cos
cos

θ
θ

0

then friction is f n mgk k k= =µ µ θcos
FIG. P5.50

F ma f mg ma
a g g

x x k x

x k

∑ = − − =
= − − = − °− ° = −

: sin
cos sin . cos sin . .

θ
µ θ θ 0 4 37 37 9 8 9 03a f  m s  m s2 2

The Frisbee goes ballistic with speed given by

v v a x x

v
xf xi x f i

xf

2 2 22 15 2 9 03 10 0 44 4

6 67

= + − = + − − =

=

d i b g e ja f m s  m s  m  m s

 m s

2 2 2. .

.

For the free fall, we take x and y horizontal and vertical:

v v a y y

y

y

yf yi y f i

f

f

2 2

2

2

2

0 6 67 37 2 9 8 10 37

6 02
4 01

19 6
6 84

= + −

= ° + − − °

= + =

d i
b g e jd i

b g
. sin . sin

.
.

.
.

 m s   m s  m 

 m
 m s

 m s
 m

2

2

Additional Problems

P5.51 (a) see figure to the right

(b) First consider Pat and the chair as the system.
Note that two ropes support the system, and
T= 250 N in each rope. Applying F ma∑ =

2 480T ma− = , where m= =480
9 80

49 0
.

.  kg .

FIG. P5.51
Solving for a gives

a= − =500 480
49 0

0 408
.

.  m s2 .

(c) F ma∑ =  on Pat:

F n T ma∑ = + − =320 , where m= =320
9 80

32 7
.

.  kg

n ma T= + − = ( )+ − =320 32 7 0 408 320 250 83 3. . .  N .
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P5.52 F a∑ =m  gives the object’s acceleration

a
i j

a i j
v

= =
−

= − =

∑ F
m

t

t
d
dt

8 00 4 00

4 00 2 00

. .

. . .

e j

e j e j

 N

2.00 kg

 m s  m s2 3

Its velocity is

d dt

t dt

t t

v

v

i

t

t
i

v v v v a

v i j

v i j

z z
z

= − = − =

= −

= −

0

4 00 2 00

4 00 1 00

0

0

2

. .

. . .

 m s  m s

 m s  m s

2 3

2 3

e j e j

e j e j

(a) We require v =15 0.  m s , v 2 225=  m s2 2

16 0 1 00 225

1 00 16 0 225 0

16 0 16 0 4 225

2 00
9 00

3 00

2 4

4 2

2
2

. .

. .

. .

.
.

. .

t t

t t

t

t

 m s  m s  m s

 s  s

 s

 s

2 4 2 6 2 2

2 4

2

+ =

+ − =

=
− ± − −

=

=

a f a f

Take ri = 0 at t= 0. The position is

r v i j

r i j

= = −

= −

z zdt t t dt

t t

t t

0

2

0
2 3

4 00 1 00

4 00
2

1 00
3

. .

. .

 m s  m s

 m s  m s

2 3

2 3

e j e j

e j e j

at t= 3 s we evaluate.

(c) r i j= −18 0 9 00. .e j m

(b) So r = ( ) +( ) =18 0 9 00 20 12 2. . . m  m
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*P5.53 (a) Situation A

F ma F n mg
F ma n mg

x x A s

y y

∑
∑

= + − =
= + − =

: sin
: cos

µ θ
θ

0
0

Eliminate n mg= cosθ  to solve for

F mgA s= −sin cosθ µ θa f .

 
n 

mg cos θ mg sin θ 

y 

x 
f s F A 

FIG. P5.53(a)

(b) Situation B

F ma F n mg
F ma F n mg

x x B s

y y B

∑
∑

= + − =
= − + − =

: cos sin
: sin cos

θ µ θ
θ θ

0
0

Substitute n mg FB= +cos sinθ θ  to find

F mg F mgB s s Bcos cos sin sinθ µ θ µ θ θ+ + − = 0

F
mg

B
s

s
=

−
+

sin cos
cos sin

θ µ θ
θ µ θ
a f

 
n 

mg cos θ mg sin θ 

y 

x 
f s 

F B 

FIG. P5.53(b)

(c) F

F

A

B

= °− ° =

=
°+ °

=

2 9 8 25 0 16 25 5 44

19 6 0 278
25 0 16 25

5 59

 kg  m s  N

 N
 N

2. sin . cos .

. .
cos . sin

.

a f
a f

Student A  need exert less force.

(d) F
F F

B
A A=

°+ °
=

cos . sin .25 0 38 25 1 07

Student B  need exert less force.

P5.54 18 2

3

4

 N  kg

 kg

 kg

− =

− =

=

P a

P Q a

Q a

b g
b g
b g

Adding gives 18 9 N  kg= a fa  so

a= 2 00 2.  m s .

FIG. P5.54

(b) Q = =4 2 8 00 kg  m s  N net force on the 4 kg2e j .

P − = =8 3 2 6 00 N  kg  m s  N net force on the 3 kg2e j .  and P=14 N

18 14 2 2 4 00 N  N  kg  m s  N net force on the 2 kg2− = =e j .

continued on next page
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(c) From above, Q= 8 00.  N  and P= 14 0.  N .

(d) The 3-kg block models the heavy block of wood. The contact force on your back is
represented by Q, which is much less than the force F. The difference between F and Q is
the net force causing acceleration of the 5-kg pair of objects. The acceleration is real and
nonzero, but lasts for so short a time that it never is associated with a large velocity. The
frame of the building and your legs exert forces, small relative to the hammer blow, to bring
the partition, block, and you to rest again over a time large relative to the hammer blow.
This problem lends itself to interesting lecture demonstrations. One person can hold a lead
brick in one hand while another hits the brick with a hammer.

P5.55 (a) First, we note that F T= 1 . Next, we focus on the
mass M and write T Mg5 = . Next, we focus on the
bottom pulley and write T T T5 2 3= + . Finally, we
focus on the top pulley and write T T T T4 1 2 3= + + .

Since the pulleys are not starting to rotate and are
frictionless, T T1 3= , and T T2 3= . From this

information, we have T T5 22= , soT
Mg

2 2
= .

Then T T T
Mg

1 2 3 2
= = = , and T

Mg
4

3
2

= , and

T Mg5 = .

(b) Since F T= 1 , we have F
Mg

=
2

.

FIG. P5.55

P5.56 We find the diver’s impact speed by analyzing his free-fall motion:

v v axf i
2 2 2 0 2 9 80 10 0= + = + − −( ). . m s  m2c h  so v f =−14 0.  m s.

Now for the 2.00 s of stopping, we have v v atf i= + :

0 14 0 2 00

7 00

= − +

= +

. .

. .

 m s  s

 m s2

a

a

a f

Call the force exerted by the water on the diver R. Using F may∑ = ,

+ − =

=

R

R

70 0 9 80 70 0 7 00

1 18

. . . .

. .

 kg  m s  kg  m s

 kN

2 2e j e j
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P5.57 (a) The crate is in equilibrium, just before it starts to
move. Let the normal force acting on it be n and
the friction force, fs .

Resolving vertically:

n F Pg= + sinθ

Horizontally:

P fscosθ =

But,

FIG. P5.57

f ns s≤ µ

i.e.,

P F Ps gcos sinθ µ θ≤ +c h

or

P Fs s gcos sinθ µ θ µ− ≤a f .

Divide by cosθ :

P Fs s g1− ≤µ θ µ θtan seca f .

Then

P
Fs g

s
minimum = −

µ θ
µ θ

sec

tan1
.

(b) P=
( )

−
0 400 100

1 0 400
. sec

. tan
 N θ

θ

θ degb g 0.00 15.0 30.0 45.0 60.0

P Na f 40.0 46.4 60.1 94.3 260

If the angle were 68 2. °  or more, the expression for P would go to infinity and motion would
become impossible.
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P5.58 (a) Following the in-chapter Example about a block on a frictionless incline, we have

a g= = °sin . sin .θ 9 80 30 0 m s2c h

a= 4 90.  m s2

(b) The block slides distance x on the incline, with sin .
.

30 0
0 500°=  m

x

x= 1 00.  m: v v a x xf i f i
2 2 2 0 2 4 90 1 00= + − = + ( )c h c h. . m s  m2

v f = 3 13.  m s  after time t
x

vs
f

f
= =

( )
=

2 2 1 00
3 13

0 639
.

.
.

 m
 m s

 s .

(c) Now in free fall y y v t a tf i yi y− = + 1
2

2 :

− = − ° −

+ − =

=
− ± − −

2 00 3 13 30 0
1
2

9 80

4 90 1 56 2 00 0

1 56 1 56 4 4 90 2 00

9 80

2

2

2

. . sin . .

. . .

. . . .

.

 m s  m s

 m s  m s  m

 m s  m s  m s  m

 m s

2

2

2

2

b g e j
e j b g

b g e ja f

t t

t t

t

Only one root is physical

t

x v tf x

=

= = ° =

0 499

3 13 30 0 0 499 1 35

.

. cos . . .

 s

 m s  s  mb g a f

(d) total time = + = + =t ts 0 639 0 499 1 14. . . s  s  s

(e) The mass of the block makes no difference.



Chapter 5     147

P5.59 With motion impending,

n T mg

f mg Ts

+ − =

= −

sin

sin

θ

µ θ

0

b g
and

T mg Ts scos sinθ µ µ θ− + = 0

so
FIG. P5.59

T
mgs

s
=

+
µ

θ µ θcos sin
.

To minimize T, we maximize cos sinθ µ θ+ s

d
d s sθ

θ µ θ θ µ θcos sin sin cos+ = = − +b g 0 .

(a) θ µ= = = °− −tan tan . .1 1 0 350 19 3s

(b) T=
°+ °

=
0 350 1 30 9 80

19 3 0 350 19 3
4 21

. . .

cos . . sin .
.

 kg  m s
 N

2a fc h

*P5.60 (a) See Figure (a) to the right.

(b) See Figure (b) to the right.

(c) For the pin,

F ma C

C

y y∑ = − =

=

: cos

cos
.

θ

θ

357 0
357

 N
 N

For the foot,

mg= =36 4 9 8 357. . kg  m s  N2a fc h

       FIG. P5.60(a)   FIG. P5.60(b)

F ma n C

n
y y B

B

∑ = + − =

=

: cos

.

θ 0

357 N

(d) For the foot with motion impending,

F ma f C
n C

C
n

x x s s

s B s

s
s

B

s s
s

∑ = + − =
=

= = =

: sin
sin
sin cos sin

tan .

θ
µ θ

µ
θ θ θ

θ

0

357

357

 N

 N
b g

(e) The maximum coefficient is

µ θs s= = °=tan tan . .50 2 1 20 .
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P5.61 F ma∑ =

For m1 : T m a= 1

For m2 : T m g− =2 0

Eliminating T,

a
m g
m

= 2

1

For all 3 blocks: FIG. P5.61

F M m m a M m m
m g
m

= + + = + +
F
HG
I
KJ1 2 1 2

2

1
a f a f

P5.62 t t xs s m2a f e j a f2

0 0 0
1 02 1 04 0 0 100
1 53 2 34 1 0 200
2 01 4 04 0 0 350
2 64 6 97 0 0 500
3 30 10 89 0 750
3 75 14 06 1 00

. . .

. . .

. . .

. . .

. . .

. . .

 

FIG. P5.62

From x at= 1
2

2 the slope of a graph of x versus t2  is 
1
2

a , and

a = × = =2 2 0 071 4 0 143slope  m s  m s2 2. .e j .

From ′=a g sinθ ,

′ = F
HG
I
KJ =a 9 80

1 77 4
127 1

0 137.
.

.
. m s  m s2 2 , different by 4%.

The difference is accounted for by the uncertainty in the data, which we may estimate from the third
point as

0 350 0 071 4 4 04

0 350
18%

. . .

.

−
=

b ga f
.
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P5.63 (1) m a A T a
T

m
A1

1
− = ⇒ = +a f

(2) MA R T A
T
Mx= = ⇒ =

(3) m a m g T T m g a2 2 2= − ⇒ = −b g

(a) Substitute the value for a from (1) into (3) and solve for T:

FIG. P5.63

T m g
T

m
A= − +

F
HG

I
KJ

L
NM

O
QP2

1
.

Substitute for A from (2):

T m g
T

m
T
M

m g
m M

m M m m M
= − +

F
HG

I
KJ

L
NM

O
QP
=

+ +
L
NM

O
QP2

1
2

1

1 2 1a f .

(b) Solve (3) for a and substitute value of T:

a
m g m M

m M m M m
=

+
+ +
2 1

1 2 1

a f
a f .

(c) From (2), A
T
M

= , Substitute the value of T:

A
m m g

m M m m M
=

+ +
1 2

1 2 1a f .

(d) a A
Mm g

m M m m M
− =

+ +
2

1 2 1a f
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P5.64 (a), (b) Motion impending

5.00 kg

n = 49.0 N

F = 49.0 Ng

fs1

15.0 kg

n = 49.0 N
fs1

147 N196 N

fs2

P

f ns1 14 7= =µ .  N fs2 0 500 196 98 0= =. . N  Na f
FIG. P5.64

P f fs s= + = + =1 2 14 7 98 0 113. . N  N  N

(c) Once motion starts, kinetic friction acts.

112 7 0 100 49 0 0 400 196 15 0

1 96

0 100 49 0 5 00

0 980

2

2

1

1

. . . . .

.

. . .

.

 N  N  N  kg

 m s

 N  kg

 m s

2

2

− − =

=

=

=

a f a f b g

a f b g

a

a

a

a

*P5.65 (a) Let x represent the position of the glider along the air track. Then z x h2 2
0
2= + ,

x z h= −2
0
2 1 2e j , v

dx
dt

z h z
dz
dtx = = −

−1
2

22
0
2 1 2e j a f . Now 

dz
dt

 is the rate at which string passes

over the pulley, so it is equal to vy  of the counterweight.

v z z h v uvx y y= − =
−2

0
2 1 2c h

(b) a
dv
dt

d
dt

uv u
dv

dt
v

du
dtx

x
y

y
y= = = +  at release from rest, vy = 0  and a uax y= .

(c) sin .
.

30 0
80 0°=  cm

z
, z=1 60.  m , u z h z= − = − =

− −2
0
2 1 2 2 2 1 2

1 6 0 8 1 6 1 15e j e j a f. . . . .

For the counterweight

F ma T a
a T

y y y

y

∑ = − = −
= − +

: .
.

0.5 kg  m s 0.5 kg29 8
2 9 8

For the glider

F ma T a a T T
T
T

x x x y∑ = ° = = = − + = − +
=
=

: cos . . . . . .
. .

.

30 1 00 1 15 1 15 2 9 8 2 31 11 3
3 18 11 3

3 56

 kg  N
 N

 N

a f
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*P5.66 The upward acceleration of the rod is described by

y y v t a t

a

a

f i yi y

y

y

= + +

× = + + ×

=

− −

1
2

1 10 0 0
1
2

8 10

31 2

2

3 3 2
 m s

 m s2

e j
.

The distance y moved by the rod and the distance x
moved by the wedge in the same time are related

by tan
tan

15
15

°= ⇒ =
°

y
x

x
y

. Then their speeds and

accelerations are related by FIG. P5.66

dx
dt

dy
dt

=
°

1
15tan

and

d x
dt

d y
dt

2

2

2

2
1
15

1
15

31 2 117=
°

=
°

F
HG

I
KJ =

tan tan
.  m s  m s2 2 .

The free body diagram for the rod is shown. Here H and ′H  are forces exerted by the guide.

F ma n mg ma

n

n

y y y∑ = °− =

°− =

=
°

=

: cos

cos . . . .
.

cos
.

15

15 0 250 9 8 0 250 31 2
10 3

15
10 6

2 kg  m s  kg  m s
 N

 N

2e j e j

For the wedge,

F Ma n F

F
x x∑ = − °+ =

= °+ =

: sin .

. sin . .

15 0 5 117

10 6 15 58 3 61 1

 kg  m s

 N  N  N

2e j
a f

*P5.67 (a) Consider forces on the midpoint of the rope. It is nearly in
equilibrium just before the car begins to move. Take the y-axis
in the direction of the force you exert:

F ma T f T

T
f

y y∑ = − + − =

=

: sin sin

sin
.

θ θ

θ

0

2

(b) T=
°
=100

7
410

 N
2

 N
sin

FIG. P5.67
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P5.68 Since it has a larger mass, we expect the 8.00-kg block to move
down the plane. The acceleration for both blocks should have the
same magnitude since they are joined together by a non-stretching
string. Define up the left hand plane as positive for the 3.50-kg
object and down the right hand plane as positive for the 8.00-kg
object.

F m a m g T m a
F m a m g T m a

1 1 1 1 1

2 2 2 2 2

35 0
35 0

∑
∑

= − °+ =
= °− =

: sin .
: sin .

FIG. P5.68

and

− °+ =

°− =

3 50 9 80 35 0 3 50

8 00 9 80 35 0 8 00

. . sin . .

. . sin . . .

a fa f
a fa f

T a

T a

Adding, we obtain

+ − =45 0 19 7 11 5. . . N  N  kga fa .

(b) Thus the acceleration is

a= 2 20.  m s2 .

By substitution,

− + = =19 7 3 50 2 20 7 70. . . . N  kg  m s  N2T a fc h .

(a) The tension is

T= 27 4.  N .

P5.69 Choose the x-axis pointing down the slope.

v v at a
a

f i= + = +

=

: . .
. .

30 0 0 6 00
5 00

 m s  s
 m s2
a f

Consider forces on the toy.

F ma mg m

F ma mg T
T mg
T

x x

y y

∑

∑

= =

= °

= − + =
= = °
=

: sin .

.

: cos
cos . . cos .

.

θ

θ
θ

θ

5 00

30 7

0
0 100 9 80 30 7

0 843

 m s

 N

2e j

a fa f

a= 5 00.  m s2

FIG. P5.69
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*P5.70 Throughout its up and down motion after release the block has

F ma n mg
n mg

y y∑ = + − =
=

: cos
cos .

θ
θ

0

Let R i j= +R Rx y  represent the force of table on incline. We have

F ma R n
R mg

F ma Mg n R

R Mg mg

x x x

x

y y y

y

∑

∑

= + − =
=

= − − + =

= +

: sin
cos sin

: cos

cos .

θ
θ θ

θ
θ

0

0
2

R = + +mg M m gcos sin cosθ θ θ  to the right  upward2e j

 

FIG. P5.70

*P5.71 Take +x in the direction of motion of the tablecloth. For the mug:

F ma a
a

x x x

x

∑ = =
=

0 1 0 2
0 5

. .
. .

 N  kg 
 m s2

Relative to the tablecloth, the acceleration of the mug is 0 5 3 2 5. . m s  m s  m s2 2 2− =− . The mug
reaches the edge of the tablecloth after time given by

∆ x v t a t

t

t

xi x= +

− = + −

=

1
2

0 3 0
1
2

2 5

0 490

2

2. .

. .

 m  m s

 s

2e j

The motion of the mug relative to tabletop is over distance

1
2

1
2

0 5 0 490 0 060 02 2a tx = =. . . m s  s  m2e ja f .

The tablecloth slides 36 cm over the table in this process.
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P5.72 F may y∑ = : n mg− =cosθ 0

or

n

n

=

=

8 40 9 80

82 3

. . cos

. cos

a f
a f

θ

θ N

F max x∑ = : mg masinθ =

or

a g

a

=

=

sin

. sin

θ

θ9 80 m s2e j

θ ,  deg ,  N ,  m s

0.00
5.00
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0

82.3
82.0
81.1
79.5
77.4
74.6
71.3
67.4
63.1
58.2
52.9
47.2
41.2
34.8
28.2
21.3
14.3
7.17
0.00

0.00
0.854
1.70
2.54
3.35
4.14
4.90
5.62
6.30
6.93
7.51
8.03
8.49
8.88
9.21
9.47
9.65
9.76
9.80

2n a

FIG. P5.72

At 0°, the normal force is the full weight and the acceleration is zero. At 90°, the mass is in free fall
next to the vertical incline.
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P5.73 (a) Apply Newton’s second law to two points
where butterflies are attached on either half
of mobile (other half the same, by symmetry)

(1) T T2 2 1 1 0cos cosθ θ− =
(2) T T mg1 1 2 2 0sin sinθ θ− − =
(3) T T2 2 3 0cosθ − =
(4) T mg2 2 0sinθ − =

Substituting (4) into (2) for T2 2sinθ ,

T mg mg1 1 0sinθ − − = .

 

FIG. P5.69
Then

T
mg

1
1

2
=

sinθ
.

Substitute (3) into (1) for T2 2cosθ :

T T3 1 1 0− =cosθ , T T3 1 1= cosθ

Substitute value of T1 :

T mg
mg

T3
1

1 1
32

2
= = =cos

sin tan
θ
θ θ

.

From Equation (4),

T
mg

2
2

=
sinθ

.

(b) Divide (4) by (3):

T
T

mg
T

2 2

2 2 3

sin
cos

θ
θ
= .

Substitute value of T3 :

tan
tanθ θ

2
1

2
=

mg
mg

, θ θ
2

1 1

2
= F

HG
I
KJ

−tan
tan

.

Then we can finish answering part (a):

T
mg

2 1 1
2 1

=
−sin tan tanθb g .

(c) D is the horizontal distance between the points at which the two ends of the string are
attached to the ceiling.

D= + +2 21 2cos cosθ θ  and L= 5

D
L= + F

HG
I
KJ

L
NM

O
QP+

RST
UVW

−

5
2 2

1
2

11
1

1cos cos tan tanθ θ
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ANSWERS TO EVEN PROBLEMS

P5.2 1 66 106. ×  N forward P5.42 152 ft

P5.44 (a) 2 31.  m s2  down for m1 , left for m2  and
up for m3 ; (b) 30.0 N and 24.2 NP5.4 (a) 

vt
2

; (b) 
F v

gt
Fg

g
F
HG
I
KJ +i j

P5.46 Any value between 31.7 N and 48.6 NP5.6 (a) 4 47 1015. ×  m s2  away from the wall;
(b) 2 09 10 10. × −  N  toward the wall P5.48 72.0 N

P5.8 (a) 534 N down; (b) 54.5 kg P5.50 6.84 m

P5.10 2.55 N for an 88.7 kg person P5.52 (a) 3.00 s; (b) 20.1 m; (c) 18 0 9 00. .i j−e j m
P5.12 16 3 14 6. .i j+e j N

P5.54 (a) 2 00 2.  m s  to the right;
(b) 8.00 N right on 4 kg;P5.14 (a) 181°; (b) 11.2 kg; (c) 37 5.  m s ;
6.00 N right on 3 kg; 4 N right on 2 kg;

(d) − −37 5 0 893. .i je j m s (c) 8.00 N between 4 kg and 3 kg;
14.0 N between 2 kg and 3 kg;
(d) see the solutionP5.16 112 N

P5.56 1.18 kNP5.18 T1 296=  N ; T2 163=  N ; T3 325=  N

P5.58 (a) 4 90.  m s2 ; (b) 3 13.  m s at 30.0° below
the horizontal; (c) 1.35 m; (d) 1.14 s; (e) No

P5.20 (a) see the solution; (b) 1.79 N

P5.22 (a) 2 54.  m s2  down the incline;
P5.60 (a) and (b) see the solution; (c) 357 N;(b) 3 18.  m s

(d) see the solution; (e) 1.20
P5.24 see the solution; 6 30.  m s2 ; 31.5 N

P5.62 see the solution; 0 143.  m s2  agrees with
0 137.  m s2P5.26 (a) 3 57.  m s2 ; (b) 26.7 N; (c) 7 14.  m s

P5.64 (a) see the solution;P5.28 (a) 36.8 N; (b) 2 45.  m s2 ; (c) 1.23 m
(b) on block one:
49 0 49 0 14 7. . . N  N  N j j i− + ;P5.30 (a) 0.529 m; (b) 7 40.  m s  upward

on block two: − − −49 0 14 7 147. . N  N  N j i j

+ − +196 98 0 113 N  N  N .j i i ;
P5.32 (a) 2.22 m; (b) 8 74.  m s

(c) for block one: 0 980. i m s2 ;P5.34 (a) a a1 22= ;

(b) T
m m g

m m1
1 2

1 22 2
=

+
; T

m m g

m m2
1 2

1 4
2

=
+

; for block two: 1 96.  m s2 i

P5.66 61.1 N
(c) a

m g

m m1
2

1 22 2
=

+
; a

m g
m m2

2

1 24
=

+
P5.68 (a) 2 20.  m s2 ; (b) 27.4 N

P5.36 µ s = 0 306. ; µ k = 0 245. P5.70 mg cos sinθ θ to the right

+ +M m gcos2 θe j  upwardP5.38 (a) 3.34; (b) Time would increase

P5.40 (a) 55.2°; (b) 167 N P5.72 see the solution
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ANSWERS TO QUESTIONS

Q6.1 Mud flies off a rapidly spinning tire because the resultant force
is not sufficient to keep it moving in a circular path. In this case,
the force that plays a major role is the adhesion between the
mud and the tire.

Q6.2 The spring will stretch. In order for the object to move in a
circle, the force exerted on the object by the spring must have a

size of 
mv
r

2

. Newton’s third law says that the force exerted on

the object by the spring has the same size as the force exerted
by the object on the spring. It is the force exerted on the spring
that causes the spring to stretch.

Q6.3 Driving in a circle at a constant speed requires a centripetal
acceleration but no tangential acceleration.

Q6.4 (a) The object will move in a circle at a constant speed.

(b) The object will move in a straight line at a changing speed.

Q6.5 The speed changes. The tangential force component causes tangential acceleration.

Q6.6 Consider the force required to keep a rock in the Earth’s crust moving in a circle. The size of the
force is proportional to the radius of the circle. If that rock is at the Equator, the radius of the circle
through which it moves is about 6400 km. If the rock is at the north pole, the radius of the circle
through which it moves is zero!

Q6.7 Consider standing on a bathroom scale. The resultant force on you is your actual weight minus the
normal force. The scale reading shows the size of the normal force, and is your ‘apparent weight.’ If
you are at the North or South Pole, it can be precisely equal to your actual weight. If you are at the
equator, your apparent weight must be less, so that the resultant force on you can be a downward
force large enough to cause your centripetal acceleration as the Earth rotates.

Q6.8 A torque is exerted by the thrust force of the water times the distance between the nozzles.

157
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Q6.9 I would not accept that statement for two reasons. First, to be “beyond the pull of gravity,” one
would have to be infinitely far away from all other matter. Second, astronauts in orbit are moving in
a circular path. It is the gravitational pull of Earth on the astronauts that keeps them in orbit. In the
space shuttle, just above the atmosphere, gravity is only slightly weaker than at the Earth’s surface.
Gravity does its job most clearly on an orbiting spacecraft, because the craft feels no other forces and
is in free fall.

Q6.10 This is the same principle as the centrifuge. All the material inside the cylinder tends to move along
a straight-line path, but the walls of the cylinder exert an inward force to keep everything moving
around in a circular path.

Q6.11 The ball would not behave as it would when dropped on the Earth. As the astronaut holds the ball,
she and the ball are moving with the same angular velocity. The ball, however, being closer to the
center of rotation, is moving with a slower tangential velocity. Once the ball is released, it acts
according to Newton’s first law, and simply drifts with constant velocity in the original direction of
its velocity when released—it is no longer “attached” to the rotating space station. Since the ball
follows a straight line and the astronaut follows a circular path, it will appear to the astronaut that
the ball will “fall to the floor”. But other dramatic effects will occur. Imagine that the ball is held so
high that it is just slightly away from the center of rotation. Then, as the ball is released, it will move
very slowly along a straight line. Thus, the astronaut may make several full rotations around the
circular path before the ball strikes the floor. This will result in three obvious variations with the
Earth drop. First, the time to fall will be much larger than that on the Earth, even though the feet of
the astronaut are pressed into the floor with a force that suggests the same force of gravity as on
Earth. Second, the ball may actually appear to bob up and down if several rotations are made while
it “falls”. As the ball moves in a straight line while the astronaut rotates, sometimes she is on the side
of the circle on which the ball is moving toward her and other times she is on the other side, where
the ball is moving away from her. The third effect is that the ball will not drop straight down to her
feet. In the extreme case we have been imagining, it may actually strike the surface while she is on
the opposite side, so it looks like it ended up “falling up”. In the least extreme case, in which only a
portion of a rotation is made before the ball strikes the surface, the ball will appear to move
backward relative to the astronaut as it falls.

Q6.12 The water has inertia. The water tends to move along a straight line, but the bucket pulls it in and
around in a circle.

Q6.13 There is no such force. If the passenger slides outward across the slippery car seat, it is because the
passenger is moving forward in a straight line while the car is turning under him. If the passenger
pushes hard against the outside door, the door is exerting an inward force on him. No object is
exerting an outward force on him, but he should still buckle his seatbelt.

Q6.14 Blood pressure cannot supply the force necessary both to balance the gravitational force and to
provide the centripetal acceleration, to keep blood flowing up to the pilot’s brain.

Q6.15 The person in the elevator is in an accelerating reference frame. The apparent acceleration due to
gravity, “g,” is changed inside the elevator. “g”= ±g a

Q6.16 When you are not accelerating, the normal force and your weight are equal in size. Your body
interprets the force of the floor pushing up on you as your weight. When you accelerate in an
elevator, this normal force changes so that you accelerate with the elevator. In free fall, you are
never weightless since the Earth’s gravity and your mass do not change. It is the normal force—your
apparent weight—that is zero.
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Q6.17 From the proportionality of the drag force to the speed squared and from Newton’s second law, we
derive the equation that describes the motion of the skydiver:

m
dv

dt
mg

D A
vy
y= −

ρ
2

2

where D is the coefficient of drag of the parachutist, and A is the projected area of the parachutist’s
body. At terminal speed,

a
dv

dty
y

= = 0  and V
mg

D AT
2

1 2

ρ
F
HG
I
KJ .

When the parachute opens, the coefficient of drag D and the effective area A both increase, thus
reducing the speed of the skydiver.

Modern parachutes also add a third term, lift, to change the equation to

m
dv

dt
mg

D A
v

L A
vy

y x= − −
ρ ρ
2 2

2 2

where vy  is the vertical velocity, and vx  is the horizontal velocity. The effect of lift is clearly seen in

the “paraplane,” an ultralight airplane made from a fan, a chair, and a parachute.

Q6.18 The larger drop has higher terminal speed. In the case of spheres, the text demonstrates that
terminal speed is proportional to the square root of radius. When moving with terminal speed, an
object is in equilibrium and has zero acceleration.

Q6.19 Lower air density reduces air resistance, so a tank-truck-load of fuel takes you farther.

Q6.20 Suppose the rock is moving rapidly when it enters the water. The speed of the rock decreases until it
reaches terminal velocity. The acceleration, which is upward, decreases to zero as the rock
approaches terminal velocity.

Q6.21 The thesis is false. The moment of decay of a radioactive atomic nucleus (for example) cannot be
predicted. Quantum mechanics implies that the future is indeterminate. On the other hand, our
sense of free will, of being able to make choices for ourselves that can appear to be random, may be
an illusion. It may have nothing to do with the subatomic randomness described by quantum
mechanics.
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SOLUTIONS TO PROBLEMS

Section 6.1 Newton’s Second Law Applied to Uniform Circular Motion

P6.1 m = 3 00.  kg , r = 0 800.  m. The string will break if the tension exceeds
the weight corresponding to 25.0 kg, so

T Mgmax . .= = =25 0 9 80 245a f  N.

When the 3.00 kg mass rotates in a horizontal circle, the tension
causes the centripetal acceleration,

so T
mv
r

v
= =

2 23 00
0 800
.
.
a f

.

Then v
rT
m

T T2 0 800
3 00

0 800
3 00

0 800 245
3 00

65 3= = ≤ = =
.

.
.

.
.

.
.maxa f a f a f

 m s2 2

and 0 65 3≤ ≤v .

or 0 8 08≤ ≤v .  m s .
FIG. P6.1

P6.2 In F m
v
r∑ =
2

, both m and r are unknown but remain constant. Therefore, F∑  is proportional to v2

and increases by a factor of 
18 0
14 0

2.
.
F
HG
I
KJ  as v increases from 14.0 m/s to 18.0 m/s. The total force at the

higher speed is then

Ffast  N  N∑ = FHG
I
KJ =

18 0
14 0

130 215
2.

.
a f .

Symbolically, write F
m
rslow  m s∑ = FHG
I
KJ 14 0 2.b g  and F

m
rfast  m s∑ = FHG
I
KJ 18 0 2.b g .

Dividing gives 
F
F

fast

slow

∑
∑

= FHG
I
KJ

18 0
14 0

2.
.

, or

F Ffast slow  N  N∑ ∑= FHG
I
KJ = FHG

I
KJ =

18 0
14 0

18 0
14 0

130 215
2 2.

.
.
.
a f .

This force must be horizontally inward  to produce the driver’s centripetal acceleration.
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P6.3 (a) F
mv

r
= =

× ×

×
= ×

−

−
−

2 31 6 2

10
8

9 11 0 2 20 10

0 530 10
8 32 10

. .

.
.

 kg  m s

 m
 N inward

e je j

(b) a
v
r

= =
×

×
= ×−

2 6 2

10
22

2 20 10

0 530 10
9 13 10

.

.
.

 m s

 m
 m s  inward2e j

P6.4 Neglecting relativistic effects. F ma
mv

rc= =
2

F = × ×
×

= ×− −2 1 661 10
2 998 10

0 480
6 22 1027

7 2

12.
.

.
. kg

 m s

 m
 Ne j e j

a f

P6.5 (a) static friction

(b) ma f n mgi i j j= + + −e j
F n mgy∑ = = −0

thus n mg=  and F m
v
r

f n mgr∑ = = = =
2

µ µ .

Then µ = = =
v
rg

2 250 0

30 0 980
0 085 0

.

.
.

 cm s

 cm  cm s2

b g
a fe j

.

P6.6 (a) F may y∑ = , mg
mv

rmoon down  down=
2

v g r= = × + × = ×moon
2 m s  m  m  m s1 52 1 7 10 100 10 1 65 106 3 3. . .e je j

(b) v
r

T
=

2π
, T =

×

×
= × =

2 1 8 10

1 65 10
6 84 10 1 90

6

3
3

π .

.
. .

 m

 m s
 s  h

e j

P6.7 n mg=  since ay = 0

The force causing the centripetal acceleration is the frictional force f.

From Newton’s second law f ma
mv

rc= =
2

.

But the friction condition is f ns≤ µ

i.e., 
mv

r
mgs

2

≤ µ

 

FIG. P6.7

v rgs≤ =µ 0 600 35 0 9 80. . . m  m s2a fe j v ≤ 14 3.  m s
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P6.8 a
v
r

g
g= =

F
HG

I
KJ =

2 1 1 000 2
86 5

61 0
1

9
0 966

.

.
.

 km h

 m
 

.80 m s

 h
3 600 s

 m
1 km

2

b ge je j

P6.9 T mgcos . . .5 00 80 0 9 80°= =  kg  m s2b ge j

(a) T = 787 N : T i j= +68 6 784.  N  Na f a f

(b) T macsin .5 00°= : ac = 0 857.  m s2  toward the center of

the circle.

The length of the wire is unnecessary information. We
could, on the other hand, use it to find the radius of the
circle, the speed of the bob, and the period of the motion. FIG. P6.9

P6.10 (b) v = =
235

6 53
 m

36.0 s
 m s.

The radius is given by 
1
4

2 235πr =  m

r = 150 m

(a) a

i j

i j

r
v
r

=
F
HG
I
KJ

= °

= ° − + °

= − +

2

2
6 53

150

0 285 35 0 35 0

0 233 0 163

 toward center

 m s

 m
 at 35.0 north of west

 m s

 m s  m s

2

2 2

.

. cos . sin .

. .

b g

e j e je j

(c) a
v v

j i

i j

=
−

=
−

= − +

f i

t

d i

e j6 53 6 53

36 0

0 181 0 181

. .

.

. .

 m s  m s

 s

 m s  m s2 2
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*P6.11 F mgg = = =4 9 8 39 2 kg  m s  N2b ge j. .

sin
.

.

θ

θ

=

= °

1 5

48 6

 m
2 m

r = °=2 48 6 1 32 m  ma fcos . .

F ma
mv

r

T T

T T

x x

a b

a b

∑ = =

°+ °=

+ =
°
=

2

2

48 6 48 6
4 6

1 32
109

48 6
165

cos . cos .
.

cos .

 kg  m s

 m
 N

 N

b gb g

F ma

T T

T T

y y

a b

a b

∑ =

+ °− °− =

− =
°
=

sin . sin . .
.

sin .
.

48 6 48 6 39 2 0
39 2

48 6
52 3

 N
 N

 N

 

θ 

39.2 N 

T a 

T b 
forces 

v a c 

motion 

FIG. P6.11

(a) To solve simultaneously, we add the equations in Ta  and Tb :

T T T Ta b a b+ + − = +165 52 3 N  N.

Ta = =
217

108
 N

2
 N

(b) T Tb a= − = − =165 165 108 56 2 N  N  N  N.

*P6.12 a
v
rc =
2

. Let f represent the rotation rate. Each revolution carries each bit of metal through distance

2πr , so v rf= 2π  and

a
v
r

rf gc = = =
2

2 24 100π  .

A smaller radius implies smaller acceleration. To meet the criterion for each bit of metal we consider
the minimum radius:

f
g
r

= FHG
I
KJ =

⋅F
HG

I
KJ = F

HG
I
KJ = ×

100
4

100 9 8
4 0 021

34 4
60

2 06 102

1 2

2

1 2
3  m s

 m
 
1
s

 s
1 min

 rev min
2

π π
.
.

. .a f .
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Section 6.2 Nonuniform Circular Motion

P6.13 M = 40 0.  kg , R = 3 00.  m, T = 350 N

(a) F T Mg
Mv

R∑ = − =2
2

v T Mg
R
M

2 2= − F
HG
I
KJb g

v2 700 40 0 9 80
3 00
40 0

23 1= − F
HG
I
KJ =. .

.
.

.a fa f e j m s2 2

v = 4 81.  m s

(b) n Mg F
Mv

R
− = =

2

n Mg
Mv

R
= + = +F

HG
I
KJ =

2

40 0 9 80
23 1
3 00

700. .
.

.
 N

T T

Mg

child + seat

FIG. P6.13(a)

 Mg

child alone

  n

FIG. P6.13(b)

P6.14 (a) Consider the forces acting on the system consisting of the child and the seat:

F ma T mg m
v
R

v R
T

m
g

v R
T

m
g

y y∑ = ⇒ − =

= −FHG
I
KJ

= −FHG
I
KJ

2

2

2

2

2

(b) Consider the forces acting on the child alone:

F ma n m g
v
Ry y∑ = ⇒ = +

F
HG

I
KJ

2

and from above, v R
T

m
g2 2

= −FHG
I
KJ , so

n m g
T

m
g T= + −F

HG
I
KJ =

2
2 .

P6.15 Let the tension at the lowest point be T.

F ma T mg ma
mv

r

T m g
v
r

T

c∑ = − = =

= +
F
HG

I
KJ

= +
L
N
MM

O
Q
PP = >

:

. .
.

.
.

2

2

2

85 0 9 80
8 00

10 0
1 38 1 000 kg  m s

 m s

 m
 kN  N2b g b g

He doesn’t make it across the river because the vine breaks. FIG. P6.15
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P6.16 (a) a
v
rc = = =
2 24 00

1 33
.

.
 m s

12.0 m
 m s2b g

(b) a a ac t= +2 2

a = + =1 33 1 20 1 792 2. . .a f a f  m s2

at an angle θ =
F
HG
I
KJ = °−tan .1 48 0

a
a

c

t
 inward

FIG. P6.16

P6.17 F
mv

r
mg ny∑ = = +

2

But n = 0  at this minimum speed condition, so

mv
r

mg v gr
2

9 80 1 00 3 13= ⇒ = = =. . . m s  m  m s2e ja f .
FIG. P6.17

P6.18 At the top of the vertical circle,

T m
v
R

mg= −
2

or T = − =0 400
4 00
0 500

0 400 9 80 8 88
2

.
.
.

. . .a f a f a fa f  N

P6.19 (a) v = 20 0.  m s,

n =  force of track on roller coaster, and

R = 10 0.  m.

F
Mv

R
n Mg∑ = = −

2

From this we find

   
10 m 15 m 

B 

A 

C 

FIG. P6.19

n Mg
Mv

R

n

= + = +

= + = ×

2

4

500 9 80
500 20 0

10 0

4 900 20 000 2 49 10

 kg  m s
 kg  m s

 m

 N  N  N

2
2

b ge j
b ge j

.
.

.

.

(b) At B, n Mg
Mv

R
− = −

2

The max speed at B corresponds to

n

Mg
Mv

R
v Rg

=

− = − ⇒ = = =

0

15 0 9 80 12 1
2
max

max . . .a f  m s
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P6.20 (a) a
v
rc =
2

r
v
ac

= = =
2 213 0

2 9 80
8 62

.

.
.

 m s

 m s
 m

2

b g
e j

(b) Let n be the force exerted by the rail.

Newton’s law gives

 

FIG. P6.20

Mg n
Mv

r
+ =

2

n M
v
r

g M g g Mg= −
F
HG

I
KJ = − =

2

2b g ,  downward

(c) a
v
rc =
2

ac = =
13 0

20 0
8 45

2.

.
.

 m s

 m
 m s2b g

If the force exerted by the rail is n1

then n Mg
Mv

r
Mac1

2

+ = =

n M a gc1 = −b g  which is < 0 since ac = 8 45.  m s2

Thus, the normal force would have to point away from the center of the curve. Unless they
have belts, the riders will fall from the cars. To be safe we must require n1  to be positive.
Then a gc > . We need

v
r

g
2

>  or v rg> = 20 0 9 80. . m  m s2a fe j , v > 14 0.  m s .

Section 6.3 Motion in Accelerated Frames

P6.21 (a) F Max∑ = , a
T
M

= = =
18 0

3 60
.

.
 N

5.00 kg
 m s2

to the right.

(b) If v =  const, a = 0, so T = 0  (This is also

an equilibrium situation.)

(c) Someone in the car (noninertial observer)
claims that the forces on the mass along x
are T and a fictitious force (–Ma). Someone
at rest outside the car (inertial observer)
claims that T is the only force on M in the
x-direction.

5.00 kg

FIG. P6.21
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*P6.22 We adopt the view of an inertial observer. If it is on the verge of sliding, the
cup is moving on a circle with its centripetal acceleration caused by friction.

F ma n mg

F ma f
mv

r
n mg

y y

x x s s

∑

∑

= + − =

= = = =

:

:

0
2

µ µ

v grs= = =µ 0 8 9 8 30 15 3. . . m s  m  m s2e ja f

mg

f

n

FIG. P6.22

If you go too fast the cup will begin sliding straight across the dashboard to the left.

P6.23 The only forces acting on the suspended object are the force of gravity mg
and the force of tension T, as shown in the free-body diagram. Applying
Newton’s second law in the x and y directions,

F T max∑ = =sinθ (1)

F T mgy∑ = − =cosθ 0

or T mgcosθ = (2)

T cos θ

T sin θ
mg

FIG. P6.23

(a) Dividing equation (1) by (2) gives

tan
.
.

.θ = = =
a
g

3 00
9 80

0 306
 m s
 m s

2

2 .

Solving for θ, θ = °17 0.

(b) From Equation (1),

T
ma= =

°
=

sin

. .

sin .
.

θ
0 500 3 00

17 0
5 12

 kg  m s
 N

2a fc h
a f .

*P6.24 The water moves at speed

v
r

T
= = =

2 2 0 12
7 25

0 104
π π .

.
.

 m
 s

 m s
a f

.

The top layer of water feels a downward force of gravity mg and an outward fictitious force in the
turntable frame of reference,

mv
r

m
m

2 2
20 104

0 12
9 01 10= = × −.

.
.

 m s

 m
 m s2b g

.

It behaves as if it were stationary in a gravity field pointing downward and outward at

tan
.

.
.− = °1 0 090 1

9 8
0 527

 m s
 m s

2

2 .

Its surface slopes upward toward the outside, making this angle with the horizontal.
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P6.25 F F magmax = + = 591 N
F F magmin = − = 391 N

(a) Adding, 2 982Fg =  N, Fg = 491 N

(b) Since F mgg = , m = =
491

50 1
 N

9.80 m s
 kg2 .

(c) Subtracting the above equations,

2 200ma =  N ∴ =a 2 00.  m s2

P6.26 (a) F mar r∑ =

mg
mv

R
m
R

R
T

g
R

T

T
R

g

= = FHG
I
KJ

=

= =
×

= × =

2 2

2

2

2 6
3

2

4

4
2

6 37 10
5 07 10 1 41

π

π

π
π

.
. .

 m
9.80 m s

 s  h2

(b) speed increase factor = = F
HG

I
KJ = = =

v
v

R
T

T
R

T
T

new

current new

current current

new

 h
1.41 h

2
2

24 0
17 1

π
π

.
.

*P6.27 The car moves to the right with acceleration a. We find the acceleration of ab  of the block relative to
the Earth. The block moves to the right also.

F ma n mg n mg f mg
F ma mg ma a g

y y k

x x k b b k

∑
∑

= + − = = =
= + = =

: , ,
: ,

0   
 

µ
µ µ

The acceleration of the block relative to the car is a a g ab k− = −µ . In this frame the block starts from
rest and undergoes displacement −  and gains speed according to

v v a x x

v g a a g

xf xi x f i

xf k k

2 2

2

2

0 2 0 2

= + −

= + − − − = −

d i
b ga f b gµ µ .

(a) v a gk= −2
1 2

µb gd i  to the left

continued on next page
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(b) The time for which the box slides is given by

∆x v v t

a g t

t
a g

xi xf

k

k

= +

− = − −L
NM

O
QP

=
−

F
HG

I
KJ

1
2
1
2

0 2

2

1 2

1 2

d i
b gd iµ

µ
.

The car in the Earth frame acquires finals speed v v at a
a gxf xi

k
= + = +

−

F
HG

I
KJ0

2
1 2

µ
. The speed

of the box in the Earth frame is then

v v v a g a
a g

a g a

a g

g

a g

g

a g

g
v

be bc ce k
k

k

k

k

k

k

k

k

= + = − − +
−
F
HG

I
KJ

=
− − +

−
=

−

=
−

=

2
2

2 2 2

2

2

2

1 2
1 2

1 2 1 2

1 2

1 2

1 2

1 2

µ
µ

µ

µ

µ

µ

µ

µ

µ

b g

a f b g a f
b g

a f
b g

b g
.

*P6.28 Consider forces on the backpack as it slides in the Earth frame of reference.

F ma n mg ma n m g a f m g a
F ma m g a ma

y y k k

x x k x

∑
∑

= + − = = + = +
= − + =

: , ,
:

  b g b g
b g

µ
µ

The motion across the floor is described by L vt a t vt g a tx k= + = − +
1
2

1
2

2 2µ b g .

We solve for µ k : vt L g a tk− = +
1
2

2µ b g , 
2

2

vt L

g a t k
−

+
=

a f
b g µ .

P6.29 In an inertial reference frame, the girl is accelerating horizontally inward at

v
r

2 2
5 70

2 40
13 5= =

.

.
.

 m s

 m
 m s2b g

In her own non-inertial frame, her head feels a horizontally outward fictitious force equal to its mass
times this acceleration. Together this force and the weight of her head add to have a magnitude
equal to the mass of her head times an acceleration of

g
v
r

2
2 2

2 29 80 13 5 16 7+
F
HG
I
KJ = + =. . .a f a f  m s  m s2 2

This is larger than g by a factor of 
16 7
9 80

1 71
.

.
.= .

Thus, the force required to lift her head is larger by this factor, or the required force is

F = =1 71 55 0 93 8. . . N  Na f .
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*P6.30 (a) The chunk is at radius r =
+

=
0 137 0 080

0 054 2
. .

.
 m  m

4
 m. Its speed is

v
r

T
= = =

2
2 0 054 2

20 000
60

114
π

π .  m
 s

 m sb g

and its acceleration

a
v
r

g
g

c = = = ×

= ×
F
HG

I
KJ = ×

2 2
5

5 4

114

0 054 2
2 38 10

2 38 10
9 8

2 43 10

 m s

 m
 m s  horizontally inward

 m s
 m s

2

2
2

b g
.

.

.
.

. .

(b) In the frame of the turning cone, the chunk feels a

horizontally outward force of 
mv

r

2

. In this frame its

acceleration is up along the cone, at tan
.

.
.

−
−

= °1
13 7 8

3 3
49 2

 cm
 cm

2
a f .

Take the y axis perpendicular to the cone:

n

f mv
r

2
49.2°

a

FIG. P6.30(b)

F ma n
mv

r

n

y y∑ = + − °=

= × × °=−

: sin .

. sin .

2

3 5

49 2 0

2 10 2 38 10 49 2 360 kg  m s  N2e je j
(c) f nk= = =µ 0 6 360 216.  N  Na f

F ma
mv

r
f ma

a

a

x x x

x

x

∑ = °− =

× × °− = ×

= ×

− −

: cos .

. cos .

.

2

3 5 3

4

49 2

2 10 2 38 10 49 2 216 2 10

47 5 10

 kg  m s  N  kg

 m s  radially up the wall of the cone

2

2

e je j e j

P6.31 a
R

Tr
e=

F
HG

I
KJ °=

4
35 0 0 027 6

2

2
π

cos . .  m s2

We take the y axis along the local vertical.
a a

a

a
a

y r y

x

x

y

net
2

net
2

 m s

 m s

b g b g
b g

= − =

=

= = °

9 80 9 78

0 015 8

0 092 8

. .

.

arctan .θ

 N 

a r 

g 0 
a net 

Equator 
35.0° 

θ 

35.0° 
(exaggerated size) 

FIG. P6.31
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Section 6.4 Motion in the Presence of Resistive Forces

P6.32 m = 80 0.  kg , vT = 50 0.  m s , mg
D Av D A mg

v
T

T

= ∴ = =
ρ ρ2

22 2
0 314.  kg m

(a) At v = 30 0.  m s

a g
m

D Av

= − = − =
ρ 2

2
2

9 80
0 314 30 0

80 0
6 27.

. .
.

.
a fa f

 m s  downward2

(b) At v = 50 0.  m s , terminal velocity has been reached.
F mg R

R mg

y∑ = = −

⇒ = = =

0

80 0 9 80 784. . kg  m s  N directed up2b ge j
(c) At v = 30 0.  m s

D Avρ 2
2

2
0 314 30 0 283= =. .a fa f  N  upward

P6.33 (a) a g bv= −

When v vT= , a = 0 and g bvT= b
g

vT
=

The Styrofoam falls 1.50 m at constant speed vT  in 5.00 s.

Thus, v
y
tT = = =

1 50
0 300

.
.

 m
5.00 s

 m s

Then b = = −9 80
0 300

32 7 1.
.

.
 m s

 m s
 s

2

(b) At t = 0 , v = 0  and a g= = 9 80.  m s2  down

(c) When v = 0 150.  m s, a g bv= − = − =−9 80 32 7 0 150 4 901. . . . m s  s  m s  m s2 2e jb g  down

P6.34 (a) ρ =
m
V

, A = 0 020 1.  m2, R ADv mgT=
1

=
2

2ρair

m V= = L
NM

O
QP =ρ πbead

3 g cm  cm  kg0 830
4
3

8 00 1 783. . .a f

Assuming a drag coefficient of D = 0 500.  for this spherical object, and taking the density of
air at 20°C from the endpapers, we have

vT = =
2 1 78 9 80

0 500 1 20 0 020 1
53 8

. .

. . .
.

 kg  m s

 kg m  m
 m s

2

3 2

b ge j
e je j

(b) v v gh ghf i
2 2 2 0 2= + = + : h

v

g
f= = =
2 2

2

53 8

2 9 80
148

.

.

 m s

 m s
 m

2

b g
e j
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P6.35 Since the upward velocity is constant, the resultant force on the ball is zero. Thus, the upward
applied force equals the sum of the gravitational and drag forces (both downward):
F mg bv= + .

The mass of the copper ball is

m
r

= = FHG
I
KJ × × =−4

3
4
3

8 92 10 2 00 10 0 299
3

3 2 3πρ
π . . . kg m  m  kg3e je j .

The applied force is then

F mg bv= + = + × =−0 299 9 80 0 950 9 00 10 3 012. . . . .a fa f a fe j  N .

P6.36 F ma

T mg

T

F ma

R T

R D Av

D
R

Av

y y

x x

∑

∑

=

+ °− =

=
°

= ×

=

− + °=

= × °= × =

= =
× FH IK

=

cos .

.

cos .
.

sin .

. sin . .

.

. . .
.

40 0 0

620 9 80

40 0
7 93 10

40 0 0

7 93 10 40 0 5 10 10
1
2

2 2 5 10 10

1 20 3 80 40 0
1 40

3

3 3 2

2

3

2

 kg  m s
 N

 N  N

 N

 kg m  m  m s

2

kg m s
N

2 2

2

b ge j

e j
e j

e je jb g

ρ

ρ

FIG. P6.36

P6.37 (a) At terminal velocity, R v b mgT= =

∴ = =
×

×
= ⋅

−

−b
mg
vT

3 00 10 9 80

2 00 10
1 47

3

2

. .

.
.

 kg  m s

 m s
 N s m

2e je j

(b) In the equation describing the time variation of the velocity, we have

v v eT
bt m= − −1e j v vT= 0 632.  when e bt m− = 0 368.

or at time t
m
b

= −FHG
I
KJ = × −ln . .0 368 2 04 10 3a f  s

(c) At terminal velocity, R v b mgT= = = × −2 94 10 2.  N

P6.38 The resistive force is

R D Av

R

a
R
m

= =

=

= − = − = −

1
2

1
2

0 250 1 20 2 20 27 8

255
255

0 212

2 2ρ . . . .

.

a fe je jb g kg m  m  m s

 N
 N

1200 kg
 m s

3 2

2
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P6.39 (a) v t v ei
cta f = − v v ei

c20 0 5 00 20 0. . . sa f = = − , vi = 10 0.  m s .

So 5 00 10 0 20 0. . .= −e c  and − = FHG
I
KJ20 0

1
2

. lnc c = − = × − −ln

.
.

1
2 2 1

20 0
3 47 10

c h
 s

(b) At t = 40 0.  s v e c= = =−10 0 10 0 0 250 2 5040 0. . . .. m s  m s  m sb g b ga f

(c) v v ei
ct= − s

dv
dt

cv e cvi
ct= = − = −−

P6.40 F ma∑ =

− =

− =

− =

− − =
−

= − +

= + =
+

=
+

z z −

−

kmv m
dv
dt

kdt
dv
v

k dt v dv

k t
v

v v

v v
kt

v kt
v

v
v
v kt

t

v

v

v

v

2

2

0

2

1

0

0

0

0

0

0

0

0

0
1

1 1

1 1 1

1

a f

*P6.41 (a) From Problem 40,

v
dx
dt

v
v kt

dx v
dt
v kt k

v kdt
v kt

x
k

v kt

x
k

v kt

x
k

v kt

x t t

x t

= =
+

=
+

=
+

= +

− = + −

= +

z z z

0

0

0
0

00

0

00

0 0 0

0

0

1

1
1

1

1
1

0
1

1 1

1
1

ln

ln ln

ln

b g

b g

b g

(b) We have ln 1 0+ =v kt kxb g
1 0+ =v kt ekx  so v

v
v kt

v
e

v e vkx
kx=

+
= = =−0

0

0
01

*P6.42 We write − = −kmv D Av2 21
2

ρ  so

k
D A

m

v v e ekx

= =
×

= ×

= = =

−
−

− − × −

ρ
2

0 305 1 20 4 2 10

2 0 145
5 3 10

40 2 36 5

3
3

0
5 3 10 18 33

. . .

.
.

. .
. .

 kg m  m

 kg
m

 m s  m s

3 2

m  m

e je j
b g

b g e ja f
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P6.43 In R D Av=
1
2

2ρ , we estimate that D = 1 00. , ρ = 1 20.  kg m3 , A = = × −0 100 0 160 1 60 10 2. . . m  m  m2a fa f
and v = 27 0.  m s. The resistance force is then

R = × =−1
2

1 00 1 20 1 60 10 27 0 7 002 2
. . . . .a fe je jb g kg m  m  m s  N3 2

or

R ~ 101  N

Section 6.5 Numerical Modeling in Particle Dynamics

Note: In some problems we compute each new position as x t t x t v t t t+ = + +∆ ∆ ∆a f a f a f , rather than
x t t x t v t t+ = +∆ ∆a f a f a f  as quoted in the text. This method has the same theoretical validity as that presented in
the text, and in practice can give quicker convergence.

P6.44 (a) At v vT= , a = 0, − + =mg bvT 0 v
mg
bT = =

×

×
=

−

−

3 00 10 9 80

3 00 10
0 980

3

2

. .

.
.

 kg  m s

 kg s
 m s

2e je j

(b) t sa f x ma f v m sb g F mNa f a m s2e j
0
0.005
0.01
0.015

2
2
1.999 755
1.999 3

0
–0.049
–0.095 55
–0.139 77

–29.4
–27.93
–26.534
–25.2

–9.8
–9.31
–8.844 5
–8.40

 . . . we list the result after each tenth iteration

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65

1.990
1.965
1.930
1.889
1.845
1.799
1.752
1.704
1.65
1.61
1.56
1.51
1.46

–0.393
–0.629
–0.770
–0.854
–0.904
–0.935
–0.953
–0.964
–0.970
–0.974
–0.977
–0.978
–0.979

–17.6
–10.5

–6.31
–3.78
–2.26
–1.35
–0.811
–0.486
–0.291
–0.174
–0.110
–0.062 4
–0.037 4

–5.87
–3.51
–2.10
–1.26
–0.754
–0.451
–0.270
–0.162
–0.096 9
–0.058 0
–0.034 7
–0.020 8
–0.012 5

Terminal velocity is never reached. The leaf is at 99.9% of vT  after 0.67 s. The fall to the
ground takes about 2.14 s. Repeating with ∆t = 0 001.  s , we find the fall takes 2.14 s.
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P6.45 (a) When v vT= , a = 0, F mg CvT∑ = − + =2 0

v
mg
CT = − = −

×

×
= −

−

−

4 80 10 9 80

2 50 10
13 7

4

5

. .

.
.

 kg  m s

 kg m
 m s

2e je j

(b) t sa f x ma f v m sb g F mNa f a m s2e j
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2

0
0

–0.392
–1.168
–2.30
–3.77
–5.51
–7.48
–9.65

–11.96
–14.4

0
–1.96
–3.88
–5.683 2
–7.306 8
–8.710 7
–9.880 3

–10.823
–11.563
–12.13
–12.56

– 4.704
– 4.608
– 4.327 6
–3.896 5
–3.369 3
–2.807 1
–2.263 5
–1.775 3
–1.361 6
–1.03
–0.762

–9.8
–9.599 9
–9.015 9
–8.117 8
–7.019 3
–5.848 1
–4.715 6
–3.698 6
–2.836 6
–2.14
–1.59

 . . . listing results after each fifth step

3
4
5

–27.4
–41.0
–54.7

–13.49
–13.67
–13.71

–0.154
–0.029 1
–0.005 42

–0.321
–0.060 6
–0.011 3

The hailstone reaches 99% of vT  after 3.3 s, 99.95% of vT  after 5.0 s, 99.99% of vT  after 6.0 s,
99.999% of vT  after 7.4 s.

P6.46 (a) At terminal velocity, F mg CvT∑ = = − +0 2

C
mg
vT

= = = × −
2 2

4
0 142 9 80

42 5
7 70 10

. .

.
.

 kg  m s

 m s
 kg m

2b ge j
b g

(b) Cv2 4 27 70 10 36 0 0 998= × =−. . . kg m  m s  Ne jb g

(c) Elapsed
Time (s)

Altitude
(m)

Speed
(m/s)

Resistance
Force (N)

Net
Force (N)

Acceleration
m s2e j

0.000 00
0.050 00

…
2.950 00
3.000 00
3.050 00

…
6.250 00
6.300 00

0.000 00
1.757 92

48.623 27
48.640 00
48.632 24

1.250 85
–0.106 52

36.000 00
35.158 42

0.824 94
0.334 76

–0.155 27

–26.852 97
–27.147 36

–0.998 49
–0.952 35

–0.000 52
–0.000 09

0.000 02

0.555 55
0.567 80

–2.390 09
–2.343 95

–1.392 12
–1.391 69
–1.391 58

–0.836 05
–0.823 80

–16.831 58
–16.506 67

–9.803 69
–9.800 61
–9.799 87

–5.887 69
–5.801 44

Maximum height is about 49 m . It returns to the ground after about 6 3.  s  with a speed

of approximately 27 m s .
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P6.47 (a) At constant velocity F mg CvT∑ = = − +0 2

v
mg
CT = − = − = −

50 0 9 80

0 200
49 5

. .

.
.

 kg  m s

 kg m
 m s

2b ge j
 with chute closed and

vT = − = −
50 0 9 80

20 0
4 95

. .

.
.

 kg  m s

 kg m
 m s

b gb g
 with chute open.

(b) We use time increments of 0.1 s for 0 10< <t  s , then 0.01 s for 10 12 s  s< <t , and then 0.1 s
again.

time(s) height(m) velocity(m/s)
0  1000 0
1    995 –9.7
2    980 –18.6
4    929 –32.7
7    812 –43.7

10    674 –47.7
10.1   671 –16.7
10.3   669 –8.02
11    665 –5.09
12    659 –4.95
50    471 –4.95

100    224 –4.95
145        0 –4.95

6.48 (a) We use a time increment of 0.01 s.

time(s) x(m) y(m) with θ we find range
0 0 0 30.0° 86.410 m
0.100 7.81 5.43 35.0° 81.8 m
0.200 14.9 10.2 25.0° 90.181 m
0.400 27.1 18.3 20.0° 92.874 m
1.00 51.9 32.7 15.0° 93.812 m
1.92 70.0 38.5 10.0° 90.965 m
2.00 70.9 38.5 17.0° 93.732 m
4.00 80.4 26.7 16.0° 93.839 8 m
5.00 81.4 17.7 15.5° 93.829 m
6.85 81.8 0 15.8° 93.839 m

16.1° 93.838 m
15.9° 93.840 2 m

(b) range = 81 8.  m

(c) So we have maximum range at θ = °15 9.
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P6.49 (a) At terminal speed, F mg Cv∑ = − + =2 0 . Thus,

C
mg
v

= = = × −
2 2

4
0 046 0 9 80

44 0
2 33 10

. .

.
.

 kg  m s

 m s
 kg m

2b ge j
b g

(b) We set up a spreadsheet to calculate the motion, try different initial speeds, and home in on
53 m s  as that required for horizontal range of 155 m, thus:

Time
t (s)

x
(m)

vx

(m/s)

ax

m s2e j
y

(m)
vy

(m/s)

ay

m s2e j
v v vx y= +2 2

(m/s)

tan− F
HG
I
KJ

1 v

v
y

x

(deg)

0.000 0 0.000 0 45.687 0 –10.565 9 0.000 0 27.451 5 –13.614 6 53.300 0 31.000 0
0.002 7 0.121 1 45.659 0 –10.552 9 0.072 7 27.415 5 –13.604 6 53.257 4 30.982 2

…
2.501 6 90.194 6 28.937 5 –4.238 8 32.502 4 0.023 5 –9.800 0 28.937 5 0.046 6
2.504 3 90.271 3 28.926 3 –4.235 5 32.502 4 –0.002 4 –9.800 0 28.926 3 –0.004 8
2.506 9 90.348 0 28.915 0 –4.232 2 32.502 4 –0.028 4 –9.800 0 28.915 1 –0.056 3

…
3.423 8 115.229 8 25.492 6 –3.289 6 28.397 2 –8.890 5 –9.399 9 26.998 4 –19.226 2
3.426 5 115.297 4 25.483 9 –3.287 4 28.373 6 –8.915 4 –9.397 7 26.998 4 –19.282 2
3.429 1 115.364 9 25.475 1 –3.285 1 28.350 0 –8.940 3 –9.395 4 26.998 4 –19.338 2

…
5.151 6 154.996 8 20.843 8 –2.199 2 0.005 9 –23.308 7 –7.049 8 31.269 2 –48.195 4
5.154 3 155.052 0 20.838 0 –2.198 0 –0.055 9 –23.327 4 –7.045 4 31.279 2 –48.226 2

(c) Similarly, the initial speed is 42 m s . The motion proceeds thus:

Time
t (s)

x
(m)

vx

(m/s)

ax

m s2e j
y

(m)
vy

(m/s)

ay

m s2e j
v v vx y= +2 2

(m/s)

tan− F
HG
I
KJ

1 v

v
y

x

(deg)

0.000 0 0.000 0 28.746 2 –4.182 9 0.000 0 30.826 6 –14.610 3 42.150 0 47.000 0
0.003 5 0.100 6 28.731 6 –4.178 7 0.107 9 30.775 4 –14.594 3 42.102 6 46.967 1

…
2.740 5 66.307 8 20.548 4 –2.137 4 39.485 4 0.026 0 –9.800 0 20.548 5 0.072 5
2.744 0 66.379 7 20.541 0 –2.135 8 39.485 5 –0.008 3 –9.800 0 20.541 0 –0.023 1
2.747 5 66.451 6 20.533 5 –2.134 3 39.485 5 –0.042 6 –9.800 0 20.533 5 –0.118 8

…
3.146 5 74.480 5 19.715 6 –1.967 6 38.696 3 –3.942 3 –9.721 3 20.105 8 –11.307 7
3.150 0 74.549 5 19.708 7 –1.966 2 38.682 5 –3.976 4 –9.720 0 20.105 8 –11.406 7
3.153 5 74.618 5 19.701 8 –1.964 9 38.668 6 –4.010 4 –9.718 6 20.105 8 –11.505 6

…
5.677 0 118.969 7 15.739 4 –1.254 0 0.046 5 –25.260 0 –6.570 1 29.762 3 –58.073 1
5.680 5 119.024 8 15.735 0 –1.253 3 –0.041 9 –25.283 0 –6.564 2 29.779 5 –58.103 7

The trajectory in (c) reaches maximum height 39 m, as opposed to 33 m in (b). In both, the
ball reaches maximum height when it has covered about 57% of its range. Its speed is a
minimum somewhat later. The impact speeds are both about 30 m/s.
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Additional Problems

*P6.50 When the cloth is at a lower angle θ, the radial
component of F ma∑ =  reads

n mg
mv

r
+ =sinθ

2

.

At θ = °68 0. , the normal force drops to zero and

g
v
r

sin68
2

°= .

R
68°

p

mg

p

mg cos68°

mg sin68°

FIG. P6.50

v rg= ° = ° =sin . . sin .68 0 33 9 8 68 1 73 m  m s  m s2a fe j

The rate of revolution is

angular speed = F
HG
I
KJ
F
HG

I
KJ = =1 73

1
2

2
2 0 33

0 835 50 1.
.

. . m s
 rev

 m
 rev s  rev minb g a fπ

π
πr

r
.

*P6.51 (a) v =
F
HG

I
KJ
F
HG

I
KJ =30

1 1 000
8 33 km h

 h
3 600 s

 m
1 km

 m sb g .

F may y∑ = : + − = −n mg
mv

r

2

n m g
v
r

= −
F
HG

I
KJ = −

L
N
MM

O
Q
PP

= ×

2 2

4

1 800 9 8
8 33

20 4

1 15 10

 kg  m s
 m s

 m

 N up

2.
.

.

.

b g

n

mg

FIG. P6.51

(b) Take n = 0 . Then mg
mv

r
=

2

.

v gr= = = =9 8 20 4 14 1 50 9. . . . m s  m  m s  km h2e ja f

P6.52 (a) F ma
mv

Ry y∑ = =
2

mg n
mv

R
− =

2

n mg
mv

R
= −

2

(b) When n = 0 , mg
mv

R
=

2

Then, v gR= .
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*P6.53 (a) slope =
−

=
0 160 0
9 9

0 016 2
.
.

.
 N

 m s
 kg m2 2

(b) slope = = =
R
v

D Av

v
D A2

1
2

2

2
1
2

ρ
ρ

(c)
1
2

0 016 2D Aρ = .  kg m

D = =
2 0 016 2

1 20 0 105
0 7782

.

. .
.

 kg m

 kg m  m3

b g
e j a fπ

(d) From the table, the eighth point is at force mg = × =−8 1 64 10 9 8 0 1293. . . kg  m s  N2e je j  and

horizontal coordinate 2 80 2.  m sb g . The vertical coordinate of the line is here

0 016 2 2 8 0 1272. . . kg m  m s  Nb gb g = . The scatter percentage is 
0 129 0 127

1 5%
. .

.
 N  N
0.127 N

−
= .

(e) The interpretation of the graph can be stated thus: For stacked coffee filters falling at
terminal speed, a graph of air resistance force as a function of squared speed demonstrates
that the force is proportional to the speed squared within the experimental uncertainty
estimated as 2%. This proportionality agrees with that described by the theoretical equation

R D Av=
1
2

2ρ . The value of the constant slope of the graph implies that the drag coefficient

for coffee filters is D = ±0 78 2%. .

P6.54 (a) While the car negotiates the curve, the accelerometer is at the angle θ.

Horizontally: T
mv

r
sinθ =

2

Vertically: T mgcosθ =

where r is the radius of the curve, and v is the speed of the car.

By division, tanθ =
v
rg

2

Then a
v
r

gc = =
2

tanθ : ac = °9 80 15 0. tan . m s2e j
ac = 2 63.  m s2

FIG. P6.54

(b) r
v
ac

=
2

r = =
23 0

2 63
201

2.

.

 m s

 m s
 m2

b g

(c) v rg2 201 9 80 9 00= = °tan . tan .θ  m  m s2a fe j v = 17 7.  m s
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P6.55 Take x-axis up the hill

F ma T mg ma

a
T
m

g

F ma T mg

T
mg

a
g

g

a g

x x

y y

∑

∑

= + − =

= −

= + − =

=

= −

= −

: sin sin

sin sin

: cos cos
cos

cos
cos sin

cos
sin

cos tan sin

θ φ

θ φ

θ φ
φ

θ
φ θ
θ

φ

φ θ φ

0

b g

*P6.56 (a) The speed of the bag is 
2 7 46

38
1 23

π .
.

 m
 s

 m s
a f

= . The

total force on it must add to

mac = =
30 kg 1 23

7 46
6 12

2b gb g.

.
.

 m s

 m
 N

n

mg

fs

ac x

y

FIG. P6.56

F ma f n

F ma f n

n
f

x x s

y y s

s

∑
∑

= − =

= + − =

=
−

: cos sin .

: sin cos .

cos .
sin

20 20 6 12

20 20 30 9 8 0

20 6 12
20

 N

 kg  m s

 N

2b ge j

Substitute:

f f

f

f

s s

s

s

sin
cos
sin

.
cos
sin

. .

20
20

20
6 12

20
20

294

2 92 294 16 8

106

2

+ − =

= +

=

 N  N

 N  N

 N

a f
a f

(b) v = =
2 7 94

34
1 47

π .
.

 m
 s

 m s
a f

mac = =
30 1 47

7 94
8 13

2 kg  m s

 m
 N

b gb g.

.
.

f n
f n

n
f

f f

f
f

n

f
n

s

s

s

s s

s

s

s
s

cos sin .
sin cos

cos .
sin

sin
cos
sin

.
cos
sin

. .

cos .
sin

.

20 20 8 13
20 20 294

20 8 13
20

20
20

20
8 13

20
20

294

2 92 294 22 4
108

108 20 8 13
20

273

108
273

0 396

2

− =
+ =

=
−

+ − =

= +
=

=
−

=

= = =

 N
 N

 N

 N  N

 N  N
 N

 N  N
 N

 N
 N

a f
a f

a f

µ
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P6.57 (a) Since the centripetal acceleration of a person is downward (toward
the axis of the earth), it is equivalent to the effect of a falling
elevator. Therefore,

′ = −F F
mv

rg g

2

 or F Fg g> ′

(b) At the poles v = 0  and ′ = = = =F F mgg g 75 0 9 80 735. .a f  N  down.

FIG. P6.57

At the equator, ′ = − = − =F F mag g c 735 75 0 0 033 7 732 N  N  N. .b g  down.

P6.58 (a) Since the object of mass m2  is in equilibrium, F T m gy∑ = − =2 0

or T m g= 2 .

(b) The tension in the string provides the required centripetal acceleration of the puck.

Thus, F T m gc = = 2 .

(c) From F
m v

Rc =
1

2

we have v
RF
m

m
m

gRc= =
F
HG
I
KJ1

2

1
.

P6.59 (a) v =
F
HG

I
KJ =300

88 0
60 0

440 mi h
 ft s

 mi h
 ft sb g .

.

At the lowest point, his seat exerts an upward force; therefore, his weight seems to increase.
His apparent weight is

′ = + = + FHG
I
KJ =F mg m

v
rg

2 2

160
160
32 0

440
1 200

967
.
a f

 lb .

(b) At the highest point, the force of the seat on the pilot is directed down and

′ = − = −F mg m
v
rg

2

647 lb .

Since the plane is upside down, the seat exerts this downward force.

(c) When ′ =Fg 0 , then mg
mv

R
=

2

. If we vary the aircraft’s R and v such that the above is true,

then the pilot feels weightless.
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P6.60 For the block to remain stationary, Fy∑ = 0  and F max r∑ = .

n m m gp b1 = +e j  so f n m m gs s p b≤ = +µ µ1 1 1 e j .

At the point of slipping, the required centripetal force equals the
maximum friction force:

∴ + = +m m
v

r
m m gp b s p be j e jmax

2

1µ

or v rgsmax . . . .= = =µ 1 0 750 0 120 9 80 0 939a fa fa f  m s .

For the penny to remain stationary on the block:

F n m gy p∑ = ⇒ − =0 02  or n m gp2 =

and F ma f m
v
rx r p p∑ = ⇒ =
2

.

When the penny is about to slip on the block, f f np p s= =, max µ 2 2

or µ s p pm g m
v

r2

2

= max

v rgsmax . . . .= = =µ 2 0 520 0 120 9 80 0 782a fa fa f  m s

m  gb m  gp

m  gb m  gp

n 1

f p

f

m  gp

n  2

f p

FIG. P6.60

This is less than the maximum speed for the block, so the penny slips before the block starts to slip.
The maximum rotation frequency is

Max rpm = =
L
NM

O
QP
F
HG
I
KJ =

v
r

max .
.

.
2

0 782
1

2 0 120
60

62 2
π π

 m s
 rev

 m
 s

1 min
 rev minb g a f .

P6.61 v
r

T
= = =

2 2 9 00
15 0

3 77
π π .

.
.

 m
 s

 m s
a f
a f

(a) a
v
rr = =
2

1 58.  m s2

(b) F m g arlow  N= + =b g 455

(c) F m g arhigh  N= − =b g 328

(d) F m g armid  N upward and= + =2 2 397  at θ = = = °− −tan tan
.
.

.1 1 1 58
9 8

9 15
a
g
r  inward .

P6.62 Standing on the inner surface of the rim, and moving with it, each person will feel a normal force
exerted by the rim. This inward force causes the 3 00.  m s2  centripetal acceleration:

a
v
rc =
2

: v a rc= = =3 00 60 0 13 4. . . m s  m  m s2e ja f
The period of rotation comes from v

r
T

=
2π

: T
r

v
= = =

2 2 60 0
13 4

28 1
π π .

.
.

 m
 m s

 s
a f

so the frequency of rotation is f
T

= = = F
HG
I
KJ =

1 1
28 1

1
28 1

60
2 14

. .
.

 s  s
 s

1 min
 rev min .
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P6.63 (a) The mass at the end of the chain is in vertical equilibrium.
Thus T mgcosθ = .

Horizontally T ma
mv

rrsinθ = =
2

r

r

= +

= °+ =

2 50 4 00

2 50 28 0 4 00 5 17

. sin .

. sin . . .

θa f
a f

 m

 m  m

Then a
v

r =
2

5 17.  m
.

By division tan
.

θ = =
a
g

v
g

r
2

5 17

v g

v

2 5 17 5 17 9 80 28 0

5 19

= = °

=

. tan . . tan .

.

θ a fa fa f m s

 m s

2 2

(b) T mgcosθ =

T
mg

= =
°

=
cos

. .

cos .θ

50 0 9 80

28 0
555

 kg  m s
 N

2b ge j

 
T 

R  = 4.00 m 
θ 

l = 2.50 m 

r 

mg 

FIG. P6.63

P6.64 (a) The putty, when dislodged, rises and returns to the original level in time t. To find t, we use

v v atf i= + : i.e., − = + −v v gt  or t
v

g
=

2
 where v is the speed of a point on the rim of the wheel.

If R is the radius of the wheel, v
R

t
=

2π
, so t

v
g

R
v

= =
2 2π

.

Thus, v Rg2 = π  and v Rg= π .

(b) The putty is dislodged when F, the force holding it to the wheel is

F
mv

R
m g= =

2

π .

P6.65 (a) n
mv

R
=

2

f mg− = 0

f ns= µ v
R

T
=

2π

T
R
g

s=
4 2π µ

(b) T = 2 54.  s

# . 
rev
min

 rev
2.54 s

 s
min

 
rev
min

= F
HG
I
KJ =

1 60
23 6

f

mg

nn

FIG. P6.65
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P6.66 Let the x–axis point eastward, the y-axis upward, and the z-axis point southward.

(a) The range is Z
v

g
i i=
2 2sin θ

The initial speed of the ball is therefore

v
gZ

i
i

= =
°

=
sin

.
sin .

.
2

9 80 285
96 0

53 0
θ
a fa f

 m s

The time the ball is in the air is found from ∆y v t a tiy y= +
1
2

2  as

0 53 0 48 0 4 90 2= ° −. sin . . m s  m s2b ga f e jt t

giving t = 8 04.  s .

(b) v
R

ix
e i= =

× °
=

2
86 400

2 6 37 10 35 0

86 400
379

6
π φ πcos . cos .

 s

 m

 s
 m s

e j

(c) 360° of latitude corresponds to a distance of 2πRe , so 285 m is a change in latitude of

∆φ
π π

=
F
HG
I
KJ ° =

×

F
H
GG

I
K
JJ ° = × −S

Re2
360

285

6 37 10
360 2 56 10

6
3a f

e j
a f m

2  m
 degrees

.
.

The final latitude is then φ φ φf i= − = °− °= °∆ 35 0 0 002 56 34 997 4. . . .

The cup is moving eastward at a speed v
R

fx
e f=

2

86 400

π φcos

 s
, which is larger than the eastward

velocity of the tee by

∆ ∆

∆ ∆

v v v
R R

R

x fx fi
e

f i
e

i i

e
i i i

= − = − = − −

= + −

2
86 400

2
86 400

2
86 400

π
φ φ

π
φ φ φ

π
φ φ φ φ φ

 s  s

 s

cos cos cos cos

cos cos sin sin cos

b g

Since ∆φ  is such a small angle, cos∆φ ≈ 1 and ∆ ∆v
R

x
e

i≈
2

86 400
π

φ φ
 s

sin sin .

∆vx ≈
×

° °= × −
2 6 37 10

86 400
35 0 0 002 56 1 19 10

6
2

π .
sin . sin . .

 m

 s
 m s

e j

(d) ∆ ∆x v tx= = × = =−b g e ja f1 19 10 8 04 0 095 5 9 552. . . . m s  s  m  cm
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P6.67 (a) If the car is about to slip down the incline, f is directed up
the incline.

F n f mgy∑ = + − =cos sinθ θ 0 where f ns= µ  gives

n
mg

s
=

+cos tanθ µ θ1b g  and f
mgs

s
=

+
µ

θ µ θcos tan1b g .

Then, F n f m
v

Rx∑ = − =sin cos minθ θ
2

 yields

v
Rg s

s
min

tan
tan

=
−

+

θ µ
µ θ
b g

1
.

When the car is about to slip up the incline, f is directed
down the incline. Then, F n f mgy∑ = − − =cos sinθ θ 0

with f ns= µ  yields

n
mg

s
=

−cos tanθ µ θ1b g  and f
mgs

s
=

−
µ

θ µ θcos tan1b g .

In this case, F n f m
v

Rx∑ = + =sin cos maxθ θ
2

, which gives

v
Rg s

s
max

tan
tan

=
+

−

θ µ
µ θ
b g

1
.

(b) If v
Rg s

s
min

tan

tan
=

−

+
=

θ µ
µ θ
b g

1
0 , then µ θs = tan .

(c) vmin

. tan . .

. tan .
.=

°−

+ °
=

100 9 80 10 0 0 100

1 0 100 10 0
8 57

 m  m s
 m s

2a fe ja f
a f

vmax

. tan . .

. tan .
.=

°+

− °
=

100 9 80 10 0 0 100

1 0 100 10 0
16 6

 m  m s
 m s

2a fe ja f
a f

n

f

t

mg

t

θ

θ

n cos

n sinf cos

mg

f sin

θθ

θ

θ

n

f

t

mg

t

θ

θ

n cos

n sin

f cos

mg

f sin

θ

θ

θ

θ

FIG. P6.67
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P6.68 (a) The bead moves in a circle with radius v R= sinθ  at a speed
of

v
r

T
R
T

= =
2 2π π θsin

The normal force has
an inward radial component of n sinθ
and an upward component of n cosθ

F ma n mgy y∑ = − =: cosθ 0

or

n
mg

=
cosθ

FIG. P6.68(a)

Then F n m
v
rx∑ = =sinθ
2

 becomes
mg m

R
R
Tcos

sin
sin

sin
θ

θ
θ

π θF
HG
I
KJ = F

HG
I
KJ

2 2

which reduces to 
g R

T
sin

cos
sinθ

θ
π θ

=
4 2

2

This has two solutions: sinθ θ= ⇒ = °0 0 (1)

and cosθ
π

=
gT

R

2

24
(2)

If R = 15 0.  cm and T = 0 450.  s , the second solution yields

cos
. .

.
.θ

π
= =

9 80 0 450

4 0 150
0 335

2

2

 m s  s

 m

2e ja f
a f  and θ = °70 4.

Thus, in this case, the bead can ride at two positions θ = °70 4.  and θ = °0 .

(b) At this slower rotation, solution (2) above becomes

cos
. .

.
.θ

π
= =

9 80 0 850

4 0 150
1 20

2

2

 m s  s

 m

2e ja f
a f , which is impossible.

In this case, the bead can ride only at the bottom of the loop, θ = °0 . The loop’s rotation

must be faster than a certain threshold value in order for the bead to move away from the
lowest position.
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P6.69 At terminal velocity, the accelerating force of gravity is balanced by frictional drag: mg arv br v= + 2 2

(a) mg v v= × + ×− −3 10 10 0 870 109 10 2. .e j e j

For water, m V= = L
NM

O
QP

−ρ π1 000
4
3

10 5 3
 kg m  m3 e j

4 11 10 3 10 10 0 870 1011 9 10 2. . .× = × + ×− − −e j e jv v

Assuming v is small, ignore the second term on the right hand side: v = 0 013 2.  m s .

(b) mg v v= × + ×− −3 10 10 0 870 108 8 2. .e j e j
Here we cannot ignore the second term because the coefficients are of nearly equal
magnitude.

4 11 10 3 10 10 0 870 10

3 10 3 10 4 0 870 4 11

2 0 870
1 03

8 8 8 2

2

. . .

. . . .

.
.

× = × + ×

=
− ± +

=

− − −e j e j
a f a fa f
a f

v v

v  m s

(c) mg v v= × + ×− −3 10 10 0 870 107 6 2. .e j e j
Assuming v > 1 m s , and ignoring the first term:

4 11 10 0 870 105 6 2. .× = ×− −e jv v = 6 87.  m s

P6.70 v
mg
b

bt
m

= FHG
I
KJ −

−F
HG
I
KJ

L
NM

O
QP1 exp  where exp x exa f =  is the exponential function.

At t →∞ , v v
mg
bT→ =

At t = 5 54.  s 0 500 1
5 54

9 00
. exp

.
.

v v
b

T T= −
−F
HG

I
KJ

L
N
MM

O
Q
PP

 s
 kg
a f

exp
.

.
. ;

.
.

ln . . ;

. .

.
.

−F
HG

I
KJ =

−
= = −

= =

b

b

b

5 54
9 00

0 500

5 54
9 00

0 500 0 693

9 00 0 693

5 54
1 13

 s
 kg

 s
 kg

 kg

 s
 m s

a f

a f

b ga f

(a) v
mg
bT = vT = =

9 00 9 80

1 13
78 3

. .

.
.

 kg  m s

 kg s
 m s

2b ge j

(b) 0 750 1
1 13

9 00
. exp

.
.

v v
t

T T= −
−F
HG

I
KJ

L
NM

O
QP s

exp
.

.
.

−F
HG

I
KJ =

1 13
9 00

0 250
t

 s

t =
−

=
9 00 0 250

1 13
11 1

. ln .
.

.
a f

 s  s

continued on next page
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(c)
dx
dt

mg
b

bt
m

= FHG
I
KJ − −FHG

I
KJ

L
NM

O
QP1 exp ; dx

mg
b

bt
m

dt
x

x t

0

1
0

z z= FHG IKJ −
−F
HG
I
KJ

L
NM

O
QPexp

x x
mgt

b
m g
b

bt
m

mgt
b

m g
b

bt
m

t

− = +
F
HG
I
KJ

−F
HG
I
KJ = +

F
HG
I
KJ

−F
HG
I
KJ −

L
NM

O
QP0

2

2
0

2

2 1exp exp

At t = 5 54.  s , x = +
F
H
GG

I
K
JJ − −9 00

5 54 9 00 9 80

1 13
0 693 1

2

2.
. . .

.
exp . kg 9.80 m s

 s
1.13 kg s

 kg  m s

 m s
2

2

e j
b g e j
b g

a f

x = + − =434 626 0 500 121 m  m  m.a f

P6.71 F L T mg L T ma

F L T L T m
v
r

m
v
r

L T
L T

L T

L T

T

y y y y

x x x

∑

∑

= − − = °− °− = =

= + = °+ °=

=
°
=

∴ °+ °=
°− °=

+
°
°
=

°

−
°
°
=

°

cos . sin . .

sin . cos .

.
.

. cos .
.

sin . cos . .
cos . sin . .

cos .
sin .

.
sin .

sin .
cos .

.

cot

20 0 20 0 7 35 0

20 0 20 0

0 750
35 0

60 0 20 0
16 3

20 0 20 0 16 3
20 0 20 0 7 35

20 0
20 0

16 3
20 0

20 0
20 0

7 35

2

2 2

 N

 kg
 m s

 m
 N

 N
 N

 N

 N
cos20.0

b g
a f

20 0 20 0
16 3

20 0
7 35

20 0
3 11 39 8

12 8

. tan .
.

sin .
.

cos .
. .

.

°+ ° =
°
−

°
=

=

a f
a f

 N  N

 N

 N

T

T

FIG. P6.71
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P6.72 (a) t ds m
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

a f a f
1 00
2 00
3 00
4 00
5 00
6 00
7 00
8 00
9 00

10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0

4 88
18 9
42 1
73 8

112
154
199
246
296
347
399
452
505
558
611
664
717
770
823
876

(b)  

  (s) 

  (m) 
900 

800 

700 

600 

500 

400 

300 

200 

100 

0 
0 2 4 6 8 10 12 14 16 18 20 

t 

d 

(c) A straight line fits the points from t = 11 0.  s  to 20.0 s quite precisely. Its slope is the terminal
speed.

vT = =
−
−

=slope
 m  m

20.0 s  s
 m s

876 399
11 0

53 0
.

.

*P6.73 v v kxi= −  implies the acceleration is a
dv
dt

k
dx
dt

kv= = − = −0

Then the total force is F ma m kv∑ = = −a f
The resistive force is opposite to the velocity: F v∑ = −km .

ANSWERS TO EVEN PROBLEMS

P6.2 215 N horizontally inward P6.12 2 06 103. ×  rev min

P6.4 6 22 10 12. × −  N
P6.14 (a) R

T
m

g
2

−FHG
I
KJ ; (b) 2T upward

P6.6 (a) 1 65.  km s ; (b) 6 84 103. ×  s

P6.16 (a) 1 33.  m s2 ; (b) 1 79.  m s2  forward and
48.0° inward

P6.8 0.966 g

P6.10 (a) − +0 233 0 163. .  m s2i je j ; (b) 6 53.  m s ; P6.18 8.88 N

(c) − +0 181 0 181. .  m s2i je j
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P6.20 (a) 8.62 m; (b) Mg downward; P6.46 (a) 7 70 10 4. × −  kg m; (b) 0.998 N;
(c) 8 45.  m s2 , Unless they are belted in,
the riders will fall from the cars.

(c) The ball reaches maximum height 49 m.
Its flight lasts 6.3 s and its impact speed is
27 m s .

P6.22 15 3.  m s Straight across the dashboard to
the left P6.48 (a) see the solution; (b) 81.8 m; (c) 15.9°

P6.24 0.527° P6.50 0 835.  rev s

P6.26 (a) 1.41 h; (b) 17.1
P6.52 (a) mg

mv
R

−
2

; (b) v gR=

P6.28 µ k
vt L

g a t
=

−

+

2
2

a f
b g P6.54 (a) 2 63.  m s2 ; (b) 201 m; (c) 17 7.  m s

P6.56 (a) 106 N; (b) 0.396P6.30 (a) 2 38 105. ×  m s2  horizontally inward
= ×2 43 104. g ; (b) 360 N inward
perpendicular to the cone; P6.58 (a) m g2 ; (b) m g2 ; (c) 

m
m

gR2

1

F
HG
I
KJ(c) 47 5 104. ×  m s2

P6.32 (a) 6 27.  m s  downward2 ; (b) 784 N up; P6.60 62 2.  rev min
(c) 283 N up

P6.62 2 14.  rev min
P6.34 (a) 53 8.  m s ; (b) 148 m

P6.64 (a) v Rg= π ; (b) m gπ
P6.36 1.40

P6.66 (a) 8.04 s; (b) 379 m s; (c) 1 19.  cm s;
P6.38 −0 212.  m s2

(d) 9.55 cm

P6.40 see the solution P6.68 (a) either 70.4° or 0°; (b) 0°

P6.42 36 5.  m s P6.70 (a) 78 3.  m s ; (b) 11.1 s; (c) 121 m

P6.44 (a) 0 980.  m s ; (b) see the solution P6.72 (a) and (b) see the solution; (c) 53 0.  m s
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ANSWERS TO QUESTIONS

Q7.1 The force is perpendicular to every increment of displacement.
Therefore, F r⋅ =∆ 0 .

Q7.2 (a) Positive work is done by the chicken on the dirt.

(b) No work is done, although it may seem like there is.

(c) Positive work is done on the bucket.

(d) Negative work is done on the bucket.

(e) Negative work is done on the person’s torso.

Q7.3 Yes. Force times distance over which the toe is in contact with
the ball. No, he is no longer applying a force. Yes, both air
friction and gravity do work.

Q7.4 Force of tension on a ball rotating on the end of a string. Normal force and gravitational force on an
object at rest or moving across a level floor.

Q7.5 (a) Tension (b) Air resistance

(c) Positive in increasing velocity on the downswing.
Negative in decreasing velocity on the upswing.

Q7.6 No. The vectors might be in the third and fourth quadrants, but if the angle between them is less
than 90° their dot product is positive.

Q7.7 The scalar product of two vectors is positive if the angle between them is between 0 and 90°. The
scalar product is negative when 90 180°< < °θ .

Q7.8 If the coils of the spring are initially in contact with one another, as the load increases from zero, the
graph would be an upwardly curved arc. After the load increases sufficiently, the graph will be
linear, described by Hooke’s Law. This linear region will be quite large compared to the first region.
The graph will then be a downward curved arc as the coiled spring becomes a completely straight
wire. As the load increases with a straight wire, the graph will become a straight line again, with a
significantly smaller slope. Eventually, the wire would break.

Q7.9 ′ =k k2 . To stretch the smaller piece one meter, each coil would have to stretch twice as much as one
coil in the original long spring, since there would be half as many coils. Assuming that the spring is
ideal, twice the stretch requires twice the force.

191
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Q7.10 Kinetic energy is always positive. Mass and squared speed are both positive. A moving object can
always do positive work in striking another object and causing it to move along the same direction
of motion.

Q7.11 Work is only done in accelerating the ball from rest. The work is done over the effective length of the
pitcher’s arm—the distance his hand moves through windup and until release.

Q7.12 Kinetic energy is proportional to mass. The first bullet has twice as much kinetic energy.

Q7.13 The longer barrel will have the higher muzzle speed. Since the accelerating force acts over a longer
distance, the change in kinetic energy will be larger.

Q7.14 (a) Kinetic energy is proportional to squared speed. Doubling the speed makes an object's
kinetic energy four times larger.

(b) If the total work on an object is zero in some process, its speed must be the same at the final
point as it was at the initial point.

Q7.15 The larger engine is unnecessary. Consider a 30 minute commute. If you travel the same speed in
each car, it will take the same amount of time, expending the same amount of energy. The extra
power available from the larger engine isn’t used.

Q7.16 If the instantaneous power output by some agent changes continuously, its average power in a
process must be equal to its instantaneous power at least one instant. If its power output is constant,
its instantaneous power is always equal to its average power.

Q7.17 It decreases, as the force required to lift the car decreases.

Q7.18 As you ride an express subway train, a backpack at your feet has no kinetic energy as measured by
you since, according to you, the backpack is not moving. In the frame of reference of someone on the
side of the tracks as the train rolls by, the backpack is moving and has mass, and thus has kinetic
energy.

Q7.19 The rock increases in speed. The farther it has fallen, the more force it might exert on the sand at the
bottom; but it might instead make a deeper crater with an equal-size average force. The farther it
falls, the more work it will do in stopping. Its kinetic energy is increasing due to the work that the
gravitational force does on it.

Q7.20 The normal force does no work because the angle between the normal force and the direction of
motion is usually 90°. Static friction usually does no work because there is no distance through
which the force is applied.

Q7.21 An argument for: As a glider moves along an airtrack, the only force that the track applies on the
glider is the normal force. Since the angle between the direction of motion and the normal force is
90°, the work done must be zero, even if the track is not level.
Against: An airtrack has bumpers. When a glider bounces from the bumper at the end of the
airtrack, it loses a bit of energy, as evidenced by a decreased speed. The airtrack does negative work.

Q7.22 Gaspard de Coriolis first stated the work-kinetic energy theorem. Jean Victor Poncelet, an engineer
who invaded Russia with Napoleon, is most responsible for demonstrating its wide practical
applicability, in his 1829 book Industrial Mechanics. Their work came remarkably late compared to the
elucidation of momentum conservation in collisions by Descartes and to Newton’s Mathematical
Principles of the Philosophy of Nature, both in the 1600’s.
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SOLUTIONS TO PROBLEMS

Section 7.1 Systems and Environments

Section 7.2 Work Done by a Constant Force

P7.1 (a) W F r= = °=∆ cos . . cos . .θ 16 0 2 20 25 0 31 9 N  m  Ja fa f

(b), (c) The normal force and the weight are both at 90° to the displacement in any time interval.
Both do 0  work.

(d) W∑ = + + =31 9 0 0 31 9. . J  J

P7.2 The component of force along the direction of motion is

F cos . cos . .θ = °=35 0 25 0 31 7 N  Na f .

The work done by this force is

W F r= = = ×cos . . .θa f a fa f∆ 31 7 50 0 1 59 103 N  m  J .

P7.3 Method One.

Let φ represent the instantaneous angle the rope makes with the vertical as
it is swinging up from φ i = 0  to φ f = °60 . In an incremental bit of motion

from angle φ to φ φ+ d , the definition of radian measure implies that

∆r d= 12 ma f φ . The angle θ  between the incremental displacement and the

force of gravity is θ φ= °+90 . Then cos cos sinθ φ φ= °+ = −90b g .

The work done by the gravitational force on Batman is FIG. P7.3

W F dr mg d

mg d

i

f

= = −

= − = − −

= − − °+ = − ×

z z
z

=

= °

°
°

cos sin

sin . cos

cos .

θ φ φ

φ φ φ

φ

φ

b ga f

a f b ge ja fb g

a fa fa f

12

12 80 9 8 12

784 12 60 1 4 70 10

0

60

0

60

0

60

3

 m

 m  kg  m s  m

 N  m  J

2

Method Two.

The force of gravity on Batman is mg = =80 9 8 784 kg  m s  N2b ge j.  down. Only his vertical

displacement contributes to the work gravity does. His original y-coordinate below the tree limb is
–12 m. His final y-coordinate is − °= −12 60 6 m  ma fcos . His change in elevation is

− − − =6 12 6 m  m  ma f . The work done by gravity is

W F r= = °= −∆ cos cos .θ 784 6 180 4 70 N  m  kJa fa f .
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P7.4 (a) W mgh= = × = ×− −3 35 10 9 80 100 3 28 105 2. . .e ja fa f J  J

(b) Since R mg= , Wair resistance  J= − × −3 28 10 2.

Section 7.3 The Scalar Product of Two Vectors

P7.5 A = 5 00. ; B = 9 00. ; θ = °50 0.
A B⋅ = = °=ABcos . . cos . .θ 5 00 9 00 50 0 28 9a fa f

P7.6 A B i j k i j k⋅ = + + ⋅ + +A A A B B Bx y z x y z
� � � � � �e j e j

A B i i i j i k

j i j j j k

k i k j k k

A B

⋅ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

⋅ = + +

A B A B A B

A B A B A B

A B A B A B

A B A B A B

x x x y x z

y x y y y z

z x z y z z

x x y y z z

� � � � � �

� � � � � �

� � � � � �

e j e j e j
e j e j e j
e j e j e j

P7.7 (a) W F x F yx y= ⋅ = + = ⋅ + − ⋅ =F r∆ 6 00 3 00 2 00 1 00 16 0. . . . .a fa f a fa f N m  N m  J

(b) θ =
⋅F
HG
I
KJ =

+ − +
= °− −cos cos

. . . .
.1 1

2 2 2 2

16

6 00 2 00 3 00 1 00
36 9

F r∆
∆F r a f a fe j a f a fe j

P7.8 We must first find the angle between the two vectors. It is:

θ = °− °− °− °= °360 118 90 0 132 20 0. .

Then

F v⋅ = = °Fv cos . . cos .θ 32 8 0 173 20 0 N  m sa fb g

or F v⋅ =
⋅

= =5 33 5 33 5 33. . .
N m

s
 

J
s

 W

FIG. P7.8

P7.9 (a) A i j= −3 00 2 00. � . �

B i j= −4 00 4 00. � . � θ =
⋅

=
+

= °− −cos cos
. .

. .
.1 1 12 0 8 00

13 0 32 0
11 3

A B
AB a fa f

(b) B i j k= − +3 00 4 00 2 00. � . � . �

A i j= − +2 00 4 00. � . � cos
. .

. .
θ =

⋅
=

− −A B
AB

6 00 16 0

20 0 29 0a fa f θ = °156

(c) A i j k= − +� . � . �2 00 2 00

B j k= +3 00 4 00. � . � θ =
⋅F
HG
I
KJ =

− +
⋅

F
HG

I
KJ = °− −cos cos

. .
. .

.1 1 6 00 8 00
9 00 25 0

82 3
A B
AB
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P7.10 A B i j k i j k− = + − − − + +3 00 2 00 5 00. � � � � . � . �e j e j
A B i j k

C A B j k i j k

− = − −

⋅ − = − ⋅ − − = + − + + =

4 00 6 00

2 00 3 00 4 00 6 00 0 2 00 18 0 16 0

. � � . �

. � . � . � � . � . . .a f e j e j a f a f

Section 7.4 Work Done by a Varying Force

P7.11 W Fdx
i

f

= =z  area under curve from xi  to x f

(a) xi = 0 x f = 8 00.  m

W =  area of triangle ABC AC= FHG
I
KJ ×

1
2

 altitude,

W0 8
1
2

8 00 6 00 24 0→ = FHG
I
KJ × × =. . . m  N  J

(b) xi = 8 00.  m x f = 10 0.  m

W =  area of ∆CDE CE= FHG
I
KJ ×

1
2

 altitude,

W8 10
1
2

2 00 3 00 3 00→ = FHG
I
KJ × × − = −. . . m  N  Ja f a f

(c) W W W0 10 0 8 8 10 24 0 3 00 21 0→ → →= + = + − =. . .a f  J

FIG. P7.11

P7.12 F xx = −8 16a f N

(a) See figure to the right

(b) Wnet
 m  N  m  N

 J=
−

+ = −
2 00 16 0

2
1 00 8 00

2
12 0

. . . .
.

a fa f a fa f

FIG. P7.12
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P7.13 W F dxx= z
and W equals the area under the Force-Displacement curve

(a) For the region 0 5 00≤ ≤x .  m ,

W = =
3 00 5 00

2
7 50

. .
.

 N  m
 J

a fa f

(b) For the region 5 00 10 0. .≤ ≤x ,

W = =3 00 5 00 15 0. . . N  m  Ja fa f

(c) For the region 10 0 15 0. .≤ ≤x ,

W = =
3 00 5 00

2
7 50

. .
.

 N  m
 J

a fa f

(d) For the region 0 15 0≤ ≤x .

W = + + =7 50 7 50 15 0 30 0. . . .a f J  J

FIG. P7.13

P7.14 W d x y dx
i

f

= ⋅ = + ⋅z zF r i j i4 3
0

5
� � �e j N

 m

4 0 4
2

50 0
0

5 2

0

5

 N m  N m  J
 m  m

b g b gxdx
x

+ = =z .

P7.15 k
F
y

Mg
y

= = =
×

= ×−

4 00 9 80

2 50 10
1 57 102

3. .

.
.

a fa f N
 m

 N m

(a) For 1.50 kg mass y
mg
k

= =
×

=
1 50 9 80

1 57 10
0 9383

. .

.
.

a fa f
 cm

(b) Work =
1
2

2ky

Work = × ⋅ × =−1
2

1 57 10 4 00 10 1 253 2 2
. . . N m  m  Je je j

P7.16 (a) Spring constant is given by F kx=

k
F
x

= = =
230

0 400
575

 N
 m

 N m
a f
a f.

(b) Work = = =F xavg  N  m  J
1
2

230 0 400 46 0a fa f. .
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*P7.17 (a) F k x k x k x k x y

x x

x

h happlied leaf helper

 N  
N
m

 
N
m

 m

 N
 N m

 m

= + = + −

× = × + × −

=
×
×

=

A A A A

A A

A

0

5 5 5

5

5

5 10 5 25 10 3 60 10 0 5

6 8 10
8 85 10

0 768

b g
b g. . .

.
.

.

(b) W k x k xh h= + = ×F
HG

I
KJ + ×

= ×

1
2

1
2

1
2

5 25 10 0 768
1
2

3 60 10 0 268

1 68 10

2 2 5 2 5 2

5

A A . . . .

.

 
N
m

 m  
N
m

 m

 J

a f a f

P7.18 (a) W d

W x x dx

W x
x x

W

i

f

= ⋅

= + − °

= + −

= + − =

z
z

F r

15 000 10 000 25 000 0

15 000
10 000

2
25 000

3

9 00 1 80 1 80 9 00

2

0

0 600

2 3

0

0 600

 N  N m  N m

 kJ  kJ  kJ  kJ

2
 m

 m

e j cos

. . . .

.

.

(b) Similarly,

W

W

= + −

=

15 0 1 00
10 0 1 00

2

25 0 1 00

3
11 7

2 3

. .
. . . .

.

 kN  m
 kN m  m  kN m  m

 kJ ,  larger by 29.6%

2

a fa f b ga f e ja f

P7.19 4 00
1
2

0 100 2. . J  m= ka f
∴ =k 800 N m  and to stretch the spring to 0.200 m requires

∆W = − =
1
2

800 0 200 4 00 12 02a fa f. . . J  J

P7.20 (a) The radius to the object makes angle θ  with the horizontal, so
its weight makes angle θ  with the negative side of the x-axis,
when we take the x–axis in the direction of motion tangent to
the cylinder.

F ma

F mg

F mg

x x∑ =

− =

=

cos

cos

θ

θ

0

FIG. P7.20

(b) W d
i

f

= ⋅z F r

We use radian measure to express the next bit of displacement as dr Rd= θ  in terms of the
next bit of angle moved through:

W mg Rd mgR

W mgR mgR

= =

= − =

z cos sinθ θ θ
π

π

0

2

0

2

1 0a f
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*P7.21 The same force makes both light springs stretch.

(a) The hanging mass moves down by

x x x
mg
k

mg
k

mg
k k

= + = + = +
F
HG

I
KJ

= +
F
HG

I
KJ = × −

1 2
1 2 1 2

2

1 1

1 5
1

1 200
1

2 04 10. . kg 9.8 m s
 m

 N
 m

1 800 N
 m2

(b) We define the effective spring constant as

k
F
x

mg
mg k k k k

= =
+

= +
F
HG

I
KJ

= +
F
HG

I
KJ =

−

−

1 1
1 1

1 1
720

1 2 1 2

1

1

b g
 m

1 200 N
 m

1 800 N
 N m

*P7.22 See the solution to problem 7.21.

(a) x mg
k k

= +
F
HG

I
KJ

1 1

1 2

(b) k
k k

= +
F
HG

I
KJ
−

1 1

1 2

1

P7.23 k
F
x

= LNM
O
QP = =

⋅
=

N
m

kg m s
m

kg
s

2

2

Section 7.5 Kinetic Energy and the Work-Kinetic Energy Theorem

Section 7.6 The Non-Isolated System—Conservation of Energy

P7.24 (a) K A = =
1
2

0 600 2 00 1 20
2

. . . kg  m s  Jb gb g

(b)
1
2

2mv KB B= : v
K
mB

B= = =
2 2 7 50

0 600
5 00

a fa f.
.

.  m s

(c) W K K K m v vB A B A∑ = = − = − = − =∆
1
2

7 50 1 20 6 302 2e j . . . J  J  J

P7.25 (a) K mv= = =
1
2

1
2

0 300 15 0 33 82 2
. . . kg  m s  Jb gb g

(b) K = = = =
1
2

0 300 30 0
1
2

0 300 15 0 4 4 33 8 1352 2. . . . .a fa f a fa f a f a f  J
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P7.26 v i ji = − =6 00 2 00. � . �e j  m s

(a) v v vi ix iy= + =2 2 40 0.  m s

K mvi i= = =
1
2

1
2

3 00 40 0 60 02 . . . kg  m s  J2 2b ge j

(b) v i jf = +8 00 4 00. � . �

v f f f
2 64 0 16 0 80 0= ⋅ = + =v v . . .  m s2 2

∆K K K m v vf i f i= − = − = − =
1
2

3 00
2

80 0 60 0 60 02 2e j a f.
. . .  J

P7.27 Consider the work done on the pile driver from the time it starts from rest until it comes to rest at
the end of the fall. Let d = 5.00 m represent the distance over which the driver falls freely, and
h = 0 12.  m the distance it moves the piling.

W K∑ = ∆ : W W mv mvf igravity beam+ = −
1
2

1
2

2 2

so mg h d F db ga f d ia f+ °+ °= −cos cos0 180 0 0 .

Thus, F
mg h d

d
=

+
= = ×

b ga f b ge ja f2 100 9 80 5 12

0 120
8 78 105

 kg  m s  m

 m
 N

2. .

.
. . The force on the pile

driver is upward .

P7.28 (a) ∆K K K mv Wf i f= − = − = =∑1
2

02  (area under curve from x = 0  to x = 5 00.  m)

v
mf = = =

2 2 7 50
4 00

1 94
area  J

 kg
 m s

a f a f.
.

.

(b) ∆K K K mv Wf i f= − = − = =∑1
2

02  (area under curve from x = 0  to x = 10 0.  m)

v
mf = = =

2 2 22 5
4 00

3 35
area  J

 kg
 m s

a f a f.
.

.

(c) ∆K K K mv Wf i f= − = − = =∑1
2

02  (area under curve from x = 0  to x = 15 0.  m)

v
mf = = =

2 2 30 0
4 00

3 87
area  J

 kg
 m s

a f a f.
.

.

P7.29 (a) K W K mvi f f+ = =∑ 1
2

2

0
1
2

15 0 10 780 4 563 2
+ = × =∑ −W . . kg  m s  kJe jb g

(b) F
W

r
= =

×
°
=

∆ cos
.

cos
.

θ
4 56 10

0
6 34

3  J
0.720 m

 kNa f

(c) a
v v

x
f i

f
=

−
=

−
=

2 2 2

2

780 0

2 0 720
422

 m s

 m
 km s2b g

a f.

(d) F ma∑ = = × × =−15 10 422 10 6 343 3 kg  m s  kN2e je j .
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P7.30 (a) v f = × = ×0 096 3 10 2 88 108 7. . m s  m se j
K mvf f= = × × = ×− −1

2
1
2

9 11 10 2 88 10 3 78 102 31 7 2 16. . . kg  m s  Je je j

(b) K W Ki f+ = : 0 + =F r K f∆ cosθ

F 0 028 0 3 78 10 16. cos . m  Ja f °= × −

F = × −1 35 10 14.  N

(c) F ma∑ = ; a
F

m
= =

×
×

= ×∑ −

−
+1 35 10

9 11 10
1 48 10

14

31
16.

.
.

 N
 kg

 m s2

(d) v v a txf xi x= + 2 88 10 0 1 48 107 16. .× = + × m s  m s2e jt
t = × −1 94 10 9.  s

Check: x x v v tf i xi xf= + +
1
2
d i

0 028 0
1
2

0 2 88 107. . m  m s= + + ×e jt
t = × −1 94 10 9.  s

Section 7.7 Situations Involving Kinetic Friction

P7.31 F may y∑ = : n − =392 0 N
n

f nk k

=

= = =

392

0 300 392 118

 N

 N  Nµ .a fa f

(a) W F rF = = °=∆ cos . cosθ 130 5 00 0 650a fa f  J

(b) ∆ ∆E f xkint  J= = =118 5 00 588a fa f.

(c) W n rn = = °=∆ cos . cosθ 392 5 00 90 0a fa f
FIG. P7.31

(d) W mg rg = = − ° =∆ cos . cosθ 392 5 00 90 0a fa f a f

(e) ∆ ∆K K K W Ef i= − = −∑ other int

1
2

0 650 588 0 0 62 02mv f − = − + + = J  J  J.

(f) v
K

mf
f= = =

2 2 62 0
40 0

1 76
.

.
.

 J
 kg

 m s
a f
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P7.32 (a) W kx kxs i f= − = × − =−1
2

1
2

1
2

500 5 00 10 0 0 6252 2 2 2a fe j. .  J

W mv mv mvs f i f= − = −
1
2

1
2

1
2

02 2 2

so v
W

mf = = =
∑2 2 0 625

2 00
0 791

c h a f.
.

. m s  m s

(b)
1
2

1
2

2 2mv f x W mvi k s f− + =∆

0 0 350 2 00 9 80 0 050 0 0 625
1
2

0 282
1
2

2 00

2 0 282
2 00

0 531

2

2

− + =

=

= =

. . . . .

. .

.

.
.

a fa fa fb g

b g
a f

 J  J

 J  kg

 m s  m s

mv

v

v

f

f

f

FIG. P7.32

P7.33 (a) W mgg = °+Acos .90 0 θa f
Wg = °= −10 0 9 80 5 00 110 1682. . . cos kg  m s  m  Jb gd ia f

(b) f n mgk k k= =µ µ θcos
∆

∆

E f mg

E
k kint

int  m  J

= =

= °=

A Aµ θcos

. . . . cos .5 00 0 400 10 0 9 80 20 0 184a fa fa fa f

(c) W FF = = =A 100 5 00 500a fa f.  J

(d) ∆ ∆ ∆K W E W W EF g= − = + − =∑ other int int  J148
FIG. P7.33

(e) ∆K mv mvf i= −
1
2

1
2

2 2

v
K

m
vf i= + = + =

2 2 148
10 0

1 50 5 652 2∆a f a f a f
.

. .  m s

P7.34 F may y∑ = : n + °− =70 0 20 0 147 0. sin . N  Na f
n = 123 N
f nk k= = =µ 0 300 123 36 9. . N  Na f

(a) W F r= = °=∆ cos . . cos .θ 70 0 5 00 20 0 329 N  m  Ja fa f

(b) W F r= = °=∆ cos . cos .θ 123 5 00 90 0 0 N  m  Ja fa f

(c) W F r= = °=∆ cos . cos .θ 147 5 00 90 0 0 N  ma fa f
FIG. P7.34

(d) ∆ ∆E F xint  N  m  J= = =36 9 5 00 185. .a fa f

(e) ∆ ∆K K K W Ef i= − = − = − = +∑ int  J  J  J329 185 144
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P7.35 vi = 2 00.  m s µ k = 0 100.

K f x W Ki k f− + =∆ other :
1
2

02mv f xi k− =∆

1
2

2mv mg xi k= µ ∆ ∆x
v

g
i

k
= = =

2 2

2

2 00

2 0 100 9 80
2 04

µ
.

. .
.

 m s
 m

b g
a fa f

Section 7.8 Power

*P7.36 Pav
 kg  m s

 s
 W= = = =

×
=

−

W
t

K

t
mv

t
f

∆ ∆ ∆

2 2

32

0 875 0 620

2 21 10
8 01

. .
.

b g
e j

P7.37 Power =
W
t

P = = =
mgh

t
700 10 0

8 00
875

 N  m
 s

 W
a fa f.

.

P7.38 A 1 300-kg car speeds up from rest to 55.0 mi/h = 24.6 m/s in 15.0 s. The output work of the engine is
equal to its final kinetic energy,

1
2

1 300 24 6 390
2

 kg  m s  kJb gb g. =

with power P =
390 000

104 J
15.0 s

 W~  around 30 horsepower.

P7.39 (a) W K∑ = ∆ , but ∆K = 0 because he moves at constant speed. The skier rises a vertical
distance of 60 0 30 0 30 0. sin . . m  ma f °= . Thus,

W Wgin
2 kg  m s  m  J  kJ= − = = × =70 0 9 8 30 0 2 06 10 20 64. . . . .b ge ja f .

(b) The time to travel 60.0 m at a constant speed of 2.00 m/s is 30.0 s. Thus,

Pinput
 J

30.0 s
 W  hp= =

×
= =

W
t∆

2 06 10
686 0 919

4.
. .

P7.40 (a) The distance moved upward in the first 3.00 s is

∆y vt= =
+L
NM

O
QP =

0 1 75
2

3 00 2 63
.

. .
 m s

 s  ma f .

The motor and the earth’s gravity do work on the elevator car:

1
2

180
1
2

1
2

650 1 75 0 650 2 63 1 77 10

2 2

2 4

mv W mg y mv

W g

i f+ + °=

= − + = ×

motor

motor  kg  m s  kg  m  J

∆ cos

. . .b gb g b g a f

Also, W t= P  so P = =
×

= × =
W
t

1 77 10
5 91 10 7 92

4
3.

. .
 J

3.00 s
 W  hp.

(b) When moving upward at constant speed v = 1 75.  m sb g  the applied force equals the

weight  kg  m s  N2= = ×650 9 80 6 37 103b ge j. . . Therefore,

P = = × = × =Fv 6 37 10 1 75 1 11 10 14 93 4. . . . N  m s  W  hpe jb g .
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P7.41 energy power time= ×

For the 28.0 W bulb:

Energy used = × = ⋅28 0 1 00 10 2804. . W  h  kilowatt hrsa fe j
total cost = + =$17. $0. $39.00 280 080 40 kWh kWha fb g

For the 100 W bulb:

Energy used = × = × ⋅100 1 00 10 1 00 104 3 W  h  kilowatt hrsa fe j. .

# bulb used =
×

=
1 00 10

13 3
4.

.
 h

750 h bulb

total cost = + × =13 3 420 1 00 10 080 603. $0. . $0. $85.b g e jb g kWh kWh

Savings with energy-efficient bulb = − =$85. $39. $46.60 40 20

*P7.42 (a) Burning 1 lb of fat releases energy 1
9 4 186

1 71 107 lb
454 g
1 lb

 kcal
1 g

 J
1 kcal

 JF
HG
I
KJ
F
HG

I
KJ
F
HG

I
KJ = ×. .

The mechanical energy output is 1 71 10 0 207. . cos× = Je ja f nF r∆ θ .

Then 3 42 10 06. cos× = ° J nmg y∆

3 42 10 50 9 8 80 0 150

3 42 10 5 88 10

6

6 3

. . .

. .

× =

× = ×

 J  kg  m s  steps  m

 J  J

2n

n

b ge jb ga f
e j

where the number of times she must climb the steps is n =
×
×

=
3 42 10
5 88 10

582
6

3
.
.

 J
 J

.

This method is impractical compared to limiting food intake.

(b) Her mechanical power output is

P = =
×

= = F
HG

I
KJ =

W
t

5 88 10
90 5 90 5

1
0 121

3.
. . .

 J
65 s

 W  W
 hp

746 W
 hp .

*P7.43 (a) The fuel economy for walking is 
1 3 1 1 30 10

423
8 h

220 kcal
 mi
h

 kcal
4 186 J

 J
1 gal

 mi galF
HG
I
KJ
F
HG

I
KJ

×F
HG

I
KJ =

.
.

(b) For bicycling 
1 10 1 30 10

776
8 h

400 kcal
 mi
h

1 kcal
4 186 J

 J
1 gal

 mi galF
HG
I
KJ
F
HG

I
KJ

×F
HG

I
KJ =

.
.
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Section 7.9 Energy and the Automobile

P7.44 At a speed of 26.8 m/s (60.0 mph), the car described in Table 7.2 delivers a power of P1 18 3= .  kW  to
the wheels. If an additional load of 350 kg is added to the car, a larger output power of

P P2 1= +  (power input to move 350 kg at speed v)

will be required. The additional power output needed to move 350 kg at speed v is:

∆ ∆Pout = =f v mg vrb g b gµ .

Assuming a coefficient of rolling friction of µ r = 0 016 0. , the power output now needed from the
engine is

P P2 1 0 016 0 350 9 80 26 8 18 3 1 47= + = +. . . . .b gb ge jb g kg  m s  m s  kW  kW2 .

With the assumption of constant efficiency of the engine, the input power must increase by the
same factor as the output power. Thus, the fuel economy must decrease by this factor:

fuel economy fuel economy  km Lb g b g b g2
1

2
1

18 3
18 3 1 47

6 40=
F
HG
I
KJ =

+
F
HG

I
KJ

P
P

.
. .

.

or fuel economy  km Lb g2 5 92= . .

P7.45 (a) fuel needed =
−

=
−

×

1
2

2 1
2

2 1
2

2 0mv mv mvf i f

useful energy per gallon eff. energy content of fuelb g
=

×
= × −

1
2

2

8
2900 24 6

0 150 1 34 10
1 35 10

 kg  m s

 J gal
 gal

b gb g
a fe j

.

. .
.

(b) 73 8.

(c) power = FHG
I
KJ
F
HG

I
KJ
F
HG

I
KJ

×F
HG

I
KJ =

1
38 0

55 0 1 00 1 34 10
0 150 8 08

8 gal
 mi

 mi
1.00 h

 h
3 600 s

 J
1 gal

 kW
.

. . .
. .a f

Additional Problems

P7.46 At start, v i j= ° + °40 0 30 0 40 0 30 0. cos . � . sin . � m s  m sb g b g
At apex, v i j i= ° + =40 0 30 0 0 34 6. cos . � � . � m s  m sb g b g
And K mv= = =

1
2

1
2

0 150 34 6 90 02 2
. . . kg  m s  Jb gb g
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P7.47 Concentration of Energy output = ⋅ F
HG

I
KJ =0 600 60 0

1
24 0. . . J kg step  kg

 step
1.50 m

 J mb gb g

F

Fv

v

v

= ⋅ =

=

=

=

24 0 1 24 0

70 0 24 0

2 92

. .

. .

.

 J m  N m J  N

 W  N

 m s

b gb g

a f
P

P7.48 (a) A i⋅ =� cosAa fa f1 α . But also, A i⋅ =� Ax .

Thus, A Axa fa f1 cosα =  or cosα =
A
A

x .

Similarly, cosβ =
A

A
y

and cosγ =
A
A

z

where A A A Ax y z= + +2 2 2 .

(b) cos cos cos2 2 2
2 2 2 2

2 1α β γ+ + = FHG
I
KJ +
F
HG
I
KJ + FHG

I
KJ = =

A
A

A

A
A
A

A
A

x y z

P7.49 (a) x t t= + 2 00 3.

Therefore,

v
dx
dt

t

K mv t t t

= = +

= = + = + +

1 6 00

1
2

1
2

4 00 1 6 00 2 00 24 0 72 0

2

2 2 2 2 4

.

. . . . .a fe j e j J

(b) a
dv
dt

t= = 12 0.a f m s2

F ma t t= = =4 00 12 0 48 0. . .a f a f N

(c) P = = + = +Fv t t t t48 0 1 6 00 48 0 2882 3. . .a fe j e j W

(d) W dt t t dt= = + =z zP
0

2 00
3

0

2 00

48 0 288 1 250
. .

.e j  J



206     Energy and Energy Transfer

*P7.50 (a) We write

F ax

a

a

b

b b

a a

b

b

b

b
b

=

=

=

= FHG
I
KJ =

=

= = =

= = × =

1 000 0 129

5 000 0 315

5
0 315
0 129

2 44

5 2 44
5

2 44
1 80

1 000
4 01 101.80

4

 N  m

 N  m

 N

0.129 m
 N m1.8

.

.

.

.
.

ln ln .
ln

ln .
.

.

a f
a f

a f

(b) W Fdx x dx

x

= = ×

= × = ×

=

z z
0

0 25
4 1.8

0

0 25

4
2 8

0

0 25
4

2 8

4 01 10

4 01 10
2 8

4 01 10
0 25

2 8

294

. .

. . .

.

.
.

.
.

.

 m

1.8

 m

1.8

 m

1.8

 
N

m

 
N

m
 

N
m

 m

 J

a f

*P7.51 The work done by the applied force is

W F dx k x k x dx

k x dx k x dx k
x

k
x

k
x

k
x

i

f x

x x x x

= = − − +

= + = +

= +

z z
z z

applied 1 2
2

0

1
0

2
2

0
1

2

0
2

3

0

1

2

2

3

2 3

2 3

e j
max

max max max max

max max

P7.52 (a) The work done by the traveler is mgh Ns  where N is the number of steps he climbs during
the ride.

N = (time on escalator)(n)

where time on escalator
vertical velocity of person

a f = h

and vertical velocity of person = +v nhs

Then, N
nh

v nhs
=

+

and the work done by the person becomes W
mgnhh
v nh

s

s
person =

+

continued on next page
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(b) The work done by the escalator is

W mgvte = = =power time force exerted speed timeb ga f a fb ga f

where t
h

v nhs
=

+
 as above.

Thus, W
mgvh

v nhe
s

=
+

.

As a check, the total work done on the person’s body must add up to mgh, the work an
elevator would do in lifting him.

It does add up as follows: W W W
mgnhh
v nh

mgvh
v nh

mgh nh v
v nh

mghe
s

s s

s

s
∑ = + =

+
+

+
=

+

+
=person

b g

P7.53 (a) ∆K mv W= − = ∑1
2

02 , so

v
W
m

2 2
=  and v

W
m

=
2

(b) W F d F
W
dx x= ⋅ = ⇒ =F d

*P7.54 During its whole motion from y = 10 0.  m to y = −3 20.  mm, the force of gravity and the force of the
plate do work on the ball. It starts and ends at rest

K W K

F y F x

mg F

F

i f

g p

p

p

+ =

+ °+ °=

− =

=
×

= ×

∑

−

0 0 180 0

10 003 2 0 003 20 0

5 10

3 2 10
1 53 103

5

∆ ∆cos cos

. .

.
.

 m  m

 kg 9.8 m s  m

 m
 N upward

2

b g b g
e ja f

P7.55 (a) P = = + = +FHG
I
KJ =
F
HG
I
KJFv F v at F

F
m

t
F
m

tib g 0
2

(b) P =
L
N
MM

O
Q
PP =

20 0
5 00

3 00 240
2.

.
.

 N
 kg

 s  W
a f a f
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*P7.56 (a) W F dx k x dx k x x x k x x x
i

f

x

x x

i a i a a i

i

i a

1 1 1 1 1
2

1
2

1
2

1

1

1 1
2

1
2

2= = = + − = +z z
+

b g e j

(b) W k x dx k x x x k x x x
x

x x

i a i a a i

i

i a

2 2 2 2
2

2
2

2
2

2

2

2 1
2

1
2

2= = − + − = −
−

− +

z b g e j

(c) Before the horizontal force is applied, the springs exert equal forces: k x k xi i1 1 2 2=

x
k x

ki
i

2
1 1

2
=

(d) W W k x k x x k x k x x

k x k x k x x k x
k x

k

k k x

a a i a a i

a a a i a
i

a

1 2 1
2

1 1 2
2

2 2

1
2

2
2

1 1 2
1 1

2

1 2
2

1
2

1
2

1
2

1
2

1
2

+ = + + −

= + + −

= +b g

*P7.57 (a) v a dt t t t dt

t t t
t t t

t t

t

= = − +

= − + = − +

z z
0

2 3

0

2 3 4

0

2 3 4

1 16 0 21 0 24

1 16
2

0 21
3

0 24
4

0 58 0 07 0 06

. . .

. . . . . .

e j

At t = 0 , vi = 0. At t = 2 5.  s ,

v

K W K

W mv

f

i f

f

= − + =

+ =

+ = = = ×

0 58 2 5 0 07 2 5 0 06 2 5 4 88

0
1
2

1
2

1 160 4 88 1 38 10

2 3 4

2 2 4

. . . . . . .

. .

 m s  s  m s  s  m s  s  m s

 kg  m s  J

3 4 5e ja f e ja f e ja f

b g

(b) At t = 2 5.  s ,

a = − + =1 16 2 5 2 5 0 240 2 5 5 342 3. . . . . . m s  s 0.210 m s  s  m s  s  m s3 4 5 2e j e ja f e ja f .

Through the axles the wheels exert on the chassis force

F ma∑ = = = ×1 160 5 34 6 19 103 kg  m s  N2. .

and inject power

P = = × = ×Fv 6 19 10 4 88 3 02 103 4. . . N  m s  Wb g .
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P7.58 (a) The new length of each spring is x L2 2+ , so its extension is

x L L2 2+ −  and the force it exerts is k x L L2 2+ −FH IK  toward its

fixed end. The y components of the two spring forces add to
zero. Their x components add to

F i i= − + −FH IK +
= − −

+

F
HG

I
KJ2 2 12 2

2 2 2 2
� �k x L L

x

x L
kx

L

x L
. FIG. P7.58

(b) W F dxx
i

f

= z W kx
L

x L
dx

A

= − −
+

F
HG

I
KJz 2 1

2 2

0

W k x dx kL x L x dx
A A

= − + +z z −
2 2

0
2 2 1 20

e j W k
x

kL
x L

A
A

= − +
+

2
2 1 2

2 0 2 2 1 2 0

e j
b g

W kA kL kL A L= − + + − +0 2 22 2 2 2 W kL kA kL A L= + − +2 22 2 2 2

*P7.59 For the rocket falling at terminal speed we have

F ma

R Mg

Mg D AvT

∑ =

+ − =

=

0
1
2

2ρ

(a) For the rocket with engine exerting thrust T and flying up at the same speed,

F ma

T Mg R
T Mg

∑ =

+ − − =
=

0
2

The engine power is P = = =Fv Tv MgvT T2 .

(b) For the rocket with engine exerting thrust Tb  and flying down steadily at 3vT ,

R D A v Mgb T= =
1
2

3 92ρ b g

F ma

T Mg Mg
T Mg

b

b

∑ =

− − + =
=

9 0
8

The engine power is P = = =Tv Mg v MgvT T8 3 24 .
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P7.60 (a) F i j i j1 25 0 35 0 35 0 20 5 14 3= ° + ° = +. cos . � sin . � . � . � N  Na fe j e j

F i j i j2 42 0 150 150 36 4 21 0= ° + ° = − +. cos � sin � . � . � N  Na fe j e j

(b) F F F i j∑ = + = − +1 2 15 9 35 3. � . �e j N

(c) a
F

i j= = − +∑
m

3 18 7 07. � . �e j m s2

(d) v v a i j i jf i t= + = + + − +4 00 2 50 3 18 7 07 3 00. � . � . � . � .e j e je ja f m s m s  s2

v i jf = − +5 54 23 7. � . �e j m s

(e) r r v af i it t= + +
1
2

2

r i j i j

r r i j

f

f

= + + + − +

= = − +

0 4 00 2 50 3 00
1
2

3 18 7 07 3 00

2 30 39 3

2. � . � . . � . � .

. � . �

e jb ga f e je ja f

e j

m s  s m s  s

 m

2

∆

(f) K mvf f= = + =
1
2

1
2

5 00 5 54 23 7 1 482 2 2. . . . kg m s  kJ2b g a f a f e j

(g) K mvf i= + ⋅∑1
2

2 F r∆

K

K

f

f

= + + − − +

= + =

1
2

5 00 4 00 2 50 15 9 2 30 35 3 39 3

55 6 1 426 1 48

2 2 2
. . . . . . .

. .

 kg m s  N  m  N  m

 J  J  kJ

b g a f a f b g a fa f a fa f

P7.61 (a) W K∑ = ∆ : W Ws g+ = 0
1
2

0 90 60 0

1
2

1 40 10 0 100 0 200 9 80 60 0 0

4 12

2

3 2

kx mg x

x

x

i − + °+ ° =

× × − ° =

=

∆

∆

∆

cos

. . . . sin .

.

a f

e j a f a fa fa f N m

 m

(b) W K E∑ = +∆ ∆ int : W W Es g+ − =∆ int 0
1
2

150 60 0

1
2

1 40 10 0 100 0 200 9 80 60 0 0 200 9 80 0 400 60 0 0

3 35

2

3 2

kx mg x mg x

x x

x

i k+ °− ° =

× × − ° − ° =

=

∆ ∆

∆ ∆

∆

cos cos

. . . . sin . . . . cos .

.

µ

 N m

 m

e j a f a fa fa f a fa fa fa f
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P7.62 (a) F L F LN mm N mm

2.00
4.00
6.00
8.00
10.0
12.0

15.0
32.0
49.0
64.0
79.0
98.0

14.0
16.0
18.0
20.0
22.0

112
126
149
175
190

a f a f a f a f

FIG. P7.62

(b) A straight line fits the first eight points, together with the origin. By least-square fitting, its
slope is

0 125 2% 125 2%.  N mm  N m± = ±

In F kx= , the spring constant is k
F
x

= , the same as the slope of the F-versus-x graph.

(c) F kx= = =125 0 105 13 1 N m  m  Nb ga f. .

P7.63 K W W K

mv kx kx mg x mv

kx mgx mv

i s g f

i i f f

i i f

+ + =

+ − + =

+ − + °=

1
2

1
2

1
2

1
2

0
1
2

0 100
1
2

2 2 2 2

2 2

∆ cos

cos

θ

FIG. P7.63

1
2

1 20 5 00 0 050 0 0 100 9 80 0 050 0 10 0
1
2

0 100

0 150 8 51 10 0 050 0

0 141
0 050 0

1 68

2

3 2

. . . . . . sin . .

. . .

.
.

.

 N cm  cm  m  kg  m s  m  kg

 J  J  kg

 m s

2b ga fb g b ge jb g b g
b g

− °=

− × =

= =

−

v

v

v

P7.64 (a) ∆ ∆E K m v vf iint = − = − −
1
2

2 2e j: ∆Eint  kg m s  J= − − =
1
2

0 400 6 00 8 00 5 602 2 2
. . . .b g a f a fe jb g

(b) ∆ ∆E f r mg rkint = = µ π2a f: 5 60 0 400 9 80 2 1 50. . . . J  kg  m s  m2= µ πk b ge j a f
Thus, µ k = 0 152. .

(c) After N revolutions, the object comes to rest and K f = 0 .

Thus, ∆ ∆E K K mvi iint = − = − + =0
1
2

2

or µ πk img N r mv2
1
2

2a f = .

This gives N
mv

mg r
i

k
= = =

1
2

2 1
2

2

2

8 00

0 152 9 80 2 1 50
2 28

µ π πa f
b g

a fe j a f
.

. . .
.

 m s

 m s  m
 rev

2
.
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P7.65 If positive F represents an outward force, (same as direction as r), then

W d F r F r dr

W
F r F r

W
F r r F r r F

r r
F

r r

W r r r r

W

i

f

r

r

r

r

f i f i
f i f i

f i f i

i

f

i

f

= ⋅ = −

=
−

−
−

=
− −

+
−

= − − −

= × − − × −

= × × −

z z − −

− −

− − − −
− − − −

− − − − − −

− −

F r 2

2
12 6

6 6 6 6

1 03 10 1 89 10

1 03 10 1 88 10 2

0
13 13

0
7 7

0
13 12

0
7 6

0
13 12 12

0
7 6 6

0
7

6 6 0
13

12 12

77 6 6 134 12 12

77 6

σ σ

σ σ

σ σ σ σ

e j

e j e j

. .

. . . . . .

. . .

44 10 10 1 89 10 3 54 10 5 96 10 10

2 49 10 1 12 10 1 37 10

6 60 134 12 8 120

21 21 21

× − × × − ×

= − × + × = − ×

− − − −

− − −W  J  J  J

P7.66 P∆ ∆
∆

t W K
m v

= = =
a f 2

2

The density is ρ = =
∆ ∆

∆
m m

A xvol
.

Substituting this into the first equation and solving for P , since 
∆
∆

x
t

v= ,

for a constant speed, we get P =
ρAv3

2
.

FIG. P7.66

Also, since P = Fv , F
Av

=
ρ 2

2
.

Our model predicts the same proportionalities as the empirical equation, and gives D = 1 for the
drag coefficient. Air actually slips around the moving object, instead of accumulating in front of it.
For this reason, the drag coefficient is not necessarily unity. It is typically less than one for a
streamlined object and can be greater than one if the airflow around the object is complicated.

P7.67 We evaluate 
375

3 753
12 8

23 7 dx
x x+z ..

.

 by calculating

375 0 100

12 8 3 75 12 8

375 0 100

12 9 3 75 12 9

375 0 100

23 6 3 75 23 6
0 8063 3 3

.

. . .

.

. . .

.

. . .
.

a f
a f a f

a f
a f a f

a f
a f a f+

+
+

+
+

=…

and

375 0 100

12 9 3 75 12 9

375 0 100

13 0 3 75 13 0

375 0 100

23 7 3 75 23 7
0 7913 3 3

.

. . .

.

. . .

.

. . .
.

a f
a f a f

a f
a f a f

a f
a f a f+

+
+

+
+

=… .

The answer must be between these two values. We may find it more precisely by using a value for
∆x  smaller than 0.100. Thus, we find the integral to be 0 799.  N m⋅ .
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*P7.68 P =
1
2

2 3D r vρπ

(a) Pa = = ×
1
2

1 1 20 1 5 8 2 17 102 3 3. . . kg m  m  m s  W3e j a f b gπ

(b)
P
P

b

a

b

a

v
v

= =
F
HG

I
KJ = =

3

3

3
324

8
3 27

 m s
 m s

Pb = × = ×27 2 17 10 5 86 103 4. . W  We j
P7.69 (a) The suggested equation P∆t bwd=  implies all of the

following cases:

(1) P∆t b
w

d= FHG
I
KJ2

2a f (2) P
∆t

b
w

d
2 2
F
HG
I
KJ =
F
HG
I
KJ

(3) P
∆t

bw
d

2 2
F
HG
I
KJ =
F
HG
I
KJ and (4)

P
2 2
F
HG
I
KJ = FHG

I
KJ∆t b

w
d

These are all of the proportionalities Aristotle lists.

Ffk =µ  k n

n

w

d

v = constant

FIG. P7.69

(b) For one example, consider a horizontal force F pushing an object of weight w at constant
velocity across a horizontal floor with which the object has coefficient of friction µ k .

F a∑ = m  implies that:

+ − =n w 0  and F nk− =µ 0

so that F wk= µ

As the object moves a distance d, the agent exerting the force does work

W Fd Fd wdk= = °=cos cosθ µ0  and puts out power P =
W

t∆

This yields the equation P∆t wdk= µ  which represents Aristotle’s theory with b k= µ .

Our theory is more general than Aristotle’s. Ours can also describe accelerated motion.

*P7.70 (a) So long as the spring force is greater than the friction force,
the block will be gaining speed. The block slows down when
the friction force becomes the greater. It has maximum
speed when kx f maa k− = = 0.

1 0 10 4 0 03. .× − = N m  Ne jxa x = − × −4 0 10 3.  m

(b) By the same logic,

1 0 10 10 03. .× − N m  N =0e jxb x = − × −1 0 10 2.  m

0

0

FIG. P7.70
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ANSWERS TO EVEN PROBLEMS

P7.2 1 59 103. ×  J P7.44 5 92.  km L

P7.46 90.0 JP7.4 (a) 3 28 10 2. × −  J ; (b) − × −3 28 10 2.  J

P7.48 (a) cosα =
A
A

x ; cosβ =
A

A
y ; cosγ =

A
A

z ;P7.6 see the solution

(b) see the solutionP7.8 5.33 W

P7.50 (a) a
m

=
40 1

1.8
.  kN

; b = 1 80. ; (b) 294 JP7.10 16.0

P7.12 (a) see the solution; (b) −12 0.  J

P7.52 (a) 
mgnhh
v nh

s

s+
; (b) 

mgvh
v nhs+P7.14 50.0 J

P7.16 (a) 575 N m; (b) 46.0 J P7.54 1 53 105. ×  N upward

P7.18 (a) 9.00 kJ; (b) 11.7 kJ, larger by 29.6% P7.56 see the solution

P7.20 (a) see the solution; (b) mgR P7.58 (a) see the solution;

(b) 2 22 2 2 2kL kA kL A L+ − +
P7.22 (a) 

mg
k

mg
k1 2

+ ; (b) 
1 1

1 2

1

k k
+

F
HG

I
KJ
−

P7.60 (a) F i j1 20 5 14 3= +. � . �e j N ;

F i j2 36 4 21 0= − +. � . �e j N;P7.24 (a) 1.20 J; (b) 5 00.  m s ; (c) 6.30 J

(b) − +15 9 35 3. � . �i je j N ;P7.26 (a) 60.0 J; (b) 60.0 J

(c) − +3 18 7 07. � . �i je j m s2 ;
P7.28 (a) 1 94.  m s ; (b) 3 35.  m s ; (c) 3 87.  m s

(d) − +5 54 23 7. � . �i je j m s ;

P7.30 (a) 3 78 10 16. × −  J; (b) 1 35 10 14. × −  N ; (e) − +2 30 39 3. � . �i je j m ; (f) 1.48 kJ; (g) 1.48 kJ
(c) 1 48 10 16. × +  m s2 ; (d) 1.94 ns

P7.62 (a) see the solution; (b) 125 2% N m± ;P7.32 (a) 0 791.  m s; (b) 0 531.  m s
(c) 13.1 N

P7.34 (a) 329 J; (b) 0; (c) 0; (d) 185 J; (e) 144 J
P7.64 (a) 5.60 J; (b) 0.152; (c) 2.28 rev

P7.36 8.01 W
P7.66 see the solution

P7.38 ~104  W
P7.68 (a) 2.17 kW; (b) 58.6 kW

P7.40 (a) 5.91 kW; (b) 11.1 kW
P7.70 (a) x = −4 0.  mm; (b) −1 0.  cm

P7.42 No. (a) 582; (b) 90 5 0 121. . W  hp=



8

CHAPTER OUTLINE

8.1 Potential Energy of a System
8.2 The Isolated 
   System—Conservation of
  Mechanical Energy
8.3 Conservative and 
  Nonconservative Forces
8.4 Changes in Mechanical
  Energy for Nonconservative
  Forces
8.5 Relationship Between
  Conservative Forces and
     Potential Energy

  Equilibrium of a System
                                         

8.6 Energy Diagrams and the

           
          
              

    
    

Potential Energy

ANSWERS TO QUESTIONS

Q8.1 The final speed of the children will not depend on the slide
length or the presence of bumps if there is no friction. If there is
friction, a longer slide will result in a lower final speed. Bumps
will have the same effect as they effectively lengthen the
distance over which friction can do work, to decrease the total
mechanical energy of the children.

Q8.2 Total energy is the sum of kinetic and potential energies.
Potential energy can be negative, so the sum of kinetic plus
potential can also be negative.

Q8.3 Both agree on the change in potential energy, and the kinetic
energy. They may disagree on the value of gravitational
potential energy, depending on their choice of a zero point.

Q8.4 (a) mgh is provided by the muscles.

(b) No further energy is supplied to the object-Earth system, but some chemical energy must be
supplied to the muscles as they keep the weight aloft.

(c) The object loses energy mgh, giving it back to the muscles, where most of it becomes internal
energy.

Q8.5 Lift a book from a low shelf to place it on a high shelf. The net change in its kinetic energy is zero,
but the book-Earth system increases in gravitational potential energy. Stretch a rubber band to
encompass the ends of a ruler. It increases in elastic energy. Rub your hands together or let a pearl
drift down at constant speed in a bottle of shampoo. Each system (two hands; pearl and shampoo)
increases in internal energy.

Q8.6 Three potential energy terms will appear in the expression of total mechanical energy, one for each
conservative force. If you write an equation with initial energy on one side and final energy on the
other, the equation contains six potential-energy terms.

215
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Q8.7 (a) It does if it makes the object’s speed change, but not if it only makes the direction of the
velocity change.

(b) Yes, according to Newton’s second law.

Q8.8 The original kinetic energy of the skidding can be degraded into kinetic energy of random molecular
motion in the tires and the road: it is internal energy. If the brakes are used properly, the same
energy appears as internal energy in the brake shoes and drums.

Q8.9 All the energy is supplied by foodstuffs that gained their energy from the sun.

Q8.10 Elastic potential energy of plates under stress plus gravitational energy is released when the plates
“slip”. It is carried away by mechanical waves.

Q8.11 The total energy of the ball-Earth system is conserved. Since the system initially has gravitational
energy mgh and no kinetic energy, the ball will again have zero kinetic energy when it returns to its
original position. Air resistance will cause the ball to come back to a point slightly below its initial
position. On the other hand, if anyone gives a forward push to the ball anywhere along its path, the
demonstrator will have to duck.

Q8.12 Using switchbacks requires no less work, as it does not change the change in potential energy from
top to bottom. It does, however, require less force (of static friction on the rolling drive wheels of a
car) to propel the car up the gentler slope. Less power is required if the work can be done over a
longer period of time.

Q8.13 There is no work done since there is no change in kinetic energy. In this case, air resistance must be
negligible since the acceleration is zero.

Q8.14 There is no violation. Choose the book as the system. You did work and the earth did work on the
book. The average force you exerted just counterbalanced the weight of the book. The total work on
the book is zero, and is equal to its overall change in kinetic energy.

Q8.15 Kinetic energy is greatest at the starting point. Gravitational energy is a maximum at the top of the
flight of the ball.

Q8.16 Gravitational energy is proportional to mass, so it doubles.

Q8.17 In stirring cake batter and in weightlifting, your body returns to the same conformation after each
stroke. During each stroke chemical energy is irreversibly converted into output work (and internal
energy). This observation proves that muscular forces are nonconservative.
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Q8.18 Let the gravitational energy be zero at the lowest point in the
motion. If you start the vibration by pushing down on the block (2),
its kinetic energy becomes extra elastic potential energy in the
spring (Us ). After the block starts moving up at its lower turning
point (3), this energy becomes both kinetic energy (K) and
gravitational potential energy (Ug ), and then just gravitational

energy when the block is at its greatest height (1). The energy then
turns back into kinetic and elastic potential energy, and the cycle
repeats.

FIG. Q8.18

Q8.19 (a) Kinetic energy of the running athlete is transformed into elastic potential energy of the bent
pole. This potential energy is transformed to a combination of kinetic energy and
gravitational potential energy of the athlete and pole as the athlete approaches the bar. The
energy is then all gravitational potential of the pole and the athlete as the athlete hopefully
clears the bar. This potential energy then turns to kinetic energy as the athlete and pole fall
to the ground. It immediately becomes internal energy as their macroscopic motion stops.

(b) Rotational kinetic energy of the athlete and shot is transformed into translational kinetic
energy of the shot. As the shot goes through its trajectory as a projectile, the kinetic energy
turns to a mix of kinetic and gravitational potential. The energy becomes internal energy as
the shot comes to rest.

(c) Kinetic energy of the running athlete is transformed to a mix of kinetic and gravitational
potential as the athlete becomes projectile going over a bar. This energy turns back into
kinetic as the athlete falls down, and becomes internal energy as he stops on the ground.

The ultimate source of energy for all of these sports is the sun. See question 9.

Q8.20 Chemical energy in the fuel turns into internal energy as the fuel burns. Most of this leaves the car
by heat through the walls of the engine and by matter transfer in the exhaust gases. Some leaves the
system of fuel by work done to push down the piston. Of this work, a little results in internal energy
in the bearings and gears, but most becomes work done on the air to push it aside. The work on the
air immediately turns into internal energy in the air. If you use the windshield wipers, you take
energy from the crankshaft and turn it into extra internal energy in the glass and wiper blades and
wiper-motor coils. If you turn on the air conditioner, your end effect is to put extra energy out into
the surroundings. You must apply the brakes at the end of your trip. As soon as the sound of the
engine has died away, all you have to show for it is thermal pollution.

Q8.21 A graph of potential energy versus position is a straight horizontal line for a particle in neutral
equilibrium. The graph represents a constant function.

Q8.22 The ball is in neutral equilibrium.

Q8.23 The ball is in stable equilibrium when it is directly below the pivot point. The ball is in unstable
equilibrium when it is vertically above the pivot.
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SOLUTIONS TO PROBLEMS

Section 8.1 Potential Energy of a System

P8.1 (a) With our choice for the zero level for potential energy when the car
is at point B,

UB = 0 .

When the car is at point A, the potential energy of the car-Earth
system is given by

U mgyA =

FIG. P8.1

where y is the vertical height above zero level. With 135 41 1 ft  m= . , this height is found as:

y = °=41 1 40 0 26 4. sin . . m  ma f .

Thus,

UA
2 kg  m s  m  J= = ×1 000 9 80 26 4 2 59 105b ge ja f. . . .

The change in potential energy as the car moves from A to B is

U UB A  J  J− = − × = − ×0 2 59 10 2 59 105 5. . .

(b) With our choice of the zero level when the car is at point A, we have UA = 0 . The potential

energy when the car is at point B is given by U mgyB =  where y is the vertical distance of
point B below point A. In part (a), we found the magnitude of this distance to be 26.5 m.
Because this distance is now below the zero reference level, it is a negative number.

Thus,

UB
2 kg  m s  m  J= − = − ×1 000 9 80 26 5 2 59 105b ge ja f. . . .

The change in potential energy when the car moves from A to B is

U UB A  J  J− = − × − = − ×2 59 10 0 2 59 105 5. . .
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P8.2 (a) We take the zero configuration of system
potential energy with the child at the
lowest point of the arc. When the string
is held horizontal initially, the initial
position is 2.00 m above the zero level.
Thus,

U mgyg = = =400 2 00 800 N  m  Ja fa f. .

(b) From the sketch, we see that at an angle
of 30.0° the child is at a vertical height of
2 00 1 30 0. cos . ma fa f− °  above the lowest

point of the arc. Thus, FIG. P8.2

U mgyg = = − ° =400 2 00 1 30 0 107 N  m  Ja fa fa f. cos . .

(c) The zero level has been selected at the lowest point of the arc. Therefore, Ug = 0  at this

location.

*P8.3 The volume flow rate is the volume of water going over the falls each second:

3 0 5 1 2 1 8 m  m  m s  m s3. . .a fb g =

The mass flow rate is 
m
t

V
t

= = =ρ 1 000 1 8 1 800 kg m  m s  kg s3 3e je j.

If the stream has uniform width and depth, the speed of the water below the falls is the same as the
speed above the falls. Then no kinetic energy, but only gravitational energy is available for
conversion into internal and electric energy.

The input power is Pin
2energy

 kg s  m s  m  J s= = = = = ×
t

mgy
t

m
t

gy 1 800 9 8 5 8 82 104b ge ja f. .

The output power is P Puseful inefficiency  W  W= = × = ×b g e j0 25 8 82 10 2 20 104 4. . .

The efficiency of electric generation at Hoover Dam is about 85%, with a head of water (vertical
drop) of 174 m. Intensive research is underway to improve the efficiency of low head generators.

Section 8.2 The Isolated System—Conservation of Mechanical Energy

*P8.4 (a) One child in one jump converts chemical energy into mechanical energy in the amount that
her body has as gravitational energy at the top of her jump:
mgy = =36 9 81 0 25 88 3 kg  m s  m  J2. . .e ja f . For all of the jumps of the children the energy is

12 1 05 10 88 3 1 11 106 9. . .× = ×e j  J  J .

(b) The seismic energy is modeled as E = × = ×
0 01
100

1 11 10 1 11 109 5.
. . J  J , making the Richter

magnitude 
log .

.
log . .

.
. .

.
.

E −
=

× −
=

−
=

4 8
1 5

1 11 10 4 8
1 5

5 05 4 8
1 5

0 2
5

.
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P8.5 U K U Ki i f f+ = + : mgh mg R mv+ = +0 2
1
2

2a f
g R g R v3 50 2

1
2

2.a f a f= +

v gR= 3 00.

F m
v
R∑ =

2

: n mg m
v
R

+ =
2

n m
v
R

g m
gR

R
g mg

n

= −
L
NM
O
QP

= −L
NM

O
QP =

= ×

=

−

2

3

3 00
2 00

2 00 5 00 10 9 80

0 098 0

.
.

. . .

.

 kg  m s

 N downward

2e je j

FIG. P8.5

P8.6 From leaving ground to the highest point, K U K Ui i f f+ = +
1
2

6 00 0 0 9 80
2

m m y. . m s  m s2b g e j+ = +

The mass makes no difference: ∴ = =y
6 00

2 9 80
1 84

2.

.
.

 m s

 m s
 m

2

b g
a fe j

*P8.7 (a)
1
2

1
2

1
2

1
2

2 2 2 2mv kx mv kxi i f f+ = +

0
1
2

10 0 18
1
2

0 15 0

0 18
10 1

1 47

2 2+ − = +

=
⋅

F
HG

I
KJ

⋅
⋅

F
HG

I
KJ =

 N m  m  kg

 m
 N

0.15 kg m
 kg m

1 N s
 m s2

b ga f b g

a f

. .

. .

v

v

f

f

(b) K U K Ui si f sf+ = +

0
1
2

10 0 18
1
2

0 15

1
2

10 0 25 0 18

0 162
1
2

0 15 0 024 5

2 0 138
0 15

1 35

2 2

2

2

+ − =

+ −

= +

= =

 N m  m  kg

 N m  m  m

 J  kg  J

 J
 kg

 m s

b ga f b g

b ga f

b g
a f

. .

. .

. . .

.
.

.

v

v

v

f

f

f

FIG. P8.7
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*P8.8 The energy of the car is E mv mgy= +
1
2

2

E mv mgd= +
1
2

2 sinθ  where d is the distance it has moved along the track.

P = = +
dE
dt

mv
dv
dt

mgv sinθ

(a) When speed is constant,

P = = °= ×mgv sin . sin .θ 950 2 20 30 1 02 104 kg 9.80 m s  m s  W2e jb g

(b)
dv
dt

a= =
−

=
2 2 0

12
0 183

.
.

 m s
 s

 m s2

Maximum power is injected just before maximum speed is attained:

P = + = + × ×mva mgv sin . . .θ 950 2 2 0 183 1 02 104 kg  m s  m s  W= 1.06 10  W2 4b ge j

(c) At the top end,
1
2

950 2 20 9 80 1 250 30 5 82 102 2 6mv mgd+ = + °F
HG

I
KJ = ×sin . . sin .θ  kg

1
2

 m s  m s  m  J2b g e j

*P8.9 (a) Energy of the object-Earth system is conserved as the object moves between the release
point and the lowest point. We choose to measure heights from y = 0  at the top end of the
string.

K U K Ug i g f
+ = +e j e j : 0

1
2

2+ = +mgy mv mgyi f f

9 8 2 30
1
2

9 8 2

2 9 8 2 1 30 2 29

2. cos .

. cos .

 m s  m  m s  m

 m s  m  m s

2 2

2

e ja f e ja f

e ja fa f
− ° = + −

= − ° =

v

v

f

f

(b) Choose the initial point at θ = °30  and the final point at θ = °15 :

0 30
1
2

15

2 15 30 2 9 8 2 15 30 1 98

2+ − ° = + − °

= °− ° = °− ° =

mg L mv mg L

v gL

f

f

cos cos

cos cos . cos cos .

a f a f
a f e ja fa f m s  m  m s2

P8.10 Choose the zero point of gravitational potential energy of the object-spring-Earth system as the
configuration in which the object comes to rest. Then because the incline is frictionless, we have
E EB A= :

K U U K U UB gB sB A gA sA+ + = + +

or 0 0 0 0
1
2

2+ + + = + +mg d x kxa fsinθ .

Solving for d gives d
kx

mg
x= −

2

2 sinθ
.
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P8.11 From conservation of energy for the block-spring-Earth system,

U Ugt si= ,

or

0 250 9 80
1
2

5 000 0 100 2. . . kg  m s  N m  m2b ge j b ga fh = FHG
I
KJ

This gives a maximum height h = 10 2.  m . FIG. P8.11

P8.12 (a) The force needed to hang on is equal to the force F the
trapeze bar exerts on the performer.

From the free-body diagram for the performer’s body, as
shown,

F mg m
v

− =cosθ
2

or

F mg m
v

= +cosθ
2

FIG. P8.12

Apply conservation of mechanical energy of the performer-Earth system as the performer
moves between the starting point and any later point:

mg mg mvi− = − +cos cosθ θb g a f 1
2

2

Solve for 
mv2

 and substitute into the force equation to obtain F mg i= −3 2cos cosθ θb g .

(b) At the bottom of the swing, θ = °0  so

F mg

F mg mg
i

i

= −

= = −

3 2

2 3 2

cos

cos

θ

θ

b g
b g

which gives

θ i = °60 0. .
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P8.13 Using conservation of energy for the system of the Earth and the two objects

(a) 5 00 4 00 3 00 4 00
1
2

5 00 3 00 2. . . . . . kg  m  kg  mb g a f b g a f a fg g v= + +

v = =19 6 4 43. .  m s

(b) Now we apply conservation of energy for the system of the 3.00 kg
object and the Earth during the time interval between the instant
when the string goes slack and the instant at which the 3.00 kg
object reaches its highest position in its free fall.

1
2

3 00 3 00

1 00

4 00 5 00

2. .

.

. .max

a fv mg y g y

y

y y

= =

=

= + =

∆ ∆

∆

∆

 m

 m  m

FIG. P8.13

P8.14 m m1 2>

(a) m gh m m v m gh1 1 2
2

2
1
2

= + +b g

v
m m gh
m m

=
−

+

2 1 2

1 2

b g
b g

(b) Since m2  has kinetic energy 
1
2 2

2m v , it will rise an additional height ∆h  determined from

m g h m v2 2
21

2
∆ =

or from (a),

∆h
v

g
m m h
m m

= =
−

+

2
1 2

1 22
b g
b g

The total height m2  reaches is h h
m h

m m
+ =

+
∆

2 1

1 2
.

P8.15 The force of tension and subsequent force of compression in the
rod do no work on the ball, since they are perpendicular to each
step of displacement. Consider energy conservation of the ball-
Earth system between the instant just after you strike the ball and
the instant when it reaches the top. The speed at the top is zero if
you hit it just hard enough to get it there.

K U K Ui gi f gf+ = + :
1
2

0 0 22mv mg Li + = + a f
v gL

v

i

i

= =

=

4 4 9 80 0 770

5 49

. .

.

a fa f
 m s

L

vi

initial
L

final

FIG. P8.15
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*P8.16 efficiency = =
useful output energy

total input energy
useful output power

total input power

e
m gy t

m v t

v t gy

r v t

v t gy

r v
= = =water

air

water water

air

w w

a1 2

2 2
2 2 2 2 3b g e j

b g
e j

b gρ

ρ π

ρ

ρ π

where  is the length of a cylinder of air passing through the mill and vw is the volume of water
pumped in time t. We need inject negligible kinetic energy into the water because it starts and ends
at rest.

v
t

e r v
gy

w a

w

3

3 2

3
3

 kg m  m  m s

 kg m  m s  m

 m s
 L

1 m
 s

1 min
 L min

= =

= × F
HG

I
KJ
F
HG
I
KJ =

−

ρ π
ρ

π2 3 2 3

3

2

0 275 1 20 1 15 11

2 1 000 9 80 35

2 66 10
1 000 60

160

. . .

.

.

e j a f b g
e je j

P8.17 (a) K U K Ui gi f gf+ = +

1
2

0
1
2

1
2

1
2

1
2

2 2

2 2 2

mv mv mgy

mv mv mv mgy

i f f

xi yi xf f

+ = +

+ = +

But v vxi xf= , so for the first ball

y
v

gf
yi

= =
°

= ×
2 2

4

2

1 000 37 0

2 9 80
1 85 10

sin .

.
.

b g
a f  m

and for the second

y f = = ×
1 000

2 9 80
5 10 10

2
4b g

a f.
.  m

(b) The total energy of each is constant with value

1
2

20 0 1 000 1 00 10
2 7. . kg  m s  Jb gb g = × .
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P8.18 In the swing down to the breaking point, energy is conserved:

mgr mvcosθ =
1
2

2

at the breaking point consider radial forces

F ma

T mg m
v
r

r r∑ =

+ − =max cosθ
2

Eliminate 
v
r

g
2

2= cosθ

T mg mg
T mg

T
mg

max

max

max

cos cos
cos

cos cos
.

.

.

− =
=

=
F
HG
I
KJ =

F
H
GG

I
K
JJ

= °

− −

θ θ
θ

θ

θ

2
3

3
44 5

9 80

40 8

1 1  N

3 2.00 kg  m s2b ge j

*P8.19 (a) For a 5-m cord the spring constant is described by F kx= ,
mg k= 1 5.  ma f. For a longer cord of length L the stretch distance
is longer so the spring constant is smaller in inverse proportion:

k
L

mg
mg L

K U U K U U

mgy mgy kx

mg y y kx
mg
L

x

g s i g s f

i f f

i f f f

= =

+ + = + +

+ + = + +

− = =

5
3 33

0 0 0
1
2

1
2

1
2

3 33

2

2 2

 m
1.5 m

.

.

e j e j

d i

��
��

���
���

initial

�
�

���
���

final

FIG. P8.19(a)

here y y L xi f f− = = +55 m

55 0
1
2

3 33 55 0

55 0 5 04 10 183 1 67

0 1 67 238 5 04 10 0

238 238 4 1 67 5 04 10

2 1 67
238 152

3 33
25 8

2

3 2

2 3

2 3

. . .

. . .

. .

. .

. .
.

 m  m

 m  m  m

 m

2

L L

L L L

L L

L

= −

= × − +

= − + × =

=
± − ×

=
±

=

a f

a fe j
a f

only the value of L less than 55 m is physical.

(b) k
mg

= 3 33
25 8

.
.  m

x x fmax . . .= = − =55 0 25 8 29 2 m  m  m

F ma∑ = + − =kx mg mamax

3 33
25 8

29 2

2 77 27 1

.
.

.

. .

mg
mg ma

a g

 m
 m

 m s2

− =

= =
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*P8.20 When block B moves up by 1 cm, block A moves down by 2 cm and the separation becomes 3 cm.

We then choose the final point to be when B has moved up by 
h
3

 and has speed 
vA

2
. Then A has

moved down 
2
3
h

 and has speed vA :

K K U K K U

mv m
v mgh mg h

mgh
mv

v
gh

g i g fA B A B

A
2 A

A
2

A

+ + = + +

+ + = + F
HG
I
KJ + −

=

=

e j e j

0 0 0
1
2

1
2 2 3

2
3

3
5
8

8
15

2

Section 8.3 Conservative and Nonconservative Forces

P8.21 F mgg = = =4 00 9 80 39 2. . . kg  m s  N2b ge j

(a) Work along OAC = work along OA + work along AC
= °+ °

= + −

= −

F Fg gOA AC

 N  m  N  m

 J

a f a f
a fa f a fa fa f

cos . cos

. . . .

90 0 180

39 2 5 00 39 2 5 00 1

196

(b) W along OBC = W along OB + W along BC
= °+ °

= −

39 2 5 00 180 39 2 5 00 90 0

196

. . cos . . cos . N  m  N  m

 J

a fa f a fa f

 

O 

B 

A 

C 
(5.00, 5.00) m 

x 

y 

FIG. P8.21

(c) Work along OC = °Fg OCa fcos135

= × −
F
HG
I
KJ = −39 2 5 00 2

1
2

196. . N  m  Ja fe j

The results should all be the same, since gravitational forces are conservative.

P8.22 (a) W d= ⋅z F r  and if the force is constant, this can be written as

W d f i= ⋅ = ⋅ −zF r F r rd i,  which depends only on end points,  not path.

(b) W d dx dy dx dy= ⋅ = + ⋅ + = +z z z zF r i j i j3 4 3 00 4 00
0

5 00

0

5 00

. .
. .

e j e j a f a f N  N
 m  m

W x y= + = + =3 00 4 00 15 0 20 0 35 0
0

5 00

0

5 00
. . . . .

. .
 N  N  J  J  J

 m  ma f a f

The same calculation applies for all paths.
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P8.23 (a) W dx y x ydxOA = ⋅ + =z z. .

i i j2 22

0

5 00

0

5 00

e j
 m  m

and since along this path, y = 0 WOA = 0

W dy y x x dyAC = ⋅ + =z z
. .

j i j2 2

0

5 00
2

0

5 00

e j
 m  m

For x = 5 00.  m, WAC = 125 J

and WOAC = + =0 125 125 J

(b) W dy y x x dyOB = ⋅ + =z z
. .

j i j2 2

0

5 00
2

0

5 00

e j
 m  m

since along this path, x = 0 , WOB = 0

W dx y x ydxBC = ⋅ + =z z. .

i i j2 22

0

5 00

0

5 00

e j
 m  m

since y = 5 00.  m, WBC = 50 0.  J

WOBC = + =0 50 0 50 0. .  J

(c) W dx dy y x ydx x dyOC = + ⋅ + = +z zi j i je j e j e j2 22 2

Since x y=  along OC, W x x dxOC = + =z 2 66 72

0

5 00

e j
.

.
 m

 J

(d) F is nonconservative  since the work done is path dependent.

P8.24 (a) ∆ ∆K W W mg h mgA B ga f a f→ = = = = −∑ 5 00 3 20. .
1
2

1
2

9 80 1 80

5 94

2 2mv mv m

v

B A

B

− =

=

. .

.

a fa f
 m s

Similarly, v v gC A= + − =2 2 5 00 2 00 7 67. . .a f  m s

(b) W mgg A C→
= =3 00 147.  m  Ja f

5.00 m

A

B

C
2.00 m

3.20 m

FIG. P8.24
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P8.25 (a) F i j= +3 00 5 00. .e j N
m

W

=

= −

= + − = −

4 00

2 00 3 00

3 00 2 00 5 00 3 00 9 00

.

. .

. . . . .

 kg

 m

 J

r i je j
a f a f

The result does not depend on the path since the force is conservative.

(b) W K= ∆

− = −
F
HG

I
KJ

9 00
4 00

2
4 00

4 00
2

2 2

.
.

.
.v a f

so v =
−

=
32 0 9 00

2 00
3 39

. .
.

.  m s

(c) ∆U W= − = 9 00.  J

Section 8.4 Changes in Mechanical Energy for Nonconservative Forces

P8.26 (a) U K K Uf i f i= − + U f = − + =30 0 18 0 10 0 22 0. . . .  J

E = 40 0.  J

(b) Yes, ∆ ∆ ∆E K Umech = +  is not equal to zero. For conservative forces ∆ ∆K U+ = 0 .

P8.27 The distance traveled by the ball from the top of the arc to the bottom is πR . The work done by the
non-conservative force, the force exerted by the pitcher,

is ∆ ∆E F r F R= °=cos0 πa f .
We shall assign the gravitational energy of the ball-Earth system to be zero with the ball at the
bottom of the arc.

Then ∆E mv mv mgy mgyf i f imech = − + −
1
2

1
2

2 2

becomes
1
2

1
2

2 2mv mv mgy F Rf i i= + + πa f

or v v gy
F R

mf i i= + + = + +2 22
2

15 0 2 9 80 1 20
2 30 0 0 600

0 250
π πa f a f a fa f a f a f

. . .
. .

.
v f = 26 5.  m s

*P8.28 The useful output energy is

120 1 0 60

120 3 600 0 40

890
194

 Wh

 W  s

 N
J

W s
N m

J
 m

− = − =

=
⋅

F
HG
I
KJ

⋅F
HG
I
KJ =

.

.

a f d i
b g

mg y y F y

y

f i g ∆

∆
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*P8.29 As the locomotive moves up the hill at constant speed, its output power goes into internal energy
plus gravitational energy of the locomotive-Earth system:

Pt mgy f r mg r f r= + = +∆ ∆ ∆sinθ P = +mgv fvf fsinθ

As the locomotive moves on level track,

P = fvi 1 000 27 hp
746 W
1 hp

 m s
F
HG

I
KJ = f b g f = ×2 76 104.  N

Then also 746 000 160 000 9 8
5

2 76 104 W  kg  m s
 m

100 m
 N2= F

HG
I
KJ + ×b ge j e j. .v vf f

v f =
×

=
746 000

10
7 045

 W
1.06  N

 m s.

P8.30 We shall take the zero level of gravitational potential energy to be at the lowest level reached by the
diver under the water, and consider the energy change from when the diver started to fall until he
came to rest.

∆E mv mv mgy mgy f d

mg y y f d

f
mg y y

d

f i f i k

i f k

k
i f

= − + − = °

− − − = −

=
−

=
+

=

1
2

1
2

180

0 0

70 0 9 80 10 0 5 00

5 00
2 06

2 2 cos

. . . .

.
.

d i
d i b ge ja f kg  m s  m  m

 m
 kN

2

P8.31 U K E U Ki i f f+ + = +∆ mech : m gh fh m v m v2 1
2

2
21

2
1
2

− = +

f n m g= =µ µ 1

m gh m gh m m v2 1 1 2
21

2
− = +µ b g

v
m m hg

m m
2 2 1

1 2

2
=

−

+

µb gb g
FIG. P8.31

v =
−

=
2 9 80 1 50 5 00 0 400 3 00

8 00
3 74

. . . . .

.
.

 m s  m  kg  kg

 kg
 m s

2e ja f b g

P8.32 ∆E K K U Uf i gf gimech = − + −d i e j
But ∆ ∆E W f xmech app= − , where Wapp  is the work the boy

did pushing forward on the wheels.

Thus, W K K U U f xf i gf giapp = − + − +d i e j ∆

or W m v v mg h f xf iapp = − + − +
1
2

2 2e j a f ∆ FIG. P8.32

W

W

app

app  J

= − − +

=

1
2

47 0 6 20 1 40 47 0 9 80 2 60 41 0 12 4

168

2 2. . . . . . . .a f a f a f a fa fa f a fa f
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P8.33 (a) ∆K m v v mvf i i= − = − = −
1
2

1
2

1602 2 2e j  J

(b) ∆U mg= ° =3 00 30 0 73 5. sin . . m  Ja f

(c) The mechanical energy converted due to friction is 86.5 J

f = =
86 5

28 8
.

.
 J

3.00 m
 N

(d) f n mgk k= = ° =µ µ cos . .30 0 28 8 N

µ k =
°

=
28 8

9 80 30 0
0 679

.

. cos .
.

 N

5.00 kg  m s2b ge j

FIG. P8.33

P8.34 Consider the whole motion: K U E K Ui i f f+ + = +∆ mech

(a) 0
1
2

0

80 0 9 80 1 000 50 0 800 3 600 200
1
2

80 0

784 000 40 000 720 000
1
2

80 0

2 24 000

80 0
24 5

1 1 2 2
2

2

2

+ − − = +

− − =

− − =

= =

mgy f x f x mv

v

v

v

i f

f

f

f

∆ ∆

. . . .

.

.
.

 kg  m s  m  N  m  N  m  kg

 J  J  J  kg

 J

 kg
 m s

2b ge j a fa f b ga f b g

b g
b g

(b) Yes  this is too fast for safety.

(c) Now in the same energy equation as in part (a), ∆x2  is unknown, and ∆ ∆x x1 21 000= − m :

784 000 50 0 1 000 3 600
1
2

80 0 5 00

784 000 50 000 3 550 1 000

733 000
206

2 2
2

2

2

 J  N  m  N  kg  m s

 J  J  N  J

 J
3 550 N

 m

− − − =

− − =

= =

. . .a fb g b g b gb g
b g

∆ ∆

∆

∆

x x

x

x

(d) Really the air drag will depend on the skydiver’s speed. It will be larger than her 784 N
weight only after the chute is opened. It will be nearly equal to 784 N before she opens the
chute and again before she touches down, whenever she moves near terminal speed.
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P8.35 (a) K U E K Ui f+ + = +a f a f∆ mech :

0
1
2

1
2

0

1
2

8 00 5 00 10 3 20 10 0 150
1
2

5 30 10

2 5 20 10

5 30 10
1 40

2 2

2 2 2 3 2

3

3

+ − = +

× − × = ×

=
×

×
=

− − −

−

−

kx f x mv

v

v

∆

. . . . .

.

.
.

 N m  m  N  m  kg

 J

 kg
 m s

b ge j e ja f e j
e j

(b) When the spring force just equals the friction force, the ball will stop speeding up. Here
Fs kx= ; the spring is compressed by

3 20 10
0 400

2.
.

×
=

−  N
8.00 N m

 cm

and the ball has moved

5 00 0 400 4 60. . . cm  cm  cm from the start.− =

(c) Between start and maximum speed points,

1
2

1
2

1
2

1
2

8 00 5 00 10 3 20 10 4 60 10
1
2

5 30 10
1
2

8 00 4 00 10

1 79

2 2 2

2 2 2 2 3 2 3 2

kx f x mv kx

v

v

i f− = +

× − × × = × + ×

=

− − − − −

∆

. . . . . . .

.

e j e je j e j e j
 m s

P8.36 F n mg

n mg

f n
f x E

U U K K

U m g h h

U m g h h

K m v v

K m

y

A B A B

A A f i

B B f i

A A f i

B B

∑ = − ° =

∴ = ° =

= = =
− =

− = + + +

= − = ° = ×

= − = − = − ×

= −

=

cos .

cos .

.

.

. . . sin . .

. . .

37 0 0

37 0 400

0 250 400 100

100 20 0

50 0 9 80 20 0 37 0 5 90 10

100 9 80 20 0 1 96 10

1
2
1
2

3

4

2 2

 N

 N  N

mech

µ a f

a fa f
d i a fa fa f
d i a fa fa f
e j

∆ ∆

∆ ∆ ∆ ∆

∆

∆

∆

∆ v v
m
m

K Kf i
B

A
A A

2 2 2− = =e j ∆ ∆

Adding and solving, ∆K A = 3 92.  kJ .

FIG. P8.36
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P8.37 (a) The object moved down distance 1 20.  m + x . Choose y = 0  at its lower point.

K U U E K U U

mgy kx

x x

x x

x

x

i gi si f gf sf

i

+ + + = + +

+ + + = + +

+ =

= − −

=
± − − − ⋅

=
±

∆ mech

2 kg  m s  m  N m

 N m  N  J

 N  N  N m  N m

 N m

 N  N
320 N m

0 0 0 0 0
1
2

1 50 9 80 1 20
1
2

320

0 160 14 7 17 6

14 7 14 7 4 160 17 6

2 160

14 7 107

2

2

2

2

. . .

. .

. . .

.

b ge ja f b g
b g a f

a f b ga f
b g

The negative root tells how high the object will rebound if it is instantly glued to the spring.
We want

x = 0 381.  m

(b) From the same equation,

1 50 1 63 1 20
1
2

320

0 160 2 44 2 93

2

2

. . .

. .

 kg  m s  m  N m2b ge ja f b g+ =

= − −

x x

x x

The positive root is x = 0 143.  m .

(c) The equation expressing the energy version of the nonisolated system model has one more
term:

mgy f x kx

x x x

x x x

x x

x

x

i − =

+ − + =

+ − − =

− − =

=
± − −

=

∆
1
2

1 50 9 80 1 20 0 700 1 20
1
2

320

17 6 14 7 0 840 0 700 160

160 14 0 16 8 0

14 0 14 0 4 160 16 8

320
0 371

2

2

2

2

2

. . . . .

. . . .

. .

. . .

.

 kg  m s  m  N  m  N m

 J  N  J  N  N m

 m

2b ge ja f a f b g

a f a fa f
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P8.38 The total mechanical energy of the skysurfer-Earth system is

E K U mv mghgmech = + = +
1
2

2 .

Since the skysurfer has constant speed,

dE
dt

mv
dv
dt

mg
dh
dt

mg v mgvmech = + = + − = −0 a f .

The rate the system is losing mechanical energy is then

dE
dt

mgvmech 2 kg  m s  m s  kW= = =75 0 9 80 60 0 44 1. . . .b ge jb g .

*P8.39 (a) Let m be the mass of the whole board. The portion on the rough surface has mass 
mx
L

. The

normal force supporting it is 
mxg

L
 and the frictional force is 

µ kmgx
L

ma= . Then

a
gx

L
k=

µ
 opposite to the motion.

(b) In an incremental bit of forward motion dx, the kinetic energy converted into internal

energy is f dx
mgx
L

dxk
k=

µ
. The whole energy converted is

1
2 2 2

2

0

2

0

mv
mgx
L

dx
mg
L

x mgL

v gL

k
L

k
L

k

k

= = =

=

z µ µ µ

µ

Section 8.5 Relationship Between Conservative Forces and Potential Energy

P8.40 (a) U Ax Bx dx
Ax Bxx

= − − + = −z 2

0

2 3

2 3e j

(b) ∆U Fdx
A B

A B= − =
−

−
−

= −z
2 00

2 2 3 33 00 2 00

2

3 00 2 00

3
5 00

2
19 0

3.

. . . . . .

 m

3.00 m e j a f a f a f

∆K A B= − +F
HG

I
KJ

5 00
2

19 0
3

. .

P8.41 (a) W F dx x dx
x

xx= = + = +
F
HG

I
KJ = + − − =z z 2 4

2
2

4 25 0 20 0 1 00 4 00 40 0
1

5 00 2

1

5 00

a f
. .

. . . . .
 m  m

 J

(b) ∆ ∆K U+ = 0 ∆ ∆U K W= − = − = −40 0.  J

(c) ∆K K
mv

f= − 1
2

2
K K

mv
f = + =∆ 1

2

2
62 5.  J
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P8.42 F
U
x

x y x

x
x y x yx = −

∂
∂

= −
∂ −

∂
= − − = −

3 7
9 7 7 9

3
2 2e j e j

F
U
y

x y x

y
x xy = −

∂
∂

= −
∂ −

∂
= − − = −

3 7
3 0 3

3
3 3e j e j

Thus, the force acting at the point x y,b g  is F i j i j= + = − −F F x y xx y 7 9 32 3e j .

P8.43 U r
A
r

a f =
F

U
r

d
dr

A
r

A
rr = −

∂
∂

= − FHG
I
KJ = 2 . The positive value indicates a force of repulsion.

Section 8.6 Energy Diagrams and the Equilibrium of a System

P8.44

stable unstable neutral

FIG. P8.44

P8.45 (a) Fx  is zero at points A, C and E; Fx  is positive at point B and negative at point D.

(b) A and E are unstable, and C is stable.

(c)

A

B

C

D

E x (m)

Fx

FIG. P8.45
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P8.46 (a) There is an equilibrium point wherever the graph of potential energy is horizontal:

At r = 1 5.  mm and 3.2 mm, the equilibrium is stable.
At r = 2 3.  mm, the equilibrium is unstable.
A particle moving out toward r → ∞  approaches neutral equilibrium.

(b) The system energy E cannot be less than –5.6 J. The particle is bound if − ≤ <5 6 1.  J  JE .

(c) If the system energy is –3 J, its potential energy must be less than or equal to –3 J. Thus, the
particle’s position is limited to 0 6 3 6. . mm  mm≤ ≤r .

(d) K U E+ = . Thus, K E Umax min . . .= − = − − − =3 0 5 6 2 6 J  J  Ja f .

(e) Kinetic energy is a maximum when the potential energy is a minimum, at r = 1 5.  mm .

(f) − + =3 1 J  JW . Hence, the binding energy is W = 4 J .

P8.47 (a) When the mass moves distance x, the length of each spring

changes from L to x L2 2+ , so each exerts force

k x L L2 2+ −FH IK  towards its fixed end. The y-components

cancel out and the x components add to:

F k x L L
x

x L
kx

kLx

x L
x = − + −FH IK +

F
HG

I
KJ = − +

+
2 2

22 2

2 2 2 2 FIG. P8.47(a)

Choose U = 0 at x = 0 . Then at any point the potential energy of the system is

U x F dx kx
kLx

x L
dx k xdx kL

x

x L
dx

U x kx kL L x L

x

x x x x

a f

a f

= − = − − +
+

F
HG

I
KJ = −

+

= + − +FH IK

z z z z
0

2 2
0 0

2 2
0

2 2 2

2
2

2 2

2

(b) U x x xa f = + − +FH IK40 0 96 0 1 20 1 442 2. . . .

For negative x, U xa f has the same value as for
positive x. The only equilibrium point (i.e., where
Fx = 0) is x = 0 .

(c) K U E K Ui i f f+ + = +∆ mech

0 0 400 0
1
2

1 18 0

0 823

2+ + = +

=

. .

.

 J  kg

 m s

b gv
v

f

f FIG. P8.47(b)
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Additional Problems

P8.48 The potential energy of the block-Earth system is mgh.
An amount of energy µ θkmgd cos  is converted into internal energy due to friction on the incline.

Therefore the final height ymax  is found from

mgy mgh mgdkmax cos= − µ θ

where

d
y

mgy mgh mgyk

=

∴ = −

max

max max

sin
cot

θ
µ θ

Solving,

y
h

k
max cot

=
+1 µ θ

.

 

θ 
y max 

h 

FIG. P8.48

P8.49 At a pace I could keep up for a half-hour exercise period, I climb two stories up, traversing forty
steps each 18 cm high, in 20 s. My output work becomes the final gravitational energy of the system
of the Earth and me,

mgy = × =85 9 80 40 0 18 6 000 kg  m s  m  J2b ge ja f. .

making my sustainable power 
6 000

102 J
20 s

 W= ~ .

P8.50 v = =100 27 8 km h  m s.

The retarding force due to air resistance is

R D Av= = =
1
2

1
2

0 330 1 20 2 50 27 8 3822 2ρ . . . .a fe je jb g kg m  m  m s  N3 2

Comparing the energy of the car at two points along the hill,

K U E K Ui gi f gf+ + = +∆

or K U W R s K Ui gi e f gf+ + − = +∆ ∆a f
where ∆We  is the work input from the engine. Thus,

∆ ∆W R s K K U Ue f i gf gi= + − + −a f d i e j
Recognizing that K Kf i=  and dividing by the travel time ∆t  gives the required power input from

the engine as

P

P

P

= FHG
I
KJ =
F
HG
I
KJ +
F
HG
I
KJ = +

= + °

= =

∆
∆

∆
∆

∆
∆

W
t

R
s
t

mg
y
t

Rv mgve sin

. . . sin .

. .

θ

382 27 8 1 500 9 80 27 8 3 20

33 4 44 8

 N  m s  kg  m s  m s

 kW  hp

2a fb g b ge jb g
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P8.51 m = mass of pumpkin
R = radius of silo top

F ma n mg m
v
Rr r∑ = ⇒ − = −cosθ

2

When the pumpkin first loses contact with the surface, n = 0 .
Thus, at the point where it leaves the surface: v Rg2 = cosθ .

FIG. P8.51

Choose Ug = 0  in the θ = °90 0.  plane. Then applying conservation of energy for the pumpkin-Earth

system between the starting point and the point where the pumpkin leaves the surface gives

K U K U

mv mgR mgR

f gf i gi+ = +

+ = +
1
2

02 cosθ

Using the result from the force analysis, this becomes

1
2

mRg mgR mgRcos cosθ θ+ = , which reduces to

cosθ =
2
3

, and gives θ = = °−cos .1 2 3 48 2b g
as the angle at which the pumpkin will lose contact with the surface.

P8.52 (a) U mgRA = = =0 200 9 80 0 300 0 588. . . . kg  m s  m  J2b ge ja f

(b) K U K UA A B B+ = +
K K U U mgRB A A B= + − = = 0 588.  J

(c) v
K
mB

B= = =
2 2 0 588

0 200
2 42

.
.

.
 J

 kg
 m s

a f

(d) U mghC C= = =0 200 9 80 0 200 0 392. . . . kg  m s  m  J2b ge ja f
K K U U mg h h

K

C A A C A C

C

= + − = −

= − =

b g
b ge ja f0 200 9 80 0 300 0 200 0 196. . . . . kg  m s  m  J2

FIG. P8.52

P8.53 (a) K mvB B= = =
1
2

1
2

0 200 1 50 0 2252 2
. . . kg  m s  Jb gb g

(b) ∆ ∆ ∆E K U K K U U

K mg h h
B A B A

B B A

mech

2 J  kg  m s  m

 J  J  J

= + = − + −

= + −

= + −

= − = −

b g
b ge ja f0 225 0 200 9 80 0 0 300

0 225 0 588 0 363

. . . .

. . .

(c) It’s possible to find an effective coefficient of friction, but not the actual value of µ since n
and f vary with position.
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P8.54 The gain in internal energy due to friction represents a loss in mechanical energy that must be equal
to the change in the kinetic energy plus the change in the potential energy.

Therefore,

− = + −µ θ θkmgx K kx mgxcos sin∆
1
2

2

and since v vi f= = 0 , ∆K = 0.

Thus,

− ° = − °µ k 2 00 9 80 37 0 0 200
100 0 200

2
2 00 9 80 37 0 0 200

2

. . cos . .
.

. . sin . .a fa fa fa f a fa f a fa fa fa f

and we find µ k = 0 115. . Note that in the above we had a gain in elastic potential energy for the

spring and a loss in gravitational potential energy.

P8.55 (a) Since no nonconservative work is done, ∆E = 0

Also ∆K = 0

therefore, U Ui f=

where U mg xi = sinθb g
and U kxf =

1
2

2 ��������
��������
��������
��������
��������

2.00 kg

k  = 100 N/m

FIG. P8.55

Substituting values yields 2 00 9 80 37 0 100
2

. . sin .a fa f a f° =
x

 and solving we find

x = 0 236.  m

(b) F ma∑ = . Only gravity and the spring force act on the block, so

− + =kx mg masinθ

For x = 0 236.  m,

a = −5 90.  m s2 . The negative sign indicates a is up the incline.

The acceleration depends on position .

(c) U(gravity) decreases monotonically as the height decreases.

U(spring) increases monotonically as the spring is stretched.

K initially increases, but then goes back to zero.
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P8.56 k = ×2 50 104.  N m, m = 25 0.  kg

xA = −0 100.  m, U Ug x s x= =
= =

0 0
0

(a) E K U UA gA sAmech = + + E mgx kxA Amech = + +0
1
2

2

E

E

mech
2

mech

 kg  m s  m

 N m  m

 J  J  J

= −

+ × −

= − + =

25 0 9 80 0 100

1
2

2 50 10 0 100

24 5 125 100

4 2

. . .

. .

.

b ge ja f
e ja f

(b) Since only conservative forces are involved, the total energy of the child-pogo-stick-Earth
system at point C is the same as that at point A.

K U U K U UC gC sC A gA sA+ + = + + : 0 25 0 9 80 0 0 24 5 125+ + = − +. . . kg  m s  J  J2b ge jxC

xC = 0 410.  m

(c) K U U K U UB gB sB A gA sA+ + = + + :
1
2

25 0 0 0 0 24 5 1252. . kg  J  Jb g a fvB + + = + − +

vB = 2 84.  m s

(d) K and v are at a maximum when a F m= =∑ 0 (i.e., when the magnitude of the upward
spring force equals the magnitude of the downward gravitational force).

This occurs at x < 0  where k x mg=

or x =
×

= × −
25 0 9 8

2 50 10
9 80 104

3
. .

.
.

 kg  m s

 N m
 m

2b ge j

Thus, K K= max at x = −9 80.  mm

(e) K K U U U UA gA g x sA s xmax . .
= + − + −

=− =−9 80 9 80 mm  mme j e j

or
1
2

25 0 25 0 9 80 0 100 0 009 82. . . . .max kg  kg  m s  m  m2b g b ge j a f b gv = − − −

+ × − − −
1
2

2 50 10 0 100 0 009 84 2 2
. . . N m  m  me j a f b g

yielding vmax .= 2 85 m s

P8.57 ∆ ∆E f x
E E f d

kx mgh mgd

mgh kx
mgd

f i BC

BC

BC

mech = −
− = − ⋅

− = −

=
−

=

1
2

0 328

2

1
2

2

µ

µ .
FIG. P8.57
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P8.58 (a) F i i= − − + + = − −
d
dx

x x x x x3 2 22 3 3 4 3e j e j

(b) F = 0

when x = −1 87 0 535. . and 

(c) The stable point is at

x = −0 535.  point of minimum U xa f.
The unstable point is at

x = 1 87.  maximum in U xa f.
FIG. P8.58

P8.59 K U K Ui f+ = +a f a f
0 30 0 9 80 0 200

1
2

250 0 200

1
2

50 0 20 0 9 80 0 200 40 0

2

2

+ +

= + °

. . . .

. . . . sin .

 kg  m s  m  N m  m

 kg  kg  m s  m

2

2

b ge ja f b ga f

b g b ge ja fv

58 8 5 00 25 0 25 2

1 24

2. . . .

.

 J  J  kg  J

 m s

+ = +

=

b gv
v

FIG. P8.59

P8.60 (a) Between the second and the third picture, ∆ ∆ ∆E K Umech = +

− = − +µmgd mv kdi
1
2

1
2

2 2

1
2

50 0 0 250 1 00 9 80
1
2

1 00 3 00 0

2 45 21 25
0 378

2. . . . . .

. .
.

 N m  kg  m s  kg  m s

 N
50.0 N m

 m

2 2b g b ge j b ge jd d

d

+ − =

=
− ±

=

(b) Between picture two and picture four, ∆ ∆ ∆E K Umech = +

− = −

= −

=

f d mv mv

v

i2
1
2

1
2

3 00
2

1 00
2 45 2 0 378

2 30

2 2

2

a f

b g b g a fa fa f.
.

. .

.

 m s
 kg

 N  m

 m s

(c) For the motion from picture two to picture five,
∆ ∆ ∆E K Umech = +

− + = −

= − =

f D d

D

2
1
2

1 00 3 00

9 00

2 0 250 1 00 9 80
2 0 378 1 08

2a f b gb g

a fb ge j
a f

. .

.

. . .
. .

 kg  m s

 J

 kg  m s
 m  m

2
FIG. P8.60
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P8.61 (a) Initial compression of spring: 
1
2

1
2

2 2kx mv=

1
2

450
1
2

0 500 12 0

0 400

2 2
 N m  kg  m s

 m

b ga f b gb g∆

∆

x

x

=

∴ =

. .

.

(b) Speed of block at top of track: ∆ ∆E f xmech = −
FIG. P8.61

mgh mv mgh mv f R

v

v

v

T T B B

T

T

T

+F
HG

I
KJ − +F
HG

I
KJ = −

+ −

= −

=

∴ =

1
2

1
2

0 500 9 80 2 00
1
2

0 500
1
2

0 500 12 0

7 00 1 00

0 250 4 21

4 10

2 2

2 2

2

π

π

a f

b ge ja f b g b gb g
a fa fa f

. . . . . .

. .

. .

.

 kg  m s  m  kg  kg  m s

 N  m

 m s

2

(c) Does block fall off at or before top of track? Block falls if a gc <

a
v
Rc
T= = =
2 24 10

1 00
16 8

.
.

.
a f

 m s2

Therefore a gc >  and the block stays on the track .

P8.62 Let λ represent the mass of each one meter of the chain and T
represent the tension in the chain at the table edge. We imagine the
edge to act like a frictionless and massless pulley.

(a) For the five meters on the table with motion impending,

Fy∑ = 0 : + − =n g5 0λ n g= 5λ

f n g gs s≤ = =µ λ λ0 6 5 3. b g
Fx∑ = 0 : + − =T fs 0 T fs= T g≤ 3λ FIG. P8.62

The maximum value is barely enough to support the hanging segment according to

Fy∑ = 0 : + − =T g3 0λ T g= 3λ

so it is at this point that the chain starts to slide.

continued on next page
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(b) Let x represent the variable distance the chain has slipped since the start.

Then length 5 − xa f  remains on the table, with now

Fy∑ = 0 : + − − =n x g5 0a fλ n x g= −5a fλ
f n x g g x gk k= = − = −µ λ λ λ0 4 5 2 0 4. .a f

Consider energies of the chain-Earth system at the initial moment when the chain starts to
slip, and a final moment when x = 5 , when the last link goes over the brink. Measure
heights above the final position of the leading end of the chain. At the moment the final link
slips off, the center of the chain is at y f = 4  meters.

Originally, 5 meters of chain is at height 8 m and the middle of the dangling segment is at

height 8
3
2

6 5− = .  m .

K U E K Ui i f f+ + = +∆ mech : 0
1
21 1 2 2

2+ + − = +F
HG

I
KJzm gy m gy f dx mv mgy

i k
i

f

f
b g

5 8 3 6 5 2 0 4
1
2

8 8 4

40 0 19 5 2 00 0 400 4 00 32 0

27 5 2 00 0 400
2

4 00

27 5 2 00 5 00 0 400 12 5 4 00

22 5 4 00

22 5 9 80

4 00
7 42

0

5
2

0

5

0

5
2

0

5
2

0

5
2

2

2

λ λ λ λ λ λg g g x g dx v g

g g g dx g x dx v g

g gx g
x

v

g g g v

g v

v

b g b g b g b g b g

a f a f

a fe j

+ − − = +

+ − + = +

− + =

− + =

=

= =

z
z z

. .

. . . . . .

. . . .

. . . . . .

. .

. .

.
.

 m  m s
 

2

m s

P8.63 Launch speed is found from

mg h mv
4
5

1
2

2F
HG
I
KJ = : v g h= F

HG
I
KJ2

4
5

v vy = sinθ

The height y above the water (by conservation of energy
for the child-Earth system) is found from FIG. P8.63

mgy mv mg
h

y= +
1
2 5

2 (since 
1
2

2mvx  is constant in projectile motion)

y
g

v
h

g
v

h

y
g

g h
h

h
h

y= + = +

= F
HG
I
KJ

L
NM

O
QP + = +

1
2 5

1
2 5

1
2

2
4
5 5

4
5 5

2 2 2

2 2

sin

sin sin

θ

θ θ
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*P8.64 (a) The length of string between glider and pulley is given by 2 2
0
2= +x h . Then 2 2 0

d
dt

x
dx
dt

= + .

Now 
d
dt

 is the rate at which string goes over the pulley: 
d
dt

v
x

v vy x x= = = cosθa f .

(b) K K U K K UA B g i A B g f
+ + = + +e j e j

0 0
1
2

1
230 45

2 2+ + − = +m g y y m v m vB A x B yb g
Now y y30 45−  is the amount of string that has gone over the pulley, 30 45− . We have

sin30 0

30
° =

h
 and sin 45 0

45
° =

h
, so 30 45

0 0

30 45
0 40 2 2 0 234− =

°
−

°
= − =

h h
sin sin

. . m  me j .

From the energy equation

0 5 9 8 0 234
1
2

1 00
1
2

0 500 45

1 15
1 35

2 2 2. . . . . cos

.
.

 kg  m s   m  kg  kg

 J
0.625 kg

 m s

2 = + °

= =

v v

v

x x

x

(c) v vy x= = ° =cos . cos .θ 1 35 45 0 958 m s  m sb g
(d) The acceleration of neither glider is constant, so knowing distance and acceleration at one

point is not sufficient to find speed at another point.

P8.65 The geometry reveals D L L= +sin sinθ φ , 50 0 40 0 50. . sin sin m  m= °+ φb g , φ = °28 9.

(a) From takeoff to alighting for the Jane-Earth system

K U W K U

mv mg L FD mg L

v

v

v

g i g f

i

i

i

i

+ + = +

+ − + − = + −

+ − ° − = − °

− × − × = − ×

= =

e j e j
a f a f b g

e ja f a f e ja f

a f

wind

2 2 kg  kg  m s  m  N  m  kg  m s  m

 kg  J  J  J

 J
 kg

 m s

1
2

1 0

1
2

50 50 9 8 40 50 110 50 50 9 8 40 28 9

1
2

50 1 26 10 5 5 10 1 72 10

2 947
50

6 15

2

2

2 4 3 4

cos cos

. cos . cos .

. . .

.

θ φ

(b) For the swing back

1
2

1 0

1
2

130 130 9 8 40 28 9 110 50

130 40 50

1
2

130 4 46 10 5 500 3 28 10

2 6 340

130
9 87

2

2

2 4 4

mv mg L FD mg L

v

v

v

i

i

i

i

+ − + + = + −

+ − ° +

= − °

− × + = − ×

= =

cos cos

. cos .

cos

. .

.

φ θb g a f a f

e ja f a f
e ja f

b g

 kg  kg  m s  m  N  m

 kg 9.8 m s  m

 kg  J  J  J

 J

 kg
 m s

2

2



244     Potential Energy

P8.66 Case I: Surface is frictionless
1
2

1
2

2 2mv kx=

k
mv
x

= = = ×−

2

2

2

2
25 00 1 20

10
7 20 10

. .
.

 kg  m s

 m
 N m2

b gb g

Case II: Surface is rough, µ k = 0 300.
1
2

1
2

2 2mv kx mgxk= − µ

5 00 1
2

7 20 10 10 0 300 5 00 9 80 10

0 923

2 2 1 2 1.
. . . .

.

 kg
2

 N m  m  kg  m s  m

 m s

2v

v

= × −

=

− −e je j a fb ge je j

*P8.67 (a) K U K Ug A g B
+ = +e j e j

0
1
2

02+ = +mgy mvA B v gyB A= = =2 2 9 8 6 3 11 1. . . m s  m  m s2e j

(b) a
v
rc = = =
2 211 1

6 3
19 6

.

.
.

 m s

 m
 m s  up2b g

(c) F may y∑ = + − =n mg maB c

nB = + = ×76 9 8 19 6 2 23 103 kg  m s  m s  N up2 2. . .e j

(d) W F r= = × ° = ×∆ cos . . cos .θ 2 23 10 0 450 0 1 01 103 3 N  m  Ja f

(e) K U W K Ug B g D
+ + = +e j e j

1
2

0 1 01 10
1
2

1
2

76 11 1 1 01 10
1
2

76 76 9 8 6 3

5 70 10 4 69 10 2

76
5 14

2 3 2

2 3 2

3 3

mv mv mg y y

v

v

B D D B

D

D

+ + × = + −

+ × = +

× − ×
= =

.

. . . .

. .
.

 J

 kg  m s  J  kg  kg  m s  m

 J  J

 kg
 m s

2

b g

b g e j
e j

(f) K U K Ug D g E
+ = +e j e j  where E is the apex of his motion

1
2

0 02mv mg y yD E D+ = + −b g y y
v

gE D
D− = = =
2 2

2

5 14

2 9 8
1 35

.

.
.

 m s

 m s
 m

2

b g
e j

(g) Consider the motion with constant acceleration between takeoff and touchdown. The time
is the positive root of

y y v t a t

t t

t t

t

f i yi y= + +

− = + + −

− − =

=
± − −

=

1
2

2 34 0 5 14
1
2

9 8

4 9 5 14 2 34 0

5 14 5 14 4 4 9 2 34

9 8
1 39

2

2

2

2

. . .

. . .

. . . .

.
.

 m  m s  m s

 s

2e j

a fa f
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*P8.68 If the spring is just barely able to lift the lower block from the table, the spring lifts it through no
noticeable distance, but exerts on the block a force equal to its weight Mg. The extension of the
spring, from Fs kx= , must be Mg k . Between an initial point at release and a final point when the
moving block first comes to rest, we have

K U U K U Ui gi si f gf sf+ + = + + : 0
4 1

2
4

0
1
2

2 2

+ −FHG
I
KJ +
F
HG
I
KJ = + FHG

I
KJ +
F
HG
I
KJmg

mg
k

k
mg
k

mg
Mg
k

k
Mg

k

− + = +

= +

+ − =

=
− ± − −

= − ±

4 8
2

4
2

2
4 0

4 4

2
9

2 2 2 2 2 2 2

2
2

2
2

2 1
2

2

1
2

2

m g
k

m g
k

mMg
k

M g
k

m mM
M

M
mM m

M
m m m

m m
c he j
c h

Only a positive mass is physical, so we take M m m= − =3 1 2a f .

P8.69 (a) Take the original point where the ball is
released and the final point where its
upward swing stops at height H and
horizontal displacement

x L L H LH H= − − = −2 2 22a f
Since the wind force is purely horizontal, it
does work

W d F dx F LH Hwind = ⋅ = = −z zF s 2 2 FIG. P8.69

The work-energy theorem can be written:

K U W K Ui gi f gf+ + = +wind , or

0 0 2 02+ + − = +F LH H mgH  giving F LH F H m g H2 2 2 2 2 22 − =

Here H = 0  represents the lower turning point of the ball’s oscillation, and the upper limit is
at F L F m g H2 2 2 22a f e j= + . Solving for H yields

H
LF

F m g
L

mg F
=

+
=

+

2 2

1

2

2 2 2 2b g
As F → 0 , H → 0  as is reasonable.
As F → ∞ , H L→ 2 , which would be hard to approach experimentally.

(b) H =
+

=
2 2 00

1 2 00 9 80 14 7
1 442

.

. . .
.

 m

 kg  m s  N
 m

2

a f
b ge j

continued on next page
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(c) Call θ the equilibrium angle with the vertical.

F T F

F T mg
x

y

∑
∑

= ⇒ =

= ⇒ =

0

0

sin

cos

θ

θ

,  and

Dividing: tan
.

.θ = = =
F

mg
14 7

0 750
 N

19.6 N
, or θ = °36 9.

Therefore, H Leq  m  m= − = − ° =1 2 00 1 36 9 0 400cos . cos . .θa f a fa f

(d) As F → ∞ , tanθ → ∞ , θ → °90 0.  and H Leq →

A very strong wind pulls the string out horizontal, parallel to the ground. Thus,

H Leqe jmax
= .

P8.70 Call φ θ= °−180  the angle between the upward vertical and
the radius to the release point. Call vr  the speed here. By
conservation of energy

K U E K U

mv mgR mv mgR

gR gR v gR

v gR gR

i i r r

i r

r

r

+ + = +

+ + = +

+ = +

= −

∆
1
2

0
1
2

2 2

3 2

2 2

2

cos

cos

cos

φ

φ

φ

The components of velocity at release are v vx r= cosφ  and
v vy r= sinφ  so for the projectile motion we have

 
The path 
after string 
is cut 

iv = Rg  

R 

θ 

C 

FIG. P8.70

x v tx= R v trsin cosφ φ=

y v t gty= −
1
2

2 − = −R v t gtrcos sinφ φ
1
2

2

By substitution

− = −R v
R
v

g R
vr

r r

cos sin
sin
cos

sin
cos

φ φ
φ
φ

φ
φ2

2 2

2 2

with sin cos2 2 1φ φ+ = ,

gR v gR gRrsin cos cos cos

sin cos cos cos

cos cos

cos

2 2

2 2 2

2

2 2 3 2

6 4 1

3 6 1 0

6 36 12
6

φ φ φ φ

φ φ φ φ

φ φ

φ

= = −

= − = −

− + =

=
± −

b g

Only the – sign gives a value for cosφ  that is less than one:

cos .φ = 0 183 5 φ = °79 43. so θ = °100 6.
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P8.71 Applying Newton’s second law at the bottom (b) and top (t) of the
circle gives

T mg
mv

Rb
b− =
2

 and − − = −T mg
mv

Rt
t
2

Adding these gives T T mg
m v v

Rb t
b t

= + +
−

2
2 2e j

Also, energy must be conserved and ∆ ∆U K+ = 0

So, 
m v v

mgR
b t
2 2

2
0 2 0

−
+ − =

e j b g  and 
m v v

R
mg

b t
2 2

4
−

=
e j

Substituting into the above equation gives T T mgb t= + 6 .

 

mg 

v t 
T t mg 

T b 

v b 

FIG. P8.71

P8.72 (a) Energy is conserved in the swing of the pendulum, and the
stationary peg does no work. So the ball’s speed does not
change when the string hits or leaves the peg, and the ball
swings equally high on both sides.

(b) Relative to the point of suspension,

Ui = 0, U mg d L df = − − −a f

From this we find that

− − + =mg d L mv2
1
2

02a f

Also for centripetal motion,

mg
mv

R
=

2

 where R L d= − .

Upon solving, we get d
L

=
3
5

.

 

θ 

L 
d 

Peg 

FIG. P8.72
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*P8.73 (a) At the top of the loop the car and riders are in free
fall:

F may y∑ = : mg
mv

R
 down  down=

2

v Rg=

Energy of the car-riders-Earth system is conserved
between release and top of loop:

K U K Ui gi f gf+ = + : 0
1
2

22+ = +mgh mv mg Ra f
gh Rg g R

h R

= +

=

1
2

2

2 50

a f
.

(b) Let h now represent the height ≥ 2 5. R  of the release
point. At the bottom of the loop we have

mgh mvb=
1
2

2 or v ghb
2 2=

F may y∑ = : n mg
mv

Rb
b− =
2

upb g

n mg
m gh

Rb = +
2b g

At the top of the loop, mgh mv mg Rt= +
1
2

22 a f
v gh gRt

2 2 4= − FIG. P8.73

F may y∑ = : − − = −n mg
mv

Rt
t
2

n mg
m
R

gh gR

n
m gh

R
mg

t

t

= − + −

= −

2 4

2
5

b g
b g

Then the normal force at the bottom is larger by

n n mg
m gh

R

m gh

R
mg mgb t− = + − + =

2 2
5 6

b g b g
.
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*P8.74 (a) Conservation of energy for the sled-rider-Earth system,
between A and C:

K U K U

m m mv

v

i gi f gf+ = +

+ = +

= + =

1
2

2 5 9 80 9 76
1
2

0

2 5 2 9 80 9 76 14 1

2 2

2

. . .

. . . .

 m s  m s  m

 m s  m s  m  m s

2
C

C
2

b g e ja f

b g e ja f FIG. P8.74(a)

(b) Incorporating the loss of mechanical energy during the portion of the motion in the water,
we have, for the entire motion between A and D (the rider’s stopping point),

K U f x K Ui gi k f gf+ − = +∆ :
1
2

80 2 5 80 9 80 9 76 0 0
2

 kg  m s  kg  m s  m2b gb g b ge ja f. . .+ − = +f xk ∆

− = − ×f xk ∆ 7 90 103.  J

(c) The water exerts a frictional force f
xk =

×
=

× ⋅
=

7 90 10 7 90 10
158

3 3. . J  N m
50 m

 N
∆

and also a normal force of n mg= = =80 9 80 784 kg  m s  N2b ge j.

The magnitude of the water force is 158 784 8002 2 N  N  Na f a f+ =

(d) The angle of the slide is

θ = = °−sin
.

.1 9 76
10 4

 m
54.3 m

For forces perpendicular to the track at B,

F may y∑ = : n mgB − =cosθ 0

nB = ° =80 0 9 80 10 4 771. . cos . kg  m s  N2b ge j

FIG. P8.74(d)

(e) F may y∑ = : + − =n mg
mv

rC
C
2

n

n

C
2

C

 kg  m s

 kg  m s

 m

 N up

=

+

= ×

80 0 9 80

80 0 14 1

20

1 57 10

2

3

. .

. .

.

b ge j
b gb g

FIG. P8.74(e)

The rider pays for the thrills of a giddy height at A, and a high speed and tremendous splash
at C. As a bonus, he gets the quick change in direction and magnitude among the forces we
found in parts (d), (e), and (c).
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ANSWERS TO EVEN PROBLEMS

P8.2 (a) 800 J; (b) 107 J; (c) 0 P8.42 7 9 32 3− −x y xe ji j

P8.4 (a) 1 11 109. ×  J ; (b) 0.2
P8.44 see the solution

P8.6 1.84 m
P8.46 (a) r = 1 5.  mm and 3.2 mm, stable; 2.3 mm

and unstable; r → ∞  neutral;
P8.8 (a) 10.2 kW; (b) 10.6 kW; (c) 5 82 106. ×  J (b) − ≤ <5 6 1.  J  JE ; (c) 0 6 3 6. . mm  mm≤ ≤r ;

(d) 2.6 J; (e) 1.5 mm; (f) 4 J
P8.10 d

kx
mg

x= −
2

2 sinθ P8.48 see the solution

P8.12 (a) see the solution; (b) 60.0° P8.50 33.4 kW

P8.14 (a) 
2 1 2

1 2

m m gh
m m

−

+
b g
b g ; (b) 

2 1

1 2

m h
m m+

P8.52 (a) 0.588 J; (b) 0.588 J; (c) 2 42.  m s;
(d) 0.196 J; 0.392 J

P8.54 0.115P8.16 160 L min

P8.56 (a) 100 J; (b) 0.410 m; (c) 2 84.  m s ;P8.18 40.8°
(d) −9 80.  mm; (e) 2 85.  m s

P8.20
8
15

1 2ghF
HG
I
KJ P8.58 (a) 3 4 32x x− −e ji ; (b) 1.87; –-0.535;

(c) see the solution
P8.22 (a) see the solution; (b) 35.0 J

P8.60 (a) 0.378 m; (b) 2 30.  m s ; (c) 1.08 m
P8.24 (a) vB = 5 94.  m s; vC = 7 67.  m s ; (b) 147 J

P8.62 (a) see the solution; (b) 7 42.  m s
P8.26 (a) U f = 22 0.  J ; E = 40 0.  J ; (b) Yes. The total

mechanical energy changes. P8.64 (a) see the solution; (b) 1 35.  m s;
(c) 0 958.  m s ; (d) see the solutionP8.28 194 m

P8.66 0 923.  m sP8.30 2.06 kN up

P8.68 2mP8.32 168 J

P8.34 (a) 24 5.  m s ; (b) yes; (c) 206 m; (d) Air drag
depends strongly on speed.

P8.70 100.6°

P8.72 see the solution
P8.36 3.92 kJ

P8.74 (a) 14 1.  m s; (b) −7 90.  J ; (c) 800 N;
P8.38 44.1 kW (d) 771 N; (e) 1.57 kN up

P8.40 (a) 
Ax Bx2 3

2 3
− ;

(b) ∆U
A B

= −
5
2

19
3

; ∆K
B A

= −
19

3
5
2
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CHAPTER OUTLINE
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  Conservation
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9.3 Collisions in One Dimension
9.4 Two-Dimensional Collisions
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Linear Momentum and Collisions

ANSWERS TO QUESTIONS

Q9.1 No. Impulse, F t∆ , depends on the force and the time for which
it is applied.

Q9.2 The momentum doubles since it is proportional to the speed.
The kinetic energy quadruples, since it is proportional to the
speed-squared.

Q9.3 The momenta of two particles will only be the same if the
masses of the particles of the same.

Q9.4 (a) It does not carry force, for if it did, it could accelerate
itself.

(b) It cannot deliver more kinetic energy than it possesses.
This would violate the law of energy conservation.

(c) It can deliver more momentum in a collision than it possesses in its flight, by bouncing from
the object it strikes.

Q9.5 Provided there is some form of potential energy in the system, the parts of an isolated system can
move if the system is initially at rest. Consider two air-track gliders on a horizontal track. If you
compress a spring between them and then tie them together with a string, it is possible for the
system to start out at rest. If you then burn the string, the potential energy stored in the spring will
be converted into kinetic energy of the gliders.

Q9.6 No. Only in a precise head-on collision with momenta with equal magnitudes and opposite
directions can both objects wind up at rest. Yes. Assume that ball 2, originally at rest, is struck
squarely by an equal-mass ball 1. Then ball 2 will take off with the velocity of ball 1, leaving ball 1 at
rest.

Q9.7 Interestingly, mutual gravitation brings the ball and the Earth together. As the ball moves
downward, the Earth moves upward, although with an acceleration 1025  times smaller than that of
the ball. The two objects meet, rebound, and separate. Momentum of the ball-Earth system is
conserved.

Q9.8 (a) Linear momentum is conserved since there are no external forces acting on the system.

(b) Kinetic energy is not conserved because the chemical potential energy initially in the
explosive is converted into kinetic energy of the pieces of the bomb.

251
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Q9.9 Momentum conservation is not violated if we make our system include the Earth along with the
clay. When the clay receives an impulse backwards, the Earth receives the same size impulse
forwards. The resulting acceleration of the Earth due to this impulse is significantly smaller than the
acceleration of the clay, but the planet absorbs all of the momentum that the clay loses.

Q9.10 Momentum conservation is not violated if we choose as our system the planet along with you.
When you receive an impulse forward, the Earth receives the same size impulse backwards. The
resulting acceleration of the Earth due to this impulse is significantly smaller than your acceleration
forward, but the planet’s backward momentum is equal in magnitude to your forward momentum.

Q9.11 As a ball rolls down an incline, the Earth receives an impulse of the same size and in the opposite
direction as that of the ball. If you consider the Earth-ball system, momentum conservation is not
violated.

Q9.12 Suppose car and truck move along the same line. If one vehicle overtakes the other, the faster-
moving one loses more energy than the slower one gains. In a head-on collision, if the speed of the

truck is less than 
m m

m m
T c

T c

+
+
3

3
 times the speed of the car, the car will lose more energy.

Q9.13 The rifle has a much lower speed than the bullet and much less kinetic energy. The butt distributes
the recoil force over an area much larger than that of the bullet.

Q9.14 His impact speed is determined by the acceleration of gravity and the distance of fall, in
v v g yf i i

2 2 2 0= − −b g. The force exerted by the pad depends also on the unknown stiffness of the pad.

Q9.15 The product of the mass flow rate and velocity of the water determines the force the firefighters
must exert.

Q9.16 The sheet stretches and pulls the two students toward each other. These effects are larger for a
faster-moving egg. The time over which the egg stops is extended so that the force stopping it is
never too large.

Q9.17 (c) In this case, the impulse on the Frisbee is largest. According to Newton’s third law, the impulse
on the skater and thus the final speed of the skater will also be largest.

Q9.18 Usually but not necessarily. In a one-dimensional collision between two identical particles with the
same initial speed, the kinetic energy of the particles will not change.

Q9.19 g downward.

Q9.20 As one finger slides towards the center, the normal force exerted by the sliding finger on the ruler
increases. At some point, this normal force will increase enough so that static friction between the
sliding finger and the ruler will stop their relative motion. At this moment the other finger starts
sliding along the ruler towards the center. This process repeats until the fingers meet at the center of
the ruler.

Q9.21 The planet is in motion around the sun, and thus has momentum and kinetic energy of its own. The
spacecraft is directed to cross the planet’s orbit behind it, so that the planet’s gravity has a
component pulling forward on the spacecraft. Since this is an elastic collision, and the velocity of the
planet remains nearly unchanged, the probe must both increase speed and change direction for both
momentum and kinetic energy to be conserved.
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Q9.22 No—an external force of gravity acts on the moon. Yes, because its speed is constant.

Q9.23 The impulse given to the egg is the same regardless of how it stops. If you increase the impact time
by dropping the egg onto foam, you will decrease the impact force.

Q9.24 Yes. A boomerang, a kitchen stool.

Q9.25 The center of mass of the balls is in free fall, moving up and then down with the acceleration due to
gravity, during the 40% of the time when the juggler’s hands are empty. During the 60% of the time
when the juggler is engaged in catching and tossing, the center of mass must accelerate up with a
somewhat smaller average acceleration. The center of mass moves around in a little circle, making
three revolutions for every one revolution that one ball makes. Letting T represent the time for one
cycle and Fg  the weight of one ball, we have F T F TJ g0 60 3. =  and F FJ g= 5 . The average force exerted

by the juggler is five times the weight of one ball.

Q9.26 In empty space, the center of mass of a rocket-plus-fuel system does not accelerate during a burn,
because no outside force acts on this system. According to the text’s ‘basic expression for rocket
propulsion,’ the change in speed of the rocket body will be larger than the speed of the exhaust
relative to the rocket, if the final mass is less than 37% of the original mass.

Q9.27 The gun recoiled.

Q9.28 Inflate a balloon and release it. The air escaping from the balloon gives the balloon an impulse.

Q9.29 There was a time when the English favored position (a), the Germans position (b), and the French
position (c). A Frenchman, Jean D’Alembert, is most responsible for showing that each theory is
consistent with the others. All are equally correct. Each is useful for giving a mathematically simple
solution for some problems.

SOLUTIONS TO PROBLEMS

Section 9.1 Linear Momentum and Its Conservation

P9.1 m = 3 00.  kg , v i j= −3 00 4 00. .e j m s

(a) p v i j= = − ⋅m 9 00 12 0. .e j kg m s

Thus, px = ⋅9 00.  kg m s

and py = − ⋅12 0.  kg m s

(b) p p px y= + = + = ⋅2 2 2 29 00 12 0 15 0. . .a f a f  kg m s

θ =
F
HG
I
KJ = − = °− −tan tan .1 1 1 33 307

p

p
y

x
a f
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P9.2 (a) At maximum height v = 0 , so p = 0 .

(b) Its original kinetic energy is its constant total energy,

K mvi i= = =
1
2

1
2

0 100 15 0 11 22 2
. . .a f b gkg  m s  J .

At the top all of this energy is gravitational. Halfway up, one-half of it is gravitational and
the other half is kinetic:

K v

v

= =

=
×

=

5 62
1
2

0 100

2 5 62
10 6

2. .

.
.

 J  kg

 J
0.100 kg

 m s

b g

Then p v j= =m 0 100 10 6. . kg  m sb gb g

p j= ⋅1 06.  kg m s .

P9.3 I have mass 85.0 kg and can jump to raise my center of gravity 25.0 cm. I leave the ground with
speed given by

v v a x xf i f i
2 2 2− = −d i : 0 2 9 80 0 2502− = −vi . . m s  m2e ja f

vi = 2 20.  m s

Total momentum of the system of the Earth and me is conserved as I push the earth down and
myself up:

0 5 98 10 85 0 2 20

10

24

23

= × +

−

. . .

~

 kg  kg  m s

 m s

e j b gb gv

v

e

e

P9.4 (a) For the system of two blocks ∆p = 0 ,

or p pi f=

Therefore, 0 3 2 00= +Mv Mm a fb g.  m s

Solving gives vm = −6 00.  m s  (motion toward the

left).

(b)
1
2

1
2

1
2

3 8 402 2
3
2kx Mv M vM M= + =a f .  J

FIG. P9.4
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P9.5 (a) The momentum is p mv= , so v
p
m

=  and the kinetic energy is K mv m
p
m

p
m

= = F
HG
I
KJ =

1
2

1
2 2

2
2 2

.

(b) K mv=
1
2

2  implies v
K

m
=

2
, so p mv m

K
m

mK= = =
2

2 .

Section 9.2 Impulse and Momentum

*P9.6 From the impulse-momentum theorem, F t p mv mvf i∆ ∆a f = = − , the average force required to hold

onto the child is

F
m v v

t
f i

=
−

=
−

−

F
HG

I
KJ = − ×

d i
a f

b gb g
∆

12 0 60

0 050 0
1

2 237
6 44 103 kg  mi h

 s
 m s

 mi h
 N

. .
. .

Therefore, the magnitude of the needed retarding force is 6 44 103. ×  N , or 1 400 lb. A person

cannot exert a force of this magnitude and a safety device should be used.

P9.7 (a) I Fdt= =z  area under curve

I = × = ⋅−1
2

1 50 10 18 000 13 53. . s  N  N se jb g

(b) F =
⋅

×
=−

13 5
9 003

.
.

 N s
1.50 10  s

 kN

(c) From the graph, we see that Fmax .= 18 0 kN
FIG. P9.7

*P9.8 The impact speed is given by 
1
2 1

2
1mv mgy= . The rebound speed is given by mgy mv2 2

21
2

= . The

impulse of the floor is the change in momentum,

mv mv m v v

m gh gh

2 1 2 1

2 12 2

0 15 2 9 8 0 960 1 25

1 39

 up  down  up

 up

 kg  m s  m  m  up

 kg m s  upward

2

− = +

= +

= +

= ⋅

b g
e j

e je j. . . .

.
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P9.9 ∆ ∆

∆

∆

∆
∆

p F=

= − = ° − °=

= − °− ° = − °

= −

= − ⋅

= =
− ⋅

= −

t

p m v v m v mv

p m v v mv

F
p
t

y fy iy

x

x

e j a f
a f
b gb ga f

cos . cos .

sin . sin . sin .

. . .

.
.

.

60 0 60 0 0

60 0 60 0 2 60 0

2 3 00 10 0 0 866

52 0
52 0

0 200
260

 kg  m s

 kg m s
 kg m s

 s
 Nave FIG. P9.9

P9.10 Assume the initial direction of the ball in the –x direction.

(a) Impulse, I p p p i i i= = − = − − = ⋅∆ f i 0 060 0 40 0 0 060 0 50 0 5 40. . . . .b ga f b ga fe j  N s

(b) Work = − = − = −K Kf i
1
2

0 060 0 40 0 50 0 27 02 2. . . .b g a f a f  J

P9.11 Take x-axis toward the pitcher

(a) p I pix x fx+ = : 0 200 15 0 45 0 0 200 40 0 30 0. . cos . . . cos . kg  m s  kg  m sb gb ga f b gb g− ° + = °Ix

Ix = ⋅9 05.  N s

p I piy y fy+ = : 0 200 15 0 45 0 0 200 40 0 30 0. . sin . . . sin . kg  m s  kg  m sb gb ga f b gb g− ° + = °Iy

I i j= + ⋅9 05 6 12. .e j N s

(b) I F F F= + + +
1
2

0 4 00 20 0
1
2

4 00m m mb ga f a f a f. . . ms  ms  ms

F i j

F i j

m

m

× × = + ⋅

= +

−24 0 10 9 05 6 12

377 255

3. . . s  N s

 N

e j
e j

P9.12 If the diver starts from rest and drops vertically into the water, the velocity just before impact is
found from

K U K U

mv mgh v gh

f gf i gi+ = +

+ = + ⇒ =
1
2

0 0 2impact
2

impact

With the diver at rest after an impact time of ∆t , the average force during impact is given by

F
m v

t

m gh

t
=

−
=
−0 2impacte j

∆ ∆
 or F

m gh

t
=

2

∆
 (directed upward).

Assuming a mass of 55 kg and an impact time of ≈ 1 0.  s , the magnitude of this average force is

F = =
55 2 9 8 10

1 0
770

 kg  m s  m

 s
 N

2b g e ja f.

.
, or ~103  N .



Chapter 9     257

P9.13 The force exerted on the water by the hose is

F
p

t

mv mv

t
f i= =
−

=
−

=
∆
∆ ∆
water  kg  m s

 s
 N

0 600 25 0 0

1 00
15 0

. .

.
.

b gb g
.

According to Newton's third law, the water exerts a force of equal magnitude back on the hose.
Thus, the gardener must apply a 15.0 N force (in the direction of the velocity of the exiting water
stream) to hold the hose stationary.

*P9.14 (a) Energy is conserved for the spring-mass system:

K U K Ui si f sf+ = + : 0
1
2

1
2

02 2+ = +kx mv

v x
k
m

=

(b) From the equation, a smaller  value of m makes v x
k
m

=  larger.

(c) I mv mx
k
m

x kmf i f= − = = = =p p 0

(d) From the equation, a larger  value of m makes I x km=  larger.

(e) For the glider, W K K mv kxf i= − = − =
1
2

0
1
2

2 2

The mass makes no difference  to the work.

Section 9.3 Collisions in One Dimension

P9.15 200 55 0 46 0 200 40 0 g  m s  g  g  m sb gb g b g b gb g. . .= +v

v = 65 2.  m s

*P9.16 m v m v m v m v
i f1 1 2 2 1 1 2 2+ = +b g b g

22 5 35 300 2 5 22 5 0

37 5
22 5

1 67

1

1

. . .

.
.

.

 g  m s  g  m s  g

 g m s
 g

 m s

b g b g+ − = +

=
⋅

=

v

v

f

f

FIG. P9.16
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P9.17 Momentum is conserved
10 0 10 5 01 0 600

301

3. . .× =

=

−  kg  kg  m s

 m s

e j b gb gv

v

P9.18 (a) mv mv mvi i f1 23 4+ =  where m = ×2 50 104.  kg

v f =
+

=
4 00 3 2 00

4
2 50

. .
.

a f
 m s

(b) K K m v mv m vf i f i i− = − +L
NM

O
QP = × − − = − ×

1
2

4
1
2

1
2

3 2 50 10 12 5 8 00 6 00 3 75 102
1
2

2
2 4 4a f a f e ja f. . . . .  J

P9.19 (a) The internal forces exerted by the actor do
not change the total momentum of the
system of the four cars and the movie actor

4 3 2 00 4 00

6 00 4 00
4

2 50

m v m m

v

i

i

a f a fb g b g= +

=
+

=

. .

. .
.

 m s  m s

 m s  m s
 m s

FIG. P9.19

(b) W K K m mf iactor  m s  m s  m  m s= − = + −
1
2

3 2 00 4 00
1
2

4 2 50
2 2 2a fb g b g a fb g. . .

Wactor

 kg
m s  kJ=

×
+ − =

2 50 10

2
12 0 16 0 25 0 37 5

4
2.

. . . .
e j a fb g

(c) The event considered here is the time reversal of the perfectly inelastic collision in the
previous problem.  The same momentum conservation equation describes both processes.

P9.20 v1 , speed of m1at B before collision.
1
2

2 9 80 5 00 9 90

1 1
2

1

1

m v m gh

v

=

= =. . .a fa f  m s
v f1 , speed of m1  at B just after collision.

v
m m
m m

vf1
1 2

1 2
1

1
3

9 90 3 30=
−
+

= − = −. .a f m s  m s

At the highest point (after collision)
FIG. P9.20

m gh m1 1
21

2
3 30max .= −a f hmax

.

.
.=

−
=

3 30

2 9 80
0 556

2 m s

 m s
 m

2

b g
e j
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P9.21 (a), (b) Let vg  and vp  be the velocity of the girl and the plank

relative to the ice surface. Then we may say that v vg p−  is

the velocity of the girl relative to the plank, so that

v vg p− = 1 50.                                       (1)  

But also we must have m v m vg g p p+ = 0 , since total

momentum of the girl-plank system is zero relative to the
ice surface. Therefore

45 0 150 0. v vg p+ = , or v vg p= −3 33.

Putting this into the equation (1) above gives

− − =3 33 1 50. .v vp p  or vp = −0 346.  m s

Then vg = − − =3 33 0 346 1 15. . .a f  m s

FIG. P9.21

*P9.22 For the car-truck-driver-driver system, momentum is conserved:

p p p p1 2 1 2i i f f+ = + : 4 000 8 800 8 4 800 kg  m s  kg  m s  kgb gb g b gb ge j b gi i i+ − = v f

v f =
⋅

=
25 600

4 800
5 33

 kg m s
 kg

 m s.

For the driver of the truck, the impulse-momentum theorem is

F p p∆t f i= − : F i i0 120 80 5 33 80 8. . s  kg  m s  kg  m sa f b gb g b gb g= −

F i= × −1 78 103.  N  on the truck drivere j

For the driver of the car, F i i0 120 80 5 33 80 8. . s  kg  m s  kg  m sa f b gb g b gb ge j= − −

F i= ×8 89 103.  N  on the car driver , 5 times larger.

P9.23 (a) According to the Example in the chapter text, the fraction of total kinetic energy transferred
to the moderator is

f
m m

m m
2

1 2

1 2
2

4
=

+b g
where m2  is the moderator nucleus and in this case, m m2 112=

f
m m

m
2

1 1

1
2

4 12

13

48
169

0 284= = =
b g
b g

.  or 28.4%

of the neutron energy is transferred to the carbon nucleus.

(b) KC = × = ×− −0 284 1 6 10 4 54 1013 14. . .a fe j J  J

Kn = × = ×− −0 716 1 6 10 1 15 1013 13. . .a fe j J  J
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P9.24 Energy is conserved for the bob-Earth system between bottom and
top of swing. At the top the stiff rod is in compression and the bob
nearly at rest.

K U K Ui i f f+ = + :
1
2

0 0 22Mv Mgb + = +

v gb
2 4=  so v gb = 2

Momentum of the bob-bullet system is conserved in the collision:

mv m
v

M g= +
2

2e j v
M
m

g=
4

FIG. P9.24

P9.25 At impact, momentum of the clay-block system is conserved, so:

mv m m v1 1 2 2= +b g

After impact, the change in kinetic energy of the clay-block-surface
system is equal to the increase in internal energy:

1
2
1
2

0 112 0 650 0 112 9 80 7 50

1 2 2
2

1 2

2
2

m m v f d m m gd

v

f+ = = +

=

b g b g

b g b ge ja f

µ

. . . . . kg  kg  m s  m2

v2
2 95 6= .  m s2 2 v2 9 77= .  m s

12 0 10 0 112 9 773
1. . .× =−  kg  kg  m se j b gb gv v1 91 2= .  m s

FIG. P9.25

P9.26 We assume equal firing speeds v and equal forces F required for the two bullets to push wood fibers
apart. These equal forces act backward on the two bullets.

For the first, K E Ki f+ =∆ mech
1
2

7 00 10 8 00 10 03 2 2. .× − × =− − kg  me j e jv F

For the second, p pi f= 7 00 10 1 0143. .× =−  kg  kge j b gv v f

v
v

f =
× −7 00 10

1 014

3.

.
e j

Again, K E Ki f+ =∆ mech :
1
2

7 00 10
1
2

1 0143 2 2. .× − =−  kg  kge j b gv Fd v f

Substituting for v f ,
1
2

7 00 10
1
2

1 014
7 00 10

1 014
3 2

3 2

. .
.

.
× − =

×F
HG

I
KJ

−
−

 kg  kge j b gv Fd
v

Fd v v= × −
×

−
−

1
2

7 00 10
1
2

7 00 10

1 014
3 2

3 2

2.
.

.e j e j

Substituting for v, Fd F= × −
×F

HG
I
KJ

−
−

8 00 10 1
7 00 10

1 014
2

3

.
.

.
 me j d = 7 94.  cm
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*P9.27 (a) Using conservation of momentum, p p∑ ∑=c h c hafter before
, gives

4 0 10 3 0 4 0 5 0 10 3 0 3 0 4 0. . . . . . .+ + = + + −a f b gb g b gb g b gb g kg  kg  m s  kg  m s  kg  m sv .

Therefore, v = +2 24.  m s , or 2 24.  m s  toward the right .

(b) No . For example, if the 10-kg and 3.0-kg mass were to stick together first, they would

move with a speed given by solving

13 10 3 0 3 0 4 01 kg  kg  m s  kg  m sb g b gb g b gb gv = + −. . . , or v1 1 38= + .  m s .

Then when this 13 kg combined mass collides with the 4.0 kg mass, we have

17 13 1 38 4 0 5 0 kg  kg  m s  kg  m sb g b gb g b gb gv = +. . . , and v = +2 24.  m s

just as in part (a). Coupling order makes no difference.

Section 9.4 Two-Dimensional Collisions

P9.28 (a) First, we conserve momentum for the system of two football players in the x direction (the
direction of travel of the fullback).

90 0 5 00 0 185. . cos kg  m s  kgb gb g b g+ = V θ

where θ is the angle between the direction of the final velocity V and the x axis. We find

V cos .θ = 2 43 m s (1)

Now consider conservation of momentum of the system in the y direction (the direction of
travel of the opponent).

95 0 3 00 0 185. . sin kg  m s  kgb gb g b ga f+ = V θ

which gives, V sin .θ = 1 54 m s (2)

Divide equation (2) by (1) tan
.
.

.θ = =
1 54
2 43

0 633

From which θ = °32 3.

Then, either (1) or (2) gives V = 2 88.  m s

(b) Ki = + = ×
1
2

90 0 5 00
1
2

95 0 3 00 1 55 10
2 2 3. . . . . kg  m s  kg  m s  Jb gb g b gb g

K f = = ×
1
2

185 2 88 7 67 10
2 2 kg  m s  Jb gb g. .

Thus, the kinetic energy lost is 783 J into internal energy.
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P9.29 p pxf xi=

mv mv mO Y  m scos . cos . .37 0 53 0 5 00°+ °= b g
0 799 0 602 5 00. . .v vO Y  m s+ = (1)

p p

mv mv
yf yi=

°− °=O Ysin . sin .37 0 53 0 0

0 602 0 799. .v vO Y= (2)

Solving (1) and (2) simultaneously,

vO  m s= 3 99.  and vY  m s= 3 01. .
FIG. P9.29

P9.30 p pxf xi= : mv mv mviO Ycos cos .θ θ+ °− =90 0a f

v v viO Ycos sinθ θ+ = (1)

p pyf yi= : mv mvO Ysin sin .θ θ− °− =90 0 0a f

v vO Ysin cosθ θ= (2)

From equation (2),

v vO Y= FHG
I
KJ

cos
sin

θ
θ

(3)

Substituting into equation (1),

v v viY Y
cos
sin

sin
2 θ
θ

θ
F
HG

I
KJ + =

so v viY cos sin sin2 2θ θ θ+ =e j , and v viY = sinθ .

FIG. P9.30

Then, from equation (3), v vO i= cosθ .

We did not need to write down an equation expressing conservation of mechanical energy. In the
problem situation, the requirement of perpendicular final velocities is equivalent to the condition of
elasticity.
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P9.31 The initial momentum of the system is 0. Thus,

1 20 10 0. .m v mBia f b g=  m s

and vBi = 8 33.  m s

K m m m

K m v m v m

i

f G B

= + =

= + = FHG
I
KJ

1
2

10 0
1
2

1 20 8 33
1
2

183

1
2

1
2

1 20
1
2

1
2

183

2 2

2 2

. . .

.

 m s  m s  m s

 m s

2 2

2 2

b g a fb g e j

b g a fb g e j

or v vG B
2 21 20 91 7+ =. .  m s2 2 (1)

From conservation of momentum,

mv m vG B= 1 20.a f
or v vG B= 1 20. (2)

Solving (1) and (2) simultaneously, we find

vG = 7 07.  m s  (speed of green puck after collision)

and vB = 5 89.  m s  (speed of blue puck after collision)

P9.32 We use conservation of momentum for the system of two vehicles
for both northward and eastward components.

For the eastward direction:

M MVf13 0 2 55 0. cos . m sb g = °

For the northward direction:

Mv MVi f2 2 55 0= °sin .

Divide the northward equation by the eastward equation to find:

v i2 13 0 55 0 18 6 41 5= °= =. tan . . . m s  m s  mi hb g

Thus, the driver of the north bound car was untruthful.

FIG. P9.32
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P9.33 By conservation of momentum for the system of the two billiard
balls (with all masses equal),

5 00 0 4 33 30 0

1 25

0 4 33 30 0

2 16

2 50 60 0

2

2

2

2

2

. . cos .

.

. sin .

.

. .

 m s  m s

 m s

 m s

 m s

 m s  at 

+ = °+

=

= °+

= −

= − °

b g

b g

v

v

v

v

fx

fx

fy

fy

fv FIG. P9.33

Note that we did not need to use the fact that the collision is perfectly elastic.

P9.34 (a) p pi f= so p pxi xf=

and p pyi yf=

mv mv mvi = +cos cosθ φ (1)

0 = +mv mvsin sinθ φ (2)

From (2), sin sinθ φ= −

so θ φ= −

Furthermore, energy conservation for the system
of two protons requires

1
2

1
2

1
2

2 2 2mv mv mvi = +

so v
vi=
2

FIG. P9.34

(b) Hence, (1) gives v
v

i
i=

2
2

cosθ
θ = °45 0. φ = − °45 0.

P9.35 m m m mi i f1 1 2 2 1 2v v v+ = +b g : 3 00 5 00 6 00 5 00. . . .a fi j v− =

v i j= −3 00 1 20. .e j m s

P9.36 x-component of momentum for the system of the two objects:
p p p pix ix fx fx1 2 1 2+ = + : − + = +mv mv mvi i x3 0 3 2

y-component of momentum of the system: 0 0 31 2+ = − +mv mvy y

by conservation of energy of the system: + + = + +
1
2

1
2

3
1
2

1
2

32 2
1
2

2
2

2
2mv mv mv m v vi i y x ye j

we have v
v

x
i

2
2
3

=

also v vy y1 23=

So the energy equation becomes 4 9
4

3
32

2
2

2

2
2v v

v
vi y

i
y= + +

8
3

12
2

2
2v

vi
y=

or v
v

y
i

2
2
3

=

continued on next page
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(a) The object of mass m has final speed v v vy y i1 23 2= =

and the object of mass 3 m moves at v v
v v

x y
i i

2
2

2
2

2 24
9

2
9

+ = +

v v vx y i2
2

2
2 2

3
+ =

(b) θ =
F
HG
I
KJ

−tan 1 2

2

v

v
y

x
θ =

F
HG

I
KJ = °−tan .1 2

3
3

2
35 3

v
v

i

i

P9.37 m0
2717 0 10= × −.  kg vi = 0  (the parent nucleus)

m1
275 00 10= × −.  kg v j1

66 00 10= ×.  m s

m2
278 40 10= × −.  kg v i2

64 00 10= ×.  m s

(a) m m m1 1 2 2 3 3 0v v v+ + =
where m m m m3 0 1 2

273 60 10= − − = × −.  kg FIG. P9.37

5 00 10 6 00 10 8 40 10 4 00 10 3 60 10 0

9 33 10 8 33 10

27 6 27 6 27
3

3
6 6

. . . . .

. .

× × + × × + × =

= − × − ×

− − −e je j e je j e j
e j

j i v

v i j  m s

(b) E m v m v m v= + +
1
2

1
2

1
21 1

2
2 2

2
3 3

2

E

E

= × × + × × + × ×L
NM

O
QP

= ×

− − −

−

1
2

5 00 10 6 00 10 8 40 10 4 00 10 3 60 10 12 5 10

4 39 10

27 6 2 27 6 2 27 6 2

13

. . . . . .

.

e je j e je j e je j
 J

Section 9.5 The Center of Mass

P9.38 The x-coordinate of the center of mass is

x
m x
m

x

i i

i
CM

CM

 kg  kg  kg  kg
= =

+ + +
+ + +

=

∑
∑

0 0 0 0
2 00 3 00 2 50 4 00

0

. . . .b g

and the y-coordinate of the center of mass is

y
m y
m

y

i i

i
CM

CM

 kg  m  kg  m  kg  kg  m

 kg  kg  kg  kg

 m

= =
+ + + −

+ + +

=

∑
∑

2 00 3 00 3 00 2 50 2 50 0 4 00 0 500

2 00 3 00 2 50 4 00

1 00

. . . . . . .

. . . .

.

b ga f b ga f b ga f b ga f
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P9.39 Take x-axis starting from the oxygen nucleus and pointing toward the
middle of the V.

Then yCM = 0

and x
m x
m

i i

i
CM = =∑

∑

x

x

CM

CM

 u 0.100 nm  u 0.100 nm
 u  u  u

 nm from the oxygen nucleus

=
+ °+ °

+ +

=

0 1 008 53 0 1 008 53 0
15 999 1 008 1 008

0 006 73

. cos . . cos .
. . .

.

a f a f
FIG. P9.39

*P9.40 Let the x axis start at the Earth’s center and point toward the Moon.

x
m x m x

m mCM

 kg 0  kg  m

 kg

 m from the Earth’s center

=
+
+

=
× + × ×

×

= ×

1 1 2 2

1 2

24 22 8

24

6

5 98 10 7 36 10 3 84 10

6 05 10

4 67 10

. . .

.

.

e j

The center of mass is within the Earth, which has radius 6 37 106. ×  m.

P9.41 Let A1  represent the area of the bottom row of squares, A2

the middle square, and A3  the top pair.

A A A A
M M M M
M
A

M
A

= + +
= + +

=

1 2 3

1 2 3

1

1

A1 300=  cm2 , A2 100=  cm2 , A3 200=  cm2 , A = 600 cm2

M M
A
A

M
M

M M
A
A

M
M

M M
A
A

M
M

1
1

2
2

3
3

300
600 2

100
600 6

200
600 3

= FHG
I
KJ = =

= FHG
I
KJ = =

= FHG
I
KJ = =

 cm
 cm

 cm
 cm

 cm
 cm

2

2

2

2

2

2

FIG. P9.41

x
x M x M x M

M

M M M

M
x

y
M M M

M
y

CM

CM

CM

CM

 cm  cm  cm

 cm

 cm  cm  cm
 cm

 cm

=
+ +

=
+ +

=

=
+ +

=

=

1 1 2 2 3 3
1
2

1
6

1
3

1
2

1
6

1
3

15 0 5 00 10 0

11 7

5 00 15 0 25 0
13 3

13 3

. . .

.

. . .
.

.

c h c h c h

a f a f c ha f
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*P9.42 (a) Represent the height of a particle of mass dm within the object as y. Its contribution to the
gravitational energy of the object-Earth system is dm gya f . The total gravitational energy is

U gy dm g y dmg = =z z
all mass

. For the center of mass we have y
M

y dmCM = z1
, so U gMyg = CM .

(b) The volume of the ramp is 
1
2

3 6 15 7 64 8 1 83 103. . . . m  m  m  m3a fa fa f = × . Its mass is

ρV = × = ×3 800 1 83 10 6 96 103 6 kg m  m  kg3 3e je j. . . Its center of mass is above its base by one-

third of its height, yCM  m  m= =
1
3

15 7 5 23. . . Then

U Mgyg = = × = ×CM
2 kg  m s  m  J6 96 10 9 8 5 23 3 57 106 8. . . .e j .

P9.43 (a) M dx x dx= = +z zλ
0

0 300

0

0 300

50 0 20 0
. .

. .
 m

2
 m

 g m  g m

M x x= + =50 0 10 0 15 92
0

0 300
. . .

.
 g m  g m  g2  m

(b) x

xdm

M M
xdx

M
x x dxCM

all mass
 m

2
 m

 g m  g m= = = +
z

z z1 1
50 0 20 0

0

0 300
2

0

0 300

λ
. .

. .

x x
x

CM

2  m

 g
 g m

 g m
 m= +

L
NMM

O
QPP

=
1

15 9
25 0

20
3

0 1532
3

0

0 300

.
. .

.

*P9.44 Take the origin at the center of curvature. We have L r=
1
4

2π ,

r
L

=
2
π

. An incremental bit of the rod at angle θ from the x axis has

mass given by 
dm
rd

M
Lθ

= , dm
Mr
L

d= θ  where we have used the

definition of radian measure. Now

y
M

y dm
M

r
Mr
L

d
r
L

d

L
L

L L

CM
all mass

= = =

= FHG
I
KJ − = +

F
HG

I
KJ =

z z z
= °

°

°

°

°

°

1 1

2 1 4 1
2

1
2

4 2

45

135 2

45

135

2

45

135

2 2

sin sin

cos

θ θ θ θ

π
θ

π π

θ

a f

x

y

θ

FIG. P9.44

The top of the bar is above the origin by r
L

=
2
π

, so the center of mass is below the middle of the bar

by 
2 4 2 2

1
2 2

0 063 52
L L

L L
π π π π

− = −
F
HG

I
KJ = . .
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Section 9.6 Motion of a System of Particles

P9.45 (a) v
v v v

i j i j

CM

 kg  m s  m s  kg  m s  m s

 kg

= =
+

=
− + +

∑m
M

m m
M

i i 1 1 2 2

2 00 2 00 3 00 3 00 1 00 6 00

5 00

. . . . . .

.

b ge j b ge j

v i jCM  m s= +1 40 2 40. .e j

(b) p v i j i j= = + = + ⋅M CM  kg  m s  kg m s5 00 1 40 2 40 7 00 12 0. . . . .b ge j e j

P9.46 (a) See figure to the right.

(b) Using the definition of the position vector at the center of mass,

r
r r

r

r i j

CM

CM

CM

 kg  m  2.00 m  kg  m,   m

 kg  kg

 m

=
+
+

=
+ − −

+

= − −

m m
m m
1 1 2 2

1 2

2 00 1 00 3 00 4 00 3 00

2 00 3 00

2 00 1 00

. . , . . .

. .

. .

b ga f b ga f

e j
FIG. P9.46

(c) The velocity of the center of mass is

v
P v v

v i j

CM

CM

 kg  m s  m s  kg  m s  m s

 kg  kg

 m s

= =
+
+

=
+ −

+

= −

M
m m

m m
1 1 2 2

1 2

2 00 3 00 0 50 3 00 3 00 2 00

2 00 3 00

3 00 1 00

. . , . . . , .

. .

. .

b gb g b gb g
b g

e j

(d) The total linear momentum of the system can be calculated as P v= M CM

or as P v v= +m m1 1 2 2

Either gives P i j= − ⋅15 0 5 00. .e j kg m s

P9.47 Let x =  distance from shore to center of boat
=  length of boat
′ =x  distance boat moves as Juliet moves toward Romeo

The center of mass stays fixed.

Before: x
M x M x M x

M M M

b J R

B J R
CM =

+ − + +

+ +
2 2c h c h

d i

After: x
M x x M x x M x x

M M M

B J R

B J R
CM =

− ′ + + − ′ + + − ′

+ +

a f c h c h
d i

2 2

FIG. P9.47

− +F
HG

I
KJ = ′ − − − + +

′ = = =

55 0
2

77 0
2

80 0 55 0 77 0
2

55 0 77 0

55 0
212

55 0 2 70
212

0 700

. .
. . . . .

. . .
.

x

x

a f a f
a f

 m
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P9.48 (a) Conservation of momentum for the two-ball system gives us:

0 200 1 50 0 300 0 400 0 200 0 3001 2. . . . . . kg  m s  kg  m s  kg  kg b g b g+ − = +v vf f

Relative velocity equation:

v vf f2 1 1 90− = .  m s

Then 0 300 0 120 0 200 0 300 1 901 1. . . . .− = + +v vf fd i
v f1 0 780= − .  m s v f2 1 12= .  m s

v i1 0 780f = − .  m s v i2 1 12f = .  m s

(b) Before, v
i i

CM
 kg  m s  kg  m s

 kg
=

+ −0 200 1 50 0 300 0 400

0 500

. . . .

.
b gb g b gb g

v iCM  m s= 0 360.b g
Afterwards, the center of mass must move at the same velocity, as momentum of the system
is conserved.

Section 9.7 Rocket Propulsion

P9.49 (a) Thrust = v
dM
dte Thrust = × × = ×2 60 10 1 50 10 3 90 103 4 7. . . m s  kg s  Ne je j

(b) F Mg May∑ = − =Thrust : 3 90 10 3 00 10 9 80 3 00 107 6 6. . . .× − × = ×e ja f e ja
a = 3 20.  m s2

*P9.50 (a) The fuel burns at a rate
dM
dt

= = × −12 7
6 68 10 3.

.
 g

1.90 s
 kg s

Thrust = v
dM
dte : 5 26 6 68 10 3. . N  kg s= × −ve e j

ve = 787 m s

(b) v v v
M
Mf i e

i

f
− =

F
HG
I
KJln : v f − =

+
+ −

F
HG

I
KJ0 797

53 5 25 5
25 5 12 7

 m s
 g  g

53.5 g  g  g
b g ln . .

. .

v f = 138 m s

P9.51 v v
M
Me

i

f
= ln

(a) M e Mi
v v

f
e= M ei = × = ×5 3 53 00 10 4 45 10. . kg  kge j

The mass of fuel and oxidizer is ∆M M Mi f= − = − × =445 3 00 10 4423.a f  kg  metric tons

(b) ∆M e= − =2 3 00 3 00 19 2. . . metric tons  metric tons  metric tonsa f
Because of the exponential, a relatively small increase in fuel and/or engine efficiency causes
a large change in the amount of fuel and oxidizer required.
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P9.52 (a) From Equation 9.41, v v
M
M

v
M

Me
i

f
e

f

i
− =

F
HG
I
KJ = −

F
HG
I
KJ0 ln ln

Now, M M ktf i= − , so v v
M kt

M
v

k
M

te
i

i
e

i
= −

−F
HG

I
KJ = − −

F
HG

I
KJln ln 1

With the definition, T
M
kp

i≡ , this becomes

v t v
t

Te
p

a f = − −
F
HG
I
KJln 1

(b) With ve = 1 500 m s, and Tp = 144 s , v
t

= − −FHG
I
KJ1 500 1

144
 m s

 s
b g ln

t s va f b gm s
0 0
20 224
40 488
60 808
80 1220

100 1780
120 2690
132 3730

v (m/s)

2500

0 20 40 60 80 10
0

12
0

14
0

2000
1500
1000
500

0

3000
3500
4000

t (s)

FIG. P9.52(b)

(c) a t
dv
dt

d v

dt
v

T
v
T

e
t

T

e t
T p

e

p
t

T

p

p p

a f = =
− −FH IKL
NM

O
QP = −

−

F
H
GG
I
K
JJ −
F
HG
I
KJ =
F
HG
I
KJ −

F
H
GG
I
K
JJ

ln 1 1
1

1 1
1

, or

a t
v

T t
e

p
a f =

−

(d) With ve = 1 500 m s, and Tp = 144 s , a
t

=
−

1 500
144

 m s
 s

t s aa f e jm s
0 10.4
20 12.1
40 14.4
60 17.9
80 23.4

100 34.1
120 62.5
132 125

2 a (m/s2)

100

0 20 40 60 80 10
0

12
0

14
0

80
60
40
20

0

120
140

t (s)

FIG. P9.52(d)

continued on next page
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(e) x t vdt v
t

T
dt v T

t
T

dt
T

t

e
p

t

e p
p p

t

a f = + = − −
F
HG
I
KJ

L
N
MM

O
Q
PP = −

L
N
MM
O
Q
PP −
F
HG
I
KJz z z0 1 1

0 0 0

ln ln

x t v T
t

T
t

T
t

T

x t v T t
t

T
v t

e p
p p p

t

e p
p

e

a f

a f e j

= −
F
HG
I
KJ −
F
HG
I
KJ − −
F
HG
I
KJ

L
N
MM

O
Q
PP

= − −
F
HG
I
KJ +

1 1 1

1

0

ln

ln

(f) With ve = =1 500 1 50 m s  km s. , and Tp = 144 s ,

x t
t

t= − −FHG
I
KJ +1 50 144 1

144
1 50. ln .a f

t xs km
0
20
40
60
80

100
120
132

a f a f
0

2 19
9 23
22 1
42 2
71 7
115
153

.

.
.
.
.
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100
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40
20
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120
140
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FIG. P9.52(f)

*P9.53 The thrust acting on the spacecraft is

F ma∑ = : F∑ = × = ×− −3 500 2 50 10 9 80 8 58 106 2 kg  m s  N2b ge je j. . .

thrust = FHG
I
KJ

dM
dt

ve : 8 58 10
3 600

702. × =
F
HG

I
KJ

−  N
 s

 m s
∆M b g

∆M = 4 41.  kg
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Additional Problems

P9.54 (a) When the spring is fully compressed, each cart moves with same velocity v. Apply
conservation of momentum for the system of two gliders

p pi f= : m m m m1 1 2 2 1 2v v v+ = +b g v
v v

=
+
+

m m
m m

1 1 2 2

1 2

(b) Only conservative forces act, therefore ∆E = 0 .
1
2

1
2

1
2

1
21 1

2
2 2

2
1 2

2 2m v m v m m v kxm+ = + +b g

Substitute for v from (a) and solve for xm .

x
m m m v m m m v m v m v m m v v

k m m

x
m m v v v v

k m m
v v

m m
k m m

m

m

2 1 2 1 1
2

1 2 2 2
2

1 1
2

2 2
2

1 2 1 2

1 2

1 2 1
2

2
2

1 2

1 2
1 2

1 2

1 2

2

2

=
+ + + − − −

+

=
+ −

+
= −

+

b g b g b g b g
b g

e j
b g b g b g

(c) m m m mf f1 1 2 2 1 1 2 2v v v v+ = +

Conservation of momentum: m mf f1 1 1 2 2 2v v v v− = −d i d i (1)

Conservation of energy:
1
2

1
2

1
2

1
21 1

2
2 2

2
1 1

2
2 2

2m v m v m v m vf f+ = +

which simplifies to: m v v m v vf f1 1
2

1
2

2 2
2

2
2− = −e j e j

Factoring gives m mf f f f1 1 1 1 1 2 2 2 2 2v v v v v v v v− ⋅ + = − ⋅ +d i d i d i d i
and with the use of the momentum equation (equation (1)),

this reduces to v v v v1 1 2 2+ = +f fd i d i
or v v v v1 2 2 1f f= + − (2)

Substituting equation (2) into equation (1) and simplifying yields:

v v v2
1

1 2
1

2 1

1 2
2

2
f

m
m m

m m
m m

=
+

F
HG

I
KJ +

−
+

F
HG

I
KJ

Upon substitution of this expression for v2 f  into equation 2, one finds

v v v1
1 2

1 2
1

2

1 2
2

2
f

m m
m m

m
m m

=
−
+

F
HG

I
KJ +

+
F
HG

I
KJ

Observe that these results are the same as Equations 9.20 and 9.21, which should have been
expected since this is a perfectly elastic collision in one dimension.
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P9.55 (a) 60 0 4 00 120 60 0. . . kg  m s  kgb g a f= + v f

v if = 1 33.  m s

(b) Fy∑ = 0 : n − =60 0 9 80 0. . kg  m s2b g
f nk k= = =µ 0 400 588 235.  N  Na f
f ik = −235 N FIG. P9.55

(c) For the person, p I pi f+ =
mv Ft mvi f+ =

60 0 4 00 235 60 0 1 33

0 680

. . . .

.

 kg  m s  N  kg  m s

 s

b g a f b g− =

=

t

t

(d) person: m mf iv v i− = − = − ⋅60 0 1 33 4 00 160. . . kg  m s  N sa f
cart: 120 1 33 0 160 kg  m s  N s.b g− = + ⋅ i

(e) x x v v tf i i f− = + = + =
1
2

1
2

4 00 1 33 0 680 1 81d i a f. . . . m s  s  m

(f) x x v v tf i i f− = + = + =
1
2

1
2

0 1 33 0 680 0 454d i b g. . . m s  s  m

(g)
1
2

1
2

1
2

60 0 1 33
1
2

60 0 4 00 4272 2 2 2
mv mvf i− = − = −. . . . kg  m s  kg  m s  Jb g b g

(h)
1
2

1
2

1
2

120 0 1 33 0 1072 2 2
mv mvf i− = − =. . kg  m s  Jb g

(i) The force exerted by the person on the cart must equal in magnitude and opposite in
direction to the force exerted by the cart on the person.  The changes in momentum of
the two objects must be equal in magnitude and must add to zero.  Their changes in
kinetic energy are different in magnitude and do not add to zero.  The following
represent two ways of thinking about ’why. ’  The distance the cart moves is different
from the distance moved by the point of application of the friction force to the cart.
The total change in mechanical energy for both objects together,   J,  becomes
+320 J of additional internal energy in this perfectly inelastic collision.

− 320

P9.56 The equation for the horizontal range of a projectile is R
v

g
i=
2 2sin θ

. Thus, with θ = °45 0. , the initial

velocity is

v Rg

I F t p mv

i

i

= = =

= = = −

200 9 80 44 3

0

 m  m s  m s2a fe j
a f

. .

∆ ∆

Therefore, the magnitude of the average force acting on the ball during the impact is:

F
mv

t
i= =

×

×
=

−

−∆

46 0 10 44 3

7 00 10
291

3

3

. .

.

 kg  m s

 s
 N

e jb g
.
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P9.57 We hope the momentum of the wrench provides enough recoil so that the astronaut can reach the
ship before he loses life support! We might expect the elapsed time to be on the order of several
minutes based on the description of the situation.
No external force acts on the system (astronaut plus wrench), so the total momentum is constant.
Since the final momentum (wrench plus astronaut) must be zero, we have final momentum = initial
momentum = 0.

m v m vwrench wrench astronaut astronaut+ = 0

Thus v
m v

mastronaut
wrench wrench

astronaut

 kg  m s

 kg
 m s= − = − = −

0 500 20 0

80 0
0 125

. .

.
.

b gb g

At this speed, the time to travel to the ship is

t = = =
30 0

240 4 00
.

.
 m

0.125 m s
 s  minutes

The astronaut is fortunate that the wrench gave him sufficient momentum to return to the ship in a
reasonable amount of time! In this problem, we were told that the astronaut was not drifting away
from the ship when he threw the wrench. However, this is not quite possible since he did not
encounter an external force that would reduce his velocity away from the ship (there is no air
friction beyond earth’s atmosphere). If this were a real-life situation, the astronaut would have to
throw the wrench hard enough to overcome his momentum caused by his original push away from
the ship.

P9.58 Using conservation of momentum from just before to just
after the impact of the bullet with the block:

mv M m vi f= +a f

or v
M m

m
vi f=

+F
HG

I
KJ (1)

The speed of the block and embedded bullet just after
impact may be found using kinematic equations:

d v tf=  and h gt=
1
2

2

Thus, t
h

g
=

2
 and v

d
t

d
g
h

gd
hf = = =

2 2

2

 

M 

v i 

m 

h 

d 

FIG. P9.58

Substituting into (1) from above gives v
M m

m
gd

hi =
+F

HG
I
KJ

2

2
.
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*P9.59 (a) Conservation of momentum:

0 5 2 3 1 1 5 1 2 3

0 5 1 3 8 1 5

0 5 1 5 4 0 5 1 5 4

1 5
0

2

2

. .

. .

. . . .

.

 kg  m s  kg  m s

 kg  m s  kg 

 kg m s  kg m s

 kg

i j k i j k

i j k v

v
i j k i j k

− + + − + −

= − + − +

=
− + − ⋅ + − + ⋅

=

e j e j
e j
e j e j

f

f

The original kinetic energy is

1
2

0 5 2 3 1
1
2

1 5 1 2 3 14 02 2 2 2 2 2. . . kg  m s  kg  m s  J2 2 2 2+ + + + + =e j e j

The final kinetic energy is 
1
2

0 5 1 3 8 0 18 52 2 2. . kg  m s  J2 2+ + + =e j  different from the original

energy so the collision is inelastic .

(b) We follow the same steps as in part (a):

− + − ⋅ = − + − +

=
− + − ⋅ + − + ⋅

= − + −

0 5 1 5 4 0 5 0 25 0 75 2 1 5

0 5 1 5 4 0 125 0 375 1

1 5

0 250 0 750 2 00

2

2

. . . . . .

. . . .

.

. . .

i j k i j k v

v
i j k i j k

i j k

e j e j
e j e j

e j

 kg m s  kg  m s  kg 

 kg m s  kg m s

 kg

 m s

f

f

We see v v2 1f f= , so the collision is perfectly inelastic .

(c) Conservation of momentum:

− + − ⋅ = − + + +

=
− + − ⋅ + − − ⋅

= − −

0 5 1 5 4 0 5 1 3 1 5

0 5 1 5 4 0 5 1 5 0 5

1 5

2 67 0 333

2

2

. . . .

. . . . .

.

. .

i j k i j k v

v
i j k i j k

k

e j e j
e j e j

a f

 kg m s  kg  m s  kg 

 kg m s  kg m s

 kg

 m s

a

a

a

f

f

Conservation of energy:

14 0
1
2

0 5 1 3
1
2

1 5 2 67 0 333

2 5 0 25 5 33 1 33 0 083 3

2 2 2 2

2 2

. . . . .

. . . . .

 J  kg  m s  kg  m s

 J  J

2 2 2 2= + + + +

= + + + +

a a

a a a

e j a f

0 0 333 1 33 6 167

1 33 1 33 4 0 333 6 167

0 667
2 74 6 74

2

2

= + −

=
− ± − −

= −

. . .

. . . .

.
. .

a a

a

a

a fa f

 or .  Either value is possible.

∴ =a 2 74. , v k k2 2 67 0 333 2 74 3 58f = − − = −. . . .a fc h  m s  m s

∴ = −a 6 74. , v k k2 2 67 0 333 6 74 0 419f = − − − = −. . . .a fc h  m s  m s
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P9.60 (a) The initial momentum of the system is zero, which
remains constant throughout the motion.
Therefore, when m1  leaves the wedge, we must
have

m v m v2 1 0wedge block+ =

or 3 00 0 500 4 00 0. . . kg  kg  m swedgeb g b gb gv + + =

so vwedge  m s= −0 667.

(b) Using conservation of energy for the block-wedge-
Earth system as the block slides down the smooth
(frictionless) wedge, we have

��������
��������

��������
��������

v = 4.00 m/sblock

vwedge

+x

FIG. P9.60

K U K K U K
i i f fblock system wedge block system wedge+ + = + +

or 0 0
1
2

4 00 0
1
2

0 6671 1
2

2
2+ + = +L

NM
O
QP + −m gh m m. .a f a f  which gives h = 0 952.  m .

*P9.61 (a) Conservation of the x component of momentum for the cart-bucket-water system:

mv m V vi + = +0 ρb g v
m V

m
vi =

+ ρ

(b) Raindrops with zero x-component of momentum stop in the bucket and slow its horizontal
motion. When they drip out, they carry with them horizontal momentum. Thus the cart
slows with constant acceleration.
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P9.62 Consider the motion of the firefighter during the three
intervals:

(1) before, (2) during, and (3) after collision with the
platform.

(a) While falling a height of 4.00 m, his speed changes
from vi = 0 to v1  as found from

∆E K U K Uf f i i= + − −d i b g , or

K E U K Uf f i i= − + +∆

When the initial position of the platform is taken as
the zero level of gravitational potential, we have

1
2

180 0 01
2mv fh mgh= ° − + +cosa f

Solving for v1  gives

 

v1

v2

FIG. P9.62

v
fh mgh

m1
2 2 300 4 00 75 0 9 80 4 00

75 0
6 81=

− +
=

− +
=

b g a f a fc h. . . .

.
.  m s

(b) During the inelastic collision, momentum is conserved; and if v2  is the speed of the
firefighter and platform just after collision, we have mv m M v1 2= +a f  or

v
m v

m M2
1 1 75 0 6 81

75 0 20 0
5 38=

+
=

+
=

. .
. .

.
a f

 m s

Following the collision and again solving for the work done by non-conservative forces,
using the distances as labeled in the figure, we have (with the zero level of gravitational
potential at the initial position of the platform):

∆E K U U K U Uf fg fs i ig is= + + − − − , or

− = + + − + − + − −fs m M g s ks m M v0
1
2

1
2

0 02 2a f a f a f

This results in a quadratic equation in s:

2 000 931 300 1 375 02s s s− + − =a f  or s = 1 00.  m
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*P9.63 (a) Each object swings down according to

mgR mv=
1
2 1

2 MgR Mv=
1
2 1

2 v gR1 2=

The collision: − + = + +mv Mv m M v1 1 2a f
v

M m
M m

v2 1=
−
+

Swinging up:
1
2

1 352
2M m v M m gR+ = + − °a f a f a fcos

v gR2 2 1 35= − °cosa f
2 1 35 2

0 425 0 425
1 425 0 575

0 403

gR M m M m gR

M m M m
m M

m
M

− ° + = −

+ = −
=

=

cos

. .

. .

.

a fa f a f

(b) No change is required if the force is different. The nature of the forces within the system of
colliding objects does not affect the total momentum of the system. With strong magnetic
attraction, the heavier object will be moving somewhat faster and the lighter object faster
still. Their extra kinetic energy will all be immediately converted into extra internal energy
when the objects latch together. Momentum conservation guarantees that none of the extra
kinetic energy remains after the objects join to make them swing higher.

P9.64 (a) Use conservation of the horizontal component of
momentum for the system of the shell, the cannon,
and the carriage, from just before to just after the
cannon firing.

p pxf xi= : m v m vshell shell cannon recoilcos .45 0 0°+ =

200 125 45 0 5 000 0a fa f b gcos . °+ =vrecoil

or vrecoil  m s= −3 54. FIG. P9.64

(b) Use conservation of energy for the system of the cannon, the carriage, and the spring from
right after the cannon is fired to the instant when the cannon comes to rest.

K U U K U Uf gf sf i gi si+ + = + + : 0 0
1
2

1
2

0 02+ + = + +kx mvmax recoil
2

x
mv

kmax
.

.
.= =

−

×
=recoil

2

 m  m
5 000 3 54

2 00 10
1 77

2

4

b ga f

(c) F kxs, max max = Fs, max  N m  m  N= × = ×2 00 10 1 77 3 54 104 4. . .e ja f

(d) No. The rail exerts a vertical external force (the normal force) on the cannon and prevents it
from recoiling vertically. Momentum is not conserved in the vertical direction. The spring
does not have time to stretch during the cannon firing. Thus, no external horizontal force is
exerted on the system (cannon, carriage, and shell) from just before to just after firing.
Momentum of this system is conserved in the horizontal direction during this interval.
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P9.65 (a) Utilizing conservation of
momentum,

m v m m v

v
m m

m
gh

v

A B

A

A

1 1 1 2

1
1 2

1

1

2

6 29

= +

=
+

≅

b g

.  m s

(b) Utilizing the two equations,

1
2

2gt y=  and x v tA= 1

we combine them to find

v
x

A y
g

1 2
=

 

x 

y 

v 1 i 

FIG. P9.65

From the data, v A1 6 16= .  m s

Most of the 2% difference between the values for speed is accounted for by the uncertainty

in the data, estimated as 
0 01
8 68

0 1
68 8

1
263

1
257

0 1
85 3

1 1%
.
.

.
.

.
.

.+ + + + = .

*P9.66 The ice cubes leave the track with speed determined by mgy mvi =
1
2

2;

v = =2 9 8 1 5 5 42. . . m s  m  m s2e j .

Its speed at the apex of its trajectory is 5 42 40 4 15. cos . m s  m s°= . For its collision with the wall we
have

mv F t mv

F t

F t

i f+ =

+ = −FHG
I
KJ

= − × ⋅−

∆

∆

∆

0 005 4 15 0 005
1
2

4 15

3 12 10 2

. . . .

.

 kg  m s  kg  m s

 kg m s

The impulse exerted by the cube on the wall is to the right, + × ⋅−3 12 10 2.  kg m s. Here F could refer
to a large force over a short contact time. It can also refer to the average force if we interpret ∆t  as
1

10
 s, the time between one cube’s tap and the next’s.

Fav
 kg m s
 s

 N to the right=
× ⋅

=
−3 12 10

0 1
0 312

2.
.

.
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P9.67 (a) Find the speed when the bullet emerges from the
block by using momentum conservation:

mv MV mvi i= +

The block moves a distance of 5.00 cm. Assume for
an approximation that the block quickly reaches its
maximum velocity, Vi , and the bullet kept going
with a constant velocity, v. The block then
compresses the spring and stops.

400 m/s

5.00 cm v

  

  

FIG. P9.67
1
2

1
2

900 5 00 10

1 00
1 50

5 00 10 400 1 00 1 50

5 00 10

100

2 2

2 2

3

3

MV kx

V

v
mv MV

m

v

i

i

i i

=

=
×

=

=
−

=
× −

×

=

−

−

−

 N m  m

 kg
 m s

 kg  m s  kg  m s

 kg

 m s

b ge j

e jb g b gb g

.

.
.

. . .

.

(b) ∆ ∆ ∆E K U= + = × − ×

+ ×

− −

−

1
2

5 00 10 100
1
2

5 00 10 400

1
2

900 5 00 10

3 2 3 2

2 2

. .

.

 kg  m s  kg  m s

 N m  m

e jb g e jb g

b ge j
∆E = −374 J, or there is an energy loss of 374 J .

*P9.68 The orbital speed of the Earth is

v
r

TE 7
 m

3.156 10  s
 m s= =

×
×

= ×
2 2 1 496 10

2 98 10
11

4π π .
.

In six months the Earth reverses its direction, to undergo
momentum change

S
CM

E

FIG. P9.68

m m vE E E E  kg  m s  kg m s∆v = = × × = × ⋅2 2 5 98 10 2 98 10 3 56 1024 4 25. . .e je j .

Relative to the center of mass, the sun always has momentum of the same magnitude in the
opposite direction. Its 6-month momentum change is the same size, mS S  kg m s∆v = × ⋅3 56 1025. .

Then ∆vS
 kg m s

 kg
 m s=

× ⋅

×
=

3 56 10
1 991 10

0 179
25

30

.
.

. .
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P9.69 (a) p F pi ft+ = : 3 00 7 00 12 0 5 00 3 00. . . . . kg  m s  N  s  kgb gb g e ja f b gj i v+ = f

v i jf = +20 0 7 00. .e j m s

(b) a
v v

=
−f i

t
: a

i j j
i=

+ −
=

20 0 7 00 7 00

5 00
4 00

. . .

.
.

e j m s

 s
 m s2

(c) a
F

= ∑
m

: a
i

i= =
12 0

4 00
.

.
 N

3.00 kg
 m s2

(d) ∆r v a= +it t
1
2

2 : ∆r j i= +7 00 5 00
1
2

4 00 5 00 2. . . . m s  s  m s  s2e ja f e ja f
∆r i j= +50 0 35 0. .e j m

(e) W = ⋅F r∆ : W = ⋅ + =12 0 50 0 35 0 600. . . N  m  m  Ji i je j e j

(f)
1
2

1
2

3 00 20 0 7 00 20 0 7 002mv f = + ⋅ +. . . . . kg  m s2 2b ge j e ji j i j

1
2

1 50 449 6742mv f = =.  kg  m s  J2 2b ge j

(g)
1
2

1
2

3 00 7 00 600 6742 2
mv Wi + = + =. . kg  m s  J  Jb gb g

P9.70 We find the mass from M t= −360 2 50 kg  kg s.b g .

We find the acceleration from a
M

v dM dt

M M M
e= = = =

Thrust  m s  kg s  N1 500 2 50 3 750b gb g.

We find the velocity and position according to Euler,
from v v a tnew old= + ∆a f
and x x v tnew old= + ∆a f
If we take ∆t = 0 132.  s , a portion of the output looks like this:

Time Total mass Acceleration Speed, v Position
t(s) (kg) a m s2e j (m/s) x(m)

0.000 360.00 10.4167 0.0000 0.0000
0.132 359.67 10.4262 1.3750 0.1815
0.264 359.34 10.4358 2.7513 0.54467

...
65.868 195.330 19.1983 916.54 27191
66.000 195.000 19.2308 919.08 27312
66.132 194.670 19.2634 921.61 27433

...
131.736 30.660 122.3092 3687.3 152382
131.868 30.330 123.6400 3703.5 152871
132.000 30.000 125.0000 3719.8 153362

(a) The final speed is v f = 3 7.  km s

(b) The rocket travels 153 km
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P9.71 The force exerted by the table is equal to the change in momentum
of each of the links in the chain.

By the calculus chain rule of derivatives,

F
dp
dt

d mv
dt

v
dm
dt

m
dv
dt1 = = = +

a f
.

We choose to account for the change in momentum of each link by
having it pass from our area of interest just before it hits the table,
so that

FIG. P9.71

v
dm
dt

≠ 0  and m
dv
dt

= 0 .

Since the mass per unit length is uniform, we can express each link of length dx as having a mass dm:

dm
M
L

dx= .

The magnitude of the force on the falling chain is the force that will be necessary to stop each of the
elements dm.

F v
dm
dt

v
M
L

dx
dt

M
L

v1
2= = FHG

I
KJ = FHG

I
KJ

After falling a distance x, the square of the velocity of each link v gx2 2=  (from kinematics), hence

F
Mgx
L1

2
= .

The links already on the table have a total length x, and their weight is supported by a force F2:

F
Mgx

L2 = .

Hence, the total force on the chain is

F F F
Mgx
Ltotal = + =1 2

3
.

That is, the total force is three times the weight of the chain on the table at that instant.
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P9.72 A picture one second later differs by showing five extra kilograms of sand moving on the belt.

(a)
∆
∆
p
t
x = =

5 00 0 750

1 00
3 75

. .

.
.

 kg  m s

 s
 N

b gb g

(b) The only horizontal force on the sand is belt friction,

so from p f t pxi xf+ =∆ this is f
p
t
x= =

∆
∆

3 75.  N

(c) The belt is in equilibrium:

F max x∑ = : + − =F fext 0 and Fext  N= 3 75.

(d) W F r= = °=∆ cos . cos .θ 3 75 0 2 81 N 0.750 m  Ja f

(e)
1
2

1
2

5 00 0 750 1 412 2
∆m va f b g= =. . . kg  m s  J

(f) Friction between sand and belt converts half of the input work into extra internal energy.

*P9.73 x
m x
m

m R m

m m

m R

m m
i i

i
CM = =

+ +

+
=

+

+
∑
∑

1 2 2

1 2

1 2

1 2

0c h a f c h y

x

R 2

FIG. P9.73

ANSWERS TO EVEN PROBLEMS

P9.2 (a) 0; (b) 1 06.  kg m s⋅ ; upward P9.20 0 556.  m

P9.22 1.78 kN on the truck driver; 8.89 kN in the
opposite direction on the car driver

P9.4 (a) 6 00.  m s  to the left; (b) 8.40 J

P9.6 The force is 6.44 kN
P9.24 v

M
m

g=
4

P9.8 1 39.  kg m s  upward⋅

P9.26 7.94 cmP9.10 (a) 5 40.  N s⋅  toward the net; (b) −27 0.  J

P9.28 (a) 2 88.  m s  at 32.3°; (b) 783 J becomes
internal energy

P9.12 ~103  N upward

P9.14 (a) and (c) see the solution; (b) small;
P9.30 v viY = sinθ ; v vO i= cosθ(d) large; (e) no difference

P9.32 No; his speed was 41 5.  mi hP9.16 1 67.  m s

P9.34 (a) v
vi=
2

; (b) 45.0° and –45.0°P9.18 (a) 2 50.  m s ; (b) 3 75 104. ×  J
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P9.36 (a) 2vi ; 
2
3

vi ; (b) 35.3° (c) v v v1
1 2

1 2
1

2

1 2
2

2
f

m m
m m

m
m m

=
−
+

F
HG

I
KJ +

+
F
HG

I
KJ ;

v v v2
1

1 2
1

2 1

1 2
2

2
f

m
m m

m m
m m

=
+

F
HG

I
KJ +

−
+

F
HG

I
KJP9.38 0 1 00, .  ma f

P9.40 4 67 106. ×  m from the Earth’s center P9.56 291 N

P9.42 (a) see the solution; (b) 3 57 108. ×  J
P9.58

M m
m

gd
h

+F
HG

I
KJ

2

2P9.44 0 063 5. L

P9.60 (a) −0 667.  m s; (b) 0.952 m
P9.46 (a) see the solution;

(b) − −2 00 1 00. , . m   ma f; P9.62 (a) 6 81.  m s; (b) 1.00 m
(c) 3 00 1 00. .i j−e j m s ;

P9.64 (a) −3 54.  m s; (b) 1.77 m; (c) 35.4 kN;
(d) 15 0 5 00. .i j− ⋅e j kg m s (d) No. The rails exert a vertical force to

change the momentum
P9.48 (a) −0 780. i m s ; 1 12. i m s; (b) 0 360. i m s

P9.66 0.312 N to the right

P9.50 (a) 787 m s; (b) 138 m s
P9.68 0 179.  m s

P9.52 see the solution P9.70 (a) 3 7.  km s ; (b) 153 km

P9.54 (a) 
m m

m m
1 1 2 2

1 2

v v+
+

; P9.72 (a) 3.75 N to the right; (b) 3.75 N to the
right; (c) 3.75 N; (d) 2.81 J; (e) 1.41 J;

(b) v v
m m

k m m1 2
1 2

1 2
−

+
b g b g ;

(f) Friction between sand and belt converts
half of the input work into extra internal
energy.
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CHAPTER OUTLINE

10.1 Angular Position, Velocity,
  and Acceleration
10.2 Rotational Kinematics: 
  Rotational Motion with
  Constant Angular
  Acceleration
10.3 Angular and Linear
  Quantities
10.4 Rotational Energy
10.5 Calculation of Moments of
  Inertia
10.6 Torque

  Torque and Angular 
                                         

10.7 Relationship Between

Acceleration  
10.8 Work, Power, and Energy
  in Rotational Motion

  Object  
10.9 Rolling Motion of a Rigid

Rotation of a Rigid Object
About a Fixed Axis

ANSWERS TO QUESTIONS

Q10.1 1 rev/min, or 
π
30

 rad/s. Into the wall (clockwise rotation). α = 0.

FIG. Q10.1

Q10.2 +k , −k

Q10.3 Yes, they are valid provided that ω is measured in degrees per
second and α is measured in degrees per second-squared.

Q10.4 The speedometer will be inaccurate. The speedometer measures the number of revolutions per
second of the tires. A larger tire will travel more distance in one full revolution as 2πr .

Q10.5 Smallest I is about x axis and largest I is about y axis.

Q10.6 The moment of inertia would no longer be 
ML2

12
 if the mass was nonuniformly distributed, nor

could it be calculated if the mass distribution was not known.

Q10.7 The object will start to rotate if the two forces act along different lines. Then the torques of the forces
will not be equal in magnitude and opposite in direction.

Q10.8 No horizontal force acts on the pencil, so its center of mass moves straight down.

Q10.9 You could measure the time that it takes the hanging object, m, to fall a measured distance after
being released from rest. Using this information, the linear acceleration of the mass can be
calculated, and then the torque on the rotating object and its angular acceleration.

Q10.10 You could use ω α= t  and v at= . The equation v R= ω  is valid in this situation since a R= α .

Q10.11 The angular speed ω would decrease. The center of mass is farther from the pivot, but the moment
of inertia increases also.

285
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Q10.12 The moment of inertia depends on the distribution of mass with respect to a given axis. If the axis is
changed, then each bit of mass that makes up the object is a different distance from the axis. In
example 10.6 in the text, the moment of inertia of a uniform rigid rod about an axis perpendicular to
the rod and passing through the center of mass is derived. If you spin a pencil back and forth about
this axis, you will get a feeling for its stubbornness against changing rotation. Now change the axis
about which you rotate it by spinning it back and forth about the axis that goes down the middle of
the graphite. Easier, isn’t it? The moment of inertia about the graphite is much smaller, as the mass
of the pencil is concentrated near this axis.

Q10.13 Compared to an axis through the center of mass, any other parallel axis will have larger average
squared distance from the axis to the particles of which the object is composed.

Q10.14 A quick flip will set the hard–boiled egg spinning faster and more smoothly. The raw egg loses
mechanical energy to internal fluid friction.

Q10.15 I MRCM = 2 , I MRCM = 2 , I MRCM =
1
3

2, I MRCM =
1
2

2

Q10.16 Yes. If you drop an object, it will gain translational kinetic energy from decreasing gravitational
potential energy.

Q10.17 No, just as an object need not be moving to have mass.

Q10.18 No, only if its angular momentum changes.

Q10.19 Yes. Consider a pendulum at its greatest excursion from equilibrium. It is momentarily at rest, but
must have an angular acceleration or it would not oscillate.

Q10.20 Since the source reel stops almost instantly when the tape stops playing, the friction on the source
reel axle must be fairly large. Since the source reel appears to us to rotate at almost constant angular
velocity, the angular acceleration must be very small. Therefore, the torque on the source reel due to
the tension in the tape must almost exactly balance the frictional torque. In turn, the frictional torque
is nearly constant because kinetic friction forces don’t depend on velocity, and the radius of the axle
where the friction is applied is constant. Thus we conclude that the torque exerted by the tape on
the source reel is essentially constant in time as the tape plays.

As the source reel radius R shrinks, the reel’s angular speed ω =
v
R

 must increase to keep the

tape speed v constant. But the biggest change is to the reel’s moment of inertia. We model the reel as
a roll of tape, ignoring any spool or platter carrying the tape. If we think of the roll of tape as a

uniform disk, then its moment of inertia is I MR=
1
2

2 . But the roll’s mass is proportional to its base

area π R2 . Thus, on the whole the moment of inertia is proportional to R4 . The moment of inertia
decreases very rapidly as the reel shrinks!

The tension in the tape coming into the read-and-write heads is normally dominated by
balancing frictional torque on the source reel, according to TR ≈ τ friction . Therefore, as the tape plays
the tension is largest when the reel is smallest. However, in the case of a sudden jerk on the tape, the
rotational dynamics of the source reel becomes important. If the source reel is full, then the moment
of inertia, proportional to R4 , will be so large that higher tension in the tape will be required to give
the source reel its angular acceleration. If the reel is nearly empty, then the same tape acceleration
will require a smaller tension. Thus, the tape will be more likely to break when the source reel is
nearly full. One sees the same effect in the case of paper towels; it is easier to snap a towel free when
the roll is new than when it is nearly empty.
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Q10.21 The moment of inertia would decrease. This would result in a higher angular speed of the earth,
shorter days, and more days in the year!

Q10.22 There is very little resistance to motion that can reduce the kinetic energy of the rolling ball. Even
though there is static friction between the ball and the floor (if there were none, then no rotation
would occur and the ball would slide), there is no relative motion of the two surfaces—by the
definition of “rolling”—and so no force of kinetic friction acts to reduce K. Air resistance and friction
associated with deformation of the ball eventually stop the ball.

Q10.23 In the frame of reference of the ground, no. Every point
moves perpendicular to the line joining it to the
instantaneous contact point. The contact point is not
moving at all. The leading and trailing edges of the
cylinder have velocities at 45° to the vertical as shown.

 

 

P 

CM 
vCM 

v 

v 

FIG. Q10.23

Q10.24 The sphere would reach the bottom first; the hoop would reach the bottom last. If each object has
the same mass and the same radius, they all have the same torque due to gravity acting on them.
The one with the smallest moment of inertia will thus have the largest angular acceleration and
reach the bottom of the plane first.

Q10.25 To win the race, you want to decrease the moment of inertia of the wheels as much as possible.
Small, light, solid disk-like wheels would be best!

SOLUTIONS TO PROBLEMS

Section 10.1 Angular Position, Velocity, and Acceleration

P10.1 (a) θ t= =0 5 00.  rad

ω θ

α
ω

t
t

t

t
t

d
dt

t

d
dt

=
=

=

=
=

= = + =

= =

0
0

0

0
0

10 0 4 00 10 0

4 00

. . .

.

 rad s

 rad s2

(b) θ t= = + + =3 00 5 00 30 0 18 0 53 0. . . . . s  rad

ω θ

α
ω

t
t

t

t
t

d
dt

t

d
dt

=
=

=

=
=

= = + =

= =

3 00
3 00

3 00

3 00
3 00

10 0 4 00 22 0

4 00

.
.

.

.
.

. . .

.

 s
 s

 s

 s
 s

2

 rad s

 rad s
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Section 10.2 Rotational Kinematics: Rotational Motion with Constant Angular Acceleration

*P10.2 ω f = × = ×2 51 10 2 63 104 3. . rev min  rad s

(a) α
ω ω

=
−

=
× −

= ×f i

t
2 63 10 0

3 2
8 22 10

3
2.

.
.

 rad s
 s

 rad s2

(b) θ ω αf it t= + = + × = ×
1
2

0
1
2

8 22 10 3 2 4 21 102 2 2 3. . . rad s  s  rad2e ja f

P10.3 (a) α
ω ω

=
−

= =i

t
12 0

3 00
4 00

.
.

.
 rad s

 s
 rad s2

(b) θ ω α= + = =it t
1
2

1
2

4 00 3 00 18 02 2. . . rad s  s  rad2e ja f

P10.4 ω i = 2 000 rad s , α = −80 0.  rad s2

(a) ω ω αf i t= + = − =2 000 80 0 10 0 1 200. .a fa f  rad s

(b) 0 = +ω αi t

t i=
−

= =
ω
α

2 000
80 0

25 0
.

.  s

P10.5 ω
π π

i =
F
HG
I
KJ
F
HG

I
KJ =

100 1 2 10
3

 rev
1.00 min

 min
60.0 s

 rad
1.00 rev

 rad s , ω f = 0

(a) t sf i=
−

=
−
−

=
ω ω

α

π0
2 00

5 24
10

3

.
.  s

(b) θ ω
ω ω π π

f
f it t= =
+F

HG
I
KJ =
F
HG

I
KJ
F
HG
I
KJ =2

10
6

10
6

27 4 rad s  s  rad.

P10.6 ω i = = ×3 600 3 77 102 rev min  rad s.

θ = = ×50 0 3 14 102. . rev  rad and ω f = 0

ω ω αθ

α

α

f i
2 2

2 2 2

2

2

0 3 77 10 2 3 14 10

2 26 10

= +

= × + ×

= − ×

. .

.

 rad s  rad

 rad s2

e j e j

P10.7 ω π= =5 00 10 0. . rev s  rad s . We will break the motion into two stages: (1) a period during which the
tub speeds up and (2) a period during which it slows down.

While speeding up, θ ω
π

π1
0 10 0

2
8 00 40 0= =

+
=t

.
. .

 rad s
 s  rada f

While slowing down, θ ω
π

π2
10 0 0

2
12 0 60 0= =

+
=t

.
. .

 rad s
 s  rada f

So, θ θ θ πtotal  rad  rev= + = =1 2 100 50 0.
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P10.8 θ θ ω αf i it t− = +
1
2

2  and ω ω αf i t= +   are two equations in two unknowns ω i  and α

ω ω αi f t= − : θ θ ω α α ω αf i f ft t t t t− = − + = −d i 1
2

1
2

2 2

37 0
2

98 0 3 00
1
2

3 00 2. . . . rev
 rad

1 rev
 rad s  s  s

π
αF

HG
I
KJ = −a f a f

232 294 4 50 rad  rad  s2= − .e jα : α = =
61 5

13 7
.

.
 rad

4.50 s
 rad s2

2

P10.9 (a) ω
θ π

= = = = × −∆
∆t

1 2
7 27 10 5 rev

1 day
 rad

86 400 s
 rad s.

(b) ∆
∆

t = =
°

× °
F
HG

I
KJ = ×−

θ
ω

π107
7 27 10

2
2 57 105

4

.
.

 rad s
 rad

360
 s  or 428 min

*P10.10 The location of the dog is described by θ d  rad s= 0 750.b gt . For the bone,

θ πb
2 rad  rad s= +

1
3

2
1
2

0 015 2. t .

We look for a solution to

0 75
2
3

0 007 5

0 0 007 5 0 75 2 09 0

0 75 0 75 4 0 007 5 2 09

0 015
2 88

2

2

2

. .

. . .

. . . .

.
.

t t

t t

t

= +

= − + =

=
± −

=

π

b g
 s or 97.1 s

The dog and bone will also pass if 0 75
2
3

2 0 007 5 2. .t t= − +
π

π  or if 0 75
2
3

2 0 007 5 2. .t t= + +
π

π  that is, if

either the dog or the turntable gains a lap on the other. The first equation has

t =
± − −

= −
0 75 0 75 4 0 007 5 4 19

0 015
105 5 30

2. . . .

.
.

b ga f
 s or  s

only one positive root representing a physical answer. The second equation has

t =
± −

=
0 75 0 75 4 0 007 5 8 38

0 015
12 8

2. . . .

.
.

b g
 s or 87.2 s .

In order, the dog passes the bone at 2 88.  s  after the merry-go-round starts to turn, and again at

12 8.  s  and 26.6 s, after gaining laps on the bone. The bone passes the dog at 73.4 s, 87.2 s, 97.1 s,

105 s, and so on, after the start.



290     Rotation of a Rigid Object About a Fixed Axis

Section 10.3 Angular and Linear Quantities

P10.11 Estimate the tire’s radius at 0.250 m and miles driven as 10 000 per year.

θ

θ
π

= =
× F

HG
I
KJ = ×

= × F
HG

I
KJ = ×

s
r

1 00 10 1 609
6 44 10

6 44 10
1

1 02 10 10

4
7

7 7 7

.
.

. . ~

 mi
0.250 m

 m
1 mi

 rad yr

 rad yr
 rev

2  rad
 rev yr  or  rev yr

P10.12 (a) v r= ω ; ω = = =
v
r

45 0
250

0 180
.

.
 m s
 m

 rad s

(b) a
v
rr = = =
2 245 0

250
8 10

.
.

 m s

 m
 m s  toward the center of track2b g

P10.13 Given r = 1 00.  m, α = 4 00.  rad s2 , ω i = 0  and θ i = °=57 3 1 00. .  rad

(a) ω ω α αf i t t= + = +0

At t = 2 00.  s , ω f = =4 00 2 00 8 00. . . rad s  s  rad s2 a f

(b) v r= = =ω 1 00 8 00 8 00. . . m  rad s  m sb g
a a rr c= = = =ω 2 21 00 8 00 64 0. . . m  rad s  m s2b g
a rt = = =α 1 00 4 00 4 00. . . m  rad s  m s2 2e j

The magnitude of the total acceleration is:

a a ar t= + = + =2 2 2 2
64 0 4 00 64 1. . . m s  m s  m s2 2 2e j e j

The direction of the total acceleration vector makes an angle φ with respect to the radius to
point P:

φ =
F
HG
I
KJ =

F
HG
I
KJ = °− −tan tan

.
.

.1 1 4 00
64 0

3 58
a
a
t

c

(c) θ θ ω αf i it t= + + = + =
1
2

1 00
1
2

4 00 2 00 9 002 2. . . . rad  rad s  s  rad2a f e ja f
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*P10.14 (a) Consider a tooth on the front sprocket. It gives this speed, relative to the frame, to the link of
the chain it engages:

v r= = FHG
I
KJ

F
HG

I
KJ
F
HG
I
KJ =ω

π0 152
76

2 1
0 605

.
.

 m
2

 rev min
 rad

1 rev
 min
60 s

 m s

(b) Consider the chain link engaging a tooth on the rear sprocket:

ω = = =
v
r

0 605
17 3

0 07

.
.

.

 m s
 rad s

 m
2c h

(c) Consider the wheel tread and the road. A thread could be unwinding from the tire with this
speed relative to the frame:

v r= = FHG
I
KJ =ω

0 673
17 3 5 82

.
. .

 m
2

 rad s  m s

(d) We did not need to know the length of the pedal cranks, but we could use that information
to find the linear speed of the pedals:

v r= = F
HG
I
KJ =ω 0 175 7 96

1
1 39. . . m  rad s

1 rad
 m s

P10.15 (a) ω = = =
v
r

25 0
1 00

25 0
.
.

.
 m s
 m

 rad s

(b) ω ω α θf i
2 2 2= + ∆a f

α
ω ω

θ π
=

−
=

−
=f i

2 2 2

2

25 0 0

2 1 25 2
39 8

∆a f
b g
a fb g

.

.
.

 rad s

 rev  rad rev
 rad s2

(c) ∆
∆

t = = =
ω
α

25 0
39 8

0 628
.

.
.

 rad s
 rad s

 s2

P10.16 (a) s vt= = =11 0 9 00 99 0. . . m s  s  mb ga f

θ = = = =
s
r

99 0
341 54 3

.
.

 m
0.290 m

 rad  rev

(b) ω f
fv

r
= = = =

22 0
0 290

75 9 12 1
.

.
. .

 m s
 m

 rad s  rev s
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P10.17 (a) ω π
π

= = F
HG

I
KJ =2

2 1 200
126f

 rad
1 rev

 rev
60.0 s

 rad s

(b) v r= = × =−ω 126 3 00 10 3 772 rad s  m  m sb ge j. .

(c) a rc = = × =−ω 2 2 2126 8 00 10 1 260a f e j.  m s2  so ar = 1 26.  km s  toward the center2

(d) s r rt= = = × =−θ ω 126 8 00 10 2 00 20 12 rad s  m  s  mb ge ja f. . .

P10.18 The force of static friction must act forward and then more and more inward on the tires, to produce
both tangential and centripetal acceleration. Its tangential component is m 1 70.  m s2e j . Its radially

inward component is 
mv
r

2

. This takes the maximum value

m r mr mr m r m a mf i tω ω α θ α
π

π α π π2 2 2 0 2
2

1 70= + = +FHG
I
KJ = = =∆e j e j.  m s2 .

With skidding impending we have F may y∑ = , + − =n mg 0, n mg=

f n mg m m

g

s s s

s

= = = +

= + =

µ µ π

µ π

2 2 2 2 2

2

1 70 1 70

1 70
1 0 572

. .

.
.

 m s  m s

 m s

2 2

2

e j e j

*P10.19 (a) Let RE  represent the radius of the Earth. The base of the building moves east at v R1 =ω E

where ω is one revolution per day. The top of the building moves east at v R h2 = +ω Eb g . Its
eastward speed relative to the ground is v v h2 1− =ω . The object’s time of fall is given by

∆y gt= +0
1
2

2 , t
h
g

=
2

. During its fall the object’s eastward motion is unimpeded so its

deflection distance is ∆x v v t h
h
g

h
g

= − = =
F
HG
I
KJ2 1

3 2
1 2

2 2b g ω ω .

(b)
2

50
2

9 8
1 163 2

1 2
π rad

86 400 s
 m

 s
 m

 cm
2

a f
.

.
F
HG
I
KJ =

(c) The deflection is only 0.02% of the original height, so it is negligible in many practical cases.
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Section 10.4 Rotational Energy

P10.20 m1 4 00= .  kg , r y1 1 3 00= = .  m;

m2 2 00= .  kg , r y2 2 2 00= = .  m;

m3 3 00= .  kg , r y3 3 4 00= = .  m ;

ω = 2 00.  rad s about the x-axis

(a) I m r m r m rx = + +1 1
2

2 2
2

3 3
2

I

K I

x

R x

= + + = ⋅

= = =

4 00 3 00 2 00 2 00 3 00 4 00 92 0

1
2

1
2

92 0 2 00 184

2 2 2

2 2

. . . . . . .

. .

a f a f a f
a fa f

 kg m

 J

2

ω
FIG. P10.20

(b) v r1 1 3 00 2 00 6 00= = =ω . . .a f  m s K m v1 1 1
2 21

2
1
2

4 00 6 00 72 0= = =. . .a fa f  J

v r2 2 2 00 2 00 4 00= = =ω . . .a f  m s K m v2 2 2
2 21

2
1
2

2 00 4 00 16 0= = =. . .a fa f  J

v r3 3 4 00 2 00 8 00= = =ω . . .a f  m s K m v3 3 3
2 21

2
1
2

3 00 8 00 96 0= = =. . .a fa f  J

K K K K Ix= + + = + + = =1 2 3
272 0 16 0 96 0 184

1
2

. . .  J ω

P10.21 (a) I m rj j
j

= ∑ 2

In this case,

r r r r

r

I

1 2 3 4

2 2

2

3 00 2 00 13 0

13 0 3 00 2 00 2 00 4 00

143

= = =

= + =

= + + +

= ⋅

. . .

. . . . .

 m  m  m

 m  kg

 kg m2

a f a f

(b) K IR = = ⋅
1
2

1
2

143 6 002 2ω  kg m  rad s2e jb g.

= ×2 57 103.  J

x (m)

y (m)

1

2

4

3

0 1 2 3

1

2

4

1 3

2.00 kg2.00 kg2.00 kg3.00 kg3.00 kg3.00 kg

2.00 kg2.00 kg2.00 kg 4.00 kg4.00 kg4.00 kg

FIG. P10.21
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P10.22 I Mx m L x= + −2 2a f
dI
dx

Mx m L x= − − =2 2 0a f  (for an extremum)

∴ =
+

x
mL

M m
d I
dx

m M
2

2 2 2= + ; therefore I is minimum when the axis of

rotation passes through x
mL

M m
=

+
 which is also the center

of mass of the system. The moment of inertia about an axis
passing through x is

I M
mL

M m
m

m
M m

L
Mm

M m
L LCM =

+
L
NM

O
QP + −

+
L
NM

O
QP =

+
=

2 2
2 2 21 µ

where µ =
+

Mm
M m

.

x

MMM mmm

L

L−xx

L

L−xx

FIG. P10.22

Section 10.5 Calculation of Moments of Inertia

P10.23 We assume the rods are thin, with radius much less than L.
Call the junction of the rods the origin of coordinates, and
the axis of rotation the z-axis.

For the rod along the y-axis, I mL=
1
3

2  from the table.

For the rod parallel to the z-axis, the parallel-axis theorem
gives

I mr m
L

mL= + FHG
I
KJ ≅

1
2 2

1
4

2
2

2

 

axis of rotation 

z 

x 

y 

FIG. P10.23

In the rod along the x-axis, the bit of material between x and x dx+  has mass 
m
L

dxF
HG
I
KJ  and is at

distance r x
L

= + FHG
I
KJ

2
2

2
 from the axis of rotation. The total rotational inertia is:

I mL mL x
L m

L
dx

mL
m
L

x mL
x

mL
mL mL mL

L

L

L

L

L

L

total = + + +
F
HG

I
KJ
F
HG
I
KJ

= + FHG
I
KJ +

= + + =

−

− −

z1
3

1
4 4

7
12 3 4

7
12 12 4

11
12

2 2 2
2

2

2

2
3

2

2

2

2

2
2 2 2

Note: The moment of inertia of the rod along the x axis can also be calculated from the parallel-axis

theorem as 
1

12 2
2

2

mL m
L

+ FHG
I
KJ .
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P10.24 Treat the tire as consisting of three parts. The two sidewalls are each treated as a hollow cylinder of
inner radius 16.5 cm, outer radius 30.5 cm, and height 0.635 cm. The tread region is treated as a
hollow cylinder of inner radius 30.5 cm, outer radius 33.0 cm, and height 20.0 cm.

Use I m R R= +
1
2 1

2
2
2e j  for the moment of inertia of a hollow cylinder.

Sidewall:

m

I

= − × × =

= + = × ⋅

−

−

π 0 305 0 165 6 35 10 1 10 10 1 44

1
2

1 44 0 165 0 305 8 68 10

2 2 3 3

2 2 2

. . . . .

. . . .

 m  m  m  kg m  kg

 kg  m  m  kg m

3

side
2

a f a f e je j
b g a f a f

Tread:

m

I

= − × =

= + = ⋅

π 0 330 0 305 0 200 1 10 10 11 0

1
2

11 0 0 330 0 305 1 11

2 2 3

2 2

. . . . .

. . . .

 m  m  m  kg m  kg

 kg  m  m  kg m

3

tread
2

a f a f a fe j
b g a f a f

Entire Tire:

I I Itotal side tread
2 2 2 kg m  kg m  kg m= + = × ⋅ + ⋅ = ⋅−2 2 8 68 10 1 11 1 282. . .e j

P10.25 Every particle in the door could be slid straight down into a high-density rod across its bottom,
without changing the particle’s distance from the rotation axis of the door. Thus, a rod 0.870 m long
with mass 23.0 kg, pivoted about one end, has the same rotational inertia as the door:

I ML= = = ⋅
1
3

1
3

23 0 0 870 5 802 2. . . kg  m  kg m2b ga f .

The height of the door is unnecessary  data.

P10.26 Model your body as a cylinder of mass 60.0 kg and circumference 75.0 cm. Then its radius is

0 750
0 120

.
.

 m
2

 m
π

=

and its moment of inertia is

1
2

1
2

60 0 0 120 0 432 10 12 2 0MR = = ⋅ ⋅ = ⋅. . . ~ kg  m  kg m  kg m  kg m2 2 2b ga f .
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P10.27 For a spherical shell dI dmr r dr r= =
2
3

2
3

42 2 2π ρe j

I dI r r r dr

I r
r
R

dr

R R

I R

M dm r
r
R

dr

R

R

= =

= −F
HG

I
KJ

= FHG
I
KJ × − FHG

I
KJ ×

= −F
HG

I
KJ

= = −F
HG

I
KJ

= × −F
HG

I
KJ

z z
z

z z

2
3

4

2
3

4 14 2 11 6 10

2
3

4 14 2 10
5

2
3

4 11 6 10
6

8
3

10
14 2

5
11 6

6

4 14 2 11 6 10

4 10
14 2

3
11 6

4

2 2

4 3

0

3
5

3
5

3 5

2 3

0

3

π ρ

π

π π

π

π

π

e j a f

e j e j

e j e j

e j

. .

. .

. .

. .

. .

 kg m3

R

I
MR

R

R R

I MR

3

2

3 5

3 3 2

2

8 3 10 14 2 5 11 6 6

4 10 14 2 3 11 6 4
2
3

907
1 83

0 330

0 330

=
−

× −
= FHG

I
KJ =

∴ =

π

π

b ge j b g
b g

. .

. .
.
.

.

.

*P10.28 (a) By similar triangles, 
y
x

h
L

= , y
hx
L

= . The area of the front face

is 
1
2

hL . The volume of the plate is 
1
2

hLw . Its density is

ρ = = =
M
V

M
hLw

M
hLw1

2

2
. The mass of the ribbon is

dm dV ywdx
Mywdx
hLw

Mhx
hLL

dx
Mxdx
L

= = = = =ρ ρ
2 2 2

2 .

The moment of inertia is

y

x

h

L

FIG. P10.28

I r dm x
Mxdx
L

M
L

x dx
M

L
L ML

x

L L

= = = = =z z z
=

2 2
2

0
2

3

0
2

4 22 2 2
4 2all mass

.

(b) From the parallel axis theorem I I M
L

I
ML

= + FHG
I
KJ = +CM CM

2
3

4
9

2 2

 and

I I M
L

I
ML

h = + FHG
I
KJ = +CM CM3 9

2 2

. The two triangles constitute a rectangle with moment of

inertia I
ML

I
ML

M LCM CM+ + + =
4

9 9
1
3

2
2 2

2a f . Then 2
1
9

2I MLCM =

I I
ML

ML ML ML= + = + =CM
4

9
1

18
8

18
1
2

2
2 2 2 .
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*P10.29 We consider the cam as the superposition of the original solid disk and a disk of negative mass cut
from it. With half the radius, the cut-away part has one-quarter the face area and one-quarter the
volume and one-quarter the mass M0  of the original solid cylinder:

M M M0 0
1
4

− = M M0
4
3

= .

By the parallel-axis theorem, the original cylinder had moment of inertia

I M
R

M R M
R

M RCM + F
HG
I
KJ = + =0

2

0
2

0

2

0
2

2
1
2 4

3
4

.

The negative-mass portion has I M
R M R

= −FHG
I
KJ
F
HG
I
KJ = −

1
2

1
4 2 320

2
0

2

. The whole cam has

I M R
M R

M R MR MR= − = = =
3
4 32

23
32

23
32

4
3

23
240

2 0
2

0
2 2 2  and K I MR MR= = =

1
2

1
2

23
24

23
48

2 2 2 2 2ω ω ω .

Section 10.6 Torque

P10.30 Resolve the 100 N force into components perpendicular
to and parallel to the rod, as

Fpar  N  N= °=100 57 0 54 5a fcos . .

and Fperp  N  N= °=100 57 0 83 9a fsin . .

The torque of Fpar  is zero since its line of action passes

through the pivot point. FIG. P10.30
The torque of Fperp  is τ = = ⋅83 9 2 00 168.  N .  m  N ma f  (clockwise)

P10.31 τ∑ = − − = − ⋅0 100 12 0 0 250 9 00 0 250 10 0 3 55. . . . . . m .  N  m  N  m  N  N ma f a f a f

The thirty-degree angle is unnecessary information.

FIG. P10.31

P10.32 The normal force exerted by the ground on each wheel is

n
mg

= = =
4

1 500 9 80

4
3 680

 kg  m s
 N

2b ge j.

The torque of friction can be as large as
τ µmax max . .= = = = ⋅f r n rsb g a fb ga f0 800 3 680 0 300 882 N  m  N m

The torque of the axle on the wheel can be equally as large as the light wheel starts to turn without
slipping.
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P10.33 In the previous problem we calculated the maximum torque that can be applied without skidding to
be 882 N · m. This same torque is to be applied by the frictional force, f, between the brake pad and
the rotor for this wheel. Since the wheel is slipping against the brake pad, we use the coefficient of
kinetic friction to calculate the normal force.

τ µ= =fr n rkb g , so n
rk

= =
⋅

= × =
τ
µ

882
0 220

8 02 10 8 023 N m
0.500  m

 N  kNa fa f.
. .

Section 10.7 Relationship Between Torque and Angular Acceleration

P10.34 (a) I MR= = × = × ⋅− −1
2

1
2

2 00 7 00 10 4 90 102 2 2 3. . . kg  m  kg m2b ge j
α τ

α
ω

ω
α

π

= =
×

=

=

= = =

−I

t

t

0 600
4 90 10

122

1 200

122
1 03

3

2
60

.
.

.

 rad s

 s

2

∆
∆

∆
∆ c h

(b) ∆θ α= = = =
1
2

1
2

122 1 03 64 7 10 32 2t  rad s  s  rad  revb ga f. . .

P10.35 m = 0 750.  kg , F = 0 800.  N

(a) τ = = = ⋅rF 30 0 0 800 24 0. . . m  N  N ma f

(b) α
τ

= = = =
I

rF
mr 2 2

24 0

0 750 30 0
0 035 6

.

. .
.a f  rad s2

(c) a rt = = =α 0 035 6 30 0 1 07. . .a f  m s2
FIG. P10.35

P10.36 ω ω αf i t= + : 10 0 0 6 00. . rad s  s= +αa f
α = =

10 00
6 00

1 67
.
.

. rad s  rad s2 2

(a) τ α∑ = ⋅ =36 0.  N m I : I = =
⋅

= ⋅∑τ
α

36 0
21 6

.
.

 N m
1.67 rad s

 kg m2
2

(b) ω ω αf i t= + : 0 10 0 60 0= +. .αa f
α

τ α

= −

= = ⋅ = ⋅

0 167

21 6 0 167 3 60

.

. . .

 rad s

 kg m  rad s  N m

2

2 2I e je j

(c) Number of revolutions θ θ ω αf i it t= + +
1
2

2

During first 6.00 s θ f = =
1
2

1 67 6 00 30 12. . .a fa f  rad

During next 60.0 s θ f = − =10 0 60 0
1
2

0 167 60 0 2992. . . .a f a fa f  rad

θ
πtotal  rad
1 rev

2  rad
 rev= F

HG
I
KJ =329 52 4.
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P10.37 For m1 ,
F may y∑ = : + − =n m g1 0

n m g1 1 19 6= = .  N
f nk k1 1 7 06= =µ .  N

F max x∑ = : − + =7 06 2 001. . N  kgT ab g (1)

For the pulley,

τ α∑ = I : − + = F
HG
I
KJT R T R MR

a
R1 2

21
2

− + =T T a1 2
1
2

10 0.  kgb g
− + =T T a1 2 5 00.  kgb g (2)

For m2 , + − =n m g2 2 0cosθ
n2 6 00 9 80 30 0

50 9

= °

=

. . cos .

.

 kg  m s

 N

2e ja f

f nk k2 2= µ
       = 18 3.  N : − − + =18 3 2 2 2. sin N T m m aθ

− − + =18 3 29 4 6 002. . . N  N  kgT ab g (3)

 

FIG. P10.37

(a) Add equations (1), (2), and (3):

− − + =

= =

7 06 18 3 29 4 13 0

4 01
0 309

. . . .

.
.

 N  N  N  kg

 N
13.0 kg

 m s2

b ga
a

(b) T1 2 00 0 309 7 06 7 67= + =. . . . kg  m s  N  N2e j
T2 7 67 5 00 0 309 9 22= + =. . . . N  kg  m s  N2e j

P10.38 I mR= = = ⋅
1
2

1
2

100 0 500 12 52 2 kg  m  kg m2b ga f. .

ω

α
ω ω

i

f i

t

= =

=
−

=
−

= −

50 0 5 24

0 5 24
6 00

0 873

. .

.
.

.

 rev min  rad s

 rad s
 s

 rad s2

τ α= = ⋅ − = − ⋅I 12 5 0 873 10 9. . . kg m  rad s  N m2 2e j
The magnitude of the torque is given by fR = ⋅10 9.  N m, where f is
the force of friction.

Therefore, f =
⋅10 9.  N m

0.500 m
and f nk= µ

yields µ k
f
n

= = =
21 8

0 312
.

.
 N

70.0 N

FIG. P10.38
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*P10.39 τ α α∑ = =I MR
1
2

2

− + = F
HG

I
KJ −

=

135 0 230 0 230
1
2

80
1 25

2
1 67

21 5

2

 N  m  m  kg  m  rad s

 N

2. .
.

.

.

a f a f b g e jT

T

Section 10.8 Work, Power, and Energy in Rotational Motion

P10.40 The moment of inertia of a thin rod about an axis through one end is I ML=
1
3

2. The total rotational

kinetic energy is given as

K I IR h h m m= +
1
2

1
2

2 2ω ω

with I
m L

h
h h= = = ⋅

2 2

3
60 0 2 70

3
146

. . kg  m
 kg m2a f

and I
m L

m
m m= = = ⋅

2 2

3
100

3
675

 kg 4.50 m
 kg m2a f

In addition, ω
π

h =
F
HG

I
KJ = × −2 1

1 45 10 4 rad
12 h

 h
3 600 s

 rad s.

while ω
π

m =
F
HG

I
KJ = × −2 1

1 75 10 3 rad
1 h

 h
3 600 s

 rad s.

Therefore, KR = × + × = ×− − −1
2

146 1 45 10
1
2

675 1 75 10 1 04 104 2 3 2 3a fe j a fe j. . .  J

*P10.41 The power output of the bus is P =
E
t∆

 where E I MR= =
1
2

1
2

1
2

2 2 2ω ω  is the stored energy and

∆
∆

t
x

v
=  is the time it can roll. Then 

1
4

2 2MR t
x

v
ω = =P

P
∆

∆
 and

∆x
MR v

= =
⋅

⋅
=

2 2 2 2
60

2

4

1 600 0 65 4 000 11 1

4 18 746
24 5

ω π

P

 kg  m  m s

 W
 km s. .

.
a f c h
a f .

P10.42 Work done = = =F r∆ 5 57 0 800 4 46. . . N  m  Ja fa f
and Work = = −∆K I If i

1
2

1
2

2 2ω ω

(The last term is zero because the top starts from rest.)

Thus, 4 46
1
2

4 00 10 4 2. . J  kg m2= × ⋅−e jω f

and from this, ω f = 149 rad s .

F

A′

A

FIG. P10.42
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*P10.43 (a) I M R R= + = + = × ⋅−1
2

1
2

0 35 0 02 0 03 2 28 101
2

2
2 2 2 4e j b g a f a f. . . . kg  m  m  kg m2

K K K U f x K K K

v v

g i k f

f f

1 2 2 1 2

2 2 4
2

2 2

1
2

0 850 0 82
1
2

0 42 0 82
1
2

2 28 10
0 82
0 03

0 42 9 8 0 7 0 25 0 85 9 8 0 7

1
2

0 85
1
2

0 42
1
2

2 28 10

+ + + − = + +

+ + × ⋅ FHG
I
KJ

+ −

= + + ×

−

−

rot rot

2

2 2

 kg  m s  kg  m s  kg m
 m s
 m

 kg  m s  m  kg  m s  m

 kg  kg

e j b g

b gb g b gb g e j
e ja f b ge ja f

b g b g

∆

. . . . .
.
.

. . . . . . .

. . . 4
2

2

0 03

0 512 2 88 1 46 0 761

1 94
1 59

 kg m
 m

 J  J  J  kg

 J
0.761 kg

 m s

2⋅
F
HG

I
KJ

+ − =

= =

e j
b g

v

v

v

f

f

f

.

. . . .

.
.

(b) ω = = =
v
r

1 59
0 03

53 1
.

.
.

 m s
 m

 rad s

P10.44 We assume the rod is thin. For the compound object

I M L m R M D

I

I

= + +L
NM

O
QP

= + × +

= ⋅

−

1
3

2
5

1
3

1 20
2
5

2 2 00 0 280

0 181

2 2 2

2 2 2 2

rod ball ball

2

 kg 0.240 m .00 kg 4.00 10  m  kg  m

 kg m

. . .

.

a f e j a f

(a) K U K U Ef f i i+ = + + ∆

1
2

0 0
2

0

1
2

0 1 20 0 120 2 00 9 80 0 280

1
2

0 6

2

2

2

I M g
L

M g L Rω

ω

ω

+ = + F
HG
I
KJ + + +

⋅ = +

⋅ =

rod ball

2 2 2

2

.181 kg m  kg 9.80 m s  m  kg  m s  m

.181 kg m .90 J

a f

e j e ja f e ja f

e j

. . . . .

(b) ω = 8 73.  rad s

(c) v r= = =ω 0 280 8 73 2 44. . . m  rad s  m sa f

(d) v v a y yf i f i
2 2 2= + −d i

v f = + =0 2 9 80 0 280 2 34. . . m s  m  m s2e ja f

The speed it attains in swinging is greater by 
2 44
2 34

1 043 2
.
.

.=  times
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P10.45 (a) For the counterweight,

F may y∑ =  becomes: 50 0
50 0
9 80

.
.

.
− = FHG

I
KJT a

For the reel τ α∑ = I  reads TR I I
a
R

= =α

where I MR= = ⋅
1
2

0 093 82 .  kg m2

We substitute to eliminate the acceleration:

50 0 5 10
2

. .− =
F
HG
I
KJT

TR
I

T = 11 4.  N and

a =
−

=
50 0 11 4

5 10
7 57

. .
.

.  m s2

v v a x xf i f i
2 2 2= + −d i : v f = =2 7 57 6 00 9 53. . .a f  m s

FIG. P10.45

(b) Use conservation of energy for the system of the object, the reel, and the Earth:

K U K Ui f+ = +a f a f : mgh mv I= +
1
2

1
2

2 2ω

2

2 2 50 0 6 00

5 10
9 53

2
2

2
2

2

0 093 8

0 250
2 2

mgh mv I
v
R

v m
I

R

v
mgh

m I
R

= +
F
HG
I
KJ = +FHG

I
KJ

=
+

=
+

=
. .

.
..

.

 N  m

 kg
 m s

a fa f
a f

P10.46 Choose the zero gravitational potential energy at the level where the masses pass.

K U K U E

m v m v I m gh m gh

v R
v
R

v v

f gf i gi

i i

+ = + +

+ + = + + +

+ + LNM
O
QP
F
HG
I
KJ = + −

= ⇒ =

∆

1
2

1
2

1
2

0 0

1
2

15 0 10 0
1
2

1
2

3 00 15 0 9 80 1 50 10 0 9 80 1 50

1
2

26 5 73 5 2 36

1
2

2
2 2

1 1 2 2

2 2
2

2

ω

. . . . . . . . .

. . .

a f a f a fa f a fa f

b g kg  J  m s

P10.47 From conservation of energy for the object-turntable-cylinder-Earth
system,

1
2

1
2

2

2
1

2
2

2

2
2

2
2

I
v
r

mv mgh

I
v
r

mgh mv

I mr
gh

v

F
HG
I
KJ + =

= −

= −F
HG

I
KJ FIG. P10.47
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P10.48 The moment of inertia of the cylinder is

I mr= = = ⋅
1
2

1
2

81 6 1 50 91 82 2. . . kg  m  kg m2b ga f
and the angular acceleration of the merry-go-round is found as

α
τ

= = =
⋅

=
I

Fr
I
a f a fa f

e j
50 0 1 50

91 8
0 817

. .

.
.

 N  m

 kg m
 rad s

2
2 .

At t = 3 00.  s , we find the angular velocity

ω ω α

ω

= +

= + =

i t

0 0 817 3 00 2 45. . . rad s  s  rad s2e ja f

and K I= = ⋅ =
1
2

1
2

91 8 2 45 2762 2ω . . kg m  rad s  J2e jb g .

P10.49 (a) Find the velocity of the CM

K U K U

mgR I

mgR
I

mgR
mR

v R
g
R

Rg

i f+ = +

+ =

= =

= =

a f a f
0

1
2

2 2

4
3

2
3

2

3
2

2

ω

ω

CM

(b) v v
Rg

L = =2 4
3CM

(c) v
mgR

m
RgCM = =

2
2

 
Pivot R 

g 

FIG. P10.49

*P10.50 (a) The moment of inertia of the cord on the spool is

1
2

1
2

0 1 0 015 0 09 4 16 101
2

2
2 2 2 4M R R+ = + = × ⋅−e j a f a fe j. . . . kg  m  m  kg m2.

The protruding strand has mass 10 0 16 1 6 102 3− −= × kg m  m  kge j . .  and

I I Md ML Md= + = + = × + +F
HG

I
KJ

= × ⋅

−

−

CM

2

 kg  m  m  m

 kg m

2 2 2 3 2 2

5

1
12

1 6 10
1

12
0 16 0 09 0 08

4 97 10

. . . .

.

a f a f

For the whole cord, I = × ⋅−4 66 10 4.  kg m2 . In speeding up, the average power is

P = = =
× ⋅ ⋅F

HG
I
KJ =

−E
t

I
t∆ ∆

1
2

2 4 24 66 10
2 0 215

2 500 2
60

74 3
ω π.

.
.

 kg m
 s  s

 W
2

a f

(b) P = = +
⋅F

HG
I
KJ =τω

π
7 65 0 16 0 09

2 000 2
60

401. . . N  m  m
 s

 Wa fa f
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Section 10.9 Rolling Motion of a Rigid Object

P10.51 (a) K mvtrans  kg  m s  J= = =
1
2

1
2

10 0 10 0 5002 2
. .b gb g

(b) K I mr
v
rrot  kg  m s  J= = FHG
I
KJ
F
HG
I
KJ = =

1
2

1
2

1
2

1
4

10 0 10 0 2502 2
2

2
2ω . .b gb g

(c) K K Ktotal trans rot  J= + = 750

P10.52 W K K K K K Kf i f i= − = + − +trans rot trans rotb g b g
W Mv I Mv MR

v
R

= + − − = + FHG
I
KJ
F
HG
I
KJ

1
2

1
2

0 0
1
2

1
2

2
5

2 2 2 2
2

ω

or W Mv= FHG
I
KJ

7
10

2

P10.53 (a) τ α= I
mgR I mR

a
mgR
I mR

a
mgR

mR
g

a
mgR

mR
g

CMsin

sin

sin
sin

sin
sin

θ α

θ

θ
θ

θ
θ

= +

=
+

= =

= =

2

2

2

2

2

2

3
2

2

2
1
2

2
3

e j

CM

hoop

disk

The disk moves with 
4
3

 the acceleration of the hoop.

(b) Rf I= α

f n mg

f
mg mg

g mR

R mg

I
R

= =

= = = =

µ µ θ

µ
θ θ

θ

θ
θ

α

cos

cos cos

sin

cos
tan

2
3

1
2

2

2
1
3

c he j

θ

R

mg

f

n

FIG. P10.53

P10.54 K mv I m
I

R
v= + = +LNM
O
QP

1
2

1
2

1
2

2 2
2

2ω where ω =
v
R

since no slipping.

Also, U mghi = , U f = 0 , and vi = 0

Therefore, 
1
2 2

2m
I

R
v mgh+LNM
O
QP =

Thus, v
gh

I
mR

2 2

1 2

=
+ e j

For a disk, I mR=
1
2

2

So v
gh2

1
2

2
1

=
+

or v
gh

disk =
4
3

For a ring, I mR= 2  so v
gh2 2
2

= or v ghring =

Since v vdisk ring> , the disk  reaches the bottom first.
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P10.55 v
x
t

v f= = = = +
∆
∆

3 00
2 00

1
2

0
.

.
 m

1.50 s
 m s d i

v f = 4 00.  m s and ω f
fv

r
= =

×
=

×− −

4 00

6 38 10 2

8 00
6 38 102 2

.

.

.
.

 m s

 m
 rad s

e j
We ignore internal friction and suppose the can rolls without slipping.

K K U E K K U

mgy mv I

I

t

g i g f

i f f

trans rot mech trans rot

2 kg  m s  m  kg  m s  rad s

 J  J  s

+ + + = + +

+ + + = + +F
HG

I
KJ

° = +
×

F
HG

I
KJ

= +

−

−

e j e j

b g

e j a f b gb g

e j

∆

0 0 0
1
2

1
2

0

0 215 9 80 3 00 25 0
1
2

0 215 4 00
1
2

8 00
6 38 10

2 67 1 72 7 860

2 2

2
2

2

2

ω

. . . sin . . .
.

.

. .

I =
⋅

= × ⋅−
−0 951

7 860
1 21 102

4.
.

 kg m s
 s

 kg m
2 2

2 The height of the can  is unnecessary data.

P10.56 (a) Energy conservation for the system of the ball and the
Earth between the horizontal section and top of loop:

1
2

1
2

1
2

1
2

1
2

1
2

2
3

1
2

1
2

2
3

5
6

5
6

2
2

2
2

2 1
2

1
2

2
2 2 2

2

2

1
2 2 1

2

2
2

2 1
2

mv I mgy mv I

mv mr
v
r

mgy

mv mr
v
r

v gy v

+ + = +

+ FHG
I
KJ
F
HG
I
KJ +

= + FHG
I
KJ
F
HG
I
KJ

+ =

ω ω

FIG. P10.56

v v gy2 1
2

2
26

5
4 03

6
5

9 80 0 900 2 38= − = − =. . . . m s  m s  m  m s2b g e ja f

The centripetal acceleration is 
v
r

g2
2 22 38

0 450
12 6= = >

.

.
.

 m s

 m
 m s2b g

Thus, the ball must be in contact with the track, with the track pushing downward on it.

(b)
1
2

1
2

2
3

1
2

1
2

2
33

2 2 3
2

3 1
2 2 1

2

mv mr
v
r

mgy mv mr
v
r

+ FHG
I
KJ
F
HG
I
KJ + = + FHG

I
KJ
F
HG
I
KJ

v v gy3 1
2

3
26

5
4 03

6
5

9 80 0 200 4 31= − = − − =. . . . m s  m s  m  m s2b g e ja f

(c)
1
2

1
22

2
2 1

2mv mgy mv+ =

v v gy2 1
2

2
22 4 03 2 9 80 0 900 1 40= − = − = −. . . . m s  m s  m  m s2 2 2b g e ja f

This result is imaginary. In the case where the ball does not roll, the ball starts with less
energy than in part (a) and never makes it to the top  of the loop.
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Additional Problems

P10.57 mg m
2

1
3

2sinθ α=

α θ

θ

=

= FHG
I
KJ

3
2

3
2

g

a
g

rt

sin

sin

Then 
3
2

g
r gF

HG
I
KJ > sinθ

for r >
2
3

∴ About 
1
3

 the length of the chimney  will have a

tangential acceleration greater than g sinθ .

a tt

g

g sintθ θ θ

FIG. P10.57

P10.58 The resistive force on each ball is R D Av= ρ 2 . Here v r= ω , where r is the radius of each ball’s path.
The resistive torque on each ball is τ = rR , so the total resistive torque on the three ball system is
τ total = 3rR .
The power required to maintain a constant rotation rate is P = =τ ω ωtotal 3rR . This required power
may be written as

P = = =τ ω ρ ω ω ω ρtotal 3 32 3 3r D A r r DAa f e j

With ω
π π

=
F
HG

I
KJ
F
HG
I
KJ =

2 10 1 1 0003 rad
1 rev

 rev
1 min

 min
60.0 s 30.0

 rad s

P = × F
HG

I
KJ

−3 0 100 0 600 4 00 10
1 000
30 0

3 4
3

. . .
.

 m  m
 s

2a f a fe j π
ρ

or P = 0 827.  m s5 3e jρ , where ρ is the density of the resisting medium.

(a) In air, ρ = 1 20.  kg m3 ,

and P = = ⋅ =0 827 1 20 0 992 0 992. . . . m s  kg m  N m s  W5 3 3e j
(b) In water, ρ = 1 000 kg m3  and P = 827 W .

P10.59 (a) W K I I I I mRf i f i= = − = − =

= FHG
I
KJ
F
HG
I
KJ − =

∆
1
2

1
2

1
2

1
2

1
2

1
2

1 00 0 500 8 00 0 4 00

2 2 2 2 2

2 2

ω ω ω ωe j

b ga f b g

where

 kg  m  rad s  J. . . .

(b) t
r

a
f=
−

= = =
ω

α
ω0 8 00 0 500

2 50
1 60

. .

.
.

 rad s  m

 m s
 s2

b ga f

(c) θ θ ω αf i it t= + +
1
2

2 ; θ i = 0 ; ω i = 0

θ α

θ

f t

s r

= =
F
HG

I
KJ =

= = = <

1
2

1
2

2 50
0 500

1 60 6 40

0 500 6 40 3 20 4 00

2 2.
.

. .

. . . .

 m s
 m

 s  rad

 m  rad  m  m Yes

2

a f

a fa f
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*P10.60 The quantity of tape is constant. Then the area of the rings you
see it fill is constant. This is expressed by

π π π π π πr r r r r rt s s s
2 2 2 2

2
2 2− = − + −  or r r r rt s2

2 2 2= + −  is the
outer radius of spool 2.

(a) Where the tape comes off spool 1, ω 1 =
v
r

. Where the

tape joins spool 2, ω 2
2

2 2 2 1 2
= = + −

−v
r

v r r rs te j .

(b) At the start, r rt=  and r rs2 =  so ω 1 =
v
rt

 and ω 2 =
v
rs

. The

takeup reel must spin at maximum speed. At the end,

r rs=  and r rt2 =  so ω 2 =
v
rt

 and ω 1 =
v
rs

. The angular

speeds are just reversed.

rt

rs

v

Start

r r2

v

Later

FIG. P10.60

P10.61 (a) Since only conservative forces act within the system of the
rod and the Earth,

∆E = 0 so K U K Uf f i i+ = +

1
2

0 0
2

2I Mg
L

ω + = + F
HG
I
KJ

where I ML=
1
3

2

Therefore, ω =
3g
L

(b) τ α∑ = I , so that in the horizontal orientation,

FIG. P10.61

Mg
L ML

g
L

2 3

3
2

2F
HG
I
KJ =

=

α

α

(c) a a r
L g

x r= = − = −FHG
I
KJ = −ω ω2 2

2
3
2

a a r
L g

y t= − = − = − FHG
I
KJ = −α α

2
3
4

(d) Using Newton’s second law, we have

R Ma
Mg

x x= = −
3

2

R Mg Ma
Mg

y y− = = −
3

4
R

Mg
y = 4
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P10.62 α
ω

= − − =10 0 5 00. . rad s  rad s2 3e jt d
dt

d t dt t t

d
dt

t t

t

ω ω

ω
θ

ω

65 0 0

2

2

10 0 5 00 10 0 2 50 65 0

65 0 10 0 2 50

.

. . . . .

. . .

z z= − − = − − = −

= = − −

 rad s

 rad s  rad s  rad s2 3e j e j

(a) At t = 3 00.  s ,

ω = − − =65 0 10 0 3 00 2 50 9 00 12 5. . . . . . rad s  rad s  s  rad s  s  rad s2 3 2e ja f e je j

(b) d dt t t dt
t t

θ ω
θ

0 0

2

0

65 0 10 0 2 50z z z= = − −. . . rad s  rad s  rad s2 3e j e j
θ = − −65 0 5 00 0 8332 3. . . rad s  rad s  rad s2 3b g e j e jt t t

At t = 3 00.  s ,

θ

θ

= − −

=

65 0 3 00 5 00 9 00 0 833 27 0

128

. . . . . . rad s  s  rad s  s  rad s  s

 rad

2 2 3 3b ga f e j e j

P10.63 The first drop has a velocity leaving the wheel given by 
1
2

2
1mv mghi = , so

v gh1 12 2 9 80 0 540 3 25= = =. . . m s  m  m s2e ja f

The second drop has a velocity given by

v gh2 22 2 9 80 0 510 3 16= = =. . . m s  m  m s2e ja f

From ω =
v
r

, we find

ω 1
1 3 25

0 381
8 53= = =

v
r

.
.

.
 m s

 m
 rad s and ω 2

2 3 16
0 381

8 29= = =
v
r

.
.

.
 m s

 m
 rad s

or

α
ω ω

θ π
=

−
=

−
= −2

2
1
2 2 2

2

8 29 8 53

4
0 322

. .
.

 rad s  rad s
 rad s2b g b g



Chapter 10     309

P10.64 At the instant it comes off the wheel, the first drop has a velocity v1 , directed upward. The
magnitude of this velocity is found from

K U K U

mv mgh v gh

i gi f gf+ = +

+ = + =
1
2

0 0 21
2

1 1 1 or 

and the angular velocity of the wheel at the instant the first drop leaves is

ω 1
1 1

2

2
= =

v
R

gh
R

.

Similarly for the second drop: v gh2 22=  and ω 2
2 2

2

2
= =

v
R

gh
R

.

The angular acceleration of the wheel is then

a
g h h

R

gh
R

gh
R=

−
=

−
=

−ω ω
θ π π

2
2

1
2 2 2

2 1
22 2 2 2

2
2

1
2

a f
b g

.

P10.65 K Mv If f f= +
1
2

1
2

2 2ω : U Mghf f= = 0 ; K Mv Ii i i= + =
1
2

1
2

02 2ω

U Mghi i
= b g : f N Mg= =µ µ θcos ; ω =

v
r

; h d= sinθ  and I mr=
1
2

2

(a) ∆E E Ef i= −  or − = + − −fd K U K Uf f i i

− = + −

− = +
F
HG
I
KJ −

+LNM
O
QP = −

=
−
+

=
+

−
L
NM

O
QP

fd Mv I Mgh

Mg d Mv
mr

Mgd

M
m

v Mgd Mg d

v Mgd
M

v gd
M

m M

f f

v
r

m

d

1
2

1
2

1
2 2 2

1
2 2

2

4
2

2 2

2
2

2

2

2
1 2

2

2

ω

µ θ θ

θ µ θ

θ µ θ

θ µ θ

cos sin

sin cos

sin cos

sin cos

b g

b g
b g

a f b g

 or

(b) v v a xf i
2 2 2= + ∆ , v add

2 2=

a
v

d
g

M
m M

d= =
+
F
HG

I
KJ −

2

2
2

2
sin cosθ µ θb g
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P10.66 (a) E MR= FHG
I
KJ

1
2

2
5

2 2ωe j

E = ⋅ × ×
F
HG

I
KJ = ×

1
2

2
5

5 98 10 6 37 10
2

86 400
2 57 1024 6 2

2
29. . .e je j π

 J

(b)
dE
dt

d
dt

MR
T

= F
HG

I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PP

1
2

2
5

22
2π

= −

= F
HG
I
KJ

−F
HG
I
KJ

= ×
−F

HG
I
KJ

×
×

F
HG

I
KJ

= − ×

−

−

1
5

2 2

1
5

2 2

2 57 10
2

86 400
10 10

86 400

1 63 10

2 2 3

2
2

29
6

17

MR T
dT
dt

MR
T T

dT
dt

dE
dt

π

π

a f e j

e j b g.

.

 J
 s

 s
3.16 10  s

 s day

 J day

7

*P10.67 (a) ω ω αf i t= +

α
ω ω π

π

π π

=
−

=
−

=
−

− F
HG

I
KJ ×
F
HG

I
KJ = −

−
− −

f i T T i f

i ft t

T T

T T t
f i

2 2

3 2
22 2

2

2 10

1
1 1

10

d i

e j
~

 s

 d 1 d 100 yr
 d

86 400 s
 yr

3.156 10  s
 s7

(b) The Earth, assumed uniform, has moment of inertia

I MR

I

= = × × = × ⋅

= × ⋅ − × = − ⋅∑ − −

2
5

2
5

5 98 10 6 37 10 9 71 10

9 71 10 2 67 10 10

2 24 6 2 37

37 22 2 16

. . .

~ . .

 kg  m  kg m

 kg m  s  N m

2

2

e je j
e jτ α

The negative sign indicates clockwise, to slow the planet’s counterclockwise rotation.

(c) τ = Fd . Suppose the person can exert a 900-N force.

d
F

= =
× ⋅τ 2 59 10
900

10
16

13.
~

 N m
 N

 m

This is the order of magnitude of the size of the planetary system.
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P10.68 ∆θ ω= t

t

v

= = =

= =

°
°∆θ

ω

31.0
360 0 005 74

0 800
139

c h rev
 s

 m
0.005 74 s

 m s

900 rev
60 s

.

.

= 31°
v

d

ω

θ∆

FIG. P10.68

P10.69 τ f  will oppose the torque due to the hanging object:

τ α τ∑ = = −I TR f : τ αf TR I= − (1)

Now find T, I and α in given or known terms and substitute into
equation (1).

F T mg may∑ = − = − : T m g a= −b g (2)

also ∆y v t
at

i= +
2

2
a

y
t

=
2

2 (3)

and α = =
a
R

y
Rt
2

2 : (4)

I M R
R

MR= + FHG
I
KJ

L
N
MM

O
Q
PP =

1
2 2

5
8

2
2

2 (5)

FIG. P10.69

Substituting (2), (3), (4), and (5) into (1),

we find τ f m g
y

t
R

MR y

Rt
R m g

y
t

My
t

= −FHG
I
KJ − = −FHG

I
KJ −

L
NM

O
QP

2 5
8

2 2 5
42

2

2 2 2

b g

P10.70 (a) W K U= +∆ ∆

W K K U Uf i f i= − + −

0
1
2

1
2

1
2

1
2

1
2

2

2 2 2

2 2 2

2

2

= + − −

+ = +

=
+

+

mv I mgd kd

I mR mgd kd

mgd kd
I mR

ω θ

ω θ

ω
θ

sin

sin

sin

e j

FIG. P10.70

(b) ω =
° +

⋅ +

2 0 500 9 80 0 200 37 0 50 0 0 200

1 00 0 500

2

2

. . . sin . . .

. .

 kg  m s  m  N m  m

 kg m  kg 0.300 m

2

2

b ge ja fa f a f
a f

ω =
+

= =
1 18 2 00

1 05
3 04 1 74

. .
.

. .  rad s
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P10.71 (a) m g T m a2 2 2− =

T m g a

T m g m a

T

2 2

1 1 1

1

20 0 2 00 156

37 0

15 0 9 80 37 0 2 00 118

= − = − =

− °=

= °+ =

b g e j

b ga f

. .

sin .

. . sin . .

 kg 9.80 m s  m s  N

 kg  m s  N

2 2

2

(b) T T R I I
a
R2 1− = = FHG
I
KJb g α

I
T T R

a
=

−
=

−
= ⋅2 1

2 2156 118 0 250

2 00
1 17

b g a fa f N  N  m

 m s
 kg m2

2.

.
.

FIG. P10.71

P10.72 For the board just starting to move,

τ α∑ = I : mg m
2

1
3

2F
HG
I
KJ = FHG

I
KJcosθ α

α θ= FHG
I
KJ

3
2

g
cos

The tangential acceleration of the end is a gt = =α θ
3
2

cos

The vertical component is a a gy t= =cos cosθ θ
3
2

2

If this is greater than g, the board will pull ahead of the ball falling:

FIG. P10.72

(a)
3
2

2g gcos θ ≥  gives cos2 2
3

θ ≥ so cosθ ≥
2
3

and θ ≤ °35 3.

(b) When θ = °35 3. , the cup will land underneath the release-point of the ball if rc = cosθ

When = 1 00.  m, and θ = °35 3. rc = =1 00
2
3

0 816. . m  m

so the cup should be 1 00 0 816 0 184. . . m  m  m from the moving end− =a f

P10.73 At t = 0 , ω ω= =3 50 0
0.  rad s e . Thus, ω 0 3 50= .  rad s

At t = 9 30.  s , ω ω σ= = −2 00 0
9 30. . rad s  se a f , yielding σ = × − −6 02 10 2 1.  s

(a) α
ω ω

ω σ
σ

σ= = = −
−

−d
dt

d e

dt
e

t
t0

0
e j a f

At t = 3 00.  s ,

α = − × = −− − − × −

3 50 6 02 10 0 1762 1 3 00 6 02 10 2

. . .
. .

 rad s  s  rad s2b ge j e je

(b) θ ω
ω
σ

ω
σ

σ σ σ= =
−

− = −− − −z 0
0

0 01 1e dt e et
t

t t

At t = 2 50.  s ,

θ =
×

−LNM
O
QP = =

−

− × −3 50

6 02 10 1
1 8 12 1 29

2

6 02 10 2 502.

.
. .

. . rad s

s
 rad  rev

e j
e ja fe

(c) As t →∞ , θ
ω
σ

→ − =
×

= =−∞
− −

0
2 11

3 50
6 02 10

58 2 9 26ee j .
.

. .
 rad s

 s
 rad  rev
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P10.74 Consider the total weight of each hand to act at the center of gravity (mid-point) of that hand. Then
the total torque (taking CCW as positive) of these hands about the center of the clock is given by

τ θ θ θ θ= − F
HG
I
KJ − F

HG
I
KJ = − +m g

L
m g

L g
m L m Lh

h
h m

m
m h h h m m m2 2 2

sin sin sin sinb g

If we take t = 0 at 12 o’clock, then the angular positions of the hands at time t are

θ ωh ht= ,

where ω
π

h = 6
 rad h

and θ ωm mt= ,

where ω πm = 2  rad h

Therefore, τ
π

π= − F
HG
I
KJ +

L
NM

O
QP4 90 60 0 2 70

6
100 2. . . sin sin m s  kg  m  kg 4.50 m2 a f a ft

t

or τ
π

π= − ⋅ F
HG
I
KJ +

L
NM

O
QP794

6
2 78 2 N m sin . sin

t
t , where t is in hours.

(a) (i) At 3:00, t = 3 00.  h ,

so τ
π

π= − ⋅ F
HG
I
KJ +

L
NM

O
QP = − ⋅794

2
2 78 6 794 N m  N msin . sin

(ii) At 5:15, t = + =5
15
60

5 25 h  h  h. , and substitution gives:

τ = − ⋅2 510 N m

(iii) At 6:00, τ = ⋅0 N m

(iv) At 8:20, τ = − ⋅1 160 N m

(v) At 9:45, τ = − ⋅2 940 N m

(b) The total torque is zero at those times when

sin . sin
π

π
t

t
6

2 78 2 0F
HG
I
KJ + =

We proceed numerically, to find 0, 0.515 295 5, ..., corresponding to the times

12:00:00 12:30:55 12:58:19 1:32:31 1:57:01
2:33:25 2:56:29 3:33:22 3:56:55 4:32:24
4:58:14 5:30:52 6:00:00 6:29:08 7:01:46
7:27:36 8:03:05 8:26:38 9:03:31 9:26:35

10:02:59 10:27:29 11:01:41 11:29:05
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*P10.75 (a) As the bicycle frame moves forward at speed v, the center of each wheel moves forward at

the same speed and the wheels turn at angular speed ω =
v
R

. The total kinetic energy of the

bicycle is

K K K= +trans rot

or

K m m v I m m v m R
v
R

= + + FHG
I
KJ = + + FHG

I
KJ
F
HG
I
KJ

1
2

2 2
1
2

1
2

2
1
2

2 2 2 2
2

2frame wheel wheel frame wheel wheelb g b gω .

This yields

K m m v= + = + =
1
2

3
1
2

8 44 3 0 820 3 35 61 22 2
frame wheel  kg  kg  m s  Jb g b g b g. . . . .

(b) As the block moves forward with speed v, the top of each trunk moves forward at the same

speed and the center of each trunk moves forward at speed 
v
2

. The angular speed of each

roller is ω =
v
R2

. As in part (a), we have one object undergoing pure translation and two

identical objects rolling without slipping. The total kinetic energy of the system of the stone
and the trees is

K K K= +trans rot

or

K m v m
v

I m m v m R
v
R

= + F
HG
I
KJ + FHG

I
KJ = +F
HG

I
KJ + FHG

I
KJ
F
HG
I
KJ

1
2

2
1
2 2

2
1
2

1
2

1
2

1
2 4

2
2

2 2 2
2

2stone tree tree stone tree treeω .

This gives

K m m v= +F
HG

I
KJ = + =

1
2

3
4

1
2

844 0 75 82 0 50 82 2
stone tree  kg  kg 0.335 m s  J. . .b g b g .

P10.76 Energy is conserved so ∆ ∆ ∆U K K+ + =rot trans 0

mg R r mv mr− − + −L
NM

O
QP +
L
NM
O
QP =a fa fcosθ ω1

1
2

0
1
2

2
5

02 2 2

Since r vω = , this gives

ω
θ

=
− −10

7
1

2

R r g

r
a fa fcos

or ω
θ

=
−10 1

7 2

Rg

r

cosa f
 since R r>> .

 

R 
θ 

FIG. P10.76
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P10.77 F T Mg Ma TR I MR
a
R∑ ∑= − = − = = = F
HG
I
KJ: τ α

1
2

2

(a) Combining the above two equations we find

T M g a= −b g

and

a
T

M
=

2

thus T
Mg

=
3

(b) a
T

M M
Mg

g= = FHG
I
KJ =

2 2
3

2
3

FIG. P10.77

(c) v v a x xf i f i
2 2 2= + −d i v g hf

2 0 2
2
3

0= + FHG
I
KJ −a f

v
gh

f =
4
3

For comparison, from conservation of energy for the system of the disk and the Earth we
have

U K K U K Kgi i i gf f f+ + = + +rot trans rot trans : Mgh MR
v

R
Mvf

f+ + = + FHG
I
KJ
F
HG
I
KJ +0 0 0

1
2

1
2

1
2

2
2

2

v
gh

f =
4

3

P10.78 (a) F F f Ma fR Ix∑ ∑= − = = =: τ α

Using I MR=
1
2

2  and α =
a
R

, we find a
F
M

=
2
3

(b) When there is no slipping, f Mg= µ .

Substituting this into the torque equation of part (a), we have

µ MgR MRa=
1
2

 and µ =
F
Mg3

.
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P10.79 (a) ∆ ∆ ∆K K Urot trans+ + = 0

Note that initially the center of mass of the sphere is a
distance h r+  above the bottom of the loop; and as the
mass reaches the top of the loop, this distance above
the reference level is 2R r− . The conservation of
energy requirement gives

mg h r mg R r mv I+ = + +a f a f2
1
2

1
2

2 2− ω

r
m

h R
P

FIG. P10.79

For the sphere I mr=
2
5

2  and v r= ω  so that the expression becomes

gh gr gR v+ = +2 2
7

10
2  (1)

Note that h h= min  when the speed of the sphere at the top of the loop satisfies the condition

F mg
mv
R r∑ = =
−

2

a f  or v g R r2 = −a f

Substituting this into Equation (1) gives

h R r R rmin = − + −2 0 700a f a f.  or h R r Rmin . .= − =2 70 2 70a f

(b) When the sphere is initially at h R= 3  and finally at point P, the conservation of energy
equation gives

mg R r mgR mv mv3
1
2

1
5

2 2+ + +a f = , or

v R r g2 10
7

2= +a f

Turning clockwise as it rolls without slipping past point P, the sphere is slowing down with
counterclockwise angular acceleration caused by the torque of an upward force f of static

friction. We have F may y∑ =  and τ α∑ = I  becoming f mg m r− = − α  and fr mr= FHG
I
KJ

2
5

2α .

Eliminating f  by substitution yields α =
5
7

g
r

 so that F mgy∑ = −
5
7

F n
mv
R r

R r

R r
mg

mg
x∑ = − = −

−
= −

+

−
−2 10

7 2 20
7

c h( )
 =  (since R r>> )
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P10.80 Consider the free-body diagram shown. The sum of torques
about the chosen pivot is

τ α∑ = ⇒ = FHG
I
KJ
F
HG
I
KJ =
F
HG
I
KJI F ml

a
ml a

l

1
3

2
3

2

2

CM
CM (1)

(a) = =l 1 24.  m: In this case, Equation (1) becomes

a
F
mCM

2 N
 kg

.  m s= = =
3
2

3 14 7
2 0 630

35 0
.

.
a f
b g

F ma F H max x∑ = ⇒ + =CM CM  or H ma Fx = −CM

Thus, Hx = − = +0 630 35 0 14 7 7 35.  kg .  m s .  N .  N2b ge j  or

H ix = 7 35.  N .

(b) = =
1
2

0 620.  m : For this situation, Equation (1) yields

a
F
mCM

2 N
 kg

.  m s= = =
3
4

3 14 7
4 0 630

17 5
.

.
a f
b g .

H y 
H x 

F  = 14.7 N 

CM mg 

pivot 

 
l 

FIG. P10.80

Again, F ma H ma Fx x∑ = ⇒ = −CM CM , so

Hx = − = −0 630 17 5 14 7 3 68.  kg .  m s .  N .  N2b ge j  or H ix = −3 68.  N .

(c) If Hx = 0, then F ma F max∑ = ⇒ =CM CM , or a
F
mCM = .

Thus, Equation (1) becomes

F ml
F
m

=
2
3
F
HG
I
KJ
F
HG
I
KJ  so = =  m  m from the top

2
3

2
3

1 24 0 827l . .a f b g= .

P10.81 Let the ball have mass m and radius r. Then I mr=
2
5

2 . If the ball takes four seconds to go down

twenty-meter alley, then v =  m s5 . The translational speed of the ball will decrease somewhat as
the ball loses energy to sliding friction and some translational kinetic energy is converted to
rotational kinetic energy; but its speed will always be on the order of 5 00.  m s , including at the
starting point.
As the ball slides, the kinetic friction force exerts a torque on the ball to increase the angular speed.

When ω =
v
r

, the ball has achieved pure rolling motion, and kinetic friction ceases. To determine the

elapsed time before pure rolling motion is achieved, consider:

τ α µ∑ = ⇒ = FHG
I
KJ
L
N
MM

O
Q
PPI mg r mr

r

tkb g b g2
5

5 002 .  m s
 which gives

t
g gk k

= =
2 5 00

5
2 00( . ) . m s  m s

µ µ
Note that the mass and radius of the ball have canceled. If µ k = 0 100.  for the polished alley, the
sliding distance will be given by

∆x vt= =
L

N
MM

O

Q
PP =5 00

2 00

0 100 9 80
10 2.  m s

 m s

 m s
.  m

2b g a fe j
.

. .
 or ∆x ~ 101  m .
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P10.82 Conservation of energy between apex and the point where
the grape leaves the surface:

mg y mv I

mgR mv mR
v

R

f f

f
f

∆ = +

− = + FHG
I
KJ
F
HG
I
KJ

1
2

1
2

1
1
2

1
2

2
5

2 2

2 2
2

ω

θcosa f

which gives g
v

R
f1

7
10

2

− =
F
HG
I
KJ

cosθa f (1)

Consider the radial forces acting on the grape:

mg n
mv

R
fcosθ − =
2

.

At the point where the grape leaves the surface, n→ 0 .

Thus, mg
mv

R
fcosθ=
2

 or 
v

R
gf

2

= cosθ .

Substituting this into Equation (1) gives

g g g− =cos cosθ θ
7

10
 or cosθ =

10
17

 and θ = °54 0. .

 

R 
θ 

i 
∆ y = R—R cos θ 

f 

n 

mg sin θ mg cos θ 

FIG. P10.82

P10.83 (a) There are not any horizontal forces acting on the rod, so the center of mass will not move
horizontally. Rather, the center of mass drops straight downward (distance h/2) with the rod
rotating about the center of mass as it falls. From conservation of energy:

K U K Uf gf i gi+ = +

1
2

1
2

0 0
2

2 2Mv I Mg
h

CM + + = + F
HG
I
KJω  or

1
2

1
2

1
12 2

2 2

2

2

Mv Mh
v

Mg
h

hCM
CM+ FHG

I
KJ
F
HG
I
KJ = F

HG
I
KJ  which reduces to

v
gh

CM =
3

4

(b) In this case, the motion is a pure rotation about a fixed pivot point (the lower end of the rod)
with the center of mass moving in a circular path of radius h/2. From conservation of energy:

K U K Uf gf i gi+ = +

1
2

0 0
2

2I Mg
h

ω + = + F
HG
I
KJ  or

1
2

1
3 2

2

2

2

Mh
v

Mg
h

h
F
HG

I
KJ
F
HG
I
KJ = F

HG
I
KJ

CM   which reduces to

v
gh

CM =
3

4
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P10.84 (a) The mass of the roll decreases as it unrolls. We have m
Mr
R

=
2

2  where M is the initial mass of

the roll. Since ∆E = 0 , we then have ∆ ∆ ∆U K Kg + + =trans rot 0 . Thus, when I
mr

=
2

2
,

mgr MgR
mv mr

− + +
L
NM

O
QP
=b g

2 2 2

2 2 2
0

ω

Since ω r v= , this becomes v
g R r

r
=

−4

3

3 3

2

e j

(b) Using the given data, we find v = ×5 31 104.  m s

(c) We have assumed that ∆E = 0 . When the roll gets to the end, we will have an inelastic
collision with the surface. The energy goes into internal energy . With the assumption we

made, there are problems with this question. It would take an infinite time to unwrap the
tissue since dr → 0 . Also, as r approaches zero, the velocity of the center of mass approaches
infinity, which is physically impossible.

P10.85 (a) F F f Max∑ = + = CM

τ α∑ = − =FR fR I

FR Ma F R
Ia

R
− − =CM

CMb g a
F
MCM =

4
3

(b) f Ma F M
F
M

F F= − = FHG
I
KJ − =CM

4
3

1
3

(c) v v a x xf i f i
2 2 2= + −d i

v
Fd
Mf =

8
3

n f

Mg

F

FIG. P10.85
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P10.86 Call ft  the frictional force exerted by each roller
backward on the plank. Name as fb  the rolling
resistance exerted backward by the ground on
each roller. Suppose the rollers are equally far
from the ends of the plank.

For the plank,

F max x∑ = 6 00 2 6 00.  N .  kg− =f at pb g

M

m R m R

F

FIG. P10.86

The center of each roller moves forward only half as far as the plank. Each roller has acceleration 
ap

2
and angular acceleration

a ap p2

5 00 0 100. . cm  ma f a f=

Then for each,

F max x∑ = + − =f f
a

t b
p2 00

2
.  kgb g

τ α∑ = I f f
a

t b
p5 00 5 00

1
2

2 00 5 00
10 0

2. . .
.

 cm  cm .  kg  cm
 cm

a f a f b ga f+ =

So f f at b p+ = FHG
I
KJ

1
2

 kg

Add to eliminate fb :

2 1 50f at p= .  kgb g
(a) And 6 00 1 50 6 00.  N .  kg .  kg− =b g b ga ap p

ap = =
6 00
7 50

0 800
.
.

.
 N
 kg

 m s2a f
b g

For each roller, a
ap

= =
2

0 400.  m s2

(b) Substituting back, 2 1 50 0 800ft = .  kg .  m s2b g
f

f

f

t

b

b

=

+ =

= −

0 600

0 600
1
2

0 800

0 200

.  N

.  N  kg .  m s

.  N

2e j

The negative sign means that the horizontal force
of ground on each roller is 0 200.  N forward

rather than backward as we assumed.

Mg

nt

6.00 N

ft nt
ft

nt
ft

nt
ft

fb nb
fb nb

mg mg

FIG. P10.86(b)
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P10.87 Rolling is instantaneous rotation about the contact point P. The
weight and normal force produce no torque about this point.

Now F1  produces a clockwise torque  about P and makes the

spool roll forward.

Counterclockwise torques  result from F3  and F4 , making the

spool roll to the left.

The force F2  produces zero torque  about point P and does

not cause the spool to roll. If F2  were strong enough, it would
cause the spool to slide to the right, but not roll.

F1

F2

F3

F4

θc

P

FIG. P10.87

P10.88 The force applied at the critical angle exerts zero torque about
the spool’s contact point with the ground and so will not make
the spool roll.

From the right triangle shown in the sketch, observe that
θ φ γ γc = °− = °− °− =90 90 90b g .

Thus, cos cosθ γc
r
R

= = .

 F 2 

θ c 
P 

γ 

φ 
R 

r 

FIG. P10.88

P10.89 (a) Consider motion starting from rest over distance x along the incline:

K K U E K K U

Mgx Mv mR
v
R

Mgx M m v

i ftrans rot trans rot+ + + = + +

+ + + = + FHG
I
KJ
F
HG
I
KJ +

= +

b g b g

a f

∆

0 0 0
1
2

2
1
2

0

2 2

2 2
2

2

sin

sin

θ

θ

Since acceleration is constant,

v v ax axi
2 2 2 0 2= + = + ,  so

2 2 2Mgx M m axsinθ = +a f
a

Mg
M m

=
+
sinθ
2a f

∆x

θ

x

y

FIG. P10.88

continued on next page
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(c) Suppose the ball is fired from a cart at rest. It moves with acceleration g axsinθ =  down the
incline and a gy = − cosθ  perpendicular to the incline. For its range along the ramp, we have

y y v t g t

t
v

g

x x v t a t

d g
v

g

d
v

g

i yi

yi

i xi x

yi

yi

− = − = −

=

− = +

= +
F
HG

I
KJ

=

1
2

0 0

2

1
2

0
1
2

4

2

2

2

2

2 2

2

2

cos

cos

sin
cos

sin

cos

θ

θ

θ
θ

θ

θ

(b) In the same time the cart moves

x x v t a t

d
g M
M m

v

g

d
v M

g M m

i xi x

c
yi

c
yi

− = +

= +
+

F
HG

I
KJ
F
HG

I
KJ

=
+

1
2

0
1
2 2

4

2

2

2

2

2 2

2

2

sin
cos

sin

cos

θ
θ

θ

θ

a f

a f

So the ball overshoots the cart by

∆

∆

∆

x d d
v

g

v M

g M m

x
v M v m v M

g M m

x
mv

M m g

c
yi yi

yi yi yi

yi

= − = −
+

=
+ −

+

=
+

2 2

2

2 4 2

2

4

2

2

2

2

2

2 2 2

2

2

2

sin

cos

sin

cos

sin sin sin

cos

sin

cos

θ

θ

θ

θ

θ θ θ

θ

θ

θ

a f

a f

a f
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P10.90 F max x∑ =  reads − + =f T ma . If we take torques around the center of mass,
we can use τ α∑ = I , which reads + − =fR TR I2 1 α . For rolling without

slipping, α =
a

R2
. By substitution,

fR TR
Ia
R

I
R m

T f

fR m TR R m IT If

f I mR T I mR R

f
I mR R

I mR
T

2 1
2 2

2
2

1 2

2
2

1 2

1 2

2
2

− = = −

− = −

+ = +

=
+
+

F
HG

I
KJ

b g

e j b g

Since the answer is positive, the friction force is confirmed to be to the left.

f
n

T

mg

FIG. P10.90

ANSWERS TO EVEN PROBLEMS

P10.2 (a) 822 rad s2 ; (b) 4 21 103. ×  rad P10.28
1
2

2ML

P10.4 (a) 1 20 102. ×  rad s ; (b) 25.0 s
P10.30 168 N m⋅  clockwise

P10.6 −226 rad s2
P10.32 882 N m⋅

P10.8 13 7.  rad s2
P10.34 (a) 1.03 s; (b) 10.3 rev

P10.10 (a) 2.88 s; (b) 12.8 s P10.36 (a) 21 6.  kg m2⋅ ; (b) 3 60.  N m⋅ ; (c) 52.4 rev

P10.12 (a) 0 180.  rad s; P10.38 0.312
(b) 8 10.  m s2  toward the center of the
track P10.40 1 04 10 3. × −  J

P10.14 (a) 0 605.  m s ; (b) 17 3.  rad s ; (c) 5 82.  m s ; P10.42 149 rad s
(d) The crank length is unnecessary

P10.44 (a) 6.90 J; (b) 8 73.  rad s ; (c) 2 44.  m s ;
P10.16 (a) 54.3 rev; (b) 12 1.  rev s (d) 1 043 2.  times  larger

P10.18 0.572 P10.46 2 36.  m s

P10.20 (a) 92 0.  kg m2⋅ ; 184 J ; P10.48 276 J
(b) 6 00.  m s ; 4 00.  m s ; 8 00.  m s ; 184 J

P10.50 (a) 74.3 W; (b) 401 W
P10.22 see the solution

P10.52
7

10

2Mv
P10.24 1 28.  kg m2⋅

P10.54 The disk; 
4

3
gh

 versus ghP10.26 ~100  kg m2⋅
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P10.56 (a) 2 38.  m s ; (b) 4 31.  m s;
P10.76

10 1

7 2

Rg

r

− cosθa f
(c) It will not reach the top of the loop.

P10.58 (a) 0.992 W; (b) 827 W P10.78 see the solution

P10.60 see the solution
P10.80 (a) 35 0.  m s2 ; 7 35. i N ;

(b) 17 5.  m s2 ; −3 68. i N;P10.62 (a) 12 5.  rad s ; (b) 128 rad
(c) At 0.827 m from the top.

P10.64
g h h

R
2 1

22

−b g
π P10.82 54.0°

P10.84 (a) 
4

3

3 3

2

g R r

r

−e j
; (b) 5 31 104. ×  m s;

P10.66 (a) 2 57 1029. ×  J ; (b) − ×1 63 1017.  J day

P10.68 139 m s (c) It becomes internal energy.

P10.70 (a) 
2 2

2

mgd kd
I mR

sinθ +
+

; (b) 1 74.  rad s
P10.86 (a) 0 800.  m s2 ; 0 400.  m s2 ;

(b) 0.600 N between each cylinder and the
plank; 0.200 N forward on each cylinder
by the groundP10.72 see the solution

P10.88 see the solutionP10.74 (a) − ⋅794 N m; − ⋅2 510 N m; 0;
− ⋅1 160 N m; − ⋅2 940 N m;

P10.90 see the solution; to the left(b) see the solution
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Angular Momentum

ANSWERS TO QUESTIONS

Q11.1 No to both questions. An axis of rotation must be defined to
calculate the torque acting on an object. The moment arm of
each force is measured from the axis.

Q11.2 A B C⋅ ×a f  is a scalar quantity, since B C×a f  is a vector. Since
A B⋅  is a scalar, and the cross product between a scalar and a
vector is not defined, A B C⋅ ×a f  is undefined.

Q11.3 (a) Down–cross–left is away from you: − × − = −j i ke j

(b) Left–cross–down is toward you: − × − =i j ke j

FIG. Q11.3

Q11.4 The torque about the point of application of the force is zero.

Q11.5 You cannot conclude anything about the magnitude of the angular momentum vector without first
defining your axis of rotation. Its direction will be perpendicular to its velocity, but you cannot tell
its direction in three-dimensional space until an axis is specified.

Q11.6 Yes. If the particles are moving in a straight line, then the angular momentum of the particles about
any point on the path is zero.

Q11.7 Its angular momentum about that axis is constant in time. You cannot conclude anything about the
magnitude of the angular momentum.

Q11.8 No. The angular momentum about any axis that does not lie along the instantaneous line of motion
of the ball is nonzero.

325
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Q11.9 There must be two rotors to balance the torques on the body of the helicopter. If it had only one
rotor, the engine would cause the body of the helicopter to swing around rapidly with angular
momentum opposite to the rotor.

Q11.10 The angular momentum of the particle about the center of rotation is constant. The angular
momentum about any point that does not lie along the axis through the center of rotation and
perpendicular to the plane of motion of the particle is not constant in time.

Q11.11 The long pole has a large moment of inertia about an axis along the rope. An unbalanced torque will
then produce only a small angular acceleration of the performer-pole system, to extend the time
available for getting back in balance. To keep the center of mass above the rope, the performer can
shift the pole left or right, instead of having to bend his body around. The pole sags down at the
ends to lower the system center of gravity.

Q11.12 The diver leaves the platform with some angular momentum about a horizontal axis through her
center of mass. When she draws up her legs, her moment of inertia decreases and her angular speed
increases for conservation of angular momentum. Straightening out again slows her rotation.

Q11.13 Suppose we look at the motorcycle moving to the right. Its drive wheel is turning clockwise. The
wheel speeds up when it leaves the ground. No outside torque about its center of mass acts on the
airborne cycle, so its angular momentum is conserved. As the drive wheel’s clockwise angular
momentum increases, the frame of the cycle acquires counterclockwise angular momentum. The
cycle’s front end moves up and its back end moves down.

Q11.14 The angular speed must increase. Since gravity does not exert a torque on the system, its angular
momentum remains constant as the gas contracts.

Q11.15 Mass moves away from axis of rotation, so moment of inertia increases, angular speed decreases,
and period increases.

Q11.16 The turntable will rotate counterclockwise. Since the angular momentum of the mouse-turntable
system is initially zero, as both are at rest, the turntable must rotate in the direction opposite to the
motion of the mouse, for the angular momentum of the system to remain zero.

Q11.17 Since the cat cannot apply an external torque to itself while falling, its angular momentum cannot
change. Twisting in this manner changes the orientation of the cat to feet-down without changing
the total angular momentum of the cat. Unfortunately, humans aren’t flexible enough to accomplish
this feat.

Q11.18 The angular speed of the ball must increase. Since the angular momentum of the ball is constant, as
the radius decreases, the angular speed must increase.

Q11.19 Rotating the book about the axis that runs across the middle pages perpendicular to the
binding—most likely where you put the rubber band—is the one that has the intermediate moment
of inertia and gives unstable rotation.

Q11.20 The suitcase might contain a spinning gyroscope. If the gyroscope is spinning about an axis that is
oriented horizontally passing through the bellhop, the force he applies to turn the corner results in a
torque that could make the suitcase swing away. If the bellhop turns quickly enough, anything at all
could be in the suitcase and need not be rotating. Since the suitcase is massive, it will want to follow
an inertial path. This could be perceived as the suitcase swinging away by the bellhop.
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SOLUTIONS TO PROBLEMS

Section 11.1 The Vector Product and Torque

P11.1 M N
i j k

i j k× = −
− −

= − + −. . .6 2 1
2 1 3

7 00 16 0 10 0

P11.2 (a) area  cm  cm  cm2= × = = °− ° =A B ABsin . . sin . .θ 42 0 23 0 65 0 15 0 740a fa f a f

(b) A B i j+ = °+ ° + °+ °42 0 15 0 23 0 65 0 42 0 15 0 23 0 65 0. cos . . cos . . sin . . sin . cm  cm  cm  cma f a f a f a f
A B i j

A B

+ = +

= + = + =

50 3 31 7

50 3 31 7 59 52 2

. .

. . .

 cm  cm

length  cm  cm  cm

a f a f
a f a f

P11.3 (a) A B
i j k

k× = − = − .3 4 0
2 3 0

17 0

(b) A B A B× = sinθ

17 5 13

17
5 13

70 6

=

=
F
HG
I
KJ = °

sin

arcsin .

θ

θ

P11.4 A B⋅ = − + − + − = −3 00 6 00 7 00 10 0 4 00 9 00 124. . . . . .a f a f a fa f
AB = − + + − ⋅ + − + =3 00 7 00 4 00 6 00 10 0 9 00 1272 2 2 2 2 2. . . . . .a f a f a f a f a f a f

(a) cos cos .− −⋅F
HG
I
KJ = − = °1 1 0 979 168

A B
AB

a f

(b) A B
i j k

i j k× = − −
−

= + −. . .
. . .

. . .3 00 7 00 4 00
6 00 10 0 9 00

23 0 3 00 12 0

A B× = + + − =23 0 3 00 12 0 26 12 2 2. . . .a f a f a f

sin sin . .− −×F
HG

I
KJ = = °1 1 0 206 11 9

A B
AB

a f  or 168°

(c) Only the first method  gives the angle between the vectors unambiguously.
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*P11.5 ττττ = × = °− ° ×

= ⋅

r F 0 450 0 785 90 14

0 343

. . sin

.

 m  N  up east

 N m north

a f a f

FIG. P11.5

P11.6 The cross-product vector must be perpendicular to both of the factors, so its dot product with either
factor must be zero:

Does 2 3 4 4 3 0i j k i j k− + ⋅ + − =e j e j ?

8 9 4 5 0− − = − ≠

No . The cross product could not work out that way.

P11.7 A B A B× = ⋅ ⇒ = ⇒ =AB ABsin cos tanθ θ θ 1 or

θ = °45 0.

P11.8 (a) ττττ = × = = − − − + − = − ⋅r F
i j k

i j k k.1 3 0
3 2 0

0 0 0 0 2 9 7 00a f a f a f a f N m

(b) The particle’s position vector relative to the new axis is 1 3 6 1 3i j j i j+ − = − .

ττττ = − = ⋅.
i j k

k1 3 0
3 2 0

11 0 N ma f

P11.9 F F F3 1 2= +

The torque produced by F3  depends on the
perpendicular distance OD, therefore translating the
point of application of F3  to any other point along

BC will not change the net torque .
A

B

C

D
O

F1

F2

F3

FIG. P11.9
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*P11.10 sini i× = ⋅ ⋅ °=1 1 0 0

j j×  and k k×  are zero similarly since the
vectors being multiplied are parallel.

sini j× = ⋅ ⋅ °=1 1 90 1

j

i

k

i j k

j k i

k i j

× =

× =

× =

j i k

k j i

i k j

× = −

× = −

× = −

FIG. P11.10

Section 11.2 Angular Momentum

P11.11 L m v ri i i=

= +

∑
4 00 5 00 0 500 3 00 5 00 0 500. . . . . . kg  m s  m  kg  m s  mb gb ga f b gb ga f

L = ⋅17 5.  kg m s2 , and

L k= ⋅17 5.  kg m s2e j 1.00 m
x

y

4.00 kg

3.00 kg

FIG. P11.11

P11.12 L r p= ×

L i j i j

L k k k

= + × −

= − − ⋅ = − ⋅

1 50 2 20 1 50 4 20 3 60

8 10 13 9 22 0

. . . . .

. . .

e j b ge j
e j e j

 m  kg  m s

 kg m s  kg m s2 2

P11.13 r i j= +6 00 5 00. . t  me j v
r

j= =
d
dt

5 00.  m s

so p v j j= = = ⋅m 2 00 5 00 10 0. . . kg  m s  kg m se j

and L r p
i j k

k= × = = ⋅. .
.

.6 00 5 00 0
0 10 0 0

60 0t  kg m s2e j
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P11.14 F max x∑ = T
mv

r
sinθ =

2

F may y∑ = T mgcosθ =

So 
sin
cos

θ
θ
=

v
rg

2

v rg=
sin
cos

θ
θ

L rmv

L rm rg

L m gr

r

L m g

= °

=

=

=

=

sin .

sin
cos

sin
cos

sin

sin
cos

90 0

2 3

2 3
4

θ
θ
θ
θ

θ

θ
θ

,  so

θ

m

l

FIG. P11.14

P11.15 The angular displacement of the particle around the circle is θ ω= =t
vt
R

.

The vector from the center of the circle to the mass is then

R Rcos sinθ θi j+ .

The vector from point P to the mass is

r i i j

r i j

= + +

= + FHG
I
KJ

F
HG

I
KJ +
F
HG
I
KJ

L
NM

O
QP

R R R

R
vt
R

vt
R

cos sin

cos sin

θ θ

1

The velocity is

v
r

i j= = − F
HG
I
KJ +

F
HG
I
KJ

d
dt

v
vt
R

v
vt
R

sin cos

So L r v= ×m

L i j i j

L k

= + + × − +

= F
HG
I
KJ +

L
NM

O
QP

mvR t t t t

mvR
vt
R

1

1

cos sin sin cos

cos

ω ω ω ωa f

x

y

θ

m
R

P Q

v

FIG. P11.15

P11.16 (a) The net torque on the counterweight-cord-spool system is:

τ = × = × = ⋅−r F 8 00 10 9 80 3 142. . . m 4.00 kg  m s  N m2b ge j .

(b) L r v= × +m Iω L = + F
HG
I
KJ = +FHG

I
KJ = ⋅Rmv MR

v
R

R m
M

v v
1
2 2

0 4002 .  kg mb g

(c) τ = = ⋅
dL
dt

a0 400.  kg mb g a =
⋅
⋅

=
3 14

7 85
.

.
 N m

0.400 kg m
 m s2
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P11.17 (a) zero

(b) At the highest point of the trajectory,

x R
v

g
i= =

1
2

2
2

2 sin θ
 and

y h
v

g
i= =max
sinθb g2
2

L r v

i j i

k

1 1 1

2 2

2

2
2 2

2

= ×

= +
L
N
MM

O
Q
PP ×

=
−

m

v
g

v
g

mv

m v v
g

i i
xi

i i

sin sin

sin cos

θ θ

θ θ

b g

b g

 

O 
R 

v i 
v 2 

v i v xi = 

θ 

i  

FIG. P11.17

(c) L i v

i i j

k k

2 2

2

3

2

2

= × =

= × −

= − =
−

R m R
v

g

mR v v

mRv
mv

g

i

i i

i
i

sin

cos sin

sin
sin sin

,  where 
θ

θ θ

θ
θ θ

e j

(d) The downward force of gravity exerts a torque in the –z direction.

P11.18 Whether we think of the Earth’s surface as curved or flat, we interpret the problem to mean that the
plane’s line of flight extended is precisely tangent to the mountain at its peak, and nearly parallel to
the wheat field. Let the positive x direction be eastward, positive y be northward, and positive z be
vertically upward.

(a) r k k= = ×4 30 4 30 103. . km  ma f e j
p v i i

L r p k i j

= = − = − × ⋅

= × = × × − × ⋅ = − × ⋅

m 12 000 175 2 10 10

4 30 10 2 10 10 9 03 10

6

3 6 9

 kg  m s  kg m s

 m  kg m s  kg m s2

.

. . .

e j
e j e j e j

(b) No . L mv r= =r p sin sinθ θa f , and r sinθ  is the altitude of the plane. Therefore, L =

constant as the plane moves in level flight with constant velocity.

(c) Zero . The position vector from Pike’s Peak to the plane is anti-parallel to the velocity of

the plane. That is, it is directed along the same line and opposite in direction.
Thus, L mvr= °=sin180 0 .
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P11.19 The vector from P to the falling ball is

r r v a

r i j j

= + +

= + + − FHG
I
KJ

i it t

gt

1
2

0
1
2

2

2cos sinθ θe j
The velocity of the ball is

v v a j= + = −i t gt0

So L r v= ×m

L i j j j

L k

= + + − FHG
I
KJ

L
NM

O
QP × −

= −

m gt gt

m gt

cos sin

cos

θ θ

θ

e j e j0
1
2

2

m

l

P

θ

FIG. P11.19

P11.20 In the vertical section of the hose, the water has zero angular
momentum about our origin (point O between the fireman’s feet).
As it leaves the nozzle, a parcel of mass m has angular momentum:

L m mrv m

L m

= × = °=

=

r v sin . . .

.

90 0 1 30 12 5

16 3

 m  m s

 m s2

a fb g
e j

The torque on the hose is the rate of change in angular momentum.
Thus,

τ = = = = ⋅
dL
dt

dm
dt

16 3 16 3 6 31 103. . . m s  m s  kg s  N m2 2e j e jb g vi

O

1.30 m1.30 m

vf

FIG. P11.20

Section 11.3 Angular Momentum of a Rotating Rigid Object

*P11.21 K I
I

I
L

I
= = =

1
2

1
2 2

2
2 2 2

ω
ω

P11.22 The moment of inertia of the sphere about an axis through its center is

I MR= = = ⋅
2
5

2
5

15 0 0 500 1 502 2. . . kg  m  kg m2b ga f

Therefore, the magnitude of the angular momentum is

L I= = ⋅ = ⋅ω 1 50 3 00 4 50. . . kg m  rad s  kg m s2 2e jb g

Since the sphere rotates counterclockwise about the vertical axis, the angular momentum vector is
directed upward in the +z  direction.

Thus, L k= ⋅4 50.  kg m s2e j .
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P11.23 (a) L I MR= = FHG
I
KJ = = ⋅ω ω

1
2

1
2

3 00 0 200 6 00 0 3602 2. . . . kg  m  rad s  kg m s2b ga f b g

(b) L I MR M
R

= = + FHG
I
KJ

L
N
MM

O
Q
PP

= = ⋅

ω ω
1
2 2

3
4

3 00 0 200 6 00 0 540

2
2

2. . . . kg  m  rad s  kg m s2b ga f b g

P11.24 The total angular momentum about the center point is given by L I Ih h m m= +ω ω

with I
m L

h
h h= = = ⋅

2 2

3
60 0

3
146

.  kg 2.70 m
 kg m2a f

and I
m L

m
m m

3

2 2

3
100

3
675= = = ⋅

 kg 4.50 m
 kg m2a f

In addition, ω
π

h =
F
HG

I
KJ = × −2 1

1 45 10 4 rad
12 h

 h
3 600 s

 rad s.

while ω
π

m =
F
HG

I
KJ = × −2 1

1 75 10 3 rad
1 h

 h
3 600 s

 rad s.

Thus, L = ⋅ × + ⋅ ×− −146 1 45 10 675 1 75 104 3 kg m  rad s  kg m  rad s2 2. .e j e j
or L = ⋅1 20.  kg m s2

P11.25 (a) I m L m= + = + = ⋅
1

12
0 500

1
12

0 100 1 00 0 400 0 500 0 108 31
2

2
2 2 2. . . . . .a f a fa f a f  kg m2

L I= = = ⋅ω 0 108 3 4 00 0 433. . .a f  kg m s2

(b) I m L m R= + = + =
1
3

1
3

0 100 1 00 0 400 1 00 0 4331
2

2
2 2 2. . . . .a fa f a f

L I= = = ⋅ω 0 433 4 00 1 73. . .a f  kg m s2

*P11.26 F max x∑ = : + =f mas x

We must use the center of mass as the axis in

τ α∑ = I : F n fg s0 77 5 88 0a f a f a f− + =.  cm  cm

F may y∑ = : + − =n Fg 0

We combine the equations by substitution:

− + =

= =

mg ma

a

x

x

77 5 88 0

9 80 77 5
8 63

.

. .
.

 cm  cm

 m s  cm

88 cm
 m s

2
2

a f a f
e j

88 cm
Fg

n fs

155 cm
2

FIG. P11.26
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*P11.27 We require a g
v
r

rc = = =
2

2ω

ω = = =

= = × = × ⋅

g
r

I Mr

9 80

100
0 313

5 10 5 102 4 2 8

.
.

 m s

 m
 rad s

 kg 100 m  kg m

2

2

e j

a f

(a) L I= = × ⋅ = × ⋅ω 5 10 0 313 1 57 108 8 kg m s  kg m s2 2. .

(c) τ α
ω ω

∑ = =
−

I
I

t
f id i
∆

τ ω ω∆t I I L Lf i f i∑ = − = −

This is the angular impulse-angular momentum theorem.

(b) ∆t
L f=

−
=

× ⋅
= × =

∑
0 1 57 10

2 125 100
6 26 10 1 74

8
3

τ
.

. .
 kg m s

 N  m
 s  h

2

a fa f

Section 11.4 Conservation of Angular Momentum

P11.28 (a) From conservation of angular momentum for the system of two cylinders:

I I If i1 2 1+ =b gω ω or ω ωf i
I

I I
=

+
1

1 2

(b) K I If f= +
1
2 1 2

2b gω and K Ii i=
1
2 1

2ω

so
K

K
I I

I
I

I I
I

I I
f

i i
i=

+

+
F
HG

I
KJ =

+

1
2 1 2

1
2 1

2
1

1 2

2
1

1 2

b g
ω

ω  which is less than 1 .

P11.29 I Ii i f fω ω= : 250 10 0 250 25 0 2
2 kg m  rev min  kg m  kg 2.00 m2 2⋅ = ⋅ +e jb g a f. . ω

ω 2 7 14= .  rev min
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P11.30 (a) The total angular momentum of the system of the student, the stool, and the weights about
the axis of rotation is given by

I I I mrtotal weights student
2 kg m= + = + ⋅2 3 002e j .

Before: r = 1 00.  m .

Thus, Ii = + ⋅ = ⋅2 3 00 1 00 3 00 9 002. . . . kg  m  kg m  kg m2 2b ga f
After: r = 0 300.  m

Thus, I f = + ⋅ = ⋅2 3 00 0 300 3 00 3 542. . . . kg  m  kg m  kg m2 2b ga f

We now use conservation of angular momentum.

I If f i iω ω=

or ω ωf
i

f
i

I
I

=
F
HG
I
KJ = FHG

I
KJ =

9 00
3 54

0 750 1 91
.
.

. . rad s  rad sb g

(b) K Ii i i= = ⋅ =
1
2

1
2

9 00 0 750 2 532 2ω . . . kg m  rad s  J2e jb g

K If f f= = ⋅ =
1
2

1
2

3 54 1 91 6 442 2ω . . . kg m  rad s  J2e jb g

P11.31 (a) Let M =  mass of rod and m =  mass of each bead. From I Ii i f fω ω= , we have

1
12

2
1

12
22

1
2 2

2
2M mr M mri f+L

NM
O
QP = +L
NM

O
QPω ω

When = 0 500.  m , r1 0 100= .  m , r2 0 250= .  m , and with other values as stated in the
problem, we find

ω f = 9 20.  rad s .

(b) Since there is no external torque on the rod,

L =  constant and ω is unchanged .

*P11.32 Let M represent the mass of all the ribs together and L the length of each. The original moment of

inertia is 
1
3

2ML . The final effective length of each rib is L sin .22 5°  and the final moment of inertia is

1
3

22 5 2M L sin . °a f  angular momentum of the umbrella is conserved:

1
3

1
3

22 5

1 25
22 5

8 54

2 2 2

2

ML MLi f

f

ω ω

ω

= °

=
°
=

sin .

.
sin .

.
 rad s

 rad s
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P11.33 (a) The table turns opposite to the way the woman walks, so its angular momentum cancels
that of the woman. From conservation of angular momentum for the system of the woman
and the turntable, we have L Lf i= = 0

so, L I If = + =woman woman table tableω ω 0

and ω ωtable
woman

table
woman

woman

table

woman woman woman

table
= −
F
HG

I
KJ = −

F
HG

I
KJ
F
HG

I
KJ = −

I
I

m r
I

v
r

m rv
I

2

ω table 2

 kg 2.00 m  m s

 kg m
 rad s= −

⋅
= −

60 0 1 50

500
0 360

. .
.

a fb g

or ω table  rad s  counterclockwise= 0 360. a f

(b) work done woman woman
2

table
2= = − = +∆K K m v If 0

1
2

1
2
ω

W = + ⋅ =
1
2

60 1 50
1
2

500 0 360 99 92 2 kg  m s  kg m  rad s  J2b gb g e jb g. . .

P11.34 When they touch, the center of mass is distant from the center of the larger puck by

yCM
 g 4.00 cm  cm

 g  g
 cm=

+ +
+

=
0 80 0 6 00

120 80 0
4 00

. .
.

.
a f

(a) L r m v r m v= + = + × × = × ⋅− − −
1 1 1 2 2 2

2 3 30 6 00 10 80 0 10 1 50 7 20 10. . . . m  kg  m s  kg m s2e je jb g

(b) The moment of inertia about the CM is

I m r m d m r m d

I

I

= +F
HG

I
KJ + +F
HG

I
KJ

= × + ×

+ × × + × ×

= × ⋅

− −

− − − −

−

1
2

1
2

1
2

0 120 6 00 10 0 120 4 00 10

1
2

80 0 10 4 00 10 80 0 10 6 00 10

7 60 10

1 1
2

1 1
2

2 2
2

2 2
2

2 2 2 2

3 2 2 3 2 2

. . . .

. . . .

.

 kg  m  kg

 kg  m  kg  m

 kg m4 2

b ge j b ge j

e je j e je j

Angular momentum of the two-puck system is conserved: L I= ω

ω = =
× ⋅

× ⋅
=

−

−
L
I

7 20 10
7 60 10

9 47
3

4

.
.

.
 kg m s
 kg m

 rad s
2

2
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P11.35 (a) L mvi = τ ext∑ = 0 , so L L mvf i= =

L m M v

v
m

m M
v

f f

f

= +

=
+
F
HG

I
KJ

a f

(b) K mvi =
1
2

2

K M m vf f= +
1
2

2a f

v
m

M m
vf = +

F
HG

I
KJ ⇒  velocity of the bullet

and block

M
l

v

FIG. P11.35

Fraction of K lost =
−

=
+

+
1
2

2 1
2

2

1
2

2

2
mv v

mv
M

M m

m
M m

P11.36 For one of the crew,

F mar r∑ = : n
mv

r
m ri= =

2
2ω

We require n mg= , so ω i
g
r

=

Now, I Ii i f fω ω=

5 00 10 150 65 0 5 00 10 50 65 0

5 98 10
5 32 10

1 12

8 2 8 2

8

8

. . . .

.

.
.

× ⋅ + × × = × ⋅ + ×

×
×

F
HG

I
KJ = =

 kg m  kg 100 m  kg m  kg 100 m2 2a f a fg
r

g
r

g
r

f

f

ω

ω

Now, a r gr f= = =ω 2 1 26 12 3. .  m s2

P11.37 (a) Consider the system to consist of the wad of clay
and the cylinder. No external forces acting on this
system have a torque about the center of the
cylinder. Thus, angular momentum of the system
is conserved about the axis of the cylinder.

L Lf i= : I mv diω =

or
1
2

2 2MR mR mv di+L
NM

O
QP =ω

Thus, ω =
+
2

2 2
mv d

M m R
i

a f .

FIG. P11.37

(b) No . Some mechanical energy changes to internal energy in this perfectly inelastic collision.
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*P11.38 (a) Let ω be the angular speed of the signboard when it is vertical.

1
2

1
2

1
3

1
2

1

3 1

3 9 80 1 25 0

0 50

2 35

2

2 2

I Mgh

ML Mg L

g
L

ω

ω θ

ω
θ

=

∴ FHG
I
KJ = −

∴ =
−

=
− °

=

cos

cos

. cos .

.

.

a f
a f

e ja f m s

 m

 rad s

2

 

θ 

Mg 
m 

v 

1 
2 

L 

FIG. P11.38

(b) I I mvLf f i iω ω= −  represents angular momentum conservation

∴ +F
HG

I
KJ = −

∴ =
−

+

=
−

+
=

1
3

1
3

2 40 0 5 2 347 0 4 1 6

2 40 0 4 0 5
0 498

2 2 2

1
3

1
3

1
3

1
3

ML mL ML mvL

ML mv

M m L

f i

f
i

ω ω

ω
ω

c h
b ga fb g b gb g

b g a f
. . . . .

. . .
.

 kg  m  rad s  kg  m s

 kg  kg  m
 rad s

(c) Let hCM =  distance of center of mass from the axis of rotation.

hCM
 kg  m  kg  m

 kg  kg
 m=

+

+
=

2 40 0 25 0 4 0 50

2 40 0 4
0 285 7

. . . .

. .
.

b ga f b ga f
.

Apply conservation of mechanical energy:

M m gh ML mL

M m L

M m gh

+ − = +F
HG

I
KJ

∴ = −
+

+

L
N
MM

O
Q
PP

= −
+

+

R
S|
T|

U
V|
W|

= °

−

−

a f a f
c h
a f
b g a f b g
b ge jb g

CM

CM

2

 kg  kg  m  rad s

 kg  kg  m s  m

1
1
2

1
3

1
2

1
2 40 0 4 0 50 0 498

2 2 40 0 4 9 80 0 285 7

5 58

2 2 2

1
1
3

2 2

1
1
3

2 2

cos

cos

cos
. . . .

. . . .

.

θ ω

θ
ω
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P11.39 The meteor will slow the rotation of the Earth by the largest amount if its line of motion passes
farthest from the Earth’s axis. The meteor should be headed west and strike a point on the equator
tangentially.
Let the z axis coincide with the axis of the Earth with +z  pointing northward. Then, conserving
angular momentum about this axis,

L L v rf i f iI I m∑ ∑= ⇒ = + ×ω ω

or
2
5

2
5

2 2MR MR mvRf iω ωk k k= −

Thus, ω ωi f
mvR
MR

mv
MR

− = =
2
5

2
5
2

 or

ω ω

ω

i f− =
× ×

× ×
= × −

−

5 3 00 10 30 0 10

2 5 98 10 6 37 10
5 91 10

10

13 3

24 6
14

13

. .

. .
.

~max

 kg  m s

 kg  m
 rad s

 rad s

e je j
e je j

∆

Section 11.5 The Motion of Gyroscopes and Tops

*P11.40 Angular momentum of the system of the spacecraft and the gyroscope is conserved. The gyroscope
and spacecraft turn in opposite directions.

0 1 1 2 2= +I Iω ω : − =I I
t1 1 2ω
θ

− ⋅ − = × ⋅
°F
HG
I
KJ °
F
HG
I
KJ

=
×

=

20 100 5 10
30

2 62 10
131

5

5

 kg m  rad s  kg m
 rad

180

 s
2 000

 s

2 2b g
t

t

π

.

*P11.41 I MR= = × × = × ⋅
2
5

2
5

5 98 10 6 37 10 9 71 102 24 6 2 37. . . kg  m  kg m2e je j

L I

L p

= = × ⋅
F
HG

I
KJ = × ⋅

= = × ⋅
×

F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ = × ⋅

ω
π

τ ω
π

9 71 10
2

7 06 10

7 06 10
2 1 1

5 45 10

37 33

33 22

. .

. .

 kg m
 rad

86 400 s
 kg m s

 kg m s
 rad

2.58 10  yr
 yr

365.25 d
 d

86 400 s
 N m

2 2 2

2
4e j

Section 11.6 Angular Momentum as a Fundamental Quantity

P11.42 (a) L
h

mvr= =
2π

 so v
h
mr

=
2π

v =
× ⋅

× ×
= ×

−

−

6 626 1 10

0 529 10
2 19 10

34

10
6.

.
.

 J s

2 9.11 10  kg  m
 m s

-31π e je j

(b) K mv= = × × = ×− −1
2

1
2

9 11 10 2 19 10 2 18 102 31 6 2 18. . . kg  m s  Je je j

(c) ω = = =
× ⋅

× ×
= ×

−

− −

L
I mr 2

34

10 2
161 055 10

0 529 10
4 13 10

.

.
.

 J s

9.11 10  kg  m
 rad s

31e je j
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Additional Problems

*P11.43 First, we define the following symbols:

IP = moment of inertia due to mass of people on the equator
IE = moment of inertia of the Earth alone (without people)
ω = angular velocity of the Earth (due to rotation on its axis)

T = =
2π
ω

rotational period of the Earth (length of the day)

R = radius of the Earth

The initial angular momentum of the system (before people start running) is

L I I I Ii P i E i P E i= + = +ω ω ωb g
When the Earth has angular speed ω, the tangential speed of a point on the equator is v Rt = ω .
Thus, when the people run eastward along the equator at speed v relative to the surface of the Earth,

their tangential speed is v v v R vp t= + = +ω  and their angular speed is ω ωP
pv

R
v
R

= = + .

The angular momentum of the system after the people begin to run is

L I I I
v
R

I I I
I v
Rf P p E P E P E
P= + = +FHG

I
KJ + = + +ω ω ω ω ωb g .

Since no external torques have acted on the system, angular momentum is conserved L Lf i=d i ,
giving I I

I v
R

I IP E
P

P E i+ + = +b g b gω ω . Thus, the final angular velocity of the Earth is

ω ω ω= −
+

= − =i
P

P E
i

I v
I I R

xb g a f1 , where x
I v

I I R
P

P E i
≡

+b g ω .

The new length of the day is T
x

T
x

T x
i

i
i= =

−
=

−
≈ +

2 2
1 1

1
π
ω

π
ω a f a f , so the increase in the length of the

day is ∆T T T T x T
I v

I I Ri i i
P

P E i
= − ≈ =

+

L
NMM

O
QPPb g ω . Since ω

π
i

iT
=

2
, this may be written as ∆T

T I v
I I R

i P

P E
≈

+

2

2π b g .

To obtain a numeric answer, we compute

I m RP p= = × × = × ⋅2 9 6 2 255 5 10 70 6 37 10 1 56 10. . .e jb g e j kg  m  kg m2

and

I m RE E= = × × = × ⋅
2
5

2
5

5 98 10 6 37 10 9 71 102 24 6 2 37. . . kg  m  kg m2e je j .

Thus, ∆T ≈
× × ⋅

× + × ⋅ ×
= × −

8 64 10 1 56 10 2 5

2 1 56 10 9 71 10 6 37 10
7 50 10

4 2 25

25 37 6
11

. . .

. . .
. .

 s  kg m  m s

 kg m  m
 s

2

2

e j e jb g
e j e jπ
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*P11.44 (a) K U K Us A s B
+ = +b g b g

0
1
2

0

2 2 9 8 6 30 11 1

2+ = +

= = =

mgy mv

v gy

A B

B A . . . m s  m  m s2e j

(b) L mvr= = = × ⋅76 5 32 103 kg 11.1 m s  6.3 m  kg m s2.  toward you along the axis of the

channel.

(c) The wheels on his skateboard prevent any tangential force from acting on him. Then no
torque about the axis of the channel acts on him and his angular momentum is constant. His
legs convert chemical into mechanical energy. They do work to increase his kinetic energy.
The normal force acts forward on his body on its rising trajectory, to increase his linear
momentum.

(d) L mvr= v =
× ⋅

=
5 32 10

76
12 0

3.
.

 kg m s
 kg 5.85 m

 m s
2

(e) K U W K Ug B g C
+ + = +e j e j

1
2

76 0
1
2

76 76

5 44 4 69 335 1 08

2 2 kg 11.1 m s  kg 12.0 m s  kg 9.8 m s  0.45 m

 kJ  kJ  J  kJ

2b g b g+ + = +

= − + =

W

W . . .

(f) K U K Ug C g D
+ = +e j e j

1
2

76 0
1
2

76 76

5 34

2 2 kg 12.0 m s  kg  kg 9.8 m s  5.85 m

 m s

2b g + = +

=

v

v

D

D .

(g) Let point E be the apex of his flight:

K U K Ug D g E
+ = +e j e j

1
2

76 0 0 76

1 46

2 kg 5.34 m s  kg 9.8 m s

 m

2b g e jb g
b g

+ = + −

− =

y y

y y

E D

E D .

(h) For the motion between takeoff and touchdown

y y v t a t

t t

t

f i yi y= + +

− = + −

=
− ± +

−
=

1
2

2 34 0 5 34 4 9

5 34 5 34 4 4 9 2 34

9 8
1 43

2

2

2

. . .

. . . .

.
.

 m  m s  m s

 s

2

a fa f

(i) This solution is more accurate. In chapter 8 we modeled the normal force as constant while
the skateboarder stands up. Really it increases as the process goes on.
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P11.45 (a)
I m r

m
d

m
d

m
d

m
d

i i=

= FHG
I
KJ + FHG

I
KJ + FHG

I
KJ

=

∑ 2

2 2 2

2

4
3 3

2
3

7
3

m m m

1 2 3
d d

P

2
3
d

FIG. P11.45

(b) Think of the whole weight, 3mg, acting at the center of gravity.

ττττ = × = FHG
I
KJ − × − =r F i j k

d
mg mgd

3
3e j e j b g

(c) α
τ

= = =
I

mgd
md

g
d

3
7

3
72  counterclockwise

(d) a r
g
d

d g
= = FHG

I
KJ
F
HG
I
KJ =α

3
7

2
3

2
7

 up

The angular acceleration is not constant, but energy is.

K U E K U

m g
d

I

i f

f

+ + = +

+ F
HG
I
KJ + = +

a f a f
a f

∆

0 3
3

0
1
2

02ω

(e) maximum kinetic energy = mgd

(f) ω f
g
d

=
6
7

(g) L I
md g

d
g

mdf f= = = FHG
I
KJω

7
3

6
7

14
3

2 1 2
3 2

(h) v r
g
d

d gd
f f= = =ω

6
7 3

2
21
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P11.46 (a) The radial coordinate of the sliding mass is r t ta f b g= 0 012 5.  m s . Its angular momentum is

L mr t= =2 2 21 20 2 50 2 0 012 5ω π. . . kg  rev s  rad rev  m sb gb gb gb g
or L t= × ⋅−2 95 10 3 2.  kg m s2 3e j

The drive motor must supply torque equal to the rate of change of this angular momentum:

τ = = × ⋅ =−dL
dt

t t2 95 10 2 0 005 893. . kg m s  W2 3e ja f b g

(b) τ f = = ⋅0 005 89 440 2 59. . W  s  N mb ga f

(c) P = = =τω π0 005 89 5 0 092 5. . W  rad s  W sb g b g b gt t

(d) Pf = =0 092 5 440 40 7. . W s  s  Wb ga f

(e) T m
v
r

mr t t= = = =
2

2 2
1 20 0 012 5 5 3 70ω π. . . kg  m s  rad s  N sb gb g b g b g

(f) W dt tdt= = = =z zP
0

440

0

440
20 092 5

1
2

0 092 5 440 8 96
 s  s

2 W s  J s  s  kJ. . .b g e ja f

(g) The power the brake injects into the sliding block through the string is

P

P

b
b

b b

Tv t t
dW

dt

W dt tdt

= ⋅ = °= − = − =

= = −

= − = −

z z
F v cos . . .

.

. .

180 3 70 0 012 5 0 046 3

0 046 3

1
2

0 046 3 440 4 48

0

440

0

440

2

 N s  m s  W s

 W s

 W s  s  kJ

 s  s

b g b g b g

b g

b ga f

(h) W W Wb∑ = + = − =8 96 4 48 4 48. . . kJ  kJ  kJ

Just half of the work required to increase the angular momentum goes into rotational kinetic
energy. The other half becomes internal energy in the brake.

P11.47 Using conservation of angular momentum, we have

L Laphelion perihelion=  or mr mra a p p
2 2e j e jω ω= .

Thus, mr
v
r

mr
v

ra
a

a
p

p

p

2 2e j e j=  giving

r v r va a p p=  or v
r

r
va

p

a
p= = =

0 590
54 0 0 910

.
. .

 AU
35.0 AU

 km s  km sb g .
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P11.48 (a) τ∑ = − =MgR MgR 0

(b) τ∑ =
dL
dt

, and since τ∑ = 0 , L =  constant.

Since the total angular momentum of the system is zero, the
monkey and bananas move upward with the same speed

at any instant, and he will not reach the bananas  (until they

get tangled in the pulley). Also, since the tension in the rope is
the same on both sides, Newton’s second law applied to the
monkey and bananas give the same acceleration upwards.

FIG. P11.48

P11.49 (a) τ = × = °=r F r F sin180 0

Angular momentum is conserved.

L L

mrv mr v

v
r v

r

f i

i i

i i

=

=

=

(b) T
mv

r
m r v

r
i i= =

2 2

3

b g

(c) The work is done by the centripetal force in the
negative direction.

FIG. P11.49

Method 1:

W F d Tdr
m r v

r
dr

m r v

r

m r v

r r
mv

r
r

i i

r

r
i i

r

r

i i

i
i

i

i
i

= ⋅ = − ′ = −
′

′ =
′

= −
F
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I
KJ = −

F
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KJ

z z z b ga f
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a f
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2

2
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2

2

2
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2
1 1 1

2
1

Method 2:

W K mv mv mv
r
ri i
i= = − = −
F
HG
I
KJ∆

1
2

1
2

1
2

12 2 2
2

2

(d) Using the data given, we find

v = 4 50.  m s T = 10 1.  N W = 0 450.  J
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P11.50 (a) Angular momentum is conserved:

mv d
Md m

d

mv
Md md
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i
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= + FHG
I
KJ
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+

ω

ω

(b) The original energy is 
1
2

2mvi .

The final energy is

vi

(a)

O

(b)

d

m

O

ω

FIG. P11.50
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+a f a f .

The loss of energy is

1
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3
2 3 2 3
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m v d

Md md
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Md mdi

i i−
+

=
+a f a f

and the fractional loss of energy is
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M
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2 3 3+
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P11.51 (a) L m v r m v r mv
d

i i i i i= + = F
HG
I
KJ1 1 1 2 2 2 2

2

L

L

i

i

=

= ⋅

2 75 0 5 00 5 00

3 750

. . . kg  m s  m

 kg m s2
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(b) K m v m vi i i= +
1
2

1
21 1

2
2 2

2

Ki =
F
HG
I
KJ =2

1
2

75 0 5 00 1 88
2

. . . kg  m s  kJb gb g FIG. P11.51

(c) Angular momentum is conserved: L Lf i= = ⋅3 750 kg m s2

(d) v
L
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f

f
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= =
⋅

=
2

3 750
2 75 0 2 50

10 0
d i b ga f

 kg m s
 kg  m

 m s
2

. .
.

(e) K f =
F
HG
I
KJ =2

1
2

75 0 10 0 7 50
2

. . . kg  m s  kJb gb g

(f) W K Kf i= − = 5 62.  kJ
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P11.52 (a) L Mv
d

Mvdi =
F
HG
I
KJ

L
NM

O
QP =2

2

(b) K Mv Mv= FHG
I
KJ =2

1
2

2 2

(c) L L Mvdf i= =

(d) v
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f
d

= = =
2 2

2
4c h

(e) K Mv M v Mvf f= FHG
I
KJ = =2

1
2

2 42 2 2a f

(f) W K K Mvf i= − = 3 2

FIG. P11.52

*P11.53 The moment of inertia of the rest of the Earth is

I MR= = × × = × ⋅
2
5

2
5

5 98 10 10 9 71 102 24 6 2 37. . kg 6.37  m  kg m2e j .

For the original ice disks,

I Mr= = × × = × ⋅
1
2

1
2

2 30 10 4 14 102 19 2 30. . kg 6 10  m  kg m5 2e j .

For the final thin shell of water,

I Mr= = × × = × ⋅
2
3

2
3

2 30 10 6 22 102 19 2 32. . kg 6.37 10  m  kg m6 2e j .

Conservation of angular momentum for the spinning planet is expressed by I Ii i f fω ω=

4 14 10 9 71 10
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. . . .
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+
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=
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P11.54 For the cube to tip over, the center of mass (CM) must rise so that it
is over the axis of rotation AB. To do this, the CM must be raised a

distance of a 2 1−e j .

∴ − =Mga I2 1
1
2

2e j cubeω

From conservation of angular momentum,

4
3

8
3

2

1
2

8
3 4

2 1

3 2 1

2

2 2 2

2 2

a
mv

Ma

mv
Ma

Ma m v
M a

Mga

v
M
m
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=
F
HG
I
KJ

=

F
HG
I
KJ = −

= −

ω

ω

e j

e j

A

DCM

A

B

C

D

4a/3

FIG. P11.54

P11.55 Angular momentum is conserved during the
inelastic collision.
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3
8

The condition, that the box falls off the table, is that
the center of mass must reach its maximum height
as the box rotates, h amax = 2 . Using conservation
of energy:
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FIG. P11.55

P11.56 (a) The net torque is zero at the point of contact, so the angular momentum before and after the
collision must be equal.
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P11.57 (a) ∆
∆

t
p
f

Mv
Mg

MR
Mg

R
g
i= = = =

µ
ω

µ
ω
µ3

(b) W K I MR i= = =∆
1
2

1
18

2 2 2ω ω (See Problem 11.56)

µ ωMgx MR i=
1

18
2 2 x

R
g
i=

2 2

18
ω
µ

ANSWERS TO EVEN PROBLEMS

P11.2 (a) 740 cm2 ; (b) 59.5 cm P11.32 8 54.  rad s

P11.34 (a) 7 20 10 3. × ⋅−  kg m s2 ; (b) 9 47.  rad sP11.4 (a) 168°; (b) 11.9° principal value;
(c) Only the first is unambiguous.

P11.36 12 3.  m s2

P11.6 No; see the solution
P11.38 (a) 2 35.  rad s; (b) 0 498.  rad s ; (c) 5.58°

P11.8 (a) − ⋅7 00.  N ma fk ; (b) 11 0.  N m⋅a fk
P11.40 131 s

P11.10 see the solution
P11.42 (a) 2 19 106. ×  m s ; (b) 2 18 10 18. × −  J;

(c) 4 13 1016. ×  rad sP11.12 − ⋅22 0.  kg m s2e jk
P11.44 (a) 11 1.  m s; (b) 5 32 103. × ⋅ kg m s2 ;P11.14 see the solution

(c) see the solution; (d) 12 0.  m s;
(e) 1 08.  kJ ; (f) 5 34.  m s; (g) 1.46 m;P11.16 (a) 3 14.  N m⋅ ; (b) 0 400.  kg m⋅b gv ;
(h) 1.43 s; (i) see the solution(c) 7 85.  m s2

P11.46 (a) 0 005 89.  Wb gt ; (b) 2 59.  N m⋅ ;
P11.18 (a) + × ⋅9 03 109.  kg m s2e j  south; (b) No; (c) 0 092 5.  W sb gt ; (d) 40 7.  W;

(c) 0 (e) 3 70.  N sb gt ; (f) 8 96.  kJ; (g) −4 48.  kJ
(h) +4 48.  kJP11.20 103 N m⋅

P11.48 (a) 0; (b) 0; no
P11.22 4 50.  kg m s2⋅e j  up

P11.50 (a) 
6

3
mv

Md md
i

+
; (b) 

M
M m+ 3P11.24 1 20.  kg m s2⋅  perpendicularly into the

clock face
P11.52 (a) Mvd ; (b) Mv2 ; (c) Mvd ; (d) 2v;

(e) 4 2Mv ; (f) 3 2MvP11.26 8 63.  m s2

P11.54
M
m

ga3 2 1−e j
P11.28 (a) 

I
I I

i1

1 2

ω
+

; (b) 
K

K
I

I I
f

i
=

+
1

1 2

P11.56 (a) 
ω i

3
; (b) 

∆E
E

= −
2
3P11.30 (a) 1 91.  rad s ; (b) 2.53 J; 6.44 J
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Static Equilibrium and Elasticity

ANSWERS TO QUESTIONS

Q12.1 When you bend over, your center of gravity shifts forward.
Once your CG is no longer over your feet, gravity contributes
to a nonzero net torque on your body and you begin to rotate.

Q12.2 Yes, it can. Consider an object on a spring oscillating back and
forth. In the center of the motion both the sum of the torques
and the sum of the forces acting on the object are (separately)
zero. Again, a meteoroid flying freely through interstellar space
feels essentially no forces and keeps moving with constant
velocity.

Q12.3 No—one condition for equilibrium is that F∑ = 0 . For this to

be true with only a single force acting on an object, that force
would have to be of zero magnitude; so really no forces act on
that object.

Q12.4 (a) Consider pushing up with one hand on one side of a steering wheel and pulling down
equally hard with the other hand on the other side. A pair of equal-magnitude oppositely-
directed forces applied at different points is called a couple.

(b) An object in free fall has a non-zero net force acting on it, but a net torque of zero about its
center of mass.

Q12.5 No. If the torques are all in the same direction, then the net torque cannot be zero.

Q12.6 (a) Yes, provided that its angular momentum is constant.

(b) Yes, provided that its linear momentum is constant.

Q12.7 A V-shaped boomerang, a barstool, an empty coffee cup, a satellite dish, and a curving plastic slide
at the edge of a swimming pool each have a center of mass that is not within the bulk of the object.

Q12.8 Suspend the plywood from the nail, and hang the plumb bob from the nail. Trace on the plywood
along the string of the plumb bob. Now suspend the plywood with the nail through a different point
on the plywood, not along the first line you drew. Again hang the plumb bob from the nail and trace
along the string. The center of gravity is located halfway through the thickness of the plywood
under the intersection of the two lines you drew.

349
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Q12.9 The center of gravity must be directly over the point where the chair leg contacts the floor. That
way, no torque is applied to the chair by gravity. The equilibrium is unstable.

Q12.10 She can be correct. If the dog stands on a relatively thick scale, the dog’s legs on the ground might
support more of its weight than its legs on the scale. She can check for and if necessary correct for
this error by having the dog stand like a bridge with two legs on the scale and two on a book of
equal thickness—a physics textbook is a good choice.

Q12.11 If their base areas are equal, the tall crate will topple first. Its center of gravity is higher off the incline
than that of the shorter crate. The taller crate can be rotated only through a smaller angle before its
center of gravity is no longer over its base.

Q12.12 The free body diagram demonstrates that it is necessary to have
friction on the ground to counterbalance the normal force of the
wall and to keep the base of the ladder from sliding. Interestingly
enough, if there is friction on the floor and on the wall, it is not
possible to determine whether the ladder will slip from the
equilibrium conditions alone.

FIG. Q12.12

Q12.13 When you lift a load with your back, your back muscles must supply the torque not only to rotate
your upper body to a vertical position, but also to lift the load. Since the distance from the
pivot—your hips—to the load—essentially your shoulders—is great, the force required to supply
the lifting torque is very large. When lifting from your knees, your back muscles need only keep
your back straight. The force required to do that is much smaller than when lifting with your back,
as the torque required is small, because the moment arm of the load is small—the line of action of
the load passes close to your hips. When you lift from your knees, your much stronger leg and hip
muscles do the work.

Q12.14 Shear deformation.

Q12.15 The vertical columns experience simple compression due to gravity acting upon their mass. The
horizontal slabs, however, suffer significant shear stress due to gravity. The bottom surface of a
sagging lintel is under tension. Stone is much stronger under compression than under tension, so
horizontal slabs are more likely to fail.
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SOLUTIONS TO PROBLEMS

Section 12.1 The Conditions for Equilibrium

P12.1 To hold the bat in equilibrium, the player must exert both a
force and a torque on the bat to make

F Fx y∑ ∑= = 0  and τ∑ = 0

F Fy∑ = ⇒ − =0 10 0 0.  N , or the player must exert a net

upward force of F = 10 0.  N

To satisfy the second condition of equilibrium, the player must
exert an applied torque τ a  to make

τ τ∑ = − =a 0 600 10 0 0. . m  Na fa f . Thus, the required torque is

τ a = + ⋅6 00.  N m  or 6 00.  N m counterclockwise⋅

F

O

10.0 N

0.600 m0.600 m

FIG. P12.1

P12.2 Use distances, angles, and forces as shown. The conditions of
equilibrium are:

F F R F

F F R

F F F

y y y g

x x x

y g x

∑
∑

∑

= ⇒ + − =

= ⇒ − =

= ⇒ − FHG
I
KJ − =

0 0

0 0

0
2

0τ θ θ θcos cos sin

l

θ

Fy

Fx

Ry

Rx

O

Fg

FIG. P12.2

P12.3 Take torques about P.

τ p bn d m g d m gd m gx∑ = − +LNM
O
QP + +LNM

O
QP + − =0 1 22 2

0

We want to find x for which n0 0= .

x
m g m g d m g

m g
m m d m

m
b b=

+ +
=

+ +1 1 2

2

1 1 2

2

b g b g x

CG

nO nP

O

m1
m2P

d

m  g1 m  g2
m  gb

2

FIG. P12.3
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Section 12.2 More on the Center of Gravity

P12.4 The hole we can count as negative mass

x
m x m x

m mCG =
−
−

1 1 2 2

1 2

Call σ the mass of each unit of pizza area.

x
R

R

x
R

R R

R

R

CG

CG

=
− −

−

= =

σπ σπ

σπ σπ

2
2

2
2

2
2

2

8
3
4

0

6

c h c h
c h

P12.5 The coordinates of the center of gravity of piece 1 are

x1 2 00= .  cm  and y1 9 00= .  cm .

The coordinates for piece 2 are

x2 8 00= .  cm  and y2 2 00= .  cm .

The area of each piece is

A1 72 0= .  cm2  and A2 32 0= .  cm2 .

And the mass of each piece is proportional to the area. Thus,

4.00 cm

18.0 cm

12.0 cm

4.00 cm

1

2

FIG. P12.5

x
m x
m

i i

i
CG

2 2

2 2

 cm  cm  cm  cm

 cm  cm
 cm= =

+

+
=∑

∑
72 0 2 00 32 0 8 00

72 0 32 0
3 85

. . . .

. .
.

e ja f e ja f

and

y
m y
m

i i

i
CG

2 2

2

 cm  cm  cm  cm

 cm
 cm= =

+
=∑

∑
72 0 9 00 32 0 2 00

104
6 85

. . . .
.

e ja f e ja f
.
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P12.6 Let σ represent the mass-per-face area. A
vertical strip at position x, with width dx and

height 
x − 3 00

9

2.a f
 has mass

dm
x dx

=
−σ 3 00

9

2.a f
.

The total mass is

M dm
x dx

M x x dx

M
x x

x

x

= =
−

= FHG
I
KJ − +

= FHG
I
KJ − +
L
NM

O
QP

=

z z
z

=

σ

σ

σ
σ

3
9

9
6 9

9 3
6

2
9

2

0

3 00

2

0

3 00

3 2

0

3 00

a f

e j

.

.

.

x

dx
0

3.00 m

x

y

1.00 m

y = (x — 3.00)2/9

FIG. P12.6

The x-coordinate of the center of gravity is

x
xdm

M
x x dx x x x dx

x x x
CG

 m
9.00

 m= = − = − + = − +
L
NM

O
QP

= =z z z1
9

3
9

6 9
1
9 4

6
3

9
2

6 75
0 7502

0

3 00
3 2

0

3 00 4 3 2

0

3 00

σ
σ

σ
σ

a f e j
. . .

.
.

P12.7 Let the fourth mass (8.00 kg) be placed at (x, y), then

x
m x

m

x

CG

 m

= =
+

+

= − = −

0
3 00 4 00

12 0
12 0
8 00

1 50

4

4

. .
.

.
.

.

a fa f a f

Similarly, y
y

CG = =
+

+
0

3 00 4 00 8 00

12 0 8 00

. . .

. .

a fa f b g

y = −1 50.  m

P12.8 In a uniform gravitational field, the center of mass and center of gravity of an object coincide.  Thus,
the center of gravity of the triangle is located at x = 6 67.  m , y = 2 33.  m  (see the Example on the
center of mass of a triangle in Chapter 9).
The coordinates of the center of gravity of the three-object system are then:

x
m x
m
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y
m y
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y
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i
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∑
∑

∑
∑

6 00 5 50 3 00 6 67 5 00 3 50

6 00 3 00 5 00

35 5
2 54

6 00 7 00 3 00 2 33 5 00 3 50

14 0

66 5
4 75

. . . . . .

. . .

.
.

. . . . . .

.

.
.

b ga f b ga f b ga f
a f

b ga f b ga f b ga f
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Section 12.3 Examples of Rigid Objects in Static Equilibrium

P12.9 τ∑ = = −0 3mg r Tra f
2 45 0 0

45 0
2

1 500 45 0

2
530 9 80

3
530

3
177

T Mg

T
Mg g

m
T
g

g
g

− °=

=
°
=

°

=

= = =

sin .

sin . sin .

.

 kg

 N

 kg

b g

a fa f
m

3r

θ = 45°

1 500 kg

FIG. P12.9

*P12.10 (a) For rotational equilibrium of the lowest rod about its point of support, τ∑ = 0 .

+ −12 0 1.  g  3 cm 4 cmg m g m1 9 00= .  g

(b) For the middle rod,
+ − + =m2 2 12 0 9 0 5 0 cm  g  g  cm. .b g m2 52 5= .  g

(c) For the top rod,
52 5 12 0 9 0 4 6 03. . . g  g  g  cm  cm+ + − =b g m m3 49 0= .  g

P12.11 Fg →  standard weight

′ →Fg  weight of goods sold

F F

F F

F F

F

g g

g g

g g

g

0 240 0 260

13
12

100
13
12

1 100 8 33%

. .

.

a f a f= ′

= ′ FHG
I
KJ

− ′

′

F
HG

I
KJ = −FHG

I
KJ × =

24.0 cm 26.0 cm

Fg F′g

FIG. P12.11

*P12.12 (a) Consider the torques about an axis perpendicular
to the page and through the left end of the
horizontal beam.

τ∑ = + ° − =T d dsin .30 0 196 0a f a f N ,

giving T = 392 N .

H

d
196 N

V

T
30.0°

FIG. P12.12

(b) From Fx =∑ 0 , H T− °=cos .30 0 0 , or H = °=392 30 0 339 N  N to the righta fcos . .

From Fy∑ = 0 , V T+ °− =sin .30 0 200 0 N , or V = − °=196 392 30 0 0 N  Na fsin . .



Chapter 12     355

P12.13 (a) F f nx w∑ = − = 0

F ny g∑ = − − =800 500 0 N  N

Taking torques about an axis at the foot of the ladder,

800 4 00 30 0 500 7 50 30 0

15 0 30 0 0

 N  m  N  m

 cm

a fa f a fa f
a f

. sin . . sin .

. cos .

°+ °

− °=nw

Solving the torque equation,

nw =
+ °

=
4 00 800 7 50 500 30 0

15 0
268

. . tan .

.

 m  N  m  N

 m
 N

a fa f a fa f
.

Next substitute this value into the Fx  equation to find

ng

f

nw

500 N

800 N

A

FIG. P12.13

f nw= = 268 N  in the positive x direction.

Solving the equation Fy∑ = 0 ,

ng = 1 300 N  in the positive y direction.

(b) In this case, the torque equation τ A =∑ 0  gives:

9 00 800 30 0 7 50 500 30 0 15 0 60 0 0. sin . . sin . . sin . m  N  m  N  ma fa f a fa f a fb g°+ °− °=nw

or nw = 421 N .

Since f nw= = 421 N  and f f ng= =max µ , we find

µ = = =
f
ng

max .
421

0 324
 N

1 300 N
.

P12.14 (a) F f nx w∑ = − = 0 (1)

F n m g m gy g∑ = − − =1 2 0 (2)

τ θ θ θA wm g
L

m gx n L∑ = − F
HG
I
KJ − + =1 22

0cos cos sin

From the torque equation,

n m g
x
L

m gw = + FHG
I
KJ

L
NM

O
QP

1
2 1 2 cotθ

Then, from equation (1): f n m g
x
L

m gw= = + FHG
I
KJ

L
NM

O
QP

1
2 1 2 cotθ

and from equation (2): n m m gg = +1 2b g
(b) If the ladder is on the verge of slipping when x d= ,

then µ
θ

= =
+

+
=

f

n m m
x d

g

m m d
L

1 2
2

1 2

e jcot
.

f

A ng

m  g1

m  g2

nw

θ

FIG. P12.14
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P12.15 (a) Taking moments about P,

R R
R

sin . cos . . .
. .

30 0 0 30 0 5 00 150 30 0 0
1 039 2 1 04

° + ° − =
= =
a f a fa f a fa f cm  N  cm

 N  kN

The force exerted by the hammer on the nail is equal in magnitude
and opposite in direction:

1 04.  kN at 60  upward and to the right.°

(b) f R= °− =sin .30 0 150 370 N  N
n R= °=

= +

cos .30 0 900

370 900

 N

 N  NsurfaceF i ja f a f

FIG. P12.15

P12.16 See the free-body diagram at the right.
When the plank is on the verge of tipping about point P, the
normal force n1  goes to zero. Then, summing torques about
point P gives

τ p mgd Mgx∑ = − + = 0 or x
m
M

d= FHG
I
KJ .

From the dimensions given on the free-body diagram, observe
that d = 1 50.  m  Thus, when the plank is about to tip,

x =
F
HG

I
KJ =

30 0
1 50 0 643

.
. .

 kg
70.0 kg

 m  ma f .

6.00 m

Mg

mg
n2

n1

x3.00 m

P

d
1.50 m

FIG. P12.16

P12.17 Torque about the front wheel is zero.

0 1 20 3 00 2= −. . m  ma fb g a fb gmg Fr

Thus, the force at each rear wheel is

F mgr = =0 200 2 94. .  kN .

The force at each front wheel is then

F
mg F

f
r=

−
=

2
2

4 41.  kN .

FIG. P12.17
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P12.18 F F Fx b t∑ = − + =5 50 0.  N (1)

F n mgy∑ = − = 0

Summing torques about point O,

τO  m  m  m∑ = − =Ft 1 50 5 50 10 0 0. . .a f a fa f

which yields Ft = 36 7.  N to the left

Then, from Equation (1),

Fb = − =36 7 5 50 31 2. . . N  N  N to the right

10.0 m

5.50 N

1.50 m

mg

Ft

Fb O

n

FIG. P12.18

P12.19 (a) Te sin . .42 0 20 0°=  N Te = 29 9.  N

(b) T Te mcos .42 0°= Tm = 22 2.  N

P12.20 Relative to the hinge end of the bridge, the cable is attached
horizontally out a distance x = °=5 00 20 0 4 70. cos . . m  ma f  and

vertically down a distance y = °=5 00 20 0 1 71. sin . . m  ma f . The
cable then makes the following angle with the horizontal:

θ =
+L

NM
O
QP = °−tan

. .
.1 12 0 1 71

71 1
a f m

4.70 m
.

(a) Take torques about the hinge end of the bridge:

R R

T T
x y0 0 19 6 20 0

71 1 1 71 71 1 4 70

9 80 20 0 0

a f a f a f
a f a f
a f

+ − °

− ° + °

− °=

. cos .

cos . . sin . .

. cos .

 kN 4.00 m

 m  m

 kN 7.00 m

which yields T = 35 5.  kN

(b) F R Tx x∑ = ⇒ − °=0 71 1 0cos .

or Rx = °=35 5 71 1 11 5. cos . . kN  kN righta f b g

(c) F R Ty y∑ = ⇒ − + °− =0 19 6 71 1 9 80 0. sin . . kN  kN

Thus,

Ry = − °= −

=

29 4 35 5 71 1 4 19

4 19

. . sin . .

.

 kN  kN  kN

 kN down

a f

x

y

T

20.0°Rx

Ry

9.80 kN

19.6 kN

4.00 m

5.00 m

7.00 m

FIG. P12.20
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*P12.21 (a) We model the horse as a particle. The drawbridge will fall
out from under the horse.

α
θ

θ= =

=
°
=

mg
m

g1
2 0

1
3

2 0
3
2

3 9 80 20 0

2 8 00
1 73

cos
cos

. cos .

.
.

 m s

 m
 rad s

2
2e j

a f

(b)
1
2

2I mghω =

∴ ⋅ = ⋅ −
1
2

1
3

1
2

12 2
0m mgω θsinb g

Ry
Rx

mg

θ0

FIG. P12.21(a)

∴ = − = − ° =ω θ
3

1
3 9 80

8 00
1 20 1 560

g
sin

.

.
sin .b g e j a f m s

 m
 rad s

2

(c) The linear acceleration of the bridge is:

a = = =
1
2

1
2

8 0 1 73 6 907α . . . m  rad s  m s2 2a fe j

The force at the hinge + the force of gravity produce the
acceleration a = 6 907.  m s2  at right angles to the bridge.

R max x= = °= −2 000 6 907 250 4 72 kg  m s  kN2b ge j. cos .

R mg may y− =

Ry
Rx

mg

θ0

a

FIG. P12.21(c)

∴ = + = + ° =R m g ay ye j b g e j2 000 9 80 6 907 250 6 62 kg  m s  m s  kN2 2. . sin .

Thus: R i j= − +4 72 6 62. .e j kN .

(d) Rx = 0

a

R mg ma

R

y

y

= FHG
I
KJ = =

− =

∴ = + =

ω 2 21
2

1 56 4 0 9 67

2 000 9 8 9 67 38 9

. . .

. . .

 rad s  m  m s

 kg  m s  m s  kN

2

2 2

b g a f

b ge j

Thus: Ry = 38 9. j kN

Ry
Rx

mg

a

FIG. P12.21(d)
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P12.22 Call the required force F, with
components F Fx = °cos .15 0  and
F Fy = − °sin .15 0 , transmitted to the

center of the wheel by the handles.

Just as the wheel leaves the ground, the
ground exerts no force on it.

Fx∑ = 0 : F nxcos .15 0°− (1)

Fy∑ = 0 : − °− + =F nysin .15 0 400 0 N (2)

RRR

nx
ny

Fx

Fy 400 N

b

8.00 cm

distances forces

aa

b

a

FIG. P12.22

Take torques about its contact point with the brick. The needed distances are seen to be:

b R

a R b

= − = − =

= − =

8 00 20 0 8 00 12 0

16 02 2

. . . .

.

 cm  cm  cm

 cm

a f

(a) τ∑ = 0 : − + + =F b F a ax y 400 0 Na f , or

F − °+ ° + =12 0 15 0 16 0 15 0 400 16 0 0. cos . . sin . . cm  cm  N  cma f a f a fa f

so F =
⋅

=
6 400

859
 N cm

7.45 cm
 N

(b) Then, using Equations (1) and (2),

nx = °=859 15 0 830 N  Na fcos .  and

ny = + °=400 859 15 0 622 N  N  Na fsin .

n n n

n

n

x y

y

x

= + =

=
F
HG
I
KJ = = °− −

2 2

1 1

1 04

0 749 36 9

.

tan tan . .

 kN

 to the left and upwardθ a f

*P12.23 When x x= min , the rod is on the verge of slipping, so

f f n ns s= = =b gmax
.µ 0 50 .

From Fx∑ = 0 , n T− °=cos37 0 , or n T= 0 799. .

Thus, f T T= =0 50 0 799 0 399. . .a f

 
37° 

x f 

n 

F g F g 

2.0 m 

2.0 m 

FIG. P12.23

From Fy∑ = 0 , f T Fg+ °− =sin37 2 0 , or 0 399 0 602 2 0. .T T Fg− − = , giving T Fg= 2 00. .

Using τ∑ = 0  for an axis perpendicular to the page and through the left end of the beam gives

− ⋅ − + ° =F x F Fg g gmin . sin .2 0 2 37 4 0 0 m  ma f e j a f , which reduces to xmin .= 2 82 m .
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P12.24 x
L

=
3
4

If the CM of the two bricks does not lie over the edge, then
the bricks balance.

If the lower brick is placed 
L
4

 over the edge, then the

second brick may be placed so that its end protrudes 
3
4
L

over the edge.

L

x

FIG. P12.24

P12.25 To find U, measure distances and forces from point A. Then, balancing torques,

0 750 29 4 2 25. . .a f a fU = U = 88 2.  N

To find D, measure distances and forces from point B. Then, balancing torques,

0 750 1 50 29 4. . .a f a fa fD = D = 58 8.  N

Also, notice that U D Fg= + , so Fy =∑ 0 .

*P12.26 Consider forces and torques on the beam.

Fx∑ = 0 : R Tcos cosθ − °=53 0

Fy∑ = 0 : R Tsin sinθ + °− =53 800 0 N

τ∑ = 0 : T xsin53 8 600 200 4 0° − − =a f a f a f m  N  N  m

(a) Then T
x

x=
+ ⋅

°
= +

600 800
53

93 9 125
 N  N m
8 m

 N m  N
sin

.b g . As x increases from 2 m, this expression

grows larger.

(b) From substituting back,

R x

R x

cos . cos

sin . sin

θ

θ

= + °

= − + °

93 9 125 53

800 93 9 125 53 N

Dividing, tan
sin
cos

tan
cos

θ
θ
θ

= = − °+
°

R
R x

53
800

93 9 125 53
 N

. +a f

tan tanθ = °
+

−F
HG

I
KJ53

32
3 4

1
x

As x increases the fraction decreases and θ decreases .

continued on next page
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(c) To find R we can work out R R R2 2 2 2 2cos sinθ θ+ = . From the expressions above for
R cosθ  and R sinθ ,

R T T T

R T T

R x x

R x x

2 2 2 2 2 2

2 2

2 2

2 1 2

53 53 1 600 53 800

1 600 53 640 000

93 9 125 1 278 93 9 125 640 000

8 819 96 482 495 678

= °+ °− °+

= − °+

= + − + +

= − +

cos sin sin

sin

. .

 N  Na f

a f a f
e j

At x = 0  this gives R = 704 N . At x = 2 m , R = 581 N . At x = 8 m , R = 537 N . Over the
range of possible values for x, the negative term −96 482x  dominates the positive term

8 819 2x , and R decreases  as x increases.

Section 12.4 Elastic Properties of Solids

P12.27
F
A

Y
L

Li
=

∆

∆L
FL
AY

i= =
× ×

=
−

200 9 80 4 00

0 200 10 8 00 10
4 90

4 10

a fa fa f
e je j

. .

. .
.  mm

P12.28 (a) stress = =
F
A

F
rπ 2

F
d

F

F

= F
HG
I
KJ

= ×
×F

HG
I
KJ

=

stress

 N m
2.50 10  m

2

 kN

2
-2

a f

e j

π

π

2

1 50 10

73 6

2

8
2

.

.

(b) stress = =Y
Y L
Li

straina f ∆

∆L
L

Y
i= =

×

×
=

stress  N m  m

 N m
 mm

2

2

a f e ja f1 50 10 0 250

1 50 10
2 50

8

10

. .

.
.

*P12.29 The definition of Y =
stress
strain

 means that Y is the slope of the graph:

Y =
×

= ×
300 10

0 003
1 0 10

6
11 N m

 N m
2

2

.
. .
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P12.30 Count the wires. If they are wrapped together so that all support nearly equal stress, the number
should be

20 0
100

.  kN
0.200 kN

= .

Since cross-sectional area is proportional to diameter squared, the diameter of the cable will be

1 100 1 mm  cma f ~ .

P12.31 From the defining equation for the shear modulus, we find ∆x  as

∆x
hf
SA

= =
×

× ×
= ×

−

−
−

5 00 10 20 0

3 0 10 14 0 10
2 38 10

3

6 4
5

. .

. .
.

 m  N

 N m  m
 m

2 2

e ja f
e je j

or ∆x = × −2 38 10 2.  mm .

P12.32 The force acting on the hammer changes its momentum according to

mv F t mvi f+ =∆a f  so F
m v v

t
f i

=
−

∆
.

Hence, F =
− −

= ×
30 0 10 0 20 0

0 110
8 18 103. . .

.
.

 kg  m s  m s

 s
 N .

By Newton’s third law, this is also the magnitude of the average force exerted on the spike by the
hammer during the blow. Thus, the stress in the spike is:

stress = =
×

= ×
F
A

8 18 10
1 97 10

3

4

7
2

.
.

 N
 N m

0.023 0 m

2

π b g

and the strain is: strain = =
×

×
= × −stress  N m

 N m

2

2Y
1 97 10
20 0 10

9 85 10
7

10
5.

.
. .

P12.33 (a) F A=

= × ×

×

−

a fa f
e j e j

stress

 m  N m

= 3.14 10  N

2

4

π 5 00 10 4 00 103 2 8. .

(b) The area over which the shear occurs is equal to
the circumference of the hole times its thickness.
Thus,

A r t= = × ×

= ×

− −

−

2 2 5 00 10 5 00 10

1 57 10

3 3

4

π πa f e je j. .

.

 m  m

 m2

F

3.0 ft

t

AAA

FIG. P12.33

So, F A= = × × = ×−a f e je jStress  m  N m  N2 21 57 10 4 00 10 6 28 104 8 4. . . .
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P12.34 Let the 3.00 kg mass be mass #1, with the 5.00 kg mass, mass # 2. Applying Newton’s second law to
each mass gives:

m a T m g1 1= −       (1)            and            m a m g T2 2= −       (2)

where T is the tension in the wire.

Solving equation (1) for the acceleration gives: a
T

m
g= −

1
,

and substituting this into equation (2) yields: 
m
m

T m g m g T2

1
2 2− = − .

Solving for the tension T gives

T
m m g

m m
=

+
= =

2 2 3 00 5 00 9 80

8 00
36 81 2

2 1

. . .

.
.

 kg  kg  m s

 kg
 N

2b gb ge j
.

From the definition of Young’s modulus, Y
FL

A L
i=

∆a f , the elongation of the wire is:

∆L
TL
YA

i= =
× ×

=
−

36 8 2 00

2 00 10 2 00 10
0 029 3

11 3 2

. .

. .
.

 N  m

 N m  m
 mm

2

a fa f
e j e jπ

.

P12.35 Consider recompressing the ice, which has a volume 1 09 0. V .

∆
∆

P B
V

Vi
= −
F
HG
I
KJ =

− × −
= ×

2 00 10 0 090

1 09
1 65 10

9
8

. .

.
.

 N m
 N m

2
2e ja f

*P12.36 B
P PV

VV
V

i

i

= − = −
∆ ∆

∆∆

(a) ∆
∆

V
PV
B

i= − = −
×

×
= −

1 13 10 1

0 21 10
0 053 8

8

10

.

.
.

 N m  m

 N m
 m

2 3

2
3e j

(b) The quantity of water with mass 1 03 103. ×  kg  occupies volume at the bottom

1 0 053 8 0 946 m  m  m3 3 3− =. . . So its density is 
1 03 10

1 09 10
3

3.
.

×
= ×

 kg
0.946 m

 kg m3
3 .

(c) With only a 5% volume change in this extreme case, liquid water is indeed nearly
incompressible.

*P12.37 Part of the load force extends the cable and part compresses the column by the same distance ∆ :

F
Y A Y A

F

A A

A

s s

s

Y A Y AA A

A

s s

s

= +

=
+

=
+

= ×

× − ×

−

∆ ∆

∆
8 500

8 60 10

0 162 4 0 161 4

4 3 25
20 10 0 012 7

4 5 75

4

2 2 10 2

 N

 m

7 1010π π. .

.
.

.

.

e j
a f

b g
a f
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Additional Problems

*P12.38 (a) The beam is perpendicular to the wall, since 3 4 52 2 2+ = . Then sinθ =
4 m
5 m

; θ = °53 1. .

(b) τ hinge∑ = 0 : + − =T sinθ 3 250 0 m  N 10 ma f a f
T =

°
= ×

2 500
53 1

1 04 103 Nm
3 m

 N
sin .

.

(c) x
T
k

= =
×

×
=

1 04 10
0 126

3.
.

 N
8.25 10  N m

 m3

The cable is 5.126 m long. From the law of cosines,

4 5 126 3 2 3 5 126

3 5 126 4
2 3 5 126

51 2

2 2 2

1
2 2 2

= + −

=
+ −

= °−

. . cos

cos
.

.
.

a fa f

a fa f

θ

θ

α
θ

4 m 5.126 m

3 m

FIG. P12.38

(d) From the law of sines, the angle the hinge makes with the wall satisfies 
sin
.

sin .α
5 126

51 2
4 m  m

=
°

sin .

sin . .

.

α

τ

=

=

+ °− =

= ×

∑
0 998 58

0

3 51 2 250 0 998 0

1 07 103

hinge

 m  N 10 m  58

 N

T

T

a f a fa f

(e) x =
×

×
=

1 07 10
0 129

3.
.

 N
8.25 10  N m

 m3

θ =
+ −

= °−cos
.

.
.1

2 2 23 5 129 4
2 3 5 129

51 1a fa f
(f) Now the answers are self-consistent:

sin .
sin .

.

sin . .

.

.

.

α

θ

=
°
=

°− =

= ×
=

= °

5 129
51 1

4
0 998

3 51 1 250 0 998 0

1 07 10
0 129 5

51 1

3

 m
 m

 51

 m  N 10 m  51

 N
 m

T

T
x

a f a fa f

P12.39 Let nA  and nB  be the normal forces at the points of
support.

Choosing the origin at point A with Fy∑ = 0  and τ∑ = 0,

we find:

n n g gA B+ − × − × =8 00 10 3 00 10 04 4. .e j e j  and

− × − × + =3 00 10 15 0 8 00 10 25 0 50 0 04 4. . . . .e jb g e jb g a fg g nB

A B

15.0 m15.0 m
50.0 m50.0 m

FIG. P12.39

The equations combine to give nA = ×5 98 105.  N  and bB = ×4 80 105.  N .
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P12.40 When the concrete has cured and the pre-stressing tension has been released, the rod presses in on
the concrete and with equal force, T2 , the concrete produces tension in the rod.

(a) In the concrete: stress = × = ⋅ =
F
HG
I
KJ8 00 106.  N m strain2 Y Y

L
Li

a f ∆

Thus, ∆L
L

Y
i= =

×

×

stress  N m  m

 N m

2

2

a f e ja f8 00 10 1 50

30 0 10

6

9

. .

.

or ∆L = × =−4 00 10 0 4004. . m  mm .

(b) In the concrete: stress = = ×
T
Ac

2 68 00 10.  N m2 , so

T2
6 48 00 10 50 0 10 40 0= × × =−. . . N m  m  kN2 2e je j

(c) For the rod: 
T
A

L
L

Y
R i

2 =
F
HG
I
KJ

∆
steel  so ∆L

T L
A Y

i

R
= 2

steel

∆L =
×

× ×
= × =

−
−

4 00 10 1 50

1 50 10 20 0 10
2 00 10 2 00

4

4 10
3

. .

. .
. .

 N  m

 m  N m
 m  mm

2 2

e ja f
e je j

(d) The rod in the finished concrete is 2.00 mm longer than its unstretched length. To remove
stress from the concrete, one must stretch the rod 0.400 mm farther, by a total of 2 40.  mm .

(e) For the stretched rod around which the concrete is poured:

T
A

L
L

Y T
L
L

A Y

T

R i i
R

1
1

1

3
4 102 40 10

1 50 10 20 0 10 48 0

=
F
HG

I
KJ =

F
HG

I
KJ

=
×F

HG
I
KJ × × =

−
−

∆ ∆total
steel

total
steel

2 2

or

 m
1.50 m

 m  N m  kN
.

. . .e je j

*P12.41 With  as large as possible, n1  and n2  will both be large. The
equality sign in f ns2 2≤ µ  will be true, but the less-than sign
in f ns1 1< µ . Take torques about the lower end of the pole.

n F fg2 2
1
2

0cos cos sinθ θ θ+ FHG
I
KJ − =

Setting f n2 20 576= . , the torque equation becomes

n Fg2 1 0 576
1
2

0− + =. tanθa f

f1

f2

n1
n2 Fg

θ

θ

d

FIG. P12.41

Since n2 0> , it is necessary that

1 0 576 0
1

0 576
1 736

60 1
7 80

60 1
9 00

− <

∴ > =

∴ > °

∴ = <
°
=

. tan

tan
.

.

.

sin
.

sin .
.

θ

θ

θ

θ
d  ft

 ft
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P12.42 Call the normal forces A and B. They make angles α and β
with the vertical.

F A B

F A Mg B
x

y

∑
∑

= − =

= − + =

0 0

0 0

: sin sin

: cos cos

α β

α β

Substitute B
A

=
sin

sin
α
β

A A Mg

A Mg

A Mg

B Mg

cos cos
sin
sin

cos sin sin cos sin

sin
sin

sin
sin

α β
α
β

α β α β β

β
α β

α
α β

+ =

+ =

=
+

=
+

b g

b g

b g

Mg

A B

α β

Mg

A sin B sin

A cos
B cos

α

α α

α

FIG. P12.42

P12.43 (a) See the diagram.

(b) If x = 1 00.  m, then

τO

T

∑ = − −

−

+ ° =

700 1 00 200 3 00

80 0 6 00

60 0 6 00 0

 N  m  N  m

 N  m

 m

a fa f a fa f
a fa f
a fa f

. .

. .

sin . .

Solving for the tension gives: T = 343 N .

Ry

x

3.00 m

O

3.00 m

Rx 60.0°

T

700 N
200 N 80.0 N

FIG. P12.43

From Fx∑ = 0 , R Tx = °=cos .60 0 171 N .

From Fy∑ = 0 , R Ty = − °=980 60 0 683 N  Nsin . .

(c) If T = 900 N :

τO x∑ = − − − + ° =700 200 3 00 m 80 0 6 00 900 60 0 6 00 0 N  N  N  m  N  ma f a fa f a fa f a f a f. . . sin . . .

Solving for x gives: x = 5 13.  m .
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P12.44 (a) Sum the torques about top hinge:

τ∑ = 0:

C D

A

B

0 0 200 30 0 0

200 30 0 3 00

392 1 50 1 80

0 0

a f a f a f
a f

a f a f
a f

+ + °

+ °

− +

+ =

 N

 N  m

 N  m  m

cos .

sin . .

. .

Giving A = 160 N rightb g .

1.50 m 1.50 m

392 N
1.80 m

C

D

T cos 30.0°

T sin 30.0°

A

B

FIG. P12.44
(b) Fx∑ = 0 :

− − °+ =
= − = −

C A
C

200 30 0 0
160 173 13 2

 N
 N  N  N

cos .
.

In our diagram, this means 13 2.  N to the right .

(c) Fy∑ = 0 : + + − + °=B D 392 200 30 0 0 N  N sin .

B D+ = − =392 100 292 N  N  N upb g

(d) Given C = 0: Take torques about bottom hinge to obtain

A B D T T0 0 0 1 80 0 392 1 50 30 0 3 00 30 0 1 80 0a f a f a f a f a f a f a f+ + + − + ° + ° =. . sin . . cos . . m  N  m  m  m

so T =
⋅

+
=

588
1 56

192
 N m

1.50 m  m
 N

.a f .

P12.45 Using F Fx y∑ ∑ ∑= = =τ 0, choosing the origin at the left end

of the beam, we have (neglecting the weight of the beam)

F R T

F R T F
x x

y y g

∑
∑

= − =

= + − =

cos ,

sin ,

θ

θ

0

0

and τ θ∑ = − + + + =F L d T L dg a f a fsin 2 0.

Solving these equations, we find:

(a) T
F L d

L d
g=

+

+

a f
a fsinθ 2

(b) R
F L d

L dx
g=

+

+

a fcotθ

2
R

F L

L dy
g=
+2

FIG. P12.45
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P12.46 τ point 0∑ = 0  gives

T Tcos . sin . sin . cos .

cos . cos .

25 0
3
4

65 0 25 0
3
4

65 0

2 000 65 0 1 200
2

65 0

° °F
HG

I
KJ + ° °F

HG
I
KJ

= ° + °F
HG

I
KJ

a f a f

b ga f b g N  N

From which, T = =1 465 1 46 N  kN.

From Fx∑ = 0 ,

H T= °= =cos . .25 0 1 328 1 33 N toward right  kNb g

From Fy∑ = 0 ,

V T= − °= =3 200 25 0 2 581 2 58 N  N upward  kNsin . .b g

 

H 

V 

65.0° 

1 200 N 

l 2 000 N 

3 
4 
l 

T sin . 25 0 ° 

T cos . 25 0 ° 

FIG. P12.46

P12.47 We interpret the problem to mean that the support at
point B is frictionless. Then the support exerts a force in
the x direction and

F

F F F

F g

By

x Bx Ax

Ay

=

= − =

− + =

∑
0

0

3 000 10 000 0b g

and τ∑ = − − + =3 000 2 00 10 000 6 00 1 00 0g g FBxb ga f b ga f a f. . . .

These equations combine to give

F F

F

Ax Bx

Ay

= = ×

= ×

6 47 10

1 27 10

5

5

.

.

 N

 N

FIG. P12.47

P12.48 n M m g= +a f H f=

H f m M g
mgL

Mgx HL

x
L

H
Mg

m
M

m M
M

m
M

s

A

s

s

max max

cos . cos . sin .

tan . tan .

tan . .

= = +

= = °+ °− °

=
°
− =

+ °
−

= °− =

∑

µ

τ

µ

µ

a f

a f
0

2
60 0 60 0 60 0

60 0
2

60 0
2

3
2

60 0
1
4

0 789
n

f

H

A

60.0°

mg

x

Mg

FIG. P12.48
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P12.49 From the free-body diagram, the angle T makes with the rod is

θ = °+ °= °60 0 20 0 80 0. . .

and the perpendicular component of T is T sin .80 0° .
Summing torques around the base of the rod,

τ∑ = 0: − °+ °=4 00 10 000 60 4 00 80 0. cos . sin m  N  ma fb g a fT

T =
°

°
= ×

10 000 60 0

80 0
5 08 103 N

 N
b gcos .

sin .
.

Fx∑ = 0 : F TH − °=cos .20 0 0

F TH = °= ×cos . .20 0 4 77 103  N

Fy∑ = 0 : F TV + °− =sin .20 0 10 000 0 N

and F TV = − °= ×10 000 20 0 8 26 103 N  Nb g sin . .

FV

T

60°

20°

FH

10 000 N

FIG. P12.49

P12.50 Choosing the origin at R,

(1) F R Tx∑ = + °− =sin . sin15 0 0θ

(2) F R Ty∑ = − °+ =700 15 0 0cos . cosθ

(3) τ θ∑ = − + =700 0 180 0 070 0 0cos . .a f b gT

Solve the equations for θ

from (3), T = 1 800 cosθ  from (1), R =
°

1 800
15 0

sin cos
sin .

θ θ

Then (2) gives 700
1 800 15 0

15 0
1 800 02−

°
°

+ =
sin cos cos .

sin .
cos

θ θ
θ

or cos . . sin cos2 0 388 9 3 732 0θ θ θ+ − =
Squaring, cos . cos .4 20 880 9 0 010 13 0θ θ− + =

Let u = cos2 θ  then using the quadratic equation,
u = 0 011 65.  or 0.869 3

Only the second root is physically possible,

∴ = = °

∴ = × = ×

−θ cos . .

. .

1

3 3

0 869 3 21 2

1 68 10 2 34 10T R N and  N

 

θ 

θ 

25.0 cm 

90° 
T 

n 

15.0° 

18.0 cm 

R 

FIG. P12.50

P12.51 Choosing torques about R, with τ∑ = 0

− + ° FHG
I
KJ − =

L
T

L
L

2
350 12 0

2
3

200 0 N  Na f a f a fsin . .

From which, T = 2 71.  kN .

Let Rx =  compression force along spine, and from Fx∑ = 0

R T Tx x= = °=cos . .12 0 2 65 kN .

FIG. P12.51
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P12.52 (a) Just three forces act on the rod: forces perpendicular to the
sides of the trough at A and B, and its weight. The lines of
action of A and B will intersect at a point above the rod.
They will have no torque about this point. The rod’s weight
will cause a torque about the point of intersection as in
Figure 12.52(a), and the rod will not be in equilibrium
unless the center of the rod lies vertically below the
intersection point, as in Figure 12.52(b). All three forces
must be concurrent. Then the line of action of the weight is
a diagonal of the rectangle formed by the trough and the
normal forces, and the rod’s center of gravity is vertically
above the bottom of the trough.

A

B

Fg

O

FIG. P12.52(a)

(b) In Figure (b), AO BOcos . cos .30 0 60 0°= °  and

L

L L

2 2 2 2 2
2

2

30 0
60 0

30 0
60 0

1 22

2

= + = +
°
°

F
HG

I
KJ

=
+

=
°
°

AO BO AO AO

AO

cos .
cos .

cos .
cos .

So cosθ = =
AO
L

1
2

 and θ = °60 0. .

A

B

Fg

O

θ
30.0° 60.0°

FIG. P12.52(b)

P12.53 (a) Locate the origin at the bottom left corner of the cabinet
and let x =  distance between the resultant normal force and
the front of the cabinet. Then we have

F nx∑ = °− =200 37 0 0cos . µ (1)

F ny = °+ − =∑ 200 37 0 400 0sin . (2)

τ∑ = − − + °n x0 600 400 0 300 200 37 0 0 600. . sin . .a f a f a f
− ° =200 37 0 0 400 0cos . .a f (3)

From (2), n = − °=400 200 37 0 280sin .  N

From (3), x =
− + −72 2 120 280 0 600 64 0

280
. . .a f

x = 20 1.  cm  to the left of the front edge

From (1), µ k =
°
=

200 37 0
280

0 571
cos .

.

(b) In this case, locate the origin x = 0  at the bottom right
corner of the cabinet. Since the cabinet is about to tip, we
can use τ∑ = 0 to find h:

FIG. P12.53

τ∑ = − ° =400 0 300 300 37 0 0. cos .a f a fh h =
°
=

120
300 37 0

0 501
cos .

.  m
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P12.54 (a), (b) Use the first diagram and sum the torques about the lower
front corner of the cabinet.

τ∑ = ⇒ − + =0 1 00 400 0 300 0F . . m  N  ma f a fa f
yielding F = =

400 0 300
1 00

120
 N  m

 m
 N

a fa f.
.

F fx∑ = ⇒ − + =0 120 0 N , or f = 120 N
F ny∑ = ⇒ − + =0 400 0 N , so n = 400 N

Thus, µ s
f
n

= = =
120

0 300
 N

400 N
. .

(c) Apply ′F  at the upper rear corner and directed so
θ φ+ = °90 0.  to obtain the largest possible lever arm.

θ = F
HG

I
KJ = °−tan

.
.1 1 00

59 0
 m

0.600 m
Thus, φ = °− °= °90 0 59 0 31 0. . . .
Sum the torques about the lower front corner of the
cabinet:

− ′ + + =F 1 00 0 600 400 0 300 02 2. . . m  m  N  ma f a f a fa f
so ′ =

⋅
=F

120
103

 N m
1.17 m

 N .

Therefore, the minimum force required to tip the cabinet is

400 N

n

f

F

0.300 m

1.00 m

n
f

1.00 m

0.600 m

400 N

θ

θ

φF’

FIG. P12.54

103 N applied at 31.0  above the horizontal at the upper left corner° .

P12.55 (a) We can use F Fx y∑ ∑= = 0  and τ∑ = 0 with pivot point at

the contact on the floor.

Then F T nx s∑ = − =µ 0 ,

F n Mg mgy = − − =∑ 0, and

τ θ θ θ∑ = + FHG
I
KJ − =Mg L mg

L
T Lcos cos sina f a f

2
0

Solving the above equations gives

M
m s

s
=

−
−

F
HG

I
KJ2

2µ θ θ
θ µ θ
sin cos

cos sin

n

f

P

θ

mg

T

Mg
L/2

L/2

FIG. P12.55

This answer is the maximum vaue for M if µ θs < cot . If µ θs ≥ cot , the mass M can increase
without limit. It has no maximum value, and part (b) cannot be answered as stated either. In
the case µ θs < cot , we proceed.

(b) At the floor, we have the normal force in the y-direction and frictional force in the x-
direction. The reaction force then is

R n n M m gs s= + = + +2 2 21µ µb g a f .

At point P, the force of the beam on the rope is

F T Mg g M M ms= + = + +2 2 2 2 2b g a fµ .
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P12.56 (a) The height of pin B is

10 0 30 0 5 00. sin . . m  ma f °= .

The length of bar BC is then

BC =
°
=

5 00
45 0

7 07
.

sin .
.

 m
 m.

Consider the entire truss:

1000 N

B

A C

10.0 m
nA nC

30.0° 45.0°

FIG. P12.56(a)

F n n

n

y A C

A C

∑
∑

= − + =

= − °+ °+ ° =

1 000 0

1 000 10 0 30 0 10 0 30 0 7 07 45 0 0

 N

 Nτ b g . cos . . cos . . cos .

Which gives nC = 634 N .

Then, n nA C= − =1 000 366 N  N .

(b) Suppose that a bar exerts on a pin a force not along the
length of the bar. Then, the pin exerts on the bar a
force with a component perpendicular to the bar. The
only other force on the bar is the pin force on the other
end. For F∑ = 0 , this force must also have a
component perpendicular to the bar. Then, the total
torque on the bar is not zero. The contradiction proves
that the bar can only exert forces along its length.

FIG. P12.56(b)

(c) Joint A:

Fy =∑ 0 : − °+ =CAB sin .30 0 366 0 N ,

so CAB = 732 N

Fx∑ = 0 : − °+ =C TAB ACcos .30 0 0

TAC = °=732 30 0 634 N  Na fcos .

Joint B:

Fx∑ = 0 : 732 30 0 45 0 0 Na fcos . cos .°− °=CBC

CBC =
°

°
=

732 30 0
45 0

897
 N

 N
a fcos .

cos .

CAB

A
TAC

nA = 366 N 

CBC

B

CAB = 732 N 

1000 N

30.0° 45.0°

FIG. P12.56(c)
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P12.57 From geometry, observe that

cosθ =
1
4

and θ = °75 5.

For the left half of the ladder, we have

F T Rx x∑ = − = 0 (1)

F R ny y A∑ = + − =686 0 N (2)

τ top  N∑ = ° + °686 1 00 75 5 2 00 75 5. cos . . sin .a f a fT

− ° =nA 4 00 75 5 0. cos .a f (3)

For the right half of the ladder we have

F R Tx x∑ = − = 0

F n Ry B y∑ = − = 0 (4)

τ top∑ = ° − ° =n TB 4 00 75 5 2 00 75 5 0. cos . . sin .a f a f (5)

FIG. P12.57

Solving equations 1 through 5 simultaneously yields:

(a) T = 133 N

(b) nA = 429 N and nB = 257 N

(c) Rx = 133 N and Ry = 257 N

The force exerted by the left half of the ladder on the right half is to the right and
downward.

P12.58 (a) x
m x
m

y

i i

i
CG

CG

 kg  m  kg  kg  kg  m

1 375 kg
 m

 kg  m  kg  m  kg  m  kg

 kg

 m

=

=
+ + +

=

=
+ + +

=

∑
∑
1 000 10 0 125 0 125 0 125 20 0

9 09

1 000 10 0 125 20 0 125 20 0 125 0

1 375

10 9

b g b g b g b g

b g b g b g b g

. .
.

. . .

.

(b) By symmetry, xCG  m= 10 0.

There is no change in yCG  m= 10 9.

(c) vCG
 m  m
8.00 s

 m s=
−F

HG
I
KJ =

10 0 9 09
0 114

. .
.

P12.59 Considering the torques about the point at the bottom of the bracket yields:

0 050 0 80 0 0 060 0 0. . . m  N  mb ga f b g− =F  so F = 66 7.  N .
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P12.60 When it is on the verge of slipping, the cylinder is in equilibrium.
Fx∑ = 0 : f n ns1 2 1= = µ and f ns2 2= µ
Fy∑ = 0 : P n f Fg+ + =1 2

τ∑ = 0: P f f= +1 2

As P grows so do f1  and f2

Therefore, since µ s =
1
2

, f
n

1
1

2
= and f

n n
2

2 1

2 4
= =

FIG. P12.60

then P n
n

Fg+ + =1
1

4
(1) and P

n n
n= + =1 1

12 4
3
4

(2)

So P n Fg+ =
5
4 1 becomes P P Fg+ FHG

I
KJ =

5
4

4
3

or
8
3

P Fg=

Therefore, P Fg=
3
8

P12.61 (a) F k L= ∆a f, Young’s modulus is Y
FL

A L

F
A
L

L

i

i

= =
∆ ∆a f

Thus, Y
kL
A

i=  and k
YA
Li

=

(b) W Fdx kx dx
YA
L

xdx YA
L
L

L L

i

L

i
= − = − − = =z z z

0 0 0

2

2

∆ ∆ ∆ ∆a f a f

P12.62 (a) Take both balls together. Their weight is 3.33 N
and their CG is at their contact point.

Fx∑ = 0 : + − =P P3 1 0

Fy∑ = 0 : + − =P2 3 33 0.  N P2 3 33= .  N

τ A∑ = 0: − + − + °P R P R R R3 2 3 33 45 0. cos . Na f
+ + ° =P R R1 2 45 0 0cos .a f

Substituting,

− + − + °

+ + ° =

°= °

= =

P R R R

P R

P

P P

1

1

1

1 3

3 33 3 33 1 45 0

1 2 45 0 0

3 33 45 0 2 45 0

1 67 1 67

. . cos .

cos .

. cos . cos .

. .

 N  N

 N

 N  so  N

a f a f a f
a f

a f

Fg

P1

P2

P3

3.33 N

FIG. P12.62(a)

(b) Take the upper ball. The lines of action of its weight, of P1 ,
and of the normal force n exerted by the lower ball all go
through its center, so for rotational equilibrium there can be
no frictional force.

Fx∑ = 0 : n Pcos .45 0 01°− =

n =
°
=

1 67
2 36

.
cos

.
 N

45.0
 N

Fy∑ = 0 : n sin . .45 0 1 67 0°− = N  gives the same result

1.67 N

n cos 45.0°

n sin 45.0°

P1

FIG. P12.62(b)
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P12.63 Fy∑ = 0 : + − + =380 320 0 N  NFg

Fg = 700 N

Take torques about her feet:

τ∑ = 0: − + + =380 2 00 700 320 0 0 N  m  N  N.a f a f a fx

x = 1 09.  m
FIG. P12.63

P12.64 The tension in this cable is not uniform, so this becomes a fairly difficult problem.

dL
L

F
YA

=

At any point in the cable, F is the weight of cable below that point. Thus, F gy= µ  where µ is the mass
per unit length of the cable.

Then, ∆y
dL
L

dy
g

YA
ydy

gL
YA

L L
i

i i

= FHG
I
KJ = =z z

0 0

21
2

µ µ

∆y =
× ×

= =
−

1
2

2 40 9 80 500

2 00 10 3 00 10
0 049 0 4 90

2

11 4

. .

. .
. .

a fa fa f
e je j

 m  cm

P12.65 (a) F m
v
t

= FHG
I
KJ =

−
=

∆
∆

1 00
10 0 1 00

0 002
4 500.

. .
.

 kg
 m s

 s
 Nb g a f

(b) stress = = = ×
F
A

4 500
0 100

4 50 106 N
0.010 m  m

 N m2

a fa f.
.

(c) Yes . This is more than sufficient to break the board.
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P12.66 The CG lies above the center of the bottom. Consider a disk of water at height y above the bottom.
Its radius is

25 0 35 0 25 0
30 0

25 0
3

. . .
.

. cm  cm
 cm

 cm+ − F
HG

I
KJ = +a f y y

Its area is π 25 0
3

2

.  cm+F
HG

I
KJ

y
. Its volume is π 25 0

3

2

.  cm+F
HG

I
KJ

y
dy  and its mass is πρ 25 0

3

2

.  cm+F
HG

I
KJ

y
dy . The

whole mass of the water is

M dm
y y

dy

M y
y y

M

M

y

= = + +
F
HG

I
KJ

= + +
L
NMM

O
QPP

= + +
L
N
MM

O
Q
PP

= =

=

−

z z
0

30 0 2

0

30 0

2 3

0

30 0

2 3

3

625
50 0

3 9

625
50 0

6 27

625 30 0
50 0 30 0

6
30 0

27

10 27 250 85 6

. .

.

.

.

.
. . .

.

 cm  cm

3 3 kg cm  cm  kg

πρ

πρ

πρ

π

a f a f a f

e je j

The height of the center of gravity is

y
ydm
M

y
y y dy

M

M
y y y

M

M

y

y
CG

 cm

 cm

 cm

3
4

CG

 kg cm
 cm

 kg cm
85.6 kg

 cm

=

= + +
F
HG

I
KJ

= + +
L
NMM

O
QPP

= + +
L
N
MM

O
Q
PP

=

=
× ⋅

=

=

−

z
z

0

30 0

2 3

0

30 0

2 3 4

0

30 0

2 3 4

3

3

625
50 0

3 9

625
2

50 0
9 36

625 30 0
2

50 0 30 0
9

30 0
36

10
453 750

1 43 10
16 7

.

.

.

.

.

. . . .

.
.

πρ

πρ

πρ

π

a f a f a f

e j



Chapter 12     377

P12.67 Let θ represent the angle of the wire with the vertical. The radius of
the circle of motion is r = 0 850. sin ma f θ .
For the mass:

F ma m
v
r

mr

T m

r r∑ = = =

=

2
2

20 850

ω

θ θ ωsin . sin ma f
Further, 

T
A

Y= ⋅ straina f or T AY= ⋅ straina f
Thus, AY m⋅ =strain  ma f a f0 850 2. ω , giving

θ
θ

T

r
mg

FIG. P12.67

ω
π

=
⋅

=
× × ×− −

AY
m

strain
 m

 m  N m

 kg  m

2a f
a f

e j e je j
b ga f0 850

3 90 10 7 00 10 1 00 10

1 20 0 850

4 2 10 3

.

. . .

. .

or ω = 5 73.  rad s .

P12.68 For the bridge as a whole:

τ A A En n∑ = − + =0 13 3 100 200 0a f a fa f a f.  kN  m  m

so nE = =
13 3 100

200
6 66

.
.

 kN  m
 m

 kN
a fa f

F n ny A E∑ = − + =13 3 0.  kN  gives

n nA E= − =13 3 6 66. . kN  kN

At Pin A:
F Fy AB∑ = − °+ =sin . .40 0 6 66 0 kN  or

FAB =
°
=

6 66
40 0

10 4
.

sin .
.

 kN
 kN compressionb g

F Fx AC∑ = − °=10 4 40 0 0. cos . kNa f  so

FAC = °=10 4 40 0 7 94. cos . . kN  kN tensiona f a f
At Pin B:

F Fy BC∑ = °− °=10 4 40 0 40 0 0. sin . sin . kNa f
Thus, FBC = 10 4.  kN tensiona f

F F F F

F

x AB BC BD

BD

= °+ °− =

= °=

∑ cos . cos .

. cos . .

40 0 40 0 0

2 10 4 40 0 15 9 kN  kN compressiona f b g
By symmetry: F FDE AB= = 10 4.  kN compressionb g

F FDC BC= = 10 4.  kN tensiona f
and F FEC AC= = 7 94.  kN tensiona f
We can check by analyzing Pin C:

Fx∑ = + − =7 94 7 94 0. . kN  kN  or 0 0=  
Fy∑ = °− =2 10 4 40 0 13 3 0. sin . . kN  kNa f

which yields 0 0= .

nA nE

A

B

C
E

D

100 m 100 m
13.3 kN

FAB

FAC

nA = 6.66 kN 

40.0°

FBD

FBC

FAB = 10.4 kN 

40.0°40.0°

10.4 kN 

40.0°40.0°

10.4 kN 

7.94 kN 7.94 kN 

13.3 kN 

FIG. P12.68
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P12.69 Member AC is not in pure compression or tension. It
also has shear forces present. It exerts a downward
force SAC  and a tension force FAC  on Pin A and on
Pin C. Still, this member is in equilibrium.

F F F F Fx AC AC AC AC∑ = − ′ = ⇒ = ′0

25.0 m

A

25.0 m

14.7 kN

C

FAC FAC

SAC SAC

τ A =∑ 0: − + ′ =14 7 25 0 50 0 0. . . kN  m  ma fa f a fSAC

or ′ =SAC 7 35.  kN
F S Sy AC AC∑ = − + = ⇒ =14 7 7 35 0 7 35. . . kN  kN  kN

Then S SAC AC= ′  and we have proved that the loading by the car
is equivalent to one-half the weight of the car pulling down on
each of pins A and C, so far as the rest of the truss is concerned.

nA nE

A

B

C
E

D

25.0 m 14.7 kN
75.0 m

For the Bridge as a whole: τ A∑ = 0:

− + =

=

= − + =

=

∑

14 7 25 0 100 0

3 67

14 7 3 67 0

11 0

. .

.

. .

.

 kN  m  m

 kN

 kN  kN

 kN

a fa f a fn

n

F n

n

E

E

y A

A

At Pin A:
F F

F

F F

F

y AB

AB

x AC

AC

∑

∑

= − + − °=

=

= − °=

=

7 35 11 0 30 0 0

7 35

7 35 30 0 0

6 37

. . sin .

.

. cos .

.

 kN  kN

 kN compression

 kN

 kN tension

b g
a f
a f

At Pin B:
F F

F

F F

F

y BC

BC

x BD

BD

∑

∑

= − °− °=

=

= °+ °− =

=

7 35 30 0 60 0 0

4 24

7 35 30 0 4 24 60 0 0

8 49

. sin . sin .

.

. cos . . cos .

.

 kN

 kN tension

 kN  kN

 kN compression

a f
a f

a f a f
b g

At Pin C:
F F

F

F F

F

y CD

CD

x CE

CE

∑

∑

= °+ °− =

=

= − − °+ °+ =

=

4 24 60 0 60 0 7 35 0

4 24

6 37 4 24 60 0 4 24 60 0 0

6 37

. sin . sin . .

.

. . cos . . cos .

.

 kN  kN

 kN tension

 kN  kN  kN

 kN tension

a f
a f
a f a f
a f

At Pin E:
F F

F

y DE

DE

∑ = − °+ =

=

sin . .

.

30 0 3 67 0

7 35

 kN

 kN compressionb g
or F Fx DE∑ = − − °=6 37 30 0 0. cos . kN
which gives FDE = 7 35.  kN as before.

FAB

FAC

nA = 11.0 kN 

30.0°

7.35 kN 

FBD

FBC7.35 kN 

60.0°30.0°

4.24 kN 

60.0°60.0°

6.37 kN 

7.35 kN 

FCD

FCE

FDE

6.37 kN 

30.0°

3.67 kN 

FIG. P12.69
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P12.70 (1) ph I= ω

(2) p Mv= CM

If the ball rolls without slipping, R vω = CM

So, h
I
p

I
Mv

I
MR

R= = = =
ω ω

CM

2
5

ω
p

h vCM

FIG. P12.70

P12.71 (a) If the acceleration is a, we have P max =  and
P n Fy g+ − = 0 . Taking the origin at the center of

gravity, the torque equation gives

P L d P h ndy x− + − =a f 0 .

Solving these equations, we find

P
F

L
d

ah
gy

g
= −
F
HG
I
KJ .

hh
P

CGCGCG

dd
HL

Fyn Fgn

FIG. P12.71

(b) If Py = 0 , then d
ah
g

= = =
2 00 1 50

9 80
0 306

. .

.
.

 m s  m

 m s
 m

2

2

e ja f
.

(c) Using the given data, Px = −306 N  and Py = 553 N .

Thus, P i j= − +306 553e j N .

*P12.72 When the cyclist is on the point of tipping over forward,
the normal force on the rear wheel is zero. Parallel to the
plane we have f mg ma1 − =sinθ . Perpendicular to the
plane, n mg1 0− =cosθ . Torque about the center of mass:

mg f n0 1 05 0 65 01 1a f a f a f− + =. . m  m .

Combining by substitution,

mg

n1
f1

FIG. P12.72

ma f mg
n

mg mg mg

a g

= − = − = −

= ° − °F
HG

I
KJ =

1
1 0 65
1 05

0 65

20
0 65
1 05

20 2 35

sin
.

.
sin cos

.
sin

cos
.
.

sin .

θ θ θ θ
 m

 m
 m

1.05 m

 m s2

*P12.73 When the car is on the point of rolling over, the normal
force on its inside wheels is zero.

F may y∑ = : n mg− = 0

F max x∑ = : f
mv

R
=

2

Take torque about the center of mass: fh n
d

− =
2

0 .

Then by substitution 
mv

R
h

mgdmax
2

2
0− = v

gdR
hmax = 2

mg

h

mgf

d

FIG. P12.73

A wider wheelbase (larger d) and a lower center of mass (smaller h) will reduce the risk of rollover.
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ANSWERS TO EVEN PROBLEMS

P12.2 F R Fy y g+ − = 0 ; F Rx x− = 0 ; P12.40 (a) 0.400 mm; (b) 40.0 kN; (c) 2.00 mm;
(d) 2.40 mm; (e) 48.0 kN

F F Fy g xcos cos sinθ θ θ− FHG
I
KJ − =

2
0

P12.42 at A: Mg
sin

sin
β

α β+b g ; at B: Mg
sin

sin
α

α β+b gP12.4 see the solution

P12.44 (a) 160 N to the right;P12.6 0.750 m
(b) 13.2 N to the right; (c) 292 N up;

P12.8 2 54 4 75. . m,   ma f (d) 192 N

P12.46 1 46.  kN; 1 33 2 58. .i j+e j kNP12.10 (a) 9.00 g; (b) 52.5 g; (c) 49.0 g

P12.12 (a) 392 N; (b) 339 0i j+e j N P12.48 0.789

P12.14 (a) f
m g m gx

L
= +L
NM

O
QP

1 2

2
cotθ ;

n m m gg = +1 2b g ; (b) µ
θ

=
+

+

m m d
L

m m

1 2
2

1 2

e jcot

P12.50 T = 1 68.  kN; R = 2 34.  kN; θ = °21 2.

P12.52 (a) see the solution; (b) 60.0°

P12.54 (a) 120 N; (b) 0.300; (c) 103 N at 31.0° above
the horizontal to the right

P12.16 see the solution; 0.643 m
P12.56 (a), (b) see the solution;

P12.18 36 7.  N to the left ; 31 2.  N to the right (c) CAB = 732 N ; TAC = 634 N ; CBC = 897 N

P12.20 (a) 35.5 kN; (b) 11.5 kN to the right; P12.58 (a) 9 09 10 9. . m,   ma f ; (b) 10 0 10 9. . m,   ma f ;
(c) 4.19 kN down (c) 0 114.  m s  to the right

P12.22 (a) 859 N; (b) 104 kN at 36.9° above the
horizontal to the left P12.60

3
8

Fg

P12.24
3
4
L

P12.62 (a) P1 1 67= .  N ; P2 3 33= .  N ; P3 1 67= .  N;
(b) 2.36 N

P12.26 (a) see the solution; (b) θ decreases ;
P12.64 4.90 cm(c) R decreases

P12.66 16.7 cm above the center of the bottomP12.28 (a) 73.6 kN; (b) 2.50 mm

P12.30 ~1 cm P12.68 CAB = 10 4.  kN ; TAC = 7 94.  kN ;
TBC = 10 4.  kN ; CBD = 15 9.  kN ;
CDE = 10 4.  kN ; TDC = 10 4.  kN ;
TEC = 7 94.  kN

P12.32 9 85 10 5. × −

P12.34 0 029 3.  mm

P12.70
2
5

RP12.36 (a) −0 053 8.  m3 ; (b) 1 09 103. ×  kg m3 ;
(c) Yes, in most practical circumstances

P12.72 2 35.  m s2

P12.38 (a) 53.1°; (b) 1.04 kN; (c) 0.126 m, 51.2°;
(d) 1.07 kN; (e) 0.129 m, 51.1°; (f) 51.1°
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Universal Gravitation

ANSWERS TO QUESTIONS

Q13.1 Because g is the same for all objects near the Earth’s surface.
The larger mass needs a larger force to give it just the same
acceleration.

Q13.2 To a good first approximation, your bathroom scale reading is
unaffected because you, the Earth, and the scale are all in free
fall in the Sun’s gravitational field, in orbit around the Sun. To
a precise second approximation, you weigh slightly less at
noon and at midnight than you do at sunrise or sunset. The
Sun’s gravitational field is a little weaker at the center of the
Earth than at the surface subsolar point, and a little weaker still
on the far side of the planet. When the Sun is high in your sky,
its gravity pulls up on you a little more strongly than on the
Earth as a whole. At midnight the Sun pulls down on you a
little less strongly than it does on the Earth below you. So you
can have another doughnut with lunch, and your bedsprings
will still last a little longer.

Q13.3 Kepler’s second law states that the angular momentum of the Earth is constant as the Earth orbits
the sun. Since L m r= ω , as the orbital radius decreases from June to December, then the orbital speed
must increase accordingly.

Q13.4 Because both the Earth and Moon are moving in orbit about the Sun. As described by
F magravitational centripetal= , the gravitational force of the Sun merely keeps the Moon (and Earth) in a

nearly circular orbit of radius 150 million kilometers. Because of its velocity, the Moon is kept in its
orbit about the Earth by the gravitational force of the Earth. There is no imbalance of these forces, at
new moon or full moon.

Q13.5 Air resistance causes a decrease in the energy of the satellite-Earth system. This reduces the diameter
of the orbit, bringing the satellite closer to the surface of the Earth. A satellite in a smaller orbit,
however, must travel faster. Thus, the effect of air resistance is to speed up the satellite!

Q13.6 Kepler’s third law, which applies to all planets, tells us that the period of a planet is proportional to
r 3 2 . Because Saturn and Jupiter are farther from the Sun than Earth, they have longer periods. The
Sun’s gravitational field is much weaker at a distant Jovian planet. Thus, an outer planet experiences
much smaller centripetal acceleration than Earth and has a correspondingly longer period.
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382     Universal Gravitation

Q13.7 Ten terms are needed in the potential energy:

U U U U U U U U U U U= + + + + + + + + +12 13 14 15 23 24 25 34 35 45 .

With N particles, you need i
N N

i

N
− =

−

=
∑ 1

21

2

a f  terms.

Q13.8 No, the escape speed does not depend on the mass of the rocket. If a rocket is launched at escape
speed, then the total energy of the rocket-Earth system will be zero. When the separation distance

becomes infinite U = 0a f  the rocket will stop K = 0a f. In the expression 
1
2

02mv
GM m

r
E− = , the mass

m of the rocket divides out.

Q13.9 It takes 100 times more energy for the 105  kg spacecraft to reach the moon than the 103  kg
spacecraft. Ideally, each spacecraft can reach the moon with zero velocity, so the only term that need
be analyzed is the change in gravitational potential energy. U is proportional to the mass of the
spacecraft.

Q13.10 The escape speed from the Earth is 11.2 km/s and that from the Moon is 2.3 km/s, smaller by a factor
of 5. The energy required—and fuel—would be proportional to v2 , or 25 times more fuel is required
to leave the Earth versus leaving the Moon.

Q13.11 The satellites used for TV broadcast are in geosynchronous orbits. The centers of their orbits are the
center of the Earth, and their orbital planes are the Earth’s equatorial plane extended. This is the
plane of the celestial equator. The communication satellites are so far away that they appear quite
close to the celestial equator, from any location on the Earth’s surface.

Q13.12 For a satellite in orbit, one focus of an elliptical orbit, or the center of a circular orbit, must be located
at the center of the Earth. If the satellite is over the northern hemisphere for half of its orbit, it must
be over the southern hemisphere for the other half. We could share with Easter Island a satellite that
would look straight down on Arizona each morning and vertically down on Easter Island each
evening.

Q13.13 The absolute value of the gravitational potential energy of the Earth-Moon system is twice the
kinetic energy of the moon relative to the Earth.

Q13.14 In a circular orbit each increment of displacement is perpendicular to the force applied. The dot
product of force and displacement is zero. The work done by the gravitational force on a planet in an
elliptical orbit speeds up the planet at closest approach, but negative work is done by gravity and
the planet slows as it sweeps out to its farthest distance from the Sun. Therefore, net work in one
complete orbit is zero.

Q13.15 Every point q on the sphere that does not lie
along the axis connecting the center of the
sphere and the particle will have companion
point q’ for which the components of the
gravitational force perpendicular to the axis
will cancel. Point q’ can be found by rotating
the sphere through 180° about the axis. The
forces will not necessarily cancel if the mass is
not uniformly distributed, unless the center of
mass of the non-uniform sphere still lies along
the axis.

 

Fpq 

Fpq

p 

q 

q’ (behind the sphere) 

FIG. Q13.15
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Q13.16 Speed is maximum at closest approach. Speed is minimum at farthest distance.

Q13.17 Set the universal description of the gravitational force, F
GM m

Rg
X

X

= 2 , equal to the local description,

F mag = gravitational , where MX  and RX  are the mass and radius of planet X, respectively, and m is the

mass of a “test particle.” Divide both sides by m.

Q13.18 The gravitational force of the Earth on an extra particle at its center must be zero, not infinite as one
interpretation of Equation 13.1 would suggest. All the bits of matter that make up the Earth will pull
in different outward directions on the extra particle.

Q13.19 Cavendish determined G. Then from g
GM
R

= 2 , one may determine the mass of the Earth.

Q13.20 The gravitational force is conservative. An encounter with a stationary mass cannot permanently
speed up a spacecraft. Jupiter is moving. A spacecraft flying across its orbit just behind the planet
will gain kinetic energy as the planet’s gravity does net positive work on it.

Q13.21 Method one: Take measurements from an old kinescope of Apollo astronauts on the moon. From the
motion of a freely falling object or from the period of a swinging pendulum you can find the
acceleration of gravity on the moon’s surface and calculate its mass. Method two: One could
determine the approximate mass of the moon using an object hanging from an extremely sensitive
balance, with knowledge of the position and distance of the moon and the radius of the Earth. First
weigh the object when the moon is directly overhead. Then weigh of the object when the moon is
just rising or setting. The slight difference between the measured weights reveals the cause of tides
in the Earth’s oceans, which is a difference in the strength of the moon’s gravity between different
points on the Earth. Method three: Much more precisely, from the motion of a spacecraft in orbit
around the moon, its mass can be determined from Kepler’s third law.

Q13.22 The spacecraft did not have enough fuel to stop dead in its high-speed course for the Moon.

SOLUTIONS TO PROBLEMS

Section 13.1 Newton’s Law of Universal Gravitation

P13.1 For two 70-kg persons, modeled as spheres,

F
Gm m

rg = =
× ⋅−

−1 2
2

11

2
7

6 67 10 70 70

2
10

.
~

 N m kg  kg  kg

 m
 N

2 2e jb gb g
a f .

P13.2 F m g
Gm m

r
= =1

1 2
2

g
Gm

r
= =

× ⋅ × ×
= ×

−
−2

2

11 4 3

2
7

6 67 10 4 00 10 10

100
2 67 10

. .
.

 N m kg  kg

 m
 m s

2 2
2e je j

a f
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P13.3 (a) At the midpoint between the two objects, the forces exerted by the 200-kg and 500-kg objects
are oppositely directed,

and from F
Gm m

rg =
1 2
2

we have F
G

∑ =
−

= × −50 0 500 200

0 200
2 50 102

5.

.
.

 kg  kg  kg

 m
 N

b gb g
a f  toward the 500-kg object.

(b) At a point between the two objects at a distance d from the 500-kg objects, the net force on
the 50.0-kg object will be zero when

G

d

G

d

50 0 200

0 400

50 0 500
2 2

.

.

. kg  kg

 m

 kg  kgb gb g
a f

b gb g
−

=

or d = 0 245.  m

P13.4 m m1 2 5 00+ = .  kg m m2 15 00= −.  kg

F G
m m

r

m m

m m

= ⇒ × = × ⋅
−

− =
×

× ⋅
=

− −

−

−

1 2
2

8 11 1 1
2

1 1
2

8

11

1 00 10 6 67 10
5 00

0 200

5 00
1 00 10 0 040 0

6 67 10
6 00

. .
.

.

.
. .

.
.

 N  N m kg
 kg

 m

 kg
 N  m

 N m kg
 kg

2 2

2

2 2
2

e j b g
a f

b g e je j

Thus, m m1
2

15 00 6 00 0− + =. . kg  kgb g
or m m1 13 00 2 00 0− − =. . kg  kgb gb g
giving m m1 23 00 2 00= =. . kg,  so  kg . The answer m1 2 00= .  kg  and m2 3 00= .  kg  is physically

equivalent.

P13.5 The force exerted on the 4.00-kg mass by the 2.00-kg mass is
directed upward and given by

F j j

j

24
4 2

24
2

11
2

11

6 67 10
4 00 2 00

3 00

5 93 10

= = × ⋅

= ×

−

−

G
m m

r
.

. .

.

.

 N m kg
 kg  kg

 m

N

2 2e j b gb g
a f

The force exerted on the 4.00-kg mass by the 6.00-kg mass is
directed to the left

F i i

i

64
4 6

64
2

11
2

11

6 67 10
4 00 6 00

4 00

10 0 10

= − = − × ⋅

= − ×

−

−

G
m m

r
.

. .

.

.

e j e j b gb g
a f N m kg
 kg  kg

 m

N

2 2 FIG. P13.5

Therefore, the resultant force on the 4.00-kg mass is F F F i j4 24 64
1110 0 5 93 10= + = − + × −. .e j  N .
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P13.6 (a) The Sun-Earth distance is 1 496 1011. ×  m  and the Earth-Moon distance is 3 84 108. ×  m , so the
distance from the Sun to the Moon during a solar eclipse is

1 496 10 3 84 10 1 492 1011 8 11. . .× − × = × m  m  m

The mass of the Sun, Earth, and Moon are MS = ×1 99 1030.  kg

ME = ×5 98 1024.  kg

and MM = ×7 36 1022.  kg

We have F
Gm m

rSM = =
× × ×

×
= ×

−
1 2
2

11 30 22

11 2
20

6 67 10 1 99 10 7 36 10

1 492 10
4 39 10

. . .

.
.

e je je j
e j

 N

(b) FEM =
× ⋅ × ×

×
= ×

−6 67 10 5 98 10 7 36 10

3 84 10
1 99 10

11 24 22

8 2
20

. . .

.
.

 N m kg
 N

2 2e je je j
e j

(c) FSE =
× ⋅ × ×

×
= ×

−6 67 10 1 99 10 5 98 10

1 496 10
3 55 10

11 30 24

11 2
22

. . .

.
.

 N m kg
 N

2 2e je je j
e j

Note that the force exerted by the Sun on the Moon is much stronger than the force of the
Earth on the Moon. In a sense, the Moon orbits the Sun more than it orbits the Earth. The
Moon’s path is everywhere concave toward the Sun. Only by subtracting out the solar
orbital motion of the Earth-Moon system do we see the Moon orbiting the center of mass of
this system.

Section 13.2 Measuring the Gravitational Constant

P13.7 F
GMm

r
= = × ⋅

×

×
= ×−

−

−

−
2

11
3

2 2
106 67 10

1 50 15 0 10

4 50 10
7 41 10.

. .

.
. N m kg

 kg  kg

 m
 N2 2e j

b ge j
e j
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P13.8 Let θ represent the angle each cable makes with the vertical, L the
cable length, x the distance each ball scrunches in, and d = 1 m the
original distance between them. Then r d x= − 2  is the separation of
the balls. We have

Fy∑ = 0 : T mgcosθ − = 0

Fx∑ = 0 : T
Gmm

r
sinθ − =2 0

FIG. P13.8

Then tanθ =
Gmm
r mg2

x

L x

Gm

g d x2 2 22−
=

−a f x d x
Gm

g
L x− = −2 2 2 2a f .

The factor 
Gm

g
is numerically small. There are two possibilities: either x is small or else d x− 2  is

small.

Possibility one: We can ignore x in comparison to d and L, obtaining

x 1
6 67 10 100

9 8
452

11

 m
 N m kg  kg

 m s
 m

2 2

2
a f e jb g

e j
=

× ⋅−.

.
x = × −3 06 10 8.  m.

The separation distance is r = − × = −−1 2 3 06 10 1 000 61 38 m  m  m  nm. . .e j .

Possibility two: If d x− 2  is small, x ≈ 0 5.  m  and the equation becomes

0 5
6 67 10 100

9 8
45 0 52

11
2 2.

.

.
. m

 N m kg  kg

 N kg
 m  m

2 2

a f e jb g
b g a f a fr =

× ⋅
−

−

r = × −2 74 10 4.  m .

For this answer to apply, the spheres would have to be compressed to a density like that of the
nucleus of atom.

Section 13.3 Free-Fall Acceleration and the Gravitational Force

P13.9 a
MG

RE

= = =
4

9 80
16 0

0 6132b g
.

.
.

 m s
 m s

2
2  toward the Earth.

P13.10 g
GM
R

G

R
G R

R

= = =2

4
3

2

3

4
3

ρ
π ρ

πe j

If
g
g

M

E

G R

G R

M M

E E
= =

1
6

4
3

4
3

π ρ

π ρ

then
ρ
ρ

M

E

M

E

E

M

g
g

R
R

=
F
HG
I
KJ
F
HG
I
KJ =
F
HG
I
KJ =

1
6

4
2
3

a f .
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P13.11 (a) At the zero-total field point, 
GmM

r
GmM

r
E

E

M

M
2 2=

so r r
M
M

r
r

M E
M

E
E

E= =
×
×

=
7 36 10
5 98 10 9 01

22

24
.
. .

r r r
r

r

E M E
E

E

+ = × = +

=
×

= ×

3 84 10
9 01

3 84 10
3 46 10

8

8
8

.
.

.
.

 m

 m
1.11

 m

(b) At this distance the acceleration due to the Earth’s gravity is

g
GM

r

g

E
E

E

E

= =
× ⋅ ×

×

= ×

−

−

2

11 24

8 2

3

6 67 10 5 98 10

3 46 10

3 34 10

. .

.

.

 N m kg  kg

 m

 m s  directed toward the Earth

2 2

2

e je j
e j

Section 13.4 Kepler’s Laws and the Motion of Planets

P13.12 (a) v
r

T
= =

×

×
= ×

2 2 384 400 10
1 02 10

3
3π π b g

b g
 m

27.3 86 400 s
 m s. .

(b) In one second, the Moon falls a distance

x at
v
r

t= = =
×

×
× = × =−1

2
1
2

1
2

1 02 10

3 844 10
1 00 1 35 10 1 352

2
2

3 2

8
2 3

.

.
. . .

e j
e j

a f  m  mm .

The Moon only moves inward 1.35 mm for every 1020 meters it moves along a straight-line
path.

P13.13 Applying Newton’s 2nd Law, F ma∑ =  yields F mag c=  for each star:

GMM

r

Mv
r2 2

2

a f = or M
v r
G

=
4 2

.

We can write r in terms of the period, T, by considering the time and
distance of one complete cycle. The distance traveled in one orbit is the
circumference of the stars’ common orbit, so 2πr vT= . Therefore
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P13.14 Since speed is constant, the distance traveled between t1  and t2  is equal to the distance traveled
between t3  and t4 . The area of a triangle is equal to one-half its (base) width across one side times its
(height) dimension perpendicular to that side.

So
1
2

1
22 1 4 3bv t t bv t t− = −b g b g

states that the particle’s radius vector sweeps out equal areas in equal times.

P13.15 T
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2 34
=

π
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(Approximately 316 Earth masses)

P13.16 By conservation of angular momentum for the satellite,

r v r vp p a a=
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We do not need to know the period.

P13.17 By Kepler’s Third Law, T ka2 3= (a =  semi-major axis)

For any object orbiting the Sun, with T in years and a in A.U.,
k = 1 00. . Therefore, for Comet Halley
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P13.19
GM

R d

R d

T
J

J

J

+
=

+

d i
d i

2

2

2

4π

GM T R d

d

d

J J
2 2 3

11 27 2 2 7 3

7

4

6 67 10 1 90 10 9 84 3 600 4 6 99 10

8 92 10 89 200

= +

× ⋅ × × = × +

= × =

−

π

π

d i
e je jb g e j. . . .

.

 N m kg  kg

 m  km  above the planet

2 2

P13.20 The gravitational force on a small parcel of material at the star’s equator supplies the necessary
centripetal force:
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*P13.21 The speed of a planet in a circular orbit is given by
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With greater speed, Mercury will eventually move farther from the Sun than Pluto. With original
distances rP  and rM  perpendicular to their lines of motion, they will be equally far from the Sun
after time t where

r v t r v t
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*P13.22 For the Earth, F ma∑ = :
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P13.25 g g
MG
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FIG. P13.25

Section 13.6 Gravitational Potential Energy
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P13.28 The height attained is not small compared to the radius of the Earth, so U mgy=  does not apply;
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(b) At the center  of the equilateral triangle

*P13.32 (a) Energy conservation of the object-Earth system from release to radius r:
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We can enter this expression directly into a mathematical calculation program.

Alternatively, to save typing we can change variables to u
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A mathematics program returns the value 9.596 for this integral, giving for the time of
fall ∆t = × × × = =−3 541 10 10 9 596 339 8 3408 9. . .  s .
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Section 13.7 Energy Considerations in Planetary and Satellite Motion

P13.33
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(at or beyond the orbit of Mars, 125 000 km/h is sufficient for escape).
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The change in gravitational potential energy of the satellite-Earth system is
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P13.37 F Fc G=  gives 
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Substituting the appropriate values into (1) yields the

minimum energy input = ×6 43 109.  J
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P13.38 The gravitational force supplies the needed centripetal acceleration.
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It is simplest to
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P13.41 The rocket is in a potential well at Ganymede’s surface with energy
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P13.42 We interpret “lunar escape speed” to be the escape speed from the surface of a stationary moon
alone in the Universe:
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3 7 36 10 7 36 10 5 98 10 5 98 10

2 1 27 10 1 92 10 9 39 10 1 56 10

2 6 67 10 10 5 10

2

1 2

22 22 24 24 1 2

17 14 17 16 1 2

11 17

. . . .

. . . .

. .

e j
e j  kg m  km s

1 2
11 8= .
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*P13.43 (a) Energy conservation for the object-Earth system from firing to apex:

K U K U

mv
GmM

R
GmM
R h

g i g f

i
E

E

E

E

+ = +

− = −
+

e j e j
1
2

02

where 
1
2

mv
GmM

R
E

E
esc
2 = . Then

1
2

1
2

1
2

1

2

2

2

2

2

2

2

2

v v v
R

R h

v v
v R
R h

v v
R h
v R

h
v R

v v
R

v R v R v R
v v

h
R v

v v

i
E

E

i
E

E

i

E

E

E

i
E

E E i E

i

E i

i

− = −
+

− =
+

−
=

+

=
−

− =
− +

−

=
−

esc
2

esc
2

esc
2 esc

2

esc
2

esc
2

esc
2

esc
2

esc
2

esc
2

esc
2

esc
2

(b) h =
×

−
= ×

6 37 10

11 2 8 76
1 00 10

6 2

2 2
7.

. .
.

 m 8.76
 m

a f
a f a f

(c) The fall of the meteorite is the time-reversal of the upward flight of the projectile, so it is
described by the same energy equation

v v
R

R h
v

h
R h

v

i
E

E E

i

2 2 2 3 2 7

6 7

8

4

1 11 2 10
2 51 10

6 37 10 2 51 10

1 00 10

1 00 10

= −
+

F
HG

I
KJ = +
F
HG

I
KJ = ×

×
× + ×

F
HG

I
KJ

= ×

= ×

esc esc

2 2

 m s
 m

 m  m

 m s

 m s

.
.

. .

.

.

e j

(d) With v vi << esc , h
R v
v

R v R
GM

E i E i E

E
≈ =

2

2

2

2esc

. But g
GM

R
E

E

= 2 , so h
v

g
i=
2

2
, in agreement with

0 2 02 2= + − −v g hi b ga f .

P13.44 For a satellite in an orbit of radius r around the Earth, the total energy of the satellite-Earth system is

E
GM

r
E= −

2
. Thus, in changing from a circular orbit of radius r RE= 2  to one of radius r RE= 3 , the

required work is

W E
GM m

r
GM m

r
GM m

R R
GM m

R
E

f

E

i
E

E E

E

E
= = − + = −

L
NM

O
QP
=∆

2 2
1

4
1

6 12
.
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*P13.45 (a) The major axis of the orbit is 2 50 5a = .  AU so a = 25 25.  AU
Further, in Figure 13.5, a c+ = 50 AU so c = 24 75.  AU

Then e
c
a

= = =
24 75
25 25

0 980
.
.

.

(b) In T K as
2 3=  for objects in solar orbit, the Earth gives us

1 12 3 yr  AUb g a f= Ks Ks =
1

1

2

3

 yr

 AU

b g
a f

Then T 2
2

3
31

1
25 25=

 yr

 AU
 AU

b g
a f a f. T = 127 yr

(c) U
GMm

r
= − = −

× ⋅ × ×

×
= − ×

−6 67 10 1 991 10 1 2 10

50 1 496 10
2 13 10

11 30 10

11
17

. . .

.
.

 N m kg  kg  kg

 m
 J

2 2e je je j
e j

*P13.46 (a) For the satellite F ma∑ =
GmM

r
mv

r
E

2
0
2

=

v
GM

r
E

0

1 2

= FHG
I
KJ

(b) Conservation of momentum in the forward direction for the exploding satellite:

mv mv

mv mv m

v v
GM

r

i f

i

i
E

∑ ∑=

= +

= = FHG
I
KJ

c h c h
5 4 0

5
4

5
4

0

0

1 2

(c) With velocity perpendicular to radius, the orbiting fragment is at perigee. Its apogee
distance and speed are related to r and vi  by 4 4mrv mr vi f f=  and
1
2

4
4 1

2
4

42 2mv
GM m

r
mv

GM m
ri

E
f

E

f
− = − . Substituting v

v r
rf

i

f
=  we have

1
2

1
2

2
2 2

2v
GM

r
v r
r

GM
ri

E i

f

E

f
− = − . Further, substituting v

GM
ri

E2 25
16

=  gives

25
32

25
32

7
32

25
32

1

2

2

GM
r

GM
r

GM r
r

GM
r

r
r

r r

E E E

f

E

f

f f

− = −

−
= −

Clearing of fractions, − = −7 25 322 2r r rrf f  or 7 32 25 0
2r

r

r

r
f fF
HG
I
KJ −
F
HG
I
KJ + =  giving

r

r
f =

+ ± −
=

32 32 4 7 25

14
50
14

2 a fa f
 or 

14
14

. The latter root describes the starting point. The outer

end of the orbit has 
r

r
f =

25
7

; r
r

f =
25
7

.
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Additional Problems

P13.47 Let m represent the mass of the spacecraft, rE  the radius of the Earth’s orbit, and x the distance from
Earth to the spacecraft.

The Sun exerts on the spacecraft a radial inward force of F
GM m

r x
s

s

E

=
−b g2

while the Earth exerts on it a radial outward force of F
GM m

xE
E= 2

The net force on the spacecraft must produce the correct centripetal acceleration for it to have an
orbital period of 1.000 year.

Thus, F F
GM m

r x

GM m
x

mv
r x

m
r x

r x
TS E

S

E

E

E E

E− =
−

− =
−

=
−

−L
NMM

O
QPPb g b g b g

b g
2 2

2 2
2π

which reduces to
GM

r x

GM
x

r x

T
S

E

E E

−
− =

−

b g
b g

2 2

2

2

4π
. (1)

Cleared of fractions, this equation would contain powers of x ranging from the fifth to the zeroth.
We do not solve it algebraically. We may test the assertion that x is between 1 47 109. ×  m and
1 48 109. ×  m by substituting both of these as trial solutions, along with the following data:
MS = ×1 991 1030.  kg , ME = ×5 983 1024.  kg , rE = ×1 496 1011.  m, and T = = ×1 000 3 156 107. . yr  s .

With x = ×1 47 109.  m substituted into equation (1), we obtain

6 052 10 1 85 10 5 871 103 3 3. . .× − × ≈ ×− − − m s  m s  m s2 2 2

or 5 868 10 5 871 103 3. .× ≈ ×− − m s  m s2 2

With x = ×1 48 109.  m substituted into the same equation, the result is

6 053 10 1 82 10 5 870 8 103 3 3. . .× − × ≈ ×− − − m s  m s  m s2 2 2

or 5 870 9 10 5 870 8 103 3. .× ≈ ×− − m s  m s2 2 .

Since the first trial solution makes the left-hand side of equation (1) slightly less than the right hand
side, and the second trial solution does the opposite, the true solution is determined as between the
trial values. To three-digit precision, it is 1 48 109. ×  m.

As an equation of fifth degree, equation (1) has five roots. The Sun-Earth system has five Lagrange
points, all revolving around the Sun synchronously with the Earth. The SOHO and ACE satellites
are at one. Another is beyond the far side of the Sun. Another is beyond the night side of the Earth.
Two more are on the Earth’s orbit, ahead of the planet and behind it by 60°. Plans are under way to
gain perspective on the Sun by placing a spacecraft at one of these two co-orbital Lagrange points.
The Greek and Trojan asteroids are at the co-orbital Lagrange points of the Jupiter-Sun system.
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P13.48 The acceleration of an object at the center of the Earth due
to the gravitational force of the Moon is given by

a G
M

d
= Moon

2

At the point A nearest the Moon, a G
M

d r
M

+ =
−a f2

At the point B farthest from the Moon, a G
M

d r
M

− =
+a f2 FIG. P13.48

∆a a a GM
d r dM= − =
−

−
L
N
MM

O
Q
PP+

1 1
2 2a f

For d r>> , ∆a
GM r

d
M= = × −2

1 11 103
6.  m s2

Across the planet,
∆ ∆g
g

a
g

= =
×

= ×
−

−2 2 22 10
9 80

2 26 10
6

7.
.

.
 m s

 m s

2

2

*P13.49 Energy conservation for the two-sphere system from release to contact:

− = − + +

−FHG
I
KJ = = −LNM

O
QP

F
HG

I
KJ

Gmm
R

Gmm
r

mv mv

Gm
r R

v v Gm
r R

2
1
2

1
2

1
2

1 1
2

1

2 2

2
1 2

(a) The injected impulse is the final momentum of each sphere,

mv m Gm
r R

Gm
r R

= −LNM
O
QP

F
HG

I
KJ = −FHG

I
KJ

L
NM

O
QP

2 2
1 2

3
1 2

1
2

1 1
2

1
.

(b) If they now collide elastically each sphere reverses its velocity to receive impulse

mv mv mv Gm
r R

− − = = −FHG
I
KJ

L
NM

O
QPa f 2 2

1
2

13
1 2

P13.50 Momentum is conserved:

m m m m

M M
i i f f

f f

f f

1 1 2 2 1 1 2 2

1 2

2 1

0 2

1
2

v v v v

v v

v v

+ = +

= +

= −

Energy is conserved:

K U E K U

Gm m
r

m v m v
Gm m

r

GM M
R

Mv M v
GM M
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v
GM

R
v v
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R

i f

i
f f
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f f

f f f

+ + = +

− + = + −

− = + F
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I
KJ −

= = =

a f a f

a f a f a f

∆

0 0
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2
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2
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2
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1
2

1
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1 2
1 1

2
2 2

2 1 2

1
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1 2 1
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P13.51 (a) a
v
rc =
2

ac =
×

×
=

1 25 10

1 53 10
10 2

6 2

11

.

.
.

 m s

 m
 m s2e j

(b) diff  m s2= − = =10 2 9 90 0 312 2. . .
GM
r

M =
×

× ⋅
= ×−

0 312 1 53 10

6 67 10
1 10 10

11 2

11
32

. .

.
.

 m s  m

 N m kg
 kg

2

2 2

e je j
FIG. P13.51

P13.52 (a) The free-fall acceleration produced by the Earth is g
GM

r
GM rE

E= = −
2

2  (directed downward)

Its rate of change is 
dg
dr

GM r GM rE E= − = −− −2 23 3a f .

The minus sign indicates that g decreases with increasing height.

At the Earth’s surface, 
dg
dr

GM
R

E

E

= −
2

3 .

(b) For small differences,

∆

∆

∆g

r

g

h
GM
R

E

E

= =
2

3 Thus, ∆g
GM h
R

E

E

=
2

3

(c) ∆g =
× ⋅ ×

×
= ×

−
−

2 6 67 10 5 98 10 6 00

6 37 10
1 85 10

11 2 24

6 3
5

. . .

.
.

 N m kg  kg  m

 m
 m s

2
2e je ja f

e j
*P13.53 (a) Each bit of mass dm in the ring is at the same distance from the object at A. The separate

contributions −
Gmdm

r
 to the system energy add up to −

GmM

r
ring . When the object is at A,

this is

− × ⋅ ×

× + ×
= − ×

−6 67 10 1 000

1 10 2 10
7 04 10

11

8 2 8 2

4.
.

 N m  kg 2.36 10  kg

kg  m  m
 J

2 20

2 e j e j
.

(b) When the object is at the center of the ring, the potential energy is

−
× ⋅ ×

×
= − ×

−6 67 10
1 10

1 57 10
11

8
5.

.
 N m  1 000 kg 2.36 10  kg

kg  m
 J

2 20

2 .

(c) Total energy of the object-ring system is conserved:

K U K U

v

v

g A g B

B

B

+ = +

− × = − ×

=
× ×F
HG

I
KJ =

e j e j
0 7 04 10

1
2

1 000 1 57 10

2 8 70 10
13 2

4 2 5

4 1 2

. .

.
.

 J  kg  J

 J
1 000 kg

 m s
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P13.54 To approximate the height of the sulfur, set

mv
mg hIo

2

2
= h = 70 000 m g

GM
rIo = =2 1 79.  m s2

v g hIo= 2 v = ≈2 1 79 70 000 500.a fb g b g m s  over 1 000 mi h

A more precise answer is given by

1
2

2

1 2
mv

GMm
r

GMm
r

− = −

1
2

6 67 10 8 90 10
1

1 82 10
1

1 89 10
2 11 22

6 6v = × ×
×

−
×

F
HG

I
KJ

−. .
. .

e je j v = 492 m s

P13.55 From the walk, 2 25 000πr =  m. Thus, the radius of the planet is r = = ×
25 000

3 98 103 m
2

 m
π

.

From the drop: ∆y gt g= = =
1
2

1
2

29 2 1 402 2. . s  ma f

so, g
MG
r

= = × =−2 1 40

29 2
3 28 102

3
2

.

.
.

 m

 s
 m s2a f

a f ∴ = ×M 7 79 1014.  kg

*P13.56 The distance between the orbiting stars is d r r= °=2 30 3cos  since

cos30
3

2
°= . The net inward force on one orbiting star is

Gmm
d

GMm
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d

mv
r
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r
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r

r
rT

G
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M
r

T

T
r
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T
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2 2 2

2

2 2
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2

2
2 3

3

3

3

1 2
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°
+ =

+
F
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I
KJ =

=
+

=
+
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H
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I

K
JJ

π

π

π

π

e j

e j

r

30°
d

r

30°

60°

F

F

F

FIG. P13.56

P13.57 For a 6.00 km diameter cylinder, r = 3 000 m and to simulate 1 9 80g = .  m s2

g
v
r

r

g
r

= =

= =

2
2

0 057 2

ω

ω .  rad s

The required rotation rate of the cylinder is 
1 rev
110 s

(For a description of proposed cities in space, see Gerard K. O’Neill in Physics Today, Sept. 1974.)
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P13.58 (a) G has units 
N m

kg
kg m m

s kg
m

s kg

2

2

2

2 2

3

2
⋅

=
⋅ ⋅

⋅
=

⋅

and dimensions G
L

T M

3

2=
⋅

.

The speed of light has dimensions of c =
L
T

, and Planck’s constant has the same dimensions

as angular momentum or h =
⋅M L
T

2

.

We require G c hp q r = L , or L T M L T M L T L M T1 0 03 2 2p p p q q r r r− − − − = .

Thus, 3 2 1p q r+ + =

− − − =
− + =

2 0
0

p q r
p r

which reduces (using r p= ) to 3 2 1p q p+ + =

− − − =2 0p q p

These equations simplify to 5 1p q+ =  and q p= −3 .

Then, 5 3 1p p− = , yielding p =
1
2

, q = −
3
2

, and r =
1
2

.

Therefore, Planck length = −G c h1 2 3 2 1 2 .

(b) 6 67 10 3 10 6 63 10 1 64 10 4 05 10 1011 1 2 8 3 2 34 1 2 69 1 2 35 34. . . . ~× × × = × = ×− − − − − −e j e j e j e j  m  m

P13.59
1
2 0

0m v
Gm m

R
p

esc
2 =

v
Gm

R
p

esc =
2

With m Rp = ρ π
4
3

3 , we have

v
G R

R

G
R

esc =

=

2

8
3

4
3

3ρ π

π ρ

So, v Resc ∝ .
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*P13.60 For both circular orbits,

F ma∑ = :
GM m

r
mv

r
E

2

2

=

v
GM

r
E=

FIG. P13.60

(a) The original speed is vi =
× ⋅ ×

× + ×
= ×

−6 67 10 5 98 10

6 37 10 2 10
7 79 10

11 24

6 5
3

. .

.
.

 N m kg  kg

 m  m
 m s

2 2e je j
e j

.

(b) The final speed is vi =
× ⋅ ×

×
= ×

−6 67 10 5 98 10

6 47 10
7 85 10

11 24

6
3

. .

.
.

 N m kg  kg

 m
 m s

2 2e je j
e j

.

The energy of the satellite-Earth system is

K U mv
GM m

r
m

GM
r

GM
r

GM m
rg

E E E E+ = − = − = −
1
2

1
2 2

2

(c) Originally Ei = −
× ⋅ ×

×
= − ×

−6 67 10 5 98 10 100

2 6 57 10
3 04 10

11 24

6
9

. .

.
.

 N m kg  kg  kg

 m
 J

2 2e je jb g
e j

.

(d) Finally E f = −
× ⋅ ×

×
= − ×

−6 67 10 5 98 10 100

2 6 47 10
3 08 10

11 24

6
9

. .

.
.

 N m kg  kg  kg

 m
 J

2 2e je jb g
e j

.

(e) Thus the object speeds up as it spirals down to the planet. The loss of gravitational energy is
so large that the total energy decreases by

E Ei f− = − × − − × = ×3 04 10 3 08 10 4 69 109 9 7. . . J  J  Je j .

(f) The only forces on the object are the backward force of air resistance R, comparatively very
small in magnitude, and the force of gravity. Because the spiral path of the satellite is not
perpendicular to the gravitational force, one component of the gravitational force  pulls

forward on the satellite to do positive work and make its speed increase.
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P13.61 (a) At infinite separation U = 0 and at rest K = 0 . Since energy of the two-planet system is
conserved we have,

0
1
2

1
21 1

2
2 2

2 1 2= + −m v m v
Gm m

d
(1)

The initial momentum of the system is zero and momentum is conserved.

Therefore, 0 1 1 2 2= −m v m v (2)

Combine equations (1) and (2): v m
G

d m m1 2
1 2

2
=

+b g and v m
G

d m m2 1
1 2

2
=

+b g

Relative velocity v v v
G m m

dr = − − =
+

1 2
1 22b g b g

(b) Substitute given numerical values into the equation found for v1  and v2  in part (a) to find

v1
41 03 10= ×.  m s and v2

32 58 10= ×.  m s

Therefore, K m v1 1 1
2 321

2
1 07 10= = ×.  J and K m v2 2 2

2 311
2

2 67 10= = ×.  J

P13.62 (a) The net torque exerted on the Earth is zero. Therefore, the angular momentum of the Earth
is conserved;

mr v mr va a p p=  and v v
r

ra p
p

a
=
F
HG
I
KJ = × F

HG
I
KJ = ×3 027 10

1 471
1 521

2 93 104 4.
.
.

. m s  m se j

(b) K mvp p= = × × = ×
1
2

1
2

5 98 10 3 027 10 2 74 102 24 4 2 33. . .e je j  J

U
GmM

rp
p

= − = −
× × ×

×
= − ×

−6 673 10 5 98 10 1 99 10

1 471 10
5 40 10

11 24 30

11
33

. . .

.
.

e je je j
 J

(c) Using the same form as in part (b), Ka = ×2 57 1033.  J  and Ua = − ×5 22 1033.  J .

Compare to find that K Up p+ = − ×2 66 1033.  J  and K Ua a+ = − ×2 65 1033.  J . They agree.



406     Universal Gravitation

P13.63 (a) The work must provide the increase in gravitational energy

W U U U
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(b) In a circular orbit, gravity supplies the centripetal force:

GM M

R y

M v

R y
E p

E

p

E+
=

+b g b g2

2

Then, 
1
2

1
2

2M v
GM M

R yp
E p

E
=

+b g
So, additional work = kinetic energy required

=
× ⋅ ×
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= ×

−
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2

6 67 10 5 98 10 100
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11 24
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∆W

P13.64 Centripetal acceleration comes from gravitational acceleration.

v
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P13.65 (a) T
r

v
= =

× ×

×
= × = ×

2 2 30 000 9 46 10

2 50 10
7 10 2 10

15

5
15 8π π .

.

 m

 m s
 s  yr

e j

(b) M
a

GT
= =

× ×

× ⋅ ×
= ×

−

4 4 30 000 9 46 10

6 67 10 7 13 10
2 66 10

2 3

2

2 15 3

11 15 2
41π π .

. .
.

 m

 N m kg  s
 kg

2 2

e j
e je j

M = ×1 34 10 1011 11. ~ solar masses  solar masses

The number of stars is on the order of 1011 .
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P13.66 (a) From the data about perigee, the energy of the satellite-Earth system is

E mv
GM m

rp
E

p
= − = × −

× ×

×

−
1
2

1
2

1 60 8 23 10
6 67 10 5 98 10 1 60

7 02 10
2 3 2

11 24

6. .
. . .

.
a fe j e je ja f

or E = − ×3 67 107.  J

(b) L mvr mv rp p= = °= × ×

= × ⋅

sin sin . . . .

.

θ 90 0 1 60 8 23 10 7 02 10

9 24 10

3 6

10

 kg  m s  m

 kg m s2

b ge je j

(c) Since both the energy of the satellite-Earth system and the angular momentum of the Earth
are conserved,

at apogee we must have
1
2

2mv
GMm

r
Ea

a
− =

and mv r La a sin .90 0°= .

Thus,
1
2

1 60
6 67 10 5 98 10 1 60

3 67 102
11 24

7.
. . .

.a f e je ja f
v

ra
s

−
× ×

= − ×
−

 J

and 1 60 9 24 1010. . kg  kg m s2b gv ra a = × ⋅ .

Solving simultaneously,
1
2

1 60
6 67 10 5 98 10 1 60 1 60

9 24 10
3 67 102

11 24

10
7.

. . . .

.
.a f e je ja fa f

v
v

a
a

−
× ×

×
= − ×

−

which reduces to 0 800 11 046 3 672 3 10 02 7. .v va a− + × =

so va =
± − ×11 046 11 046 4 0 800 3 672 3 10

2 0 800

2 7b g a fe j
a f

. .

.
.

This gives va = 8 230 m s  or 5 580 m s . The smaller answer refers to the velocity at the

apogee while the larger refers to perigee.

Thus, r
L

mva
a

= =
× ⋅

×
= ×

9 24 10

1 60 5 58 10
1 04 10

10

3
7.

. .
.

 kg m s

 kg  m s
 m

2

b ge j
.

(d) The major axis is 2a r rp a= + , so the semi-major axis is

a = × + × = ×
1
2

7 02 10 1 04 10 8 69 106 7 6. . . m  m  me j

(e) T
a

GME
= =

×

× ⋅ ×−

4 4 8 69 10

6 67 10 5 98 10

2 3 2 6 3

11 24

π π .

. .

 m

 N m kg  kg2 2

e j
e je j

T = =8 060 134 s  min
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*P13.67 Let m represent the mass of the meteoroid and vi  its speed when far away.
No torque acts on the meteoroid, so its angular momentum is conserved as
it moves between the distant point and the point where it grazes the Earth,
moving perpendicular to the radius:

FIG. P13.67
L Li f= : m mi i f fr v r v× = ×

m R v mR v

v v
E i E f

f i

3

3

b g =
=

Now energy of the meteoroid-Earth system is also conserved:

K U K Ug i g f
+ = +e j e j :

1
2

0
1
2

2 2mv mv
GM m

Ri f
E

E
+ = −

1
2

1
2

92 2v v
GM

Ri i
E

E
= −e j

GM
R

vE

E
i= 4 2 : v

GM
Ri

E

E
=

4

*P13.68 From Kepler’s third law, minimum period means minimum orbit size. The “treetop satellite” in
Figure P13.35 has minimum period. The radius of the satellite’s circular orbit is essentially equal to
the radius R of the planet.

F ma∑ = :
GMm

R
mv

R
m
R

R
T2

2 22
= = FHG

I
KJ

π

G V
R R

RT

G R
R

T

ρ
π

ρ π
π

=

F
HG
I
KJ =

2 2 2

2

3
2 3

2

4

4
3

4

e j

The radius divides out: T G2 3ρ π= T
G

=
3π
ρ

P13.69 If we choose the coordinate of the center of mass at the origin, then

0 2 1=
−

+

Mr mr
M m
b g

and Mr mr2 1=

(Note: this is equivalent to saying that the net torque must be zero and
the two experience no angular acceleration.) For each mass F ma=  so

mr
MGm

d1 1
2

2ω = and Mr
MGm

d2 2
2

2ω =
FIG. P13.69

Combining these two equations and using d r r= +1 2  gives r r
M m G

d1 2
2

2+ =
+b g a f

ω

with ω ω ω1 2= =

and T =
2π
ω

we find T
d

G M m
2

2 34
=

+
π
a f .
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P13.70 (a) The gravitational force exerted on m2  by the Earth (mass m1 ) accelerates m2  according to:

m g
Gm m

r2 2
1 2
2= . The equal magnitude force exerted on the Earth by m2  produces negligible

acceleration of the Earth. The acceleration of relative approach is then

g
Gm
r2

1
2

11 24

7 2

6 67 10 5 98 10

1 20 10
2 77= =

× ⋅ ×

×
=

−. .

.
.

 N m kg  kg

 m
 m s

2 2
2e je j

e j
.

(b) Again, m2  accelerates toward the center of mass with g2 2 77= .  m s2 . Now the Earth
accelerates toward m2  with an acceleration given as

m g
Gm m

r

g
Gm

r

1 1
1 2
2

1
2

2

11 24

7 2

6 67 10 2 00 10

1 20 10
0 926

=

= =
× ⋅ ×

×
=

−. .

.
.

 N m kg  kg

 m
 m s

2 2
2e je j

e j
The distance between the masses closes with relative acceleration of

g g grel
2 2 2 m s  m s  m s= + = + =1 2 0 926 2 77 3 70. . . .

P13.71 Initial Conditions and Constants:

Mass of planet: 5 98 1024. ×  kg
Radius of planet: 6 37 106. ×  m
Initial x: 0.0 planet radii
Initial y: 2.0 planet radii
Initial vx : +5 000 m/s
Initial vy : 0.0 m/s

Time interval: 10.9 s

FIG. P13.71

t (s) x (m) y (m) r (m)
vx

(m/s)

vy

(m/s)

ax

m s2e j
ay

m s2e j
0.0 0.0 12 740 000.0 12 740 000.0 5 000.0 0.0 0.000 0 –2.457 5

10.9 54 315.3 12 740 000.0 12 740 115.8 4 999.9 –26.7 –0.010 0 –2.457 4
21.7 108 629.4 12 739 710.0 12 740 173.1 4 999.7 –53.4 –0.021 0 –2.457 3
32.6 162 941.1 12 739 130.0 12 740 172.1 4 999.3 –80.1 –0.031 0 –2.457 2

…
5 431.6 112 843.8 –8 466 816.0 8 467 567.9 –7 523.0 –39.9 –0.074 0 5.562 5
5 442.4 31 121.4 –8 467 249.7 8 467 306.9 –7 523.2 20.5 –0.020 0 5.563 3
5 453.3 –50 603.4 –8 467 026.9 8 467 178.2 –7 522.8 80.9 0.033 0 5.563 4
5 464.1 –132 324.3 –8 466 147.7 8 467 181.7 –7 521.9 141.4 0.087 0 5.562 8

…
10 841.3 –108 629.0 12 739 134.4 12 739 597.5 4 999.9 53.3 0.021 0 –2.457 5
10 852.2 –54 314.9 12 739 713.4 12 739 829.2 5 000.0 26.6 0.010 0 –2.457 5
10 863.1 0.4 12 740 002.4 12 740 002.4 5 000.0 –0.1 0.000 0 –2.457 5

The object does not hit the Earth ; its minimum radius is 1 33. RE .

Its period is 1 09 104. ×  s . A circular orbit would require a speed of 5 60.  km s .
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ANSWERS TO EVEN PROBLEMS

P13.2 2 67 10 7. × −  m s2 P13.40 (a) 10 0.  m s2 ; (b) 21 8.  km s

P13.4 3.00 kg and 2.00 kg P13.42 11 8.  km s

P13.6 (a) 4 39 1020. ×  N  toward the Sun;
P13.44

GM m
R
E

E12(b) 1 99 1020. ×  N  toward the Earth;
(c) 3 55 1022. ×  N  toward the Sun

P13.46 (a) v
GM

r
E

0

1 2

= FHG
I
KJ ; (b) vi

GM
r

E

=
5

4

1 2e j
;P13.8 see the solution; either 1 61 3 m  nm− .  or

2 74 10 4. × −  m

(c) r
r

f =
25
7P13.10

2
3

P13.48 2 26 10 7. × −
P13.12 (a) 1 02.  km s ; (b) 1.35 mm

P13.50
2
3

GM
R

; 
1
3

GM
R

P13.14 see the solution

P13.16 1.27
P13.52 (a), (b) see the solution;

P13.18 Planet Y has turned through
1.30 revolutions

(c) 1 85 10 5. × −  m s2

P13.54 492 m s
P13.20 1 63 104. ×  rad s

P13.56 see the solution
P13.22 18.2 ms

P13.58 (a) G c h1 2 3 2 1 2− ; (b) ~10 34−  m
P13.24 (a) 1 31 1017. ×  N toward the center;

(b) 2 62 1012. ×  N kg P13.60 (a) 7 79.  km s; (b) 7 85.  km s;(c) −3 04.  GJ ;
(d) −3 08.  GJ; (e) loss  MJ= 46 9. ;

P13.26 (a) − ×4 77 109.  J; (b) 569 N down; (f) A component of the Earth’s gravity
pulls forward on the satellite in its
downward banking trajectory.

(c) 569 N up

P13.28 2 52 107. ×  m

P13.62 (a) 29 3.  km s ; (b) Kp = ×2 74 1033.  J;

Up = − ×5 40 1033.  J ;(c) Ka = ×2 57 1033.  J;

Ua = − ×5 22 1033.  J; yes

P13.30 2 82 109. ×  J

P13.32 (a) see the solution; (b) 340 s

P13.34 (a) 42 1.  km s; (b) 2 20 1011. ×  m P13.64 119 km

P13.36 1 58 1010. ×  J P13.66 (a) −36 7.  MJ; (b) 9 24 1010. × ⋅ kg m s2 ;
(c) 5 58.  km s; 10.4 Mm; (d) 8.69 Mm;

P13.38 (a) 2 3 2 1 2π R h GME E+ −b g b g ;
(e) 134 min

(b) GM R hE Eb g b g1 2 1 2+ − ;
P13.68 see the solution

(c) GM m
R h

R R h
R m

E
E

E E

E+
+

L
NMM

O
QPP
−

2
2

2

86 400

2 2

2b g b g
π

 s P13.70 (a) 2 77.  m s2 ; (b) 3 70.  m s2

The satellite should be launched from the
Earth’s equator toward the east.
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Fluid Mechanics

ANSWERS TO QUESTIONS

Q14.1 The weight depends upon the total volume of glass. The
pressure depends only on the depth.

Q14.2 Both must be built the same. The force on the back of each dam
is the average pressure of the water times the area of the dam.
If both reservoirs are equally deep, the force is the same.

FIG. Q14.2

Q14.3 If the tube were to fill up to the height of several stories of the building, the pressure at the bottom of
the depth of the tube of fluid would be very large according to Equation 14.4. This pressure is much
larger than that originally exerted by inward elastic forces of the rubber on the water. As a result,
water is pushed into the bottle from the tube. As more water is added to the tube, more water
continues to enter the bottle, stretching it thin. For a typical bottle, the pressure at the bottom of the
tube can become greater than the pressure at which the rubber material will rupture, so the bottle
will simply fill with water and expand until it bursts. Blaise Pascal splintered strong barrels by this
method.

Q14.4 About 1 000 N: that’s about 250 pounds.

Q14.5 The submarine would stop if the density of the surrounding water became the same as the average
density of the submarine. Unfortunately, because the water is almost incompressible, this will be
much deeper than the crush depth of the submarine.

Q14.6 Yes. The propulsive force of the fish on the water causes the scale reading to fluctuate. Its average
value will still be equal to the total weight of bucket, water, and fish.

Q14.7 The boat floats higher in the ocean than in the inland lake. According to Archimedes’s principle, the
magnitude of buoyant force on the ship is equal to the weight of the water displaced by the ship.
Because the density of salty ocean water is greater than fresh lake water, less ocean water needs to
be displaced to enable the ship to float.

411
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Q14.8 In the ocean, the ship floats due to the buoyant force from salt water. Salt water is denser than fresh
water. As the ship is pulled up the river, the buoyant force from the fresh water in the river is not
sufficient to support the weight of the ship, and it sinks.

Q14.9 Exactly the same. Buoyancy equals density of water times volume displaced.

Q14.10 At lower elevation the water pressure is greater because pressure increases with increasing depth
below the water surface in the reservoir (or water tower). The penthouse apartment is not so far
below the water surface. The pressure behind a closed faucet is weaker there and the flow weaker
from an open faucet. Your fire department likely has a record of the precise elevation of every fire
hydrant.

Q14.11 As the wind blows over the chimney, it creates a lower pressure at the top of the chimney. The
smoke flows from the relatively higher pressure in front of the fireplace to the low pressure outside.
Science doesn’t suck; the smoke is pushed from below.

Q14.12 The rapidly moving air above the ball exerts less pressure than the atmospheric pressure below the
ball. This can give substantial lift to balance the weight of the ball.

Q14.13 The ski–jumper gives her body the shape of an airfoil. She
deflects downward the air stream as it rushes past and it
deflects her upward by Newton’s third law. The air exerts
on her a lift force, giving her a higher and longer trajectory.
To say it in different words, the pressure on her back is less
than the pressure on her front.

FIG. Q14.13

Q14.14 The horizontal force exerted by the outside fluid, on an area element of the object’s side wall, has
equal magnitude and opposite direction to the horizontal force the fluid exerts on another element
diametrically opposite the first.

Q14.15 The glass may have higher density than the liquid, but the air inside has lower density. The total
weight of the bottle can be less than the weight of an equal volume of the liquid.

Q14.16 Breathing in makes your volume greater and increases the buoyant force on you. You instinctively
take a deep breath if you fall into the lake.

Q14.17 No. The somewhat lighter barge will float higher in the water.

Q14.18 The level of the pond falls. This is because the anchor displaces more water while in the boat. A
floating object displaces a volume of water whose weight is equal to the weight of the object. A
submerged object displaces a volume of water equal to the volume of the object. Because the density
of the anchor is greater than that of water, a volume of water that weighs the same as the anchor will
be greater than the volume of the anchor.

Q14.19 The metal is more dense than water. If the metal is sufficiently thin, it can float like a ship, with the
lip of the dish above the water line. Most of the volume below the water line is filled with air. The
mass of the dish divided by the volume of the part below the water line is just equal to the density of
water. Placing a bar of soap into this space to replace the air raises the average density of the
compound object and the density can become greater than that of water. The dish sinks with its
cargo.
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Q14.20 The excess pressure is transmitted undiminished throughout the container. It will compress air
inside the wood. The water driven into the wood raises its average density and makes if float lower
in the water. Add some thumbtacks to reach neutral buoyancy and you can make the wood sink or
rise at will by subtly squeezing a large clear–plastic soft–drink bottle. Bored with graph paper and
proving his own existence, René Descartes invented this toy or trick.

Q14.21 The plate must be horizontal. Since the pressure of a fluid increases with increasing depth, other
orientations of the plate will give a non-uniform pressure on the flat faces.

Q14.22 The air in your lungs, the blood in your arteries and veins, and the protoplasm in each cell exert
nearly the same pressure, so that the wall of your chest can be in equilibrium.

Q14.23 Use a balance to determine its mass. Then partially fill a graduated cylinder with water. Immerse the
rock in the water and determine the volume of water displaced. Divide the mass by the volume and
you have the density.

Q14.24 When taking off into the wind, the increased airspeed over the wings gives a larger lifting force,
enabling the pilot to take off in a shorter length of runway.

Q14.25 Like the ball, the balloon will remain in front of you. It will not bob up to the ceiling. Air pressure
will be no higher at the floor of the sealed car than at the ceiling. The balloon will experience no
buoyant force. You might equally well switch off gravity.

Q14.26 Styrofoam is a little more dense than air, so the first ship floats lower in the water.

Q14.27 We suppose the compound object floats. In both orientations it displaces its own weight of water, so
it displaces equal volumes of water. The water level in the tub will be unchanged when the object is
turned over. Now the steel is underwater and the water exerts on the steel a buoyant force that was
not present when the steel was on top surrounded by air. Thus, slightly less wood will be below the
water line on the block. It will appear to float higher.

Q14.28 A breeze from any direction speeds up to go over the mound and the air pressure drops. Air then
flows through the burrow from the lower entrance to the upper entrance.

Q14.29 Regular cola contains a considerable mass of dissolved sugar. Its density is higher than that of water.
Diet cola contains a very small mass of artificial sweetener and has nearly the same density as water.
The low–density air in the can has a bigger effect than the thin aluminum shell, so the can of diet
cola floats.

Q14.30 (a) Lowest density: oil; highest density: mercury

(b) The density must increase from top to bottom.

Q14.31 (a) Since the velocity of the air in the right-hand section of the pipe is lower than that in the
middle, the pressure is higher.

(b) The equation that predicts the same pressure in the far right and left-hand sections of the
tube assumes laminar flow without viscosity. Internal friction will cause some loss of
mechanical energy and turbulence will also progressively reduce the pressure. If the
pressure at the left were not higher than at the right, the flow would stop.
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Q14.32 Clap your shoe or wallet over the hole, or a seat cushion, or your hand. Anything that can sustain a
force on the order of 100 N is strong enough to cover the hole and greatly slow down the escape of
the cabin air. You need not worry about the air rushing out instantly, or about your body being
“sucked” through the hole, or about your blood boiling or your body exploding. If the cabin pressure
drops a lot, your ears will pop and the saliva in your mouth may boil—at body temperature—but
you will still have a couple of minutes to plug the hole and put on your emergency oxygen mask.
Passengers who have been drinking carbonated beverages may find that the carbon dioxide
suddenly comes out of solution in their stomachs, distending their vests, making them belch, and all
but frothing from their ears; so you might warn them of this effect.

SOLUTIONS TO PROBLEMS

Section 14.1 Pressure

P14.1 M V= = L
NM

O
QPρ πiron

3 kg m  m7 860
4
3

0 015 0 3e j b g.

M = 0 111.  kg

P14.2 The density of the nucleus is of the same order of magnitude as that of one proton, according to the
assumption of close packing:

ρ
π

=
× −

−

m
V

~
.

~
1 67 10

10
10

27

4
3

15 3
18 kg

 m
 kg m3

e j
.

With vastly smaller average density, a macroscopic chunk of matter or an atom must be mostly
empty space.

P14.3 P
F
A

= =
×

= ×
−

50 0 9 80

0 500 10
6 24 10

2 2
6. .

.
.

a f
e jπ

 N m2

P14.4 Let Fg  be its weight. Then each tire supports 
Fg

4
,

so P
F
A

F

A
g

= =
4

yielding F APg = = × = ×4 4 0 024 0 200 10 1 92 103 4. . m  N m  N2 2e je j

P14.5 The Earth’s surface area is 4 2πR . The force pushing inward over this area amounts to

F P A P R= =0 0
24πe j .

This force is the weight of the air:

F mg P Rg = = 0
24πe j

so the mass of the air is

m
P R

g
= =

× ×L
NM

O
QP = ×

0
2 5 6 2

18
4 1 013 10 4 6 37 10

9 80
5 27 10

π πe j e j e j. .

.
.

 N m  m

 m s
 kg

2

2 .
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Section 14.2 Variation of Pressure with Depth

P14.6 (a) P P gh= + = × +0
51 013 10 1 024 9 80 1 000ρ . . Pa  kg m  m s  m3 2e je jb g

P = ×1 01 107.  Pa

(b) The gauge pressure is the difference in pressure between the water outside and the air
inside the submarine, which we suppose is at 1.00 atmosphere.

P P P ghgauge  Pa= − = = ×0
71 00 10ρ .

The resultant inward force on the porthole is then

F P A= = × = ×gauge  Pa  m  N1 00 10 0 150 7 09 107 2 5. . .π a f .

P14.7 F Fel = fluid or kx ghA= ρ

and h
kx
gA

=
ρ

h =
×

×L
NM

O
QP
=

−

−

1 000 5 00 10

10 9 80 1 00 10
1 62

3

3 2 2

 N m  m

 kg m  m s  m
 m

2

3 2

e je j
e je j e j

.

. .
.

π
FIG. P14.7

P14.8 Since the pressure is the same on both sides,
F
A

F
A

1

1

2

2
=

In this case,
15 000

200 3 00
2=

F
.

or F2 225=  N

P14.9 Fg = =80 0 9 80 784. . kg  m s  N2e j
When the cup barely supports the student, the normal force of the
ceiling is zero and the cup is in equilibrium.

F F PA A

A
F

P

g

g

= = = ×

= =
×

= × −

1 013 10

784
1 013 10

7 74 10

5

5
3

.

.
.

 Pa

 m2

e j

FIG. P14.9

P14.10 (a) Suppose the “vacuum cleaner” functions as a high–vacuum pump. The air below the brick
will exert on it a lifting force

F PA= = × ×L
NM

O
QP =

−1 013 10 1 43 10 65 15 2 2
. . . Pa  m  Nπ e j .

(b) The octopus can pull the bottom away from the top shell with a force that could be no larger
than

F PA P gh A

F

= = + = × + ×L
NM

O
QP

=

−
0

5 2 2
1 013 10 1 030 9 80 32 3 1 43 10

275

ρ πb g e je ja f e j. . . . Pa  kg m  m s  m  m

 N

3 2
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P14.11 The excess water pressure (over air pressure) halfway down is

P ghgauge
3 2 kg m  m s  m  Pa= = = ×ρ 1 000 9 80 1 20 1 18 104e je ja f. . . .

The force on the wall due to the water is

F P A= = × = ×gauge  Pa  m  m  N1 18 10 2 40 9 60 2 71 104 5. . . .e ja fa f
horizontally toward the back of the hole.

P14.12 The pressure on the bottom due to the water is P gzb = = ×ρ 1 96 104.  Pa

So, F P Ab b= = ×5 88 106.  N

On each end, F PA= = × =9 80 10 20 0 1963. . Pa  m  kN2e j
On the side, F PA= = × =9 80 10 60 0 5883. . Pa  m  kN2e j

P14.13 In the reference frame of the fluid, the cart’s acceleration causes a fictitious force to act backward, as if

the acceleration of gravity were g a2 2+  directed downward and backward at θ =
F
HG
I
KJ

−tan 1 a
g

 from the

vertical. The center of the spherical shell is at depth 
d
2

 below the air bubble and the pressure there is

P P g h P d g a= + = + +0 0
2 21

2
ρ ρeff .

P14.14 The air outside and water inside both exert atmospheric pressure,
so only the excess water pressure ρgh counts for the net force. Take
a strip of hatch between depth h and h dh+ . It feels force

dF PdA gh dh= = ρ 2 00.  ma f .

(a) The total force is

F dF gh dh
h

= =z z
=

ρ 2 00
1.00

.  m
 m

2.00 m

a f

2.00 m 1.00 m

2.00 m

FIG. P14.14

F g
h

F

= = −

=

ρ 2 00
2

1 000 9 80
2 00

2
2 00 1 00

29 4

2

1.00

2 2. .
.

. .

.

 m  kg m  m s
 m

 m  m

 kN to the right

 m

2.00 m
3 2a f e je j a f a f a f

b g
(b) The lever arm of dF is the distance h−1 00.  ma f from hinge to strip:

τ τ ρ

τ ρ

τ

τ

= = −

= −
L
NM

O
QP

= −
F
HG

I
KJ

= ⋅

z z
=

d gh h dh

g
h h

h

2 00 1 00

2 00
3

1 00
2

1 000 9 80 2 00
7 00

3
3 00

2

16 3

1.00

3 2

1.00

. .

. .

. .
. .

.

 m  m

 m  m

 kg m  m s  m
 m  m

 kN m counterclockwise

 m

2.00 m

 m

2.00 m

3 2
3 3

a fa f

a f a f

e je ja f
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P14.15 The bell is uniformly compressed, so we can model it with any shape. We choose a sphere of
diameter 3.00 m.
The pressure on the ball is given by: P P ghw= +atm ρ  so the change in pressure on the ball from
when it is on the surface of the ocean to when it is at the bottom of the ocean is ∆P ghw= ρ .
In addition:

∆
∆

∆

V
V P
B

ghV
B

ghr
B

B

V

w w=
−

= − = −

= −
×

= −

ρ πρ

π

4
3

4 1 030 9 80 10 000 1 50

3 14 0 10
0 010 2

3

3

10

,  where  is the Bulk Modulus.

 kg m  m s  m  m

 Pa
 m

3 2
3e je jb ga f

a fe j
. .

.
.

Therefore, the volume of the ball at the bottom of the ocean is

V V− = − = − =∆
4
3

1 50 0 010 2 14 137 0 010 2 14 1273π . . . . . m  m  m  m  m3 3 3 3a f .

This gives a radius of 1.499 64 m and a new diameter of 2.999 3 m. Therefore the diameter decreases
by 0 722.  mm .

Section 14.3 Pressure Measurements

P14.16 (a) We imagine the superhero to produce a perfect vacuum in the straw. Take point 1 at the
water surface in the basin and point 2 at the water surface in the straw:

P gy P gy1 1 2 2+ = +ρ ρ

1 013 10 0 0 1 000 9 805
2. .× + = + N m  kg m  m s2 3 2e je jy y2 10 3= .  m

(b) No atmosphere can lift the water in the straw through zero  height difference.

P14.17 P gh0 = ρ

h
P
g

= =
×

×
=0

510 13 10

9 80
10 5

ρ
.

.
.

 Pa

0.984 10  kg m  m s
 m

3 3 2e je j

No.  Some alcohol and water will evaporate.  The equilibrium

vapor pressures of alcohol and water are higher than the vapor
pressure of mercury.

FIG. P14.17
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P14.18 (a) Using the definition of density, we have

h
m

Aw = = =water

water
2 3

 g

5.00 cm  g cm
 cm

2

100

1 00
20 0

ρ .
.

e j

(b) Sketch (b) at the right represents the situation after
the water is added. A volume A h2 2b g of mercury
has been displaced by water in the right tube. The
additional volume of mercury now in the left tube
is A h1 . Since the total volume of mercury has not
changed, FIG. P14.18

A h A h2 2 1= or h
A
A

h2
1

2
= (1)

At the level of the mercury–water interface in the right tube, we may write the absolute
pressure as:

P P ghw= +0 ρwater

The pressure at this same level in the left tube is given by

P P g h h P ghw= + + = +0 2 0ρ ρHg waterb g
which, using equation (1) above, reduces to

ρ ρHg waterh
A
A

hw1 1

2
+
L
NM

O
QP
=

or h
hw

A
A

=
+

ρ

ρ
water

Hg 1 1

2
e j

.

Thus, the level of mercury has risen a distance of h =
+

=
1 00 20 0

13 6 1
0 490

10 0
5 00

. .

.
.

.
.

 g cm  cm

 g cm
 cm

3

3

e ja f
e jc h

above the original level.

P14.19 ∆ ∆P g h0
32 66 10= = − ×ρ .  Pa : P P P= + = − × = ×0 0

5 51 013 0 026 6 10 0 986 10∆ . . .b g  Pa  Pa

P14.20 Let h be the height of the water column added to the right
side of the U–tube. Then when equilibrium is reached, the
situation is as shown in the sketch at right. Now consider
two points, A and B shown in the sketch, at the level of the
water–mercury interface. By Pascal’s Principle, the absolute
pressure at B is the same as that at A. But,

P P gh gh

P P g h h h

A w

B w

= + +

= + + +

0 2

0 1 2

ρ ρ

ρ
Hg  and

b g.

Thus, from P PA B= ,ρ ρ ρ ρ ρw w w wh h h h h1 2 2+ + = + Hg , or

h h
w

1 21 13 6 1 1 00 12 6= −
L
NM

O
QP

= − =
ρ

ρ
Hg  cm  cm. . .a fa f .

 

B A 

h 

h 1 

h 2 

water 

Mercury 

FIG. P14.20
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*P14.21 (a) P P gh= +0 ρ
The gauge pressure is

P P gh− = = = = ×
×

F
HG

I
KJ

=

0
31 000 0 160 1 57 1 57 10

1

0 015 5

ρ  kg 9.8 m s  m  kPa  Pa
 atm

1.013 10  Pa

 atm

2
5e ja f. . .

. .

It would lift a mercury column to height

h
P P

g
=

−
= =0 1 568

9 8
11 8

ρ
 Pa

13 600 kg m  m s
 mm

3 2e je j.
. .

(b) Increased pressure of the cerebrospinal fluid will raise the level of the fluid in the
spinal tap.

(c) Blockage of the fluid within the spinal column or between the skull and the spinal
column would prevent the fluid level from rising.

Section 14.4 Buoyant Forces and Archimede’s Principle

P14.22 (a) The balloon is nearly in equilibrium:
F ma B F Fy y g g∑ = ⇒ − − =e j e j

helium payload
0

or ρ ρair helium payloadgV gV m g− − = 0

This reduces to
m V

m

payload air helium
3 3 3

payload

 kg m  kg m  m

 kg

= − = −

=

ρ ρb g e je j1 29 0 179 400

444

. .

(b) Similarly,
m V

m

payload air hydrogen
3 3 3

payload

 kg m  kg m  m

 kg

= − = −

=

ρ ρe j e je j1 29 0 089 9 400

480

. .

The air does the lifting, nearly the same for the two balloons.

P14.23 At equilibrium F∑ = 0  or F mg Bapp + =

where B is the buoyant force.
The applied force, F B mgapp = −

where B g= Vol waterρb g
and m = Vol balla fρ .

So, F g r gapp = − = −Vol water ball water balla f b g b gρ ρ π ρ ρ
4
3

3 FIG. P14.23

Fapp = × − =−4
3

1 90 10 9 80 10 84 0 0 2582 3 3π . . . . m  m s  kg m  kg m  N2 3 3e j e je j
P14.24 F m V gg s= + ρb g  must be equal to F Vgb w= ρ

Since V Ah= , m Ah Ahs w+ =ρ ρ

and A
m

hw s
=

−ρ ρb g
FIG. P14.24
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P14.25 (a) Before the metal is immersed:

F T Mgy∑ = − =1 0  or

T Mg1 1 00 9 80

9 80

= =

=

. .

.

 kg  m s

 N

2b ge j

(b) After the metal is immersed:

F T B Mgy∑ = + − =2 0  or

T Mg B Mg V gw2 = − = − ρb g

V
M

= =
ρ

1 00
2 700

.  kg
 kg m3

Thus,

a

scale

b

B

Mg

T1

Mg

T2

FIG. P14.25

T Mg B2 9 80 1 000
1 00

9 80 6 17= − = −
F
HG

I
KJ =.

.
. . N  kg m

 kg
2 700 kg m

 m s  N3
3

2e j e j .

*P14.26 (a) Fg

T B

FIG. P14.26(a)

(b) Fy∑ = 0 : − − + =15 10 0 N  N B

B = 25 0.  N

(c) The oil pushes horizontally inward  on each side of the block.

(d) String tension increases . The oil causes the water below to be

under greater pressure, and the water pushes up more strongly
on the bottom of the block.

(e) Consider the equilibrium just before the string breaks:

− − + =
=

15 60 25 0
50

 N  N  N+
 N

oil

oil

B
B

For the buoyant force of the water we have

B Vg V

V

= =

= × −

ρ 25 1 000 0 25 9 8

1 02 10 2

 N  kg m  m s

 m

3
block

2

block
3

e jb g. .

.

60 N B
25 N

15 N

oil

FIG. P14.26(e)

For the buoyant force of the oil

50 800 1 02 10 9 8

0 625 62 5%

2 N  kg m  m  m s3 3 2= ×

= =

−e j e jf

f

e

e

. .

. .

(f) − + × =−15 800 1 02 10 9 8 02 N  kg m  m  m s3 3 2e j e jf f . .

f f = =0 187 18 7%. .

B

15 N

oil

FIG. P14.26(f)
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P14.27 (a) P P gh= +0 ρ
Taking P0

51 013 10= ×.  N m2  and h = 5 00.  cm
we find Ptop

2 N m= ×1 017 9 105.

For h = 17 0.  cm, we get Pbot
2 N m= ×1 029 7 105.

Since the areas of the top and bottom are A = = −0 100 102 2.  m  m2a f
we find F P Atop top  N= = ×1 017 9 103.

and Fbot  N= ×1 029 7 103.

(b) T B Mg+ − = 0

where B Vgw= = × =−ρ 10 1 20 10 9 80 11 83 3 kg m  m  m s  N3 3 2e je je j. . .
FIG. P14.27

and Mg = =10 0 9 80 98 0. . .a f  N

Therefore, T Mg B= − = − =98 0 11 8 86 2. . .  N

(c) F Fbot top  N  N− = − × =1 029 7 1 017 9 10 11 83. . .b g
which is equal to B found in part (b).

P14.28 Consider spherical balloons of radius 12.5 cm containing helium at STP and immersed in air at 0°C
and 1 atm. If the rubber envelope has mass 5.00 g, the upward force on each is

B F F Vg Vg m g

F r g m g

F

g g env env

up env

up

− − = − −

= − F
HG
I
KJ −

= − L
NM

O
QP − × =−

, ,

. . . . . .

He air He

air He

3 2 2 kg m  m  m s  kg 9.80 m s  N

ρ ρ

ρ ρ π

π

b g

a f a f e j e j

4
3

1 29 0 179
4
3

0 125 9 80 5 00 10 0 040 1

3

3 3

If your weight (including harness, strings, and submarine sandwich) is

70 0 9 80 686. . kg  m s  N2e j =

you need this many balloons:
686

17 000 104 N
0.040 1 N

= ~ .

P14.29 (a) According to Archimedes, B V g h g= = × × −ρwater water
3 g cm1 00 20 0 20 0 20 0. . . .e j a f

But B mg V g g= = = =Weight of block  g cm  cmwood wood
3ρ 0 650 20 0 3. .e ja f

0 650 20 0 1 00 20 0 20 0 20 03. . . . . .a f a fa fa fg h g= −

20 0 20 0 0 650. . .− =h a f so h = − =20 0 1 0 650 7 00. . .a f  cm

(b) B F Mgg= +  where M =mass of lead

1 00 20 0 0 650 20 0

1 00 0 650 20 0 0 350 20 0 2 800 2 80

3 3

3 3

. . . .

. . . . . .

a f a f
a fa f a f

g g Mg

M

= +

= − = = = g  kg
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*P14.30 (a) The weight of the ball must be equal to the buoyant force of the water:

1 26
4
3

3 1 26
6 70

1 3

.

.
.

 kg

 kg
4 1 000 kg m

 cm

water outer
3

outer 3

g r g

r

=

=
×F

HG
I
KJ =

ρ π

π

(b) The mass of the ball is determined by the density of aluminum:

m V r r

r

r

r

i

i

i

i

= = −F
HG

I
KJ

= F
HG
I
KJ −

× = × −

= × =

− −

−

ρ ρ π π

π

Al Al

3

3 3

3

 kg  kg m  m

 m  m

 m  cm

4
3

4
3

1 26 2 700
4
3

0 067

1 11 10 3 01 10

1 89 10 5 74

0
3 3

3 3

4 4 3

4 1 3

. .

. .

. .

a fe j

e j
*P14.31 Let A represent the horizontal cross-sectional area of the rod, which we presume to be constant. The

rod is in equilibrium:

Fy∑ = 0 : − + = = − +mg B V g V g0 0ρ ρwhole rod fluid immersed

ρ ρ0 ALg A L h g= −a f
The density of the liquid is ρ

ρ
=

−
0L

L h
.

*P14.32 We use the result of Problem 14.31. For the rod floating in a liquid of density 0 98.  g cm3 ,

ρ ρ

ρ

ρ

=
−

=
−

− =

0

0

0

0 98
0 2

0 98 0 98 0 2

L
L h

L
L

L L

.
.

. . .

 g cm
 cm

 g cm  g cm  cm

3

3 3

a f
e j

For floating in the dense liquid,

1 14
1 8

1 14 1 14 1 8

0

0

.
.

. . .

 g cm
 cm

 g cm  g cm  cm

3

3 3

=
−

− =

ρ

ρ

L
L

L

a f
e j

(a) By substitution,
1 14 1 14 1 8 0 98 0 2 0 98
0 16 1 856

11 6

. . . . . .

. .

.

L L
L

L

− = −
=

=

 cm
 cm

 cm

a f a f

(b) Substituting back,
0 98 11 6 0 2 11 6

0 963

0

0

. . . .

.

 g cm  cm  cm  cm

 g cm

3

3

− =

=

a f ρ

ρ

(c) The marks are not equally spaced. Because ρ
ρ

=
−
0L

L h
 is not of the form ρ = +a bh , equal-size

steps of ρ do not correspond to equal-size steps of h.
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P14.33 The balloon stops rising when ρ ρair He− =b ggV Mg and ρ ρair He− =b gV M ,

Therefore, V
M

e
=

−
=

−−ρ ρair He

400
1 25 0 1801. .

V = 1 430 m3

P14.34 Since the frog floats, the buoyant force = the weight of the frog. Also, the weight of the displaced
water = weight of the frog, so

ρooze frogVg m g=

or m V rfrog ooze ooze
3 kg m  m= = F

HG
I
KJ = × × −ρ ρ π

π1
2

4
3

1 35 10
2
3

6 00 103 3 2 3
. .e j e j

Hence, mfrog  kg= 0 611. .

P14.35 B Fg=

ρ ρ

ρ ρ

ρ ρ

ρ

H O sphere

sphere H O
3

glycerin sphere

glycerin
3 3

2

2
 kg m

 kg m  kg m

g
V

gV

g V gV

2
1
2

500

4
10

0

10
4

500 1 250

=

= =

F
HG
I
KJ − =

= =e j

FIG. P14.35

P14.36 Constant velocity implies zero acceleration, which means that the submersible is in equilibrium
under the gravitational force, the upward buoyant force, and the upward resistance force:

F may y∑ = = 0 − × + + + =1 20 10 1 100 04.  kg  Nm g gVwe j ρ

where m is the mass of the added water and V is the sphere’s volume.

1 20 10 1 03 10
4
3

1 50
1 1004 3 3. . .× + = × L

NM
O
QP + kg

 N
9.8 m s2m π a f

so m = ×2 67 103.  kg

P14.37 By Archimedes’s principle, the weight of the fifty planes is equal to the weight of a horizontal slice of
water 11.0 cm thick and circumscribed by the water line:

∆ ∆B g V

g g A

=

× =

ρwater

3 kg  kg m  m

a f
e j e j a f50 2 90 10 1 030 0 1104. .

giving A = ×1 28 104.  m2 . The acceleration of gravity does not affect the answer.
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Section 14.5 Fluid Dynamics

Section 14.6 Bernoulli’s Equation

P14.38 By Bernoulli’s equation,

8 00 10
1
2

1 000 6 00 10
1
2

1 000 16

2 00 10
1
2

1 000 15

1 63

1 000 5 00 10 1 63 12 8

4 2 4 2

4 2

2 2

. .

.

.

. . .

× + = × +

× =

=

= = × =−

 N m  N m

 N m

 m s

 m s  kg s

2 2

2

b g b g

b g

e j b g

v v

v

v
dm
dt

Avρ π
FIG. P14.38

P14.39 Assuming the top is open to the atmosphere, then
P P1 0= .

Note P P2 0= .
Flow rate = × = ×− −2 50 10 4 17 103 5. min . m  m s3 3 .

(a) A A1 2>> so v v1 2<<
Assuming v1 0= ,

P
v

gy P
v

gy

v gy

1
1
2

1 2
2
2

2

2 1
1 2 1 2

2 2

2 2 9 80 16 0 17 7

+ + = + +

= = =

ρ
ρ

ρ
ρ

b g a fa f. . .  m s

(b) Flow rate = =
F
HG
I
KJ = × −A v

d
2 2

2
5

4
17 7 4 17 10

π
. .a f  m s3

d = × =−1 73 10 1 733. . m  mm

*P14.40 Take point 1 at the free surface of the water in the tank and 2 inside the nozzle.

(a) With the cork in place P gy v P gy v1 1 1
2

2 2 2
21

2
1
2

+ + = + +ρ ρ ρ ρ  becomes

P P0 21 000 9 8 7 5 0 0 0+ + = + + kg m  m s  m3 2. . ; P P2 0
47 35 10− = ×.  Pa .

For the stopper Fx∑ = 0

F F f
P A P A f

f

water air

 Pa 0.011 m  N

− − =
− =

= × =

0

7 35 10 27 9

2 0

4 2. .π a f

Fwater Fair

f

FIG. P14.40

(b) Now Bernoulli’s equation gives

P P v

v

0
4

0 2
2

2

7 35 10 0 0
1
2

1 000

12 1

+ × + = + +

=

.

.

 Pa  kg m

 m s

3e j

The quantity leaving the nozzle in 2 h is

ρ ρ πV Av t= = ×2
21 000 0 011 12 1 7 200 kg m  m  m s  s= 3.32 10  kg3 4e j a f b g. . .

continued on next page
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(c) Take point 1 in the wide hose and 2 just outside the nozzle. Continuity:

A v A v

v

v

P gy v P gy v

P P

P P

1 1 2 2
2

1

2

1

1 1 1
2

2 2 2
2

1
2

0
2

1 0
4 2 4

6 6 2 2
12 1

12 1
9

1 35

1
2

1
2

0
1
2

1 000 1 35 0
1
2

1 000 12 1

7 35 10 9 07 10 7 26 10

=

F
HG

I
KJ = FHG

I
KJ

= =

+ + = + +

+ + = + +

− = × − × = ×

π π

ρ ρ ρ ρ

. .
.

.
.

. .

. . .

 cm
2

 cm
2

 m s

 m s
 m s

 kg m  m s  kg m  m s

 Pa  Pa  Pa

3 3e jb g e jb g

P14.41 Flow rate Q v A v A= = =0 012 0 1 1 2 2.  m s3

v
Q
A A2

2 2

0 012 0
31 6= = =

.
.  m s

*P14.42 (a) P = = = FHG
I
KJ =

∆
∆

∆
∆

∆
∆

E
t

mgh
t

m
t

gh Rgh

(b) PEL   MW= × =0 85 8 5 10 9 8 87 6165. . .e ja fa f

*P14.43 The volume flow rate is

125
16 3

0 96
1

2

1
 cm

 s
 cm

2

3

.
.

= = FHG
I
KJAv vπ .

The speed at the top of the falling column is

v1
7 67
0 724

10 6= =
.
.

.
 cm s

 cm
 cm s

3

2 .

Take point 2 at 13 cm below:

P gy v P gy v

P

P v

v

1 1 1
2

2 2 2
2

0
2

0 2
2

2
2

1
2

1
2

1 000 9 8 0 13
1
2

1 000 0 106

0
1
2

1 000

2 9 8 0 13 0 106 1 60

+ + = + +

+ +

= + +

= + =

ρ ρ ρ ρ

 kg m  m s  m  kg m  m s

 kg m

 m s  m  m s  m s

3 2 3

3

2

e je j e jb g

e j

e j b g

. . .

. . . .

The volume flow rate is constant:

7 67
2

160

0 247

2

.

.

 cm s  cm s

 cm

3 = FHG
I
KJ

=

π
d

d
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*P14.44 (a) Between sea surface and clogged hole: P v gy P v gy1 1
2

1 2 2
2

2
1
2

1
2

+ + = + +ρ ρ ρ ρ

1 0 1 030 9 8 2 0 02 atm  kg m  m s  m3 2+ + = + +e je ja f. P P2 1 20 2= + atm  kPa.

The air on the back of his hand pushes opposite the water, so the net force on his hand is

F PA= = × F
HG
I
KJ × −20 2 10

4
1 2 103 2 2

. . N m  m2e j e jπ
F = 2 28.  N

(b) Now, Bernoulli’s theorem is

1 0 20 2 1
1
2

1 030 02
2 atm  kPa  atm  kg m3+ + = + +. e jv v2 6 26= .  m s

The volume rate of flow is A v2 2
2 2 4

4
1 2 10 6 26 7 08 10= × = ×− −π
. . . m  m s  m s3e j b g

One acre–foot is 4 047 0 304 8 1 234 m  m  m2 3× =.

Requiring
1 234

7 08 10
1 74 10 20 24

6 m
 m s

 s  days
3

3.
. .

×
= × =−

P14.45 (a) Suppose the flow is very slow: P v gy P v gy+ +F
HG

I
KJ = + +F
HG

I
KJ

1
2

1
2

2 2ρ ρ ρ ρ
river rim

P g g

P

+ + = + +

= + = +

0 564 1 0 2 096

1 1 000 9 8 1 532 1 15 0

ρ ρ m  atm  m

 atm  kg m  m s  m  atm  MPa3 2

a f b g
e je jb g. .

(b) The volume flow rate is 4 500
4

2

 m d3 = =Av
d vπ

v = F
HG

I
KJ
F
HG

I
KJ
=4 500

1 4

0 150
2 952 m d

 d
86 400 s  m

 m s3e j a fπ .
.

(c) Imagine the pressure as applied to stationary water at the bottom of the pipe:

P v gy P v gy

P

P

+ +F
HG

I
KJ = + +F

HG
I
KJ

+ = + +

= + +

1
2

1
2

0 1
1
2

1 000 2 95 1 000 1 532

1 15 0 4 34

2 2

2

ρ ρ ρ ρ
bottom top

3 2 atm  kg m  m s  kg 9.8 m s  m

 atm  MPa  kPa

e jb g e jb g.

. .

The additional pressure is 4 34.  kPa .
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P14.46 (a) For upward flight of a water-drop projectile from geyser vent to fountain–top,
v v a yyf yi y

2 2 2= + ∆

Then 0 2 9 80 40 02= + − +vi . . m s  m2e ja f and vi = 28 0.  m s

(b) Between geyser vent and fountain–top: P v gy P v gy1 1
2

1 2 2
2

2
1
2

1
2

+ + = + +ρ ρ ρ ρ

Air is so low in density that very nearly P P1 2 1= =  atm

Then,
1
2

0 0 9 80 40 02vi + = + . . m s  m2e ja f
v1 28 0= .  m s

(c) Between the chamber and the fountain-top: P v gy P v gy1 1
2

1 2 2
2

2
1
2

1
2

+ + = + +ρ ρ ρ ρ

P P

P P

1 0

1 0

0 1 000 9 80 175 0 1 000 9 80 40 0

1 000 9 80 215 2 11

+ + − = + + +

− = =

 kg m  m s  m  kg m  m s  m

 kg m  m s  m  MPa

3 2 3 2

3 2

e je ja f e je ja f
e je ja f

. . .

. .

P14.47 P
v

P1
1
2

2
2
2

2 2
+ = +
ρ ρ

 (Bernoulli equation), v A v A1 1 2 2=  where 
A
A

1

2
4=

∆P P P v v v
A
A

= − = − = −
F
HG

I
KJ1 2 2

2
1
2

1
2 1

2

2
22 2

1
ρ ρe j  and ∆P

v
= =
ρ 1

2

2
15 21 000 Pa

v1 2 00= .  m s ; v v2 14 8 00= = .  m s:

The volume flow rate is v A1 1
32 51 10= × −.  m s3

Section 14.7 Other Applications of Fluid Dynamics

P14.48 Mg P P A= −1 2b g for a balanced condition
16 000 9 80

7 00 104
2

.
.

a f
A

P= × −

where A = 80 0.  m2 ∴ = × − × = ×P2
4 4 47 0 10 0 196 10 6 80 10. . .  Pa

P14.49 ρ ρair Hg
v

P g h
2

2
= =∆ ∆

v
g h

= =
2

103
ρ

ρ
Hg

air
 m s

∆ A

vair

Mercury

∆h

FIG. P14.49
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P14.50 The assumption of incompressibility is surely unrealistic, but allows an estimate of the speed:

P gy v P gy v

v

v

1 1 1
2

2 2 2
2

2
2

2

5

1
2

1
2

1 00 0 0 0 287 0
1
2

1 20

2 1 00 0 287 1 013 10

1 20
347

+ + = + +

+ + = + +

=
− ×

=

ρ ρ ρ ρ

. . .

. . .

.

 atm  atm  kg m

 N m

 kg m
 m s

3

2

3

e j
a fe j

P14.51 (a) P gh P v0 0 3
20 0

1
2

+ + = + +ρ ρ v gh3 2=

If h = 1 00.  m , v3 4 43= .  m s

(b) P gy v P v+ + = + +ρ ρ ρ
1
2

0
1
22

2
0 3

2

Since v v2 3= , P P gy= −0 ρ FIG. P14.51

Since P ≥ 0 y
P
g

≤ =
×

=0
51 013 10

9 8
10 3

ρ
.

.
.

 Pa

10  kg m  m s
 m

3 3 2e je j
*P14.52 Take points 1 and 2 in the air just inside and outside the window pane.

P v gy P v gy1 1
2

1 2 2
2

2
1
2

1
2

+ + = + +ρ ρ ρ ρ

P P0 2
2

0
1
2

1 30 11 2+ = + . . kg m  m s3e jb g P P2 0 81 5= − .  Pa

(a) The total force exerted by the air is outward,

P A P A P A P A1 2 0 0 81 5 4 1 5 489− = − + =. . N m  m  m  N outward2e ja fa f

(b) P A P A v A1 2 2
2 21

2
1
2

1 30 22 4 4 1 5 1 96− = = =ρ . . . . kg m  m s  m  m  kN outward3e jb g a fa f

P14.53 In the reservoir, the gauge pressure is ∆P =
×

= ×−
2 00

8 00 105
4.

.
 N

2.50 10  m
 Pa2

From the equation of continuity: A v A v1 1 2 2=

2 50 10 1 00 105
1

8
2. .× = ×− − m  m2 2e j e jv v v v1

4
24 00 10= × −.e j

Thus, v1
2  is negligible in comparison to v2

2 .

Then, from Bernoulli’s equation: P P v gy v gy1 2 1
2

1 2
2

2
1
2

1
2

− + + = +b g ρ ρ ρ ρ

8 00 10 0 0 0
1
2

1 000

2 8 00 10

1 000
12 6

4
2
2

2

4

.

.
.

× + + = +

=
×

=

 Pa  kg m

 Pa

 kg m
 m s

3

3

e j
e j

v

v
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Additional Problems

P14.54 Consider the diagram and apply Bernoulli’s
equation to points A and B, taking y = 0  at
the level of point B, and recognizing that vA

is approximately zero. This gives:

P g h L

P v g

A w w

B w B w

+ + −

= + +

1
2

0

1
2

0

2

2

ρ ρ θ

ρ ρ

a f a f

a f

sin

Now, recognize that P P PA B= = atmosphere

since both points are open to the atmosphere
(neglecting variation of atmospheric
pressure with altitude). Thus, we obtain

h

A

Valve
L B

θ

FIG. P14.54

v g h L

v

B

B

= − = − °

=

2 2 9 80 10 0 2 00 30 0

13 3

sin . . . sin .

.

θa f e j a f m s  m  m

 m s

2

Now the problem reduces to one of projectile motion with v vyi B= °=sin . .30 0 6 64 m s . Then,

v v a yyf yi
2 2 2= + ∆b g  gives at the top of the arc (where y y= max  and vyf = 0 )

0 6 64 2 9 80 02
= + − −. . max m s  m s2b g e jb gy

or ymax .= 2 25 m above the level where the water emergesb g .

P14.55 When the balloon comes into equilibrium, we must have

F B F F Fy g g g∑ = − − − =, , , balloon  He  string 0

Fg , string  is the weight of the string above the ground, and B

is the buoyant force. Now

F m g

F Vg

B Vg

g

g

,

,

 balloon balloon

 He He

air

=

=

=

ρ

ρ

and F m
h
L

gg , string string=

Therefore, we have

He

h

FIG. P14.55

ρ ρair balloon He stringVg m g Vg m
h
L

g− − − = 0

or h
V m

m
L=

− −ρ ρair He balloon

string

b g

giving,

h =
− F

H
I
K −

=
1 29 0 179 0 250

2 00 1 91

4 0 400
3

3

. . .
. .

.a fe j
a f

a fkg m  kg

0.050 0 kg
 m  m

3  mπ

.
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P14.56 Assume vinside ≈ 0

P

P P

+ + = + +

= − = × + × =

0 0 1
1
2

1 000 30 0 1 000 9 80 0 500

1 4 50 10 4 90 10 455

2

5 3

 atm

 atm  kPagauge

b ga f a fa f. . .

. .

P14.57 The “balanced” condition is one in which the apparent weight of the
body equals the apparent weight of the weights. This condition can be
written as:

F B F Bg g− = ′ − ′

where B and ′B  are the buoyant forces on the body and weights
respectively. The buoyant force experienced by an object of volume V
in air equals:

Buoyant force Volume of object air= b gρ g

FIG. P14.57

so we have B V g= ρair and ′ =
′F
HG
I
KJB

F

g
gg

ρ
ρair .

Therefore, F F V
F

g
gg g

g
= ′ + −

′F
HG

I
KJρ
ρair .

P14.58 The cross–sectional area above water is

2 46
0 600 0 200 0 566 0 330

0 600 1 13

1 13 0 330
1 13

0 709 709

2

2

.
. . . .

. .

. .
.

.

 rad
2

 cm  cm  cm  cm

 cm

 g cm  kg m

2

all
2

water under wood all

wood
3 3

π
π

π
ρ ρ

ρ

a f a fa f
a f

− =

= =
=

=
−

= =

A
gA A g

 
0.400 cm 

0.80 cm 

FIG. P14.58

P14.59 At equilibrium, Fy∑ = 0 : B F F Fg g− − − =spring  He  balloon, , 0

giving F kL B m m gspring He balloon= = − +b g .

But B Vg= =weight of displaced air airρ

and m VHe He= ρ .

Therefore, we have: kL Vg Vg m g= − −ρ ρair He balloon

or L
V m
k

g=
− −ρ ρair He balloonb g

. FIG. P14.59

From the data given, L =
− − × −1 29 0 180 5 00 2 00 10

9 80
3. . . .

.
 kg m  kg m  m  kg

90.0 N m
 m s

3 3 3
2e j e j .

Thus, this gives L = 0 604.  m .

P14.60 P gh= ρ 1 013 10 1 29 9 805. . .× = a fh
h = 8 01.  km For Mt. Everest, 29 300 8 88 ft  km= . Yes
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P14.61 The torque is τ τ= =z zd rdF

From the figure τ ρ ρ= − =z y g H y wdy gwH
H

b g
0

31
6

The total force is given as
1
2

2ρgwH

If this were applied at a height yeff  such that the torque remains

unchanged, we have

1
6

1
2

3 2ρ ρgwH y gwHeff= L
NM

O
QP and y Heff =

1
3

.
FIG. P14.61

P14.62 (a) The pressure on the surface of the two hemispheres is constant
at all points, and the force on each element of surface area is
directed along the radius of the hemispheres. The applied force
along the axis must balance the force on the “effective” area,
which is the projection of the actual surface onto a plane
perpendicular to the x axis,

A R= π 2

Therefore, F P P R= −0
2b gπ FIG. P14.62

(b) For the values given F P P P= − = = ×0 0
2

0
40 100 0 300 0 254 2 58 10. . . .b g a fπ  m  N

P14.63 Looking first at the top scale and the iron block, we have:

T B Fg1 + = , iron

where T1  is the tension in the spring scale, B is the buoyant force, and Fg , iron  is the weight of the iron

block. Now if miron  is the mass of the iron block, we have

m Viron iron= ρ so V
m

V= =iron

iron
displaced oilρ

Then, B V g= ρoil iron

Therefore, T F V g m g
m

gg1 = − = −, iron oil iron iron oil
iron

iron
ρ ρ

ρ

or T m g1 1 1
916

7 860
2 00 9 80 17 3= −

F
HG

I
KJ = −

F
HG

I
KJ =

ρ
ρ

oil

iron
iron  N. . .a fa f

Next, we look at the bottom scale which reads T2  (i.e., exerts an upward force T2  on the system).
Consider the external vertical forces acting on the beaker–oil–iron combination.

Fy∑ = 0  gives

T T F F Fg g g1 2 0+ − − − =, , , beaker  oil  iron

or T m m m g T2 1 5 00 9 80 17 3= + + − = −beaker oil iron
2 kg  m s  Nb g b ge j. . .

Thus, T2 31 7= .  N  is the lower scale reading.



432     Fluid Mechanics

P14.64 Looking at the top scale and the iron block:

T B Fg1 + = , Fe where B V g
m

g= =
F
HG
I
KJρ ρ

ρ0 0Fe
Fe

Fe

is the buoyant force exerted on the iron block by the oil.

Thus, T F B m g
m

gg1 0= − = −
F
HG
I
KJ, Fe Fe

Fe

Fe
ρ

ρ

or T m g1
01= −

F
HG

I
KJ

ρ
ρFe

Fe  is the reading on the top scale.

Now, consider the bottom scale, which exerts an upward force of T2  on the beaker–oil–iron
combination.

Fy∑ = 0 : T T F F Fg g g1 2 0+ − − − =, , , beaker  oil  Fe

T F F F T m m m g m gg g g b2 1 0
01= + + − = + + − −

F
HG

I
KJ, , , beaker  oil  Fe Fe

Fe
Feb g ρ

ρ

or T m m m gb2 0
0= + +
F
HG
I
KJ

L
NMM

O
QPP

ρ
ρFe

Fe  is the reading on the bottom scale.

P14.65 ρCu  gV = 3 083.
ρ ρ

ρ
ρ

Zn Cu

Zn
Cu

 g

Zn

xV x V

x x

x

x

a f a f
a f

+ − =

F
HG
I
KJ + − =

−FHG
I
KJ = −FHG

I
KJ

=

=

1 2 517

3 083
3 083 1 2 517

1
7 133
8 960

1
2 517
3 083

0 900 4

90 04%

.

.
. .

.

.
.
.

.

% .

P14.66 (a) From F ma∑ =

B m g m g m a m m a− − = = +shell He total shell Heb g (1)

Where B Vg= ρwater and m VHe He= ρ

Also, V r
d

= =
4
3 6

3
3

π
π

Putting these into equation (1) above,

m
d

a
d

m
d

gshell He water shell He+
F
HG

I
KJ = − −
F
HG

I
KJρ

π
ρ

π
ρ

π3 3 3

6 6 6

which gives

a
m

m
g

d

d
=

− −

+

ρ ρ

ρ

π

π
water He shell

shell He

b g 3

3
6

6

or a =
− −

+
=

1 000 0 180 4 00

0 180
9 80 0 461

0 200
6

0 200
6

3

3

. .

.
. .

.

.

b ge j
e j

a f

a f
kg m  kg

4.00 kg  kg m
 m s  m s

3  m

3  m

2 2
π

π

(b) t
x

a
h d
a

= =
−

=
−

=
2 2 2 4 00 0 200

0 461
4 06

a f a f. .

.
.

 m  m

 m s
 s2



Chapter 14     433

P14.67 Inertia of the disk: I MR= = = ⋅
1
2

1
2

10 0 0 250 0 3122 2. . . kg  m  kg m2b ga f

Angular acceleration: ω ω αf i t= +

α
π

=
−F
HG

I
KJ
F
HG

I
KJ
F
HG
I
KJ = −

0 300
60 0

2 1
0 524

 rev min
 s

 rad
1 rev

 min
60.0 s

 rad s2

.
.

Braking torque: τ α α∑ = ⇒ − =I fd I , so f
I
d

=
− α

Friction force: f =
⋅

=
0 312 0 524

0 220
0 744

. .

.
.

 kg m  rad s

 m
 N

2 2e je j

Normal force: f n n
f

k
k

= ⇒ = = =µ
µ

0 744
1 49

.
.

 N
0.500

 N

gauge pressure: P
n
A

= =
×

=
−

1 49
758

2 2
.  N

2.50 10  m
 Pa

π e j

P14.68 The incremental version of P P gy− =0 ρ  is dP gdy= −ρ

We assume that the density of air is proportional to pressure, or
P P
ρ ρ
= 0

0

Combining these two equations we have dP P
P

gdy= −
ρ0

0

dP
P

g
P

dy
P

P h

0

0

0 0
z z= −

ρ

and integrating gives ln
P
P

gh
P0

0

0

F
HG
I
KJ = −

ρ

so where α
ρ

= 0

0

g
P

, P P e h= −
0

α

P14.69 Energy for the fluid-Earth system is conserved.

K U E K Ui f+ + = +a f a f∆ mech : 0
2

0
1
2

02+ + = +
mgL

mv

v gL= = =2 00 4 43. . m 9.8 m s  m s2e j
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P14.70 Let s stand for the edge of the cube, h for the depth of immersion, ρ ice  stand for the density of the
ice, ρw  stand for density of water, and ρ a  stand for density of the alcohol.

(a) According to Archimedes’s principle, at equilibrium we have

ρ ρ
ρ
ρice

icegs ghs h sw
w

3 2= ⇒ =

With ρ ice
3 kg m= ×0 917 103.

ρw = ×1 00 103.  kg m3

and s = 20 0.  mm

we get h = = ≈20 0 0 917 18 34 18 3. . . .a f  mm  mm

(b) We assume that the top of the cube is still above the alcohol surface. Letting ha  stand for the
thickness of the alcohol layer, we have

ρ ρ ρa a w wgs h gs h gs2 2 3+ = ice so h s hw
w

a

w
a=

F
HG
I
KJ −
F
HG
I
KJ

ρ
ρ

ρ
ρ

ice

With ρ a = ×0 806 103.  kg m3

and ha = 5 00.  mm

we obtain hw = − = ≈18 34 0 806 5 00 14 31 14 3. . . . .a f  mm  mm

(c) Here ′ = − ′h s hw a , so Archimedes’s principle gives

ρ ρ ρ ρ ρ ρ

ρ ρ
ρ ρ

a a w a a a w a

a
w

w a

gs h gs s h gs h s h s

h s

2 2 3

20 0
1 000 0 917
1 000 0 806

8 557 8 56

′ + − ′ = ⇒ ′ + − ′ =

′ =
−

−
=

−
−

= ≈

b g b g
b g
b g

a f
a f

ice ice

ice  mm.
. .
. .

. .
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P14.71 Note: Variation of atmospheric pressure with altitude is included in
this solution. Because of the small distances involved, this effect is
unimportant in the final answers.

(a) Consider the pressure at points A and B in part (b) of the
figure:

Using the left tube: P P gh g L hA a w= + + −atm ρ ρ a f where the
second term is due to the variation of air pressure with
altitude.

Using the right tube: P P gLB = +atm ρ0

But Pascal’s principle says that P PA B= .

Therefore, P gL P gh g L ha watm atm+ = + + −ρ ρ ρ0 a f
or ρ ρ ρ ρw a wh L− = −b g b g0 , giving

h Lw

w a
=

−
−

F
HG

I
KJ =

−
−

F
HG

I
KJ =

ρ ρ
ρ ρ

0 1 000 750
1 000 1 29

5 00 1 25
.

. . cm  cm

(b) Consider part (c) of the diagram showing the situation
when the air flow over the left tube equalizes the fluid
levels in the two tubes. First, apply Bernoulli’s equation to
points A and B y y v v vA B A B= = =, ,  and 0b g

This gives: P v gy P gyA a a A B a a B+ + = + +
1
2

1
2

02 2ρ ρ ρ ρa f

and since y yA B= , this reduces to: P P vB A a− =
1
2

2ρ (1)

Now consider points C and D, both at the level of the
oil–water interface in the right tube. Using the variation of
pressure with depth in static fluids, we have:

FIG. P14.71

P P gH gLC A a w= + +ρ ρ and P P gH gLD B a= + +ρ ρ0

But Pascal’s principle says that P PC D= . Equating these two gives:

P gH gL P gH gLB a A a w+ + = + +ρ ρ ρ ρ0 or P P gLB A w− = −ρ ρ 0b g (2)

Substitute equation (1) for P PB A−  into (2) to obtain
1
2

2
0ρ ρ ρa wv gL= −b g

or v
gL w

a
=

−
=

−F
HG

I
KJ

2
2 9 80 0 050 0

1 000 750
1 29

0ρ ρ
ρ
b g e jb g. .

.
 m s  m2

v = 13 8.  m s
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P14.72 (a) The flow rate, Av, as given may be expressed as follows:

25 0
0 833 833

.
.

 liters
30.0 s

 liters s  cm s3= = .

The area of the faucet tap is π cm2 , so we can find the velocity as

v
A

= = = =
flow rate  cm s

 cm
 cm s  m s

3

2

833
265 2 65

π
. .

(b) We choose point 1 to be in the entrance pipe and point 2 to be at the faucet tap. A v A v1 1 2 2=
gives v1 0 295= .  m s . Bernoulli’s equation is:

P P v v g y y1 2 2
2

1
2

2 1
1
2

− = − + −ρ ρe j b g

and gives

P P1 2
3 2 2 31

2
10 2 65 0 295 10 9 80 2 00− = − + kg m  m s  m s  kg m  m s  m3 3 2e j b g b g e je ja f. . . .

or P P Pgauge  Pa= − = ×1 2
42 31 10. .

P14.73 (a) Since the upward buoyant force is balanced by the weight of the sphere,

m g Vg R g1
34

3
= = FHG

I
KJρ ρ π .

In this problem, ρ = 0 789 45.  g cm3  at 20.0°C, and R = 1 00.  cm so we find:

m R1
3 34

3
0 789 45

4
3

1 00 3 307= FHG
I
KJ =

L
NM

O
QP =ρ π π. . . g cm  cm  g3e j a f .

(b) Following the same procedure as in part (a), with ′ =ρ 0 780 97.  g cm3  at 30.0°C, we find:

m R2
3 34

3
0 780 97

4
3

1 00 3 271= ′FHG
I
KJ =

L
NM

O
QP =ρ π π. . . g cm  cm  g3e j a f .

(c) When the first sphere is resting on the bottom of the tube,

n B F m gg+ = =1 1 , where n is the normal force.

Since B Vg= ′ρ

n m g Vg

n

= − ′ = −

= ⋅ = × −

1
3

4

3 307 0 780 97 1 00 980

34 8 3 48 10

ρ . . .

. .

 g  g cm  cm  cm s

 g cm s  N

3 2

2

e ja f
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*P14.74 (a) Take point 1 at the free water surface in the tank and point 2 at the bottom end of the tube:

P gy v P gy v

P gd P v

v gd

1 1 1
2

2 2 2
2

0 0 2
2

2

1
2

1
2

0 0
1
2

2

+ + = + +

+ + = + +

=

ρ ρ ρ ρ

ρ ρ

The volume flow rate is 
V
t

Ah
t

v A= = ′2 . Then t
Ah

v A
Ah

A gd
=

′
=

′2 2
.

(b) t =
×

=
−

0 5 0 5

2 9 8 10
44 6

2

4

. .

.
.

 m  m

2 10  m  m s  m
 s

2 2

a f
e j

*P14.75 (a) For diverging stream lines that pass just above and just below the hydrofoil we have

P gy v P gy vt t t b b b+ + = + +ρ ρ ρ ρ
1
2

1
2

2 2 .

Ignoring the buoyant force means taking y yt b≈

P nv P v

P P v n

t b b b

b t b

+ = +

− = −

1
2

1
2

1
2

1

2 2

2 2

ρ ρ

ρ

b g

e j

The lift force is P P A v n Ab t b− = −b g e j1
2

12 2ρ .

(b) For liftoff,

1
2

1

2

1

2 2

2

1 2

ρ

ρ

v n A Mg

v
Mg

n A

b

b

− =

=
−

F
H
GG

I
K
JJ

e j

e j

The speed of the boat relative to the shore must be nearly equal to this speed of the water
below the hydrofoil relative to the boat.

(c) v n A Mg

A

2 2

2 2

1 2

2 800 9 8

9 5 1 05 1 1 000
1 70

− =

=
−

=

e j
b g

b g e j

ρ

 kg  m s

 m s  kg m
 m

2

3
2.

. .
.
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ANSWERS TO EVEN PROBLEMS

P14.2 ~1018  kg m3 ; matter is mostly empty
space

P14.38 12 8.  kg s

P14.40 (a) 27.9 N; (b) 3.32 10  kg4× ;
P14.4 1 92 104. ×  N (c) 7 26 104. ×  Pa

P14.6 (a) 1 01 107. ×  Pa ; P14.42 (a) see the solution; (b) 616 MW
(b)7 09 105. ×  N  outward

P14.44 (a) 2.28 N toward Holland; (b) 1 74 106. ×  s
P14.8 255 N

P14.46 (a), (b) 28 0.  m s ; (c) 2 11.  MPa
P14.10 (a) 65.1 N; (b) 275 N

P14.48 6 80 104. ×  Pa
P14.12 5 88 106. ×  N  down; 196 kN outward;

588 kN outward P14.50 347 m s

P14.14 (a) 29.4 kN to the right; P14.52 (a) 489 N outward; (b) 1.96 kN outward
(b) 16 3.  kN m counterclockwise⋅

P14.54 2.25 m above the level where the water
emergesP14.16 (a) 10.3 m; (b) zero

P14.18 (a) 20.0 cm; (b) 0.490 cm P14.56 455 kPa

P14.20 12.6 cm P14.58 709 kg m3

P14.22 (a) 444 kg; (b) 480 kg P14.60 8.01 km; yes

P14.24
m

hw sρ ρ−b g P14.62 (a) see the solution; (b) 2 58 104. ×  N

P14.64 top scale: 1 0−
F
HG

I
KJ

ρ
ρFe

Fem g ;P14.26 (a) see the solution; (b) 25.0 N up;
(c) horizontally inward;
(d) tension increases; see the solution;

bottom scale: m m
m

gb + +
F
HG

I
KJ0

0ρ
ρ

Fe

Fe
(e) 62.5%; (f) 18.7%

P14.28 ~104  balloons of 25-cm diameter
P14.66 (a) 0 461.  m s2 ; (b) 4.06 s

P14.30 (a) 6.70 cm; (b) 5.74 cm
P14.68 see the solution

P14.32 (a) 11.6 cm; (b) 0 963.  g cm3 ;
P14.70 (a) 18.3 mm; (b) 14.3 mm; (c) 8.56 mm(c) no; see the solution

P14.72 (a) 2 65.  m s ; (b) 2 31 104. ×  PaP14.34 0.611 kg

P14.74 (a) see the solution; (b) 44.6 sP14.36 2 67 103. ×  kg
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Oscillatory Motion

ANSWERS TO QUESTIONS

Q15.1 Neither are examples of simple harmonic motion, although
they are both periodic motion. In neither case is the acceleration
proportional to the position. Neither motion is so smooth as
SHM. The ball’s acceleration is very large when it is in contact
with the floor, and the student’s when the dismissal bell rings.

Q15.2 You can take φ π= , or equally well, φ π= − . At t = 0 , the particle
is at its turning point on the negative side of equilibrium, at
x A= − .

Q15.3 The two will be equal if and only if the position of the particle
at time zero is its equilibrium position, which we choose as the
origin of coordinates.

Q15.4 (a) In simple harmonic motion, one-half of the time, the velocity is in the same direction as the
displacement away from equilibrium.

(b) Velocity and acceleration are in the same direction half the time.

(c) Acceleration is always opposite to the position vector, and never in the same direction.

Q15.5 No. It is necessary to know both the position and velocity at time zero.

Q15.6 The motion will still be simple harmonic motion, but the period of oscillation will be a bit larger. The

effective mass of the system in ω =
F
HG
I
KJ

k
meff

1 2

 will need to include a certain fraction of the mass of the

spring.

439
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Q15.7 We assume that the coils of the spring do not hit one another. The frequency will be higher than f by
the factor 2 . When the spring with two blocks is set into oscillation in space, the coil in the center
of the spring does not move. We can imagine clamping the center coil in place without affecting the
motion. We can effectively duplicate the motion of each individual block in space by hanging a
single block on a half-spring here on Earth. The half-spring with its center coil clamped—or its other
half cut off—has twice the spring constant as the original uncut spring, because an applied force of
the same size would produce only one-half the extension distance. Thus the oscillation frequency in

space is 
1

2
2

2
1 2

π
F
HG
I
KJ
F
HG
I
KJ =

k
m

f . The absence of a force required to support the vibrating system in

orbital free fall has no effect on the frequency of its vibration.

Q15.8 No; Kinetic, Yes; Potential, No. For constant amplitude, the total energy 
1
2

2kA  stays constant. The

kinetic energy 
1
2

2mv  would increase for larger mass if the speed were constant, but here the greater

mass causes a decrease in frequency and in the average and maximum speed, so that the kinetic and
potential energies at every point are unchanged.

Q15.9 Since the acceleration is not constant in simple harmonic motion, none of the equations in Table 2.2
are valid.

Equation Information given by equation
x t A ta f b g= +cos ω φ position as a function of time
v t A ta f b g= − +ω ω φsin velocity as a function of time

v x A xa f e j= ± −ω 2 2 1 2
velocity as a function of position

a t A ta f b g= − +ω ω φ2 cos acceleration as a function of time

a t x ta f a f= −ω 2 acceleration as a function of position

The angular frequency ω appears in every equation. It is a good idea to figure out the value of angular
frequency early in the solution to a problem about vibration, and to store it in calculator memory.

Q15.10 We have T
L
gi

i=  and T
L

g
L
g

Tf
f i

i= = =
2

2 . The period gets larger by 2  times. Changing the

mass has no effect on the period of a simple pendulum.

Q15.11 (a) Period decreases. (b) Period increases. (c) No change.

Q15.12 No, the equilibrium position of the pendulum will be shifted (angularly) towards the back of the car.
The period of oscillation will increase slightly, since the restoring force (in the reference frame of the
accelerating car) is reduced.

Q15.13 The motion will be periodic—that is, it will repeat. The period is nearly constant as the angular
amplitude increases through small values; then the period becomes noticeably larger as θ increases
farther.

Q15.14 Shorten the pendulum to decrease the period between ticks.

Q15.15 No. If the resistive force is greater than the restoring force of the spring (in particular, if b mk2 4> ),
the system will be overdamped and will not oscillate.



Chapter 15     441

Q15.16 Yes. An oscillator with damping can vibrate at resonance with amplitude that remains constant in
time. Without damping, the amplitude would increase without limit at resonance.

Q15.17 The phase constant must be π rad .

Q15.18 Higher frequency. When it supports your weight, the center of the diving board flexes down less
than the end does when it supports your weight. Thus the stiffness constant describing the center of

the board is greater than the stiffness constant describing the end. And then f
k
m

= FHG
I
KJ

1
2π

 is greater

for you bouncing on the center of the board.

Q15.19 The release of air from one side of the parachute can make the parachute turn in the opposite
direction, causing it to release air from the opposite side. This behavior will result in a periodic driving
force that can set the parachute into side-to-side oscillation. If the amplitude becomes large enough,
the parachute will not supply the needed air resistance to slow the fall of the unfortunate skydiver.

Q15.20 An imperceptibly slight breeze may be blowing past the leaves in tiny puffs. As a leaf twists in the
wind, the fibers in its stem provide a restoring torque. If the frequency of the breeze matches the
natural frequency of vibration of one particular leaf as a torsional pendulum, that leaf can be driven
into a large-amplitude resonance vibration. Note that it is not the size of the driving force that sets
the leaf into resonance, but the frequency of the driving force. If the frequency changes, another leaf
will be set into resonant oscillation.

Q15.21 We assume the diameter of the bob is not very small compared to the length of the cord supporting
it. As the water leaks out, the center of mass of the bob moves down, increasing the effective length
of the pendulum and slightly lowering its frequency. As the last drops of water dribble out, the
center of mass of the bob hops back up to the center of the sphere, and the pendulum frequency
quickly increases to its original value.

SOLUTIONS TO PROBLEMS

Section 15.1 Motion of an Object Attached to a Spring

P15.1 (a) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m and then
repeat the motion over and over again. Thus, the motion is periodic .

(b) To determine the period, we use: x gt=
1
2

2 .

The time for the ball to hit the ground is t
x

g
= = =

2 2 4 00

9 80
0 909

.

.
.

 m

 m s
 s2

a f

This equals one-half the period, so T = =2 0 909 1 82. . s  sa f .

(c) No . The net force acting on the ball is a constant given by F mg= −  (except when it is in

contact with the ground), which is not in the form of Hooke’s law.
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Section 15.2 Mathematical Representation of Simple Harmonic Motion

P15.2 (a) x t= +FHG
I
KJ5 00 2

6
. cos cma f π

At t = 0 , x = F
HG
I
KJ =5 00

6
4 33. cos . cm  cma f π

(b) v
dx
dt

t= = − +FHG
I
KJ10 0 2

6
. sin cm sb g π

At t = 0 , v = −5 00.  cm s

(c) a
dv
dt

t= = − +FHG
I
KJ20 0 2

6
. cos cm s2e j π

At t = 0 , a = −17 3.  cm s2

(d) A = 5 00.  cm and T = = =
2 2

2
3 14

π
ω

π
.  s

P15.3 x t= +4 00 3 00. cos . ma f a fπ π  Compare this with x A t= +cos ω φb g  to find

(a) ω π π= =2 3 00f .

or f = 1 50.  Hz T
f

= =
1

0 667.  s

(b) A = 4 00.  m

(c) φ π=  rad

(d) x t = = =0 250 4 00 1 75 2 83. . cos . . s  m  ma f a f a fπ

*P15.4 (a) The spring constant of this spring is

k
F
x

= = =
0 45 9 8

0 35
12 6

. .
.

.
 kg  m s

 m
 N m

2

we take the x-axis pointing downward, so φ = 0

x A t= =
⋅

= =cos . cos
.

. . cos . .ω 18 0
12 6

84 4 18 0 446 6 15 8 cm
 kg

0.45 kg s
 s  cm  rad  cm2

(d) Now 446 6 71 2 0 497. . rad  rad= × +π . In each cycle the object moves 4 18 72a f =  cm, so it has
moved 71 72 18 15 8 51 1 cm  cm  ma f a f+ − =. . .

(b) By the same steps, k = =
0 44 9 8

0 355
12 1

. .
.

.
 kg  m s

 m
 N m

2

x A
k
m

t= = = = −cos . cos
.

.
. . cos . .18 0

12 1
0 44

84 4 18 0 443 5 15 9 cm  cm  rad  cm

(e) 443 5 70 2 3 62. . rad  rad= +πa f
Distance moved = + + =70 72 18 15 9 50 7 cm  cm  ma f . .

(c) The answers to (d) and (e) are not very different given the difference in the data about the
two vibrating systems. But when we ask about details of the future, the imprecision in our
knowledge about the present makes it impossible to make precise predictions. The two
oscillations start out in phase but get completely out of phase.
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P15.5 (a) At t = 0 , x = 0  and v is positive (to the right). Therefore, this situation corresponds to
x A t= sinω

and v v ti= cosω

Since f = 1 50.  Hz , ω π π= =2 3 00f .

Also, A = 2 00.  cm, so that x t= 2 00 3 00. sin . cma f π

(b) v v Aimax . . .= = = = =ω π π2 00 3 00 6 00 18 8a f  cm s .  cm s

The particle has this speed at t = 0  and next at t
T

= =
2

1
3

 s

(c) a Amax . . .= = = =ω π π2 2 22 00 3 00 18 0 178a f  cm s  cm s2 2

This positive value of acceleration first occurs at t T= =
3
4

0 500.  s

(d) Since T =
2
3

 s and A = 2 00.  cm, the particle will travel 8.00 cm in this time.

Hence, in 1 00
3
2

.  s =FHG
I
KJT , the particle will travel 8 00 4 00 12 0. . . cm  cm  cm+ = .

P15.6 The proposed solution x t x t
v

ti
ia f = + FHG
I
KJcos sinω

ω
ω

implies velocity v
dx
dt

x t v ti i= = − +ω ω ωsin cos

and acceleration a
dv
dt

x t v t x t
v

t xi i i
i= = − − = − + FHG
I
KJ

F
HG

I
KJ = −ω ω ω ω ω ω

ω
ω ω2 2 2cos sin cos sin

(a) The acceleration being a negative constant times position means we do have SHM, and its
angular frequency is ω. At t = 0  the equations reduce to x xi=  and v vi=  so they satisfy all
the requirements.

(b) v ax x t v t x t v t x t
v

ti i i i i
i2 2 2− = − + − − − + FHG
I
KJ

F
HG

I
KJω ω ω ω ω ω ω

ω
ωsin cos cos sin cos sinb g e j

v ax x t x v t t v t

x t x v t t x v t t v t x v
i i i i

i i i i i i i i

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2− = − +

+ + + + = +

ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

sin sin cos cos

cos cos sin sin cos sin

So this expression is constant in time. On one hand, it must keep its original value v a xi i i
2 − .

On the other hand, if we evaluate it at a turning point where v = 0  and x A= , it is
A A2 2 2 2 20ω ω+ = . Thus it is proved.

P15.7 (a) T = =
12 0

2 40
.

.
 s

5
 s

(b) f
T

= = =
1 1

2 40
0 417

.
.  Hz

(c) ω π π= = =2 2 0 417 2 62f . .a f  rad s
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*P15.8 The mass of the cube is

m V= = × = × −ρ 2 7 10 0 015 9 11 103 3 3. . . kg m  m  kg3e ja f

The spring constant of the strip of steel is

k
F
x

f
k
m

= = =

= = =
×

=−

14 3
52 0

2
1

2
1

2
52

9 11 10
12 03

.
.

.
.

 N
0.027 5 m

 N m

 kg
s  kg

 Hz2
ω
π π π

P15.9 f
k
m

= =
ω
π π2

1
2

or T
f

m
k

= =
1

2π

Solving for k, k
m

T
= = =

4 4 7 00

2 60
40 9

2

2

2

2
π π .

.
.

 kg

 s
 N m

b g
a f .

*P15.10 x A t= cosω A = 0 05.  m v A t= − ω ωsin a A t= − ω ω2 cos

If f = =3 600 60 rev min  Hz , then ω π= −120 1 s

vmax . .= =0 05 120 18 8πa f m s  m s amax . .= =0 05 120 7 112πa f  m s  km s2 2

P15.11 (a) ω = = = −k
m

8 00
0 500

4 00 1.
.

.
 N m

 kg
 s so position is given by x t= 10 0 4 00. sin .a f cm.

From this we find that v t= 40 0 4 00. cos .a f cm s vmax .= 40 0 cm s

a t= −160 4 00sin .a f cm s2 amax = 160 cm s2 .

(b) t
x

= FHG
I
KJ
F
HG
I
KJ

−1
4 00 10 0

1

.
sin

.
 and when x = 6 00.  cm, t = 0 161.  s.

We find v = =40 0 4 00 0 161 32 0. cos . . .a f  cm s

a = − = −160 4 00 0 161 96 0sin . . .a f  cm s2 .

(c) Using t
x

= FHG
I
KJ
F
HG
I
KJ

−1
4 00 10 0

1

.
sin

.

when x = 0 , t = 0  and when x = 8 00.  cm, t = 0 232.  s.

Therefore, ∆t = 0 232.  s .
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P15.12 m = 1 00.  kg , k = 25 0.  N m, and A = 3 00.  cm . At t = 0 , x = −3 00.  cm

(a) ω = = =
k
m

25 0
1 00

5 00
.

.
.  rad s

so that, T = = =
2 2

5 00
1 26

π
ω

π
.

.  s

(b) v Amax . . .= = × =−ω 3 00 10 5 00 0 1502  m  rad s  m sb g
a Amax . . .= = × =−ω 2 2 23 00 10 5 00 0 750 m  rad s  m s2b g

(c) Because x = −3 00.  cm  and v = 0  at t = 0 , the required solution is x A t= − cosω

or x t= −3 00 5 00. cos .a f cm

v
dx
dt

t= = 15 0 5 00. sin .a f cm s

a
dv
dt

t= = 75 0 5 00. cos .a f cm s2

P15.13 The 0.500 s must elapse between one turning point and the other. Thus the period is 1.00 s.

ω
π

= =
2

6 28
T

. s

and v Amax . . .= = =ω 6 28 0 100 0 628s  m  m sb ga f .

P15.14 (a) v Amax =ω

A
v v

= =max

ω ω

(b) x A t
v

t= − = −FHG
I
KJsin sinω

ω
ω

Section 15.3 Energy of the Simple Harmonic Oscillator

P15.15 (a) Energy is conserved for the block-spring system between the maximum-displacement and
the half-maximum points:

K U K Ui f+ = +a f a f 0
1
2

1
2

1
2

2 2 2+ = +kA mv kx

1
2

6 50 0 100
1
2

0 300
1
2

6 50 5 00 102 2 2 2
. . . . . N m  m  m s  N m  mb ga f b g b ge j= + × −m

32 5
1
2

0 300 8 12
2

. . . mJ  m s  mJ= +mb g m =
×

=−

2 24 4

9 0 10
0 5422

.

.
.

 mJ

 m s
 kg2 2

a f

(b) ω = = =
k
m

6 50
0 542

3 46
.
.

.
 N m

 kg
 rad s ∴ = = =T

2 2
1 81

π
ω

π rad
3.46 rad s

 s.

(c) a Amax . .= = =ω 2 20 100 1 20 m 3.46 rad s  m s2b g
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P15.16 m = 200 g , T = 0 250.  s , E = 2 00.  J ; ω
π π

= = =
2 2

0 250
25 1

T .
.  rad s

(a) k m= = =ω 2 20 200 126.  kg 25.1 rad s  N mb g

(b) E
kA

A
E
k

= ⇒ = = =
2

2
2 2 2 00

126
0 178

.
.

a f
 m

P15.17 Choose the car with its shock-absorbing bumper as the system; by conservation of energy,

1
2

1
2

2 2mv kx= : v x
k
m

= = ×
×

=−3 16 10
5 00 10

10
2 232

6

3.
.

. m  m se j

P15.18 (a) E
kA

= =
×

=
−2 2 2

2

250 3 50 10

2
0 153

 N m  m
 J

.
.

e j

(b) v Amax = ω where ω = = = −k
m

250
0 500

22 4 1

.
.  s vmax .= 0 784 m s

(c) a Amax . . .= = × =− −ω 2 2 1 2
3 50 10 22 4 17 5 m  s  m s2e j

P15.19 (a) E kA= = × =−1
2

1
2

35 0 4 00 10 28 02 2 2
. . . N m  m  mJb ge j

(b) v A x
k
m

A x= − = −ω 2 2 2 2

.

v =
×

× − × =−
− −35 0

50 0 10
4 00 10 1 00 10 1 023

2 2 2 2.
.

. . .e j e j  m s

(c)
1
2

1
2

1
2

1
2

35 0 4 00 10 3 00 10 12 22 2 2 2 2 2 2
mv kA kx= − = × − ×L

NM
O
QP =

− −. . . .a f e j e j  mJ

(d)
1
2

1
2

15 82 2kx E mv= − = .  mJ

P15.20 (a) k
F
x

= = =
20 0

100
.  N

0.200 m
 N m

(b) ω = =
k
m

50 0.  rad s so f = =
ω
π2

1 13.  Hz

(c) v Amax . . .= = =ω 50 0 0 200 1 41a f  m s  at x = 0

(d) a Amax . . .= = =ω 2 50 0 0 200 10 0a f  m s2  at x A= ±

(e) E kA= = =
1
2

1
2

100 0 200 2 002 2a fa f. .  J

(f) v A x= − = =ω 2 2 250 0
8
9

0 200 1 33. . .a f  m s

(g) a x= = F
HG
I
KJ =ω 2 50 0

0 200
3

3 33.
.

.  m s2
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P15.21 (a) E kA=
1
2

2 , so if ′ =A A2 , ′ = ′ = =E k A k A E
1
2

1
2

2 42 2a f a f
Therefore E increases by factor of 4 .

(b) v
k
m

Amax = , so if A is doubled, vmax  is doubled .

(c) a
k
m

Amax = , so if A is doubled, amax also doubles .

(d) T
m
k

= 2π  is independent of A, so the period is unchanged .

*P15.22 (a) y y v t a tf i yi y= + +
1
2

2

− = + + −

=
⋅

=

11 0 0
1
2

9 8

22
9 8

1 50

2 m  m s

 m s
 m

 s

2

2

.

.
.

e jt

t

(b) Take the initial point where she steps off the bridge and the final point at the bottom of her
motion.

K U U K U U

mgy kx

k

k

g s i g s f
+ + = + +

+ + = + +

=

=

e j e j

a f

0 0 0 0
1
2

65 9 8
1
2

25

73 4

2

2 kg  m s  36 m  m

 N m

2.

.

(c) The spring extension at equilibrium is x
F
k

= = =
65

8 68
 kg 9.8 m s
73.4 N m

 m
2

. , so this point is

11 8 68 19 7+ =. . m  m below the bridge  and the amplitude of her oscillation is

36 19 7 16 3− =. .  m .

(d) ω = = =
k
m

73 4
65

1 06
.

.
 N m
 kg

 rad s

(e) Take the phase as zero at maximum downward extension. We find what the phase was 25 m
higher when x = −8 68.  m:

In x A t= cosω , 16 3 16 3 0. . cos m  m=

− = F
HG
I
KJ8 68 16 3 1 06. . cos . m  m  

s
t

1 06 122 2 13. .
t
s

 rad= − °= −

t = −2 01.  s

Then +2 01.  s  is the time over which the spring stretches.

(f) total time = + =1 50 2 01 3 50. . . s  s  s
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P15.23 Model the oscillator as a block-spring system.

From energy considerations, v x A2 2 2 2 2+ =ω ω

v Amax =ω  and v
A

=
ω
2

so
ω

ω ω
A

x A
2

2
2 2 2 2F

HG
I
KJ + =

From this we find x A2 23
4

= and x A= = ±
3

2
2 60.  cm  where A = 3 00.  cm

P15.24 The potential energy is

U kx kA ts = =
1
2

1
2

2 2 2cos ωa f .

The rate of change of potential energy is

dU
dt

kA t t kA ts = − = −
1
2

2
1
2

22 2cos sin sinω ω ω ω ωa f a f .

(a) This rate of change is maximal and negative at

2
2

ω
π

t = , 2 2
2

ω π
π

t = + , or in general, 2 2
2

ω π
π

t n= +  for integer n.

Then, t n
n

= + =
+
−

π
ω

π
4

4 1
4 1

4 3 60 1
a f a f

e j.  s

For n = 0 , this gives t = 0 218.  s  while n = 1 gives t = 1 09.  s .

All other values of n yield times outside the specified range.

(b)
dU
dt

kAs

max
. . . .= = × =− −1

2
1
2

3 24 5 00 10 3 60 14 62 2 2 1ω  N m  m  s  mWb ge j e j

Section 15.4 Comparing Simple Harmonic Motion with Uniform Circular Motion

P15.25 (a) The motion is simple harmonic because the tire is rotating with constant velocity and you
are looking at the motion of the bump projected in a plane perpendicular to the tire.

(b) Since the car is moving with speed v = 3 00.  m s , and its radius is 0.300 m, we have:

ω = =
3 00
0 300

10 0
.
.

.
 m s

 m
 rad s .

Therefore, the period of the motion is:

T = = =
2 2

10 0
0 628

π
ω

π
.

.
 rad s

 sb g .
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P15.26 The angle of the crank pin is θ ω= t .
Its x-coordinate is

x A A t= =cos cosθ ω

where A is the distance from the
center of the wheel to the crank pin.
This is of the form x A t= +cos ω φb g ,
so the yoke and piston rod move
with simple harmonic motion.

x = –A x (  )t

Piston

A

ω

FIG. P15.26

Section 15.5 The Pendulum

P15.27 (a) T
L
g

= 2π

L
gT

= = =
2

2

2

24

9 80 12 0

4
35 7

π π

. .
.

 m s  s
 m

2e ja f

(b) T
L

gmoon
moon

2
 m

1.67 m s
 s= = =2 2

35 7
29 1π π

.
.

P15.28 The period in Tokyo is T
L
gT

T

T
= 2π

and the period in Cambridge is T
L
gC

C

C
= 2π

We know T TT C= = 2 00.  s

For which, we see
L
g

L
g

T

T

C

C
=

or
g
g

L
L

C

T

C

T
= = =

0 994 2
0 992 7

1 001 5
.
.

.

P15.29 The swinging box is a physical pendulum with period T
I

mgd
= 2π .

The moment of inertia is given approximately by

I mL=
1
3

2  (treating the box as a rod suspended from one end).

Then, with L ≈ 1 0.  m and d
L

≈
2

,

T
mL

mg
L
gL

≈ = = =2 2
2
3

2
2 1 0

3 9 8
1 6

1
3

2

2

π π πc h
a f
e j

.

.
.

 m

 m s
 s

2
 or T ~ 100  s .
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P15.30 ω
π

=
2
T

: T = = =
2 2

4 43
1 42

π
ω

π
.

.  s

ω =
g
L

: L
g

= = =
ω 2 2

9 80

4 43
0 499

.

.
.a f  m

P15.31 Using the simple harmonic motion model:

A r

g
L

= = °
°
=

= = =

θ
π

ω

1
180

0 262

9 8
1

3 13

 m 15  m

 m s
 m

 rad s
2

.

.
.

(a) v Amax . .= = =ω 0 262 0 820 m 3.13 s  m s

(b) a Amax . .= = =ω 2 20 262 2 57 m 3.13 s  m s2b g

a rtan = α α = = =
a

r
tan

2
2 m s

 m
 rad s

2 57
1

2 57
.

.

(c) F ma= = =0 25 0 641. . kg 2.57 m s  N2

More precisely,

FIG. P15.31

(a) mgh mv=
1
2

2 and h L= −1 cosθa f
∴ = − =v gLmax cos .2 1 0 817θa f  m s

(b) I mgLα θ= sin

α
θ

θmax
sin

sin .= = =
mgL

mL
g
L i2 2 54 rad s2

(c) F mg imax sin . . sin . .= = ° =θ 0 250 9 80 15 0 0 634a fa f  N

P15.32 (a) The string tension must support the weight of the bob, accelerate it upward, and also provide
the restoring force, just as if the elevator were at rest in a gravity field 9 80 5 00. .+a f m s2

T
L
g

T

= =

=

2 2
5 00

3 65

π π
.

.

 m
14.8 m s

 s

2

(b) T =
−

=2
5 00

5 00
6 41π

.

.
.

 m

9.80 m s  m s
 s

2 2e j

(c) geff = + =9 80 5 00 11 0
2 2

. . . m s  m s  m s2 2 2e j e j
T = = =2

5 00
4 24π

.
.

 m
11.0 m s

 s2
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P15.33 Referring to the sketch we have

F mg= − sinθ and tanθ =
x
R

For small displacements, tan sinθ θ≈

and F
mg
R

x kx= − = −

Since the restoring force is proportional to the displacement from
equilibrium, the motion is simple harmonic motion.

Comparing toF m x= − ω 2  shows ω = =
k
m

g
R

. FIG. P15.33

P15.34 (a) T =
total measured time

50

The measured periods are:

Length,   m
Period,   s

L
T
a f
a f

1 000 0 750 0 500
1 996 1 732 1 422
. . .
. . .

(b) T
L
g

= 2π so g
L

T
=

4 2

2
π

The calculated values for g are:

Period,   s
 m s2

T
g

a f
e j

1 996 1 732 1 422
9 91 9 87 9 76
. . .
. . .

4

3

2

1

0
0.25 0.5 0.75 1.0

L, m

T2, s2

FIG. P15.34

Thus, gave
2 m s= 9 85.  this agrees with the accepted value of g = 9 80.  m s2  within 0.5%.

(c) From T
g

L2
24

=
F
HG
I
KJ

π
, the slope of T 2  versus L graph = =

4
4 01

2π
g

.  s m2 .

Thus, g = =
4

9 85
2π

slope
 m s2. . This is the same as the value in (b).

P15.35 f = 0 450.  Hz , d = 0 350.  m, and m = 2 20.  kg

T
f

T
I

mgd
T

I
mgd

I T
mgd

f
mgd

=

= =

= =
F
HG
I
KJ = = ⋅

−

1

2
4

4
1

4

2 20 9 80 0 350

4 0 450
0 944

2
2

2
2

2

2 2 1 2

;

;

. . .

.
.

π
π

π π π

a fa f
e j s

 kg m2

FIG. P15.35
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P15.36 (a) The parallel-axis theorem:

I I Md ML Md M M

M

T
I

Mgd

M

Mg

= + = + = +

= FHG
I
KJ

= = = =

CM

2

2

2

 m  m

 m

 m

 m
 m

12 9.80 m s
 s

2 2 2 2 21
12

1
12

1 00 1 00

13
12

2 2
13

12 1 00
2

13
2 09

. .

.
.

a f a f

e j
a f e j

π π π

(b) For the simple pendulum
FIG. P15.36

T = =2
1 00

2 01π
.

.
 m

9.80 m s
 s2 difference =

−
=

2 09 2 01
4 08%

. .
.

 s  s
2.01 s

P15.37 (a) The parallel axis theorem says directly I I md= +CM
2

so T
I

mgd

I md

mgd
= =

+
2 2

2

π π
CMe j

(b) When d is very large T
d
g

→ 2π  gets large.

When d is very small T
I
mgd

→ 2π CM  gets large.

So there must be a minimum, found by

dT
dd

d
dd

I md mgd

I md mgd mg mgd I md md

I md mg

I md mgd

md mgd

I md mgd

= = +

= + −FHG
I
KJ + F

HG
I
KJ +

=
− +

+
+

+
=

−

− − −

0 2

2
1
2

2
1
2

2

2
0

2 1 2 1 2

2 1 2 3 2 1 2 2 1 2

2

2 1 2 3 2 2 1 2 3 2

π

π π

π π

CM

CM CM

CM

CM CM

e j b g

e j b g b g e j
e j

e j b g e j b g

This requires

− − + =I md mdCM
2 22 0

or I mdCM = 2 .

P15.38 We suppose the stick moves in a horizontal plane. Then,

I mL

T
I

I
T

= = = ⋅

=

= =
⋅

= ⋅

1
12

1
12

2 00 1 00 0 167

2

4 4 0 167

180
203

2 2

2

2

2

2

. . .

.

 kg  m  kg m

 kg m

 s
 N m

2

2

b ga f

e j
a f

π
κ

κ
π π

µ
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P15.39 T = 0 250.  s , I mr= = × ×− −2 3 3 2
20 0 10 5 00 10. . kg  me je j

(a) I = × ⋅−5 00 10 7.  kg m2

(b) I
d
dt

2

2
θ

κθ= − ; 
κ

ω
π

I T
= =

2

κ ω
π

= = × F
HG
I
KJ = ×

⋅− −I 2 7
2

45 00 10
2

0 250
3 16 10.

.
.e j  

N m
rad

θ

FIG. P15.39

Section 15.6 Damped Oscillations

P15.40 The total energy is E mv kx= +
1
2

1
2

2 2

Taking the time-derivative,
dE
dt

mv
d x
dt

kxv= +
2

2

Use Equation 15.31:
md x
dt

kx bv
2

2 = − −

dE
dt

v kx bv kvx= − − +a f

Thus,
dE
dt

bv= − <2 0

P15.41 θ i = °15 0. θ t = = °1 000 5 50b g .

x Ae bt m= − 2 x

x
Ae

A
e

i

bt m
b m1 000

2
1 000 25 50

15 0
= = =

−
−.

.
b g

ln
.
.

.

.

5 50
15 0

1 00
1 000

2

2
1 00 10 3 1

F
HG
I
KJ = − =

−

∴ = × − −

b

m
b
m

b g

 s

P15.42 Show that x Ae tbt m= +− 2 cos ω φb g
is a solution of − − =kx b

dx
dt

m
d x
dt

2

2 (1)

where ω = − FHG
I
KJ

k
m

b
m2

2

. (2)

x Ae tbt m= +− 2 cos ω φb g (3)

dx
dt

Ae
b
m

t Ae tbt m bt m= −FHG
I
KJ + − +− −2 2

2
cos sinω φ ω ω φb g b g (4)

d x
dt

b
m

Ae
b
m

t Ae tbt m bt m
2

2
2 2

2 2
= − −FHG

I
KJ + − +

L
NM

O
QP

− −cos sinω φ ω ω φb g b g

 − −FHG
I
KJ + + +

L
NM

O
QP

− −Ae
b
m

t Ae tbt m bt m2 2 2

2
ω ω φ ω ω φsin cosb g b g (5)

continued on next page
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Substitute (3), (4) into the left side of (1) and (5) into the right side of (1);

− + + + + +

= − −FHG
I
KJ + − +

L
NM

O
QP

+ + − +

− − −

− −

− −

kAe t
b
m

Ae t b Ae t

b
Ae

b
m

t Ae t

b
Ae t m Ae t

bt m bt m bt m

bt m bt m

bt m bt m

2
2

2 2

2 2

2 2 2

2

2 2

2

cos cos sin

cos sin

sin cos

ω φ ω φ ω ω φ

ω φ ω ω φ

ω ω φ ω ω φ

b g b g b g

b g b g

b g b g
Compare the coefficients of Ae tbt m− +2 cos ω φb g  and Ae tbt m− +2 sin ω φb g :

cosine-term: − + = − −FHG
I
KJ − = − −

F
HG

I
KJ = − +k

b
m

b b
m

m
b
m

m
k
m

b
m

k
b
m

2
2

2 2

2

2

2 2 2 4 4 2
ω

sine-term: b
b b

bω ω ω ω= + + =
2 2
a f a f

Since the coefficients are equal, x Ae tbt m= +− 2 cos ω φb g  is a solution of the equation.

*P15.43 The frequency if undamped would be ω 0

42 05 10
10 6

44 0= =
×

=
k
m

.
.

.
 N m

 kg
s.

(a) With damping

ω ω

ω
π π

= − FHG
I
KJ = FHG

I
KJ −
F
HG

I
KJ

= − =

= = =

0
2

2 2 2

2
44

3

1 933 96 0 02 44 0

2
44 0
2

7 00

b
m

f

 
1
s

 kg
s 2 10.6 kg

 
1
s

 s
 Hz

. . .

.
.

(b) In x A e tbt m= +−
0

2 cos ω φb g  over one cycle, a time T =
2π
ω

, the amplitude changes from A0  to

A e b m
0

2 2− π ω  for a fractional decrease of

A A e
A

e e
b m

0 0

0

3 10 6 44.0 0 020 21 1 1 0 979 98 0 020 0 2 00%
−

= − = − = − = =
−

− ⋅ −
π ω

π . . . . .a f .

(c) The energy is proportional to the square of the amplitude, so its fractional rate of decrease is
twice as fast:

E kA kA e E ebt m bt m= = =− −1
2

1
2

2
0
2 2 2

0 .

We specify
0 05

0 05

20
3

10 6
20 3 00

10 6

0 0
3 10 6

3 10 6

3 10 6

.

.

.
ln .

.

.

.

.

E E e

e

e
t

t

t

t

t

=

=

=

= =

=

−

−

+

 s
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Section 15.7 Forced Oscillations

P15.44 (a) For resonance, her frequency must match

f
k
m0

0
3

2
1

2
1

2
4 30 10

12 5
2 95= = =

×
=

ω
π π π

.
.

.
 N m

 kg
 Hz .

(b) From x A t= cosω , v
dx
dt

A t= = − ω ωsin , and a
dv
dt

A t= = − ω ω2 cos , the maximum acceleration

is Aω 2 . When this becomes equal to the acceleration due to gravity, the normal force
exerted on her by the mattress will drop to zero at one point in the cycle:

A gω 2 = or A
g g gm

kk
m

= = =
ω 2 A =

×
=

9 80 12 5

4 30 10
2 853

. .

.
.

 m s  kg

 N m
 cm

2e jb g

P15.45 F t= 3 00 2. cos πb g N and k = 20 0.  N m

(a) ω
π

π= =
2

2
T

 rad s so T = 1 00.  s

(b) In this case, ω 0
20 0
2 00

3 16= = =
k
m

.
.

.  rad s

The equation for the amplitude of a driven oscillator,

with b = 0, gives A
F
m

= FHG
I
KJ − = −

− −
0 2

0
2 1 2 2 13

2
4 3 16ω ω πe j a f.

Thus A = =0 050 9 5 09. . m  cm .

P15.46 F t kx m
d x
dt0

2

2cosω − = ω 0 =
k
m

(1)

x A t= +cos ω φb g (2)

dx
dt

A t= − +ω ω φsinb g (3)

d x
dt

A t
2

2
2= − +ω ω φcosb g (4)

Substitute (2) and (4) into (1): F t kA t m A t0
2cos cos cosω ω φ ω ω φ− + = − +b g e j b g

Solve for the amplitude: kA mA t F t− + =ω ω φ ω2
0e j b gcos cos

These will be equal, provided only that φ must be zero and kA mA F− =ω 2
0

Thus, A
F
m

k
m

=
−

0

2c h ω
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P15.47 From the equation for the amplitude of a driven oscillator with no damping,

A
F m

f
k
m

F mA

F

=
−

= = = = =

= −

= FHG
I
KJ × − =

− −

−

0

2
0
2 2

1
0
2

40 0
9 80

2

0
2

0
2

0
2

2 20 0
200

49 0

40 0
9 80

2 00 10 3 950 49 0 318

ω ω

ω π π ω

ω ω

e j
e j c h
e j
e jb g

. .

.
.

. .

.
.

 s  s

 N

P15.48 A
F m

b m
=

− +

ext

ω ω ω2
0
2 2 2e j b g

With b = 0, A
F m F m F m

=
−

=
± −

= ±
−

ext ext ext

ω ω ω ω ω ω2
0
2 2 2

0
2 2

0
2

e j e j

Thus, ω ω2
0
2 6 30

0 150
1 70

0 440
= ± = ± = ±

F m
A

k
m

F
mA

ext ext  N m
 kg

 N
0.150 kg  m

.
.

.
.b ga f

This yields ω = 8 23.  rad s or ω = 4 03.  rad s

Then, f =
ω
π2

 gives either f = 1 31.  Hz or f = 0 641.  Hz

P15.49 The beeper must resonate at the frequency of a simple pendulum of length 8.21 cm:

f
g
L

= = =
1

2
1

2
9 80
0 082 1

1 74
π π

.
.

.
 m s

 m
 Hz

2

.

*P15.50 For the resonance vibration with the occupants in the car, we have for the spring constant of the
suspension

f
k
m

=
1

2π
k f m= = + = ×−4 4 1 8 1 130 4 72 4 1 82 102 2 2 1 2 5π π . . . s  kg  kg  kg s2e j b gd i

Now as the occupants exit x
F
k

= =
×

= × −
4 72 4 9 8

1 82 10
1 56 105

2
. .

.
.

 kg  m s

 kg s
 m

2

2

b ge j



Chapter 15     457

Additional Problems

P15.51 Let F represent the tension in the rod.

(a) At the pivot, F Mg Mg Mg= + = 2

A fraction of the rod’s weight Mg
y
L
F
HG
I
KJ  as well as the

weight of the ball pulls down on point P. Thus, the
tension in the rod at point P is

F Mg
y
L

Mg Mg
y
L

= F
HG
I
KJ + = +FHG

I
KJ1 .

 

M 

P 

pivot 

L 

y 

FIG. P15.51

(b) Relative to the pivot, I I I ML ML ML= + = + =rod ball
1
3

4
3

2 2 2

For the physical pendulum, T
I

mgd
= 2π  where m M= 2  and d is the distance from the

pivot to the center of mass of the rod and ball combination. Therefore,

d
M ML

M M
LL

=
+

+
=2 3

4
c h

 and T
ML

M g
L
gL

= =2
2

4
3

24
3

2

3
4

π
π

a f c h .

For L = 2 00.  m, T = =
4
3

2 2 00

9 80
2 68

π .

.
.

 m

 m s
 s2

a f
.

P15.52 (a) Total energy = = =
1
2

1
2

100 0 200 2 002 2kA  N m  m  Jb ga f. .

At equilibrium, the total energy is:

1
2

1
2

16 0 8 001 2
2 2 2m m v v v+ = =b g b g b g. . kg  kg .

Therefore,

8 00 2 002. . kg  Jb gv = , and v = 0 500.  m s .

This is the speed of m1  and m2  at the equilibrium point. Beyond this point, the mass m2

moves with the constant speed of 0.500 m/s while mass m1  starts to slow down due to the
restoring force of the spring.

continued on next page
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(b) The energy of the m1 -spring system at equilibrium is:

1
2

1
2

9 00 0 500 1 1251
2 2

m v = =. . . kg  m s  Jb gb g .

This is also equal to 
1
2

2k A′a f , where ′A  is the amplitude of the m1 -spring system.

Therefore,

1
2

100 1 1252a fa f′ =A .  or ′ =A 0 150.  m.

The period of the m1 -spring system is T
m
k

= =2 1 8851π .  s

and it takes 
1
4

0 471T = .  s  after it passes the equilibrium point for the spring to become fully

stretched the first time. The distance separating m1  and m2  at this time is:

D v
T

A= FHG
I
KJ − ′ = − = =

4
0 500 0 471 0 150 0 085 6 8 56. . . . . m s  s  m  cma f .

P15.53
d x
dt

A
2

2
2F

HG
I
KJ =

max

ω

f n mg mA

A
g

s s

s

max

.

= = =

= =

µ µ ω
µ
ω

2

2 6 62 cm
f

n

mg

B

P

B
µ s

FIG. P15.53

P15.54 The maximum acceleration of the oscillating system is a A Afmax = =ω π2 2 24 . The friction force
exerted between the two blocks must be capable of accelerating block B at this rate. Thus, if Block B
is about to slip,

f f n mg m Afs s= = = =max µ µ π4 2 2e j or A
g
f

s=
µ
π4 2 2 .

P15.55 Deuterium is the isotope of the element hydrogen with atoms having nuclei consisting of one
proton and one neutron. For brevity we refer to the molecule formed by two deuterium atoms as D
and to the diatomic molecule of hydrogen-1 as H.

M MD H= 2
ω
ω

D

H

k
M

k
M

H

D

D

H

M
M

= = =
1
2

f
f

D
H= = ×
2

0 919 1014.  Hz
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P15.56 The kinetic energy of the ball is K mv I= +
1
2

1
2

2 2Ω ,

where Ω is the rotation rate of the ball about its
center of mass. Since the center of the ball moves
along a circle of radius 4R, its displacement from
equilibrium is s R= 4a fθ  and its speed is

v
ds
dt

R
d
dt

= = FHG
I
KJ4

θ
. Also, since the ball rolls without

slipping,

v
ds
dt

R= = Ω so Ω = = FHG
I
KJ

v
R

d
dt

4
θ

The kinetic energy is then

K m R
d
dt

mR
d
dt

mR d
dt

= F
HG
I
KJ + FHG

I
KJ
F
HG
I
KJ

= F
HG
I
KJ

1
2

4
1
2

2
5

4

112
10

2
2

2

2 2

θ θ

θ

 

h 

5 R 

θ 

R 

s 

FIG. P15.56

When the ball has an angular displacement θ, its center is distance h R= −4 1 cosθa f higher than
when at the equilibrium position. Thus, the potential energy is U mgh mgRg = = −4 1 cosθa f . For small

angles, 1
2

2

− ≈cosθ
θa f  (see Appendix B). Hence, U mgRg ≈ 2 2θ , and the total energy is

E K U
mR d

dt
mgRg= + = F

HG
I
KJ +

112
10

2
2 2

2θ
θ .

Since E =  constant in time, 
dE
dt

mR d
dt

d
dt

mgR
d
dt

= = F
HG
I
KJ + F

HG
I
KJ0

112
5

4
2 2

2
θ θ

θ
θ

.

This reduces to 
28

5
0

2

2
R d

dt
g

θ
θ+ = , or 

d
dt

g
R

2

2

5
28

θ
θ= −FHG
I
KJ .

With the angular acceleration equal to a negative constant times the angular position, this is in the

defining form of a simple harmonic motion equation with ω =
5

28
g
R

.

The period of the simple harmonic motion is then T
R
g

= =
2

2
28
5

π
ω

π .
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P15.57 (a)

Li

a

a

L

h

FIG. P15.57(a)

(b) T
L
g

= 2π
dT
dt g L

dL
dt

=
π 1

(1)

We need to find L ta f  and 
dL
dt

. From the diagram in (a),

L L
a h

i= + −
2 2

; 
dL
dt

dh
dt

= −FHG
I
KJ

1
2

.

But 
dM
dt

dV
dt

A
dh
dt

= = −ρ ρ . Therefore,

dh
dt A

dM
dt

= −
1
ρ

; 
dL
dt A

dM
dt

=
F
HG
I
KJ

1
2ρ

(2)

Also, dL
A

dM
dt

t L L
L

L

i

i

z =
F
HG
I
KJ
F
HG
I
KJ = −

1
2ρ

(3)

Substituting Equation (2) and Equation (3) into Equation (1):

dT
dt g a

dM
dt L ti a

dM
dt

=
F
HG
I
KJ
F
HG
I
KJ +

π
ρ

ρ

1
2

1
2 1

2 2 c h
.

(c) Substitute Equation (3) into the equation for the period.

T
g

L
a

dM
dt

ti= + F
HG
I
KJ

2 1
2 2

π
ρ

Or one can obtain T by integrating (b):

dT
g a

dM
dt

dt

L t

T T
g a

dM
dt

L
a

dM
dt

t L

T

T

i a
dM
dt

t

i

a
dM
dt

i i

iz z=
F
HG
I
KJ
F
HG
I
KJ +

− =
F
HG
I
KJ
F
HG
I
KJ
L

N
MM

O

Q
PP + F

HG
I
KJ −

L
N
MM

O
Q
PP

π
ρ

π
ρ ρ

ρ

ρ

1
2

1
2

2 1
2

2 1
2

0

2 1
2

2

2

2

c h

c h

But T
L
gi

i= 2π , so T
g

L
a

dM
dt

ti= + F
HG
I
KJ

2 1
2 2

π
ρ

.
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P15.58 ω
π

= =
k
m T

2

(a) k m
m

T
= =ω

π2
2

2
4

(b) ′ =
′

=
′F
HG
I
KJm

k T
m

T
T

a f2
2

2

4π

P15.59 We draw a free-body diagram of the pendulum.
The force H exerted by the hinge causes no torque
about the axis of rotation.

τ α= I and
d
dt

2

2
θ

α= −

τ θ θ
θ

= + = −MgL kxh I
d
dt

sin cos
2

2

For small amplitude vibrations, use the
approximations: sinθ θ≈ , cosθ ≈ 1, and x s h≈ = θ .

 

m g 

θ 

H x 

k 

h 

m 

L 

L sin θ 

x 
k x 

h cos θ 

H y 

FIG. P15.59

Therefore,
d
dt

MgL kh
I

2

2

2
2θ

θ ω θ= −
+F

HG
I
KJ = − ω π=

+
=

2MgL kh
ML

f2 2

f
MgL kh

ML
=

+1
2

2

2π

*P15.60 (a) In x A t= +cos ω φb g , v A t= − +ω ω φsinb g
we have at t = 0 v A v= − = −ω φsin max

This requires φ = °90 , so x A t= + °cos ω 90a f
And this is equivalent to x A t= − sinω

Numerically we have ω = = = −k
m

50
0 5

10 1 N m
 kg

 s
.

and v Amax =ω 20 10 1 m s  s= −e jA A = 2 m

So x t= − −2 10 1 m  sa f e jsin

(b) In
1
2

1
2

1
2

2 2 2mv kx kA+ = ,
1
2

3
1
2

2 2kx mv= FHG
I
KJ

implies 
1
3

1
2

1
2

1
2

2 2 2kx kx kA+ =
4
3

2 2x A=

x A A= ± = ± = ±
3
4

0 866 1 73. .  m

continued on next page
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(c) ω =
g
L

L
g

= = =
−ω 2 1 2

9 8

10
0 098 0

.
.

 m s

 s
 m

2

e j

(d) In x t= − −2 10 1 m  sa f e jsin

the particle is at x = 0  at t = 0 , at 10t = π s , and so on.

The particle is at x = 1 m

when − = −1
2

10 1sin  se jt

with solutions 10
6

1 s− = −e jt π

10
6

1 s− = +e jt π
π

, and so on.

The minimum time for the motion is ∆t  in 10
6

∆t = FHG
I
KJ

π
 s

∆t = FHG
I
KJ =

π
60

0 052 4 s  s.

FIG. P15.60(d)

P15.61 (a) At equilibrium, we have

τ∑ = − FHG
I
KJ +0

2 0mg
L

kx L

where x0  is the equilibrium compression.

After displacement by a small angle, FIG. P15.61

τ θ θ∑ = − FHG
I
KJ + = − FHG

I
KJ + − = −mg

L
kxL mg

L
k x L L k L

2 2 0
2b g

But, τ α
θ∑ = =I mL

d
dt

1
3

2
2

2 . So 
d
dt

k
m

2

2
3θ

θ= − .

The angular acceleration is opposite in direction and proportional to the displacement, so

we have simple harmonic motion with ω 2 3
=

k
m

.

(b) f
k

m
= = = =
ω
π π π2

1
2

3 1
2

3 100

5 00
1 23

 N m

 kg
 Hz

b g
.

.
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*P15.62 As it passes through equilibrium, the 4-kg object has speed

v A
k
m

Amax .= = = =ω
100

4
2 10 0

 N m
 kg

 m  m s.

In the completely inelastic collision momentum of the two-object system is conserved. So the new
10-kg object starts its oscillation with speed given by

4 6 0 10

4 00

 kg 10 m s  kg  kg

 m s
b g b g b g+ =

=

v

v
max

max .

(a) The new amplitude is given by
1
2

1
2

2 2mv kAmax =

10 4 100

1 26

2 2 kg  m s  N m

 m
b g b g=

=

A

A .

Thus the amplitude has decreased by 2 00 1 26 0 735. . . m  m  m− =

(b) The old period was T
m
k

= = =2 2
4

1 26π π
 kg

100 N m
 s.

The new period is T = =2
10

100
1 99π  s  s2 .

The period has increased by 1 99 1 26 0 730. . . m  m  s− =

(c) The old energy was
1
2

1
2

4 10 2002 2
mvmax = = kg  m s  Jb gb g

The new mechanical energy is
1
2

10 4 802 kg  m s  Jb gb g =
The energy has decreased by 120 J .

(d) The missing mechanical energy has turned into internal energy in the completely inelastic
collision.

P15.63 (a) T
L
g

= = =
2

2 3 00
π
ω

π .  s

(b) E mv= = =
1
2

1
2

6 74 2 06 14 32 2. . .a fa f  J

(c) At maximum angular displacement mgh mv=
1
2

2 h
v

g
= =

2

2
0 217.  m

h L L L= − = −cos cosθ θ1a f cosθ = −1
h
L

θ = °25 5.
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P15.64 One can write the following equations of motion:

T kx− = 0 (describes the spring)

mg T ma m
d x
dt

− ′ = =
2

2 (for the hanging object)

R T T I
d
dt

I
R

d x
dt

′ − = =a f
2

2

2

2
θ

(for the pulley)

with I MR=
1
2

2 FIG. P15.64

Combining these equations gives the equation of motion

m M
d x
dt

kx mg+FHG
I
KJ + =

1
2

2

2 .

The solution is x t A t
mg
k

a f = +sinω  (where 
mg
k

 arises because of the extension of the spring due to

the weight of the hanging object), with frequency

f
k

m M M
= =

+
=

+
ω
π π π2

1
2

1
2

100
0 2001

2
1
2

 N m
 kg.

.

(a) For M = 0 f = 3 56.  Hz

(b) For M = 0 250.  kg f = 2 79.  Hz

(c) For M = 0 750.  kg f = 2 10.  Hz

P15.65 Suppose a 100-kg biker compresses the suspension 2.00 cm.

Then, k
F
x

= =
×

= ×−
980

4 90 102
4 N

2.00 10  m
 N m.

If total mass of motorcycle and biker is 500 kg, the frequency of free vibration is

f
k
m

= =
×

=
1

2
1

2
4 90 10

500
1 58

4

π π
.

.
 N m

 kg
 Hz

If he encounters washboard bumps at the same frequency, resonance will make the motorcycle
bounce a lot. Assuming a speed of 20.0 m/s, we find these ridges are separated by

20 0
1 58

12 7 101
1.

.
. ~

 m s
 s

 m  m− = .

In addition to this vibration mode of bouncing up and down as one unit, the motorcycle can also
vibrate at higher frequencies by rocking back and forth between front and rear wheels, by having
just the front wheel bounce inside its fork, or by doing other things. Other spacing of bumps will
excite all of these other resonances.
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P15.66 (a) For each segment of the spring

dK dm vx=
1
2

2a f .

Also, v
x

vx = and dm
m

dx= . FIG. P15.66

Therefore, the total kinetic energy of the block-spring system is

K Mv
x v m

dx M
m

v= +
F
HG
I
KJ = +FHG

I
KJz1

2
1
2

1
2 3

2
2 2

2
0

2 .

(b) ω =
k

meff
and

1
2

1
2 3

2 2m v M
m

veff = +FHG
I
KJ

Therefore, T
M

k

m

= =
+2

2 3π
ω

π .

P15.67 (a) F j∑ = −2T sinθ where θ = F
HG
I
KJ

−tan 1 y
L

Therefore, for a small displacement

sin tanθ θ≈ =
y
L

and F j∑ =
−2Ty

L

FIG. P15.67

(b) The total force exerted on the ball is opposite in direction and proportional to its
displacement from equilibrium, so the ball moves with simple harmonic motion. For a
spring system,

F x∑ = −k becomes here F y∑ = −
2T
L

.

Therefore, the effective spring constant is 
2T
L

 and ω = =
k
m

T
mL
2

.
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P15.68 (a) Assuming a Hooke’s Law type spring,

F Mg kx= =

and empirically

Mg x= −1 74 0 113. .

so k = ±1 74 6%.  N m .

M x Mg,  kg ,  m ,  N
0.020 0
0.040 0
0.050 0
0.060 0
0.070 0
0.080 0

0.17
0.293
0.353
0.413
0.471
0.493

0.196
0.392
0.49
0.588
0.686
0.784

(b) We may write the equation as theoretically

T
k

M
k

ms
2

2 24 4
3

= +
π π

and empirically

T M2 21 7 0 058 9= +. .

FIG. P15.68

so k = = ±
4
21 7

1 82 3%
2π

.
.  N m

Time,  s ,  s ,  kg  s
7.03
9.62

10.67
11.67
12.52
13.41

0.703
0.962
1.067
1.167
1.252
1.341

0.020 0
0.040 0
0.050 0
0.060 0
0.070 0
0.080 0

0.494
0.925
1.138
1.362
1.568
1.798

2T M T 2 ,

The k values 1 74 6%.  N m±

and 1 82 3%.  N m±  differ by 4%

so they agree.

(c) Utilizing the axis-crossing point, ms =
F
HG

I
KJ = ±3

0 058 9
21 7

8
.

.
 kg  grams 12%

in agreement  with 7.4 grams.
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P15.69 (a) ∆ ∆K U+ = 0
Thus, K U K Utop top bot bot+ = +

where K Utop bot= = 0

Therefore, mgh I=
1
2

2ω , but

h R R R
v
R

= − = −

=

cos cosθ θ

ω

1a f

and I
MR mr

mR= + +
2 2

2

2 2
Substituting we find

 

m v 

M 

θ 

R 

θ 

FIG. P15.69

mgR
MR mr

mR
v
R

mgR
M mr

R
m

v

1
1
2 2 2

1
4 4 2

2 2
2

2

2

2

2
2

− = + +
F
HG

I
KJ

− = + +
L
NM

O
QP

cos

cos

θ

θ

a f

a f

and v gR
M
m

r
R

2 4
1

2
2

2

=
−

+ +

cosθa f
e j

so v
Rg

M
m

r
R

=
−

+ +
2

1

2
2

2

cosθa f

(b) T
I

m gdT
= 2π

CM

m m MT = + d
mR M

m MCM =
+
+

0a f

T
MR mr mR

mgR
=

+ +
2

1
2

2 1
2

2 2

π

P15.70 (a) We require Ae
Abt m− =2

2
e bt m+ =2 2

or
bt
m2

2= ln or
0 100
2 0 375

0 693
.

.
.

 kg s
 kgb g t = ∴ =t 5 20.  s

The spring constant is irrelevant.

(b) We can evaluate the energy at successive turning points, where

cos ω φt + = ±b g 1 and the energy is 
1
2

1
2

2 2 2kx kA e bt m= − . We require 
1
2

1
2

1
2

2 2 2kA e kAbt m− = FHG
I
KJ

or e bt m+ = 2 ∴ = = =t
m

b
ln .

.
.

2 0 375
0 100

2 60
 kg 0.693

 kg s
 s

a f
.

(c) From E kA=
1
2

2 , the fractional rate of change of energy over time is

dE
dt

d
dt

dA
dt

dA
dt

E

kA

kA

k A

kA A
= = =

1
2

2

1
2

2

1
2

1
2

2

2
2

e j a f

two times faster than the fractional rate of change in amplitude.
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P15.71 (a) When the mass is displaced a distance x from
equilibrium, spring 1 is stretched a distance x1  and
spring 2 is stretched a distance x2 .

By Newton’s third law, we expect

k x k x1 1 2 2= .

When this is combined with the requirement that

x x x= +1 2 ,
FIG. P15.71

we find x
k

k k
x1

2

1 2
=

+
L
NM

O
QP

The force on either spring is given by F
k k

k k
x ma1

1 2

1 2
=

+
L
NM

O
QP

=

where a is the acceleration of the mass m.

This is in the form F k x maeff= =

and T
m

k
m k k

k keff
= =

+
2 2 1 2

1 2
π π

b g

(b) In this case each spring is distorted by the distance x which the mass is displaced. Therefore,
the restoring force is

F k k x= − +1 2b g and k k keff = +1 2

so that T
m

k k
=

+
2

1 2
π b g .

P15.72 Let  represent the length below water at equilibrium and M the tube’s mass:

F Mg r gy∑ = ⇒− + =0 02ρπ .

Now with any excursion x from equilibrium

− + − =Mg r x g Maρπ 2 a f .

Subtracting the equilibrium equation gives

− =

= −
F
HG

I
KJ = −

ρπ

ρπ
ω

r gx Ma

a
r g

M
x x

2

2
2

The opposite direction and direct proportionality of a to x imply SHM with angular frequency

ω
ρπ

π
ω

π
ρ

=

= = FHG
I
KJ

r g
M

T
r

M
g

2

2 2
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P15.73 For θmax .= °5 00 , the motion calculated by the Euler method
agrees quite precisely with the prediction of θ ωmax cos t . The
period is T = 2 20.  s .

FIG. P15.73

Time,
t (s)

Angle,
θ (°)

Ang. speed
(°/s)

Ang. Accel.
° s2e j θ ωmax cos t

0.000 5.000 0 0.000 0 –40.781 5 5.000 0
0.004 4.999 3 –0.163 1 –40.776 2 4.999 7
0.008 4.998 0 –0.326 2 –40.765 6 4.998 7
…    

0.544 0.056 0 –14.282 3 –0.457 6 0.081 0
0.548 –0.001 1 –14.284 2 0.009 0 0.023 9
0.552 –0.058 2 –14.284 1 0.475 6 –0.033 3
…    

1.092 –4.999 4 –0.319 9 40.776 5 –4.998 9
1.096 –5.000 0 –0.156 8 40.781 6 –4.999 8
1.100 –5.000 0 0.006 3 40.781 4 –5.000 0
1.104 –4.999 3 0.169 4 40.775 9 –4.999 6
…    

1.644 –0.063 8 14.282 4 0.439 7 –0.071 6
1.648 0.003 3 14.284 2 –0.027 0 –0.014 5
1.652 0.060 4 14.284 1 –0.493 6 0.042 7
…    

2.192 4.999 4 0.313 7 –40.776 8 4.999 1
2.196 5.000 0 0.150 6 –40.781 7 4.999 9
2.200 5.000 0 –0.012 6 –40.781 3 5.000 0
2.204 4.999 3 –0.175 7 –40.775 6 4.999 4

For θmax = °100 , the simple harmonic motion approximation
θ ωmax cos t  diverges greatly from the Euler calculation. The
period is T = 2 71.  s , larger than the small-angle period by 23%.

Time,
t (s)

Angle,
θ (°)

Ang. speed
(°/s)

Ang. Accel.
° s2e j θ ωmax cos t

0.000 100.000 0 0.000 0 –460.606 6 100.000 0
0.004 99.992 6 –1.843 2 –460.817 3 99.993 5
0.008 99.977 6 –3.686 5 –460.838 2 99.973 9

…
1.096 –84.744 9 –120.191 0 465.948 8 –99.995 4
1.100 –85.218 2 –118.327 2 466.286 9 –99.999 8
1.104 –85.684 0 –116.462 0 466.588 6 –99.991 1

…
1.348 –99.996 0 –3.053 3 460.812 5 –75.797 9
1.352 –100.000 8 –1.210 0 460.805 7 –75.047 4
1.356 –99.998 3 0.633 2 460.809 3 –74.287 0

…
2.196 40.150 9 224.867 7 –301.713 2 99.997 1
2.200 41.045 5 223.660 9 –307.260 7 99.999 3
2.204 41.935 3 222.431 8 –312.703 5 99.988 5

…
2.704 99.998 5 2.420 0 –460.809 0 12.642 2
2.708 100.000 8 0.576 8 –460.805 7 11.507 5
2.712 99.995 7 –1.266 4 –460.812 9 10.371 2



470     Oscillatory Motion

*P15.74 (a) The block moves with the board in what we take as the positive x direction, stretching the
spring until the spring force −kx  is equal in magnitude to the maximum force of static

friction µ µs sn mg= . This occurs at x
mg
k

s=
µ

.

(b) Since v is small, the block is nearly at the rest at this break point. It starts almost immediately
to move back to the left, the forces on it being −kx  and +µ kmg . While it is sliding the net
force exerted on it can be written as

− + = − + = − −FHG
I
KJ = −kx mg kx

k mg
k

k x
mg
k

kxk
k k

relµ
µ µ

where xrel  is the excursion of the block away from the point 
µ kmg

k
.

Conclusion: the block goes into simple harmonic motion centered about the equilibrium

position where the spring is stretched by 
µ kmg

k
.

(d) The amplitude of its motion is its original displacement, A
mg
k

mg
k

s k= −
µ µ

. It first comes to

rest at spring extension 
µ µ µk k smg

k
A

mg
k

− =
−2b g

. Almost immediately at this point it

latches onto the slowly-moving board to move with the board. The board exerts a force of
static friction on the block, and the cycle continues.

(c) The graph of
the motion
looks like this:

FIG. P15.74(c)

(e) The time during each cycle when the block is moving with the board is 
2 2A
v

mg
kv

s k=
−µ µb g

.

The time for which the block is springing back is one half a cycle of simple harmonic motion,
1
2

2π π
m
k

m
k

F
HG

I
KJ = . We ignore the times at the end points of the motion when the speed of

the block changes from v to 0 and from 0 to v. Since v is small compared to 
2A

m
kπ

, these

times are negligible. Then the period is

T
mg

kv
m
k

s k=
−

+
2 µ µ

π
b g

.

continued on next page
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(f) T =
−

+ = + =
2 0 4 0 25 0 3 9 8

0 024 12
0 3

3 06 0 497 3 56
. . . .

.
.

. . .
a fb ge j
b gb g

 kg  m s

 m s  N m
 kg

12 N m
 s  s  s

2

π

Then f
T

= =
1

0 281.  Hz .

(g) T
mg

kv
m
k

s k=
−

+
2 µ µ

π
b g

 increases as m increases, so the frequency decreases .

(h) As k increases, T decreases and f increases .

(i) As v increases, T decreases and f increases .

(j) As µ µs k−b g increases, T increases and f decreases .

*P15.75 (a) Newton’s law of universal gravitation is F
GMm

r
Gm
r

r= − = − F
HG
I
KJ2 2

34
3
π ρ

Thus, F Gm r= −FHG
I
KJ

4
3
πρ

Which is of Hooke’s law form with k Gm=
4
3
πρ

(b) The sack of mail moves without friction according to −FHG
I
KJ =

4
3
πρGmr ma

a Gr r= −FHG
I
KJ = −

4
3

2πρ ω

Since acceleration is a negative constant times excursion from equilibrium, it executes SHM
with

ω
πρ

=
4

3
G

and period T
G

= =
2 3π
ω

π
ρ

The time for a one-way trip through the earth is
T

G2
3

4
=

π
ρ

We have also g
GM
R

G R
R

GRe

e

e

e
e= = =2

3

2
4
3

4
3

π ρ
πρ

so
4

3
ρ

π
G g

Re
= b g and

T R
g

e

2
6 37 10

2 53 10 42 2
6

3= =
×

= × =π π .
. .

 m
9.8 m s

 s  min2 .

ANSWERS TO EVEN PROBLEMS

P15.2 (a) 4.33 cm; (b) −5 00.  cm s ; P15.6 see the solution
(c) −17 3.  cm s2 ; (d) 3.14 s; 5.00 cm

P15.8 12 0.  Hz

P15.4 (a) 15.8 cm; (b) −15 9.  cm;
P15.10 18 8.  m s; 7 11.  km s2

(c) see the solution; (d) 51.1 m; (e) 50.7 m
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P15.12 (a) 1.26 s; (b) 0 150.  m s; 0 750.  m s2 ; P15.42 see the solution

(c) x t= −3 5 cmcos ; v t= FHG
I
KJ

15
5

 cm
s

sin ;

a t= FHG
I
KJ

75
5

 cm
s2 cos

P15.44 (a) 2 95.  Hz; (b) 2.85 cm

P15.46 see the solution

P15.48 either 1 31.  Hz or 0 641.  Hz
P15.14 (a) 

v
ω

; (b) x
v

t= −FHG
I
KJω ωsin

P15.50 1.56 cm

P15.16 (a) 126 N m; (b) 0.178 m P15.52 (a) 0 500.  m s ; (b) 8.56 cm

P15.18 (a) 0.153 J; (b) 0 784.  m s; (c) 17 5.  m s2
P15.54 A

g
f

s=
µ
π4 2 2

P15.20 (a) 100 N m; (b) 1.13 Hz;
P15.56 see the solution(c) 1 41.  m s at x = 0 ;

(d) 10 0.  m s2  at x A= ± ; (e) 2.00 J;

P15.58 (a) k
m

T
=

4 2

2
π

; (b) ′ =
′F
HG
I
KJm m

T
T

2
(f) 1 33.  m s; (g) 3 33.  m s2

P15.22 (a) 1.50 s; (b) 73 4.  N m;
P15.60 (a) x t= −2 10 ma f a fsin ; (b) at x ± 1 73.  m;(c) 19.7 m below the bridge; (d) 1 06.  rad s;

(c) 98.0 mm; (d) 52.4 ms(e) 2.01 s; (f) 3.50 s

P15.62 (a) decreased by 0.735 m;P15.24 (a) 0.218 s and 1.09 s; (b) 14 6.  mW
(b) increased by 0.730 s;
(c) decreased by 120 J; (d) see the solutionP15.26 The position of the piston is given by

x A t= cosω .
P15.64 (a) 3 56.  Hz ; (b) 2 79.  Hz; (c) 2 10.  Hz

P15.28
g
g

C

T
= 1 001 5.

P15.66 (a) 
1
2 3

2M
m

v+FHG
I
KJ ; (b) T

M
k

m

=
+

2 3π

P15.30 1.42 s; 0.499 m
P15.68 see the solution; (a) k = ±1 74 6%.  N m ;

(b) 1 82 3%.  N m± ; they agree;P15.32 (a) 3.65 s; (b) 6.41 s; (c) 4.24 s
(c) 8 g 12%± ; it agrees

P15.34 (a) see the solution;
P15.70 (a) 5.20 s; (b) 2.60 s; (c) see the solution(b), (c) 9 85.  m s2 ; agreeing with the

accepted value within 0.5%

P15.72 see the solution; T
r

M
g

= FHG
I
KJ

2 π
ρP15.36 (a) 2.09 s; (b) 4.08%

P15.38 203 N mµ ⋅ P15.74 see the solution; (f) 0 281.  Hz ;
(g) decreases; (h) increases; (i) increases;
(j) decreasesP15.40 see the solution
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Wave Motion

ANSWERS TO QUESTIONS

Q16.1 As the pulse moves down the string, the particles of the string
itself move side to side. Since the medium—here, the
string—moves perpendicular to the direction of wave
propagation, the wave is transverse by definition.

Q16.2 To use a slinky to create a longitudinal wave, pull a few coils
back and release. For a transverse wave, jostle the end coil
side to side.

Q16.3 From v
T

=
µ

, we must increase the tension by a factor of 4.

Q16.4 It depends on from what the wave reflects. If reflecting from a
less dense string, the reflected part of the wave will be right
side up.

Q16.5 Yes, among other things it depends on. v A fA
vA

max = = =ω π
π
λ

2
2

. Here v is the speed of the wave.

Q16.6 Since the frequency is 3 cycles per second, the period is 
1
3

 second = 333 ms.

Q16.7 Amplitude is increased by a factor of 2 . The wave speed does not change.

Q16.8 The section of rope moves up and down in SHM. Its speed is always changing. The wave continues on
with constant speed in one direction, setting further sections of the rope into up-and-down motion.

Q16.9 Each element of the rope must support the weight of the rope below it. The tension increases with

height. (It increases linearly, if the rope does not stretch.) Then the wave speed v
T

=
µ

 increases

with height.

Q16.10 The difference is in the direction of motion of the elements of the medium. In longitudinal waves,
the medium moves back and forth parallel to the direction of wave motion. In transverse waves, the
medium moves perpendicular to the direction of wave motion.

473
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Q16.11 Slower. Wave speed is inversely proportional to the square root of linear density.

Q16.12 As the wave passes from the massive string to the less massive string, the wave speed will increase

according to v
T

=
µ

. The frequency will remain unchanged. Since v f= λ , the wavelength must

increase.

Q16.13 Higher tension makes wave speed higher. Greater linear density makes the wave move more
slowly.

Q16.14 The wave speed is independent of the maximum particle speed. The source determines the
maximum particle speed, through its frequency and amplitude. The wave speed depends instead on
properties of the medium.

Q16.15 Longitudinal waves depend on the compressibility of the fluid for their propagation. Transverse
waves require a restoring force in response to sheer strain. Fluids do not have the underlying
structure to supply such a force. A fluid cannot support static sheer. A viscous fluid can
temporarily be put under sheer, but the higher its viscosity the more quickly it converts input
work into internal energy. A local vibration imposed on it is strongly damped, and not a source of
wave propagation.

Q16.16 Let ∆t t ts p= −  represent the difference in arrival times of the two waves at a station at distance

d v t v ts s p p= =  from the hypocenter. Then d t
v vs p

= −
F
HG

I
KJ
−

∆
1 1

1

. Knowing the distance from the first

station places the hypocenter on a sphere around it. A measurement from a second station limits it
to another sphere, which intersects with the first in a circle. Data from a third non-collinear station
will generally limit the possibilities to a point.

Q16.17 The speed of a wave on a “massless” string would be infinite!

SOLUTIONS TO PROBLEMS

Section 16.1 Propagation of a Disturbance

P16.1 Replace x by x vt x t− = − 4 5.

to get y
x t

=
− +

6

4 5 32.a f
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P16.2  

FIG. P16.2

P16.3 5 00 5 2

. e x t− +a f  is of the form f x vt+a f
so it describes a wave moving to the left  at v = 5 00.  m s .

P16.4 (a) The longitudinal  wave travels a shorter distance and is moving faster, so it will arrive at

point B first.

(b) The wave that travels through the Earth must travel

a distance of 2 30 0 2 6 37 10 30 0 6 37 106 6R sin . . sin . .°= × °= × m  me j
at a speed of 7 800 m/s

Therefore, it takes 
6 37 10

817
6. ×

=
 m

7 800 m s
 s

The wave that travels along the Earth’s surface must travel

a distance of s R R= = FHG
I
KJ = ×θ

π
3

6 67 106 rad  m.

at a speed of 4 500 m/s

Therefore, it takes 
6 67 10

4 500
1 482

6. ×
=  s

The time difference is 665 11 1 s  min= .
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P16.5 The distance the waves have traveled is d t t= = +7 80 4 50 17 3. . . km s  km s  sb g b ga f
where t is the travel time for the faster wave.

Then, 7 80 4 50 4 50 17 3. . . .− =a fb g b ga fkm s  km s  st

or t =
−

=
4 50 17 3

7 80 4 50
23 6

. .

. .
.

 km s  s

 km s
 s

b ga f
a f

and the distance is d = =7 80 23 6 184. . km s  s  kmb ga f .

Section 16.2 Sinusoidal Waves

P16.6 Using data from the observations, we have λ = 1 20.  m

and f =
8 00

12 0
.
.  s

Therefore, v f= = F
HG
I
KJ =λ 1 20

8 00
12 0

0 800.
.
.

. m
 s

 m sa f

P16.7 f = =
40 0 4

3
.  vibrations

30.0 s
 Hz v = =

425
42 5

 cm
10.0 s

 cm s.

λ = = = =
v
f

42 5
31 9 0 3194

3

.
. .

 cm s
 Hz

 cm  m

P16.8 v f= = = =λ 4 00 60 0 240 2 40. . . Hz  cm  cm s  m sa fa f

P16.9 y x t= −0 020 0 2 11 3 62. sin . . mb g a f  in SI units A = 2 00.  cm

k = 2 11.  rad m λ
π

= =
2

2 98
k

.  m

ω = 3 62.  rad s f = =
ω
π2

0 576.  Hz

v f
k

= = = =λ
ω
π

π
2

2 3 62
2 11

1 72
.
.

.  m s

P16.10 y x t= −0 005 1 310 9 30. sin . mb g a f  SI units

v
k

= = =
ω 9 30

310
0 030 0

.
.  m s

s vt x= = 0.300 m in positive - direction
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*P16.11 From y x t= −12 0 1 57 31 4. sin . . cm  rad m  rad sa f b g b gd i

(a) The transverse velocity is
∂
∂

= − −
y
t

A kx tω ωcosa f

Its maximum magnitude is Aω = =12 31 4 3 77 cm  rad s  m s. .b g

(b) a
v

t t
A kx t A kx ty

y
=
∂

∂
=
∂
∂

− − = − −ω ω ω ωcos sina fc h a f2

The maximum value is Aω 2 1 2
0 12 31 4 118= =−. . m  s  m s2a fe j

P16.12 At time t, the phase of y x t= −15 0 0 157 50 3. cos . . cma f a f  at coordinate x is

φ = −0 157 50 3. . rad cm  rad sb g b gx t . Since 60 0
3

. °=
π

 rad , the requirement for point B is that

φ φ
π

B A= ±
3

 rad , or (since xA = 0 ),

0 157 50 3 0 50 3
3

. . . rad cm  rad s  rad s  radb g b g b gx t tB − = − ±
π

.

This reduces to xB =
±

= ±
π rad
 rad cm

 cm
3 0 157

6 67
.

.b g .

P16.13 y x t= −0 250 0 300 40 0. sin . .a f m
Compare this with the general expression y A kx t= −sin ωa f

(a) A = 0 250.  m

(b) ω = 40 0.  rad s

(c) k = 0 300.  rad m

(d) λ
π π

= = =
2 2

0 300
20 9

k .
.

 rad m
 m

(e) v f= = FHG
I
KJ = FHG

I
KJ =λ

ω
π

λ
π2

40 0
2

20 9 133
.

.
 rad s

 m  m sa f

(f) The wave moves to the right, in  direction+ x .



478     Wave Motion

P16.14 (a) See figure at right.

(b) T = = =
2 2

50 3
0 125

π
ω

π
.

.  s

This agrees with the period found in the example
in the text.

y (cm)

t (s)

10

0
0.1 0.2

—10

FIG. P16.14

P16.15 (a) A y= = =max . .8 00 0 080 0 cm  m k = = = −2 2
0 800

7 85 1π
λ

π
.

.
 m

 ma f
ω π π π= = =2 2 3 00 6 00f . .a f  rad s

Therefore, y A kx t= +sin ωa f
Or (where y t0 0,b g =  at t = 0 ) y x t= +0 080 0 7 85 6. sin .b g b gπ  m

(b) In general, y x t= + +0 080 0 7 85 6. sin . π φb g
Assuming y x, 0 0b g =  at x = 0 100.  m

then we require that 0 0 080 0 0 785= +. sin . φb g
or φ = −0 785.

Therefore, y x t= + −0 080 0 7 85 6 0 785. sin . .πb g m

P16.16 (a)

0.0
–0.1
–0.2

0.1
0.2

y (mm)

x (mm)

t = 0
0.2

0.4

FIG. P16.16(a)

(b) k = = =
2 2

0 350
18 0

π
λ

π
.

.
 m

 rad m

T
f

= = =
1 1

12 0
0 083 3

.
.

s
 s

ω π π= = =2 2 12 0 75 4f . .s  rad s

v f= = =λ 12 0 0 350 4 20. . .s  m  m sb ga f

(c) y A kx t= + +sin ω φb g  specializes to

y x t= + +0 200 18 0 75 4. sin . . m m s φb g
at x = 0 , t = 0  we require

− × = +

= − °= −

−3 00 10 0 200

8 63 0 151

2. . sin

. .

 m  m

 rad

φ
φ

b g

so y x t x t, . sin . . .b g a f b g= + −0 200 18 0 75 4 0 151 m m s  rad
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P16.17 y x t= +F
HG

I
KJ0 120

8
4. sin ma f π
π

(a) v
dy
dt

= : x x t= +F
HG

I
KJ0 120 4

8
4. cosa fa fπ π
π

v 0 200 1 51. . s,  1.60 m  m sa f = −

a
dv
dt

= : a x t= − +F
HG

I
KJ0 120 4

8
42. sin ma fa fπ π
π

a 0 200 0.  s,  1.60 ma f =

(b) k = =
π π

λ8
2

: λ = 16 0.  m

ω π
π

= =4
2
T

: T = 0 500.  s

v
T

= = =
λ 16 0

32 0
.

.
 m

0.500 s
 m s

P16.18 (a) Let us write the wave function as y x t A kx t, sinb g b g= + +ω φ

y A0 0 0 020 0, sin .b g = =φ  m

dy
dt

A
0 0

2 00
,

cos .= = −ω φ  m s

Also, ω
π π

π= = =
2 2

0 025 0
80 0

T .
.

 s
s

A x
v

i
i2 2

2
2

2

0 020 0
2 00
80 0

= + FHG
I
KJ = +

F
HG

I
KJω π

.
.

.
 m

 m s
s

b g

A = 0 021.  5 m

(b)
A
A

sin
cos

.
. tan

.

φ
φ

φ
π

= = − =−

0 020 0
2 51

2
80 0

Your calculator’s answer tan . .− − = −1 2 51 1 19a f  rad  has a negative sine and positive cosine,
just the reverse of what is required. You must look beyond your calculator to find

φ π= − =1 19 1 95. . rad  rad

(c) v Ay , . . . max  m s  m s= = =ω π0 021 5 80 0 5 41b g

(d) λ = = =v Tx 30 0 0 025 0 750. . . m s  0 s  mb ga f

k = = =
2 2

0 750
π
λ

π
.  m

8.38 m ω π= 80 0. s

y x t x t, . sin . . .b g b g b g= + +0 021 5 8 38 80 0 1 95 m  rad m  rad s  radπ
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P16.19 (a) f
v

= = =
λ

1 00

2 00
0 500

.

.
.

 m s

 m
 Hz

b g

ω π π= = =2 2 0 500f . s 3.14 rad sb g

(b) k = = =
2 2

2 00
3 14

π
λ

π
.

.
 m

 rad m

(c) y A kx t= − +sin ω φb g  becomes

y x t= − +0 100 3 14 3 14 0. sin . . m m sa f b g

(d) For x = 0  the wave function requires

y t= −0 100 3 14. sin . m sa f b g

(e) y t= −0 100 4 71 3 14. sin . . m  rad sa f b g

(f) v
y
t

x ty =
∂
∂

= − −0 100 3 14 3 14 3 14. . cos . . m s m sb g b g
The cosine varies between +1 and –1, so

vy ≤ 0 314.  m sb g

P16.20 (a) at x = 2 00.  m , y t= −0 100 1 00 20 0. sin . . m  rada f a f

(b) y x t A kx t= − = −0 100 0 500 20 0. sin . . sin ma f a f a fω

so ω = 20 0.  rad s  and f = =
ω
π2

3 18.  Hz

Section 16.3 The Speed of Waves on Strings

P16.21 The down and back distance is 4 00 4 00 8 00. . . m  m  m+ = .

The speed is then v
d

t
T

= = = =total  m
 s

 m s
4 8 00

0 800
40 0

.
.

.
a f

µ

Now, µ = = × −0 200
5 00 10 2.
.

 kg
4.00 m

 kg m

So T v= = × =−µ 2 2 2
5 00 10 40 0 80 0. . . kg m  m s  Ne jb g

P16.22 The mass per unit length is: µ = = × −0 060 0
1 20 10 2.
.

 kg
5.00 m

 kg m .

The required tension is: T v= = =µ 2 20 012 0 50 0 30 0. . . kg m  m s  Nb gb g .
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P16.23 v
T

= =
⋅

×
=−µ

1 350
5 00 10

5203

 kg m s
 kg m

 m s
2

.

P16.24 (a) ω π π= = =2 2 500 3 140f a f  rad s , k
v

= = =
ω 3 140

196
16 0.  rad m

y x t= × −−2 00 10 16 0 3 1404. sin . me j b g

(b) v
T

= =
× −196

4 10 10 3 m s
 kg m.

T = 158 N

P16.25 T Mg=  is the tension; v
T Mg MgL

m
L
tm

L

= = = =
µ

 is the wave speed.

Then, 
MgL

m
L
t

=
2

2

and g
Lm
Mt

= =
×

×
=

−

−2

3

3 2

1 60 4 00 10

3 00 10
1 64

. .

.
.

 m  kg

 kg 3.61  s
 m s2e j

e j

P16.26 v
T

=
µ

T v Av r v

T

T

= = =

= ×

=

−

µ ρ ρπ

π

2 2 2 2

4 2 2
8 920 7 50 10 200

631

 kg m  m  m s

 N

3e ja fe j b g.

P16.27 Since µ
 
is constant, µ = =

T
v

T
v

2

2
2

1

1
2  and

T
v
v

T2
2

1

2

1

2
30 0
20 0

6 00 13 5=
F
HG
I
KJ =
F
HG

I
KJ =

.

.
. .

 m s
 m s

 N  Na f .

P16.28 The period of the pendulum is T
L
g

= 2π

Let F represent the tension in the string (to avoid confusion with the period) when the pendulum is
vertical and stationary. The speed of waves in the string is then:

v
F Mg MgL

mm
L

= = =
µ

Since it might be difficult to measure L precisely, we eliminate L
T g

=
2π

so v
Mg
m

T g Tg M
m

= =
2 2π π

.
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P16.29 If the tension in the wire is T, the tensile stress is

Stress = =
T
A

T Aso stressa f .
The speed of transverse waves in the wire is

v
T A

m
L

m
AL

m= = = = =
µ ρ

Stress Stress Stress Stress

Volume

a f

where ρ is the density. The maximum velocity occurs when the stress is a maximum:

vmax
.

=
×

=
2 70 10

185 
8  Pa

7 860 kg m
m s3 .

P16.30 From the free-body diagram mg T= 2 sinθ

T
mg

=
2 sinθ

The angle θ  is found from cosθ = =
3
8

2

3
4

L

L

∴ = °θ 41 4. FIG. P16.30

(a) v
T

=
µ

v
mg

m=
°
=

× °

F

H
GG

I

K
JJ−2 41 4

9 80

2 8 00 10 41 43µ sin .
.

. sin .

 m s

 kg m

2

e j

or v m=
F
HG

I
KJ

30 4.  
m s

kg

(b) v m= =60 0 30 4. .  and m = 3 89.  kg

P16.31 The total time is the sum of the two times.

In each wire t
L
v

L
T

= =
µ

Let A represent the cross-sectional area of one wire. The mass of one wire can be written both as
m V AL= =ρ ρ  and also as m L= µ .

Then we have µ ρ
πρ

= =A
d 2

4

Thus, t L
d
T

=
F
HG
I
KJ

πρ 2 1 2

4

For copper, t =
×L

N
MMM

O

Q
PPP

=
−

20 0
8 920 1 00 10

4 150
0 137

3 2 1 2

.
.

.a f a fb ge j
a fa f

π
 s

For steel, t =
×L

N
MMM

O

Q
PPP

=
−

30 0
7 860 1 00 10

4 150
0 192

3 2 1 2

.
.

.a f a fb ge j
a fa f

π
 s

The total time is 0 137 0 192 0 329. . .+ =  s
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P16.32 Refer to the diagrams. From the free-body diagram of point A:

F T Mgy∑ = ⇒ =0 1 sinθ and F T Tx∑ = ⇒ =0 1 cosθ

Combining these equations to eliminate T1  gives the tension in the

string connecting points A and B as: T
Mg

=
tanθ

.

The speed of transverse waves in this segment of string is then

v
T MgL

m

Mg

m
L

= = =
µ θ

θtan

tan

and the time for a pulse to travel from A to B is

t
v

mL
Mg

L

= =2

4
tanθ

.

M M

D

L/4 L/4
A Bθ

L/2d d

θ

T

Mg

θ A

T1

FIG. P16.32

*P16.33 (a) f has units Hz s= 1 , so T
f

=
1

 has units of seconds, s . For the other T we have T v= µ 2 ,

with units 
kg
m

m
s

kg m
s

N
2

2 2=
⋅

= .

(b) The first T is period  of time; the second is force  of tension.

Section 16.4 Reflection and Transmission

Problem 7 in Chapter 18 can be assigned with this section.

Section 16.5 Rate of Energy Transfer by Sinusoidal Waves on Strings

P16.34 f
v

= = =
λ

30 0
0 500

60 0
.

.
.  Hz ω π π= =2 120f  rad s

P = = FHG
I
KJ =

1
2

1
2

0 180
3 60

120 0 100 30 0 1 072 2 2 2µω πA v
.
.

. . .a f a f a f  kW

P16.35 Suppose that no energy is absorbed or carried down into the water. Then a fixed amount of power is
spread thinner farther away from the source, spread over the circumference 2π r  of an expanding
circle. The power-per-width across the wave front

P
2π r

is proportional to amplitude squared so amplitude is proportional to

P
2π r

.
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P16.36 T =  constant; v
T

=
µ

; P =
1
2

2 2µω A v

(a) If L is doubled, v remains constant and P  is constant .

(b) If A is doubled and ω is halved, P ∝ω 2 2A remains constant .

(c) If λ and A are doubled, the product ω
λ

2 2
2

2A
A

∝  remains constant, so

P  remains constant .

(d) If L and λ are halved, then ω
λ

2
2

1
∝  is quadrupled, so P  is quadrupled .

(Changing L doesn’t affect P ).

P16.37 A = × −5 00 10 2.  m µ = × −4 00 10 2.  kg m P = 300 W T = 100 N

Therefore, v
T

= =
µ

50 0.  m s

P =
1
2

2 2µω A v : ω
µ

2
2 2 2 2

2 2 300

4 00 10 5 00 10 50 0
= =

× ×− −

P
A v

a f
e je j a f. . .

ω
ω
π

=

= =

346

2
55 1

 rad s

 Hzf .

P16.38 µ = = × −30 0 30 0 10 3. . g m  kg m

λ

ω π

=

= = =

= = ×

−

−

1 50

50 0 2 314

2 0 150 7 50 10

1

2

.

. :

. : .

 m

 Hz  s

 m  m

f f

A A

(a) y A x t= −F
HG

I
KJsin

2π
λ

ω

y x t= × −−7 50 10 4 19 3142. sin .e j a f FIG. P16.38

(b) P = = × × F
HG
I
KJ

− −1
2

1
2

30 0 10 314 7 50 10
314
4 19

2 2 3 2 2 2
µω A v . .

.e ja f e j  W P = 625 W

P16.39 (a) v f
k k

= = = = =λ
ω
π

π ω
2

2 50 0
0 800

62 5
.

.
. m s  m s

(b) λ
π π

= = =
2 2

0 800
7 85

k .
. m  m

(c) f = =
50 0
2

7 96
.

.
π

 Hz

(d) P = = × =−1
2

1
2

12 0 10 50 0 0 150 62 5 21 12 2 3 2 2µω A v . . . . .e ja f a f a f W  W
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*P16.40 Comparing y t x= − +F
HG

I
KJ0 35 10 3

4
. sin π π

π
 with y A kx t A t kx= − + = − − +sin sinω φ ω φ πb g b g  we have

k
m

=
3π

, ω π= 10 s , A = 0 35.  m . Then v f f
k

= = = = =λ π
λ
π

ω π
π

2
2

10
3

3 33
s

m
 m s. .

(a) The rate of energy transport is

P = = × =−1
2

1
2

75 10 10 0 35 3 33 15 12 2 3 2 2µω πA v  kg m s  m  m s  We jb g a f. . . .

(b) The energy per cycle is

E T Aλ µω λ π
π
π

= = = × =−P
1
2

1
2

75 10 10 0 35
2

3 022 2 3 2 2 kg m s  m
 m

3
 Je jb g a f. . .

P16.41 Originally,

P

P

P

0
2 2

0
2 2

0
2 2

1
2
1
2
1
2

=

=

=

µω

µω
µ

ω µ

A v

A
T

A T

The doubled string will have doubled mass-per-length. Presuming that we hold tension constant, it
can carry power larger by 2  times.

2
1
2

20
2 2P = ω µA T

*P16.42 As for a strong wave, the rate of energy transfer is proportional to the square of the amplitude and to
the speed. We write P = FvA2  where F is some constant. With no absorption of energy,

Fv A Fv A

v
v

A
A

v
v

bedrock bedrock
2

mudfill mudfill
2

bedrock

mudfill

mudfill

bedrock

mudfill

mudfill

=

= = =
25

5

The amplitude increases by 5.00 times.
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Section 16.6 The Linear Wave Equation

P16.43 (a) A = +7 00 3 00 4 00. . .a f  yields A = 40 0.

(b) In order for two vectors to be equal, they must have the same magnitude and the same
direction in three-dimensional space. All of their components must be equal. Thus,

7 00 0 3 00. � � . � � � �i j k i j k+ + = + +A B C  requires A B C= = =7 00 0 3 00. , , . and .

(c) In order for two functions to be identically equal, they must be equal for every value of
every variable. They must have the same graphs. In

A B Cx Dt E x t+ + + = + + +cos . cos . . .a f a f0 7 00 3 00 4 00 2 00 mm ,

the equality of average values requires that A = 0 . The equality of maximum values

requires B = 7 00.  mm . The equality for the wavelength or periodicity as a function of x

requires C = 3 00.  rad m . The equality of period requires D = 4 00.  rad s , and the

equality of zero-crossings requires E = 2 00.  rad .

*P16.44 The linear wave equation is
∂

∂
=

∂

∂

2

2 2

2

2
1y

x v
y

t

If y eb x vt= −a f

then 
∂
∂

= − −y
t

bveb x vta f  and 
∂
∂

= −y
x

beb x vta f

∂

∂
= −

2

2
2 2y

t
b v eb x vta f  and 

∂

∂
= −

2

2
2y

x
b eb x vta f

Therefore,
∂

∂
=

∂

∂

2

2
2

2

2

y
t

v
y

x
, demonstrating that eb x vt−a f  is a solution

P16.45 The linear wave equation is 
1
2

2

2

2

2v
y

t
y

x
∂

∂
=
∂

∂

To show that y b x vt= −ln a f  is a solution, we find its first and second derivatives with respect to x

and t and substitute into the equation.

∂
∂

=
−

−
y
t b x vt

bv
1
a f a f

∂

∂
=

− −

−
= −

−

2

2

2

2 2

2

2

1y
t

bv

b x vt

v

x vt

a f
a f a f

∂
∂

= −
−y

x
b x vt ba f 1 ∂

∂
= − − = −

−

2

2
2

2
1y

x
b
b

x vt
x vt

a f a f

Then 
1 1 1
2

2

2 2

2

2 2

2

2v
y

t v

v

x vt x vt

y
x

∂
∂

=
−

−
= −

−
=
∂
∂

e j
a f a f  so the given wave function is a solution.



Chapter 16     487

P16.46 (a) From y x v t= +2 2 2 ,

evaluate
∂
∂

=
y
x

x2
∂

∂
=

2

2 2
y

x
∂
∂

=
y
t

v t2 2
∂

∂
=

2

2
22

y
t

v

Does 
∂

∂
=

∂

∂

2

2 2

2

2
1y

t v
y

t
?

By substitution: 2
1

22
2=

v
v  and this is true, so the wave function does satisfy the wave

equation.

(b) Note 
1
2

1
2

2 2x vt x vt+ + −a f a f = + + + − +
1
2

1
2

1
2

1
2

2 2 2 2 2 2x xvt v t x xvt v t

= +x v t2 2 2  as required.

So f x vt x vt+ = +a f a f1
2

2  and g x vt x vt− = −a f a f1
2

2 .

(c) y x vt= sin cos  makes

∂
∂

=
y
x

x vtcos cos
∂

∂
= −

2

2

y
x

x vtsin cos

∂
∂

= −
y
t

v x vtsin sin
∂

∂
= −

2

2
2y

t
v x vtsin cos

Then 
∂

∂
=

∂

∂

2

2 2

2

2
1y

x v
y

t

becomes − =
−

sin cos sin cosx vt
v

v x vt
1
2

2  which is true as required.

Note sin sin cos cos sinx vt x vt x vt+ = +a f
sin sin cos cos sinx vt x vt x vt− = −a f .

So sin cosx vt f x vt g x vt= + + −a f a f  with

f x vt x vt+ = +a f a f1
2

sin and g x vt x vt− = −a f a f1
2

sin .

Additional Problems

P16.47 Assume a typical distance between adjacent people ~1 m .

Then the wave speed is v
x
t

=
∆
∆

~ ~
1

10
 m

0.1 s
 m s

Model the stadium as a circle with a radius of order 100 m. Then, the time for one circuit around the
stadium is

T
r

v
= =

2 2 10

10
63 1

2
π π

~ ~
e j
 m s

 s  min .
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P16.48 Compare the given wave function y x t= −4 00 2 00 3 00. sin . .a f cm  to the general form

y A kx t= −sin ωa f  to find

(a) amplitude A = =4 00 0 040 0. . cm  m

(b) k = = −2
2 00 1π

λ
.  cm  and λ π= = cm  m0 031 4.

(c) ω π= = −2 3 00 1f .  s  and f = 0 477.  Hz

(d) T
f

= =
1

2 09.  s

(e) The minus sign indicates that the wave is traveling in the positive -directionx .

P16.49 (a) Let u t x= − +10 3
4

π π
π du

dt
dx
dt

= − =10 3 0π π  at a point of constant phase

dx
dt

= =
10
3

3 33.  m s

The velocity is in the positive -directionx .

(b) y 0 100 0 0 350 0 300
4

0 054 8 5 48. , . sin . . .b g a f= − +F
HG

I
KJ = − = − m  m  cmπ

π

(c) k = =
2

3
π
λ

π : λ = 0 667.  m ω π π= =2 10f : f = 5 00.  Hz

(d) v
y
t

t xy =
∂
∂

= − +F
HG

I
KJ0 350 10 10 3

4
. cosa fa fπ π π

π
vy , . . max  m s= =10 0 350 11 0πa fa f

*P16.50 (a) 0 175 0 350 99 6. . sin . m  m  rad s= a f b gt
∴ =sin . .99 6 0 5 rad sb gt
The smallest two angles for which the sine function is 0.5 are 30° and 150°, i.e., 0.523 6 rad
and 2.618 rad.
99 6 0 523 61. . rad s  radb gt = , thus t1 5 26= .  ms

99 6 2 6182. . rad s  radb gt = , thus t2 26 3= .  ms

∆t t t≡ − = − =2 1 26 3 5 26 21 0. . . ms  ms  ms

(b) Distance traveled by the wave = FHG
I
KJ =
F
HG

I
KJ × =−ω

k
t∆

99 6
1 25

21 0 10 1 683.
.

. .
 rad s
 rad m

 s  me j .

P16.51 The equation v f= λ  is a special case of

speed = (cycle length)(repetition rate).

Thus, v = × =−19 0 10 24 0 0 4563. . . m frame  frames s  m se jb g .
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P16.52 Assuming the incline to be frictionless and taking the positive x-direction to be up the incline:

F T Mgx∑ = − =sinθ 0  or the tension in the string is T Mg= sinθ

The speed of transverse waves in the string is then v
T Mg MgL

mm
L

= = =
µ

θ θsin sin

The time interval for a pulse to travel the string’s length is ∆t
L
v

L
m

MgL
mL

Mg
= = =

sin sinθ θ

P16.53 Energy is conserved as the block moves down distance x:

K U U E K U U

Mgx kx

x
Mg
k

g s g s+ + + = + +

+ + + = + +

=

e j e j
top bottom

∆

0 0 0 0 0
1
2

2

2

(a) T kx Mg= = = =2 2 2 00 9 80 39 2. . . kg  m s  N2b ge j

(b) L L x L
Mg
k

= + = +0 0
2

L = + =0 500
39 2

0 892.
.

. m
 N

100 N m
 m

(c) v
T TL

m
= =

µ

v

v

=
×

×

=

−
39 2 0 892

10

83 6

3
. .

.

 N  m
5.0  kg

 m s

P16.54 Mgx kx=
1
2

2

(a) T kx Mg= = 2

(b) L L x L
Mg
k

= + = +0 0
2

(c) v
T TL

m
Mg
m

L
Mg
k

= = = +FHG
I
KJµ

2 2
0
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P16.55 (a) v
T

= =
×

=
−µ

80 0

5 00 10
179

3

.

.

 N

 kg 2.00 m
 m s

e j

(b) From Equation 16.21, P =
1
2

2 2µ ωv A  and ω π
λ

= FHG
I
KJ2

v

P

P

P

= F
HG
I
KJ =

=

FH IK

= × =

× −

1
2

2 2

2 0 040 0 179

0 160

1 77 10 17 7

2
2 2 2 3

2

2 5 00 10 2 3

2

4

3

µ
π
λ

π µ
λ

π

vA
v A v

. .

.

. .

 kg
2.00 m  m  m s

 m

 W  kW

b g b g
a f

P16.56 v
T

=
µ

 and in this case T mg= ; therefore, m
v
g

=
µ 2

.

Now v f= λ  implies v
k

=
ω

 so that

m
g k

= FHG
I
KJ =

L
NM

O
QP

=
−

−
µ ω π

π

2 1

1

2
0 250
9 80

18
0 750

14 7
.
. .

.
 kg m
 m s

 s
 m

 kg2 .

*P16.57 Let M =  mass of block, m = mass of string. For the block, F ma∑ =  implies T
mv

r
m rb= =

2
2ω . The

speed of a wave on the string is then

v
T M r

r
M
m

t
r
v

m
M

t
m
M

m
r

= = =

= =

= = = =

µ
ω

ω

ω

θ ω

2

1

0 003 2
0 084 3

.
.

 kg
0.450 kg

 rad

P16.58 (a) µ ρ ρ= = =
dm
dL

A
dx
dx

A

v
T T

A
T

ax b
T

x
= = =

+
=

+− −µ ρ ρ ρa f e j10 103 2 cm2

With all SI units, v
T

x
=

+− − −ρ 10 10 103 2 4e j
 m s

(b) v x= − −
=

+
=0 2 4

24 0

2 700 0 10 10
94 3

.
.

b ge je j
 m s

v x= − − −
=

+
=10 0 2 2 4

24 0

2 700 10 10 10
66 7.

.
.

b ge je j
 m s
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P16.59 v
T

=
µ

 where T xg= µ , the weight of a length x, of rope.

Therefore, v gx=

But v
dx
dt

= , so that dt
dx
gx

=

and t
dx
gx g

x L
g

L L

= = =z
0

1
2 0

1
2

P16.60 At distance x from the bottom, the tension is T
mxg

L
Mg= FHG
I
KJ + , so the wave speed is:

v
T TL

m
xg

MgL
m

dx
dt

= = = + FHG
I
KJ =µ

.

(a) Then t dt xg
MgL

m
dx

t L

= = + FHG
I
KJ

L
NM

O
QPz z
−

0

1 2

0

t
g

xg MgL m

x

x L

=
+

=

=

1
1 2

1
2

0

b g

t
g

Lg
MgL

m
MgL

m
= +FHG

I
KJ − FHG

I
KJ

L
N
MM

O
Q
PP

2 1 2 1 2

t
L
g

m M M
m

=
+ −F

HG
I
KJ2

(b) When M = 0 , as in the previous problem, t
L
g

m
m

L
g

=
−F

HG
I
KJ =2

0
2

(c) As m→ 0 we expand m M M
m
M

M
m
M

m
M

+ = +FHG
I
KJ = + − +

F
HG

I
KJ1 1

1
2

1
8

1 2 2

2 …

to obtain t
L
g

M m M m M M

m
=

+ − + −F
H
GG

I
K
JJ2

1
2

1
8

2 3 2e j e j …

t
L
g

m
M

mL
Mg

≈
F
HG

I
KJ =2

1
2

P16.61 (a) The speed in the lower half of a rope of length L is the same function of distance (from the

bottom end) as the speed along the entire length of a rope of length 
L
2
F
HG
I
KJ .

Thus, the time required =
′

2
L
g

 with ′ =L
L
2

and the time required = =
F
HG
I
KJ2

2
0 707 2

L
g

L
g

. .

It takes the pulse more that 70% of the total time to cover 50% of the distance.

(b) By the same reasoning applied in part (a), the distance climbed in τ is given by d
g

=
τ 2

4
.

For τ = =
t L

g2
, we find the distance climbed =

L
4

.

In half the total trip time, the pulse has climbed 
1
4

 of the total length.
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P16.62 (a) v
k

x= = =
ω 15 0

3 00
5 00

.
.

.  m s  in positive -direction

(b) v x= =
15 0
3 00

5 00
.

.
.  m s  in negative -direction

(c) v x= =
15 0
2 00

7 50
.

.
.  m s  in negative -direction

(d) v x= =
12 0

24 0
1
2

.
.  m s  in positive -direction

P16.63 Young’s modulus for the wire may be written as Y
T
A
L

L

= ∆ , where T is the tension maintained in the

wire and ∆L  is the elongation produced by this tension. Also, the mass density of the wire may be

expressed as ρ
µ

=
A

.

The speed of transverse waves in the wire is then

v
T YT

A

A

L
L= = =

µ ρµ

∆c h

and the strain in the wire is 
∆L
L

v
Y

=
ρ 2

.

If the wire is aluminum and v = 100 m s, the strain is

∆L
L

=
×

×
= × −

2 70 10 100

7 00 10
3 86 10

3 2

10
4

.

.
.

 kg m  m s

 N m

3

2

e jb g
.

*P16.64 (a) Consider a short section of chain at the top of the loop. A free-
body diagram is shown. Its length is s R= 2θa f  and its mass is
µ θR2 . In the frame of reference of the center of the loop,
Newton’s second law is

F may y∑ = 2
20

2
0
2

T
mv

R
R v

R
sinθ

µ θ
 down  down= =

For a very short section, sinθ θ=  and T v= µ 0
2 .

 

R 
2 θ 

θ θ 
T T 

FIG. P16.64(a)

(b) The wave speed is v
T

v= =
µ 0 .

(c) In the frame of reference of the center of the loop, each pulse moves with equal speed
clockwise and counterclockwise.

v0 v0 v0

v v

FIG. P16.64(c-1)

continued on next page
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In the frame of reference of the ground, once pulse moves backward at speed v v v0 02+ =
and the other forward at v v0 0− = . The one pulse makes two revolutions while the loop
makes one revolution and the other pulse does not move around the loop. If it is generated
at the six-o’clock position, it will stay at the six-o’clock position.

v0 v0 v0

FIG. P16.64(c-2)

P16.65 (a) Assume the spring is originally stationary throughout, extended to have a length L much
greater than its equilibrium length. We start moving one end forward with the speed v at
which a wave propagates on the spring. In this way we create a single pulse of compression
that moves down the length of the spring. For an increment of spring with length dx and
mass dm, just as the pulse swallows it up, F ma∑ =

becomes kdx adm=  or 
k

adm
dx

= .

But 
dm
dx

= µ  so a
k

=
µ

.

Also, a
dv
dt

v
t

= =  when vi = 0. But L vt= , so a
v
L

=
2

.

Equating the two expressions for a, we have 
k v

Lµ
=

2

 or v
kL

=
µ

.

(b) Using the expression from part (a) v
kL kL

m
= = = =

µ

2 2100 2 00

0 400
31 6

 N m  m

 kg
 m s

b ga f.

.
. .

P16.66 (a) v
T T

v=
F
HG
I
KJ =
F
HG
I
KJ =

µ µ

1 2
0

0

1 2

0
2

2  where v
T

0
0

0

1 2

≡
F
HG
I
KJµ

′ =
′
F
HG
I
KJ =
F
HG
I
KJ =v

T T
v

µ µ

1 2
0

0

1 2

0
2
3

2
3

(b) ∆
∆

∆t
v

L
v

t
t

L

left = = = =2

0

0
02 2 2 2

0 354.  where ∆t
L
v0

0
≡

∆
∆

∆

∆ ∆ ∆

t
v

L

v

t
t

t t t

L

right

left right

=
′
= = =

+ =

2

0
2
3

0
2
3

0

0

2 2
0 612

0 966

.

.
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P16.67 (a) P x A v A e
k k

A ebx bxa f = = F
HG
I
KJ =

− −1
2

1
2 2

2 2 2
0
2 2

3

0
2 2µω µω

ω µω

(b) P 0
2

3

0
2a f = µω

k
A

(c)
P
P

x
e bxa f

a f0
2= −

P16.68 v = = =
4 450

468 130
 km

9.50 h
 km h  m s

d
v
g

= = =
2 2

130

9 80
1 730

 m s

 m s
 m

2

b g
e j.

*P16.69 (a) µ xa f is a linear function, so it is of the form µ x mx ba f = +

To have µ µ0 0a f =  we require b = µ0 . Then µ µ µL mLLa f = = + 0

so m
L

L=
−µ µ0

Then µ
µ µ

µx
x

L
La f b g

=
−

+0
0

(b) From v
dx
dt

= , the time required to move from x to x dx+  is 
dx
v

. The time required to move

from 0 to L is

∆

∆

∆

∆

∆

t
dx
v

dx
T

x dx

t
T

x
L L

dx
L

t
T

L x
L

t
L

T

t
L

T

L

T

L L

L L

L

L

L

L
L

L
L

L L L

L L

= = =

=
−

+
F
HG

I
KJ

−F
HG

I
KJ −
F
HG

I
KJ

=
−

F
HG

I
KJ

−
+

F
HG

I
KJ

=
−

−

=
− + +

−

z z z

z
0 0 0

0
0

1 2
0

00

0

0
0

3 2

3
2 0

0

3 2
0
3 2

0 0 0

0

1

1

1 1

2
3

2

3

µ

µ

µ µ
µ

µ µ
µ µ

µ µ
µ µ

µ

µ µ
µ µ

µ µ µ µ µ µ

µ µ µ

a f

b g

b g

b g e j

e je j
e j +

=
+ +

+

F
HG

I
KJ

µ

µ µ µ µ

µ µ

0

0 0

0

2
3

e j

∆t
L
T

L L

L
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ANSWERS TO EVEN PROBLEMS

P16.2 see the solution P16.38 (a) y x t= −0 075 0 4 19 314. sin .b g a f;
(b) 625 W

P16.4 (a) the P wave; (b) 665 s

P16.40 (a) 15 1.  W ; (b) 3 02.  J
P16.6 0 800.  m s

P16.42 The amplitude increases by 5.00 times
P16.8 2 40.  m s

P16.44 see the solution
P16.10 0.300 m in the positive x-direction

P16.46 (a) see the solution;
P16.12 ±6 67.  cm

(b) 
1
2

1
2

2 2x vt x vt+ + −a f a f ;
P16.14 (a) see the solution; (b) 0.125 s; in

agreement with the example (c) 
1
2

1
2

sin sinx vt x vt+ + −a f a f

P16.16 (a) see the solution; (b) 18.0 m ; 83 3.  ms ;
75 4.  rad s ; 4 20.  m s ;

P16.48 (a) 0 040 0.  m; (b) 0 031 4.  m;
(c) 0 477.  Hz; (d) 2 09.  s ;

(c) 0 2 18 75 4 0 151. sin . . ma f a fx t+ − (e) positive -directionx

P16.18 (a) 0 021.  5 m; (b) 1.95 rad; (c) 5 41.  m s ; P16.50 (a) 21 0.  ms ; (b) 1 68.  m
(d) y x t,b g =
0 021 5 8 38 80 0 1 95. sin . . . mb g b gx t+ +π

P16.52 ∆t
mL

Mg
=

sinθ
P16.20 (a) see the solution; (b) 3 18.  Hz

P16.54 (a) 2Mg ; (b) L
Mg
k0

2
+ ;P16.22 30 0.  N

(c) 
2 2

0
Mg
m

L
Mg
k

+FHG
I
KJ

P16.24 (a) y x t= −0 2 16 3 140. sin mma f b g ;
(b) 158 N

P16.26 631 N P16.56 14 7.  kg

P16.28 v
Tg M

m
=

2π P16.58 (a) v
T

x
=

+− −ρ 10 107 6e j
 in SI units;

(b) 94 3.  m s; 66 7.  m s
P16.30 (a) v m=

⋅

F
HG

I
KJ

30 4.  
m

s kg
; (b) 3 89.  kg

P16.60 see the solution

P16.32
mL

Mg
tanθ

4
P16.62 (a) 5 00. �i m s ; (b) −5 00. �i m s ;

(c) −7 50. �i m s ; (d) 24 0. �i m s

P16.34 1 07.  kW
P16.64 (a) µ v0

2 ; (b) v0 ;
(c) One travels 2 rev and the other does
not move around the loop.

P16.36 (a), (b), (c) P  is constant ;
(d) P  is quadrupled
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P16.66 (a) v
T

v=
F
HG
I
KJ =

2
20

0

1 2

0µ
;

′ =
F
HG
I
KJ =v

T
v

2
3

2
3

0

0

1 2

0µ
; (b) 0 966 0. ∆t

P16.68 130 m s; 1 73.  km
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Sound Waves

ANSWERS TO QUESTIONS

Q17.1 Sound waves are longitudinal because elements of the
medium—parcels of air—move parallel and antiparallel to the
direction of wave motion.

Q17.2 We assume that a perfect vacuum surrounds the clock. The
sound waves require a medium for them to travel to your ear.
The hammer on the alarm will strike the bell, and the vibration
will spread as sound waves through the body of the clock. If a
bone of your skull were in contact with the clock, you would
hear the bell. However, in the absence of a surrounding
medium like air or water, no sound can be radiated away. A
larger-scale example of the same effect: Colossal storms raging
on the Sun are deathly still for us.

What happens to the sound energy within the clock?
Here is the answer: As the sound wave travels through the
steel and plastic, traversing joints and going around corners, its
energy is converted into additional internal energy, raising the
temperature of the materials. After the sound has died away,
the clock will glow very slightly brighter in the infrared portion
of the electromagnetic spectrum.

Q17.3 If an object is 
1
2

 meter from the sonic ranger, then the sensor would have to measure how long it

would take for a sound pulse to travel one meter. Since sound of any frequency moves at about
343 m s, then the sonic ranger would have to be able to measure a time difference of under
0.003 seconds. This small time measurement is possible with modern electronics. But it would be
more expensive to outfit sonic rangers with the more sensitive equipment than it is to print “do not

use to measure distances less than 
1
2

 meter” in the users’ manual.

Q17.4 The speed of sound to two significant figures is 340 m s. Let’s assume that you can measure time to
1

10
 second by using a stopwatch. To get a speed to two significant figures, you need to measure a

time of at least 1.0 seconds. Since d vt= , the minimum distance is 340 meters.

Q17.5 The frequency increases by a factor of 2 because the wave speed, which is dependent only on the
medium through which the wave travels, remains constant.

497
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Q17.6 When listening, you are approximately the same distance from all of the members of the group. If
different frequencies traveled at different speeds, then you might hear the higher pitched
frequencies before you heard the lower ones produced at the same time. Although it might be
interesting to think that each listener heard his or her own personal performance depending on
where they were seated, a time lag like this could make a Beethoven sonata sound as if it were
written by Charles Ives.

Q17.7 Since air is a viscous fluid, some of the energy of sound vibration is turned into internal energy. At
such great distances, the amplitude of the signal is so decreased by this effect you re unable to hear
it.

Q17.8 We suppose that a point source has no structure, and radiates sound equally in all directions
(isotropically). The sound wavefronts are expanding spheres, so the area over which the sound
energy spreads increases according to A r= 4 2π . Thus, if the distance is tripled, the area increases by
a factor of nine, and the new intensity will be one-ninth of the old intensity. This answer according
to the inverse-square law applies if the medium is uniform and unbounded.

For contrast, suppose that the sound is confined to move in a horizontal layer. (Thermal
stratification in an ocean can have this effect on sonar “pings.”) Then the area over which the sound
energy is dispersed will only increase according to the circumference of an expanding circle:
A rh= 2π , and so three times the distance will result in one third the intensity.

In the case of an entirely enclosed speaking tube (such as a ship’s telephone), the area
perpendicular to the energy flow stays the same, and increasing the distance will not change the
intensity appreciably.

Q17.9 He saw the first wave he encountered, light traveling at 3 00 108. ×  m s . At the same moment,
infrared as well as visible light began warming his skin, but some time was required to raise the
temperature of the outer skin layers before he noticed it. The meteor produced compressional waves
in the air and in the ground. The wave in the ground, which can be called either sound or a seismic
wave, traveled much faster than the wave in air, since the ground is much stiffer against
compression. Our witness received it next and noticed it as a little earthquake. He was no doubt
unable to distinguish the P and S waves. The first air-compression wave he received was a shock
wave with an amplitude on the order of meters. It transported him off his doorstep. Then he could
hear some additional direct sound, reflected sound, and perhaps the sound of the falling trees.

Q17.10 A microwave pulse is reflected from a moving object. The waves that are reflected back are Doppler
shifted in frequency according to the speed of the target. The receiver in the radar gun detects the
reflected wave and compares its frequency to that of the emitted pulse. Using the frequency shift,
the speed can be calculated to high precision. Be forewarned: this technique works if you are either
traveling toward or away from your local law enforcement agent!

Q17.11 As you move towards the canyon wall, the echo of your car horn would be shifted up in frequency;
as you move away, the echo would be shifted down in frequency.

Q17.12 Normal conversation has an intensity level of about 60 dB.

Q17.13 A rock concert has an intensity level of about 120 dB.
A cheering crowd has an intensity level of about 90 dB.
Normal conversation has an intensity level of about 50–60 dB.
Turning a page in the textbook has an intensity level of about 10–20 dB.
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Q17.14 One would expect the spectra of the light to be Doppler shifted up in frequency (blue shift) as the
star approaches us. As the star recedes in its orbit, the frequency spectrum would be shifted down
(red shift). While the star is moving perpendicular to our line of sight, there will be no frequency
shift at all. Overall, the spectra would oscillate with a period equal to that of the orbiting stars.

Q17.15 For the sound from a source not to shift in frequency, the radial velocity of the source relative to the
observer must be zero; that is, the source must not be moving toward or away from the observer.
The source can be moving in a plane perpendicular to the line between it and the observer. Other
possibilities: The source and observer might both have zero velocity. They might have equal
velocities relative to the medium. The source might be moving around the observer on a sphere of
constant radius. Even if the source speeds up on the sphere, slows down, or stops, the frequency
heard will be equal to the frequency emitted by the source.

Q17.16 Wind can change a Doppler shift but cannot cause one. Both vo  and vs  in our equations must be
interpreted as speeds of observer and source relative to the air. If source and observer are moving
relative to each other, the observer will hear one shifted frequency in still air and a different shifted
frequency if wind is blowing. If the distance between source and observer is constant, there will
never be a Doppler shift.

Q17.17 If the object being tracked is moving away from the observer, then the sonic pulse would never
reach the object, as the object is moving away faster than the wave speed. If the object being tracked
is moving towards the observer, then the object itself would reach the detector before reflected
pulse.

Q17.18 New-fallen snow is a wonderful acoustic absorber as it reflects very little of the sound that reaches it.
It is full of tiny intricate air channels and does not spring back when it is distorted. It acts very much
like acoustic tile in buildings. So where does the absorbed energy go? It turns into internal
energy—albeit a very small amount.

Q17.19 As a sound wave moves away from the source, its intensity decreases. With an echo, the sound must
move from the source to the reflector and then back to the observer, covering a significant distance.

Q17.20 The observer would most likely hear the sonic boom of the plane itself and then beep, baap, boop.
Since the plane is supersonic, the loudspeaker would pull ahead of the leading “boop” wavefront
before emitting the “baap”, and so forth.

“How are you?” would be heard as “?uoy era woH”

Q17.21 This system would be seen as a star moving in an elliptical path. Just like the light from a star in a
binary star system, described in the answer to question 14, the spectrum of light from the star would
undergo a series of Doppler shifts depending on the star’s speed and direction of motion relative to
the observer. The repetition rate of the Doppler shift pattern is the period of the orbit. Information
about the orbit size can be calculated from the size of the Doppler shifts.

SOLUTIONS TO PROBLEMS

Section 17.1 Speed of Sound Waves

P17.1 Since v vlight sound>> : d ≈ =343 16 2 5 56 m s  s  kmb ga f. .

P17.2 v
B

= =
×
×

=
ρ

2 80 10
13 6 10

1 43
10

3
.

.
.  km s
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P17.3 Sound takes this time to reach the man:
20 0 1 75

343
5 32 10 2. .
.

 m  m
 m s

 s
−

= × −a f

so the warning should be shouted no later than 0 300 5 32 10 0 3532. . . s  s  s+ × =−

before the pot strikes.

Since the whole time of fall is given by y gt=
1
2

2 : 18 25
1
2

9 80 2. . m  m s2= e jt
t = 1 93.  s

the warning needs to come 1 93 0 353 1 58. . . s  s  s− =

into the fall, when the pot has fallen
1
2

9 80 1 58 12 22. . . m s  s  m2e ja f =
to be above the ground by 20 0 12 2 7 82. . . m  m  m− =

P17.4 (a) At 9 000 m, ∆T = FHG
I
KJ − ° = − °

9 000
150

1 00 60 0. .C Ca f  so T = − °30 0. C .

Using the chain rule:

dv
dt

dv
dT

dT
dx

dx
dt

v
dv
dT

dT
dx

v
v

= = = F
HG
I
KJ =0 607

1
150 247

.a f , so dt
dv
v

= 247 sa f

dt
dv
v

t
v

v

t

v

v

f

i

i

f

0

247

247 247
331 5 0 607 30 0

331 5 0 607 30 0

z z=

=
F
HG
I
KJ =

+
+ −

L
NM

O
QP

 s

 s  s

a f

a f a f a f
a fln ln

. . .
. . .

t = 27 2.  s  for sound to reach ground.

(b) t
h
v

= =
+

=
9 000

331 5 0 607 30 0
25 7

. . .
.a f  s

It takes longer when the air cools off than if it were at a uniform temperature.

*P17.5 Let x1  represent the cowboy’s distance from the nearer canyon wall and x2  his distance from the
farther cliff. The sound for the first echo travels distance 2 1x . For the second, 2 2x . For the third,

2 21 2x x+ . For the fourth echo, 2 2 21 2 1x x x+ + . Then 
2 2
340

1 922 1x x−
=

 m s
 s.  and 

2 2 2
340

1 471 2 2x x x+ −
=

 m s
 s. .

Thus x1
1
2

340 250= = m s  1.47 s  m  and 
2

340
1 92 1 472x

 m s
 s  s= +. . ; x2 576=  m.

(a) So x x1 2 826+ =  m

(b)
2 2 2 2 2

340
1 471 2 1 1 2x x x x x+ + − +

=
b g

 m s
 s.
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P17.6 It is easiest to solve part (b) first:

(b) The distance the sound travels to the plane is d h
h h

s = + FHG
I
KJ =2

2

2
5

2
.

The sound travels this distance in 2.00 s, so

d
h

s = = =
5

2
343 2 00 686 m s  s  mb ga f.

giving the altitude of the plane as h = =
2 686

5
614

 m
 m

a f
.

(a) The distance the plane has traveled in 2.00 s is v
h

2 00
2

307.  s  ma f = = .

Thus, the speed of the plane is: v = =
307

153
 m

2.00 s
 m s .

Section 17.2 Periodic Sound Waves

P17.7 λ = =
×

=−
v
f

340
60 0 10

5 673 1

 m s
 s

 mm
.

.

*P17.8 The sound speed is v = +
°
°

=331 1
26

346 m s
C

273 C
 m s

(a) Let t represent the time for the echo to return. Then

d vt= = × =−1
2

1
2

346 24 10 4 163 m s   s  m. .

(b) Let ∆t  represent the duration of the pulse:

∆t
v f f

= = = =
×

=
10 10 10 10

22 10
0 4556

λ λ
λ

µ
 1 s

 s. .

(c) L
v

f
= = =

×
=10

10 10 346

22 10
0 1576λ

 m s

 1 s
 mm

b g
.

*P17.9 If f = 1 MHz, λ = = =
v
f

1 500
10

1 506

 m s
s

 mm.

If f = 20 MHz, λ µ=
×

=
1 500
2 10

75 07

 m s
s

 m.

P17.10 ∆P v smax max= ρ ω

s
P
vmax
max

.

. .
.= =

×

×
= ×

−

−
−∆

ρ ω π

4 00 10

1 20 343 2 10 0 10
1 55 10

3

3 1
10

 N m

 kg m  m s  s
 m

2

3

e j
e jb ga fe j
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P17.11 (a) A = 2 00.  mµ

λ
π

= = =
2

15 7
0 400 40 0

.
. . m  cm

v
k

= = =
ω 858

15 7
54 6

.
.  m s

(b) s = − × = −−2 00 15 7 0 050 0 858 3 00 10 0 4333. cos . . . .a fb g a fe j  mµ

(c) v Amax . .= = =−ω µ2 00 858 1 721 m  s  mm sb ge j

P17.12 (a) ∆P
x t

= −F
HG

I
KJ1 27

340
. sin Pa

m s
a f π π

 (SI units)

The pressure amplitude is: ∆Pmax .= 1 27 Pa .

(b) ω π π= =2 340f s, so f = 170 Hz

(c) k = =
2π
λ

π m, giving λ = 2 00.  m

(d) v f= = =λ 2 00 170.  m  Hz 340 m sa fa f

P17.13 k = = = −2 2
0 100

62 8 1π
λ

π
.

.
 m

 ma f

ω
π
λ

π
= = = × −2 2 343

0 100
2 16 104 1v  m s

 m
 s

b g
a f.

.

Therefore, ∆P x t= − ×0 200 62 8 2 16 104. sin . . Pa m sa f .

P17.14 ω π
π
λ

π
= = = = ×2

2 2 343

0 100
2 16 104f

v  m s

 m
 rad s

b g
a f.

.

s
P
vmax
max .

. .
.= =

×
= ×

−
−∆

ρ ω
0 200

1 20 343 2 16 10
2 25 10

4 1
8 Pa

 kg m  m s  s
 m

3

a f
e jb ge j

k = = = −2 2
0 100

62 8 1π
λ

π
.

.
 m

 ma f
Therefore, s s kx t x t= − = × − ×−

max cos . cos . .ωb g e j e j2 25 10 62 8 2 16 108 4 m m s .

P17.15 ∆P v s v
v

smax max max= = FHG
I
KJρ ω ρ

π
λ

2

λ
πρ π

= =
×

=
−

2 2 1 20 343 5 50 10

0 840
5 81

2 2 6
v s
P

max

max

. .

.
.

∆

a fa f e j
 m
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P17.16 (a) The sound “pressure” is extra tensile stress for one-half of each cycle. When it becomes
0 500% 13 0 10 6 50 1010 8. . .a fe j× = × Pa  Pa, the rod will break. Then, ∆P v smax max= ρ ω

s
P
vmax
max .

.
.= =

×

×
=

∆
ρ ω π

6 50 10

8 92 10 5 010 2 500
4 63

8

3

 N m

 kg m  m s s
 mm

2

3e jb gb g .

(b) From s s kx t= −max cos ωa f
v

s
t

s kx t

v s

=
∂
∂

= − −

= = =

ω ω

ω π

max

max max

sin

. .

a f
b ga f2 500 4 63 14 5s  mm  m s

(c) I v s vv= = = ×
1
2

1
2

1
2

8 92 10 5 010 14 52 2 3 2ρ ω ρmax max . .b g e jb gb g kg m  m s  m s3

  = ×4 73 109.  W m2

*P17.17 Let P xa f represent absolute pressure as a function of x. The net force
to the right on the chunk of air is + − +P x A P x x Aa f a f∆ . Atmospheric

pressure subtracts out, leaving − + + = −
∂∆
∂

∆ ∆ ∆ ∆P x x P x A
P

x
xAa f a f .

The mass of the air is ∆ ∆ ∆m V A x= =ρ ρ  and its acceleration is 
∂
∂

2

2
s

t
. So

Newton’s second law becomes

P x Aa f +P x x Aa f∆

FIG. P17.17

−
∂∆
∂

=
∂
∂

−
∂
∂

−
∂
∂

F
HG
I
KJ =

∂
∂

∂
∂

=
∂
∂

P
x

xA A x
s

t

x
B

s
x

s
t

B s
x

s
t

∆ ∆ρ

ρ

ρ

2

2

2

2

2

2

2

2

Into this wave equation as a trial solution we substitute the wave function s x t s kx t, cosmaxb g a f= −ω
we find

∂
∂

= − −

∂
∂

= − −

∂
∂

= + −

∂
∂

= − −

s
x

ks kx t

s
x

k s kx t

s
t

s kx t

s
t

s kx t

max

max

max

max

sin

cos

sin

cos

ω

ω

ω ω

ω ω

a f

a f

a f

a f

2

2
2

2

2
2

B s
x

s
tρ

∂
∂

=
∂
∂

2

2

2

2  becomes − − = − −
B

k s kx t s kx t
ρ

ω ω ω2 2
max maxcos cosa f a f

This is true provided 
B

f
ρ

π
λ

π
4

4
2

2
2 2= .

The sound wave can propagate provided it has λ
ρ

2 2 2f v
B

= = ; that is, provided it propagates with

speed v
B

=
ρ

.



504     Sound Waves

Section 17.3 Intensity of Periodic Sound Waves

*P17.18 The sound power incident on the eardrum is ℘= IA  where I is the intensity of the sound and
A = × −5 0 10 5.  m2  is the area of the eardrum.

(a) At the threshold of hearing, I = × −1 0 10 12.  W m2 , and

℘= × × = ×− − −1 0 10 5 0 10 5 00 1012 5 17. . . W m  m  W2 2e je j .

(b) At the threshold of pain, I = 1 0.  W m2 , and

℘= × = ×− −1 0 5 0 10 5 00 105 5. . . W m  m  W2 2e je j .

P17.19 β =
F
HG
I
KJ =

×
×

F
HG

I
KJ =

−

−10 10
4 00 10
1 00 10

66 0
0

6

12log log
.
.

.
I
I

 dB

P17.20 (a) 70 0 10
1 00 10 12. log
.

 dB
 W m2=

×

F
HG

I
KJ−

I

Therefore, I = × = ×− −1 00 10 10 1 00 1012 70 0 10 5. .. W m  W m2 2e j b g .

(b) I
P

v
=
∆ max

2

2ρ
, so

∆

∆

P vI

P

max

max

. .

.

= = ×

=

−2 2 1 20 343 1 00 10

90 7

5ρ  kg m  m s  W m

 mPa

3 2e jb ge j

P17.21 I s v=
1
2

2 2ρω max

(a) At f = 2 500 Hz , the frequency is increased by a factor of 2.50, so the intensity (at constant

smax ) increases by 2 50 6 252. .a f = .

Therefore, 6 25 0 600 3 75. . .a f =  W m2 .

(b) 0 600.  W m2

P17.22 The original intensity is I s v vf s1
2 2 2 2 21

2
2= =ρω π ρmax max

(a) If the frequency is increased to ′f  while a constant displacement amplitude is maintained,
the new intensity is

I v f s2
2 2 22= ′π ρ b g max  so 

I
I

v f s

vf s
f
f

2

1

2 2

2 2 2

22

2
=

′
=

′F
HG
I
KJ

π ρ

π ρ
b g max

max

 or I
f
f

I2

2

1=
′F
HG
I
KJ .

continued on next page



Chapter 17     505

(b) If the frequency is reduced to ′ =f
f
2

 while the displacement amplitude is doubled, the new

intensity is

I v
f

s vf s I2
2

2
2 2 2 2

12
2

2 2= F
HG
I
KJ = =π ρ π ρmax maxb g

or the intensity is unchanged .

*P17.23 (a) For the low note the wavelength is λ = = =
v
f

343
146 8

2 34
 m s

s
 m

.
. .

For the high note λ = =
343

880
0 390

 m s
s

 m. .

We observe that the ratio of the frequencies of these two notes is 
880

5 99
 Hz

146.8 Hz
= .  nearly

equal to a small integer. This fact is associated with the consonance of the notes D and A.

(b) β =
F
HG

I
KJ =−10

10
7512 dB

 W m
 dB2log

I
 gives I = × −3 16 10 5.  W m2

I
P

v

P

=

= × =−

∆

∆

max

max . . .

2

5

2

3 16 10 2 1 20 343 0 161

ρ

 W m  kg m  m s  Pa2 3e jb g
for both low and high notes.

(c) I v s v f s= =
1
2

1
2

42 2 2 2ρ ω ρ πmax maxb g

s
I

vfmax = 2 2 2π ρ
for the low note,

smax
.
. .

.
.

.

=
×

=
×

= ×

−

−
−

3 16 10
2 1 20 343

1
146 8

6 24 10
146 8

4 25 10

5

2

5
7

 W m
 kg m  m s s

 m  m

2

3π

for the high note,

smax
.

.=
×

= ×
−

−6 24 10
7 09 10

5
8

880
 m  m

(d) With both frequencies lower (numerically smaller) by the factor 
146 8
134 3

880
804 9

1 093
.
. .

.= = , the

wavelengths and displacement amplitudes are made 1.093 times larger, and the pressure
amplitudes are unchanged.

*P17.24 The power necessarily supplied to the speaker is the power carried away by the sound wave:

P Av s Avf s= =

= F
HG

I
KJ × =−

1
2

2

2 1 20
0 08

343 600 0 12 10 21 2

2 2 2 2

2
2

2 2 2

ρ ω π ρ

π π

max max

.
.

. .

b g

e j b gb g e j kg m
 m

2
 m s  1 s  m  W3
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P17.25 (a) I1
12 10 12 80 0 101 00 10 10 1 00 10 101= × = ×− −. . . W m  W m2 2e j e jb gβ

or I1
41 00 10= × −.  W m2

I2
12 10 12 75 0 101 00 10 10 1 00 10 102= × = ×− −. . . W m  W m2 2e j e jb gβ

or I2
4.5 51 00 10 3 16 10= × = ×− −. . W m  W m2 2

When both sounds are present, the total intensity is

I I I= + = × + × = ×− − −
1 2

4 5 41 00 10 3 16 10 1 32 10. . . W m  W m  W m2 2 2 .

(b) The decibel level for the combined sounds is

β =
×

×

F
HG

I
KJ = × =

−

−10
1 32 10
1 00 10

10 1 32 10 81 2
4

12
8log

.
.

log . .
 W m
 W m

 dB
2

2 e j .

*P17.26 (a) We have λ =
v
f

 and f is the same for all three waves. Since the speed is smallest in air, λ is

smallest in air. It is larger by 
1 493
331

4 51
 m s

 m s
 times= .  in water and by

5 950
331

18 0= .  times in iron .

(b) From I v s=
1
2

2 2ρ ω max ; s
I

vmax =
2 0

0
2ρ ω

, smax  is smallest in iron, larger in water by

ρ
ρ

iron iron

water water
 times

v
v

=
⋅
⋅

=
7 860 5 950
1 000 1 493

5 60. , and larger in air by 
7 860 5 950

1 29 331
331

⋅
⋅

=
.

 times .

(c) From I
P

v
=
∆ max

2

2ρ
; ∆P I vmax = 2 ρ , ∆Pmax  is smallest in air, larger in water by

1 000 1 493
1 29 331

59 1
⋅
⋅

=
.

.  times , and larger in iron by 
7 860 5 950

1 29 331
331

⋅
⋅

=
.

 times .

(d) λ
π

ω
π

π
= = = =

v
f

v2 331 2

2 000
0 331

 m s

s
 m

b g
.  in air

λ = =
1 493

1 00 0
1 49

 m s
s

 m.  in water λ = =
5 950

1 000
5 95

 m s
s

 m.  in iron

s
I

vmax
.

.= =
×

= ×
−

−2 2 10

1 29 331 6 283
1 09 100

0
2

6

2
8

ρ ω
 W m

 kg m  m s  1 s
 m

2

3e jb gb g
 in air

smax .=
×

= ×
−

−2 10
1 000 1 493

1
6 283

1 84 10
6

10

b g  m  in water

smax .=
×

= ×
−

−2 10
7 860 5 950

1
6 283

3 29 10
6

11

b g  m  in iron

∆P I vmax . .= = =−2 2 10 1 29 331 0 029 26ρ  W m  kg m  m s  Pa2 3e je j  in air

∆Pmax .= × =−2 10 1 000 1 493 1 736 b g  Pa  in water

∆Pmax  Pa= × =−2 10 7 860 5 950 9 676 b gb g .  in iron
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P17.27 (a) 120 10
10 12 2 dB  dB

 W m
=

L
NMM

O
QPP−log

I

I
r

r
I

= =
℘

=
℘

= =

1 00
4

4
6 00

0 691

2.

.
.

 W m

 W

4 1.00 W m
 m

2

2

π

π π e j
We have assumed the speaker is an isotropic point source.

(b) 0 10
10 12 dB  dB

 W m2=
F
HG

I
KJ−log

I

I

r
I

= ×

=
℘

=
×

=

−1 00 10

4
6 00

691

12.

.

 W m

 W

4 1.00 10  W m
 km

2

-12 2π π e j
We have assumed a uniform medium that absorbs no energy.

P17.28 We begin with β 2
2

0
10=
F
HG
I
KJlog

I
I

, and β 1
1

0
10=
F
HG
I
KJlog

I
I

, so

β β2 1
2

1
10− =
F
HG
I
KJlog

I
I

.

Also, I
r2

2
24

=
℘
π

, and I
r1
1
24

=
℘
π

, giving 
I
I

r
r

2

1

1

2

2

=
F
HG
I
KJ .

Then, β β2 1
1

2

2
1

2
10 20− =
F
HG
I
KJ =

F
HG
I
KJlog log

r
r

r
r

.

P17.29 Since intensity is inversely proportional to the square of the distance,

I I4 0 4
1

100
= .  and I

P
v0 4

2 2

2
10 0

2 1 20 343
0 121.

max .
.

.= = =
∆
ρ

a f
a fa f  W m2 .

The difference in sound intensity level is

∆β =
F
HG

I
KJ = − = −10 10 2 00 20 04log . .

I
I

 km

0.4 km
 dBa f .

At 0.400 km,

β 0 4 1210
0 121
10

110 8. log
.

.=
F
HG

I
KJ =−

 W m
 W m

 dB
2

2 .

At 4.00 km,
β β β4 0 4 110 8 20 0 90 8= + = − =. . . .∆ a f dB  dB.

Allowing for absorption of the wave over the distance traveled,

′ = − =β β4 4 7 00 3 60 65 6. . . dB km  km  dBb ga f .

This is equivalent to the sound intensity level of heavy traffic.
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P17.30 Let r1  and r2  be the distance from the speaker to the observer that hears 60.0 dB and 80.0 dB,
respectively. Use the result of problem 28,

β β2 1
1

2
20− =
F
HG
I
KJlog

r
r

, to obtain 80 0 60 0 20 1

2
. . log− =

F
HG
I
KJ

r
r

.

Thus, log
r
r

1

2
1

F
HG
I
KJ = , so r r1 210 0= .  . Also: r r1 2 110+ =  m, so

10 0 1102 2. r r+ =  m giving r2 10 0= .  m , and r1 100=  m .

P17.31 We presume the speakers broadcast equally in all directions.

(a) rAC = + =3 00 4 00 5 002 2. . . m  m

I
r

=
℘

=
×

= ×

=
×F

HG
I
KJ

= =

−
−

−

−

4
1 00 10

4 5 00
3 18 10

10
3 18 10

10

10 6 50 65 0

2

3

2
6

6

12

π π

β

β

.

.
.

log
.

. .

 W

 m
 W m

 dB
 W m

 W m

 dB  dB

2

2

2

a f

(b) rBC = 4 47.  m

I =
×

= ×

=
×F

HG
I
KJ

=

−
−

−

−

1 50 10

4 4 47
5 97 10

10
5 97 10

10

67 8

3

2
6

6

12

.

.
.

log
.

.

 W

 m
 W m

 dB

 dB

2

π

β

β

a f

(c) I = +3 18 5 97. . W m  W m2 2µ µ

β =
×F

HG
I
KJ =

−

−10
9 15 10

10
69 6

6

12 dB  dBlog
.

.

P17.32 In I
r

=
℘

4 2π
, intensity I is proportional to 

1
2r

,

so between locations 1 and 2: 
I
I

r
r

2

1

1
2

2
2= .

In I v s=
1
2

2ρ ω maxb g , intensity is proportional to smax
2 , so 

I
I

s
s

2

1

2
2

1
2= .

Then, 
s
s

r
r

2

1

2
1

2

2F
HG
I
KJ =
F
HG
I
KJ  or 

1
2

2
1

2

2F
HG
I
KJ =
F
HG
I
KJ

r
r

, giving r r2 12 2 50 0 100= = =.  m  ma f .

But, r d2
2 250 0= +.  ma f  yields d = 86 6.  m .
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P17.33 β = F
HG
I
KJ−10

10 12log
I

I = −10 1010 12βb g e j W m2

I 120 1 00 dB
2 W ma f = . ; I 100

21 00 10 dB
2 W ma f = × −. ; I 10

111 00 10 dB
2 W ma f = × −.

(a) ℘= 4 2π r I  so that r I r I1
2

1 2
2

2=

r r
I
I2 1

1

2

1 2

23 00
1 00

1 00 10
30 0=

F
HG
I
KJ =

×
=−.

.
.

. m  ma f

(b) r r
I
I2 1

1

2

1 2

11
53 00

1 00
1 00 10

9 49 10=
F
HG
I
KJ =

×
= ×−.

.
.

. m  ma f

P17.34 (a) E t r It=℘ = = × =−4 4 100 7 00 10 0 200 1 762 2 2π π  m  W m  s  kJ2a f e ja f. . .

(b) β =
×
×

F
HG

I
KJ =

−

−10
7 00 10
1 00 10

108
2

12log
.
.

 dB

P17.35 (a) The sound intensity inside the church is given by

β =
F
HG
I
KJ

=
F
HG

I
KJ

= = =

−

− −

10

101 10
10

10 10 10 0 012 6

0

12

10 1 12 1.90

ln

ln

..

I
I

I

I

 dB  dB
 W m

 W m  W m  W m

2

2 2 2

a f

e j
We suppose that sound comes perpendicularly out through the windows and doors. Then,
the radiated power is

℘= = =IA 0 012 6 22 0 0 277. . . W m  m  W2 2e je j .

Are you surprised by how small this is? The energy radiated in 20.0 minutes is

E t=℘ = F
HG

I
KJ =0 277 20 0

60 0
332. .

.
 J s  min

 s
1.00 min

 Jb ga f .

(b) If the ground reflects all sound energy headed downward, the sound power, ℘= 0 277.  W ,
covers the area of a hemisphere. One kilometer away, this area is

A r= = = ×2 2 1 000 2 102 2 6π π π m  m2b g .
The intensity at this distance is

I
A

=
℘

=
×

= × −0 277
4 41 10 8.
.

 W
2 10  m

 W m6 2
2

π

and the sound intensity level is

β =
×

×

F
HG

I
KJ =

−

−10
4 41 10
1 00 10

46 4
8

12 dB
 W m
 W m

 dB
2

2a f ln .
.

. .
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*P17.36 Assume you are 1 m away from your lawnmower and receiving 100 dB sound from it. The intensity

of this sound is given by 100 10
10 12 dB  dB

 W m2= −log
I

; I = −10 2  W m2 . If the lawnmower

radiates as a point source, its sound power is given by I
r

=
℘

4 2π
.

℘= =−4 1 10 0 1262 2π  m  W m  W2a f .

Now let your neighbor have an identical lawnmower 20 m away. You receive from it sound with

intensity I = = × −0 126
2 5 102

5.
.

 W

4 20 m
 W m2

π a f . The total sound intensity impinging on you is

10 2 5 10 1 002 5 102 5 2− − −+ × = × W m  W m  W m2 2 2. . . So its level is

10
1 002 5 10

10
100 01

2

12 dB  dBlog
.

.
×

=
−

− .

If the smallest noticeable difference is between 100 dB and 101 dB, this cannot  be heard as a

change from 100 dB.

Section 17.4 The Doppler Effect

P17.37 ′ =
±

±
f f

v v
v v

O

S

b g
b g

(a) ′ =
+
+

=f 320
343 40 0
343 20 0

338
.
.

a f
a f  Hz

(b) ′ =
+
+

=f 510
343 20 0
343 40 0

483
.
.

a f
a f  Hz

P17.38 (a) ω π π= =
F
HG

I
KJ =2 2

115
60 0

12 0f
min

 s min
 rad s

.
.

v Amax . . .= = × =−ω 12 0 1 80 10 0 021 73 rad s  m  m sb ge j

(b) The heart wall is a moving observer.

′ =
+F
HG

I
KJ =

+F
HG

I
KJ =f f

v v
v

O 2 000 000
1 500 0 021 7

1 500
2 000 028 9 Hz  Hzb g .

.

(c) Now the heart wall is a moving source.

′′ = ′
−
F
HG
I
KJ = −

F
HG

I
KJ =f f

v
v vs

2 000 029
1 500

1 500 0 021 7
2 000 057 8 Hz  Hzb g

.
.
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P17.39 Approaching ambulance: ′ =
−

f
f
v vS1b g

Departing ambulance: ′′ =
− −

f
f

v vS1 b gd i
Since ′ =f 560 Hz and ′′ =f 480 Hz 560 1 480 1−FHG

I
KJ = +FHG

I
KJ

v
v

v
v

S S

1 040 80 0

80 0 343
1 040

26 4

v
v

v

S

S

=

= =

.

.
.

a f
 m s  m s

P17.40 (a) The maximum speed of the speaker is described by

1
2

1
2

20 0
5 00

0 500 1 00

2 2mv kA

v
k
m

A

max

max
.
.

. .

=

= = =
 N m

 kg
 m  m sa f

The frequencies heard by the stationary observer range from

′ =
+
F
HG

I
KJf f

v
v vmin

max
 to ′ =

−
F
HG

I
KJf f

v
v vmax

max

where v is the speed of sound.

′ =
+

F
HG

I
KJ =

′ =
−

F
HG

I
KJ =

f

f

min

max

.

.

440
343 1 00

439

440
343 1 00

441

 Hz
343 m s

 m s  m s
 Hz

 Hz
343 m s

 m s  m s
 Hz

(b) β
π

=
F
HG
I
KJ =

℘F
HG

I
KJ10 10

4

0

2

0
 dB  dBlog log

I
I

r
I

The maximum intensity level (of 60.0 dB) occurs at r r= =min .1 00 m . The minimum intensity
level occurs when the speaker is farthest from the listener (i.e., when
r r r A= = + =max min .2 2 00 m).

Thus, β β
π πmax min

min max

log log− =
℘F

HG
I
KJ −

℘F
HG

I
KJ10

4
10

40
2

0
2 dB  dB

I r I r

or β β
π

π
max min

min

max max

min

log log− =
℘

℘

F
HG

I
KJ =

F
HG
I
KJ10

4
4

10
0

2
0

2 2

2 dB  dB
I r

I r r
r

.

This gives: 60 0 10 4 00 6 02. log . .min dB  dB  dB− = =β a f , and βmin .= 54 0 dB .
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P17.41 ′ =
−
F
HG
I
KJf f

v
v vs

485 512
340

340 9 80
=

− −

F
HG

I
KJ. tfallb g

485 340 485 9 80 512 340

512 485
485

340
9 80

1 93

a f a fd i a fa f+ =

=
−F

HG
I
KJ =

.

.
.

t

t

f

f  s

d gt f1
21

2
18 3= = .  m : treturn  s= =

18 3
340

0 053 8
.

.

The fork continues to fall while the sound returns.

t t t

d gt

ftotal fall return

total total fall
2

 s  s  s

 m

= + = + =

= =

1 93 0 053 8 1 985

1
2

19 3

. . .

.

P17.42 (a) v = +
⋅°

− ° =331 0 6 10 325 m s
m

s C
C  m sb g a f.

(b) Approaching the bell, the athlete hears a frequency of ′ =
+F
HG

I
KJf f

v v
v

O

After passing the bell, she hears a lower frequency of ′′ =
+ −F
HG

I
KJf f

v v

v
Ob g

The ratio is
′′
′
=

−
+

=
f
f

v v
v v

O

O

5
6

which gives 6 6 5 5v v v vo o− = +  or v
v

O = = =
11

325
11

29 5
 m s

 m s.

*P17.43 (a) Sound moves upwind with speed 343 15−a f m s . Crests pass a stationary upwind point at
frequency 900 Hz.

Then λ = = =
v
f

328
900

0 364
 m s

s
 m.

(b) By similar logic, λ = =
+

=
v
f

343 15
900

0 398
a f m s

s
 m.

(c) The source is moving through the air at 15 m/s toward the observer. The observer is
stationary relative to the air.

′ =
+
−
F
HG
I
KJ =

+
−

F
HG

I
KJ =f f

v v
v v

o

s
900

343 0
343 15

941 Hz  Hz

(d) The source is moving through the air at 15 m/s away from the downwind firefighter. Her
speed relative to the air is 30 m/s toward the source.

′ =
+
−
F
HG
I
KJ =

+
− −

F
HG

I
KJ =

F
HG
I
KJ =f f

v v
v v

o

s
900

343 30
343 15

900
373
358

938 Hz  Hz  Hza f
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*P17.44 The half-angle of the cone of the shock wave is θ where

θ =
F
HG

I
KJ =

F
HG
I
KJ = °− −sin sin

.
.1 1 1

1 5
41 8

v
v

sound

source
.

As shown in the sketch, the angle between the direction of propagation
of the shock wave and the direction of the plane’s velocity is

φ θ= °− = °− °= °90 90 41 8 48 2. . .

 

φ 
v shock 

v plane 
θ 

 

FIG. P17.44

P17.45 The half angle of the shock wave cone is given by sinθ =
v

vS

light .

v
v

S = =
×

°
= ×

light  m s
 m s

sin
.

sin .
.

θ
2 25 10

53 0
2 82 10

8
8

a f

P17.46 θ = = = °− −sin sin
.

.1 1 1
1 38

46 4
v

vS

P17.47 (b) sin
.

θ = =
v

vS

1
3 00

; θ = °19 5.

tanθ =
h
x

; x
h

=
tanθ

x =
°
= × =

20 000
19 5

5 66 10 56 64 m
 m  km

tan .
. .

(a) It takes the plane t
x

vS
= =

×
=

5 66 10
56 3

4.
.

 m
3.00 335 m s

 sb g  to travel this distance.

 

t = 0 

a. 

θ 

h 

Observer 

b. 

θ 

h 

Observer hears the boom 

x 
  

  

 

FIG. P17.47(a)
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Section 17.5 Digital Sound Recording

Section 17.6 Motion Picture Sound

*P17.48 For a 40-dB sound,

40 10
10

10
2

2 2 1 20 343 10 2 87 10

12

8
2

8 3

 dB  dB
 W m

 W m

 kg m  m s  W m  N m

2

2

2 2 2

=
L
NMM

O
QPP

= =

= = = ×

−

−

− −

log

. .

max

max

I

I
P

v

P vI

∆

∆

ρ

ρ e jb g

(a) code =
×

=
−2 87 10

28 7
65 536 7

3.
.

 N m
 N m

2

2

(b) For sounds of 40 dB or softer, too few digital words are available to represent the wave form
with good fidelity.

(c) In a sound wave ∆P  is negative half of the time but this coding scheme has no words
available for negative pressure variations.

*P17.49 If the source is to the left at angle θ from the direction you are
facing, the sound must travel an extra distance d sinθ  to reach your
right ear as shown, where d is the distance between your ears. The

delay time is ∆t  in v
d

t
=

sinθ
∆

. Then

θ = =
×

= °− −
−

sin sin .1 1
6343 210 10

22 3
v t
d
∆  m s  s

0.19 m
 left of center

b g
. ear ear

θ

θ

FIG. P17.49

*P17.50 103 10
10 12 dB  dB

 W m2=
L
NMM

O
QPP−log

I

(a) I
r

= × =
℘

=
℘−2 00 10

4 4 1 6
2

2 2.
.

 W m
 m

2

π π a f
℘= 0 642.  W

(b) efficiency = = =
sound output power

total input power
 W

150 W
0 642

0 004 28
.

.

Additional Problems

P17.51 Model your loud, sharp sound impulse as a single narrow peak in a graph of air pressure versus
time. It is a noise with no pitch, no frequency, wavelength, or period. It radiates away from you in all
directions and some of it is incident on each one of the solid vertical risers of the bleachers. Suppose
that, at the ambient temperature, sound moves at 340 m/s; and suppose that the horizontal width of
each row of seats is 60 cm. Then there is a time delay of

0 6
0 002

.
.

 m
340 m s

 sb g =
continued on next page
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between your sound impulse reaching each riser and the next. Whatever its material, each will
reflect much of the sound that reaches it. The reflected wave sounds very different from the sharp
pop you made. If there are twenty rows of seats, you hear from the bleachers a tone with twenty
crests, each separated from the next in time by

2 0 6
340

0 004
.

.
 m

 m s
 s

a f
b g = .

This is the extra time for it to cross the width of one seat twice, once as an incident pulse and once
again after its reflection. Thus, you hear a sound of definite pitch, with period about 0.004 s, frequency

1
0 003 5

300
.

~
 s

 Hz

wavelength

λ = = =
v
f

340

300
1 2 100 m s

s
 m  m

b g
b g . ~

and duration

20 0 004 10 1. ~ s  sa f − .

P17.52 (a) λ = = =−
v
f

343
1 480

0 2321

 m s
 s

 m.

(b) β = =
L
NMM

O
QPP−81 0 10

10 12. log dB  dB
 W m2
I

I v s

s
I

v

= = = × =

= =
×

= ×

− − −

−

−

−

10 10 10 1 26 10
1
2

2 2 1 26 10

1 20 343 4 1 480
8 41 10

12 8 10 3 90 4 2 2

2

4

2 1 2
8

 W m  W m  W m

 W m

 kg m  m s  s
 m

2 2 2

2

3

e j
e j

e jb g e j

. .
max

max

.

.

.
.

ρ ω

ρ ω π

(c) ′ =
′
= =−λ

v
f

343
1 397

0 2461

 m s
 s

 m. ∆λ λ λ= ′ − = 13 8.  mm

P17.53 Since cos sin2 2 1θ θ+ = , sin cosθ θ= ± −1 2  (each sign applying half the time)

∆ ∆P P kx t v s kx t= − = ± − −max maxsin cosω ρ ω ωa f a f1 2

Therefore ∆P v s s kx t v s s= ± − − = ± −ρ ω ω ρ ωmax max maxcos2 2 2 2 2a f
P17.54 The trucks form a train analogous to a wave train of crests with speed v = 19 7.  m s

and unshifted frequency f = = −2
3 00

0 667 1

.
.

 min
 min .

(a) The cyclist as observer measures a lower Doppler-shifted frequency:

′ =
+F
HG
I
KJ =

+ −F
HG

I
KJ =

−f f
v v

v
o 0 667

19 7 4 47
19 7

0 5151.
. .

.
. min mine j a f

(b) ′′ =
+ ′F
HG
I
KJ =

+ −F
HG

I
KJ =

−f f
v v

v
o 0 667

19 7 1 56
19 7

0 6141.
. .

.
. min mine j a f

The cyclist’s speed has decreased very significantly, but there is only a modest increase in
the frequency of trucks passing him.
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P17.55 v
d
t

=
2

: d
vt

= = × =
2

1
2

6 50 10 1 85 6 013. . . m s  s  kme ja f

P17.56 (a) The speed of a compression wave in a bar is

v
Y

= =
×

= ×
ρ

20 0 10
7 860

5 04 10
10

3.
.

 N m
 kg m

 m s
2

3 .

(b) The signal to stop passes between layers of atoms as a sound wave, reaching the back end of
the bar in time

t
L
v

= =
×

= × −0 800
1 59 10 4.
.

 m
5.04 10  m s

 s3 .

(c) As described by Newton’s first law, the rearmost layer of steel has continued to move
forward with its original speed vi  for this time, compressing the bar by

∆L v ti= = × = × =− −12 0 1 59 10 1 90 10 1 904 3. . . . m s  s  m  mmb ge j .

(d) The strain in the rod is: 
∆L
L

=
×

= ×
−

−1 90 10
2 38 10

3
3.

.
 m

0.800 m
.

(e) The stress in the rod is:

σ = FHG
I
KJ = × × =−Y

L
L
∆

20 0 10 2 38 10 47610 3. . N m  MPa2e je j .

Since σ > 400 MPa , the rod will be permanently distorted.

(f) We go through the same steps as in parts (a) through (e), but use algebraic expressions
rather than numbers:

The speed of sound in the rod is v
Y

=
ρ

.

The back end of the rod continues to move forward at speed vi  for a time of t
L
v

L
Y

= =
ρ

,

traveling distance ∆L v ti=  after the front end hits the wall.

The strain in the rod is: 
∆L
L

v t
L

v
Y

i
i= =

ρ
.

The stress is then: σ
ρ

ρ= FHG
I
KJ = =Y

L
L

Yv
Y

v Yi i
∆

.

For this to be less than the yield stress, σ y , it is necessary that

v Yi yρ σ< or v
Yi
y<

σ

ρ
.

With the given numbers, this speed is 10.1 m/s. The fact that the length of the rod divides
out means that the steel will start to bend right away at the front end of the rod. There it will
yield enough so that eventually the remainder of the rod will experience only stress within
the elastic range. You can see this effect when sledgehammer blows give a mushroom top to
a rod used as a tent stake.
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P17.57 (a) ′ =
−

f f
v

v vdiverb g
so 1 − =

′
v

v
f
f

diver

⇒ = −
′

F
HG
I
KJv v

f
fdiver 1

with v = 343 m s , ′ =f 1 800 Hz  and f = 2 150 Hz

we find

vdiver  m s= −
F
HG

I
KJ =343 1

1 800
2 150

55 8. .

(b) If the waves are reflected, and the skydiver is moving into them, we have

′′ = ′
+

⇒ ′′ =
−

L
NMM

O
QPP

+
f f

v v
v

f f
v

v v
v v

v
diver

diver

diverb g
b g

b g

so ′′ =
+
−

=f 1 800
343 55 8
343 55 8

2 500
.
.

a f
a f  Hz .

P17.58 (a) ′ =
−

f
fv

v u
′′ =

− −
f

fv
v ua f ′ − ′′ =

−
−

+
F
HG

I
KJf f fv

v u v u
1 1

∆f
fv v u v u

v u
uvf

v u v

u v

u v
f=

+ − +

−
=

−
=

−

a f
e je j

b g
e j2 2 2 2 2 2 2

2

1

2

1

(b) 130 36 1 km h  m s= . ∴ =
−

=∆f
2 36 1 400

340 1 36 1 340
85 9

2 2

.

.
.

a fa f
a f

 Hz

P17.59 When observer is moving in front of and in the same direction as the source, ′ =
−
−

f f
v v
v v

O

S
 where vO

and vS  are measured relative to the medium in which the sound is propagated. In this case the
ocean current is opposite the direction of travel of the ships and

v

v
O

S

= − − = =

= − − = =

45 0 10 0 55 0 15 3

64 0 10 0 74 0 20 55

. . . .

. . . .

 km h  km h  km h  m s ,  and

 km h  km h  km h  m s

b g
b g

Therefore, ′ =
−
−

=f 1 200 0
1 520 15 3

1 520 20 55
1 204 2.

.
.

. Hz
 m s  m s

 m s  m s
 Hzb g .
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P17.60 Use the Doppler formula, and remember that the bat is a moving source.

If the velocity of the insect is vx ,

40 4 40 0
340 5 00 340
340 5 00 340

. .
.
.

=
+ −

− +
a fb g
a fb g

v
v

x

x
.

Solving,

vx = 3 31.  m s .

Therefore, the bat is gaining on its prey at 1.69 m s .

P17.61 sinβ = =
v

v NS M

1

h v

x v
h
x

v
v N

N

S

S M

M

=

=

= = =

= =

= °

= =

12 8

10 0

1 28
1 28

1
1 28

38 6
1

1 60

.

.

tan .
.

cos
sin
tan .

.

sin
.

 s

 s

a f
a f

β

β
β
β

β

β

vs

β

shock front

shock front

x

h

FIG. P17.61

P17.62 (a)

FIG. P17.62(a)

(b) λ = = =−
v
f

343
1 000

0 3431

 m s
 s

 m.

(c) ′ =
′
=

−F
HG
I
KJ =

−
=−λ

v
f

v
f

v v
v

S 343 40 0

1 000
0 3031

.
.

a f m s

 s
 m

(d) ′′ =
′′
=

+F
HG
I
KJ =

+
=−λ

v
f

v
f

v v
v

S 343 40 0

1 000
0 3831

.
.

a f m s

 s
 m

(e) ′ =
−
−
F
HG

I
KJ =

−
−

=f f
v v
v v

O

S
1 000

343 30 0
343 40 0

1 03 Hz
 m s
 m s

 kHzb g a f
a f

.

.
.
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P17.63 ∆t L
v v

L
v v
v v

= −
F
HG

I
KJ =

−1 1

air cu

cu air

air cu

L
v v

v v
t

L

=
−

=
×

−
×

=

−air cu

cu air

 m s  m s

 m s
 s

 m

∆
331 3 56 10

3 560 331
6 40 10

2 34

3
3

b ge j
b g e j

.
.

.

P17.64 The shock wavefront connects all observers
first hearing the plane, including our observer
O and the plane P, so here it is vertical. The
angle φ that the shock wavefront makes with
the direction of the plane’s line of travel is
given by

sin .φ = = =
v

vS

340
1 963

0 173
 m s
 m s

so φ = °9 97. .

Using the right triangle CPO, the angle θ is
seen to be

θ φ= °− = °− °= °90 0 90 0 9 97 80 0. . . . .

 

C θ O 

φ 

P 

FIG. P17.64

P17.65 (a) θ =
F
HG

I
KJ = ×

F
HG

I
KJ = °− −sin sin

.
.1 1

3
331

20 0 10
0 948

v
v
sound

obj

(b) ′ =
×

F
HG

I
KJ = °−θ sin

.
.1

3

1 533
20 0 10

4 40

P17.66 ℘ = ℘2 1
1

20 0.
β β1 2

1

2
10− =

℘
℘

log

80 0 10 20 0 13 0

67 0
2

2

. log . .

.

− = = +

=

β

β  dB

P17.67 For the longitudinal wave v
Y

L =
F
HG
I
KJρ

1 2

.

For the transverse wave v
T

T =
F
HG
I
KJµ

1 2

.

If we require 
v
v

L

T
= 8 00. , we have T

Y
=

µ
ρ64 0.

 where µ =
m
L

 and

ρ
π

= =
mass

volume
m
r L2 .

This gives T
r Y

= =
× ×

= ×
−

π π2 3 2 10
4

64 0

2 00 10 6 80 10

64 0
1 34 10

.

. .

.
.

 m  N m
 N

2e j e j
.
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P17.68 The total output sound energy is eE t=℘∆ , where ℘ is the power radiated.

Thus, ∆t
eE eE

IA
eE

r I

eE
d I

=
℘

= = =
4 42 2π πe j

.

But, β =
F
HG
I
KJ10

0
log

I
I

. Therefore, I I= 0
1010βe j  and ∆t

eE
d I

=
4 102

0
10π β .

P17.69 (a) If the source and the observer are moving away from each other, we have: θ θS − = °0 180 ,
and since cos180 1°= − , we get Equation 17.12 with negative values for both vO  and vS .

(b) If vO = 0 m s  then ′ =
−

f
v

v v
f

S Scosθ
Also, when the train is 40.0 m from the intersection, and the car is 30.0 m from the
intersection,

cosθ S =
4
5

so ′ =
−

f
343

343 0 800 25 0
500

 m s
 m s  m s

 Hz
. .b g a f

or ′ =f 531 Hz .

Note that as the train approaches, passes, and departs from the intersection, θ S  varies from
0° to 180° and the frequency heard by the observer varies from:

′ =
− °

=
−

=

′ =
− °

=
+

=

f
v

v v
f

f
v

v v
f

S

S

max

min

cos .

cos .

0
343

343 25 0
500 539

180
343

343 25 0
500 466

 m s
 m s  m s

 Hz  Hz

 m s
 m s  m s

 Hz  Hz

a f

a f

P17.70 Let T represent the period of the source vibration, and E be the energy put into each wavefront.

Then ℘ =av
E
T

. When the observer is at distance r in front of the source, he is receiving a spherical

wavefront of radius vt, where t is the time since this energy was radiated, given by vt v t rS− = . Then,

t
r

v vS
=

−
.

The area of the sphere is 4
42

2 2

2π
π

vt
v r

v vS

a f b g
=

−
. The energy per unit area over the spherical wavefront

is uniform with the value 
E
A

T v v

v r
S=

℘ −av b g2
2 24π

.

The observer receives parcels of energy with the Doppler shifted frequency

′ =
−
F
HG
I
KJ = −

f f
v

v v
v

T v vS Sb g , so the observer receives a wave with intensity

I
E
A

f
T v v

v r
v

T v v r
v v

v
S

S

S= FHG
I
KJ ′ =

℘ −F
HGG

I
KJJ −

F
HG

I
KJ =

℘ −F
HG
I
KJ

av avb g
b g

2

2 2 24 4π π
.
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P17.71 (a) The time required for a sound pulse to travel distance L at

speed v is given by t
L
v

L
Y

= =
ρ

. Using this expression

we find

L1 L2

L3

FIG. P17.71

t
L

Y
L

L

t
L

Y
L

1
1

1 1

1

10

4
1

2
1

2 2

1

10 3

7 00 10 2 700
1 96 10

1 50 1 50

1 60 10 11 3 10

= =
×

= ×

=
−

=
−

× ×

−

ρ

ρ

.
.

. .

. .

 N m  kg m
 s

 m  m

 N m  kg m

2 3

2 3

e j e j
e j

e j e j
or t L2

3 4
11 26 10 8 40 10= × − ×− −. .e j s

t

t

3

3
4

1 50

8 800

4 24 10

=
×

= × −

.

.

 m

11.0 10  N m  kg m

 s

10 3 3e j e j

We require t t t1 2 3+ = , or

1 96 10 1 26 10 8 40 10 4 24 104
1

3 4
1

4. . . .× + × − × = ×− − − −L L .

This gives L1 1 30= .  m  and L2 1 50 1 30 0 201= − =. . .  m .

The ratio of lengths is then 
L
L

1

2
6 45= . .

(b) The ratio of lengths 
L
L

1

2
 is adjusted in part (a) so that t t t1 2 3+ = . Sound travels the two paths

in equal time and the phase difference, ∆φ = 0 .

P17.72 To find the separation of adjacent molecules, use a model where each molecule occupies a sphere of
radius r given by

ρ
πair

average mass per molecule
=

4
3

3r

or 1 20
4 82 10 26

4
3

3.
.

 kg m
 kg3 =

× −

π r
, r =

×L

N
MM

O

Q
PP = ×

−
−

3 4 82 10

4 1 20
2 12 10

26 1 3

9
.

.
.

 kg

 kg m
 m

3

e j
e jπ

.

Intermolecular separation is 2 4 25 10 9r = × −.  m, so the highest possible frequency sound wave is

f
v v

rmax
min .

. ~= = =
×

= ×−λ 2
343

4 25 10
8 03 10 109

10 11 m s
 m

 Hz  Hz .
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ANSWERS TO EVEN PROBLEMS

P17.2 1 43.  km s P17.36 no

P17.38 (a) 2 17.  cm s ; (b) 2 000 028 9.  Hz ;P17.4 (a) 27.2 s; (b) longer than 25.7 s, because
the air is cooler (c) 2 000 057 8.  Hz

P17.6 (a) 153 m s; (b) 614 m P17.40 (a) 441 Hz; 439 Hz; (b) 54.0 dB

P17.8 (a) 4.16 m; (b) 0 455.  sµ ; (c) 0.157 mm P17.42 (a) 325 m s; (b) 29 5.  m s

P17.10 1 55 10 10. × −  m P17.44 48 2. °

P17.46 46 4. °P17.12 (a) 1 27.  Pa; (b) 170 Hz; (c) 2.00 m;
(d) 340 m s

P17.48 (a) 7; (b) and (c) see the solution

P17.14 s x t= − ×22 5 62 8 2 16 104. cos . . nm e j P17.50 (a) 0 642.  W ; (b) 0 004 28 0 428%. .=

P17.16 (a) 4.63 mm; (b) 14 5.  m s; P17.52 (a) 0 232.  m; (b) 84 1.  nm; (c) 13.8 mm
(c) 4 73 109. ×  W m2

P17.54 (a) 0 515. min; (b) 0 614. min
P17.18 (a) 5 00 10 17. × −  W; (b) 5 00 10 5. × −  W

P17.56 (a) 5 04.  km s; (b) 159 sµ ; (c) 1.90 mm;
P17.20 (a) 1 00 10 5. × −  W m2 ; (b) 90 7.  mPa (d) 0.002 38 ; (e) 476 MPa;

(f) see the solution

P17.22 (a) I
f
f

I2

2

1=
′F
HG
I
KJ ; (b) I I2 1= P17.58 (a) see the solution; (b) 85 9.  Hz

P17.60 The gap between bat and insect is closing
at 1.69 m s .P17.24 21.2 W

P17.26 (a) 4.51 times larger in water than in air
and 18.0 times larger in iron;

P17.62 (a) see the solution; (b) 0.343 m;
(c) 0.303 m; (d) 0.383 m; (e) 1 03.  kHz

(b) 5.60 times larger in water than in iron
and 331 times larger in air; P17.64 80 0. °
(c) 59.1 times larger in water than in air
and 331 times larger in iron; P17.66 67 0.  dB
(d) 0.331 m; 1.49 m; 5.95 m; 10.9 nm;
184 pm; 32.9 pm; 29.2 mPa; 1.73 Pa; 9.67 Pa

P17.68 ∆t
eE

d I
=

4 102
0

10π β
P17.28 see the solution

P17.70 see the solutionP17.30 10.0 m; 100 m

P17.72 ~1011  HzP17.32 86.6 m

P17.34 (a) 1 76.  kJ ; (b) 108 dB
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Superposition and Standing Waves

ANSWERS TO QUESTIONS

Q18.1 No. Waves with other waveforms are also trains of disturbance
that add together when waves from different sources move
through the same medium at the same time.

Q18.2 The energy has not disappeared, but is still carried by the wave
pulses. Each particle of the string still has kinetic energy. This is
similar to the motion of a simple pendulum. The pendulum
does not stop at its equilibrium position during
oscillation—likewise the particles of the string do not stop at
the equilibrium position of the string when these two waves
superimpose.

Q18.3 No. A wave is not a solid object, but a chain of disturbance. As
described by the principle of superposition, the waves move
through each other.

Q18.4 They can, wherever the two waves are nearly enough in phase that their displacements will add to
create a total displacement greater than the amplitude of either of the two original waves.

When two one-dimensional sinusoidal waves of the same amplitude interfere, this
condition is satisfied whenever the absolute value of the phase difference between the two waves is
less than 120°.

Q18.5 When the two tubes together are not an efficient transmitter of sound from source to receiver, they
are an efficient reflector. The incoming sound is reflected back to the source. The waves reflected by
the two tubes separately at the junction interfere constructively.

Q18.6 No. The total energy of the pair of waves remains the same. Energy missing from zones of
destructive interference appears in zones of constructive interference.

Q18.7 Each of these standing wave patterns is made of two superimposed waves of identical frequencies
traveling, and hence transferring energy, in opposite directions. Since the energy transfer of the
waves are equal, then no net transfer of energy occurs.

Q18.8 Damping, and non–linear effects in the vibration turn the energy of vibration into internal energy.

Q18.9 The air in the shower stall can vibrate in standing wave patterns to intensify those frequencies in
your voice which correspond to its free vibrations. The hard walls of the bathroom reflect sound
very well to make your voice more intense at all frequencies, giving the room a longer reverberation
time. The reverberant sound may help you to stay on key.

523
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Q18.10 The trombone slide and trumpet valves change the length of the air column inside the instrument,
to change its resonant frequencies.

Q18.11 The vibration of the air must have zero amplitude at the closed end. For air in a pipe closed at one
end, the diagrams show how resonance vibrations have NA distances that are odd integer
submultiples of the NA distance in the fundamental vibration. If the pipe is open, resonance
vibrations have NA distances that are all integer submultiples of the NA distance in the
fundamental.

FIG. Q18.11

Q18.12 What is needed is a tuning fork—or other pure-tone generator—of the desired frequency. Strike the
tuning fork and pluck the corresponding string on the piano at the same time. If they are precisely
in tune, you will hear a single pitch with no amplitude modulation. If the two pitches are a bit off,
you will hear beats. As they vibrate, retune the piano string until the beat frequency goes to zero.

Q18.13 Air blowing fast by a rim of the pipe creates a “shshshsh” sound called edgetone noise, a mixture of
all frequencies, as the air turbulently switches between flowing on one side of the edge and the
other. The air column inside the pipe finds one or more of its resonance frequencies in the noise. The
air column starts vibrating with large amplitude in a standing wave vibration mode. It radiates
sound into the surrounding air (and also locks the flapping airstream at the edge to its own
frequency, making the noise disappear after just a few cycles).

Q18.14 A typical standing–wave vibration possibility for a bell is similar to that for the glass shown in
Figure 18.17. Here six node-to-node distances fit around the circumference of the rim. The
circumference is equal to three times the wavelength of the transverse wave of in-and-out bending
of the material. In other states the circumference is two, four, five, or higher integers times the
wavelengths of the higher–frequency vibrations. (The circumference being equal to the wavelength
would describe the bell moving from side to side without bending, which it can do without
producing any sound.) A tuned bell is cast and shaped so that some of these vibrations will have
their frequencies constitute higher harmonics of a musical note, the strike tone. This tuning is lost if
a crack develops in the bell. The sides of the crack vibrate as antinodes. Energy of vibration may be
rapidly converted into internal energy at the end of the crack, so the bell may not ring for so long a
time.

Q18.15 The bow string is pulled away from equilibrium and released, similar to the way that a guitar string
is pulled and released when it is plucked. Thus, standing waves will be excited in the bow string. If
the arrow leaves from the exact center of the string, then a series of odd harmonics will be excited.
Even harmonies will not be excited because they have a node at the point where the string exhibits
its maximum displacement.
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Q18.16 Walking makes the person’s hand vibrate a little. If the frequency of this motion is equal to the
natural frequency of coffee sloshing from side to side in the cup, then a large–amplitude vibration of
the coffee will build up in resonance. To get off resonance and back to the normal case of a small-
amplitude disturbance producing a small–amplitude result, the person can walk faster, walk slower,
or get a larger or smaller cup. Alternatively, even at resonance he can reduce the amplitude by
adding damping, as by stirring high–fiber quick–cooking oatmeal into the hot coffee.

Q18.17 Beats. The propellers are rotating at slightly different frequencies.

Q18.18 Instead of just radiating sound very softly into the surrounding air, the tuning fork makes the
chalkboard vibrate. With its large area this stiff sounding board radiates sound into the air with
higher power. So it drains away the fork’s energy of vibration faster and the fork stops vibrating
sooner. This process exemplifies conservation of energy, as the energy of vibration of the fork is
transferred through the blackboard into energy of vibration of the air.

Q18.19 The difference between static and kinetic friction makes your finger alternately slip and stick as it
slides over the glass. Your finger produces a noisy vibration, a mixture of different frequencies, like
new sneakers on a gymnasium floor. The glass finds one of its resonance frequencies in the noise.
The thin stiff wall of the cup starts vibrating with large amplitude in a standing wave vibration
mode. A typical possibility is shown in Figure 18.17. It radiates sound into the surrounding air, and
also can lock your squeaking finger to its own frequency, making the noise disappear after just a few
cycles. Get a lot of different thin–walled glasses of fine crystal and try them out. Each will generally
produce a different note. You can tune them by adding wine.

Q18.20 Helium is less dense than air. It carries sound at higher speed. Each cavity in your vocal apparatus
has a standing-wave resonance frequency, and each of these frequencies is shifted to a higher value.
Your vocal chords can vibrate at the same fundamental frequency, but your vocal tract amplifies by
resonance a different set of higher frequencies. Then your voice has a different quacky quality.

Warning: Inhaling any pressurized gas can cause a gas embolism which can lead to stroke or
death, regardless of your age or health status. If you plan to try this demonstration in class, inhale
your helium from a balloon, not directly from a pressurized tank.

Q18.21 Stick a bit of chewing gum to one tine of the second fork. If the beat frequency is then faster than 4
beats per second, the second has a lower frequency than the standard fork. If the beats have slowed
down, the second fork has a higher frequency than the standard. Remove the gum, clean the fork,
add or subtract 4 Hz according to what you found, and your answer will be the frequency of the
second fork.

SOLUTIONS TO PROBLEMS

Section 18.1 Superposition and Interference

P18.1 y y y x t x t= + = − + −1 2 3 00 4 00 1 60 4 00 5 0 2 00. cos . . . sin . .a f a f  evaluated at the given x values.

(a) x = 1 00. , t = 1 00. y = + + = −3 00 2 40 4 00 3 00 1 65. cos . . sin . . rad  rad  cma f a f

(b) x = 1 00. , t = 0 500. y = + + + = −3 00 3 20 4 00 4 00 6 02. cos . . sin . . rad  rad  cma f a f

(c) x = 0 500. , t = 0 y = + + + =3 00 2 00 4 00 2 50 1 15. cos . . sin . . rad  rad  cma f a f
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P18.2

FIG. P18.2

P18.3 (a) y f x vt1 = −a f , so wave 1 travels in the +x direction

y f x vt2 = +a f , so wave 2 travels in the −x direction

(b) To cancel, y y1 2 0+ = :
5

3 4 2

5

3 4 6 22 2x t x t− +
=

+

+ − +a f a f
3 4 3 4 6

3 4 3 4 6

2 2x t x t

x t x t

− = + −

− = ± + −

a f a f
a f

for the positive root, 8 6t = t = 0 750.  s

(at t = 0 750.  s , the waves cancel everywhere)

(c) for the negative root, 6 6x = x = 1 00.  m

(at x = 1 00.  m, the waves cancel always)

P18.4 Suppose the waves are sinusoidal.

The sum is 4 00 4 00 90 0. sin . sin . cm  cma f a f a f a fkx t kx t− + − + °ω ω

2 4 00 45 0 45 0. sin . cos . cma f a fkx t− + ° °ω

So the amplitude is 8 00 45 0 5 66. cos . . cm  cma f °= .

P18.5 The resultant wave function has the form

y A kx t= F
HG
I
KJ − +F
HG

I
KJ2

2 20 cos sin
φ

ω
φ

(a) A A= F
HG
I
KJ =

−L
NM
O
QP =2

2
2 5 00

4
2

9 240 cos . cos .
φ πa f  m

(b) f = = =
ω
π

π
π2

1 200
2

600 Hz



Chapter 18     527

P18.6 2
20 0A Acos
φF
HG
I
KJ =  so

φ π
2

1
2

60 0
3

1= F
HG
I
KJ = °=−cos .

Thus, the phase difference is φ
π

= °=120
2
3

This phase difference results if the time delay is
T

f v3
1

3 3
= =

λ

Time delay = =
3 00

0 500
.

.
 m

3 2.00 m s
 sb g

P18.7 (a) If the end is fixed, there is inversion of the pulse upon reflection. Thus, when they meet,
they cancel and the amplitude is zero .

(b) If the end is free, there is no inversion on reflection. When they meet, the amplitude is
2 2 0 150 0 300A = =. . m  ma f .

P18.8 (a) ∆x = + − = − =9 00 4 00 3 00 13 3 00 0 606. . . . .  m

The wavelength is λ = = =
v
f

343
300

1 14
 m s
 Hz

 m.

Thus,
∆x
λ

= =
0 606
1 14

0 530
.
.

.  of a wave ,

or ∆φ π= =2 0 530 3 33. .a f  rad

(b) For destructive interference, we want
∆ ∆x

f
x

vλ
= =0 500.

where ∆x  is a constant in this set up. f
v

x
= = =

2
343

2 0 606
283

∆ .a f  Hz

P18.9 We suppose the man’s ears are at the same level as the lower speaker. Sound from the upper

speaker is delayed by traveling the extra distance L d L2 2+ − .

He hears a minimum when this is 
2 1

2
n −a fλ

 with n = 1 2 3, , , …

Then, L d L
n v

f
2 2 1 2
+ − =

−b g

L d
n v

f
L

L d
n v

f
L

n vL

f

L
d n v f

n v f
n

2 2

2 2
2 2

2
2

2 2 2 2

1 2

1 2 2 1 2

1 2

2 1 2
1 2 3

+ =
−

+

+ =
−

+ +
−

=
− −

−
=

b g

b g b g

b g
b g , , , …

This will give us the answer to (b). The path difference starts from nearly zero when the man is very
far away and increases to d when L = 0. The number of minima he hears is the greatest integer

solution to d
n v

f
≥

− 1 2b g

n =  greatest integer ≤ +
df
v

1
2

.

continued on next page
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(a)
df
v
+ = + =

1
2

4 00 200

330
1
2

2 92
.

.
 m s

 m s

a fb g

He hears two  minima.

(b) With n = 1,

L
d v f

v f

L

=
−

=
−

=

2 2 2 2 2 2 2
1 2

2 1 2

4 00 330 4 200

330 200

9 28

b g
b g

a f b g b g
b g

.

.

 m  m s s

 m s s

 m

with n = 2

L
d v f

v f
=

−
=

2 2 2 23 2

2 3 2
1 99

b g
b g .  m .

P18.10 Suppose the man’s ears are at the same level as the lower speaker. Sound from the upper speaker is

delayed by traveling the extra distance ∆r L d L= + −2 2 .

He hears a minimum when ∆r n= − FHG
I
KJ2 1

2
a f λ  with n = 1 2 3, , , …

Then, L d L n
v
f

2 2 1
2

+ − = −FHG
I
KJ
F
HG
I
KJ

L d n
v
f

L

L d n
v
f

n
v
f

L L

2 2

2 2
2 2

2

1
2

1
2

2
1
2

+ = −FHG
I
KJ
F
HG
I
KJ +

+ = −FHG
I
KJ
F
HG
I
KJ + −FHG

I
KJ
F
HG
I
KJ +

d n
v
f

n
v
f

L2
2 2

1
2

2
1
2

− −FHG
I
KJ
F
HG
I
KJ = −FHG

I
KJ
F
HG
I
KJ (1)

Equation 1 gives the distances from the lower speaker at which the man will hear a minimum. The
path difference ∆r  starts from nearly zero when the man is very far away and increases to d when
L = 0.

(a) The number of minima he hears is the greatest integer value for which L ≥ 0 . This is the

same as the greatest integer solution to d n
v
f

≥ −FHG
I
KJ
F
HG
I
KJ

1
2

, or

number of minima heard greatest integer = = ≤ FHG
I
KJ +n d

f
vmax

1
2

.

(b) From equation 1, the distances at which minima occur are given by

L
d n v f

n v f
n nn =

− −

−
=

2 2 21 2

2 1 2
1 2

b g b g
b gb g  where , , , max… .
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P18.11 (a) φ1 20 0 5 00 32 0 2 00 36 0= − =. . . . . rad cm  cm  rad s  s  radb ga f b ga f
φ

φ

1 25 0 5 00 40 0 2 00 45 0

9 00 516 156

= − =

= = °= °

. . . . .

.

 rad cm  cm  rad s  s  rad

 radians

b ga f b ga f
∆

(b) ∆φ = − − − = − +20 0 32 0 25 0 40 0 5 00 8 00. . . . . .x t x t x t

At t = 2 00.  s , the requirement is

∆φ π= − + = +5 00 8 00 2 00 2 1. . .x na f a f  for any integer n.

For x < 3 20. , − +5 00 16 0. .x  is positive, so we have

− + = +

= −
+

5 00 16 0 2 1

3 20
2 1

5 00

. .

.
.

x n

x
n

a f
a f

π

π

,  or

The smallest positive value of x occurs for n = 2 and is

x = −
+

= − =3 20
4 1
5 00

3 20 0 058 4.
.

. .
a fπ

π  cm .

P18.12 (a) First we calculate the wavelength: λ = = =
v
f

344
21 5

16 0
 m s
 Hz

 m
.

.

Then we note that the path difference equals 9 00 1 00
1
2

. . m  m− = λ

Therefore, the receiver will record a minimum in sound intensity.

(b) We choose the origin at the midpoint between the speakers. If the receiver is located at point
(x, y), then we must solve:

x y x y+ + − − + =5 00 5 00
1
2

2 2 2 2. .a f a f λ

Then, x y x y+ + = − + +5 00 5 00
1
2

2 2 2 2. .a f a f λ

Square both sides and simplify to get: 20 0
4

5 00
2

2 2. .x x y− = − +
λ

λ a f

Upon squaring again, this reduces to: 400 10 0
16 0

5 002 2
4

2 2 2 2x x x y− + = − +.
.

.λ
λ

λ λa f

Substituting λ = 16 0.  m, and reducing, 9 00 16 0 1442 2. .x y− =

or
x y2 2

16 0 9 00
1

. .
− =

(When plotted this yields a curve called a hyperbola.)
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Section 18.2 Standing Waves

P18.13 y x t A kx t= =1 50 0 400 200 2 0. sin . cos sin cos ma f a f a f ω

Therefore, k = =
2

0 400
π
λ

.  rad m λ
π

= =
2

0 400
15 7

.
.

 rad m
 m

and ω π= 2 f  so f = = =
ω
π π2

200
2

31 8
 rad s
 rad

 Hz.

The speed of waves in the medium is v f f
k

= = = = =λ
λ
π

π
ω

2
2

200
0 400

500
 rad s
 rad m

 m s
.

P18.14 y
x

t= F
HG
I
KJ0 030 0

2
40. cos cos m a f

(a) nodes occur where y = 0 :

x
n

2
2 1

2
= +a fπ

so x n= + =2 1 3 5a fπ π π π, , , … .

(b) ymax . cos
.

.= F
HG
I
KJ =0 030 0

0 400
2

0 029 4 m  m

P18.15 The facing speakers produce a standing wave in the space between them, with the spacing between
nodes being

d
v
fNN

 m s

 s
 m= = = =

−

λ
2 2

343

2 800
0 214

1e j
.

If the speakers vibrate in phase, the point halfway between them is an antinode of pressure at a
distance from either speaker of

1 25
0 625

.
.

 m
2

= .

Then there isa node at 0 625
0 214

2
0 518.

.
.− =  m

a node at 0 518 0 214 0 303. . . m  m  m− =

a node at 0 303 0 214 0 089 1. . . m  m  m− =

a node at 0 518 0 214 0 732. . . m  m  m+ =

a node at 0 732 0 214 0 947. . . m  m  m+ =

and a node at 0 947 0 214 1 16. . . m  m  m+ =  from either speaker.
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P18.16 y A kx t= 2 0 sin cosω

∂

∂
= −

2

2 0
22

y
x

A k kx tsin cosω
∂

∂
= −

2

2 0
22

y
t

A kx tω ωsin cos

Substitution into the wave equation gives − = FHG
I
KJ −2

1
20

2
2 0

2A k kx t
v

A kx tsin cos sin cosω ω ωe j

This is satisfied, provided that v
k

=
ω

P18.17 y x t1 3 00 0 600= +. sin .π a f  cm; y x t2 3 00 0 600= −. sin .π a f  cm

y y y x t x t

y x t

= + = +

=

1 2 3 00 0 600 3 00 0 600

6 00 0 600

. sin cos . . sin cos .

. sin cos .

π π π π

π π

b g b g b g b g
a f b g b g

 cm

 cm

(a) We can take cos .0 600 1π tb g =  to get the maximum y.

At x = 0 250.  cm, ymax . sin . .= =6 00 0 250 4 24 cm  cma f a fπ

(b) At x = 0 500.  cm, ymax . sin . .= =6 00 0 500 6 00 cm  cma f a fπ

(c) Now take cos .0 600 1π tb g = −  to get ymax :

At x = 1 50.  cm, ymax . sin . .= − =6 00 1 50 1 6 00 cm  cma f a fa fπ

(d) The antinodes occur when x
n

=
λ
4

 n = 1 3 5, , , …b g
But k = =

2π
λ

π , so λ = 2 00.  cm

and x1 4
0 500= =

λ
.  cm  as in (b)

x2
3
4

1 50= =
λ

.  cm  as in (c)

x3
5
4

2 50= =
λ

.  cm

P18.18 (a) The resultant wave is y A kx t= +FHG
I
KJ −FHG

I
KJ2

2 2
sin cos

φ
ω

φ

The nodes are located at kx n+ =
φ

π
2

so x
n
k k

= −
π φ

2

which means that each node is shifted 
φ
2k

 to the left.

(b) The separation of nodes is ∆x n
k k

n
k k

= + −L
NM

O
QP − −LNM

O
QP1

2 2
a fπ φ π φ

∆x
k

= =
π λ

2
The nodes are still separated by half a wavelength.
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Section 18.3 Standing Waves in a String Fixed at Both Ends

P18.19 L = 30 0.  m; µ = × −9 00 10 3.  kg m; T = 20 0.  N ; f
v
L1 2

=

where v
T

=
F
HG
I
KJ =

µ

1 2

47 1.  m s

so f1
47 1
60 0

0 786= =
.
.

.  Hz f f2 12 1 57= = .  Hz

f f3 13 2 36= = .  Hz f f4 14 3 14= = .  Hz

*P18.20 The tension in the string is T = =4 9 8 39 2 kg  m s  N2b ge j. .

Its linear density is µ = =
×

= ×
−

−m
L

8 10
1 6 10

3
3 kg

5 m
 kg m.

and the wave speed on the string is v
T

= =
×

=−µ
39 2
10

156 53
.

.
 N

1.6  kg m
 m s

In its fundamental mode of vibration, we have λ = = =2 2 5 10L  m  ma f
Thus, f

v
= = =
λ

156 5
10

15 7
.

.
 m s
 m

 Hz

P18.21 (a) Let n be the number of nodes in the standing wave resulting from the 25.0-kg mass. Then
n + 1  is the number of nodes for the standing wave resulting from the 16.0-kg mass. For

standing waves, λ =
2L
n

, and the frequency is f
v

=
λ

.

Thus, f
n
L

Tn=
2 µ

and also f
n

L
Tn=

+ +1
2

1

µ

Thus,
n

n
T

T

g

g
n

n

+
= = =

+

1 25 0

16 0
5
41

.

.

 kg

 kg
b g
b g

Therefore, 4 4 5n n+ = , or n = 4

Then, f = =
4

2 2 00

25 0 9 80

0 002 00
350

.

. .

. m

 kg  m s

 kg m
 Hz

2

a f
b ge j

(b) The largest mass will correspond to a standing wave of 1 loop

n = 1a f  so 350
1

2 2 00

9 80

0 002 00
 Hz

 m

 m s

 kg m

2

=
.

.

.a f
e jm

yielding m = 400 kg
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*P18.22 The first string has linear density

µ1

3
31 56 10

2 37 10=
×

= ×
−

−.
.

 kg
0.658 m

 kg m.

The second, µ 2

3
36 75 10

7 11 10=
×

= ×
−

−.
.

 kg
0.950 m

 kg m.

The tension in both is T = =6 93 67 9. . kg 9.8 m s  N2 . The speed of waves in the first string is

v
T

1
1

3
67 9

169= =
×

=−µ
.  N

2.37 10  kg m
 m s

and in the second v
T

2
2

97 8= =
µ

.  m s . The two strings vibrate at the same frequency, according to

n v
L

n v
L

1 1

1

2 2

22 2
=

n n1 2169
2 0 658

97 8
2 0 950

 m s
 m

 m s
 m.

.
.a f a f=

n
n

2

1
2 50

5
2

= =. . Thus n1 2=  and n2 5=  are the number of antinodes on each string in the lowest

resonance with a node at the junction.

(b) The first string has 2 1 3+ =  nodes and the second string 5
more nodes, for a total of 8, or 6  other than the vibrator

and pulley.

(a) The frequency is 
2 169

2 0 658
257

 m s

 m
 Hz

b g
a f.

= .

junction

FIG. P18.22(b)

*P18.23 For the E-string on a guitar vibrating as a whole, v f= =λ 330 64 0 Hz 2  cma f . . When it is stopped at

the first fret we have 2 330 2 330 2 64 012  Hz  Hz  cma f a fL vF = = . . So LF =
64 0.  cm

212
. Similarly for the

second fret, 2 330 330 64 02 12  Hz 2  Hz 2  cma f a fL vF# .= = . LF#
.

=
64 0

22 12
 cm

. The spacing between the first

and second frets is

64 0
1

2
1

2
64 0

1
1 059 5

1
1 059 5

3 391 12 2 12 2. .
. .

. cm  cm  cm−F
HG

I
KJ = −

F
HG

I
KJ = .

This is a more precise version of the answer to the example in the text.

Now the eighteenth fret is distant from the bridge by L18
64 0

=
.  cm

218 12 . And the nineteenth lets this

much string vibrate: L19
64 0

=
.  cm

219 12 . The distance between them is

64 0
1

2
1

2
64 0

1
2

1
1

2
1 2718 12 19 12 1.5 1 12. . . cm  cm  cm−F

HG
I
KJ = −FHG

I
KJ = .
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*P18.24 For the whole string vibrating, dNN = =0 64
2

.  m
λ

; λ = 1 28.  m. The

speed of a pulse on the string is v f
s

= = =λ 330
1

1 28 422.  m  m s .

(a) When the string is stopped at the fret, dNN = =
2
3

0 64
2

.  m
λ

;

λ = 0 853.  m

f
v

= = =
λ

422
0 853

495
 m s

 m
 Hz

.
. FIG. P18.24(a)

(b) The light touch at a point one third of the way along the
string damps out vibration in the two lowest vibration
states of the string as a whole. The whole string vibrates in

its third resonance possibility: 3 0 64 3
2

dNN = =.  m
λ

;

λ = 0 427.  m

f
v

= = =
λ

422
0 427

990 Hz
 m s

 m.
.

FIG. P18.24(b)

P18.25 f
v
L1 2

= , where v
T

=
F
HG
I
KJµ

1 2

(a) If L is doubled, then f L1
1∝ −  will be reduced by a factor 

1
2

.

(b) If µ is doubled, then f1
1 2∝ −µ  will be reduced by a factor 

1
2

.

(c) If T is doubled, then f T1 ∝  will increase by a factor of 2 .

P18.26 L = =60 0 0 600. . cm  m; T = 50 0.  N; µ = =0 100 0 010 0. . g cm  kg m

f
nv

Ln =
2

where

v
T

f n nn

=
F
HG
I
KJ =

= FHG
I
KJ = =

µ

1 2

70 7

70 7
1 20

58 9 20 000

.

.
.

.

 m s

 Hz

Largest n f= ⇒ =339 19 976.  kHz .

P18.27 dNN  m= 0 700.

λ

λ

=

= = =
× −

1 40

308
1 20 10 0 7003

.

. .

 m

 m sf v
T

e j a f

(a) T = 163 N

(b) f3 660=  Hz
FIG. P18.27
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P18.28 λG
G

v
f

= =2 0 350.  ma f ;  λ A A
A

L
v
f

= =2

L L L
f
f

L L
f
fG A G

G

A
G G

G

A
− = −

F
HG
I
KJ = −

F
HG
I
KJ = −FHG

I
KJ =1 0 350 1

392
440

0 038 2. . m  ma f

Thus, L LA G= − = − =0 038 2 0 350 0 038 2 0 312. . . . m  m  m  m,

or the finger should be placed 31 2.  cm from the bridge .

L
v
f f

T
A

A A
= =

2
1

2 µ
; dL

dT
f TA
A

=
4 µ

; 
dL
L

dT
T

A

A
=

1
2

dT
T

dL
L

A

A
= =

−
=2 2

0 600
3 82

3 84%
.

.
.

 cm
35.0  cma f

P18.29 In the fundamental mode, the string above the rod has only
two nodes, at A and B, with an anti-node halfway between A
and B. Thus,

λ
θ2

= =AB
L

cos
 or λ

θ
=

2L
cos

.

Since the fundamental frequency is f, the wave speed in this
segment of string is

v f
Lf

= =λ
θ

2
cos

.

Also, v
T T

m AB
TL

m
= = =

µ θcos

where T is the tension in this part of the string. Thus,

2Lf TL
mcos cosθ θ

=  or 
4 2 2

2
L f TL

mcos cosθ θ
=

and the mass of string above the rod is:

m
T

Lf
=

cosθ
4 2 [Equation 1]

L

M

θ

A

B

T

F

Mg

θ

FIG. P18.29

Now, consider the tension in the string. The light rod would rotate about point P if the string exerted
any vertical force on it. Therefore, recalling Newton’s third law, the rod must exert only a horizontal
force on the string. Consider a free-body diagram of the string segment in contact with the end of
the rod.

F T Mg T
Mg

y∑ = − = ⇒ =sin
sin

θ
θ

0

Then, from Equation 1, the mass of string above the rod is

m
Mg

Lf
Mg

Lf
= FHG

I
KJ =

sin
cos

tanθ
θ

θ4 42 2 .
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*P18.30 Let m V= ρ  represent the mass of the copper cylinder. The original tension in the wire is

T mg Vg1 = = ρ . The water exerts a buoyant force ρwater
V

g
2
F
HG
I
KJ  on the cylinder, to reduce the tension to

T Vg
V

g Vg2 2 2
= − F

HG
I
KJ = −FHG

I
KJρ ρ ρ

ρ
water

water .

The speed of a wave on the string changes from 
T1

µ
 to 

T2

µ
. The frequency changes from

f
v T

1
1 1 1

= =
λ µ λ

 to f
T

2
2 1

=
µ λ

where we assume λ = 2L  is constant.

Then
f
f

T
T

2

1

2

1

2 8 92 1 00 2
8 92

= =
−

=
−ρ ρ

ρ
water . .

.

f2 300
8 42
8 92

291= = Hz  Hz
.
.

*P18.31 Comparing y x t= 0 002 100. sin cos m  rad m  rad sa f b gd i b gd iπ π

with y A kx t= 2 sin cosω

we find k = = −2 1π
λ

π m , λ = 2 00.  m, and ω π π= = −2 100 1f  s : f = 50 0.  Hz

(a) Then the distance between adjacent nodes is dNN  m= =
λ
2

1 00.

and on the string are
L

dNN

 m
 m

 loops= =
3 00
1 00

3
.
.

For the speed we have v f= = =−λ 50 2 1001 s  m  m se j

(b) In the simplest standing wave vibration, d b
NN  m= =3 00

2
.

λ
, λ b = 6 00.  m

and f
v

b
a

b
= = =
λ

100
6 00

16 7
 m s

 m
 Hz

.
.

(c) In v
T

0
0=
µ

, if the tension increases to T Tc = 9 0  and the string does not stretch, the speed

increases to

v
T T

vc = = = = =
9

3 3 3 100 3000 0
0µ µ

 m s  m sb g

Then λ c
c

a

v
f

= = =−

300
50

6 001

 m s
 s

 m. d c
NN  m= =

λ
2

3 00.

and one  loop fits onto the string.



Chapter 18     537

Section 18.4 Resonance

P18.32 The natural frequency is

f
T

g
L

= = = =
1 1

2
1

2
9 80

2 00
0 352

π π
.

.
.

 m s
 m

 Hz
2

.

The big brother must push at this same frequency of 0 352.  Hz  to produce resonance.

P18.33 (a) The wave speed is v = =
9 15

3 66
.

.
 m

2.50 s
 m s

(b) From the figure, there are antinodes at both ends of the pond, so the distance between
adjacent antinodes

is dAA  m= =
λ
2

9 15. ,

and the wavelength is λ = 18 3.  m

The frequency is then f
v

= = =
λ

3 66
18 3

0 200
.

.
.

 m s
 m

 Hz

We have assumed the wave speed is the same for all wavelengths.

P18.34 The wave speed is v gd= = =9 80 36 1 18 8. . . m s  m  m s2e ja f
The bay has one end open and one closed. Its simplest resonance is with a node of horizontal
velocity, which is also an antinode of vertical displacement, at the head of the bay and an antinode
of velocity, which is a node of displacement, at the mouth. The vibration of the water in the bay is
like that in one half of the pond shown in Figure P18.33.

Then, dNA  m= × =210 10
4

3 λ

and λ = ×840 103  m

Therefore, the period is T
f v

= = =
×

= × =
1 840 10

4 47 10 12
3

4λ  m
18.8 m s

 s  h 24 min.

This agrees precisely with the period of the lunar excitation , so we identify the extra-high tides as

amplified by resonance.

P18.35 The distance between adjacent nodes is one-quarter of the circumference.

d dNN AA
 cm

 cm= = = =
λ
2

20 0
4

5 00
.

.

so λ = 10 0.  cm and f
v

= = = =
λ

900
0 100

9 000 9 00
 m s

 m
 Hz  kHz

.
. .

The singer must match this frequency quite precisely for some interval of time to feed enough
energy into the glass to crack it.



538     Superposition and Standing Waves

Section 18.5 Standing Waves in Air Columns

P18.36 dAA  m= 0 320. ; λ = 0 640.  m

(a) f
v

= =
λ

531 Hz

(b) λ = 0 085 0.  m; dAA  mm= 42 5.

P18.37 (a) For the fundamental mode in a closed pipe, λ = 4L , as
in the diagram.

But v f= λ , therefore L
v
f

=
4

So, L = =
−

343

4 240
0 357

1

 m s

 s
 m

e j
.

(b) For an open pipe, λ = 2L , as in the diagram.

So, L
v
f

= = =
−2

343

2 240
0 715

1

 m s

 s
 m

e j
.

λ/4
L

NA

λ/2

AA N

FIG. P18.37

P18.38 The wavelength is λ = = =
v
f

343
1 31

 m s
261.6 s

 m.

so the length of the open pipe vibrating in its simplest (A-N-A) mode is

dA to A  m= =
1
2

0 656λ .

A closed pipe has (N-A) for its simplest resonance,

(N-A-N-A) for the second,

and (N-A-N-A-N-A) for the third.

Here, the pipe length is 5
5
4

5
4

1 31 1 64dN to A  m  m= = =
λ

. .a f

*P18.39 Assuming an air temperature of T = ° =37 310C  K , the speed of sound inside the pipe is

v = =331
310

353 m s
 K

273 K
 m sb g .

In the fundamental resonant mode, the wavelength of sound waves in a pipe closed at one end is
λ = 4L . Thus, for the whooping crane

λ = = ×4 5 0 2 0 101. . ft  fta f  and f
v

= =
×

F
HG

I
KJ =λ

353

2 0 10
3 281

57 91

 m s

 ft
 ft

1 m
 Hz

b g
.

.
. .
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P18.40 The air in the auditory canal, about 3 cm long, can vibrate with a node at the closed end and
antinode at the open end,

with dN to A  cm= =3
4
λ

so λ = 0 12.  m

and f
v

= = ≈
λ

343
0 12

3
 m s

 m
 kHz

.

A small-amplitude external excitation at this frequency can,  over time,  feed energy
into a larger-amplitude resonance vibration of the air in the canal,  making it audible.

P18.41 For a closed box, the resonant frequencies will have nodes at both sides, so the permitted

wavelengths will be L n=
1
2

λ , n = 1 2 3, , , …b g .

i.e., L
n nv

f
= =

λ
2 2

 and f
nv

L
=

2
.

Therefore, with L = 0 860 m.  and ′ =L 2 10.  m, the resonant frequencies are

f nn = 206 Hza f  for L = 0 860.  m for each n from 1 to 9

and ′ =f nn 84 5.  Hza f  for ′ =L 2 10.  m for each n from 2 to 23.

P18.42 The wavelength of sound is λ =
v
f

The distance between water levels at resonance is d
v
f

=
2

∴ = =Rt r d
r v

f
π

π2
2

2

and t
r v
Rf

=
π 2

2
.

P18.43 For both open and closed pipes, resonant frequencies are equally spaced as numbers. The set of
resonant frequencies then must be 650 Hz, 550 Hz, 450 Hz, 350 Hz, 250 Hz, 150 Hz, 50 Hz. These are
odd-integer multipliers of the fundamental frequency of 50 0.  Hz . Then the pipe length is

d
v
fNA = = = =

λ
4 4

340
4 50

1
 m s

s
.70 mb g .

P18.44
λ
2
= =d

L
nAA  or L

n
=

λ
2

for n = 1 2 3, , , …

Since λ =
v
f

L n
v
f

=
F
HG
I
KJ2

for n = 1 2 3, , , …

With v = 343 m s  and f = 680 Hz,

L n n=
F
HG

I
KJ =

343
2 680

0 252
 m s

 Hz
 ma f a f. for n = 1 2 3, , , …

Possible lengths for resonance are: L n= 0 252 0 252. . m,  0.504 m,  0.757 m,  ,   m… a f .
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P18.45 For resonance in a narrow tube open at one end,

f n
v
L

n= =
4

1 3 5, , , …b g .
(a) Assuming n = 1 and n = 3 ,

384
4 0 228

=
v
.a f  and 384

3
4 0 683

=
v

.a f .

In either case, v = 350 m s .

(b) For the next resonance n = 5 , and L
v
f

= = =
−

5
4

5 350

4 384
1 14

1

 m s

 s
 m

b g
e j

. .

22.8 cm

68.3 cm

f = 384 Hz

warm
air

FIG. P18.45

P18.46 The length corresponding to the fundamental satisfies f
v
L

=
4

: L
v
f1 4

34
4 512

0 167= = =a f .  m .

Since L > 20 0.  cm, the next two modes will be observed, corresponding to f
v

L
=

3
4 2

 and f
v

L
=

5
4 3

.

or L
v
f2

3
4

0 502= = .  m  and L
v
f3

5
4

0 837= = .  m .

P18.47 We suppose these are the lowest resonances of the enclosed air columns.

For one, λ = = =−
v
f

343
256

1 341

 m s
 s

 m. length = = =dAA  m
λ
2

0 670.

For the other, λ = = =−
v
f

343
440

0 7801

 m s
 s

 m. length = 0 390.  m

So,

(b) original length = 1 06.  m

λ = =2 2 12dAA  m.

(a) f = =
343
2 12

162
 m s

 m
 Hz

.

P18.48 (a) For the fundamental mode of an open tube,

L
v
f

= = = =
−

λ
2 2

343

2 880
0 195

1

 m s

 s
 m

e j
. .

(b) v = +
−

=331 1
5 00
273

328 m s  m s
.a f

We ignore the thermal expansion of the metal.

f
v v

L
= = = =
λ 2

328
2 0 195

841
 m s

 m
 Hz

.a f
The flute is flat by a semitone.
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Section 18.6 Standing Waves in Rod and Plates

P18.49 (a) f
v
L

= = =
2

5 100
2 1 60

1 59a fa f.
.  kHz

(b) Since it is held in the center, there must be a node in the center as well as antinodes at the
ends. The even harmonics have an antinode at the center so only the odd harmonics  are

present.

(c) f
v
L

=
′
= =

2
3 560

2 1 60
1 11a fa f.
.  kHz

P18.50 When the rod is clamped at one-quarter of its length, the vibration pattern reads ANANA and the
rod length is L d= =2 AA λ .

Therefore, L
v
f

= = =
5 100
4 400

1 16
 m s
 Hz

 m.

Section 18.7 Beats: Interference in Time

P18.51 f v T∝ ∝ fnew  Hz= =110
540
600

104 4.

∆f = 5 64.  beats s

P18.52 (a) The string could be tuned to either 521 Hz or 525 Hz  from this evidence.

(b) Tightening the string raises the wave speed and frequency. If the frequency were originally
521 Hz, the beats would slow down.

Instead, the frequency must have started at 525 Hz to become 526 Hz .

(c) From f
v T

L L
T

= = =
λ

µ
µ2

1
2

f
f

T
T

2

1

2

1
=  and T

f
f

T T T2
2

1

2

1

2

1 1
523

0 989=
F
HG
I
KJ = FHG

I
KJ =

 Hz
526 Hz

. .

The fractional change that should be made in the tension is then

fractional change =
−

= − = =
T T

T
1 2

1
1 0 989 0 011 4 1 14%. . .  lower.

The tension should be reduced by 1.14% .
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P18.53 For an echo ′ =
+

−
f f

v v
v v

s

s

b g
b g  the beat frequency is f f fb = ′ − .

Solving for fb .

gives f f
v

v vb
s

s
=

−

2b g
b g  when approaching wall.

(a) fb = −
=256

2 1 33
343 1 33

1 99a f a fa f
.

.
.  Hz  beat frequency

(b) When he is moving away from the wall, vs  changes sign. Solving for vs  gives

v
f v
f fs

b

b
=

−
=

−
=

2
5 343

2 256 5
3 38

a fa f
a fa f .  m s .

*P18.54 Using the 4 and 2
2
3

- foot pipes  produces actual frequencies of 131 Hz and 196 Hz and a

combination tone at 196 131 65 4− =a fHz  Hz. , so this pair supplies the so-called missing fundamental.
The 4 and 2-foot pipes produce a combination tone 262 131 131− =a fHz  Hz, so this does not work.

The 2
2
3

2 and - foot pipes  produce a combination tone at 262 196 65 4− =a fHz  Hz. , so this works.

Also, 4 2
2
3

2, ,  and - foot pipes  all playing together produce the 65.4-Hz combination tone.

Section 18.8 Non-Sinusoidal Wave Patterns

P18.55 We list the frequencies of the harmonics of each note in Hz:

Harmonic
Note 1 2 3 4 5

A 440.00      880.00 1 320.0 1 760.0 2 200.0
C# 554.37 1 108.7 1 663.1 2 217.5 2 771.9
E 659.26 1 318.5 1 977.8 2 637.0 3 296.3

The second harmonic of E is close the the third harmonic of A,  and the fourth
harmonic of C#  is close to the fifth harmonic of A.

P18.56 We evaluate

s = + + +
+ + +
100 157 2 62 9 3 105 4
51 9 5 29 5 6 25 3 7

sin sin . sin sin
. sin . sin . sin

θ θ θ θ
θ θ θ

where s represents particle displacement in nanometers
and θ represents the phase of the wave in radians. As θ
advances by 2π , time advances by (1/523) s. Here is the
result:

FIG. P18.56
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Additional Problems

P18.57 f = 87 0.  Hz

speed of sound in air: va = 340 m s

(a) λ b = A v f b= = −λ 87 0 0 4001. . s  me ja f
v = 34 8.  m s

(b)
λ

λ
a

a a

L
v f

=
=
UVW

4
L

v
f
a= = =

−4
340

4 87 0
0 977

1

 m s

 s
 m

.
.

e j
FIG. P18.57

*P18.58 (a) Use the Doppler formula

′ =
±

f f
v v
v vs

0b g
b g∓

.

With ′ =f1  frequency of the speaker in front of student and

′ =f2  frequency of the speaker behind the student.

′ =
+

−
=

′ =
−

+
=

f

f

1

2

456
343 1 50

343 0
458

456
343 1 50

343 0
454

 Hz
 m s  m s

 m s
 Hz

 Hz
 m s  m s

 m s
 Hz

a f b g
b g

a f b g
b g

.

.

Therefore, f f fb = ′ − ′ =1 2 3 99.  Hz .

(b) The waves broadcast by both speakers have λ = = =
v
f

343
456

0 752
 m s

s
 m. . The standing wave

between them has dAA = =
λ
2

0 376.  m. The student walks from one maximum to the next in

time ∆t = =
0 376
1 50

0 251
.
.

.
m

m s
s , so the frequency at which she hears maxima is f

T
= =

1
3 99.  Hz .

P18.59 Moving away from station, frequency is depressed:

′ = − =f 180 2 00 178.  Hz : 178 180
343

343
=

− −va f
Solving for v gives v =

2 00 343
178

.a fa f

Therefore, v = 3 85.  m s  away from station

Moving toward the station, the frequency is enhanced:

′ = + =f 180 2 00 182.  Hz : 182 180
343

343
=

− v

Solving for v gives 4
2 00 343

182
=

.a fa f

Therefore, v = 3 77.  m s  toward the station
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P18.60 v =
×

=−

48 0 2 00

4 80 10
1413

. .

.
a fa f

 m s

dNN  m= 1 00. ; λ = 2 00.  m; f
v

= =
λ

70 7.  Hz

λ a
av
f

= = =
343
70 7

4 85
 m s
 Hz

 m
.

.

P18.61 Call L the depth of the well and v the speed of sound.

Then for some integer n L n n
v
f

n
= − = − =

−
−

2 1
4

2 1
4

2 1 343

4 51 5
1

1
1

a f a f a fb g
e j

λ  m s

 s.

and for the next resonance L n n
v
f

n
= + − = + =

+
−

2 1 1
4

2 1
4

2 1 343

4 60 0
2

2
1

a f a f a fb g
e j

λ  m s

 s.

Thus,
2 1 343

4 51 5

2 1 343

4 60 01 1

n n−
=

+
− −

a fb g
e j

a fb g
e j

 m s

 s

 m s

 s. .

and we require an integer solution to
2 1
60 0

2 1
51 5

n n+
=

−
. .

The equation gives n = =
111 5

17
6 56

.
. , so the best fitting integer is n = 7 .

Then L =
−

=
−

2 7 1 343

4 51 5
21 6

1

a f b g
e j

 m s

 s
 m

.
.

and L =
+

=
−

2 7 1 343

4 60 0
21 4

1

a f b g
e j

 m s

 s
 m

.
.

suggest the best value for the depth of the well is 21 5.  m .

P18.62 The second standing wave mode of the air in the pipe reads ANAN, with dNA
 m

3
= =
λ
4

1 75.

so λ = 2 33.  m

and f
v

= = =
λ

343
2 33

147
 m s

 m
 Hz

.

For the string, λ and v are different but f is the same.

λ
2

0 400
= =dNN

 m
2

.

so λ = 0 400.  m

v f
T

T v

= = = =

= = × =−

λ
µ

µ

0 400 147 58 8

9 00 10 58 8 31 12 3 2

. .

. . .

 m  Hz  m s

 kg m  m s  N

a fa f

e jb g
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P18.63 (a) Since the first node is at the weld, the wavelength in the thin wire is 2L or 80.0 cm. The
frequency and tension are the same in both sections, so

f
L

T
= =

×
=−

1
2

1
2 0 400

4 60
2 00 10

59 93µ .
.

.
.a f  Hz .

(b) As the thick wire is twice the diameter, the linear density is 4 times that of the thin wire.

′ =µ 8 00.  g m

so ′ =
′

L
f

T1
2 µ

′ =
L
NM

O
QP ×

=−L
1

2 59 9
4 60

8 00 10
20 03a fa f.

.
.

.  cm  half the length of the

thin wire.

P18.64 (a) For the block:

F T Mgx∑ = − °=sin .30 0 0

so T Mg Mg= °=sin .30 0
1
2

.

(b) The length of the section of string parallel to the incline is
h

h
sin .30 0

2
°
= . The total length of the string is then 3h . FIG. P18.64

(c) The mass per unit length of the string is µ =
m
h3

(d) The speed of waves in the string is v
T Mg h

m
Mgh

m
= = FHG

I
KJ
F
HG
I
KJ =µ 2

3 3
2

(e) In the fundamental mode, the segment of length h vibrates as one loop. The distance

between adjacent nodes is then d hNN = =
λ
2

, so the wavelength is λ = 2h.

The frequency is f
v

h
Mgh

m
Mg
mh

= = =
λ

1
2

3
2

3
8

(g) When the vertical segment of string vibrates with 2 loops (i.e., 3 nodes), then h = FHG
I
KJ2

2
λ

 and

the wavelength is λ = h .

(f) The period of the standing wave of 3 nodes (or two loops) is

T
f v

h
m

Mgh
mh
Mg

= = = =
1 2

3
2
3

λ

(h) f f f f
Mg
mhb = − = × = ×− −1 02 2 00 10 2 00 10

3
8

2 2. . .e j e j
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P18.65 (a) f
n
L

T
=

2 µ

so 
′
=

′
= =

f
f

L
L

L
L2

1
2

The frequency should be halved  to get the same number of antinodes for twice the

length.

(b)
′
=

′
n
n

T
T

so
′
=

′
F
HG
I
KJ =

+
L
NM
O
QP

T
T

n
n

n
n

2 2

1

The tension must be ′ =
+
L
NM
O
QPT

n
n

T
1

2

(c)
′
=

′
′

′f
f

n L
nL

T
T

so
′
=

′ ′
′
F
HG
I
KJ

T
T

nf L
n fL

2

′
=

⋅
F
HG
I
KJ

T
T

3
2 2

2 ′
=

T
T

9
16

 to get twice as many antinodes.

P18.66 For the wire, µ = = × −0 010 0
5 00 10 3.
.

 kg
2.00 m

 kg m : v
T

= =
⋅

× −µ

200

5 00 10 3

 kg m s

 kg m

2e j
.

v = 200 m s

If it vibrates in its simplest state, dNN  m= =2 00
2

.
λ

: f
v

= = =
λ

200

4 00
50 0

 m s

 m
 Hz

b g
.

.

(a) The tuning fork can have frequencies 45 0.  Hz or 55.0 Hz .

(b) If f = 45 0.  Hz , v f= = =λ 45 0 4 00 180. .s  m  m sb g .

Then, T v= = × =−2 2 3180 5 00 10 162µ  m s  kg m  Nb g e j.

or  if f = 55 0.  Hz , T v f= = = × =−2 2 2 2 2 355 0 4 00 5 00 10 242µ λ µ . . .s  m  kg m  Nb g a f e j .

P18.67 We look for a solution of the form

5 00 2 00 10 0 10 0 2 00 10 0 2 00 10 0

2 00 10 0 2 00 10 0

. sin . . . cos . . sin . .

sin . . cos cos . . sin

x t x t A x t

A x t A x t

− + − = − +

= − + −

a f a f b g
a f a f

φ

φ φ

This will be true if both 5 00. cos= A φ  and 10 0. sin= A φ ,

requiring 5 00 10 02 2 2. .a f a f+ = A

A = 11 2.  and φ = °63 4.

The resultant wave 11 2 2 00 10 0 63 4. sin . . .x t− + °a f  is sinusoidal.
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P18.68 (a) With k =
2π
λ

 and ω π
π
λ

= =2
2

f
v

: y x t A kx t A
x vt

, sin cos sin cosb g = = F
HG
I
KJ
F
HG
I
KJ2 2

2 2
ω

π
λ

π
λ

(b) For the fundamental vibration, λ1 2= L

so y x t A
x

L
vt

L1 2, sin cosb g = F
HG
I
KJ
F
HG
I
KJ

π π

(c) For the second harmonic λ 2 = L  and y x t A
x

L
vt

L2 2
2 2

, sin cosb g = F
HG
I
KJ
F
HG
I
KJ

π π

(d) In general, λn
L

n
=

2
 and y x t A

n x
L

n vt
Ln , sin cosb g = F

HG
I
KJ
F
HG
I
KJ2

π π

P18.69 (a) Let θ represent the angle each slanted rope
makes with the vertical.

In the diagram, observe that:

sin
.

θ = =
1 00 2

3
 m

1.50 m

or θ = °41 8. .

Considering the mass,

Fy∑ = 0 : 2T mgcosθ =

or T =
°

=
12 0 9 80

2 41 8
78 9

. .

cos .
.

 kg  m s
 N

2b ge j
FIG. P18.69

(b) The speed of transverse waves in the string is v
T

= = =
µ

78 9
281

.  N
0.001 00 kg m

 m s

For the standing wave pattern shown (3 loops), d =
3
2
λ

or λ = =
2 2 00

3
1 33

.
.

 m
 m

a f

Thus, the required frequency is f
v

= = =
λ

281
1 33

211
 m s

 m
 Hz

.

*P18.70 dAA  m= = × −λ
2

7 05 10 3.  is the distance between antinodes.

Then λ = × −14 1 10 3.  m

and f
v

= =
×

×
= ×−λ

3 70 10
2 62 10

3
5.

.
 m s

14.1 10  m
 Hz3 .

The crystal can be tuned to vibrate at 218  Hz , so that binary counters can
derive from it a signal at precisely 1 Hz.

FIG. P18.70
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ANSWERS TO EVEN PROBLEMS

P18.2 see the solution P18.38 0.656 m; 1.64 m

P18.40 3 kHz; see the solutionP18.4 5.66 cm

P18.42 ∆t
r v
Rf

=
π 2

2
P18.6 0.500 s

P18.8 (a) 3.33 rad; (b) 283 Hz

P18.44 L = 0 252.  m,  0.504 m,  0.757 m,  ,…
n 0 252.a f m for n = 1 2 3, , , …P18.10 (a) The number is the greatest

integer ≤ FHG
I
KJ +d

f
v

1
2

;
P18.46 0.502 m; 0.837 m

(b) L
d n v f

n v fn =
− −

−

2 2 2
1 2

2 1 2
b g b g
b gb g  where

n n= 1 2, , , max…

P18.48 (a) 0.195 m; (b) 841 m

P18.50 1.16 m

P18.12 (a) ∆x =
λ
2

; P18.52 (a) 521 Hz or 525 Hz; (b) 526 Hz;
(c) reduce by 1.14%

(b) along the hyperbola 9 16 1442 2x y− =

P18.54 4-foot and 2
2
3

-foot ; 2
2
3

2 and - foot; and

all three together
P18.14 (a) 2 1 0 1 2 3n n+ =a fπ m for , , , , …;

(b) 0 029 4.  m

P18.56 see the solutionP18.16 see the solution

P18.58 (a) and (b) 3 99.  beats sP18.18 see the solution

P18.60 4.85 mP18.20 15.7 Hz

P18.62 31.1 NP18.22 (a) 257 Hz; (b) 6

P18.64 (a) 
1
2

Mg ; (b) 3h ; (c) 
m
h3

; (d) 
3

2
Mgh

m
;P18.24 (a) 495 Hz; (b) 990 Hz

P18.26 19.976 kHz
(e) 

3
8
Mg
mh

; (f) 
2
3

mh
Mg

; (g) h;

P18.28 3.84%
(h) 2 00 10

3
8

2. × −e j Mg
mhP18.30 291 Hz

P18.66 (a) 45.0 Hz or 55.0 Hz; (b) 162 N or 242 NP18.32 0.352 Hz

P18.68 see the solutionP18.34 see the solution

P18.70 262 kHzP18.36 (a) 531 Hz; (b) 42.5 mm
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CHAPTER OUTLINE

19.1 Temperature and the Zeroth
 Law of Thermodynamics
19.2 Thermometers and the
 Celsius Temperature Scale
19.3 The Constant-Volume Gas
 Thermometer and the
 Absolute Temperature Scale
19.4 Thermal Expansion of
 Solids and Liquids
19.5 Macroscopic Description of
 an Ideal Gas
           

    
                                         

                 

    
    
    

    
    

Temperature

ANSWERS TO QUESTIONS

Q19.1 Two objects in thermal equilibrium need not be in contact.
Consider the two objects that are in thermal equilibrium in
Figure 19.1(c). The act of separating them by a small distance
does not affect how the molecules are moving inside either
object, so they will still be in thermal equilibrium.

Q19.2 The copper’s temperature drops and the water temperature
rises until both temperatures are the same. Then the metal and
the water are in thermal equilibrium.

Q19.3 The astronaut is referring to the temperature of the lunar
surface, specifically a 400°F difference. A thermometer would
register the temperature of the thermometer liquid. Since there
is no atmosphere in the moon, the thermometer will not read a
realistic temperature unless it is placed into the lunar soil.

Q19.4 Rubber contracts when it is warmed.

Q19.5 Thermal expansion of the glass bulb occurs first, since the wall of the bulb is in direct contact with
the hot water. Then the mercury heats up, and it expands.

Q19.6 If the amalgam had a larger coefficient of expansion than your tooth, it would expand more than the
cavity in your tooth when you take a sip of your ever-beloved coffee, resulting in a broken or
cracked tooth! As you ice down your now excruciatingly painful broken tooth, the amalgam would
contract more than the cavity in your tooth and fall out, leaving the nerve roots exposed. Isn’t it nice
that your dentist knows thermodynamics?

Q19.7 The measurements made with the heated steel tape will be too short—but only by a factor of
5 10 5× −  of the measured length.

Q19.8 (a) One mole of H 2  has a mass of 2.016 0 g.

(b) One mole of He has a mass of 4.002 6 g.

(c) One mole of CO has a mass of 28.010 g.

Q19.9 The ideal gas law, PV nRT=  predicts zero volume at absolute zero. This is incorrect because the
ideal gas law cannot work all the way down to or below the temperature at which gas turns to
liquid, or in the case of CO2, a solid.

549
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Q19.10 Call the process isobaric cooling or isobaric contraction. The rubber wall is easy to stretch. The air
inside is nearly at atmospheric pressure originally and stays at atmospheric pressure as the wall
moves in, just maintaining equality of pressure outside and inside. The air is nearly an ideal gas to
start with, but PV nRT=  soon fails. Volume will drop by a larger factor than temperature as the
water vapor liquefies and then freezes, as the carbon dioxide turns to snow, as the argon turns to
slush, and as the oxygen liquefies. From the outside, you see contraction to a small fraction of the
original volume.

Q19.11 Cylinder A must be at lower pressure. If the gas is thin, it will be at one-third the absolute pressure
of B.

Q19.12 At high temperature and pressure, the steam inside exerts large forces on the pot and cover. Strong
latches hold them together, but they would explode apart if you tried to open the hot cooker.

Q19.13 (a) The water level in the cave rises by a smaller distance than the water outside, as the trapped
air is compressed. Air can escape from the cave if the rock is not completely airtight, and also
by dissolving in the water.

(b) The ideal cave stays completely full of water at low tide. The water in the cave is supported
by atmospheric pressure on the free water surface outside.

(a) (b)

FIG. Q19.13

Q19.14 Absolute zero is a natural choice for the zero of a temperature scale. If an alien race had bodies that
were mostly liquid water—or if they just liked its taste or its cleaning properties—it is conceivable
that they might place one hundred degrees between its freezing and boiling points. It is very
unlikely, on the other hand, that these would be our familiar “normal” ice and steam points, because
atmospheric pressure would surely be different where the aliens come from.

Q19.15 As the temperature increases, the brass expands. This would effectively increase the distance, d,
from the pivot point to the center of mass of the pendulum, and also increase the moment of inertia
of the pendulum. Since the moment of inertia is proportional to d 2 , and the period of a physical

pendulum is T
I

mgd
= 2π , the period would increase, and the clock would run slow.

Q19.16 As the water rises in temperature, it expands. The excess volume would spill out of the cooling
system. Modern cooling systems have an overflow reservoir to take up excess volume when the
coolant heats up and expands.

Q19.17 The coefficient of expansion of metal is larger than that of glass. When hot water is run over the jar,
both the glass and the lid expand, but at different rates. Since all dimensions expand, there will be a
certain temperature at which the inner diameter of the lid has expanded more than the top of the
jar, and the lid will be easier to remove.
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Q19.18 The sphere expands when heated, so that it no longer fits through the
ring. With the sphere still hot, you can separate the sphere and ring by
heating the ring. This more surprising result occurs because the thermal
expansion of the ring is not like the inflation of a blood-pressure cuff.
Rather, it is like a photographic enlargement; every linear dimension,
including the hole diameter, increases by the same factor. The reason
for this is that the atoms everywhere, including those around the inner
circumference, push away from each other. The only way that the
atoms can accommodate the greater distances is for the
circumference—and corresponding diameter—to grow. This property
was once used to fit metal rims to wooden wagon and horse-buggy
wheels. If the ring is heated and the sphere left at room temperature,
the sphere would pass through the ring with more space to spare.

FIG. Q19.18

SOLUTIONS TO PROBLEMS

Section 19.1 Temperature and the Zeroth Law of Thermodynamics

No problems in this section

Section 19.2 Thermometers and the Celsius Temperature Scale

Section 19.3 The Constant-Volume Gas Thermometer and the Absolute Temperature Scale

P19.1 Since we have a linear graph, the pressure is related to the temperature as P A BT= + , where A and
B are constants. To find A and B, we use the data

0 900 80 0. . atm C= + − °A Ba f (1)

1 635 78 0. . atm C= + °A Ba f (2)

Solving (1) and (2) simultaneously,

we find A = 1 272.  atm

and B = × °−4 652 10 3.  atm C

Therefore, P T= + × °−1 272 4 652 10 3. . atm  atm Ce j

(a) At absolute zero P T= = + × °−0 1 272 4 652 10 3. . atm  atm Ce j
which gives T = − °274 C .

(b) At the freezing point of water P = + =1 272 0 1 27. . atm  atm .

(c) And at the boiling point P = + × ° ° =−1 272 4 652 10 100 1 743. . . atm  atm C C  atme ja f .
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P19.2 P V nRT1 1=

and P V nRT2 2=

imply that 
P
P

T
T

2

1

2

1
=

(a) P
P T
T2
1 2

1

0 980 273 45 0
273 20 0

1 06= =
+

+
=

. .
.

.
 atm  K  K

 K
 atm

a fa f
a f

(b) T
T P

P3
1 3

1

293 0 500
0 980

149 124= = = = − °
 K  atm

 atm
 K C

a fa f.
.

FIG. P19.2

P19.3 (a) T TF C= + ° = − + = − °
9
5

32 0
9
5

195 81 32 0 320. . .F Fa f

(b) T TC= + = − + =273 15 195 81 273 15 77 3. . . .  K

P19.4 (a) To convert from Fahrenheit to Celsius, we use T TC F= − = − = °
5
9

32 0
5
9

98 6 32 0 37 0. . . .b g a f C

and the Kelvin temperature is found as T TC= + =273 310 K

(b) In a fashion identical to that used in (a), we find TC = − °20 6. C

and T = 253 K

P19.5 (a) ∆T = ° = °
° − °
° − °

F
HG

I
KJ = °450 450

212 32 0
0 00

810C C
F F

100 C C
F

.
.

(b) ∆T = ° =450 450C  K

P19.6 Require 0 00 15 0. .° = − ° +C Sa ba f
100 60 0° = ° +C Sa b.a f

Subtracting, 100 75 0° = °C Sa .a f
a = ° °1 33.  C S .

Then 0 00 1 33 15 0. . .° = − ° °+C S Ca f b

b = °20 0. C .

So the conversion is T TC = ° ° + °1 33 20 0. . C S CSb g .

P19.7 (a) T = + =1 064 273 1 337 K  melting point

T = + =2 660 273 2 933 K  boiling point

(b) ∆T = ° =1 596 1 596C  K . The differences are the same.
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Section 19.4 Thermal Expansion of Solids and Liquids

P19.8 α = × °− −1 10 10 5 1. C  for steel

∆L = × ° ° − − ° =− −518 1 10 10 35 0 20 0 0 3135 1 m C C C  m. . . .e j a f

P19.9 The wire is 35.0 m long when TC = − °20 0. C.

∆L L T Ti i= −α b g
α α= ° = × °− −20 0 1 70 10 5 1. .C  Ca f a f  for Cu.

∆L = × ° ° − − ° = +− −35 0 1 70 10 35 0 20 0 3 275 1. . . . . m  C C C  cma f a fe j a fc h

P19.10 ∆ ∆L L Ti= = × ° ° =−α 25 0 12 0 10 40 0 1 206. . . . m C C  cma fe ja f

P19.11 For the dimensions to increase, ∆ ∆L L Ti=α

1 00 10 1 30 10 2 20 20 0

55 0

2 4 1. . . .

.

× = × ° − °

= °

− − − cm C  cm C

C

a fa fT

T

*P19.12 ∆ ∆L L Ti= = × ° ° = ×− −α 22 10 2 40 30 1 58 106 3C  cm C  cme ja fa f. .

P19.13 (a) ∆ ∆L L Ti= = × ° ° =− −α 9 00 10 30 0 65 0 0 1766 1. . . .C  cm C  mma fa f

(b) ∆ ∆L L Ti= = × ° ° = ×− − −α 9 00 10 1 50 65 0 8 78 106 1 4. . . .C  cm C  cma fa f

(c) ∆ ∆V V Ti= = × °
F
HG

I
KJ

° =− −3 3 9 00 10
30 0 1 50

4
65 0 0 093 06 1

2

α
π

.
. .

.C  cm C .  cm3 3e j a fa f a f

*P19.14 The horizontal section expands according to ∆ ∆L L Ti=α .

∆x = × ° ° − ° = ×− − −17 10 28 0 46 5 1 36 106 1 2C  cm C 18.0 C  cme ja fa f. . .

The vertical section expands similarly by

∆y = × ° ° = ×− − −17 10 134 28 5 6 49 106 1 2C  cm C  cme ja fa f. . .

The vector displacement of the pipe elbow has magnitude

∆ ∆ ∆r x y= + = + =2 2 2 20 136 0 649 0 663. . . mm  mm  mma f a f
and is directed to the right below the horizontal at angle

θ = F
HG
I
KJ =

F
HG

I
KJ = °

= °

− −tan tan
.

.

.

1 1 0 649
78 2

0 663

∆
∆

∆

y
x

r

 mm
0.136 mm

 mm to the right at 78.2  below the horizontal

FIG. P19.14
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P19.15 (a) L T L TAl Al Brass Brass1 1+ = +α α∆ ∆b g b g
∆

∆

∆

T
L L

L L

T

T T

=
−

−

=
−

× − ×

= − ° = − °

− −

Al Brass

Brass Brass Al Al

C so C.  This is attainable.

α α
10 01 10 00

10 00 19 0 10 10 01 24 0 10

199 179

6 6

. .

. . . .

a f
a fe j a fe j

(b) ∆T =
−

× − ×− −

10 02 10 00

10 00 19 0 10 10 02 24 0 106 6

. .

. . . .

a f
a fe j a fe j

∆T = − °396 C  so T = − °376 C which is below 0 K so it cannot be reached.

P19.16 (a) ∆ ∆A A Ti= 2α : ∆A = × ° °− −2 17 0 10 0 080 0 50 06 1 2. . .C  m Ce jb g a f
∆A = × =−1 09 10 0 1095. . m  cm2 2

(b) The length of each side of the hole has increased. Thus, this represents an increase  in the

area of the hole.

P19.17 ∆ ∆V V Ti= − = × − × =− −β α3 5 81 10 3 11 0 10 50 0 20 0 0 5484 6b g e je jb ga f. . . . . gal  gal

P19.18 (a) L L Ti= +1 α∆a f : 5 050 5 000 1 24 0 10 20 06 1. . . . cm  cm C C= + × ° − °− − Ta f
T = °437 C

(b) We must get L LAl Brass=  for some ∆T , or

L T L T

T T

i i, ,

. . . .

 Al Al  Brass Brass

 cm C  cm C

1 1

5 000 1 24 0 10 5 050 1 19 0 106 1 6 1

+ = +

+ × ° = + × °− − − −

α α∆ ∆

∆ ∆

b g b g
e j e j

Solving for ∆T , ∆T = °2 080 C ,

so T = °3 000 C

This will not work because aluminum melts at 660 C° .

P19.19 (a) V V Tf i= + = + × − =−1 100 1 1 50 10 15 0 99 84β∆b g a f. . .  mL

(b) ∆ ∆V V Tiacetone acetone
= βb g

∆ ∆ ∆V V T V Ti iflask Pyrex Pyrex
= =β αb g b g3

for same Vi , ∆T ,

∆
∆
V
V
acetone

flask

acetone

flask
= =

×

×
=

×

−

− −
β
β

1 50 10

3 3 20 10

1
6 40 10

4

6 2
.

. .e j
The volume change of flask is

about 6% of the change in the acetone’s volume .
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P19.20 (a),(b) The material would expand by ∆ ∆L L Ti=α ,

∆
∆

∆
∆

L
L

T

F
A

Y L
L

Y T

i

i

=

= = = × × ° °

= ×

− −

α

α

,  but instead feels stress

 N m C C

 N m .  This will not break  concrete.

2

2

7 00 10 12 0 10 30 0

2 52 10

9 6 1

6

. . .

.

e j a f a f

P19.21 (a) ∆ ∆ ∆ ∆V V T V T V Tt t t i= − = −

= × − × ° °− − −

β β β αAl Al Al

3C  cm C

3

9 00 10 0 720 10 2 000 60 04 4 1

b g
e j e ja f. . .

∆V = 99 4.  cm3  overflows.

(b) The whole new volume of turpentine is

2 000 9 00 10 2 000 60 0 2 1084 1 cm C  cm C  cm3 3 3+ × ° ° =− −. .e ja f

so the fraction lost is 
99 4
2 108

4 71 10 2.
.

 cm
 cm

3

3 = × −

and this fraction of the cylinder’s depth will be empty upon cooling:

4 71 10 20 0 0 9432. . .× =−  cm  cma f .

*P19.22 The volume of the sphere is

V rPb
3 cm  cm= = =

4
3

4
3

2 33 53 3π π a f . .

The amount of mercury overflowing is

overflow Hg Pb glass Hg Hg Pb Pb glass glass= + − = + −∆ ∆ ∆ ∆V V V V V V Tβ β βe j
where V V Vglass Hg Pb= +  is the initial volume. Then

overflow

1
C

 cm
1

C
 cm C  cm

Hg glass Hg Pb glass Pb Hg glass Hg Pb glass Pb

3 3 3

= − + − = − + −

= −
°

+ −
°

L
NM

O
QP ° =− −

β β β β β α α αe j e j e j e j
a f a f

V V T V V T∆ ∆3 3 3

182 27 10 118 87 27 10 33 5 40 0 8126 6 . .

P19.23 In 
F
A

Y L
Li

=
∆

 require ∆ ∆L L Ti=α

F
A

Y T

T
F

AY

T

=

= =
× × × °

= °

− −

α

α

∆

∆

∆

500

10 20 0 10 11 0 10

1 14

4 10 6

 N

2.00  m  N m C

C

2 2e je je j. .

.
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*P19.24 Model the wire as contracting according to ∆ ∆L L Ti=α  and then stretching according to

stress = = = =
F
A

Y
L

L
Y
L

L T Y T
i i

i
∆

∆ ∆α α .

(a) F YA T= = × × ×
°

°− −α∆ 20 10 4 10 4510 6 6 N m  m  11 10  
1

C
C = 396 N2 2e j

(b) ∆T
Y

= =
×

× × °
= °

−

stress  N m

 N m C
C

2

2α
3 10

20 10 11 10
136

8

10 6e j
To increase the stress the temperature must decrease to 35 136 101° − ° = − °C C C .

(c) The original length divides out, so the answers would not change.

*P19.25 The area of the chip decreases according to ∆ ∆A A T A Af i= = −γ 1

A A T A Tf i i= + = +1 1 2γ α∆ ∆b g a f
The star images are scattered uniformly, so the number N of stars that fit is proportional to the area.

Then N N Tf i= + = + × ° − ° − ° =− −1 2 5 342 1 2 4 68 10 100 20 5 3366 1α∆a f e ja f. C C C  star images .

Section 19.5 Macroscopic Description of an Ideal Gas

P19.26 (a) n
PV
RT

= =
× ×

⋅
=

−9 00 1 013 10 8 00 10

8 314 293
2

5 3. . .

.

 atm  Pa atm  m

 N mol K  K
.99 mol

3a fe je j
a fa f

(b) N nN= = × = ×A .99 mol  molecules mol  molecules2 6 02 10 1 80 1023 24a fe j. .

P19.27 (a) Initially, PV n RTi i i i= 1 00 10 0 273 15. . . atm  Ka f a fV n Ri i= +

Finally, P V n RTf f f f= P V n Rf i i0 280 40 0 273 15. . .b g a f= +  K

Dividing these equations,
0 280

1 00
313 15.

.
.Pf

 atm
 K

283.15 K
=

giving Pf = 3 95.  atm

or Pf = ×4 00 105.  Pa abs.a f .

(b) After being driven P V n Rd i i1 02 0 280 85 0 273 15. . . .a fb g a f= +  K

P Pd f= = ×1 121 4 49 105. .  Pa

P19.28 PV NP V r NP= ′ ′ = ′
4
3

3π : N
PV
r P

=
′
= =

3
4

3 150 0 100

4 0 150 1 20
8843 3π π

a fa f
a f a f

.

. .
 balloons

If we have no special means for squeezing the last 100 L of helium out of the tank, the tank will be
full of helium at 1.20 atm when the last balloon is inflated. The number of balloons is then reduced

to to 884
0 100 3

4 0 15
8773− =

.

.

 m

 m

3e j
a fπ

.
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P19.29 The equation of state of an ideal gas is PV nRT=  so we need to solve for the number of moles to find N.

n
PV
RT

N nNA

= =
×

⋅
= ×

= = × × = ×

1 01 10 10 0 20 0 30 0

8 314 293
2 49 10

2 49 10 6 022 10 1 50 10

5
5

5 23 29

. . . .

.
.

. . .

 N m  m  m  m

 J mol K  K
 mol

 mol  molecules mol  molecules

2e j a fa fa f
b ga f
e j

*P19.30 (a) PV n RT
m
M

RTi i i i
i

i= =

m
MPV

RTi
i i

i
= =

× × × ⋅

= ×

−4 00 10

3 8 314

1 06 10

3 3

21

.

.

.

 kg 1.013 10  N 4 6.37 10  m  mole K

mole m  Nm  50 K

 kg

5 6

2

π e j

(b)
P V

PV

n RT

n RT
f f

i i

f f

i i
=

2 1
1 06 10 8 00 10

50

100 56 9

21 20

⋅ =
× + ×

×

F
HG

I
KJ

= F
HG
I
KJ =

. .

.

 kg  kg
1.06 10  kg  K

 K
1

1.76
 K

21

T

T

f

f

P19.31 P
nRT

V
= =

F
HG

I
KJ
F
HG

I
KJ ×
F
HG

I
KJ = =−

9 00 8 314 773
1 61 15 93

. .
. .

 g
18.0 g mol

 J
mol K

 K
2.00 10  m

 MPa  atm3

P19.32 (a) T T
P
P2 1

2

1
300 3 900= = = K  Ka fa f

(b) T T
P V
P V2 1

2 2

1 1
300 2 2 1 200= = =a fa f  K

P19.33 Fy∑ = 0 : ρ ρout in  kggV gV g− − =200 0b g
ρ ρout in

3 m  kg− =b ge j400 200

The density of the air outside is 1 25.  kg m3 .

From PV nRT= ,
n
V

P
RT

=

The density is inversely proportional to the temperature, and the density
of the hot air is

ρ in
3

in
 kg m

 K
=

F
HG

I
KJ1 25

283
.e j T

Then 1 25 1
283

400 200.  kg m
 K

 m  kg3

in

3e j e j−
F
HG

I
KJ =

T

1
283

0 400− =
 K

inT
.

0 600
283

. =
 K

inT
Tin  K= 472

FIG. P19.33
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*P19.34 Consider the air in the tank during one discharge process. We suppose that the process is slow
enough that the temperature remains constant. Then as the pressure drops from 2.40 atm to
1.20 atm, the volume of the air doubles. During the first discharge, the air volume changes from 1 L
to 2 L. Just 1 L of water is expelled and 3 L remains. In the second discharge, the air volume changes
from 2 L to 4 L and 2 L of water is sprayed out. In the third discharge, only the last 1 L of water
comes out. Were it not for male pattern dumbness, each person could more efficiently use his device
by starting with the tank half full of water.

P19.35 (a) PV nRT=

n
PV
RT

= =
×

⋅
=

1 013 10 1 00

8 314 293
41 6

5. .

.
.

 Pa  m

 J mol K  K
 mol

3e je j
b ga f

(b) m nM= = =41 6 28 9 1 20. . . mol  g mol  kga fb g , in agreement with the tabulated density of

1 20.  kg m3  at 20.0°C.

*P19.36 The void volume is 0 765 0 765 0 765 1 27 10 0 2 7 75 102 2 2 5. . . . . .V rtotal
3 m  m  m= = × = ×− −π πA e j . Now for

the gas remaining PV nRT=

n
PV
RT

= =
× ×

+
= ×

−
−

12 5 1 013 10 7 75 10

8 314 273 25
3 96 10

5 5
2

. . .

.
.

 N m  m

 Nm mole K  K
 mol

2 3e j
b ga f

P19.37 (a) PV nRT= n
PV
RT

=

m nM
PVM
RT

m

= = =
× ×

⋅

= ×

−

−

1 013 10 28 9 10

8 314 300

1 17 10

5 3 3

3

. .

.

.

 Pa 0.100 m  kg mol

 J mol K  K

 kg

a f e j
b ga f

(b) F mgg = = × =−1 17 10 11 53. . kg 9.80 m s  mN2e j

(c) F PA= = × =1 013 10 0 100 1 015 2. . . N m  m  kN2e ja f

(d) The molecules must be moving very fast  to hit the walls hard.

P19.38 At depth, P P gh= +0 ρ and PV nRTi i=

At the surface, P V nRTf f0 = :
P V

P gh V

T

T
f

i

f

i

0

0 +
=

ρb g
Therefore V V

T

T
P gh

Pf i
f

i
=
F
HG
I
KJ

+F
HG

I
KJ

0

0

ρ

V

V

f

f

= F
HG

I
KJ

× +

×

F
H
GG

I
K
JJ

=

1 00
293 1 013 10 1 025 9 80 25 0

1 013 10

3 67

5

5.
. . .

.

.

 cm
 K

278 K

 Pa  kg m  m s  m

 Pa

 cm

3
3 2

3

e je ja f
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P19.39 PV nRT= :
m

m

n

n

P V

RT
RT
PV

P

P
f

i

f

i

f f

f

i

i i

f

i
= = =

so m m
P

Pf i
f

i
=
F
HG
I
KJ

∆m m m m
P P

Pi f i
i f

i
= − =

−F
HG

I
KJ =

−F
HG

I
KJ =12 0

26 0
4 39.

.
. kg

41.0 atm  atm
41.0 atm

 kg

P19.40 My bedroom is 4 m long, 4 m wide, and 2.4 m high, enclosing air at 100 kPa and 20 293° =C  K . Think
of the air as 80.0% N 2  and 20.0% O2.

Avogadro’s number of molecules has mass

0 800 28 0 0 200 32 0 0 028 8. . . . .a fb g a fb g g mol  g mol  kg mol+ =

Then PV nRT
m
M

RT= = FHG
I
KJ

gives m
PVM
RT

= =
×

⋅
=

1 00 10 38 4 0 028 8

8 314 293
45 4

5. . .

.
.

 N m  m  kg mol

 J mol K  K
 kg ~10  kg

2 3
2e je jb g

b ga f

*P19.41 The CO2 is far from liquefaction, so after it comes out of solution it behaves as an ideal gas. Its molar
mass is M = + =12 0 2 16 0 44 0. . . g mol  g mol  g molb g . The quantity of gas in the cylinder is

n
m

M
= = =

sample  g
44.0 g mol

 mol
6 50

0 148
.

.

Then PV nRT=

gives V
nRT

P
= =

⋅ +

×
⋅F

HG
I
KJ
F
HG
I
KJ =

0 148 273 20

1 013 10
1 10

3 555 2

3.

.
.

 mol 8.314 J mol K  K  K

 N m
 N m
1 J

 L
1 m

 L3

b ga f

P19.42 N
PVN

RT
A= =

×

⋅
= ×

−10 1 00 6 02 10

8 314 300
2 41 10

9 23
11

 Pa  m  molecules mol

 J K mol  K
 molecules

3e je je j
b ga f
. .

.
.

P19.43 P V n RT
m
M

RT0 1 1
1

1= = FHG
I
KJ

P V n RT
m
M

RT

m m
P VM

R T T

0 2 2
2

2

1 2
0

1 2

1 1

= = FHG
I
KJ

− = −
F
HG

I
KJ
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P19.44 (a) Initially the air in the bell satisfies P V nRTi0 bell =

or P A nRTi0 2 50.  ma f = (1)

When the bell is lowered, the air in the bell satisfies

P x A nRTfbell  m2 50. − =a f (2)

where x is the height the water rises in the bell. Also, the pressure in the bell, once it is
lowered, is equal to the sea water pressure at the depth of the water level in the bell.

P P g x P gbell  m  m= + − ≈ +0 082 3 82 3ρ ρ. .a f a f (3)

The approximation is good, as x < 2 50.  m. Substituting (3) into (2) and substituting nR from
(1) into (2),

P g x A P V
T

T
f

i
0 082 3 2 50+ − =ρ . . m  m bella f a f .

Using P0
51 1 013 10= = × atm  Pa.  and ρ = ×1 025 103.  kg m3

x
T

T
g

P

x

f= − +
F
HG

I
KJ

L
N
MM

O
Q
PP

= − +
×

×

F
H
GG

I
K
JJ

L

N
MMM

O

Q
PPP

=

−

−

2 50 1 1
82 3

2 50 1
277 15

1
1 025 10 9 80 82 3

1 013 10

2 24

0 0

1

3

5

1

.
.

.
. . . .

.

.

 m
 m

 m
 K

293.15 K

 kg m  m s  m

 N m

 m

3 2

2

a f a f

a f e je ja f

ρ

(b) If the water in the bell is to be expelled, the air pressure in the bell must be raised to the
water pressure at the bottom of the bell. That is,

P P g

P

bell

3 2

bell

 m

 Pa  kg m  m s  m

 Pa  atm

= +

= × + ×

= × =

0

5 3

5

82 3

1 013 10 1 025 10 9 80 82 3

9 28 10 9 16

ρ .

. . . .

. .

a f
e je ja f

Additional Problems

P19.45 The excess expansion of the brass is ∆ ∆ ∆L L L Tirod tape brass steel− = −α αb g
∆ ∆

∆ ∆

L

L

a f a f a f a fa f
a f

= − × ° °

= ×

− −

−

19 0 11 0 10 0 950 35 0

2 66 10

6 1

4

. . . .

.

 C  m C

 m

(a) The rod contracts more than tape to

a length reading 0 950 0 0 000 266 0 949 7. . . m  m  m− =

(b) 0 950 0 0 000 266 0 950 3. . . m  m  m+ =



Chapter 19     561

P19.46 At 0°C, 10.0 gallons of gasoline has mass,

from ρ =
m
V

m V= =
F
HG

I
KJ =ρ 730 10 0

0 003 80
1 00

27 7 kg m  gal
 m

 gal
 kg3

3

e jb g.
.

.
.

The gasoline will expand in volume by

∆ ∆V V Ti= = × ° ° − ° =− −β 9 60 10 10 0 20 0 0 0 0 1924 1. . . . .C  gal C C  galb ga f
At 20.0°C, 10 192 27 7. . gal  kg=

10 0 27 7 27 2. . . gal  kg
10.0 gal

10.192 gal
 kg=

F
HG

I
KJ =

The extra mass contained in 10.0 gallons at 0.0°C is

27 7 27 2 0 523. . . kg  kg  kg− = .

P19.47 Neglecting the expansion of the glass,

∆ ∆

∆

h
V
A

T

h

=

=
×

× ° ° =
−

− −

β

π

π

4
3

3

3 2
4 10 250

2 00 10
1 82 10 30 0 3 55

.

.
. . .

 cm 2

 cm
C C  cm

b g
e j

e ja f

FIG. P19.47

P19.48 (a) The volume of the liquid increases as ∆ ∆V V TiA = β . The volume of the flask increases as
∆ ∆V V Tg i= 3α . Therefore, the overflow in the capillary is V V Tc i= −∆ β α3b g ; and in the

capillary V A hc = ∆ .

Therefore, ∆ ∆h
V
A

Ti= −β α3b g .

(b) For a mercury thermometer β Hg Cb g = × °− −1 82 10 4 1.

and for glass, 3 3 3 20 10 6 1α = × × °− −. C

Thus β α β− ≈3

or α β<< .
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P19.49 The frequency played by the cold-walled flute is f
v v

Li
i i

= =
λ 2

.

When the instrument warms up

f
v v

L
v

L T
f

Tf
f f i

i= = =
+

=
+λ α α2 2 1 1∆ ∆a f .

The final frequency is lower. The change in frequency is

∆
∆

∆
∆
∆

∆

∆

f f f f
T

f
v
L

T
T

v
L

T

f

i f i

i i

= − = −
+

F
HG

I
KJ

=
+
F
HG

I
KJ ≈

≈
× ° °

=
−

1
1

1

2 1 2

343 24 0 10 15 0

2 0 655
0 094 3

6

α
α
α

αa f

b ge ja f
a f

 m s C C

 m
 Hz

. .

.
.

This change in frequency is imperceptibly small.

P19.50 (a)
P V
T

P V
T

0 =
′ ′
′

′ = +

′ = +

+FHG
I
KJ + =

′F
HG
I
KJ

× + ×

× +

= × × F
HG
I
KJ

+ − =

=
− ±

=

−

−

V V Ah

P P
kh
A

P
kh
A

V Ah P V
T
T

h

h

h h

h

0

0 0

5 5

3

5 3

2

1 013 10 2 00 10

5 00 10 0 010 0

1 013 10 5 00 10
523

2 000 2 013 397 0
2 013 2 689

4 000
0 169

a f

e j
e je j

e je j

. .

. .

. .

.

 N m  N m

 m  m

 N m  m
 K

293 K

 m

2 3

3 2

2 3

(b) ′ = + = × +
×

P P
kh
A

1 013 10
2 00 10 0 169

5
3

.
. .

 Pa
 N m

0.010 0 m2

e ja f

′ = ×P 1 35 105.  Pa

 

20°C 

250°C 
h 

k 

FIG. P19.50
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P19.51 (a) ρ =
m
V

 and d
m

V
dVρ = − 2

For very small changes in V and ρ, this can be expressed as

∆
∆

∆ρ ρβ= − = −
m
V

V
V

T .

The negative sign means that any increase in temperature causes the density to decrease
and vice versa.

(b) For water we have β
ρ

ρ
= =

−

° − °
= × °− −∆

∆T
1 000 0 0 999 7

1 000 0 10 0 4 0
5 10 5 1. .

. . .

 g cm  g cm

 g cm C C
C

3 3

3e ja f .

*P19.52 The astronauts exhale this much CO2:

n
m

M
= =

⋅

F
HG

I
KJ

F
HG

I
KJ =

sample  kg
astronaut day

 g
1 kg

 astronauts  days
 mol

44.0 g
 mol

1 09 1 000
3 7

1
520

. a fb g .

Then 520 mol of methane is generated. It is far from liquefaction and behaves as an ideal gas.

P
nRT

V
= =

⋅ −

×
= ×−

520 273 45

150 10
6 57 103

6 mol 8.314 J mol K  K  K

 m
 Pa3

b ga f
.

P19.53 (a) We assume that air at atmospheric pressure is above the
piston.

In equilibrium P
mg
A

Pgas = + 0

Therefore,
nRT
hA

mg
A

P= + 0

or h
nRT

mg P A
=

+ 0

where we have used V hA=  as the volume of the gas.

(b) From the data given,

h =
⋅

+ ×

=

0 200 400

20 0 1 013 10 0 008 00

0 661

5

.

. . .

.

 mol 8.314 J K mol  K

 kg 9.80 m s  N m  m

 m

2 2 2

b ga f
e j e je j

FIG. P19.53
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P19.54 The angle of bending θ, between tangents to the two ends of the strip, is
equal to the angle the strip subtends at its center of curvature. (The angles
are equal because their sides are perpendicular, right side to the right side
and left side to left side.)

(a) The definition of radian measure gives L L ri + =∆ 1 1θ

and L L ri + =∆ 2 2θ

By subtraction, ∆ ∆L L r r2 1 2 1− = −θb g
α α θ

θ
α α

2 1

2 1

L T L T r

L T
r

i i

i

∆ ∆ ∆

∆

∆

− =

=
−b g

FIG. P19.54

(b) In the expression from part (a), θ is directly proportional to ∆T  and also to α α2 1−b g.
Therefore θ is zero when either of these quantities becomes zero.

(c) The material that expands more when heated contracts more when cooled, so the bimetallic
strip bends the other way. It is fun to demonstrate this with liquid nitrogen.

(d) θ
α α

π

=
−

=
× − × ° °

= × = ×
°F

HG
I
KJ = °

− − −

− −

2
2

2 19 10 0 9 10 200 1

0 500

1 45 10 1 45 10 0 830

2 1
6 6 1

2 2

b g e je ja fa fL T
r

i∆

∆

.

.

. . .

C  mm C

 mm

 rad
180
 rad

P19.55 From the diagram we see that the change in area is

∆ ∆ ∆ ∆ ∆A w w w= + +A A A .

Since ∆A  and ∆w  are each small quantities, the product ∆ ∆w A  will
be very small. Therefore, we assume ∆ ∆w A ≈ 0.

Since ∆ ∆w w T= α and ∆ ∆A A= α T ,

we then have ∆ ∆ ∆A w T w T= +A Aα α

and since A w= A , ∆ ∆A A T= 2α .

FIG. P19.55

The approximation assumes ∆ ∆w A ≈ 0, or α∆T ≈ 0 . Another way of stating this is α∆T << 1 .
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P19.56 (a) T
L
gi

i= 2π so L
T g

i
i= = =
2

2

2

24

1 000 9 80

4
0 248 2

π π

. .
.

 s  m s
 m

2a f e j

∆ ∆

∆

∆

L L T

T
L L

g

T

i

f
i

= = × ° ° = ×

=
+

= =

= ×

− − −

−

α

π π

19 0 10 0 284 2 10 0 4 72 10

2 2
0 248 3

1 000 095 0

9 50 10

6 1 5

5

. . . .

.
.

.

C  m C  m

 m
9.80 m s

 s

 s

2

b ga f

(b) In one week, the time lost is time lost = × −1 10 5 week 9.50  s lost per seconde j

time lost = F
HG

I
KJ ×F
HG

I
KJ

−7 00
86 400

9 50 10 5. . d week
 s

1.00 d
 

s lost
s

b g

time lost = 57 5.  s lost

P19.57 I r dm= z 2 and since r T r T Tia f b ga f= +1 α∆

for α∆T << 1  we find
I T
I T

T
i

a f
b g a f= +1 2α∆

thus
I T I T

I T
Ti

i

a f b g
b g
−

≈ 2α∆

(a) With α = × °− −17 0 10 6 1. C  and ∆T = °100 C

we find for Cu:
∆I
I
= × ° ° =− −2 17 0 10 100 0 340%6 1. .C Ce ja f

(b) With α = × °− −24 0 10 6 1. C

and ∆T = °100 C

we find for Al:
∆I
I
= × ° ° =− −2 24 0 10 100 0 480%6 1. .C Ce ja f

P19.58 (a) B gV= ′ρ ′ = +P P gd0 ρ ′ ′ =P V P Vi0

B
gP V
P

gP V
P gd

i i=
′

=
+

ρ ρ
ρ

0 0

0b g

(b) Since d is in the denominator, B must decrease  as the depth increases.

(The volume of the balloon becomes smaller with increasing pressure.)

(c)
1
2 0

0 0

0 0

0

0
= =

+
=

+
B d
B

gP V P gd

gP V P
P

P gd
i

i

a f
a f

b gρ ρ
ρ ρ

P gd P

d
P
g

0 0

0
5

3

2

1 013 10

1 00 10 9 80
10 3

+ =

= =
×

×
=

ρ

ρ
.

. .
.

 N m

 kg m  m s
 m

2

3 2e je j
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*P19.59 The effective coefficient is defined by ∆ ∆L L Ttotal effective total=α  where ∆ ∆ ∆L L Ltotal Cu Pb= +  and
L L L xL x Ltotal Cu Pb total total= + = + −1a f . Then by substitution

α α α

α α α

α α α α

Cu Cu Pb Pb eff Cu Pb

Cu Pb eff

Cu Pb eff Pb

 1 C  1 C
 1 C  1 C

L T L T L L T

x x

x

x

∆ ∆ ∆+ = +

+ − =

− = −

=
× ° − × °

× ° − × °
= =

− −

− −

b g
a f

b g
1

20 10 29 10
17 10 29 10

9
12

0 750
6 6

6 6 .

*P19.60 (a) No torque acts on the disk so its angular momentum is constant. Its moment of inertia
decreases as it contracts so its angular speed must increase .

(b) I I MR MR M R R T MR Ti i f f i i f f i i f i fω ω ω ω α ω α ω= = = = + = −
1
2

1
2

1
2

1
2

12 2 2 2 2
∆ ∆

ω ω αf i T= − =
− × ° °

= =
−

−
1

25 0

1 17 10 830

25 0
0 972

25 7
2

6 2∆
. .

.
.

 rad s

 1 C C

 rad s
 rad s

e je j
P19.61 After expansion, the length of one of the spans is

L L Tf i= + = + × ° ° =− −1 125 1 12 10 20 0 125 036 1α∆a f a f m C C  m. . .

L f , y, and the original 125 m length of this span form a right triangle with y as the altitude. Using the

Pythagorean theorem gives:

125 03 1252 2 2.  m  ma f a f= +y

yielding y = 2 74.  m .

P19.62 After expansion, the length of one of the spans is L L Tf = +1 α∆a f . L f , y, and the original length L of

this span form a right triangle with y as the altitude. Using the Pythagorean theorem gives

L L yf
2 2 2= + , or y L L L T L T Tf= − = + − = +2 2 2 21 1 2α α α∆ ∆ ∆a f a f

Since α∆T << 1 , y L T≈ 2α∆ .

P19.63 (a) Let m represent the sample mass. The number of moles is n
m
M

=  and the density is ρ =
m
V

.

So PV nRT=  becomes PV
m
M

RT=  or PM
m
V

RT= .

Then, ρ = =
m
V

PM
RT

.

(b) ρ = =
×

⋅
=

PM
RT

1 013 10 0 032 0

8 314 293
1 33

5. .

.
.

 N m  kg mol

 J mol K  K
 kg m

2
3e jb g

b ga f
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P19.64 (a) From PV nRT= , the volume is: V
nR
P

T= FHG
I
KJ

Therefore, when pressure is held constant,
dV
dT

nR
P

V
T

= =

Thus, β ≡ FHG
I
KJ = FHG

I
KJ ′

1 1
V

dV
dT V

V
T

, or β =
1
T

(b) At T = ° =0 273C  K , this predicts β = = × − −1
273

3 66 10 3 1

 K
 K.

Experimental values are: βHe  K= × − −3 665 10 3 1.  and β air  K= × − −3 67 10 3 1.

They agree within 0.06% and 0.2%, respectively.

P19.65 For each gas alone, P
N kT

V1
1=  and P

N kT
V2
2=  and P

N kT
V3
3= , etc.

For all gases

P V P V P V N N N kT

N N N kT PV
1 1 2 2 3 3 1 2 3

1 2 3

+ + = + +

+ + =

… …

…
b g

b g
 and

Also, V V V V1 2 3= = = =… , therefore P P P P= + +1 2 3… .

P19.66 (a) Using the Periodic Table, we find the molecular masses of the air components to be

M N  u2b g = 28 01. , M O  u2b g = 32 00. , M Ar  ua f = 39 95.

and M CO  u2b g = 44 01. .

Thus, the number of moles of each gas in the sample is

n

n

n

n O

N
 g

28.01 g mol
 mol

O
32.00 g mol

 mol

Ar
.28 g

39.95 g mol
 mol

C
.05 g

44.01 g mol
 mol

2

2

2

b g

b g

a f

b g

= =

= =

= =

= =

75 52
2 696

23.15 g
0 723 4

1
0 032 0

0
0 001 1

.
.

.

.

.

The total number of moles is n ni0 3 453= =∑ .  mol . Then, the partial pressure of N 2  is

P N
 mol

3.453 mol
 Pa  kPa2b g e j= × =

2 696
1 013 10 79 15.
. . .

Similarly,

P O  kPa2b g = 21 2. P Ar  Paa f = 940 P CO  Pa2b g = 33 3.

continued on next page
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(b) Solving the ideal gas law equation for V and using T = + =273 15 15 00 288 15. . .  K , we find

V
n RT

P
= =

⋅

×
= × −0

5
23 453 8 314 288 15

1 013 10
8 166 10

. . .

.
.

 mol  J mol K  K

 Pa
 m3a fb ga f

.

Then, ρ = =
×

×
=

−

−
m
V

100 10
1 22

3

2

 kg
8.166 10  m

 kg m3
3. .

(c) The 100 g sample must have an appropriate molar mass to yield n0  moles of gas: that is

M air
 g

3.453 mol
 g mola f = =

100
29 0. .

*P19.67 Consider a spherical steel shell of inner radius r and much smaller thickness t, containing helium at
pressure P. When it contains so much helium that it is on the point of bursting into two
hemispheres, we have P r rtπ π2 85 10 2= ×  N m2e j . The mass of the steel is

ρ ρ π ρ πs s s  Pa
V r t r= =4 4

10
2 2

9
Pr

. For the helium in the tank, PV nRT=  becomes

P r nRT
m
M

RT V
4
3

13π = = =He

He
balloon atm .

The buoyant force on the balloon is the weight of the air it displaces, which is described by

1
4
3

3 atm balloon
air

air
V

m
M

RT P r= = π . The net upward force on the balloon with the steel tank hanging

from it is

+ − − = − −m g m g m g
M P r g

RT
M P r g

RT
P r g

air He s
air He s

 Pa
4

3
4

3
4

10

3 3 3

9

π π ρ π

The balloon will or will not lift the tank depending on whether this quantity is positive or negative,

which depends on the sign of 
M M

RT
air He s

 Pa

−
−

b g
3 109

ρ
. At 20°C this quantity is

=
− ×

⋅
−

= × − ×

−

− −

28 9 4 00 10
3 8 314 293

7 860
10

3 41 10 7 86 10

3

9

6 6

. .
.

. .

a f
b g

 kg mol
 J mol K  K

 kg m
 N m

 s m  s m

3

2

2 2 2 2

where we have used the density of iron. The net force on the balloon is downward so the helium
balloon is not able to lift  its tank.
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P19.68 With piston alone: T = constant, so PV P V= 0 0

or P Ah P Ahib g b g= 0 0

With A = constant, P P
h
hi

=
F
HG
I
KJ0

0

But, P P
m g

A
p

= +0

where mp  is the mass of the piston.

Thus, P
m g

A
P

h
h

p

i
0 0

0+ =
F
HG
I
KJ

FIG. P19.68

which reduces to h
h

i m g
P A

p
=

+
=

+
=

×

0
20 0

1.013 10
1

50 0
49 81

0 5 2

.
.

.

 cm

1
 cm

 kg 9.80 m s

 Pa 0.400 m

2e j
a fπ

With the man of mass M on the piston, a very similar calculation (replacing mp  by m Mp + ) gives:

′ =
+

=
+

=
+

×

h
h
m M g

P A
p

0

1.013 10
1

50 0
49 10

0 5 2

e j e j
a f

.
.

 cm

1
 cm

95.0 kg 9.80 m s

 Pa 0.400 m

2

π

Thus, when the man steps on the piston, it moves downward by

∆h h hi= − ′ = − = =49 81 49 10 0 706 7 06. . . . cm  cm  cm  mm .

(b) P = const, so
V
T

V
Ti

=
′

or
Ah
T

Ah
T

i

i
=

′

giving T T
h
hi

i=
′
F
HG
I
KJ =

F
HG
I
KJ =293 297 K

49.81
49.10

 K (or 24°C)

P19.69 (a)
dL
L

dT=α : α α αdT
dL
L

L

L
T L L e

T

T

L

L
f

i
f i

T

i

i

i

iz z= ⇒
F
HG
I
KJ = ⇒ =ln ∆ ∆

(b) L ef = =
× ° °− −

1 00 1 002 002
2 00 10 1005 1

. .
.

 m  m
C Ca f a f

′ = + × ° ° =− −L f 1 00 1 2 00 10 100 1 002 0005 1. . . m C C  ma f :
L L

L
f f

f

− ′
= × = ×− −2 00 10 2 00 106 4. . %

L ef = =
× ° °− −

1 00 7 389
2 00 10 1002 1

. .
.

 m  m
C Ca f a f

′ = + ° ° =−L f 1 00 1 0 020 0 100 3 0001. . . m C C  ma f :
L L

L
f f

f

− ′
= 59 4%.
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P19.70 At 20.0°C, the unstretched lengths of the steel and copper wires are

L

L

s

c

20 0 2 000 1 11 0 10 20 0 1 999 56

20 0 2 000 1 17 0 10 20 0 1 999 32

6 1

6 1

. . . . .

. . . . .

° = + × ° − ° =

° = + × ° − ° =

− −

− −

C  m C C  m

C  m C C  m

a f a f a f a f
a f a f a f a f

Under a tension F, the length of the steel and copper wires are

′ = +LNM
O
QPL L

F
YAs s

s
1 ′ = +LNM

O
QPL L

F
YAc c

c
1 where ′ + ′ =L Ls c 4 000.  m.

Since the tension, F, must be the same in each wire, solve for F:

F
L L L Ls c s c

L
Y A

L
Y A

s

s s

c

c c

=
′ + ′ − +

+

b g b g
.

When the wires are stretched, their areas become

A

A

s

c

= × + × − = ×

= × + × − = ×

− − −

− − −

π

π

1 000 10 1 11 0 10 20 0 3 140 10

1 000 10 1 17 0 10 20 0 3 139 10

3 2 6 2 6

3 2 6 2 6

. . . .

. . . .

 m  m

 m  m

2

2

e j e ja f

e j e ja f

Recall Ys = ×20 0 1010.  Pa  and Yc = ×11 0 1010.  Pa . Substituting into the equation for F, we obtain

F

F

=
− +

× × + × ×

=

− −

4 000 1 999 56 1 999 32

1 999 56 20 0 10 3 140 10 1 999 32 11 0 10 3 139 10

125

10 6 10 6

. . .

. . . . . .

 m  m  m

 m  Pa  m  m  Pa  m

 N

2 2

b g
e je j e je j

To find the x-coordinate of the junction,

′ = +
× ×

L

N
MM

O

Q
PP =−

Ls 1 999 56 1
125

3 140 10
1 999 958

6
.

.
. m

 N

20.0 10  N m  m
 m

10 2 2b g
e je j

Thus the x-coordinate is − + = − × −2 000 1 999 958 4 20 10 5. . .  m .
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P19.71 (a) µ π ρ π= = × × = ×− −r 2 4 2 3 35 00 10 7 86 10 6 17 10. . . m  kg m  kg m3e j e j

(b) f
v
L1 2

=  and v
T

=
µ

 so f
L

T
1

1
2

=
µ

Therefore, T Lf= = × × × =−µ 2 6 17 10 2 0 800 200 6321
2 3 2b g e ja f. .  N

(c) First find the unstressed length of the string at 0°C:

L L
T

AY
L

L
T AY

A Y

= +FHG
I
KJ =

+

= × = × = ×− −

natural natural

2

 so 

 m  m  and  Pa

1
1

5 00 10 7 854 10 20 0 104 2 7 10π . . .e j

Therefore, 
T

AY
=

× ×
= ×

−
−632

7 854 10 20 0 10
4 02 10

7 10
3

. .
.

e je j
, and

Lnatural
 m

 m=
+ ×

=
−

0 800

1 4 02 10
0 796 8

3

.

.
.

a f
e j

.

The unstressed length at 30.0°C is L L30 1 30 0 0 0° = + ° − °C natural C Cα . .a f ,
or L30

60 796 8 1 11 0 10 30 0 0 797 06°
−= + × =C  m  m. . . .b g e ja f .

Since L L
T
AY

= +
′L

NM
O
QP°30 1C , where ′T  is the tension in the string at 30.0°C,

′ = −
L
NM

O
QP
= × × −

L
NM

O
QP
=

°

−T AY
L

L30

7 101 7 854 10 20 0 10
0 800

0 797 06
1 580

C
 N. .

.
.e je j .

To find the frequency at 30.0°C, realize that

′
=

′f
f

T
T

1

1
 so ′ = =f1 200

580
192 Hz

 N
632 N

 Hza f .

*P19.72 Some gas will pass through the porous plug from the reaction chamber 1 to the reservoir 2 as the
reaction chamber is heated, but the net quantity of gas stays constant according to

n n n ni i f f1 2 1 2+ = + .

Assuming the gas is ideal, we apply n
PV
RT

=  to each term:

PV
R

P V
R

P V

R

P V

R
i i f f0 0 0 0

300
4

300 673

4

300 K  K  K  Ka f
b g
a f a f

b g
a f+ = +

1
5

300
1

673
4

300
 atm

 K  K  K
F
HG
I
KJ = +F
HG

I
KJPf Pf = 1 12.  atm
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P19.73 Let 2θ  represent the angle the curved rail subtends. We have

L L R L Ti i+ = = +∆ ∆2 1θ αa f

and sinθ = =
L

i
i

R
L
R

2

2

Thus, θ α α θ= + = +
L
R

T Ti

2
1 1∆ ∆a f a fsin FIG. P19.73

and we must solve the transcendental equation θ α θ θ= + =1 1 000 005 5∆Ta f b gsin . sin

Homing in on the non-zero solution gives, to four digits, θ = = °0 018 16 1 040 5. . rad

Now, h R R
Li= − =

−
cos

cos
sin

θ
θ

θ
1
2
a f

This yields h = 4 54.  m , a remarkably large value compared to ∆L = 5 50.  cm .

*P19.74 (a) Let xL represent the distance of the stationary line below the
top edge of the plate. The normal force on the lower part of the
plate is mg x1−a fcosθ  and the force of kinetic friction on it is
µ θkmg x1−a fcos  up the roof. Again, µ θkmgx cos  acts down the
roof on the upper part of the plate. The near-equilibrium of the
plate requires Fx =∑ 0

− + − − =
− = −

= −

= −

µ θ µ θ θ
µ θ θ µ θ
µ µ θ

θ
µ

k k

k k

k k

k

mgx mg x mg
mgx mg mg

x

x

cos cos sin
cos sin cos

tan
tan

1 0
2

2
1
2 2

a f

motion

fkt

fkbxL

temperature rising

FIG. P19.74(a)

and the stationary line is indeed below the top edge by xL
L

k
= −
F
HG

I
KJ2

1
tanθ
µ

.

(b) With the temperature falling, the plate contracts faster than the
roof. The upper part slides down and feels an upward frictional
force µ θkmg x1−a fcos . The lower part slides up and feels
downward frictional force µ θkmgx cos . The equation Fx =∑ 0
is then the same as in part (a) and the stationary line is above

the bottom edge by xL
L

k
= −
F
HG

I
KJ2

1
tanθ
µ

.

motion

fkt

fkbxL
temperature falling

FIG. P19.74(b)

(c) Start thinking about the plate at dawn, as the temperature
starts to rise. As in part (a), a line at distance xL below the top
edge of the plate stays stationary relative to the roof as long as
the temperature rises. The point P on the plate at distance xL
above the bottom edge is destined to become the fixed point
when the temperature starts falling. As the temperature rises,
this point moves down the roof because of the expansion of the
central part of the plate. Its displacement for the day is

xL

xL

P

FIG. P19.74(c)

continued on next page
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∆ ∆L L xL xL T

L
L

T T

L
T T

k
h c

k
h c

= − − −

= − − −
F
HG

I
KJ

L
NMM

O
QPP

−

= −
F
HG

I
KJ −

α α

α α
θ

µ

α α
θ

µ

2 1

2 1

2 1

2
2

1

b ga f

b g b g

b g b g

tan

tan
.

At dawn the next day the point P is farther down the roof by the distance ∆L . It represents
the displacement of every other point on the plate.

(d) α α
θ

µ2 1
6 624 10

1
15 10

1 1 20 18 5
0 42

32 0 275−
F
HG

I
KJ − = ×

°
− ×

°
F
HG

I
KJ

°
° =− −b g b gL

T T
k

h c
tan . tan .

.
.

C C
 m

C  mm

(e) If α α2 1< , the diagram in part (a) applies to temperature falling and the diagram in part (b)
applies to temperature rising. The weight of the plate still pulls it step by step down the
roof. The same expression describes how far it moves each day.

ANSWERS TO EVEN PROBLEMS

P19.2 (a) 1 06.  atm; (b) − °124 C P19.32 (a) 900 K; (b) 1 200 K

P19.4 (a) 37 0 310. ° =C  K ; (b) − ° =20 6 253. C  K P19.34 see the solution

P19.36 3 96 10 2. × −  molP19.6 T TC = ° ° + °1 33 20 0. . C S CSb g
P19.38 3 67.  cm3

P19.8 0.313 m

P19.40 between 10  kg1  and 10  kg2
P19.10 1.20 cm

P19.42 2 41 1011. ×  moleculesP19.12 15 8. µm

P19.44 (a) 2.24 m; (b) 9 28 105. ×  PaP19.14 0.663 mm to the right at 78.2°  below the
horizontal

P19.46 0.523 kg

P19.16 (a) 0 109.  cm2 ; (b) increase
P19.48 (a) see the solution; (b) α β<<

P19.18 (a) 437°C ; (b) 3 000°C ; no
P19.50 (a) 0.169 m; (b) 1 35 105. ×  Pa

P19.20 (a) 2 52 106. ×  N m2 ; (b) no P19.52 6 57.  MPa

P19.22 0 812.  cm3

P19.54 (a) θ
α α

=
−2 1b gL T

r
i∆

∆
; (b) see the solution;

P19.24 (a) 396 N; (b) − °101 C ; (c) no change (c) it bends the other way; (d) 0 830. °

P19.26 (a) 2.99 mol ; (b) 1 80 1024. ×  molecules P19.56 (a) increase by 95 0.  sµ ; (b) loses 57.5 s

P19.28 884 balloons P19.58 (a) B gP V P gdi= +
−ρ ρ0 0

1b g  up; (b) decrease;
(c) 10.3 m

P19.30 (a) 1 06 1021. ×  kg ; (b) 56 9.  K
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P19.60 (a) yes; see the solution; (b) 25 7.  rad s P19.68 (a) 7.06 mm; (b) 297 K

P19.62 y L T≈ 2 1 2α∆a f P19.70 125 N ; −42 0. µm

P19.72 1 12.  atmP19.64 (a) see the solution;
(b) 3 66 10 3 1. × − − K , within 0.06% and 0.2%
of the experimental values P19.74 (a), (b), (c) see the solution; (d) 0 275.  mm;

(e) see the solution
P19.66 (a) 79 1.  kPa  for N 2 ; 21 2.  kPa  for O2;

940 Pa for Ar; 33 3.  Pa  for CO2;
(b) 81.7 L; 1 22.  kg m3 ; (c) 29 0.  g mol
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Thermodynamics

ANSWERS TO QUESTIONS

Q20.1 Temperature is a measure of molecular motion. Heat is energy
in the process of being transferred between objects by random
molecular collisions. Internal energy is an object’s energy of
random molecular motion and molecular interaction.

Q20.2 The ∆T  is twice as great in the ethyl alcohol.

Q20.3 The final equilibrium temperature will show no significant
increase over the initial temperature of the water.

Q20.4 Some water may boil away. You would have to very precisely
measure how much, and very quickly measure the
temperature of the steam; it is not necessarily 100°C.

Q20.5 The fingers are wetted to create a layer of steam between the fingers and the molten lead. The steam
acts as an insulator and can prevent or delay serious burns. The molten lead demonstration is
dangerous, and we do not recommend it.

Q20.6 Heat is energy being transferred, not energy contained in an object. Further, a large-mass object, or
an object made of a material with high specific heat, can contain more internal energy than a higher-
temperature object.

Q20.7 There are three properties to consider here: thermal conductivity, specific heat, and mass. With dry
aluminum, the thermal conductivity of aluminum is much greater than that of (dry) skin. This
means that the internal energy in the aluminum can more readily be transferred to the atmosphere
than to your fingers. In essence, your skin acts as a thermal insulator to some degree (pun intended).
If the aluminum is wet, it can wet the outer layer of your skin to make it into a good conductor of
heat; then more internal energy from the aluminum can get into you. Further, the water itself, with
additional mass and with a relatively large specific heat compared to aluminum, can be a significant
source of extra energy to burn you. In practical terms, when you let go of a hot, dry piece of
aluminum foil, the heat transfer immediately ends. When you let go of a hot and wet piece of
aluminum foil, the hot water sticks to your skin, continuing the heat transfer, and resulting in more
energy transfer to you!

Q20.8 Write 1 000 1 1 3 1 000 1 kg 4 186 J kg C C  kg m  J kg C C3⋅° ° = ⋅° °b ga f e jb ga fV .  to find V = ×3 2 103 3.  m .

575
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Q20.9 The large amount of energy stored in concrete during the day as the sun falls on it is released at
night, resulting in an higher average evening temperature than the countryside. The cool air in the
surrounding countryside exerts a buoyant force on the warmer air in the city, pushing it upward
and moving into the city in the process. Thus, evening breezes tend to blow from country to city.

Q20.10 If the system is isolated, no energy enters or leaves the system by heat, work, or other transfer
processes. Within the system energy can change from one form to another, but since energy is
conserved these transformations cannot affect the total amount of energy. The total energy is
constant.

Q20.11 (a) and (b) both increase by minuscule amounts.

Q20.12 The steam locomotive engine is a perfect example of turning internal energy into mechanical
energy. Liquid water is heated past the point of vaporization. Through a controlled mechanical
process, the expanding water vapor is allowed to push a piston. The translational kinetic energy of
the piston is usually turned into rotational kinetic energy of the drive wheel.

Q20.13 Yes. If you know the different specific heats of zinc and copper, you can determine the fraction of
each by heating a known mass of pennies to a specific initial temperature, say 100°C, and dumping
them into a known quantity of water, at say 20°C . The final temperature T will reveal the metal
content:

m xc x c T m c Tpennies Cu Zn H O H OC C
2 2

+ − ° − = − °1 100 20a f a f a f.

Since all quantities are known, except x, the fraction of the penny that is copper will be found by
putting in the experimental numbers mpennies , mH O2

, T finala f , cZn, and cCu.

Q20.14 The materials used to make the support structure of the roof have a higher thermal conductivity
than the insulated spaces in between. The heat from the barn conducts through the rafters and melts
the snow.

Q20.15 The tile is a better thermal conductor than carpet. Thus, energy is conducted away from your feet
more rapidly by the tile than by the carpeted floor.

Q20.16 The question refers to baking in a conventional oven, not to microwaving. The metal has much
higher thermal conductivity than the potato. The metal quickly conducts energy from the hot oven
into the center of potato.

Q20.17 Copper has a higher thermal conductivity than the wood. Heat from the flame is conducted through
the copper away from the paper, so that the paper need not reach its kindling temperature. The
wood does not conduct the heat away from the paper as readily as the copper, so the energy in the
paper can increase enough to make it ignite.

Q20.18 In winter the interior of the house is warmer than the air outside. On a summer day we want the
interior to stay cooler than the exterior. Heavy draperies over the windows can slow down energy
transfer by conduction, by convection, and by radiation, to make it easier to maintain the desired
difference in temperature.

Q20.19 You must allow time for the flow of energy into the center of the piece of meat. To avoid burning the
outside, the meat should be relatively far from the flame. If the outer layer does char, the carbon will
slow subsequent energy flow to the interior.
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Q20.20 At night, the Styrofoam beads would decrease the overall thermal conductivity of the windows, and
thus decrease the amount of heat conducted from inside to outside. The air pockets in the Styrofoam
are an efficient insulator. During the winter day, the influx of sunlight coming through the window
warms the living space.

An interesting aside—the majority of the energy that goes into warming a home from
sunlight through a window is not the infrared light given off by the sun. Glass is a relatively good
insulator of infrared. If not, the window on your cooking oven might as well be just an open hole!
Glass is opaque to a large portion of the ultraviolet range. The glass molecules absorb ultraviolet
light from the sun and re-emit the energy in the infrared region. It is this re-emitted infrared
radiation that contributes to warming your home, along with visible light.

Q20.21 In winter the produce is protected from freezing. The heat capacity of the earth is so high that soil
freezes only to a depth of a few decimeters in temperate regions. Throughout the year the
temperature will stay nearly constant all day and night. Factors to be considered are the insulating
properties of soil, the absence of a path for energy to be radiated away from or to the vegetables, and
the hindrance to the formation of convection currents in the small, enclosed space.

Q20.22 The high mass and specific heat of the barrel of water and its high heat of fusion mean that a large
amount of energy would have to leak out of the cellar before the water and the produce froze solid.
Evaporation of the water keeps the relative humidity high to protect foodstuffs from drying out.

Q20.23 The sunlight hitting the peaks warms the air immediately around them. This air, which is slightly
warmer and less dense than the surrounding air, rises, as it is buoyed up by cooler air from the
valley below. The air from the valley flows up toward the sunny peaks, creating the morning breeze.

Q20.24 Sunlight hits the earth and warms the air immediately above it. This warm, less-dense air rises,
creating an up-draft. Many raptors, like eagles, hawks and falcons use updrafts to aid in hunting.
These birds can often be seen flying without flapping their wings—just sitting in an updraft with
wings extended.

Q20.25 The bit of water immediately over the flame warms up and expands. It is buoyed up and rises
through the rest of the water. Colder, more dense water flows in to take its place. Convection
currents are set up. This effectively warms the bulk of the water all at once, much more rapidly than
it would be by heat being conducted through the water from the flame.

Q20.26 The porcelain of the teacup is a thermal insulator. That is, it is a thermal conductor of relatively low
conductivity. When you wrap your hands around a cup of hot tea, you make A large and L small in

the equation P =
−

kA
T T
L

h c  for the rate of energy transfer by heat from tea into you. When you hold

the cup by the handle, you make the rate of energy transfer much smaller by reducing A and
increasing L. The air around the cup handle will also reduce the temperature where you are
touching it. A paper cup can be fitted into a tubular jacket of corrugated cardboard, with the
channels running vertically, for remarkably effective insulation, according to the same principles.

Q20.27 As described in the answer to question 20.25, convection currents in the water serve to bring more of
the heat into the water from the paper cup than the specific heats and thermal conductivities of
paper and water would suggest. Since the boiling point of water is far lower than the kindling
temperature of the cup, the extra energy goes into boiling the water.

Q20.28 Keep them dry. The air pockets in the pad conduct energy by heat, but only slowly. Wet pads would
absorb some energy in warming up themselves, but the pot would still be hot and the water would
quickly conduct and convect a lot of energy right into you.
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Q20.29 The person should add the cream immediately when the coffee is poured. Then the smaller
temperature difference between coffee and environment will reduce the rate of energy loss during
the several minutes.

Q20.30 The cup without the spoon will be warmer. Heat is conducted from the coffee up through the metal.
The energy then radiates and convects into the atmosphere.

Q20.31 Convection. The bridge deck loses energy rapidly to the air both above it and below it.

Q20.32 The marshmallow has very small mass compared to the saliva in the teacher’s mouth and the
surrounding tissues. Mostly air and sugar, the marshmallow also has a low specific heat compared to
living matter. Then the marshmallow can zoom up through a large temperature change while
causing only a small temperature drop of the teacher’s mouth. The marshmallow is a foam with
closed cells and it carries very little liquid nitrogen into the mouth. The liquid nitrogen still on the
marshmallow comes in contact with the much hotter saliva and immediately boils into cold gaseous
nitrogen. This nitrogen gas has very low thermal conductivity. It creates an insulating thermal
barrier between the marshmallow and the teacher’s mouth (the Leydenfrost effect). A similar effect
can be seen when water droplets are put on a hot skillet. Each one dances around as it slowly
shrinks, because it is levitated on a thin film of steam. The most extreme demonstration of this effect
is pouring liquid nitrogen into one’s mouth and blowing out a plume of nitrogen gas. We strongly
recommended that you read of Jearl Walker’s adventures with this demonstration rather than trying
it.

Q20.33 (a) Warm a pot of coffee on a hot stove.

(b) Place an ice cube at 0°C  in warm water—the ice will absorb energy while melting, but not
increase in temperature.

(c) Let a high-pressure gas at room temperature slowly expand by pushing on a piston. Work
comes out of the gas in a constant-temperature expansion as the same quantity of heat flows
in from the surroundings.

(d) Warm your hands by rubbing them together. Heat your tepid coffee in a microwave oven.
Energy input by work, by electromagnetic radiation, or by other means, can all alike
produce a temperature increase.

(e) Davy’s experiment is an example of this process.

(f) This is not necessarily true. Consider some supercooled liquid water, unstable but with
temperature below 0°C . Drop in a snowflake or a grain of dust to trigger its freezing into
ice, and the loss of internal energy measured by its latent heat of fusion can actually push its
temperature up.

Q20.34 Heat is conducted from the warm oil to the pipe that carries it. That heat is then conducted to the
cooling fins and up through the solid material of the fins. The energy then radiates off in all
directions and is efficiently carried away by convection into the air. The ground below is left frozen.
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SOLUTIONS TO PROBLEMS

Section 20.1 Heat and Internal Energy

P20.1 Taking m = 1 00.  kg , we have

∆U mghg = = =1 00 9 80 50 0 490. . . kg  m s  m  J2b ge ja f .

But ∆ ∆ ∆U Q mc T Tg = = = ⋅° =1 00 4 186 490.  kg  J kg C  Jb gb g  so ∆T = °0 117. C

T T Tf i= + = + °∆ 10 0 0 117. .a f C

P20.2 The container is thermally insulated, so no energy flows by heat:

Q = 0
and ∆E Q W W mghint = + = + =input input0 2

The work on the falling weights is equal to the work done on the
water in the container by the rotating blades. This work results in
an increase in internal energy of the water:

2mgh E m c T= =∆ ∆int water

∆T
mgh

m c
= =

×

⋅°
=

°

= °

2 2 1 50 9 80 3 00

0 200 4 186
88 2

0 105

water

2 kg  m s  m

 kg  J kg C
 J

837 J C

C

. . .

.
.

.

e ja f
b g

FIG. P20.2

Section 20.2 Specific Heat and Calorimetry

P20.3 ∆ ∆Q mc T= silver

1 23 0 525 10 0

0 234

. . .

.

 kJ  kg C

 kJ kg C

silver

silver

= °

= ⋅°

b g a fc

c

P20.4 From Q mc T= ∆

we find ∆T
Q
mc

= =
⋅°

= °
1 200

62 0
 J

0.050 0 kg 387 J kg C
Cb g .

Thus, the final temperature is 87 0. °C .

*P20.5 We imagine the stone energy reservoir has a large area in contact with air and is always at nearly the
same temperature as the air. Its overnight loss of energy is described by

P

P

= =

= =
−

⋅° ° − °
=

× ⋅ ⋅°
°

= ×

Q
t

mc T
t

m
t

c T

∆
∆
∆

∆
∆

6 000 14 3 600

850 18 38
3 02 10

1 78 10
8

4 J s  h  s h

 J kg C C C
 J kg C

850 J 20 C
 kg

b ga fb g
b ga f a f

.
.
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*P20.6 The laser energy output:

P∆t = × × = ×−1 60 10 4 00 1013 9 4. . J s 2.50 10  s  Je j .

The teakettle input:

Q mc T= = ⋅° ° = ×∆ 0 800 2 68 105. . kg 4 186 J kg C 80 C  Jb g .

This is larger by 6.70 times.

P20.7 Q Qcold hot= −

mc T mc T

T T

T

f f

f

∆ ∆a f a f
b gd i b gb gd i
water iron

 kg  J kg C C  kg  J kg C C

C

= −

⋅° − ° = − ⋅° − °

= °

20 0 4 186 25 0 1 50 448 600

29 6

. . .

.

P20.8 Let us find the energy transferred in one minute.

Q m c m c T

Q

= +

= ⋅° + ⋅° − ° = −

cup cup water water

 kg  J kg C  kg  J kg C C  J

∆

0 200 900 0 800 4 186 1 50 5 290. . .b gb g b gb g a f

If this much energy is removed from the system each minute, the rate of removal is

P = = = =
Q
t∆

5 290
88 2 88 2

 J
60.0 s

 J s  W. . .

P20.9 (a) Q Qcold hot= −

m c m c T T m c T T m c T Tw w c c f c f unk unk f unk+ − = − − − −b gd i d i d iCu Cu Cu

where w is for water, c the calorimeter, Cu the copper sample, and unk the unknown.

250 100 20 0 10 0

50 0 0 092 4 20 0 80 0 20 0 100

2 44 10 5 60 103 3

 g 1.00 cal g C  g 0.215 cal g C C

 g  cal g C C 70.0 g C

 cal  g C

⋅° + ⋅° − °

= − ⋅° − ° − − °

× = × ⋅°

b g b g a f
b gb ga f b g a f
e j

. .

. . . . .

. .

c

c

unk

unk

or cunk = ⋅°0 435.  cal g C .

(b) The material of the sample is beryllium .
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P20.10 (a) f mgh mc Tb gb g = ∆

0 600 3 00 10 9 80 50 0

4 186
3 00 0 092 4

0 760 25 8

3. . . .

.
. .

. ; .

a fe je ja f b gb ga f×
= ⋅°

= ° = °

−  kg  m s  m

 J cal
 g  cal g C

C C

2

∆

∆

T

T T

(b) No . Both the change in potential energy and the heat absorbed are proportional to the

mass; hence, the mass cancels in the energy relation.

*P20.11 We do not know whether the aluminum will rise or drop in temperature. The energy the water can

absorb in rising to 26°C  is mc T∆ =
°

° =0 25 4 186 6 6 279.  kg 
J

kg C
C  J . The energy the copper can put

out in dropping to 26°C  is mc T∆ =
°

° =0 1 387 74 2 864.  kg 
J

kg C
C  J . Since 6 279 2 864 J  J> , the final

temperature is less than 26°C . We can write Q Qh c= −  as

Q Q Q

T T

T

T T T

T

T

f f

f

f f f

f

f

water Al Cu

 kg 
J

kg C
C  kg 

J
kg C

C

 kg 
J

kg C
C

C C C

C

C

+ + =

°
− ° +

°
− °

+
°

− ° =

− ° + − ° + − ° =

= °

= °

0

0 25 4 186 20 0 4 900 26

0 1 387 100 0

1 046 5 20 930 360 9 360 38 7 3 870 0

1 445 2 34 160

23 6

. .

.

. .

.

.

d i d i

d i

P20.12 Q Qcold hot= −

m c T T m c T T m c T T

m c m c T m c m c T m c T m c T

m c m c m c T m c m c T m c T

T
m c m c T m c T
m c m c m c

f c c w f c h w f h

c w f c w c h w f h w h

c w h w f c w c h w h

f
c w c h w h

c w h w

Al Al

Al Al Al Al

Al Al Al Al

Al Al

Al Al

− + − = − −

+ − + = − +

+ + = + +

=
+ +

+ +

d i d i d i
b g b g
b g b g
b g

P20.13 The rate of collection of energy is P = =550 6 00 3 300 W m  m  W2 2.e j . The amount of energy

required to raise the temperature of 1 000 kg of water by 40.0°C is:

Q mc T= = ⋅° ° = ×∆ 1 000 4 186 40 0 1 67 108 kg  J kg C C  Jb ga f. .

Thus, P∆t = ×1 67 108.  J

or ∆t =
×

= =
1 67 10

50 7 14 1
8.

. .
 J

3 300 W
 ks  h .
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*P20.14 Vessel one contains oxygen according to PV nRT= :

n
PV
RTc = =

× ×

⋅
=

−1 75 1 013 10 16 8 10

8 314
1 194

5 3. . .

.
.

 Pa  m

 Nm mol K  300 K
 mol

3e j
.

Vessel two contains this much oxygen:

nh =
× ×

=
−2 25 1 013 10 22 4 10

8 314 450
1 365

5 3. . .

.
.

e j
a f  mol  mol .

(a) The gas comes to an equilibrium temperature according to

mc T mc T

n Mc T n Mc Tc f h f

∆ ∆a f a f
d i d i

cold hot

 K  K

= −

− + − =300 450 0

The molar mass M and specific heat divide out:

1 194 358 2 1 365 614 1 0

972 3
380

. . . .

.

T T

T

f f

f

− + − =

= =

 K  K

 K
2.559

 K

(b) The pressure of the whole sample in its final state is

P
nRT
V

= =
+ ×

= × =−
2 559

16 8 10
2 06 10 2 043

5.
.

. .
 mol 8.314 J 380 K

mol K 22.4  m
 Pa  atm3a f .

Section 20.3 Latent Heat

P20.15 The heat needed is the sum of the following terms:

Qneeded heat to reach melting point heat to melt

heat to reach melting point heat to vaporize heat to reach 110 C

= +

+ + + °

b g a f
b g b g a f

Thus, we have

Q

Q

needed

needed

 kg  J kg C C  J kg

 J kg C C  J kg  J kg C C

 J

= ⋅° ° + ×

+ ⋅° ° + × + ⋅° °

= ×

0 040 0 2 090 10 0 3 33 10

4 186 100 2 26 10 2 010 10 0

1 22 10

5

6

5

. . .

. .

.

b ga f e j
b ga f e j b ga f

P20.16 Q Qcold hot= −

m c m c T T m L c T

m

m

w w c c f i s v w f

s

s

+ − = − − + −

⋅° + ⋅° ° − °

= − − × + ⋅° ° − °

=
×

×
= =

b gd i d i
b g b g a f

b ga f

100

0 250 0 050 0 50 0 20 0

2 26 10 4 186 50 0 100

3 20 10
0 012 9 12 9

6

4

. . . .

. .

.
. .

 kg 4 186 J kg C  kg 387 J kg C C C

 J kg  J kg C C C

 J
2.47 10  J kg

 kg  g steam6
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P20.17 The bullet will not melt all the ice, so its final temperature is 0°C.

Then 
1
2

2mv mc T m Lw f+F
HG

I
KJ =∆

bullet

where mw  is the melt water mass

m

m

w

w

=
× + × ⋅° °

×

=
+

=

− −0 500 3 00 10 240 3 00 10 30 0

3 33 10
86 4 11 5

0 294

3 2 3

5

. . . .

.
. .

.

 kg  m s  kg 128 J kg C C

 J kg
 J  J

333 000 J kg
 g

e jb g b ga f

P20.18 (a) Q1 =  heat to melt all the ice = × × = ×−50 0 10 3 33 10 1 67 103 5 4. . . kg  J kg  Je je j
Q2

3 450 0 10 4 186 100 2 09 10

= °

= × ⋅° ° = ×−

heat to raise temp of ice to 100 C

 kg  J kg C C  J

b g
e jb ga f. .

Thus, the total heat to melt ice and raise temp to 100°C = ×3 76 104.  J

Q3
3 6 410 0 10 2 26 10 2 26 10= = × × = ×−heat available

as steam condenses
 kg  J kg  J. . .e je j

Thus, we see that Q Q3 1> , but Q Q Q3 1 2< + .

Therefore, all the ice melts but Tf < °100 C . Let us now find Tf

Q Q

T

T

f

f

cold hot

 kg  J kg  kg  J kg C C

 kg  J kg  kg  J kg C C

= −

× × + × ⋅° − °

= − × − × − × ⋅° − °

− −

− −

50 0 10 3 33 10 50 0 10 4 186 0

10 0 10 2 26 10 10 0 10 4 186 100

3 5 3

3 6 3

. . .

. . .

e je j e jb gd i
e je j e jb gd i

From which, Tf = °40 4. C .

(b) Q1 =  heat to melt all ice = ×1 67 104.  J  [See part (a)]

Q

Q

2
3 6 3

3
3

10 2 26 10 2 26 10

10 4 186 100 419

= = × = ×

=
°

= ⋅° ° =

−

−

heat given up
as steam condenses

 kg  J kg  J

heat given up as condensed
steam cools to 0 C

 kg  J kg C C  J

e je j

e jb ga f

. .

Note that Q Q Q2 3 1+ < . Therefore, the final temperature will be 0°C with some ice
remaining. Let us find the mass of ice which must melt to condense the steam and cool the
condensate to 0°C.

mL Q Qf = + = ×2 3
32 68 10.  J

Thus, m =
×

×
= × =−2 68 10

8 04 10 8 04
3

3.
. .

 J
3.33 10  J kg

 kg  g5 .

Therefore, there is 42 0.  g of ice left over .



584     Heat and the First Law of Thermodynamics

P20.19 Q m c T m L= =Cu Cu N vap N2
2

∆ e j
1 00 293 77 3 48 0

0 414

. . .

.

 kg 0.092 0 cal g C C  cal g

 kg

⋅° − ° =

=

b ga f b gm

m

*P20.20 The original gravitational energy of the hailstone-Earth system changes entirely into additional
internal energy in the hailstone, to produce its phase change. No temperature change occurs, either
in the hailstone, in the air, or in sidewalk. Then

mgy mL

y
L
g

=

= =
× ⋅F

HG
I
KJ = ×

3 33 10
9 8

1
1

3 40 10
5

4.
.

.
 J kg

 m s
 kg m s

 J
 m2

2 2

P20.21 (a) Since the heat required to melt 250 g of ice at 0°C exceeds the heat required to cool 600 g of
water from 18°C to 0°C, the final temperature of the system (water + ice) must be 0°C .

(b) Let m represent the mass of ice that melts before the system reaches equilibrium at 0°C.

Q Q

mL m c T

m

m

f w w i

cold hot

C

 J kg  kg  J kg C C C

 g,  so the ice remaining  g  g  g

= −

= − ° −

× = − ⋅° ° − °

= = − =

0

3 33 10 0 600 4 186 0 18 0

136 250 136 114

5

b g
e j b gb ga f. . .

P20.22 The original kinetic energy all becomes thermal energy:

1
2

1
2

2
1
2

5 00 10 500 1 252 2 3 2mv mv+ = FHG
I
KJ × =−. . kg  m s  kJe jb g .

Raising the temperature to the melting point requires

Q mc T= = × ⋅° ° − ° =−∆ 10 0 10 327 20 0 3933. . kg 128 J kg C C C  Jb ga f .

Since 1 250 393 J  J> , the lead starts to melt. Melting it all requires

Q mL= = × × =−10 0 10 2 45 10 2453 4. . kg  J kg  Je je j .

Since 1 250 393 245 J  J> + , it all melts. If we assume liquid lead  has the same specific heat as solid

lead, the final temperature is given by

1 25 10 393 245 10 0 10 128 327

805

3 3. .× = + + × ⋅° − °

= °

− J  J  J  kg  J kg C C

C

b gd iT

T

f

f
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Section 20.4 Work and Heat in Thermodynamic Processes

P20.23 W PdVif
i

f

= −z
The work done on the gas is the negative of the area under the
curve P V=α 2  between Vi  and Vf .

W V dV V V

V V

if
i

f

f i

f i

= − = − −

= = =

zα α2 3 31
3

2 2 1 00 2 00

e j

e j. . m  m3 3

P 

O 
V 

1.00 m 3 2.00 m 3 

P =   V α 2 

f 

i 

FIG. P20.23

Wif = − × +L
NM

O
QP = −

1
3

5 00 1 013 10 2 00 1 00 1 185 3 3
. . . . . atm m  Pa atm  m  m  MJ6 3 3e je j e j e j

P20.24 (a) W PdV= −z
W

Wi f

= − × − +

− × − +

− × −

= −→

6 00 10 2 00 1 00

4 00 10 3 00 2 00

2 00 10 4 00 3 00

12 0

6

6

6

. . .

. . .

. . .

.

 Pa  m

 Pa  m

 Pa  m

 MJ

3

3

3

e ja f
e ja f
e ja f

(b) W f i→ = +12 0.  MJ

FIG. P20.24

P20.25 W P V P
nR
P

T T nR Tf i= − = − FHG
I
KJ − = − = − = −∆ ∆d i a fa fa f0 200 8 314 280 466. .  J

P20.26 W PdV P dV P V nR T nR T T
i

f

i

f

= − = − = − = − = − −z z ∆ ∆ 2 1b g

P20.27 During the heating process P
P
V

Vi

i
=
F
HG
I
KJ .

(a) W PdV
P
V

VdV
i

f
i

iV

V

i

i

= − = −
F
HG
I
KJz z

3

W
P
V

V P
V

V V PVi

i V

V
i

i
i i i i

i

i

= −
F
HG
I
KJ = − − = −

2 3
2 2

2 2
9 4e j

(b) PV nRT=
P
V

V V nRT

T
P

nRV
V

i

i

i

i

F
HG
I
KJ

L
NMM
O
QPP

=

=
F
HG
I
KJ

2

Temperature must be proportional to the square of volume, rising to nine times its original
value.
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Section 20.5 The First Law of Thermodynamics

P20.28 (a) W P V= − = − − × = +−∆ 0 800 7 00 1 013 10 10 5675 3. . . atm  L  Pa atm  m L  J3a fa fe je j

(b) ∆E Q Wint  J  J  J= + = − + =400 567 167

P20.29 ∆E Q Wint = +

Q E W= − = − − = −∆ int  J  J  J500 220 720

The negative sign indicates that positive energy is transferred from the system by heat.

P20.30 (a) Q W= − =  Area of triangle

Q = =
1
2

4 00 6 00 12 0. . . m  kPa  kJ3e ja f

(b) Q W= − = −12 0.  kJ

FIG. P20.30

P20.31 Q W ∆Eint

BC – 0 – Q E WBC= =∆ int  since 0b g
CA – + – ∆E W Qint  and  so < > <0 0 0,b g
AB + – + W E E B C A Q< > < → → >0 0 0 0, ;∆ ∆int int since  for so b g

P20.32 W P V VBC B C B
3 atm 0.400  m

 kJ

= − − = − −

= −

b g b g3 00 0 090 0

94 2

. .

.

∆E Q W

E E

E E

int

int, C int, B

C int, B

 kJ

 kJ

= +

− = −

− =

100 94 2

5 79

.

.int,

a f

Since T is constant,

E Eint, D int, C− = 0

W P V VDA D A D
3 atm  m

 kJ

= − − = − −

= +
b g a f1 00 0 200 1 20

101

. . .

E Eint, A int, D  kJ  kJ  kJ− = − + + = −150 101 48 7a f .

1.0

3.0

P(atm)

0.090 0.20 0.40 1.2

A

CB

D

V(m3)

FIG. P20.32

Now, E E E E E E E Eint, B int, A int, C int, B int, D int, C int, A int, D− = − − + − + −d i d i d i
E Eint, B int, A  kJ  kJ  kJ− = − + − =5 79 0 48 7 42 9. . .
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*P20.33 The area of a true semicircle is 
1
2

2πr . The arrow in Figure P20.33

looks like a semicircle when the scale makes 1.2 L fill the same
space as 100 kPa. Its area is

1
2

2 4 200
1
2

2 4 10 2 103 5π π. . L  kPa  m  N m3 2a fa f e je j= × ×− .

The work on the gas is

W PdV

E Q W

A

B

= − = −

= − + × ×F
HG

I
KJ

= − + = −

= + = − =

z
−

area under the arch shown in the graph

 J  N m  m

 J  J  J

 J  J  kJ

2 3

int

1
2

2 4 200 3 10 4 8 10

754 1 440 2 190

5 790 2 190 3 60

5 3π . .

.

a f
b g

∆

500

300

0
1.2 3.6 6.0

V (L)

P(kPa)

A B

FIG. P20.33

Section 20.6 Some Applications of the First Law of Thermodynamics

P20.34 (a) W nRT
V

V
P V

V

V
f

i
f f

f

i
= −

F
HG
I
KJ = −

F
HG
I
KJln ln

so V V
W

P Vi f
f f

= +
F
HG

I
KJ =

−

×

L

N
MM

O

Q
PP =exp . exp

. .
.0 025 0

3 000

0 025 0 1 013 10
0 007 65

5b g
e j

 m3

(b) T
P V

nRf
f f= =

×

⋅
=

1 013 10 0 025 0

1 00
305

5. .

.

 Pa  m

 mol 8.314 J K mol
 K

3e j
b g

P20.35 (a) ∆ ∆E Q P Vint
3 kJ  kPa 3.00  m  kJ= − = − − =12 5 2 50 1 00 7 50. . . .a f

(b)
V
T

V
T

1

1

2

2
=

T
V
V

T2
2

1
1

3 00
1 00

300 900= = =
.
.

 K  Ka f

P20.36 (a) W P V P V T

W

= − = −

= − × × °
×

F
HG

I
KJ °

L
N
MM

O
Q
PP

= −

− −

∆ ∆3

1 013 10 3 24 0 10
1 00

18 0

48 6

5 6 1

α

. .
.

.

.

 N m C
 kg

2.70 10  kg m
C

 mJ

2
3 3e j e j a f

(b) Q cm T= = ⋅° ° =∆ 900 1 00 18 0 16 2 J kg C  kg C  kJb gb ga f. . .

(c) ∆E Q Wint  kJ  mJ  kJ= + = − =16 2 48 6 16 2. . .
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P20.37 W P V P V V
P nRT

P
Ps w= − = − − = − +
L

N
MM

O

Q
PP∆ b g a f

e je j
18 0

106

.  g

1.00 g cm  cm m3 3 3

W

Q mL

E Q W

v

= − ⋅ + ×
F
HG

I
KJ = −

= = × =

= + =

1 00 8 314 373 1 013 10
18 0

3 10

0 018 0 40 7

37 6

5. . .
.

.

. .

.

 mol  J K mol  K  N m
 g

10  g m
 kJ

 kg 2.26 10  J kg  kJ

 kJ

2
6 3

6

int

a fb ga f e j

e j
∆

P20.38 (a) The work done during each step of the cycle equals the
negative of the area under that segment of the PV curve.
W W W W W

W P V V P V V PV
DA AB BC CD

i i i i i i i i

= + + +

= − − + − − + = −3 0 3 3 0 4b g b g
(b) The initial and final values of T for the system are equal.

Therefore, ∆Eint = 0  and Q W PVi i= − = 4 .

(c) W PV nRTi i i= − = − = − = −4 4 4 1 00 8 314 273 9 08. . .a fa fa f  kJ
FIG. P20.38

P20.39 (a) PV P V nRTi i f f= = = ⋅ = ×2 00 300 4 99 103. . mol 8.314 J K mol  K  Jb ga f
V

nRT
P

V
nRT
P

V

i
i

f
f

i

= =
×

= =
×

= =

4 99 10

4 99 10 1
3

0 041 0

3

3

.

.
.

 J
0.400 atm

 J
1.20 atm

 m3

(b) W PdV nRT
V

V
f

i
= − = −

F
HG
I
KJ = − × F

HG
I
KJ = +z ln . ln .4 99 10

1
3

5 483e j  kJ

(c) ∆E Q Wint = = +0

Q = −5 48.  kJ

P20.40 ∆ ∆E EABC ACint, int, = (conservation of energy)

(a) ∆E Q WABC ABC ABCint, = + (First Law)

QABC = + =800 500 1 300 J  J  J

(b) W P VCD C CD= − ∆ , ∆ ∆V VAB CD= − , and P PA C= 5

Then, W P V WCD A AB AB= = − =
1
5

1
5

100∆  J

(+ means that work is done on the system)

(c) W WCDA CD=  so that Q E WCA CA CDA= − = − − = −∆ int, J J J800 100 900

(– means that energy must be removed from the system by heat)

(d) ∆ ∆ ∆E E ECD CDA DAint, int, int,  J  J  J= − = − − = −800 500 1 300

and Q E WCD CD CD= − = − − = −∆ int,  J  J  J1 300 100 1 400

FIG. P20.40
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Section 20.7 Energy Transfer Mechanisms

P20.41 P = kA
T

L
∆

k
L

A T
= =

°
= × ⋅°−P

∆

10 0

1 20 15 0
2 22 10 2.

. .
.

 W 0.040 0 m

 m C
 W m C2

b g
a f

P20.42 P = =
⋅° °

×
= × =−

kA T
L
∆ 0 800 3 00 25 0

6 00 10
1 00 10 10 03

4
. . .

.
. .

 W m C  m C

 m
 W  kW

2b ge ja f

P20.43 In the steady state condition, P PAu Ag=

so that k A
T
x

k A
T
xAu Au

Au
Ag Ag

Ag

∆
∆

∆
∆

F
HG
I
KJ = F

HG
I
KJ

In this case A AAu Ag=

∆ ∆

∆

x x

T T
Au Ag

Au

=

= −80 0.a f
and ∆T TAg = − 30 0.a f

FIG. P20.43

where T is the temperature of the junction.
Therefore, k T k TAu Ag80 0 30 0. .− = −a f a f
And T = °51 2. C

P20.44 P = =
°

× ⋅° + × ⋅°
=

∑ − −

A T
L
k

i

i

i

∆ 6 00 50 0

2 4 00 10 0 800 5 00 10 0 023 4
1 34

3 3

. .

. . . .
.

 m C

 m  W m C  m  W m C
 kW

2e ja f
e j

*P20.45 We suppose that the area of the transistor is so small that energy flow by heat from the transistor
directly to the air is negligible compared to energy conduction through the mica.

P

P

=
−

= + = ° +
×

⋅° ×
= °

−

−

kA
T T

L

T T
L

kA

h c

h c

b g

e j
b ga f35 0

1 50 0 085 2 10

0 075 3 8 25 6 25 10
67 9

3

6.
. .

. . .
.C

 W  m

 W m C  m
C2

P20.46 From Table 20.4,

(a) R = ⋅° ⋅0 890.  ft F h Btu2

(b) The insulating glass in the table must have sheets of glass less than 
1
8

 inch thick. So we

estimate the R-value of a 0.250-inch air space as 
0.250
3.50

 times that of the thicker air space.

Then for the double glazing

Rb = + FHG
I
KJ +

L
NM

O
QP

⋅° ⋅
=

⋅° ⋅
0 890

0 250
3 50

1 01 0 890 1 85.
.
.

. . .
ft F h

Btu
ft F h

Btu

2 2

.

(c) Since A and T T2 1−b g  are constants, heat flow is reduced by a factor of 
1 85
0 890

2 08
.
.

.= .



590     Heat and the First Law of Thermodynamics

P20.47 P = = × ⋅ ×L
NM

O
QP

−σ πAeT 4 8 8 2 4
5 669 6 10 4 6 96 10 0 965 5 800. . . W m K  m  K2 4e j e j a fb g

P = ×3 77 1026.  W

P20.48 Suppose the pizza is 70 cm in diameter and = 2 0.  cm thick, sizzling at 100°C. It cannot lose heat by
conduction or convection. It radiates according to P = σAeT 4 . Here, A is its surface area,

A r r= + = + =2 2 2 0 35 2 0 35 0 02 0 812 2π π π π. . . . m  m  m  m2a f a fa f .

Suppose it is dark in the infrared, with emissivity about 0.8. Then

P = × ⋅ =−5 67 10 0 81 0 80 373 710 108 4 3. . . ~ W m K  m  K  W  W2 4 2e je ja fa f .

If the density of the pizza is half that of water, its mass is

m V r= = = =ρ ρπ π2 2500 0 35 0 02 4 kg m  m  m  kg3e j a f a f. . .

Suppose its specific heat is c = ⋅°0 6.  cal g C . The drop in temperature of the pizza is described by:

Q mc T T

dQ
dt

mc
dT

dt
dT

dt mc

f i

f

f

= −

= = −

= =
⋅ ⋅°

= ° −

d i

b gb g

P

P

0

710
4 0 6 4 186

0 07 10 1 J s
 kg  J kg C

 C s  K s
.

. ~

P20.49 P = σAeT 4

2 00 5 67 10 0 250 10 0 950

1 49 10 3 49 10

8 6 4

14 1 4 3

. . . .

. .

 W  W m K  m

 K  K

2 4 2

4

= × ⋅ ×

= × = ×

− −e je ja f
e j

T

T

P20.50 We suppose the earth below is an insulator. The square meter must radiate in the infrared as much
energy as it absorbs, P = σAeT 4 . Assuming that e = 1 00.  for blackbody blacktop:

1 000 5 67 10 1 00 1 008 4 W  W m K  m2 4 2= × ⋅−. . .e je ja fT
T = × =1 76 10 36410 1 4

.  K  K4e j  (You can cook an egg on it.)

P20.51 The sphere of radius R absorbs sunlight over the area of its day hemisphere, projected as a flat circle
perpendicular to the light: π R2 . It radiates in all directions, over area 4 2π R . Then, in steady state,

P Pin out

2 W m

=

=e R e R T1 340 42 2 4e j e jπ σ π

The emissivity e, the radius R, and π all cancel.

Therefore, T =
× ⋅

L

N
MM

O

Q
PP = = °

−

1 340

4 5 67 10
277 4

8

1 4

 W m

 W m K
 K C

2

2 4.e j
.
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Additional Problems

P20.52 77.3 K = –195.8°C is the boiling point of nitrogen. It gains no heat to warm as a liquid, but gains heat
to vaporize:

Q mLv= = × = ×0 100 2 01 10 2 01 105 4. . . kg  J kg  Jb ge j .

The water first loses heat by cooling. Before it starts to freeze, it can lose

Q mc T= = ⋅° ° = ×∆ 0 200 4 186 5 00 4 19 103. . . kg  J kg C C  Jb gb ga f .

The remaining 2 01 10 4 19 10 1 59 104 3 4. . .× − × = ×e j J  J that is removed from the water can freeze a

mass x of water:

Q mL

x

x

f=

× = ×

= =

1 59 10 3 33 10

0 047 7 47 7

4 5. .

. .

 J  J kg

 kg  g  of water can be frozen

e j

P20.53 The increase in internal energy required to melt 1.00 kg of snow is

∆Eint  kg  J kg  J= × = ×1 00 3 33 10 3 33 105 5. . .b ge j
The force of friction is f n mg= = = =µ µ 0 200 75 0 9 80 147. . . kg  m s  N2b ge j
According to the problem statement, the loss of mechanical energy of the skier is assumed to be
equal to the increase in internal energy of the snow. This increase in internal energy is

∆ ∆ ∆E f r rint  N  J= = = ×147 3 33 105a f .

and ∆r = ×2 27 103.  m .

P20.54 (a) The energy thus far gained by the copper equals the energy loss by the silver. Your down
parka is an excellent insulator.

Q Qcold hot= −

or m c T T m c T Tf i f iCu Cu Cu Ag Ag Ag
− = − −d i d i

9 00 387 16 0 14 0 234 30 0

30 0 17 0

. . . .

. .

 g  J kg C C  g  J kg C C

C C

Ag

Ag

b gb ga f b gb gd i
d i

⋅° ° = − ⋅° − °

− ° = − °

T

T

f

f

so Tf , . Ag C= °13 0 .

(b) Differentiating the energy gain-and-loss equation gives: m c
dT
dt

m c
dT
dtAg Ag

Ag
Cu Cu

Cu

F
HG
I
KJ = − F

HG
I
KJ

dT
dt

m c
m c

dT
dt

dT
dt

F
HG
I
KJ = − F

HG
I
KJ = −

⋅°

⋅°
+ °

F
HG
I
KJ = − ° ⇒

Ag

Cu Cu

Ag Ag Cu

Ag

 g 387 J kg C

 g 234 J kg C
C s

C s  negative sign  decreasing temperature

9 00

14 0
0 500

0 532

.

.
.

.

b g
b g b g

b g
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P20.55 (a) Before conduction has time to become important, the energy lost by the rod equals the
energy gained by the helium. Therefore,

mL mc Tvb g c hHe Al
= ∆

or ρ ρVL Vc Tvb g c hHe Al
= ∆

so V
Vc T

Lv
He

Al

He

=
ρ

ρ

∆c h
b g

V

V

He

3 3

3

He
3

 g cm  cm  cal g C C

 g cm  J kg  cal 4.186 J  kg 1 000 g

 cm  liters

=
⋅° °

×

= × =

2 70 62 5 0 210 295 8

0 125 2 09 10 1 00 1 00

1 68 10 16 8

4

4

. . . .

. . . .

. .

e je jb ga f
e je jb gb g

(b) The rate at which energy is supplied to the rod in order to maintain constant temperatures
is given by

P = FHG
I
KJ = ⋅ ⋅ F

HG
I
KJ =kA

dT
dx

31 0 2 50
295 8

917. .
.

 J s cm K  cm
 K

25.0 cm
 W2b ge j

This power supplied to the helium will produce a “boil-off” rate of

P
ρLv

=
×

= =
917 10

0 125 2 09 10
351 0 351

3

4

 W  g kg

 g cm  J kg
 cm s  L s

3
3

a fe j
e je j. .

.

*P20.56 At the equilibrium temperature Teq  the diameters of the sphere and ring are equal:

d d T T d d T

T T T

T T T

T T

T

s s i r r

i

i

i

+ − = + − °

+ × ° − = + × ° − °

° + × − × = × − × °

× ° + × = ×

° + =

− −

− − − −

− − −

α αAl eq Cu eq

eq eq

eq eq

eq

eq

C

 cm  cm  1 C  cm  cm 1.70 10  1 C C

C C

C

C

e j e j
e je j e je j

15

5 01 5 01 2 40 10 5 00 5 00 15

0 01 1 202 4 10 1 202 4 10 8 5 10 1 275 10

1 127 5 10 3 524 10 1 202 4 10

319 95 3

5 5

4 4 5 3

2 5 4

. . . . .

. . . . .

. . .

. .412 0Ti

At the equilibrium temperature, the energy lost is equal to the energy gained:

m c T T m c T

T T T

T T T

T T

s i r

i

i

i

Al eq Cu eq

eq eq

eq eq

eq

C

 g 0.215 cal g C  g 0.092 4 cal g C C

C

C

− = − − °

⋅° − = − ⋅° − °

− = ° −

= ° +

e j e j
e j e j

15

10 9 25 15

2 343 5 2 343 5 34 65 2 31

4 653 5 34 65 2 343 5

.

. . . .

. . .

Solving by substitution,

4 653 5 3 412 0 319 95 34 65 2 343 5

15 877 7 1 488 89 34 65 2 343 5

. . . . .

. . . .

T T

T T
i i

i i

− ° = ° +

− ° = ° +

C C

C C
b g

(b) Ti =
°

= °
1 523 54

113
. C

13.534
C

(a) Teq C= − + = °319 95 3 412 0 112 57 64 1. . . .a f
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P20.57 Q mc T V c T= =∆ ∆ρb g  so that when a constant temperature difference ∆T  is maintained,

the rate of adding energy to the liquid is P = = FHG
I
KJ =

dQ
dt

dV
dt

c T Rc Tρ ρ∆ ∆

and the specific heat of the liquid is c
R T

=
P

ρ ∆
.

P20.58 (a) Work done by the gas is the negative of the area under the
PV curve

W P
V

V
PV

i
i

i
i i= − −FHG

I
KJ = +

2 2
.

(b) In this case the area under the curve is W PdV= −z . Since the

process is isothermal,

PV PV P
V

nRTi i i
i

i= = FHG
I
KJ =4

4

and W
dV
V

PV PV
V
V

PVi i
V

V

i i
i

i
i i

i

i

= − FHG
I
KJ = −

F
HG
I
KJ =z b g

4 4
4ln ln

 = +1 39. PVi i

FIG. P20.58

(c) The area under the curve is 0 and W = 0 .

P20.59 Call the initial pressure P1 . In the constant volume process 1 2→ the work is zero.

P V nRT
P V nRT

1 1 1

2 2 2

=
=

so
P V
P V

T
T

2 2

1 1

2

1
= ; T2 300

1
4

1 75 0= F
HG
I
KJ = K  Ka f .

Now in 2 3→

W PdV P V V P V P V

W nRT nRT

W

= − = − − = − +

= − + = − ⋅ −

= −

z
2

3

2 3 2 3 3 2 2

3 2 1 00 8 314 300 75 0

1 87

b g
a fb ga f. . .

.

 mol  J mol K  K  K

 kJ
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*P20.60 The initial moment of inertia of the disk is

1
2

1
2

1
2

1
2

8 920 28 1 2 1 033 102 2 2 2 4 10MR VR R tR= = = = × ⋅ρ ρπ π kg m  m  m  kg m3 2e j a f . .

The rotation speeds up as the disk cools off, according to

I I

MR MR MR T

T

i i f f

i i f f i f

f i

ω ω

ω ω α ω

ω ω
α

=

= = −

=
−

=
− × ° °

=
−

1
2

1
2

1
2

1

1

1
25

1

1 17 10 830
25 720 7

2 2 2 2

2 6 2

∆

∆

c h

c h e j
 rad s

 1 C C
 rad s.

(a) The kinetic energy increases by

1
2

1
2

1
2

1
2

1
2

1
2

1 033 10 25 0 720 7 9 31 10

2 2 2

10 10

I I I I If f i i i i f i i i i f iω ω ω ω ω ω ω ω− = − = −

= × ⋅ = ×

d i
b g. . . kg m  rad s  rad s  J2

(b) ∆ ∆E mc Tint  kg 387 J kg C C C  J= = × ⋅° ° − ° = − ×2 64 10 20 850 8 47 107 12. .b ga f

(c) As 8 47 1012. ×  J leaves the fund of internal energy, 9 31 1010. ×  J  changes into extra kinetic

energy, and the rest, 8 38 1012. ×  J  is radiated.

*P20.61 The loss of mechanical energy is

1
2

1
2

670
6 67 10

6 57 10 4 20 10 1 08 10

2 2 11

10 10 11

mv
GM m

Ri
E

E
+ = × +

× ×

×

= × + × = ×

−

 kg 1.4 10  m s
 Nm  5.98 10  kg 670 kg
kg  6.37 10  m

 J  J  J

4
2 24

2 6e j .

. . .

One half becomes extra internal energy in the aluminum: ∆Eint .= ×5 38 1010  J . To raise its
temperature to the melting point requires energy

mc T∆ =
°

− − ° = ×670 900 660 15 4 07 108 kg 
J

kg C
C  Ja fc h . .

To melt it, mL = × = ×670 3 97 10 2 66 105 8 kg  J kg  J. . . To raise it to the boiling point,

mc T∆ = − = ×670 1 170 2 450 600 1 40 109b gb gJ J. . To boil it, mL = × = ×670 1 14 10 7 64 107 9 kg  J kg J. . .

Then

5 38 10 9 71 10 670 1 170 2 450

5 87 10

10 9

4

. .

.

× = × + − ° °

= × °

 J  J C J C

C

b gd iT

T

f

f
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P20.62 (a) Fv = =50 0 40 0 2 000. . N  m s  Wa fb g

(b) Energy received by each object is 1 000 10 10 2 3894 W  s  J  calb ga f = = . The specific heat of iron

is 0 107.  cal g C⋅° , so the heat capacity of each object is 5 00 10 0 107 535 03. . .× × = ° cal C.

∆T =
°

= °
2 389

4 47
 cal

535.0 cal C
C.

P20.63 The power incident on the solar collector is

Pi IA= = =600 0 300 1702 W m  m  W2e j a fπ . .

For a 40.0% reflector, the collected power is Pc = 67 9.  W. The total
energy required to increase the temperature of the water to the
boiling point and to evaporate it is Q cm T mLV= +∆ :

Q = ⋅° ° + × = ×0 500 80 0 2 26 10 1 30 106 6. . . . kg 4 186 J kg C C  J kg  Jb ga f .

The time interval required is ∆t
Q

c
= =

×
=

P
1 30 10

5 31
6.

.
 J

67.9 W
 h . FIG. P20.63

P20.64 From Q mLV=  the rate of boiling is described by

P = =
Q

t
L m

t
V

∆ ∆
∴ =

m
t LV∆

P

Model the water vapor as an ideal gas

P V nRT
m
M

RT

P V
t

m
t

RT
M

P Av
L

RT
M

v
RT

ML P A

v

V

V

0 0

0

0

0
6 5 4

1 000 373

0 018 0 2 26 10 1 013 10 2 00 10

3 76

= = FHG
I
KJ

= FHG
I
KJ

= F
HG
I
KJ

= =
⋅

× × ×

=

−

∆ ∆
P

P  W 8.314 J mol K  K

 kg mol  J kg  N m  m

 m s

2 2

b ga f
b ge je je j. . . .

.
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P20.65 Energy goes in at a constant rate P . For the period from

50 0

10 0 10 4 186 2 00 0

.

. .

 min to 60.0 min,  

 min  kg  J kg C C C

Q mc T

mi

=

= + ⋅° ° − °

∆

P a f b gb ga f
P 10 0 83 7 8 37. . . min  kJ  kJ kga f b g= + mi (1)

For the period from 0 to 50.0 min, Q m Li f=

P 50 0 3 33 105. . min  J kga f e j= ×mi

Substitute P =
×mi 3 33 10

50 0

5.

.

 J kg

 min
e j

 into Equation (1) to find

m
m

m

i
i

i

3 33 10

5 00
83 7 8 37

83 7
8 37

1 44

5.

.
. .

.

.
.

×
= +

=
−

=

 J kg
 kJ  kJ kg

 kJ
66.6  kJ kg

 kg

e j b g

a f

0.00

1.00

2.00

3.00

20.0 40.0 60.0

T  (° C)

t (min)

FIG. P20.65

P20.66 (a) The block starts with K mvi i= = =
1
2

1
2

1 60 2 50 5 002 2
. . . kg  m s  Jb gb g

All this becomes extra internal energy in ice, melting some according to “ ”Q m L f= ice . Thus,

the mass of ice that melts is

m
Q
L

K
Lf

i

f
ice 5

 J
3.33 10  J kg

 kg  mg= = =
×

= × =−“ ” .
. .

5 00
1 50 10 15 05 .

For the block: Q = 0 (no energy flows by heat since there is no temperature difference)

W = −5 00.  J

∆Eint = 0  (no temperature change)

and ∆K = −5 00.  J

For the ice, Q = 0

W = +5 00.  J

∆Eint  J= +5 00.

and ∆K = 0

(b) Again, Ki = 5 00.  J  and mice  mg= 15 0.

For the block of ice: Q = 0; ∆Eint  J= +5 00. ; ∆K = −5 00.  J

so W = 0 .

For the copper, nothing happens: Q E K W= = = =∆ ∆int 0 .

continued on next page
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(c) Again, Ki = 5 00.  J . Both blocks must rise equally in temperature.

“ ”Q mc T= ∆ : ∆T
Q
mc

= =
⋅°

= × °−“ ” .
.

5 00
387

4 04 10 3 J
2 1.60 kg  J kg C

Cb gb g

At any instant, the two blocks are at the same temperature, so for both Q = 0.

For the moving block: ∆K = −5 00.  J

and ∆Eint  J= +2 50.

so W = −2 50.  J

For the stationary block: ∆K = 0

and ∆Eint  J= +2 50.

so W = +2 50.  J

For each object in each situation, the general continuity equation for energy, in the form
∆ ∆K E W Q+ = +int , correctly describes the relationship between energy transfers and
changes in the object’s energy content.

P20.67 A A A A A= + + +end walls ends of attic side walls roof

A

A

kA T
L

= × + × × × °L
NM

O
QP

+ × +
°

F
HG

I
KJ

=

= =
× ⋅° °

= =
−

2 8 00 2 2
1
2

4 00 37 0

2 10 0 2 10 0
4 00

304

4 80 10 304 25 0

0 210
17 4 4 15

4

. . tan .

. .
.

. .

.
. .

 m 5.00 m  m 4.00 m

 m 5.00 m  m
 m

cos37.0

 m

 kW m C  m C

 m
 kW  kcal s

2

2

a f a f

a f a f

e je ja f
P

∆

Thus, the energy lost per day by heat is 4 15 86 400 3 59 105. . kcal s  s  kcal dayb gb g = × .

The gas needed to replace this loss is 
3 59 10

9 300
38 6

5.
.

×
=

 kcal day
 kcal m

 m day3
3 .

P20.68
L Adx

dt
kA

T
x

ρ
= FHG

I
KJ

∆

L xdx k T dt

L
x

k T t

t

t

t

ρ

ρ

4.00

8 00

0

2

4.00

8 00

5
2 2

4

2

3 33 10 917
0 080 0 0 040

2
2 00 10 0

3 66 10 10 2

.

.

.
. .

. .

. .

z z=

=

×
−F

H
GG

I
K
JJ = ⋅° °

= × =

∆

∆ ∆

∆

∆

∆

 J kg  kg m
 m 0 m

 W m C C

 s  h

3e je j b g b g b ga f
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P20.69 W W W W WAB BC CD DA= + + +

W PdV PdV PdV PdV

W nRT
dV
V

P dV nRT
dV
V

P dV

W nRT
V
V

P V V nRT
V
V

P V V

A

B

B

C

C

D

D

A

A

B

B

C

C

D

D

A

B
C B

C
A D

= − − − −

= − − − −

= −
F
HG
I
KJ − − −

F
HG
I
KJ − −

z z z z
z z z z1 2 2 1

1
1

2 2
2

1ln lnb g b g

Now P V P VA B1 2=  and P V P VC D2 1= , so only the logarithmic
terms do not cancel out.

V 1 V 2

P 1

P 2

P
B C

D
A

V

FIG. P20.69

Also, 
V
V

P
P

B

1

1

2
=  and 

V
V

P
PC

2 2

1
=

W nRT
P
P

nRT
P
P

nRT
P
P

nRT
P
P

nR T T
P
P∑ = −

F
HG
I
KJ −

F
HG
I
KJ = +

F
HG
I
KJ −

F
HG
I
KJ = − −

F
HG
I
KJ1

1

2
2

2

1
1

2

1
2

2

1
2 1

2

1
ln ln ln ln lnb g

Moreover P V nRT1 2 2=  and P V nRT1 1 1=

W P V V
P
P∑ = − −
F
HG
I
KJ1 2 1

2

1
b g ln

P20.70 For a cylindrical shell of radius r, height L, and thickness dr, the equation for thermal conduction,

dQ
dt

kA
dT
dx

= − becomes
dQ
dt

k rL
dT
dr

= − 2πb g

Under equilibrium conditions, 
dQ
dt

 is constant; therefore,

dT
dQ
dt kL

dr
r

= −
F
HG
I
KJ
F
HG
I
KJ

1
2π

and T T
dQ
dt kL

b
ab a− = −

F
HG
I
KJ
F
HG
I
KJ

1
2π

ln

But T Ta b> , so
dQ
dt

kL T T

b a
a b=
−2π b g
b gln

P20.71 From problem 70, the rate of energy flow through the wall is

dQ
dt

kL T T

b a

dQ
dt

dQ
dt

a b=
−

=
× ⋅ ⋅° °

= × =

−

2

2 4 00 10 3 500 60 0

256

2 23 10 9 32

5

3

π

π

b g
b g
e jb ga f

b g

ln

. .

ln

. .

 cal s cm C  cm C

 cm 250 cm

 cal s  kW

This is the rate of energy loss from the plane by heat, and consequently is
the rate at which energy must be supplied in order to maintain a constant
temperature.

FIG. P20.71
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P20.72 Q Qcold hot= −

or Q Q QAl water calo= − +b g
m c T T m c m c T T

c

c

f i w w c c f i wAl Al Al

Al

Al

 kg C  kg 4 186 J kg C  kg 630 J kg C C

 J
7.86 kg C

 J kg C

− = − + −

+ ° = − ⋅° + ⋅° − °

=
×

⋅°
= ⋅°

d i b gd i
b g a f b g b g a f0 200 39 3 0 400 0 040 0 3 70

6 29 10
800

3

. . . . .

.

*P20.73 (a) P = = × × = ×−σAeT 4 8 14 4 225 67 10 5 1 10 0 965 5 800 3 16 10. . . . W m K  m  K  W2 4 2e j a fb g

(b) Tavg  K  K  K= + = ×0 1 4 800 0 9 5 890 5 78 103. . .b g b g

This is cooler than 5 800 K by 
5 800 5 781

5 800
0 327%

−
= . .

(c) P = × ×−5 67 10 0 1 5 1 10 0 965 4 8008 14 4. . . . W m K  m  K2 4 2e j e j b g
   + × × = ×−5 67 10 0 965 5 890 3 17 108 4 22. . . W 0.9 5.1 10  W14e j b g

This is larger than 3 158 1022. ×  W  by 
1 29 10

0 408%
20.

.
×
×

=
 W

3.16 10  W22 .

ANSWERS TO EVEN PROBLEMS

P20.2 0 105. °C P20.22 liquid lead at 805°C

P20.4 87 0. °C P20.24 (a) −12 0.  MJ; (b) +12 0.  MJ

P20.6 The energy input to the water is 6.70 times
larger than the laser output of 40.0 kJ.

P20.26 − −nR T T2 1b g

P20.28 (a) 567 J ; (b) 167 J
P20.8 88 2.  W

P20.30 (a) 12 0.  kJ; (b) −12 0.  kJ
P20.10 (a) 25 8. °C; (b) no

P20.32 42 9.  kJ

P20.12 T
m c m c T m c T

m c m c m cf
c w c h w h

c w h w
=

+ +

+ +
Al Al

Al Al

b g
P20.34 (a) 7.65 L; (b) 305 K

P20.36 (a) −48 6.  mJ; (b) 16 2.  kJ; (c) 16 2.  kJP20.14 (a) 380 K ; (b) 206 kPa

P20.38 (a) −4PVi i ; (b) +4PVi i ; (c) −9 08.  kJP20.16 12.9 g

P20.18 (a) all the ice melts; 40 4. °C; P20.40 (a) 1 300 J ; (b) 100 J; (c) −900 J; (d) −1 400 J
(b) 8.04 g melts; 0°C

P20.42 10 0.  kW
P20.20 34.0 km
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P20.44 1 34.  kW P20.62 (a) 2 000 W ; (b) 4 47. °C

P20.46 (a) 0 890.  ft F h Btu2 ⋅ ° ⋅ ; (b) 1 85.
ft F h

Btu

2 ⋅° ⋅
; P20.64 3 76.  m s

(c) 2 08. P20.66 (a) 15 0.  mg ; block: Q = 0; W = −5 00.  J ;
∆Eint = 0 ; ∆K = −5 00.  J;

P20.48 (a) ~103  W ; (b) ~ − −10 1  K s ice: Q = 0; W = 5 00.  J ; ∆Eint  J= 5 00. ; ∆K = 0
(b) 15 0.  mg ; block: Q = 0; W = 0 ;
∆Eint  J= 5 00. ; ∆K = −5 00.  J;P20.50 364 K

metal: Q = 0; W = 0 ; ∆Eint = 0 ; ∆K = 0
P20.52 47 7.  g (c) 0 004 04. °C ; moving block: Q = 0;

W = −2 50.  J ; ∆Eint  J= 2 50. ; ∆K = −5 00.  J;
P20.54 (a) 13 0. °C ; (b) − °0 532. C s

stationary block: Q = 0; W = 2 50.  J;
∆Eint  J= 2 50. ; ∆K = 0P20.56 (a) 64 1. °C ; (b) 113°C

P20.68 10 2.  h
P20.58 see the solution (a) 

1
2

PVi i ; (b) 1 39. PVi i ; (c) 0
P20.70 see the solution

P20.60 (a) 9 31 1010. ×  J ; (b) − ×8 47 1012.  J ;
P20.72 800 J kg C⋅°

(c) 8 38 1012. ×  J
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The Kinetic Theory of Gases

ANSWERS TO QUESTIONS

Q21.1 The molecules of all different kinds collide with the walls of the
container, so molecules of all different kinds exert partial
pressures that contribute to the total pressure. The molecules
can be so small that they collide with one another relatively
rarely and each kind exerts partial pressure as if the other kinds
of molecules were absent. If the molecules collide with one
another often, the collisions exactly conserve momentum and
so do not affect the net force on the walls.

Q21.2 The helium must have the higher rms speed. According to
Equation 21.4, the gas with the smaller mass per atom must
have the higher average speed-squared and thus the higher
rms speed.

Q21.3 Yes. As soon as the gases are mixed, they come to thermal
equilibrium. Equation 21.4 predicts that the lighter helium
atoms will on average have a greater speed than the heavier
nitrogen molecules. Collisions between the different kinds of
molecules gives each kind the same average kinetic energy of
translation.

Q21.4 If the average velocity were non-zero, then the bulk sample of gas would be moving in the direction
of the average velocity. In a closed tank, this motion would result in a pressure difference within the
tank that could not be sustained.

Q21.5 The alcohol evaporates, absorbing energy from the skin to lower the skin temperature.

Q21.6 Partially evacuating the container is equivalent to letting the remaining gas expand. This means that
the gas does work, making its internal energy and hence its temperature decrease. The liquid in the
container will eventually reach thermal equilibrium with the low pressure gas. This effect of an
expanding gas decreasing in temperature is a key process in your refrigerator or air conditioner.

Q21.7 Since the volume is fixed, the density of the cooled gas cannot change, so the mean free path does
not change. The collision frequency decreases since each molecule of the gas has a lower average
speed.

Q21.8 The mean free path decreases as the density of the gas increases.

Q21.9 The volume of the balloon will decrease. The pressure inside the balloon is nearly equal to the
constant exterior atmospheric pressure. Then from PV nRT= , volume must decrease in proportion
to the absolute temperature. Call the process isobaric contraction.
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602     The Kinetic Theory of Gases

Q21.10 The dry air is more dense. Since the air and the water vapor are at the same temperature, they have
the same kinetic energy per molecule. For a controlled experiment, the humid and dry air are at the
same pressure, so the number of molecules per unit volume must be the same for both. The water
molecule has a smaller molecular mass (18.0 u) than any of the gases that make up the air, so the
humid air must have the smaller mass per unit volume.

Q21.11 Suppose the balloon rises into air uniform in temperature. The air cannot be uniform in pressure
because the lower layers support the weight of all the air above them. The rubber in a typical balloon
is easy to stretch and stretches or contracts until interior and exterior pressures are nearly equal. So
as the balloon rises it expands. This is an isothermal expansion, with P decreasing as V increases by
the same factor in PV nRT= . If the rubber wall is very strong it will eventually contain the helium at
higher pressure than the air outside but at the same density, so that the balloon will stop rising.
More likely, the rubber will stretch and break, releasing the helium to keep rising and “boil out” of
the Earth’s atmosphere.

Q21.12 A diatomic gas has more degrees of freedom—those of vibration and rotation—than a monatomic
gas. The energy content per mole is proportional to the number of degrees of freedom.

Q21.13 (a) Average molecular kinetic energy increases by a factor of 3.

(b) The rms speed increases by a factor of 3 .

(c) Average momentum change increases by 3 .

(d) Rate of collisions increases by a factor of 3  since the mean free path remains unchanged.

(e) Pressure increases by a factor of 3.

Q21.14 They can, as this possibility is not contradicted by any of our descriptions of the motion of gases. If
the vessel contains more than a few molecules, it is highly improbable that all will have the same
speed. Collisions will make their speeds scatter according to the Boltzmann distribution law.

Q21.15 Collisions between molecules are mediated by electrical interactions among their electrons. On an
atomic level, collisions of billiard balls work the same way. Collisions between gas molecules are
perfectly elastic. Collisions between macroscopic spheres can be very nearly elastic. So the hard-
sphere model is very good. On the other hand, an atom is not ‘solid,’ but has small-mass electrons
moving through empty space as they orbit the nucleus.

Q21.16 As a parcel of air is pushed upward, it moves into a region of lower pressure, so it expands and does
work on its surroundings. Its fund of internal energy drops, and so does its temperature. As
mentioned in the question, the low thermal conductivity of air means that very little heat will be
conducted into the now-cool parcel from the denser but warmer air below it.

Q21.17 A more massive diatomic or polyatomic molecule will generally have a lower frequency of vibration.
At room temperature, vibration has a higher probability of being excited than in a less massive
molecule. The absorption of energy into vibration shows up in higher specific heats.

SOLUTIONS TO PROBLEMS

Section 21.1 Molecular Model of an Ideal Gas

P21.1 F Nm
v
t

= = ×
°− − °

=−∆
∆

500 5 00 10
8 00 45 0 8 00 45 0

30 0
0 9433.

. sin . . sin .

.
. kg

 m s

 s
 Ne j a f

P
F
A

= = =1 57 1 57. . N m  Pa2
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P21.2 F =
× ×

=
−5 00 10 2 4 68 10 300

1 00
14 0

23 26. .

.
.

e j e jb g kg  m s

 s
 N

and P
F
A

= =
×

=−
14 0

10
17 64

.
.

 N
8.00  m

 kPa2 .

P21.3 We first find the pressure exerted by the gas on the wall of the container.

P
NkT

V
N k T

V
RT
V

= = = =
⋅ ⋅

×
= ×−

3 3 3 8 314 293

8 00 10
9 13 103

5A B
3

 N m mol K  K

 m
 Pa

.

.
.

b ga f

Thus, the force on one of the walls of the cubical container is

F PA= = × × = ×−9 13 10 4 00 10 3 65 105 2 4. . . Pa  m  N2e je j .

P21.4 Use Equation 21.2, P
N
V

mv
=
F
HG
I
KJ

2
3 2

2

, so that

K
mv PV

N
N nN N

K
PV
N

K

av A A

av
A

3

av

 where 

 atm  Pa atm  m

 mol  molecules mol

 J molecule

= = = =

= =
× ×

×

= ×

−

−

2

5 3

23

21

2
3
2

2

3
2 2

3 8 00 1 013 10 5 00 10

2 2 6 02 10

5 05 10

b g
a fe je j
a fe j

. . .

.

.

P21.5 P
N
V

KE=
2
3
d i Equation 21.2

N
PV

KE

n
N

N

= =
× ×

×
= ×

= =
×

×
=

−

−

3
2

3
2

1 20 10 4 00 10

3 60 10
2 00 10

2 00 10
6 02 10

3 32

5 3

22
24

24

23

d i
e je j
e j

. .

.
.

.
.

.

 molecules

 molecules
 molecules mol

 mol
A

P21.6 One mole of helium contains Avogadro’s number of molecules and has a mass of 4.00 g. Let us call m
the mass of one atom, and we have

N mA  g mol= 4 00.

or m =
×

= × −4 00
6 02 10

6 64 1023
24.

.
.

 g mol
 molecules mol

 g molecule

m = × −6 64 10 27.  kg

P21.7 (a) PV Nk TB= : N
PV
k TB

= =
×

×
= ×

−

1 013 10 0 150

1 38 10 293
3 54 10

5 4
3

3

23
23

. .

.
.

 Pa  m

 J K  K
 atoms

π a f
e ja f

(b) K k TB= = × = ×− −3
2

3
2

1 38 10 293 6 07 1023 21. .e ja f J  J

(c) For helium, the atomic mass is m =
×

= × −4 00
6 02 10

6 64 1023
24.

.
.

 g mol
 molecules mol

 g molecule

m = × −6 64 10 27.  kg molecule

1
2

3
2

2mv k TB= : ∴ = =v
k T
m

B
rms  km s

3
1 35.
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P21.8 v
k T
m

B=
3

v
v

M
M

v

O

He

He

O

O
 m s

 m s

= = =

= =

4 00
32 0

1
8 00

1 350

8 00
477

.
. .

.

P21.9 (a) K k TB= = × = ×− −3
2

3
2

1 38 10 423 8 76 1023 21. . J K  K  Je ja f

(b) K mvrms= = × −1
2

8 76 102 21.  J

so v
mrms =
× −1 75 10 20.  J

(1)

For helium, m =
×

= × −4 00
6 02 10

6 64 1023
24.

.
.

 g mol
 molecules mol

 g molecule

m = × −6 64 10 27.  kg molecule

Similarly for argon, m =
×

= × −39 9
6 02 10

6 63 1023
23.

.
.

 g mol
 molecules mol

 g molecule

m = × −6 63 10 26.  kg molecule
Substituting in (1) above,

we find for helium, vrms = 1 62.  km s

and for argon, vrms = 514 m s

P21.10 (a) PV nRT
Nmv

= =
2

3

The total translational kinetic energy is 
Nmv

E
2

2
= trans :

E PVtrans  kJ= = × × × =−3
2

3
2

3 00 1 013 10 5 00 10 2 285 3. . . .e je j

(b)
mv k T RT

N
B

2

23
21

2
3

2
3
2

3 8 314 300

2 6 02 10
6 21 10= = =

×
= × −

A
 J

.

.
.

a fa f
e j

P21.11 (a) 1 1
1

1
1

1 Pa  Pa
 N m

 Pa
 J

1 N m
 J m

2
3=

F
HG

I
KJ ⋅
F
HG

I
KJ =a f

(b) For a monatomic ideal gas, E nRTint =
3
2

For any ideal gas, the energy of molecular translation is the same,

E nRT PVtrans = =
3
2

3
2

.

Thus, the energy per volume is 
E

V
Ptrans =

3
2

.
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Section 21.2 Molar Specific Heat of an Ideal Gas

P21.12 E nRTint =
3
2

∆ ∆E nR Tint  mol  J mol K  K  J= = ⋅ =
3
2

3
2

3 00 8 314 2 00 74 8. . . .a fb ga f

P21.13 We us the tabulated values for CP  and CV

(a) Q nC TP= = ⋅ − =∆ 1 00 420 300 3 46. . mol 28.8 J mol K  K  kJb ga f

(b) ∆ ∆E nC TVint  mol 20.4 J mol K  K  kJ= = ⋅ =1 00 120 2 45. .b ga f

(c) W Q E= − + = − + = −∆ int  kJ  kJ  kJ3 46 2 45 1 01. . .

P21.14 The piston moves to keep pressure constant. Since V
nRT

P
= , then

∆
∆

V
nR T

P
=  for a constant pressure process.

Q nC T n C R TP V= = +∆ ∆b g  so ∆T
Q

n C R
Q

n R R
Q
nRV

=
+

=
+

=b g b g5 2
2
7

and ∆V
nR
P

Q
nR

Q
P

QV
nRT

= F
HG
I
KJ = =

2
7

2
7

2
7

∆V =
×

⋅
=

2
7

4 40 10 5 00

1 00 8 314 300
2 52

3. .

. .
.

 J  L

 mol  J mol K  K
 L

e ja f
a fb ga f

Thus, V V Vf i= + = + =∆ 5 00 2 52 7 52. . . L  L  L

P21.15 n = 1 00.  mol, Ti = 300 K

(b) Since V = constant, W = 0

(a) ∆E Q Wint  J  J= + = + =209 0 209

(c) ∆ ∆ ∆E nC T n R TVint = = FHG
I
KJ

3
2

so ∆
∆

T
E
nR

= =
⋅

=
2

3
2 209

3 1 00 8 314
16 8int  J

 mol  J mol K
 K

a f
a fb g. .

.

T T Ti= + = + =∆ 300 16 8 317 K  K  K.
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P21.16 (a) Consider heating it at constant pressure. Oxygen and nitrogen are diatomic, so C
R

P =
7
2

Q nC T nR T
PV
T

T

Q

P= = = FHG
I
KJ

=
×

=

∆ ∆ ∆
7
2

7
2

7
2

1 013 10 100

300
1 00 118

5.
.

 N m  m

 K
 K  kJ

2 3e je j a f

(b) U mgyg =

m
U

gy
g

= =
×

= ×
1 18 10

2 00
6 03 10

5
3.

.
.

 J

9.80 m s  m
 kg

2e j
*P21.17 (a) We assume that the bulb does not expand. Then this is a constant-volume heating process.

The quantity of the gas is n
PV
RT

i

i
= . The energy input is Q t nC TV= =P ∆ ∆  so

∆
∆ ∆

T
t

nC
tRT

PVCV

i

i V
= =
P P

.

The final temperature is T T T T
tR

PVCf i i
i V

= + = +
F
HG

I
KJ∆

∆
1

P
.

The final pressure is P P
T

T
P

tR
PVCf i

f

i
i

i V
= = +

F
HG

I
KJ1

P∆
.

(b) Pf = +
⋅ ⋅

⋅ ⋅ ×

F
HG

I
KJ
=1 1

3 60

12 5
1 183 atm

 J 4 s 8.314 J m  3 mol K

s mol K 1.013 10  N 4 0.05 m  J
 atm

2

5

.

.
.

π a f

P21.18 (a) C RV = = ⋅
F
HG

I
KJ = ⋅ = ⋅

5
2

5
2

8 314
1 00

719 0 719.
.

. J mol K
 mol

0.028 9 kg
 J kg K  kJ kg Kb g

(b) m Mn M
PV
RT

= = FHG
I
KJ

m =
×

⋅

F
H
GG

I
K
JJ =0 028 9

200 10

8 314 300
0 811

3

.
.

. kg mol
 Pa 0.350 m

 J mol K  K
 kg

3

b g e j
b ga f

(c) We consider a constant volume process where no work is done.

Q mC TV= = ⋅ − =∆ 0 811 700 300 233.  kg 0.719 kJ kg K  K  K  kJb ga f

(d) We now consider a constant pressure process where the internal energy of the gas is
increased and work is done.

Q mC T m C R T m
R

T m
C

T

Q

P V
V= = + = FHG

I
KJ = FHG

I
KJ

= ⋅L
NM

O
QP =

∆ ∆ ∆ ∆b g

b g a f

7
2

7
5

0 811 0 719 400 327. . kg
7
5

 kJ kg K  K  kJ
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P21.19 Consider 800 cm3  of (flavored) water at 90.0 °C mixing with 200 cm3  of diatomic ideal gas at 20.0°C:
Q Qcold hot= −

or m c T T m c TP f i w w wair , air  air− = −,d i a f∆

∆T
m c T T

m c

V c

V cw
P f i

w w

P

w w w
a f d i b g a f

b g=
− −

=
− ° − °air , air  air air , air C C, . .ρ

ρ
90 0 20 0

where we have anticipated that the final temperature of the mixture will be close to 90.0°C.

The molar specific heat of air is C RP , air =
7
2

So the specific heat per gram is c
R
MP, air  J mol K

 mol
28.9 g

 J g C= FHG
I
KJ = ⋅

F
HG

I
KJ = ⋅°

7
2

7
2

8 314
1 00

1 01.
.

.b g

∆T wa f e je j b ga f
e je j b g

= −
× ⋅° °

⋅°

−1 20 10 200 1 01 70 0

1 00 800 4 186

3. . .

. .

 g cm  cm  J g C C

 g cm  cm  J kg C

3 3

3 3

or ∆T wa f ≈ − × °−5 05 10 3. C

The change of temperature for the water is between C and C10 103 2− −° ° .

P21.20 Q nC T nC TP V= +∆ ∆b g b gisobaric isovolumetric

In the isobaric process, V doubles so T must double, to 2Ti .

In the isovolumetric process, P triples so T changes from 2Ti  to 6Ti .

Q n R T T n R T T nRT PVi i i i i= FHG
I
KJ − + FHG

I
KJ − = =

7
2

2
5
2

6 2 13 5 13 5b g b g . .

P21.21 In the isovolumetric process A B→ , W = 0  and Q nC TV= =∆ 500 J

500
3
2

2 500
3

300
2 500

3 1 00 8 314
340

 J  or 
 J

 K
 J

 mol  J mol K
 K

= FHG
I
KJ − = +

= +
⋅

=

n
R

T T T T
nR

T

B A B A

B

b g a f

a f
a fb g. .

In the isobaric process B C→ ,

Q nC T
nR

T TP C B= = − = −∆
5

2
500b g  J .

Thus,

(a) T T
nRC B= − = −

⋅
=

2 500
5

340
1 000

8 314
316

 J
 K

 J
5 1.00 mol  J mol K

 K
a f

a fb g.

(b) The work done on the gas during the isobaric process is

W P V nR T TBC B C B= − = − − = − ⋅ −∆ b g a fb ga f1 00 8 314 316 340. . mol  J mol K  K  J

or WBC = +200 J

The work done on the gas in the isovolumetric process is zero, so in total

Won gas  J= +200 .
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*P21.22 (a) At any point in the heating process, P kVi i=  and P kV
P
V

V
nRT
V

Vi

i

i

i

= = = 2 . At the end,

P
nRT
V

V Pf
i

i
i i= =2 2 2  and T

P V

nR
P V
nR

Tf
f f i i

i= = =
2 2

4 .

(b) The work input is W PdV
nRT
V

VdV
nRT
V

V nRT
V

V V nRT
i

f
i

iV

V
i

i V

V
i

i
i i i

i

i

i

i

= − = − = − = − − = −z z 2

2

2

2 2

2
2 2

2 2
4

3
2e j .

The change in internal energy, is ∆ ∆E nC T n R T T nRTV i i iint = = − = +
5
2

4
15
2

b g . The heat input

is Q E W nRT RTi i= − = =∆ int  mol
18
2

9 1a f .

P21.23 (a) The heat required to produce a temperature change is
Q n C T n C T= +1 1 2 2∆ ∆

The number of molecules is N N1 2+ , so the number of “moles of the mixture” is n n1 2+  and
Q n n C T= +1 2b g ∆ ,

so C
n C n C

n n
=

+
+

1 1 2 2

1 2
.

(b) Q n C T n C Ti i
i

m

i
i

m
= =

F
HG
I
KJ= =

∑ ∑∆ ∆
1 1

C
n C

n

i i
i

m

i
i

m= =

=

∑

∑
1

1

Section 21.3 Adiabatic Processes for an Ideal Gas

P21.24 (a) PV P Vi i f f
γ γ= so

V

V
P
P

f

i

i

f
=
F
HG
I
KJ = FHG

I
KJ =

1 5 71 00
20 0

0 118
γ

.
.

.

(b)
T

T

P V

PV

P

P

V

V
f

i

f f

i i

f

i

f

i
= =

F
HG
I
KJ
F
HG
I
KJ = 20 0 0 118. .a fa f T

T
f

i
= 2 35.

(c) Since the process is adiabatic, Q = 0

Since γ = = =
+

1 40.
C
C

R C
C

P

V

V

V
, C RV =

5
2

 and ∆T T T Ti i i= − =2 35 1 35. .

∆ ∆E nC TVint  mol  J mol K  K  J= = F
HG
I
KJ ⋅ =0 016 0

5
2

8 314 1 35 300 135. . .b g b g a f

and W Q E= − + = + = +∆ int  J  J0 135 135 .
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P21.25 (a) PV P Vi i f f
γ γ=

P P
V
Vf i

i

f
=
F
HG
I
KJ = F

HG
I
KJ =

γ

5 00
12 0
30 0

1 39
1.40

.
.
.

. atm  atm

(b) T
PV
nRi
i i= =

× ×

⋅
=

−5 00 1 013 10 12 0 10

2 00
365

5 3. . .

.

 Pa  m

 mol 8.314 J mol K
 K

3e je j
b g

T
P V

nRf
f f= =

× ×

⋅
=

−1 39 1 013 10 30 0 10

2 00
253

5 3. . .

.

 Pa  m

 mol 8.314 J mol K
 K

3e je j
b g

(c) The process is adiabatic: Q = 0

γ = = =
+

1 40.
C
C

R C
C

P

V

V

V
, C RV =

5
2

∆ ∆

∆

E nC T

W E Q

Vint

int

 mol
5
2

 J mol K  K  K  kJ

 kJ  kJ

= = ⋅F
HG

I
KJ − = −

= − = − − = −

2 00 8 314 253 365 4 66

4 66 0 4 66

. . .

. .

b g a f

P21.26 Vi =
×F

HG
I
KJ = ×

−
−π

2 50 10
0 500 2 45 10

2 2
4.

. .
 m

2
 m  m3

The quantity of air we find from PV nRTi i i=

n
PV
RT

n

i i

i
= =

× ×

⋅

= ×

−

−

1 013 10 2 45 10

8 314 300

9 97 10

5 4

3

. .

.

.

 Pa  m

 J mol K  K

 mol

3e je j
b ga f

Adiabatic compression: Pf = + =101 3 800 901 3. . kPa  kPa  kPa

(a) PV P Vi i f f
γ γ=

V V
P
P

V

f i
i

f

f

=
F
HG
I
KJ = × F

HG
I
KJ

= ×

−

−

1

4
5 7

5

2 45 10
101 3
901 3

5 15 10

γ

.
.
.

.

 m

 m

3

3

(b) P V nRTf f f=

T T
P V

PV
T

P

P
P
P

T
P
P

T

f i
f f

i i
i

f

i

i

f
i

i

f

f

= =
F
HG
I
KJ =

F
HG
I
KJ

= F
HG
I
KJ =

−

−

1 1 1

5 7 1

300
101 3
901 3

560

γ γb g

b g
 K  K

.

.

(c) The work put into the gas in compressing it is ∆ ∆E nC TVint =

W

W

= × ⋅ −

=

−9 97 10
5
2

8 314 560 300

53 9

3. .

.

 mol  J mol K  K

 J

e j b ga f

continued on next page
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Now imagine this energy being shared with the inner wall as the gas is held at constant
volume. The pump wall has outer diameter 25 0 2 00 2 00 29 0. . . . mm  mm  mm  mm+ + = , and
volume

π π14 5 10 12 5 10 4 00 10 6 79 103 2 3 2 2 6. . . .× − ×L
NM

O
QP × = ×− − − − m  m  m  m3e j e j

and mass ρV = × × =−7 86 10 6 79 10 53 33 6. . . kg m  m  g3 3e je j
The overall warming process is described by

53 9

53 9 9 97 10
5
2

8 314 300

53 3 10 448 300

53 9 0 207 23 9 300

300 2 24

3

3

.

. . .

.

. . .

.

 J

 J  mol  J mol K  K

 kg  J kg K  K

 J  J K  J K  K

 K  K

= +

= × ⋅ −

+ × ⋅ −

= + −

− =

−

−

nC T mc T

T

T

T

T

V

ff

ff

ff

ff

∆ ∆

e j b gd i
e jb gd i
b gd i

P21.27
T

T
V
V

f

i

i

f
=
F
HG
I
KJ = FHG

I
KJ

−γ 1 0 4001
2

.

If Ti = 300 K , then Tf = 227 K .

*P21.28 (a) In PV P Vi i f f
γ γ=  we have P P

V
Vf i

i

f
=
F
HG
I
KJ
γ

P P Pf i i=
F
HG

I
KJ =

0 720
0 240

4 66
1.40

.

.
.

 m
 m

3

3

Then 
PV
T

P V

T
i i

i

f f

f
= T T

P V

PV
Tf i

f f

i i
i= = =4 66

1
3

1 55. .a f
The factor of increase in temperature is the same as the factor of increase in internal energy,

according to E nC TVint = . Then 
E

E
f

i

int, 

int, 
= 1 55. .

(b) In 
T

T

P V

PV
V
V

V

V
V
V

f

i

f f

i i

i

f

f

i

i

f
= =

F
HG
I
KJ =

F
HG
I
KJ

−γ γ 1

 we have

2
0 720

0 720
2 2 5 66

0 720
5 66

0 127

0 40

1 0 4 2 5

=
F
HG

I
KJ

= = =

= =

.

.
.

.
.

.

.

. .

 m

 m

 m
 m

3

3

3
3

V

V

V

f

f

f
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P21.29 (a) See the diagram at the right.

(b) P V P VB B C C
γ γ=

3

3 3 2 19

2 19 4 00 8 77

1 5 7

PV PV

V V V V

V

i i i C

C i i i

C

γ γ

γ

=

= = =

= =

e j e j
a f

.

. . . L  L

(c) P V nRT PV nRTB B B i i i= = =3 3

T TB i= = =3 3 300 900 K  Ka f

(d) After one whole cycle, T TA i= = 300 K .

 
B 

A 
C 

V C V i = 4  L 

P i 

P i 3 

P 

V (L) 

Adiabatic 

FIG. P21.29

(e) In AB, Q nC V n R T T nRTAB V i i i= = FHG
I
KJ − =∆

5
2

3 5 00b g a f.

QBC = 0  as this process is adiabatic

P V nRT P V nRTC C C i i i= = =2 19 2 19. .b g a f
so T TC i= 2 19.

Q nC T n R T T nRTCA P i i i= = FHG
I
KJ − = −∆

7
2

2 19 4 17. .b g a f
For the whole cycle,

Q Q Q Q nRT nRT

E Q W

W Q nRT PV

W

ABCA AB BC CA i i

ABCA ABCA ABCA

ABCA ABCA i i i

ABCA

= + + = − =

= = +

= − = − = −

= − × × = −−

5 00 4 17 0 829

0

0 829 0 829

0 829 1 013 10 4 00 10 3365 3

. . .

. .

. . .

a f a f
b g

a f a f
a fe je j

∆ int

3 Pa  m  J

P21.30 (a) See the diagram at the right.

(b) P V P VB B C C
γ γ=

3

3 3 2 191 5 7

PV PV

V V V V
i i i C

C i i i

γ γ

γ

=

= = = .

(c) P V nRT PV nRTB B B i i i= = =3 3

T TB i= 3

(d) After one whole cycle, T TA i=

P

B

Pi

Adiabatic

A C

Vi VC

3Pi

V La f

FIG. P21.30

continued on next page
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(e) In AB, Q nC T n R T T nRTAB V i i i= = FHG
I
KJ − =∆

5
2

3 5 00b g a f.

Q

P V nRT P V nRT T T

Q nC T n R T T nRT

BC

C C C i i i C i

CA P i i i

=

= = = =

= = FHG
I
KJ − = −

0

2 19 2 19 2 19

7
2

2 19 4 17

 as this process is abiabatic

 so . . .

. .

b g
b g∆

For the whole cycle,

Q Q Q Q nRT nRT

E Q W

W Q nRT PV

ABCA AB BC CA i i

ABCA ABCA ABCA

ABCA ABCA i i i

= + + = − =

= = +

= − = − = −

5 00 4 17 0 830

0

0 830 0 830

. . .

. .

a f
b g∆ int

P21.31 (a) The work done on the gas is

W PdVab
V

V

a

b

= − z .

For the isothermal process,

W nRT
V

dV

W nRT
V
V

nRT
V
V

ab a
V

V

ab a
b

a

a

b

a

b

′

′
′

′

= − F
HG
I
KJ

= −
F
HG
I
KJ =

F
HG
I
KJ

′z 1

ln ln .

Thus, Wab ′ = ⋅5 00 293 10 0. ln . mol 8.314 J mol K  Kb ga f a f
Wab ′ = 28 0.  kJ .

FIG. P21.31

(b) For the adiabatic process, we must first find the final temperature, Tb . Since air consists
primarily of diatomic molecules, we shall use

γ air = 1 40.  and C
R

V , air  J mol K= = = ⋅
5
2

5 8 314
2

20 8
.

.
a f

.

Then, for the adiabatic preocess

T T
V
Vb a

a

b
=
F
HG
I
KJ = =

−γ 1
0 400293 10 0 736 K  K. .a f .

Thus, the work done on the gas during the adiabatic process is

W Q E nC T nC T Tab ab V ab V b a− + = − + = −∆ ∆intb g b g b g0

or Wab = ⋅ − =5 00 736 293 46 0. . mol 20.8 J mol K  K  kJb ga f .

continued on next page
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(c) For the isothermal process, we have

P V P Vb b a a′ ′ = .

Thus, P P
V
Vb a

a

b
′

′
=
F
HG
I
KJ = =1 00 10 0. . atm 10.0  atma f .

For the adiabatic process, we have P V P Vb b a a
γ γ= .

Thus, P P
V
Vb a

a

b
=
F
HG
I
KJ = =
γ

1 00 25 11.40. . atm 10.0  atma f .

P21.32 We suppose the air plus burnt gasoline behaves like a diatomic
ideal gas. We find its final absolute pressure:

21 0 400

21 0 1 14

7 5 7 5

7 5

.

. .

 atm 50.0 cm  cm

 atm
1
8

 atm

3 3e j e j=

= F
HG
I
KJ =

P

P

f

f

Now Q = 0

and W E nC T TV f i= = −∆ int d i

 ∴ = − = −W nRT nRT P V PVf i f f i i
5
2

5
2

5
2
d i

FIG. P21.32

W

W

= −
×F

HG
I
KJ

= −

−5
2

1 14 21 0
1

10

150

6. . atm 400 cm  atm 50.0 cm
1.013 10  N m

 atm
 m cm

 J

3 3
5 2

3 3e j e j e j

The output work is − = +W 150 J

The time for this stroke is 
1
4

1 60
6 00 10 3 min

2 500
 s

1 min
 s

F
HG
I
KJ
F
HG
I
KJ = × −.

P =
−

=
×

=−
W
t∆

150
25 03

 J
6.00 10  s

 kW.
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Section 21.4 The Equipartition of Energy

P21.33 The heat capacity at constant volume is nCV . An ideal gas of diatomic molecules has three degrees of
freedom for translation in the x, y, and z directions. If we take the y axis along the axis of a molecule,
then outside forces cannot excite rotation about this axis, since they have no lever arms. Collisions
will set the molecule spinning only about the x and z axes.

(a) If the molecules do not vibrate, they have five degrees of freedom. Random collisions put

equal amounts of energy 
1
2

k TB  into all five kinds of motion. The average energy of one

molecule is 
5
2

k TB . The internal energy of the two-mole sample is

N k T nN k T n R T nC TB A B V
5
2

5
2

5
2

F
HG
I
KJ =

F
HG
I
KJ =
F
HG
I
KJ = .

The molar heat capacity is C RV =
5
2

 and the sample’s heat capacity is

nC n R

nC

V

V

= FHG
I
KJ = ⋅F

HG
I
KJ

=

5
2

2 8 314

41 6

 mol
5
2

 J mol K

 J K

.

.

b g

For the heat capacity at constant pressure we have

nC n C R n R R nR

nC

P V

P

= + = +F
HG

I
KJ = = ⋅F

HG
I
KJ

=

b g b g5
2

7
2

2 8 314

58 2

 mol
7
2

 J mol K

 J K

.

.

(b) In vibration with the center of mass fixed, both atoms are always moving in opposite
directions with equal speeds. Vibration adds two more degrees of freedom for two more
terms in the molecular energy, for kinetic and for elastic potential energy. We have

nC n RV = FHG
I
KJ =

7
2

58 2.  J K

and nC n RP = FHG
I
KJ =

9
2

74 8.  J K

P21.34 (1) E Nf
k T

f
nRTB

int =
F
HG
I
KJ =
F
HG
I
KJ2 2

(2) C
n

dE
dT

fRV = FHG
I
KJ =

1 1
2

int

(3) C C R f RP V= + = +
1
2

2b g

(4) γ = =
+C

C
f

f
P

V

2
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P21.35 Rotational Kinetic Energy =
1
2

2Iω

I mr= 2 2 , m = × × −35 0 1 67 10 27. .  kg , r = −10 10  m

I = × ⋅−1 17 10 45.  kg m2 ω = × −2 00 1012 1.  s

∴ = = × −K Irot  J
1
2

2 33 102 21ω .

 

Cl 

Cl 

FIG. P21.35

Section 21.5 The Boltzmann Distribution Law

Section 21.6 Distribution of Molecular Speeds

P21.36 (a) The ratio of the number at higher energy to the number at lower energy is e E k TB−∆  where
∆E  is the energy difference. Here,

∆E =
×F

HG
I
KJ = ×

−
−10 2

1 60 10
1 63 10

19
18.

.
. eV

 J
1 eV

 Ja f

and at 0°C,

k TB = × = ×− −1 38 10 273 3 77 1023 21. . J K  K  Je ja f .

Since this is much less than the excitation energy, nearly all the atoms will be in the ground
state and the number excited is

2 70 10
1 63 10

2 70 1025
18

21
25 433. exp

.
.×

− ×
×

F
HG

I
KJ = ×

−

−
−e j e j J

3.77 10  J
e .

This number is much less than one, so almost all of the time no atom is excited .

(b) At 10 000°C,

k TB = × = ×− −1 38 10 10 273 1 42 1023 19. . J K  K  Je j .

The number excited is

2 70 10
1 63 10

2 70 10 2 70 1025
18

19
25 11.5 20. exp

.
. .×

− ×
×

F
HG

I
KJ = × = ×

−

−
−e j e j J

1.42 10  J
e .
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P21.37 (a) v
n v
N

i i
av  m s= = + + + + + =∑ 1

15
1 2 2 3 3 5 4 7 3 9 2 12 6 80a f a f a f a f a f a f .

(b) v
n v
N

i i2
2

54 9e j
av

2 2 m s= =∑ .

so v vrms av
 m s= = =2 54 9 7 41e j . .

(c) vmp  m s= 7 00.

P21.38 (a)
V

V

RT
M

RT
M

rms, 35

rms, 37

 g mol
 g mol

= =
F
HG

I
KJ =

3

3

1 2
35

37

37 0
35 0

1 03
.
.

.

(b) The lighter atom, 35 Cl , moves faster.

P21.39 In the Maxwell Boltzmann speed distribution function take 
dN
dv

v = 0  to find

4
2 2

2
2
2

0
3 2 2 3

π
π

N
m
k T

mv
k T

v
mv
k TB B B

F
HG

I
KJ −

F
HG

I
KJ −
F
HG

I
KJ =exp

and solve for v to find the most probable speed.

Reject as solutions v = 0  and v = ∞

Retain only 2 0
2

− =
mv
k TB

Then v
k T
m

B
mp =

2

P21.40 The most probable speed is v
k T
m

B
mp

 J K  K

 kg
 m s= =

×

×
=

−

−
2 2 1 38 10 4 20

6 64 10
132

23

27

. .

.

e ja f
.

P21.41 (a) From v
k T

m
B

av =
8
π

we find the temperature as T =
× ×

× ⋅
= ×

−

−

π 6 64 10 1 12 10

8 1 38 10
2 37 10

27 4 2

23
4

. .

.
.

 kg  m s

 J mol K
 K

e je j
e j

(b) T =
× ×

× ⋅
= ×

−

−

π 6 64 10 2 37 10

8 1 38 10
1 06 10

27 3 2

23
3

. .

.
.

 kg  m s

 J mol K
 K

e je j
e j

P21.42 At 0°C, 
1
2

3
2 0mv k TBrms0

2 =

At the higher temperature, 
1
2

2
3
2

2m v k TBrms0b g =

T T= = = = °4 4 273 1 092 8190  K  K Ca f .



Chapter 21     617

*P21.43 (a) From the Boltzmann distribution law, the number density of molecules with gravitational
energy mgy is n e mgy k TB

0
− . These are the molecules with height y, so this is the number per

volume at height y as a function of y.

(b)
n y

n
e e emgy k T Mgy N k T Mgy RTB A B

b g
0

= = =− − −

=

= =

− × × ⋅

−

−

e

e

28 9 10 9 8 11 10 8 314 293

1.279

3 3

0 278

. . .

.

 kg mol  m s  m  J mol K  K2e je je j b ga f

*P21.44 (a) We calculate

e dy e
mgdy
k T

k T
mg

k T
mg

e
k T
mg

k T
mg

mgy k T mgy k T

B

B

y

B mgy k T B B

B B

B

−
∞

−

=

∞

−
∞

z z= −
F
HG

I
KJ −
F
HG
I
KJ

= − = − − =

0 0

0

0 1a f

Using Table B.6 in the appendix

ye dy
mg k T

k T
mg

mgy k T

B

BB−
∞

z = =
F
HG
I
KJ0

2

2
1!

b g
.

Then y

ye dy

e dy

k T mg

k T mg
k T
mg

mgy k T

mgy k T

B

B

B

B

B

= = =

−
∞

−
∞

z
z

0

0

2b g
.

(b) y
k T

M N g
RT
Mg

B

A
= = =

⋅ ×
= ×−b g

8 314
10

8 31 103
3.

.
 J 283 K s

mol K 28.9  kg 9.8 m
 m

2

Section 21.7 Mean Free Path

P21.45 (a) PV
N

N
RT

A
=
F
HG
I
KJ  and N

PVN
RT

A=  so that

N =
× ×

= ×
−1 00 10 133 1 00 6 02 10

8 314 300
3 21

10 23. . .

.
.

e ja fa fe j
a fa f 10  molecules12

(b) = = =
× × −

1
2 2

1 00

3 21 10 3 00 10 2
2 1 2 2 1 2 12 10 2 1 2n d

V
N dVπ π π

.

. .

 m

 molecules  m

3

e j e j a f
= 779 km

(c) f
v

= = × − −6 42 10 4 1.  s
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P21.46 The average molecular speed is

v
k T
m

k N T
N m

v
RT
M

v

v

B B A

A
= =

=

=
⋅

×

=

−

8 8

8

8 8 314 3 00

178

π π

π

π

. . J mol K  K

2.016 10  kg mol

 m s

3

b g
e j

(a) The mean free path is

= =
×

= ×

−

1
2

1

2 0 200 10

5 63 10

2 9 2

18

π πd nV .

.

 m  1 m

 m

3e j

The mean free time is

v
=

×
= × = ×

5 63 10
3 17 10 1 00 10

18
16 9.

. .
 m

178 m s
 s  yr .

(b) Now nV  is 106  times larger, to make  smaller by 106  times:

= ×5 63 1012.  m .

Thus, 
v
= × = ×3 17 10 1 00 1010 3. . s  yr .

P21.47 From Equation 21.30, =
1

2 2π d nV

For an ideal gas, n
N
V

P
k TV

B
= =

Therefore, =
k T

d P
B

2 2π
, as required.

P21.48 =
−

2 2 1
π d nV n

P
k TV

B
=

d = × −3 60 10 10.  m nV =
×

×
= ×

−

1 013 10

1 38 10 293
2 51 10

5

23
25.

.
.

e ja f
m3

∴ = × −6 93 10 8.  m, or about 193 molecular diameters .
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P21.49 Using P n k TV B= , Equation 21.30 becomes =
k T

Pd
B

2 2π
(1)

(a) =
×

× ×
= ×

−

−

−
1 38 10 293

2 1 013 10 3 10 10
9 36 10

23

5 10 2
8

.

. .
.

 J K  K

 Pa  m
 m

e ja f
e je jπ

(b) Equation (1) shows that P P1 1 2 2= . Taking P1 1  from (a) and with 2 1 00= .  m, we find

P2

8
8

1 00 9 36 10

1 00
9 36 10=

×
= ×

−
−

. .

.
.

 atm  m

 m
 atm

a fe j
.

(c) For 3
103 10 10= × −.  m, we have

P3

81 00 9 36 10
302=

×

×
=

−

−

. . atm  m

3.10 10  m
 atm10

a fe j
.

Additional Problems

P21.50 (a) n
PV
RT

= =
× × ×

⋅
= ×

( . )( . . . )
( . )( )

1 013 10 4 20 3 00 2 50
8 314 293

1 31 10
5

3 Pa  m  m  m
 J mol K  K

.  mol

N nN

N

A= = × ×

= ×

1 31 10 6 02 10

7 89 10

3 23

26

. mol . molecules mol

molecules

  

 

e je j
.

(b) m nM= = × =1 31 10 0 028 9 37 93.  mol .  kg mol  kge jb g .

(c)
1
2

3
2

3
2

1 38 10 293 6 07 100
2 23 21m v k TB= = × = ×− −. .  J k  K J moleculee ja f

(d) For one molecule,

m
M

N

v

A
0 23

26

21

26

0 028 9
6 02 10

4 80 10

2 6 07 10

4 80 10
503

= =
×

= ×

=
×

×
=

−

−

−

.
.

.

.

 kg mol
 molecules mol

.  kg molecule

 J molecule

 kg molecule
 m srms

e j

(e),(f) E nC T n R T PVVint = = FHG
I
KJ =

5
2

5
2

Eint . . .= × =
5
2

1 013 10 31 5 7 985 3
 Pa  m  MJe je j
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P21.51 (a) Pf = 100 kPa Tf = 400 K

V
nRT

Pf
f

f
= =

⋅

×
= =

2 00 400

100 10
0 066 5 66 53

.
. .

 mol 8.314 J mol K  K

 Pa
 m  L3b ga f

∆ ∆E nR Tint  mol  J mol K  K  kJ= = ⋅ =3 50 3 50 2 00 8 314 100 5 82. . . . .a f a fb ga f
W P V nR T= − = − = − ⋅ = −∆ ∆ 2 00 8 314 100 1 66. . . mol  J mol K  K  kJa fb ga f
Q E W= − = + =∆ int  kJ  kJ  kJ5 82 1 66 7 48. . .

(b) Tf = 400 K V V
nRT

Pf i
i

i
= = =

⋅

×
= =

2 00 300

100 10
0 049 9 49 93

.
. .

 mol 8.314 J mol K  K

 Pa
 m  L3b ga f

P P
T

Tf i
f

i
=
F
HG
I
KJ =

F
HG

I
KJ =100

400
133 kPa

 K
300 K

 kPa W PdV= − =z 0  since V = constant

∆Eint  kJ= 5 82.  as in part (a) Q E W= − = − =∆ int  kJ  kJ5 82 0 5 82. .

(c) Pf = 120 kPa Tf = 300 K

V V
P
Pf i

i

f
=
F
HG
I
KJ =

F
HG

I
KJ =49 9 41 6. . L

100 kPa
120 kPa

 L ∆ ∆E nR Tint = =3 50 0.a f  since T = constant

W PdV nRT
dV
V

nRT
V

V
nRT

P
P

W

Q E W

i
V

V

i
f

i
i

i

fi

f

= − = − = −
F
HG
I
KJ = −

F
HG
I
KJ

= − ⋅ F
HG

I
KJ = +

= − = − = −

z z ln ln

. . ln2 00 8 314 300
100

909

0 910 909

 mol  J mol K  K
 kPa

120 kPa
 J

 J  Jint

a fb ga f
∆

(d) Pf = 120 kPa γ = =
+

=
+

= =
C
C

C R
C

R R
R

P

V

V

V

3 50
3 50

4 50
3 50

9
7

.
.

.

.

P V PVf f i i
γ γ= : so V V

P
Pf i

i

f
=
F
HG
I
KJ = F

HG
I
KJ =

1 7 9

49 9 43 3
γ

. . L
100 kPa
120 kPa

 L

T T
P V

PV

E nR T

Q

W Q E

f i
f f

i i
=
F
HG
I
KJ =

F
HG

I
KJ
F
HG

I
KJ =

= = ⋅ =

=

= − + = + = +

300
120 43 3

312

3 50 3 50 2 00 8 314 12 4 722

0

0 722 722

 K
 kPa

100 kPa
 L

49.9 L
 K

 mol  J mol K  K  J

 adiabatic process

 J  J

int

int

.

. . . . .∆ ∆

∆

a f a fb ga f
b g
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P21.52 (a) The average speed vav  is just the weighted average of all the speeds.

v
v v v v v v v

vav =
+ + + + + +

+ + + + + +
=

2 3 2 5 3 4 4 3 5 2 6 1 7

2 3 5 4 3 2 1
3 65

a f a f a f a f a f a f a f
a f .

(b) First find the average of the square of the speeds,

v
v v v v v v v

vav
2 =

+ + + + + +

+ + + + + +
=

2 3 2 5 3 4 4 3 5 2 6 1 7

2 3 5 4 3 2 1
15 95

2 2 2 2 2 2 2

2
a f a f a f a f a f a f a f

. .

The root-mean square speed is then v v vrms av
2= = 3 99. .

(c) The most probable speed is the one that most of the particles have;

i.e., five particles have speed 3 00. v .

(d) PV Nmv=
1
3 av

2

Therefore, P
m v

V
mv

V
= =

F
HG
I
KJ

20
3

15 95
106

2 2.a f
.

(e) The average kinetic energy for each particle is

K mv m v mv= = =
1
2

1
2

15 95 7 982 2
av
2 . .e j .

P21.53 (a) PV kγ = . So, W PdV k
dV
V

P V PV

i

f

i

f
f f i i= − = − =

−

−z z γ γ 1

(b) dE dQ dWint = +  and dQ = 0  for an adiabatic process.

Therefore, W E nC T TV f i= + = −∆ int d i.

To show consistency between these 2 equations, consider that γ =
C
C

P

V
 and C C RP V− = .

Therefore, 
1

1γ −
=

C
R
V .

Using this, the result found in part (a) becomes

W P V PV
C
Rf f i i
V= −d i .

Also, for an ideal gas 
PV
R

nT=  so that W nC T TV f i= −d i.
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*P21.54 (a) W nC T TV f i= −d i
− = ⋅ −2 500 1 8 314 500 J  mol

3
2

 J mol K  K. Tfd i
Tf = 300 K

(b) PV P Vi i f f
γ γ=

P
nRT

P
P

nRT

Pi
i

i
f

f

f

F
HG
I
KJ =
F
HG
I
KJ

γ γ

T P T Pi i f f
γ γ γ γ1 1− −=

T
P

T

P
i

i

f

f

γ γ γ γ− −

=
1 1b g b g

P P
T

Tf i
f

i
=
F
HG
I
KJ

−γ γ 1b g

P P
T

Tf i
f

i
=
F
HG
I
KJ = F

HG
I
KJ =

5 3 3 2 5 2

3 60
300
500

1 00
b gb g

. . atm  atm

*P21.55 Let the subscripts ‘1’ and ‘2’ refer to the hot and cold compartments, respectively. The pressure is
higher in the hot compartment, therefore the hot compartment expands and the cold compartment
contracts. The work done by the adiabatically expanding gas is equal and opposite to the work done
by the adiabatically compressed gas.

nR
T T

nR
T Ti f i fγ γ−

− = −
−

−
1 11 1 2 2d i d i

∴ + = + =T T T Tf f i i1 2 1 2 800 K                                                                   (1)

Consider the adiabatic changes of the gases.

P V P Vi i f f1 1 1 1
γ γ=  and P V P Vi i f f2 2 2 2

γ γ=

∴ =
P V

P V

P V

P V
i i

i i

f f

f f

1 1

2 2

1 1

2 2

γ

γ

γ

γ

∴ =
F
HG
I
KJ

P
P

V

V
i

i

f

f

1

2

1

2

γ

, since V Vi i1 2=  and P Pf f1 2=

∴ =
F
HG

I
KJ

nRT V
nRT V

nRT P

nRT P
i i

i i

f f

f f

1 1

2 2

1 1

2 2

γ

, using the ideal gas law

∴ =
F
HG
I
KJ

T
T

T

T
i

i

f

f

1

2

1

2

γ

, since V Vi i1 2=  and P Pf f1 2=

∴ =
F
HG
I
KJ = FHG

I
KJ =

T

T
T
T

f

f

i

i

1

2

1

2

1 1 1.4550
1 756

γ
 K

250 K
. (2)

Solving equations (1) and (2) simultaneously gives

T Tf f1 2510 290= = K,   K .
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*P21.56 The work done by the gas on the bullet becomes its kinetic energy:

1
2

1
2

1 1 10 7 922 3 2
mv = × =−. . kg 120 m s  Jb g .

The work on the gas is
1

1
7 92

γ −
− = −P V PVf f i id i .  J .

Also P V PVf f i i
γ γ= P P

V
Vf i

i

f
=
F
HG
I
KJ
γ

.

So − =
F
HG
I
KJ −

L

N
MM

O

Q
PP7 92

1
0 40

.
.

 J P V
V
V

Vi f
i

f
i

γ

.

And Vf = + =12 50 13 5 cm  cm 0.03 cm  cm3 2 3. .

Then Pi =
−

−LNM OQP
= × =

7 92 10

13 5 12
5 74 10 56 6

6

12
13 5

1.40
6.

.
. .

.

 J 0.40  cm m

 cm  cm
 Pa  atm

3 3

3 3

a f
c h

.

P21.57 The pressure of the gas in the lungs of the diver must be the same as the absolute pressure of the
water at this depth of 50.0 meters. This is:

P P gh= + = + ×0
31 00 1 03 10 9 80 50 0ρ . . . . atm  kg m  m s  m3 2e je ja f

or P = + ×
×

F
HG

I
KJ =1 00 5 05 10 5 985. . . atm  Pa

1.00 atm
1.013 10  Pa

 atm5

If the partial pressure due to the oxygen in the gas mixture is to be 1.00 atmosphere (or the fraction
1

5 98.
 of the total pressure) oxygen molecules should make up only 

1
5 98.

 of the total number of

molecules. This will be true if 1.00 mole of oxygen is used for every 4.98 mole of helium. The ratio by
weight is then

4 98 4 003

1 00 2 15 999
0 623

. .

. .
.

 mol He  g mol He

 mol O  g mol O2 2

a fb g
b gb g

g

g×
= .

P21.58 (a) Maxwell’s speed distribution function is

N N
m
k T

v ev
B

mv k TB=
F
HG

I
KJ

−4
2

3 2
2 22

π
π

With N = ×1 00 104. ,

m
M

NA
= =

×
= × −0 032

6 02 10
5 32 1023

26.
.

.
 kg

 kg

T = 500 K

and kB = × ⋅−1 38 10 23.  J molecule K

this becomes N v ev
v

= × − − × −

1 71 10 4 2 3 85 10 6 2

.
.e j e j

To the right is a plot of this function for the range
0 1 500≤ ≤v  m s.

FIG. P21.58(a)

continued on next page
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(b) The most probable speed occurs where Nv  is a maximum.

From the graph, vmp  m s≈ 510

(c) v
k T

m
B

av  m s= =
×

×
=

−

−

8 8 1 38 10 500

5 32 10
575

23

26π π

.

.

e ja f
e j

Also,

v
k T
m

B
rms  m s= =

×

×
=

−

−
3 3 1 38 10 500

5 32 10
624

23

26

.

.

e ja f

(d) The fraction of particles in the range 300 600 m s  m s≤ ≤v

is

N dv

N

v
300

600z

where N = 104

and the integral of Nv  is read from the graph as the area under the curve.

This is approximately 4 400 and the fraction is 0.44 or 44% .

P21.59 (a) Since pressure increases as volume decreases  (and vice versa),

dV
dP

< 0  and − LNM
O
QP >

1
0

V
dV
dP

.

(b) For an ideal gas, V
nRT

P
=  and κ 1

1
= − F

HG
I
KJV

d
dP

nRT
P

.

If the compression is isothermal, T is constant and

κ 1 2
1 1

= − −FHG
I
KJ =

nRT
V P P

.

(c) For an adiabatic compression, PV Cγ =  (where C is a constant) and

κ
γ γ γ

γ γ

γ

γ

γ2

1 1

1 1

1

1 1
1 1 1 1

= − F
HG
I
KJ =

F
HG
I
KJ = =

+ +V
d

dP
C
P V

C

P

P
P Pb g .

(d) κ 1
11 1

2 00
0 500= = = −

P .
.

 atm
 atma f

γ =
C
C

P

V
 and for a monatomic ideal gas, γ =

5
3

, so that

κ
γ2 5

3

11 1
2 00

0 300= = = −

P .
.

 atm
 atma f
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P21.60 (a) The speed of sound is v
B

=
ρ

 where B V
dP
dV

= − .

According to Problem 59, in an adiabatic process, this is B P= =
1

2κ
γ .

Also, ρ = = = =
m
V

nM
V

nRT M
V RT

PM
RT

s a f
a f  where ms  is the sample mass. Then, the speed of sound

in the ideal gas is v
B

P
RT
PM

RT
M

= = F
HG
I
KJ =ρ

γ
γ

.

(b) v =
⋅

=
1 40 8 314 293

0 028 9
344

. .

.

 J mol K  K

 kg mol
 m s

b ga f

This nearly agrees with the 343 m/s listed in Table 17.1.

(c) We use k
R

NB
A

=  and M mN A= : v
RT
M

k N T
mN

k T
m

B A

A

B= = =
γ γ γ

.

The most probable molecular speed is 
2k T

m
B ,

the average speed is 
8k T

m
B

π
, and the rms speed is 

3k T
m

B .

All are somewhat larger  than the speed of sound.

P21.61 n
m
M

= = =
1 20

41 5
.

.
 kg

0.028 9 kg mol
 mol

(a) V
nRT

Pi
i

i
= =

⋅

×
=

41 5 8 314 298

200 10
0 5143

. .
.

 mol  J mol K  K

 Pa
 m3a fb ga f

(b)
P

P

V

V
f

i

f

i

=  so V V
P

Pf i
f

i
=
F
HG
I
KJ = F

HG
I
KJ =

2 2

0 514
400
200

2.  m .06 m3 3e j

(c) T
P V

nRf
f f= =

×

⋅
= ×

400 10 2 06

41 5 8 314
2 38 10

3
3

 Pa  m

 mol  J mol K
 K

3e je j
a fb g

.

. .
.

(d) W PdV C V dV
P

V

V P

V
V V

V

V

V

V
i

i V

V
i

i
f i

i

f

i

f

i

f

= − = − = −
F
HG
I
KJ = −

F
HG
I
KJ −z z 1 2

1 2

3 2

1 2
3 2 3 22

3
2
3 e j

W = −
×F

HG
I
KJ −L
NM

O
QP = − ×

2
3

200 10
2 06 0 514 4 80 10

3 3 2 3 2 5 Pa
0.514 m

 m  m  J3. . .e j a f

(e) ∆ ∆E nC TVint  mol  J mol K  K= = ⋅L
NM

O
QP × −41 5

5
2

8 314 2 38 10 2983. . .a f b g e j
∆

∆

E

Q E W
int

int

 J

 J  J  J  MJ

= ×

= − = × + × = × =

1 80 10

1 80 10 4 80 10 2 28 10 2 28

6

6 5 6

.

. . . .
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P21.62 The ball loses energy
1
2

1
2

1
2

0 142 47 2 42 5 29 92 2 2 2mv mvi f− = − =. . . . kg  m s  J2 2b g a f a f

The air volume is V = =π 0 037 0 19 4 0 0832. . . m  m 4 m3b g a f

and its quantity is n
PV
RT

= =
×

⋅
=

1 013 10

8 314 293
3 47

5.

.
.

 Pa 0.083 4 m

 J mol K  K
 mol

3e j
b ga f

The air absorbs energy according to

Q nC TP= ∆

So ∆T
Q

nCP
= =

⋅
= °

29 9
3 47 8 314

0 296
7
2

.
. .

.
 J

 mol  J mol K
Cc hb g

P21.63 N v N
m
k T

v
mv
k Tv

B B
a f = F

HG
I
KJ

−F
HG
I
KJ4

2 2

3 2
2

2

π
π

exp

Note that v
k T
m

B
mp = FHG

I
KJ

2 1 2

Thus, N v N
m
k T

v ev
B

v va f e j=
F
HG

I
KJ

−
4

2

3 2
2

2 2

π
π

mp

And
N v

N v

v
v

ev

v

v va f
e j

e j
mp mp

mp=
F
HG
I
KJ

−
2

1 2 2

For v
v

=
mp

50

N v

N v
ev

v

a f
e j

b g

mp

= FHG
I
KJ = ×

− −1
50

1 09 10
2

1 1 50 3
2

.

The other values are computed similarly, with the
following results:

v
vmp

N v

N v
v

v

a f
e jmp

1
50

1 09 10 3. × −

1
10

2 69 10 2. × −

1
2

0.529

1 1.00
2 0.199

10 1 01 10 41. × −

50 1 25 10 1 082. × −

To find the last value, note:

50 2 500

10 10 10 10 10

2 1 2 500 2 499

2 500 10 2 499 10 2 500 2 499 10 2 500 2 499 10 1 081.904

a f
a fb g

e e

e

− −

− − − −

=

= = =log ln ln log ln log ln
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P21.64 (a) The effect of high angular speed is like the effect of a very high gravitational field on an
atmosphere. The result is:

The larger-mass molecules settle to the outside  while the region at smaller r has a higher

concentration of low-mass molecules.

(b) Consider a single kind of molecules, all of mass m. To cause the centripetal acceleration of
the molecules between r and r dr+ , the pressure must increase outward according to

F mar r∑ = . Thus,

PA P dP A nmA dr r− + = −a f b ge jω 2

where n is the number of molecules per unit volume and A is the area of any cylindrical
surface. This reduces to dP nm rdr= ω 2 .

But also P nk TB= , so dP k TdnB= . Therefore, the equation becomes

dn
n

m
k T

rdr
B

=
ω 2

 giving 
dn
n

m
k T

rdr
n

n

B

r

0

2

0
z z=

ω
or

ln n
m
k T

r
n

n

B

r

a f
0

2 2

0
2

=
F
HG
I
KJ

ω

ln
n

n
m

k T
r

B0

2
2

2
F
HG
I
KJ =

ω
 and solving for n: n n emr k TB= 0

22 2ω .

P21.65 First find vav
2  as v

N
v N dvvav

2 =
∞z1 2

0

. Let a
m
k TB

=
2

.

Then, v
N a

N
v e a

a a
k T
m

av dv B
av
2 = = =

−
−

∞
−z4

4
3

8
3

1 2 3 2
4

0

3 2 1 2
2

2π
π

π

The root-mean square speed is then v v
k T
m

B
rms av

2= =
3

.

To find the average speed, we have

v
N

vN dv
Na

N
v e dv

a
a

k T
mv

av B
av = = = =

∞ −
−

∞ −z z1 4 4
2

8

0

3 2 1 2
3

0

3 2 1 2

2

2π π
π

e j
.

*P21.66 We want to evaluate 
dP
dV

 for the function implied by PV nRT= = constant , and also for the different

function implied by PV γ = constant . We can use implicit differentiation:

From PV = constant P
dV
dV

V
dP
dV

+ = 0
dP
dV

P
V

F
HG
I
KJ = −

isotherm

From PV γ = constant P V V
dP
dV

γ γ γ− + =1 0
dP
dV

P
V

F
HG
I
KJ = −

adiabat

γ

Therefore,
dP
dV

dP
dV

F
HG
I
KJ = FHG

I
KJadiabat isotherm

γ

The theorem is proved.
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P21.67 (a) n
PV
RT

= =
× ×

⋅
=

−1 013 10 5 00 10

8 314 300
0 203

5 3. .

.
.

 Pa  m

 J mol K  K
 mol

3e je j
b ga f

(b) T T
P
PB A

B

A
=
F
HG
I
KJ =

F
HG
I
KJ =300

3 00
1 00

900 K  K
.
.

T T

V V
T
T

C B

C A
C

A

= =

=
F
HG
I
KJ =

F
HG
I
KJ =

900

5 00 15 0

 K

 L
900
300

 L. .

FIG. P21.67

(c) E nRTA Aint,  mol  J mol K  K  J= = ⋅ =
3
2

3
2

0 203 8 314 300 760. .a fb ga f
E E nRTB C Bint, int,  mol  J mol K  K  kJ= = = ⋅ =

3
2

3
2

0 203 8 314 900 2 28. . .a fb ga f

(d) P (atm) V(L) T(K) Eint  (kJ)
A 1.00 5.00 300 0.760
B 3.00 5.00 900 2.28 
C 1.00 15.00 900 2.28 

(e) For the process AB, lock the piston in place and put the cylinder into an oven at 900 K. For
BC, keep the sample in the oven while gradually letting the gas expand to lift a load on the
piston as far as it can. For CA, carry the cylinder back into the room at 300 K and let the gas
cool without touching the piston.

(f) For AB: W = 0 ∆E E EB Aint int, int,  kJ  kJ= − = − =2 28 0 760 1 52. . .a f
Q E W= − =∆ int  kJ1 52.

For BC: ∆Eint = 0 , W nRT
V
VB

C

B
= −

F
HG
I
KJln

W

Q E W

= − ⋅ = −

= − =

0 203 8 314 900 3 00 1 67

1 67

. . ln . .

.

 mol  J mol K  K  kJ

 kJint

a fb ga f a f
∆

For CA: ∆E E EA Cint int, int,  kJ  kJ= − = − = −0 760 2 28 1 52. . .a f
W P V nR T

Q E W

= − = − = − ⋅ − =

= − = − − = −

∆ ∆

∆

0 203 8 314 600 1 01

1 52 1 01 2 53

. . .

. . .

 mol  J mol K  K  kJ

 kJ  kJ  kJint

a fb ga f

(g) We add the amounts of energy for each process to find them for the whole cycle.

Q

W

E

ABCA

ABCA

ABCA

= + + − =

= − + = −

= + + − =

1 52 1 67 2 53 0 656

0 1 67 1 01 0 656

1 52 0 1 52 0

. . . .

. . .

. .

 kJ  kJ  kJ  kJ

 kJ  kJ  kJ

 kJ  kJint∆b g
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P21.68 (a) 10 000
1 00 6 02 10

3 34 10
23

26 g
 mol

18.0 g
 molecules

1.00 mol
 moleculesb g . .

.
F
HG

I
KJ

×F
HG

I
KJ = ×

(b) After one day, 10 1−  of the original molecules would remain. After two days, the fraction
would be 10 2− , and so on. After 26 days, only 3 of the original molecules would likely
remain, and after 27 days , likely none.

(c) The soup is this fraction of the hydrosphere: 
10 0.  kg

1.32 10  kg21×

F
HG

I
KJ .

Therefore, today’s soup likely contains this fraction of the original molecules. The number of
original molecules likely in the pot again today is:

10 0
3 34 10 2 53 1026 6.

. .
 kg

1.32 10  kg
 molecules  molecules21×

F
HG

I
KJ × = ×e j .

P21.69 (a) For escape, 
1
2

2mv
GmM

R
=

E
. Since the free-fall acceleration at the surface is g

GM
R

=
E
2 , this can

also be written as: 
1
2

2mv
GmM

R
mgR= =

E
E .

(b) For O2, the mass of one molecule is

m =
×

= × −0 032 0
6 02 10

5 32 1023
26.

.
.

 kg mol
 molecules mol

 kg molecule .

Then, if mgR
k TB

E = FHG
I
KJ10

3
2

, the temperature is

T
mgR

kB
= =

× ×

× ⋅
= ×

−

−
E

2 kg  m s  m

 J mol K
 K

15

5 32 10 9 80 6 37 10

15 1 38 10
1 60 10

26 6

23
4

. . .

.
.

e je je j
e j

.

P21.70 (a) For sodium atoms (with a molar mass M = 32 0.  g mol )

1
2

3
2

1
2

3
2

3 3 8 314 2 40 10

23 0 10
0 510

2

2

4

3

mv k T

M
N

v k T

v
RT
M

B

A
B

=

F
HG
I
KJ =

= =
⋅ ×

×
=

−

−rms

 J mol K  K

 kg
 m s

. .

.
.

b ge j

(b) t
d

v
= = =

rms

 m
0.510 m s

 ms
0 010

20
.
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ANSWERS TO EVEN PROBLEMS

P21.2 17 6.  kPa P21.42 819°C

P21.4 5 05 10 21. × −  J molecule P21.44 (a) see the solution; (b) 8 31.  km

P21.46 (a) 5 63 1018. ×  m; 1 00 109. ×  yr ;P21.6 6 64 10 27. × −  kg
(b) 5 63 1012. ×  m; 1 00 103. ×  yr

P21.8 477 m s
P21.48 193 molecular diameters

P21.10 (a) 2 28.  kJ; (b) 6 21 10 21. × −  J
P21.50 (a) 7 89 1026. ×  molecules; (b) 37 9.  kg ;

(c) 6 07 10 21. × −
 J molecule ; (d) 503 m s;P21.12 74 8.  J

(e) 7 98.  MJ; (f) 7 98.  MJ
P21.14 7 52.  L

P21.52 (a) 3 65. v ; (b) 3 99. v ; (c) 3 00. v ;
P21.16 (a) 118 kJ ; (b) 6 03 103. ×  kg

(d) 106
2mv

V

F
HG
I
KJ ; (e) 7 98 2. mv

P21.18 (a) 719 J kg K⋅ ; (b) 0 811.  kg ; (c) 233 kJ;
(d) 327 kJ

P21.54 (a) 300 K ; (b) 1 00.  atm

P21.20 13 5. PV
P21.56 5 74 106. ×  Pa

P21.22 (a) 4Ti ; (b) 9 1 mola fRTi
P21.58 (a) see the solution; (b) 5 1 102. ×  m s;

(c) vav  m s= 575 ; vrms  m s= 624 ; (d) 44%P21.24 (a) 0 118. ; (b) 2 35. ; (c) 0; 135 J; 135 J

P21.60 (a) see the solution; (b) 344 m s nearly
agreeing with the tabulated value;

P21.26 (a) 5 15 10 5. × −  m3 ; (b) 560 K ; (c) 2 24.  K

(c) see the solution; somewhat smaller
than each

P21.28 (a) 1 55. ; (b) 0 127.  m3

P21.30 (a) see the solution; (b) 2 19. Vi ; (c) 3Ti ;
P21.62 0 296. °C(d) Ti ; (e) −0 830. PVi i

P21.64 see the solutionP21.32 25 0.  kW

P21.66 see the solutionP21.34 see the solution

P21.68 (a) 3 34 1026. ×  molecules ; (b) during the
27th day; (c) 2 53 106. ×  molecules

P21.36 (a) No atom, almost all the time;
(b) 2 70 1020. ×

P21.70 (a) 0 510.  m s ; (b) 20 msP21.38 (a) 1 03. ; (b) 35 Cl

P21.40 132 m s
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Heat Engines, Entropy, and the
Second Law of Thermodynamics

ANSWERS TO QUESTIONS

Q22.1 First, the efficiency of the automobile engine cannot exceed the
Carnot efficiency: it is limited by the temperature of burning
fuel and the temperature of the environment into which the
exhaust is dumped. Second, the engine block cannot be
allowed to go over a certain temperature. Third, any practical
engine has friction, incomplete burning of fuel, and limits set
by timing and energy transfer by heat.

Q22.2 It is easier to control the temperature of a hot reservoir. If it
cools down, then heat can be added through some external
means, like an exothermic reaction. If it gets too hot, then heat
can be allowed to “escape” into the atmosphere. To maintain
the temperature of a cold reservoir, one must remove heat if
the reservoir gets too hot. Doing this requires either an “even
colder” reservoir, which you also must maintain, or an
endothermic process.

Q22.3 A higher steam temperature means that more energy can be extracted from the steam. For a
constant temperature heat sink at Tc , and steam at Th , the efficiency of the power plant goes as
T T

T
T
T

h c

h

c

h

−
= −1  and is maximized for a high Th .

Q22.4 No. Any heat engine takes in energy by heat and must also put out energy by heat. The energy that
is dumped as exhaust into the low-temperature sink will always be thermal pollution in the outside
environment. So-called ‘steady growth’ in human energy use cannot continue.

Q22.5 No. The first law of thermodynamics is a statement about energy conservation, while the second is a
statement about stable thermal equilibrium. They are by no means mutually exclusive. For the
particular case of a cycling heat engine, the first law implies Q W Qh eng c= + , and the second law

implies Qc > 0.

Q22.6 Take an automobile as an example. According to the first law or the idea of energy conservation, it
must take in all the energy it puts out. Its energy source is chemical energy in gasoline. During the
combustion process, some of that energy goes into moving the pistons and eventually into the
mechanical motion of the car. Clearly much of the energy goes into heat, which, through the cooling
system, is dissipated into the atmosphere. Moreover, there are numerous places where friction, both
mechanical and fluid, turns mechanical energy into heat. In even the most efficient internal
combustion engine cars, less than 30% of the energy from the fuel actually goes into moving the car.
The rest ends up as useless heat in the atmosphere.

631
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Q22.7 Suppose the ambient temperature is 20°C. A gas can be heated to the temperature of the bottom of
the pond, and allowed to cool as it blows through a turbine. The Carnot efficiency of such an engine

is about e
T

Tc
h

= = =
∆ 80

373
22%.

Q22.8 No, because the work done to run the heat pump represents energy transferred into the house by
heat.

Q22.9 A slice of hot pizza cools off. Road friction brings a skidding car to a stop. A cup falls to the floor and
shatters. Your cat dies. Any process is irreversible if it looks funny or frightening when shown in a
videotape running backwards. The free flight of a projectile is nearly reversible.

Q22.10 Below the frost line, the winter temperature is much higher than the air or surface temperature. The
earth is a huge reservoir of internal energy, but digging a lot of deep trenches is much more
expensive than setting a heat-exchanger out on a concrete pad. A heat pump can have a much
higher coefficient of performance when it is transferring energy by heat between reservoirs at close
to the same temperature.

Q22.11 (a) When the two sides of the semiconductor are at different temperatures, an electric potential
(voltage) is generated across the material, which can drive electric current through an
external circuit. The two cups at 50°C contain the same amount of internal energy as the pair
of hot and cold cups. But no energy flows by heat through the converter bridging between
them and no voltage is generated across the semiconductors.

(b) A heat engine must put out exhaust energy by heat. The cold cup provides a sink to absorb
output or wasted energy by heat, which has nowhere to go between two cups of equally
warm water.

Q22.12 Energy flows by heat from a hot bowl of chili into the cooler surrounding air. Heat lost by the hot
stuff is equal to heat gained by the cold stuff, but the entropy decrease of the hot stuff is less than the
entropy increase of the cold stuff. As you inflate a soft car tire at a service station, air from a tank at
high pressure expands to fill a larger volume. That air increases in entropy and the surrounding
atmosphere undergoes no significant entropy change. The brakes of your car get warm as you come
to a stop. The shoes and drums increase in entropy and nothing loses energy by heat, so nothing
decreases in entropy.

Q22.13 (a) For an expanding ideal gas at constant temperature, ∆
∆

S
Q

T
nR

V
V

= =
F
HG
I
KJln 2

1
.

(b) For a reversible adiabatic expansion ∆Q = 0 , and ∆S = 0 . An ideal gas undergoing an
irreversible adiabatic expansion can have any positive value for ∆S  up to the value given in
part (a).

Q22.14 The rest of the Universe must have an entropy change of +8.0 J/K, or more.

Q22.15 Even at essentially constant temperature, energy must flow by heat out of the solidifying sugar into
the surroundings, to raise the entropy of the environment. The water molecules become less
ordered as they leave the liquid in the container to mix into the whole atmosphere and
hydrosphere. Thus the entropy of the surroundings increases, and the second law describes the
situation correctly.
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Q22.16 To increase its entropy, raise its temperature. To decrease its entropy, lower its temperature.
“Remove energy from it by heat” is not such a good answer, for if you hammer on it or rub it with a
blunt file and at the same time remove energy from it by heat into a constant temperature bath, its
entropy can stay constant.

Q22.17 An analogy used by Carnot is instructive: A waterfall continuously converts mechanical energy into
internal energy. It continuously creates entropy as the organized motion of the falling water turns
into disorganized molecular motion. We humans put turbines into the waterfall, diverting some of
the energy stream to our use. Water flows spontaneously from high to low elevation and energy
spontaneously flows by heat from high to low temperature. Into the great flow of solar radiation
from Sun to Earth, living things put themselves. They live on energy flow, more than just on energy.
A basking snake diverts energy from a high-temperature source (the Sun) through itself temporarily,
before the energy inevitably is radiated from the body of the snake to a low-temperature sink (outer
space). A tree builds organized cellulose molecules and we build libraries and babies who look like
their grandmothers, all out of a thin diverted stream in the universal flow of energy crashing down
to disorder. We do not violate the second law, for we build local reductions in the entropy of one
thing within the inexorable increase in the total entropy of the Universe. Your roommate’s exercise
puts energy into the room by heat.

Q22.18 (a) Entropy increases as the yeast dies and as energy is transferred from the hot oven into the
originally cooler dough and then from the hot bread into the surrounding air.

(b) Entropy increases some more as you metabolize the starches, converting chemical energy
into internal energy.

Q22.19 Either statement can be considered an instructive analogy. We choose to take the first view. All
processes require energy, either as energy content or as energy input. The kinetic energy which it
possessed at its formation continues to make the Earth go around. Energy released by nuclear
reactions in the core of the Sun drives weather on the Earth and essentially all processes in the
biosphere. The energy intensity of sunlight controls how lush a forest or jungle can be and how
warm a planet is. Continuous energy input is not required for the motion of the planet. Continuous
energy input is required for life because energy tends to be continuously degraded, as heat flows
into lower-temperature sinks. The continuously increasing entropy of the Universe is the index to
energy-transfers completed.

Q22.20 The statement is not true. Although the probability is not exactly zero that this will happen, the
probability of the concentration of air in one corner of the room is very nearly zero. If some billions
of molecules are heading toward that corner just now, other billions are heading away from the
corner in their random motion. Spontaneous compression of the air would violate the second law of
thermodynamics. It would be a spontaneous departure from thermal and mechanical equilibrium.

Q22.21 Shaking opens up spaces between jellybeans. The smaller ones more often can fall down into spaces
below them. The accumulation of larger candies on top and smaller ones on the bottom implies a
small increase in order, a small decrease in one contribution to the total entropy, but the second law
is not violated. The total entropy increases as the system warms up, its increase in internal energy
coming from the work put into shaking the box and also from a bit of gravitational energy loss as the
beans settle compactly together.
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SOLUTIONS TO PROBLEMS

Section 22.1 Heat Engines and the Second Law of Thermodynamics

P22.1 (a) e
W

Qh
= = =eng  J

360 J
25 0

0 069 4
.

.  or 6 94%.

(b) Q Q Wc h= − = − =eng  J  J  J360 25 0 335.

P22.2 W Q Qh ceng  J= − = 200 (1)

e
W

Q
Q
Qh

c

h
= = − =

eng 1 0 300. (2)

From (2), Q Qc h= 0 700. (3)

Solving (3) and (1) simultaneously,

we have

(a) Qh = 667 J  and

(b) Qc = 467 J .

P22.3 (a) We have e
W

Q
Q Q

Q
Q
Qh

h c

h

c

h
= =

−
= − =

eng 1 0 250.

with Qc = 8 000 J, we have Qh = 10 7.  kJ

(b) W Q Qh ceng  J= − = 2 667

and from P =
W

t
eng

∆
, we have ∆t

W
= = =

eng  J
5 000 J s

 s
P

2 667
0 533. .

*P22.4 We have Q Qhx hy= 4 , W Wx yeng eng = 2  and Q Qcx cy= 7 . As well as Q W Qhx x cx= +eng  and

Q W Qhy y cy= +eng . Substituting, 4 2 7Q W Qhy y cy= +eng 

4 2 7 7

5 3

Q W Q W

W Q
hy y hy y

y hy

= + −

=
eng eng 

eng 

(b) e
W

Qy
y

hy
= = =

eng 3
5

60 0%.

(a) e
W

Q

W

Qx
x

hx

y

hy
= = = = =

eng eng 2

4
2
4

0 600 0 300 30 0%. . .a f
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*P22.5 (a) The input energy each hour is

7 89 10 2 500
60

1 18 103 9. .× = × J revolution  rev min
 min
1 h

 J he jb g

implying fuel input 1 18 10
1

29 49. .×
×

F
HG

I
KJ = J h

 L
4.03 10  J

 L h7e j

(b) Q W Qh c= +eng . For a continuous-transfer process we may divide by time to have

Q
t

W

t
Q

t
W

t
Q

t
Q

t

h c

h c

∆ ∆ ∆

∆ ∆ ∆

= +

= = −

=
×

−
×F

HG
I
KJ = ×

= × F
HG

I
KJ =

eng

eng

eng

Useful power output

 J
revolution

 J
revolution 1 min

 min
60 s

 W

 W
1 hp

746 W
 hp

7 89 10 4 58 10 2 500 rev 1
1 38 10

1 38 10 185

3 3
5

5

. .
.

.P

(c) P
P

eng
eng  J s

 rev 60 s
 rev

2  rad
 N m= ⇒ = =

× F
HG

I
KJ = ⋅τω τ

ω π
1 38 10
2 500

1
527

5.

b g

(d)
Q

t
c

∆
=

× F
HG

I
KJ = ×

4 58 10 2 500
1 91 10

3
5.

.
 J

revolution
 rev

60 s
 W

P22.6 The heat to melt 15.0 g of Hg is Q mLc f= = × × =−15 10 1 18 10 1773 4 kg  J kg  Je je j.

The energy absorbed to freeze  1.00 g of aluminum is

Q mLh f= = × =−10 3 97 10 3973 5 kg  J / kg  Je je j.

and the work output is W Q Qh ceng  J= − = 220

e
W

Qh
= = =

eng  J
397 J
220

0 554. , or 55 4%.

The theoretical (Carnot) efficiency is
T T

T
h c

h

−
=

−
= =

933
933

0 749 74 9%
 K 243.1 K

 K
. .

Section 22.2 Heat Pumps and Refrigerators

P22.7 COP refrigeratorb g = Q
W

c

(a) If Qc = 120 J  and COP .= 5 00 , then W = 24 0.  J

(b) Heat expelled = Heat removed + Work done.

Q Q Wh c= + = + =120 24 144 J  J  J
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P22.8 COP .= =3 00
Q
W

c . Therefore, W
Qc=
3 00.

.

The heat removed each minute is

Q
t
C = ° ° + ×

+ ° ° = ×

0 030 0 4 186 22 0 0 030 0 3 33 105.  kg  J kg C . C .  kg .  J kg

0.030 0 kg 2 090 J kg C 20.0 C 1.40 10  J min4

b gb ga f b ge j
b gb ga f

or, 
Q
t

c = 233 J s.

Thus, the work done per sec = = =P
233

3 00
77 8

 J s
 W

.
. .

P22.9 (a) 10 0
1055 1

3 600
1
1

2 93. . 
Btu

h W
 J

1 Btu
 h

 s
 W
 J s⋅

F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG
I
KJ =

(b) Coefficient of performance for a refrigerator: COP refrigeratora f

(c) With EER 5, 5
10 000

 
Btu

h W
 Btu h

⋅
=

P
: P = = =

⋅

10 000
2 000 2 00

5

 Btu h
 W  kW

 Btu
h W

.

Energy purchased is P ∆t = = ×2 00 1 500 3 00 103.  kW  h .  kWha fb g
Cost  kWh  kWh= × =3 00 10 0 1003. . $ $300e jb g

With EER 10, 10 
10 000Btu

h W
 Btu h

⋅
=

P
: P = = =

⋅

10 000
1 000 1 00

10 Btu

 Btu h
 W  kW

h W

.

Energy purchased is P ∆t = = ×1 00 1 50 103. . kW 1 500 h  kWha fb g
Cost .  kWh  kWh= × =1 50 10 0 1003e jb g. $ $150

Thus, the cost for air conditioning is half as much with EER 10

Section 22.3 Reversible and Irreversible Processes

No problems in this section

Section 22.4 The Carnot Engine

P22.10 When e ec= , 1 − =
T
T

W

Q
c

h h

eng  and 
W

t
Q

t

c

hh

T
T

eng

∆

∆

= −1

(a) Q
t

h

W
t

T
T

c

h

=
FH IK

−
=

×

−

eng
 W  s∆ ∆

1

1 50 10 3 600

1

5

293
773

.e jb g

Qh = × =8 69 10 8698.  J  MJ

(b) Q Q
W

t
tc h= −

F
HG
I
KJ = × − × = × =

eng  J  MJ
∆

∆ 8 69 10 1 50 10 3 600 3 30 10 3308 5 8. . .e jb g
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P22.11 Tc = 703 K Th = 2 143 K

(a) e
T

Tc
h

=
∆

= =
1 440
2 143

67 2%.

(b) Qh = ×1 40 105.  J , W Qheng = 0 420.

P = =
×

=
W

t
eng  J

 s
 kW

∆
5 88 10

1
58 8

4.
.

P22.12 The Carnot efficiency of the engine is e
T

Tc
h

=
∆

= =
120

0 253
 K

473 K
.

At 20.0% of this maximum efficiency, e = =0 200 0 253 0 050 6. . .a f
From the definition of efficiency W Q eheng =

and Q
W

eh = = =
eng  kJ

.
 kJ

10 0
0 050 6

197
.

P22.13 Isothermal expansion at Th = 523 K

Isothermal compression at Tc = 323 K

Gas absorbs 1 200 J during expansion.

(a) Q Q
T
Tc h

c

h
=
F
HG
I
KJ =

F
HG
I
KJ =1 200 741 J

323
523

 J

(b) W Q Qh ceng  J  J= − = − =1 200 741 459b g

P22.14 We use e
T
Tc

c

h
= −1

as 0 300 1
573

.
 K

= −
Th

From which, Th = = °819 546 K C

*P22.15 The efficiency is e
T
T

Q
Qc

c

h

c

h
= − = −1 1

Then
T
T

c

h

Q
t

Q
t

c

h
= ∆

∆

Q
t

Q
t

T
T

h c h

c∆ ∆
= =

+
+

=15 4
100

273 20
19 6. . W

273  K
 K

 W
a f
a f

(a) Q W Qh c= +eng

The useful power output is
W

t
Q

t
Q

t
h ceng  W  W  W

∆ ∆ ∆
= − = − =19 6 15 4 4 20. . .

(b) Q
Q

t
t mLh

h
V=

F
HG
I
KJ =

∆
∆ m

Q
t

t
L

h

V
= =

×

F
HG

I
KJ = × −

∆
∆

19 6 3 12 10 2. . J s
3 600 s

2.26 10  J kg
 kg6b g
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P22.16 The Carnot summer efficiency is e
T
Tc s

c

h
, .= − = −

+
+

=1 1
273 20
273 350

0 530
a f
a f

 K
 K

And in winter, ec w, .= − =1
283
623

0 546

Then the actual winter efficiency is 0 320
0 546
0 530

0 330.
.
.

.F
HG
I
KJ =  or 33 0%.

P22.17 (a) In an adiabatic process, P V PVf f i i
γ γ= .  Also, 

P V

T
PV
T

f f

f

i i

i

F
HG
I
KJ =
F
HG
I
KJ

γ γ

.

Dividing the second equation by the first yields T T
P

Pf i
f

i
=
F
HG
I
KJ

−γ γ1b g
.

Since γ =
5
3

 for Argon, 
γ
γ
−

= =
1 2

5
0 400.  and we have

Tf =
×
×

F
HG

I
KJ =1 073

300 10
1 50 10

564
3

6

0 400

 K
Pa
Pa

 K
 

 

.

b g
.

.

(b) ∆ ∆E nC T Q W WVint = = − = −eng eng0 , so W nC TVeng = − ∆ ,

and the power output is

P

P .

= =
−

=
− ⋅ −

= × =

W

t
nC T

t
Veng

 mol
 kg

 or

 kg  J mol K K

 s
 W 212 kW

∆

80 0 8 314 564 1 073

60 0
2 12 10

1.00
0 039 9

3
2

5

. .

.
.b ge jc hb gb g

(c) e
T
TC

c

h
= − = − =1 1

564
1 073

0 475
 K
 K

.  or 47 5%.

P22.18 (a) e
T
T

c

h
max . .= − = − = × =−1 1

278
293

5 12 10 5 12%2

(b) P = = ×
W

t
eng  J s
∆

75 0 106.

Therefore, Weng  J s  s h  J h= × = ×75 0 10 3 600 2 70 106 11. .e jb g

From e
W

Qh
=

eng  we find Q
W

eh = =
×

×
= × =−

eng  J h
 J h  TJ h

2 70 10
5 12 10

5 27 10 5 27
11

2
12.

.
. .

(c) As fossil-fuel prices rise, this way to use solar energy will become a good buy.
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*P22.19 (a) e
W W

Q
e Q e Q

Qh

h h

h
=

+
=

+eng1 eng2

1

1 1 2 2

1

Now Q Q Q W Q e Qh c h h h2 1 1 1 1 1 1= = − = −eng .

So e
e Q e Q e Q

Q
e e e eh h h

h
=

+ −
= + −1 1 2 1 1 1

1
1 2 1 2

b g
.

(b) e e e e e
T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

i

h

c

i

i

h

c

i

i

h

c

i

i

h

c

i

c

h

c

h

= + − = − + − − −
F
HG
I
KJ −
F
HG
I
KJ = − − − + + − = −1 2 1 2 1 1 1 1 2 1 1

The combination of reversible engines is itself a reversible engine so it has the Carnot
efficiency.

(c) With W Weng2 eng1= , e
W W

Q

W

Q
e

h h
=

+
= =

eng1 eng2 eng1

1 1
1

2
2

1 2 1

0 1
2

2

1
2

− = −
F
HG
I
KJ

− = −

= +

= +

T
T

T
T

T
T

T
T

T T T

T T T

c

h

i

h

c

h

i

h

i h c

i h cb g

(d) e e
T
T

T
T

T T T

T T T

i

h

c

i

i c h

i h c

1 2

2

1 2

1 1= = − = −

=

= b g

P22.20 The work output is W meng train .  m s=
1
2

5 00
2b g .

We are told e
W

Qh
=

eng

0 200
1
2

5 00 2

.
.  m s

= m
Qt

h

b g

and e
T

m
QC

h
t

h
= − =1

300 1
2

6 50 K .  m s 2b g
.

Substitute Q mh t=
1
2

5 00

0 200

2.

.

 m sb g
.

Then, 1
300

0 200
6 50

5 00

1
2

2

1
2

2− =
F
H
GG

I
K
JJ

 K
.

 m s

 m sT

m

mh

t

t

.

.

b g
b g

1
300

0 338

300
0 662

453

− =

= =

 K
.

 K
 K

T

T

h

h .
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P22.21 For the Carnot engine, e
T
Tc

c

h
= − = − =1 1

300
0 600

 K
750 K

. .

Also, e
W

Qc
h

=
eng .

so Q
W

eh
c

= = =
eng  J

 J
150
0 600

250
.

.

and Q Q Wc h= − = − =eng  J  J  J250 150 100 .

FIG. P22.21

(a) Q
W

eh
S

= = =
eng  J

0.700
 J

150
214

Q Q Wc h= − = − =eng  J  J  J214 150 64 3.

(b) Qh, .net  J  J  J= − = −214 250 35 7

Qc , . .net  J  J  J= − = −64 3 100 35 7

The net flow of energy by heat from the cold to the hot
reservoir without work input, is impossible. FIG. P22.21(b)

(c) For engine S: Q Q W
W

e
Wc h

S
= − = −eng

eng
eng .

so W
Qc

eS

eng
 J

 J=
−

=
−

=
1 1

0 7001
100

1
233

.

.

and Q Q Wh c= + = + =eng  J  J  J233 100 333 .

(d) Qh, .net  J  J  J= − =333 250 83 3

Wnet  J  J  J= − =233 150 83 3.

Qc ,net = 0

The output of 83.3 J of energy from the heat engine
by work in a cyclic process without any exhaust by
heat is impossible.

FIG. P22.21(d)

(e) Both engines operate in cycles, so ∆ = ∆ =S SS Carnot 0 .

For the reservoirs, ∆ = −S
Q
Th

h

h
 and ∆ = +S

Q
Tc

c

c
.

Thus, ∆ = ∆ + ∆ + ∆ + ∆ = + − + = −S S S S SS h ctotal Carnot
 J

750 K  K
 J K0 0

83 3 0
300

0 111
.

. .

A decrease in total entropy is impossible.
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P22.22 (a) First, consider the adiabatic process D A→ :

P V P VD D A A
γ γ=  so P P

V
VD A

A

D
=
F
HG
I
KJ = F

HG
I
KJ =

γ

1 400 712
5 3

 kPa
10.0 L
15.0 L

 kPa .

Also
nRT

V
V

nRT
V

VD

D
D

A

A
A

F
HG
I
KJ =
F
HG
I
KJ

γ γ

or T T
V
VD A

A

D
=
F
HG
I
KJ = F

HG
I
KJ =

−γ 1 2 3

720 549 K
10.0
15.0

 K .

Now, consider the isothermal process C D→ : T TC D= = 549 K .

P P
V
V

P
V
V

V
V

P V

V VC D
D

C
A

A

D

D

C

A A

C D

=
F
HG
I
KJ =
F
HG
I
KJ

L
N
MM

O
Q
PP
F
HG
I
KJ = −

γ γ

γ 1

PC = =
1 400 10 0

24 0 15 0
445

5 3

2 3

 kPa  L

 L  L
 kPa

.

. .

a f
a f

Next, consider the adiabatic process B C→ : P V P VB B C C
γ γ= .

But, P
P V

V VC
A A

C D

= −

γ

γ 1 from above. Also considering the isothermal process, P P
V
VB A

A

B
=
F
HG
I
KJ .

Hence, P
V
V

V
P V

V V
VA

A

B
B

A A

C D
C

F
HG
I
KJ =
F
HG

I
KJ−

γ
γ

γ
γ

1  which reduces to V
V V

VB
A C

D
= = =

10 0
15 0

16 0
.

.
.

 L 24.0 L
 L

 L
a f

.

Finally, P P
V
VB A

A

B
=
F
HG
I
KJ =

F
HG

I
KJ =1 400 875 kPa

10.0 L
16.0 L

 kPa .

State P(kPa) V(L) T(K)
A
B
C
D

1 400
  875
  445
  712

10.0
16.0
24.0
15.0

720
720
549
549

(b) For the isothermal process A B→ : ∆ ∆E nC TVint = = 0

so Q W nRT
V
V

B

A
= − =

F
HG
I
KJ = ⋅ F

HG
I
KJ = +ln . ln

.

.
.2 34 720

16 0
10 0

6 58 mol 8.314 J mol K  K  kJb ga f .

For the adiabatic process B C→ : Q = 0

∆E nC T TV C Bint  mol
3
2

 J mol K  K  kJ= − = ⋅L
NM

O
QP − = −b g b g a f2 34 8 314 549 720 4 98. . .

and W Q E= − + = + − = −∆ int  kJ  kJ0 4 98 4 98. .a f .

continued on next page
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For the isothermal process C D→ : ∆ ∆E nC TVint = = 0

and Q W nRT
V
V

D

C
= − =

F
HG
I
KJ = ⋅ F

HG
I
KJ = −ln . ln

.

.
.2 34 549

15 0
24 0

5 02 mol 8.314 J mol K  K  kJb ga f .

Finally, for the adiabatic process D A→ : Q = 0

∆E nC T TV A Dint  mol
3
2

 J mol K  K  kJ= − = ⋅L
NM

O
QP − = +b g b g a f2 34 8 314 720 549 4 98. . .

and W Q E= − + = + = +∆ int  kJ  kJ0 4 98 4 98. . .

Process Q(kJ) W(kJ) ∆Eint (kJ)
 A B→  +6.58 –6.58 0
 B C→  0 –4.98 –4.98
 C D→  –5.02 +5.02 0
 D A→  0 +4.98 +4.98
ABCDA +1.56 –1.56 0

The work done by the engine is the negative of the work input.  The output work Weng  is

given by the work column in the table with all signs reversed.

(c) e
W

Q
W
Qh

ABCD

A B
= =

−
= =

→

eng  kJ
6.58 kJ
1 56

0 237
.

.  or 23 7%.

e
T
Tc

c

h
= − = − =1 1

549
720

0 237.  or 23 7%.

P22.23 COP refriga f = = =
T
T
c

∆
270
30 0

9 00
.

.

P22.24 COP heat pumpa f =
+

= = =
Q W

W
T

T
c h

∆
295
25

11 8.

P22.25 (a) For a complete cycle, ∆Eint = 0  and W Q Q Q
Q

Qh c c
h

c
= − = −

L
N
MM

O
Q
PP

b g
1 .

We have already shown that for a Carnot cycle (and only for a Carnot cycle)
Q
Q

T
T

h

c

h

c
= .

Therefore, W Q
T T

Tc
h c

c
=

−L
NM

O
QP

.

(b) We have the definition of the coefficient of performance for a refrigerator, COP =
Q
W

c .

Using the result from part (a), this becomes COP =
−

T
T T

c

h c
.
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P22.26 COP COPCarnot cycle= 0 100.

or
Q
W

Q
W

h h=
F
HG
I
KJ =

F
HG

I
KJ0 100 0 100

1
. .

Carnot cycle
Carnot efficiency

Q
W

T
T T

h h

h c
=

−
F
HG

I
KJ = −

F
HG

I
KJ =0 100 0 100

293
268

1 17. . .
 K

293 K  K

FIG. P22.26

Thus, 1 17.  joules of energy enter the room by heat for each joule of work done.

P22.27 COP Carnot refriga f = = = =
T
T

Q
W

c c

∆
4 00
289

0 013 8
.

.

∴ =W 72 2.  J  per 1 J energy removed by heat.

P22.28 A Carnot refrigerator runs on minimum power.

For it:  
Q
T

Q
T

h

h

c

c
=  so 

Q t
T

Q t
T

h

h

c

c
= .

Solving part (b) first:

(b)
Q
t

Q
t

T
T

h c h

c
=
F
HG
I
KJ =

F
HG

I
KJ = × F

HG
I
KJ =8 00

298
8 73 10

1
2 436. . . MJ h

 K
273 K

 J h
 h

3 600 s
 kWb g e j

(a)
W
t

Q
t

Q
t

h c= − = −
×

=2 43
8 00 10

3 600
204

6

.
.

 kW
 J h

 s h
 W

P22.29 e
W
Qh

= = 0 350. W Qh= 0 350.

Q W Qh c= + Q Qc h= 0 650.

COP refrigeratorb g = = =
Q
W

Q
Q

c h

h

0 650
0 350

1 86
.
.

.

*P22.30 To have the same efficiencies as engines, 1 1− = −
T

T
T
T

cp

hp

cr

hr
 the pump and refrigerator must operate

between reservoirs with the same ratio 
T

T
T
T

cp

hp

cr

hr
= , which we define as r. Now COP COPp r= 1 50.

becomes 
T

T T
T

T T
hp

hp cp

cr

hr cr−
=

−
3
2

 or 
T

T rT
rT

T rT
hp

hp hp

hr

hr hr−
=

−
3
2

, 
2

1
3

1−
=

−r
r
r

, r =
2
3

.

(a) COPr = −
=

−
=

r
r1 1

2 00
2
3

2
3

.

(b) COPp =
−

=
−

=
1

1
1

1
3 002

3r
.

(c) e r= − = − =1 1
2
3

33 3%.
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Section 22.5 Gasoline and Diesel Engines

P22.31 (a) PV P Vi i f f
γ γ=

P P
V
Vf i

i

f
=
F
HG
I
KJ = ×

F
HG

I
KJ =

γ

3 00 10
50 0
300

2446
1.40

.
.

 Pa
 cm
 cm

 kPa
3

3e j

(b) W PdV
V

V

i

i

= z P P
V
Vi

i= FHG
I
KJ
γ

Integrating,

W PV
V
Vi i

i

f
=

−
F
HG
I
KJ −

F
HG
I
KJ

L

N
MM

O

Q
PP = × × −

F
HG

I
KJ

L
N
MM

O
Q
PP

=

−

−1
1

1 2 50 3 00 10 5 00 10 1
50 0
300

192

1

6 5
0 400

γ

γ

. . .
.

.

a fe je j Pa  m
 cm
 cm

 J

3
3

3

P22.32 Compression ratio = 6 00. , γ = 1 40.

(a) Efficiency of an Otto-engine e
V
V

= −
F
HG
I
KJ

−

1 2

1

1γ

e = − FHG
I
KJ =1

1
6 00

51 2%
0 400

.
.

.

.

(b) If actual efficiency ′ =e 15 0%.  losses in system are e e− ′ = 36 2%. .

P22.33 e
V V

Otto = − = − = −− −
1

1
1

1

6 20
1

1

6 201 2
1 7 5 1 0 400b g a f a fb gγ

. . .

eOtto = 0 518.

We have assumed the fuel-air mixture to behave like a diatomic gas.

Now e
W

Q

W t

Q th h
= =

eng eng

Q
t

W t

e
Q
t

Q W Q

Q
t

Q
t

W

t
Q
t

h

h

h c

c h

c

= =

=

= +

= −

= × −
F
HG

I
KJ =

eng

eng

eng

 hp
746 W 1 hp

 kW

 W  hp
746 W
1 hp

 kW

102
0 518

146

146 10 102 70 83

.

.
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P22.34 (a), (b) The quantity of gas is

n
P V
RT

E nRT P V

A A

A

A A A A

= =
× ×

⋅
=

= = = × × =

−

−

100 10 500 10

8 314 293
0 020 5

5
2

5
2

5
2

100 10 500 10 125

3 6

3 6

 Pa  m

 J mol K  K
 mol

 Pa  m  J

3

int, 
3

e je j
b ga f

e je j
.

.

In process AB, P P
V
VB A

A

B
=
F
HG
I
KJ = × = ×
γ

100 10 8 00 1 84 103 1.40 6 Pa  Pae ja f. .

T
P V
nR

E nRT

B
B B

B B

= =
× ×

⋅
=

= = ⋅ =

−1 84 10 500 10 8 00

0 020 5 8 314
673

5
2

5
2

0 020 5 8 314 673 287

6 6. .

. .

. .

 Pa  m

 mol  J mol K
 K

 mol  J mol K  K  J

3

int, 

e je j
b gb g
b gb ga f

so ∆E Q W WABint, out out J  J  J= − = = − = −287 125 162 0 WAB = −162 J

Process BC takes us to:

P
nRT

V

E nRT

E Q W Q

Q

C
C

C

C

BC

BC

= =
⋅

×
= ×

= = ⋅ =

= − = = − = −

=

−

0 020 5 8 314 1 023

62 5 10
2 79 10

5
2

5
2

0 020 5 8 314 1 023 436

436 287 149 0

149

6
6. .

.
.

. .

 mol  J mol K  K

 m
 Pa

 mol  J mol K  K  J

 J  J  J

 J

3

int, C

int, out

b gb gb g

b gb gb g

In process CD:

P P
V
V

T
P V

nR

E nRT

E Q W W

W

D C
C

D

D
D D

D D

CD

CD

=
F
HG
I
KJ = × F

HG
I
KJ = ×

= =
× ×

⋅
=

= = ⋅ =

= − = − = − = −

=

−

γ

2 79 10
1

8 00
1 52 10

1 52 10 500 10

0 020 5 8 314
445

5
2

5
2

0 020 5 8 314 445 190

190 436 246 0

246

6
1.40

5

5 6

.
.

.

.

. .

. .

 Pa  Pa

 Pa  m

 mol  J mol K
 K

 mol  J mol K  K  J

 J  J  J

 J

3

int, 

int, out out

e j

e je j
b gb g
b gb ga f

∆

and ∆E E E Q W QDA A Dint, int, int, out J  J  J= − = − = − = − = −125 190 65 0 0.

QDA = −65 0.  J

continued on next page
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For the entire cycle, ∆Eint, net  J= + − − =162 149 246 65 0 0. . The net work is

W

Q

eng

net

 J  J  J

 J  J  J

= − + + + =

= + + − =

162 0 246 0 84 3

0 149 0 65 0 84 3

.

. .

The tables look like:

State T(K) P(kPa) V(cm3 ) Eint  (J)
A    293    100 500   125
B    673 1 840 62.5 287
C 1 023 2 790 62.5 436
D    445    152 500   190
A    293    100 500   125

Process Q(J) output W(J) ∆Eint  (J)
AB    0 –162       162
BC 149 0   149
CD    0 246   –246
DA   –65.0 0     –65.0

ABCDA     84.3 84.3      0

(c) The input energy is Qh = 149 J , the waste is Qc = 65 0.  J , and Weng  J= 84 3. .

(d) The efficiency is:  e
W

Qh
= = =

eng  J
149 J
84 3

0 565
.

. .

(e) Let f represent the angular speed of the crankshaft.  Then 
f
2

 is the frequency at which we

obtain work in the amount of 84.3 J/cycle:

1 000
2

84 3

2 000
84 3

23 7 1 42 103

 J s  J cycle

 J s
 J cycle

 rev s  rev min

= FHG
I
KJ

= = = ×

f

f

.

.
. .

b g

Section 22.6 Entropy

P22.35 For a freezing process,

∆
∆

S
Q

T
= =

− ×
= −

0 500 3 33 10

273
610

5. . kg  J kg

 K
 J K

b ge j
.
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P22.36 At a constant temperature of 4.20 K,

∆
∆

∆

S
Q

T
L

S

v= = =

= ⋅
4 20

20 5
4 20

4 88
.

.
.

.
 K

 kJ kg
 K

 kJ kg K

P22.37 ∆S
dQ
T

mcdT
T

mc
T

Ti

f

T

T
f

ii

f

= = =
F
HG
I
KJz z ln

∆S = ⋅° F
HG
I
KJ = =250

353
293

46 6 195 g 1.00 cal g C  cal K  J Kb g ln .

*P22.38 (a) The process is isobaric  because it takes place under constant atmospheric pressure. As

described by Newton’s third law, the stewing syrup must exert the same force on the air as
the air exerts on it. The heating process is not adiabatic (energy goes in by heat), isothermal
(T goes up), isovolumetic (it likely expands a bit), cyclic (it is different at the end), or
isentropic (entropy increases). It could be made as nearly reversible as you wish, by not
using a kitchen stove but a heater kept always just incrementally higher in temperature
than the syrup. The process would then also be eternal, and impractical for food production.

(b) The final temperature is

220 212 8 100 8
0
32

104° = ° + ° = ° + °
− °
− °

F
HG

I
KJ = °F F F C F

100 C
212 F

C.

For the mixture,

Q m c T m c T= + = ⋅° + ⋅° ° − °

= × = ×

1 1 2 2

4 5

900 930 104 4 23

9 59 10 4 02 10

∆ ∆  g 1 cal g C  g 0.299 cal g C C C

 cal  J

b ga f.

. .

(c) Consider the reversible heating process described in part (a):

∆S
dQ
T

m c m c dT
T

m c m c
T

Ti

f

i

f
f

i
= =

+
= +

= + ° FHG
I
KJ

°F
HG
I
KJ

+
+

F
HG

I
KJ

= = ×

z z 1 1 2 2
1 1 2 2

3

900 1 930 0 299
4 186 1 273 104

273 23

4 930 1 20 10

b g b g

a f a f b g
b g

ln

.
.

ln

.

cal C
 J

1 cal
C

1 K

 J K 0.243  J K
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*P22.39 We take data from the description of Figure 20.2 in section 20.3, and we assume a constant specific
heat for each phase. As the ice is warmed from –12°C to 0°C, its entropy increases by

∆

∆

∆

S
dQ
T

mc dT
T

mc T dT mc T

S

S

i

f

= = = =

= ⋅° − = ⋅° F
HG
I
KJ

F
HG

I
KJ

=

z z z −ice

 K

273 K

ice
 K

273 K

ice  K
273 K

 kg 2 090 J kg C  K  K  kg 2 090 J kg C

 J K

261

1

261
261

0 027 0 273 261 0 027 0
273
261

2 54

ln

. ln ln . ln

.

b ga f b g

As the ice melts its entropy change is

∆S
Q
T

mL

T
f= = =

×
=

0 027 0

273
32 9

.
.

 kg 3.33 10  J kg

 K
 J K

5e j

As liquid water warms from 273 K to 373 K,

∆S
mc dT

T
mc

T

Ti

f
f

i
= =

F
HG
I
KJ = ⋅° F

HG
I
KJ =z liquid

liquid  kg 4 186 J kg C  J Kln . ln .0 027 0
373
273

35 3b g

As the water boils and the steam warms,

∆

∆

S
mL

T
mc

T

T

S

v f

i
= +

F
HG
I
KJ

=
×

+ ⋅° F
HG
I
KJ = +

steam

6 kg 2.26 10  J kg

 K
 kg 2 010 J kg C  J K  J K

ln

.
. ln .

0 027 0

373
0 027 0

388
373

164 2 14
e j b g

The total entropy change is

2 54 32 9 35 3 164 2 14 236. . . .+ + + + =a f J K  J K .

We could equally well have taken the values for specific heats and latent heats from Tables 20.1 and
20.2. For steam at constant pressure, the molar specific heat in Table 21.2 implies a specific heat of

35 4
1

1 970.  J mol K
 mol

0.018 kg
 J kg K⋅

F
HG

I
KJ = ⋅b g , nearly agreeing with 2 010 J kg K⋅ .

Section 22.7 Entropy Changes in Irreversible Processes

P22.40 ∆S
Q
T

Q
T

= − = −
F
HG

I
KJ =2

2

1

1

1 000
290

1 000
5 700

3 27 J K  J K.

P22.41 The car ends up in the same thermodynamic state as it started, so it undergoes zero changes in
entropy. The original kinetic energy of the car is transferred by heat to the surrounding air, adding
to the internal energy of the air. Its change in entropy is

∆S
mv
T

= = =
1
2

2 2750 20 0
293

1 02
.

.
a f

 J K  kJ K .
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P22.42 c iron  J kg C= ⋅°448 ; cwater  J kg C= ⋅°4 186

Q Qcold hot= − : 4 00 10 0 1 00 448 900. . . kg 4 186 J kg C C  kg  J kg C C⋅° − ° = − ⋅° − °b gd i b gb gd iT Tf f

which yields Tf = ° =33 2 306 2. .C  K

∆

∆

∆

∆

S
c m dT

T
c m dT

T

S c m c m

S

S

= +

= F
HG
I
KJ +

F
HG
I
KJ

= ⋅ + ⋅ −

=

z zwater water

 K

306.2 K
iron iron

 K

306.2 K

water water iron iron

 J kg K  kg  J kg K  kg

 J K

283 1 173

306 2
283

306 2
1 173

4 186 4 00 0 078 8 448 1 00 1 34

718

ln
.

ln
.

. . . .b gb gb g b gb ga f

P22.43 Sitting here writing, I convert chemical energy, in ordered molecules in food, into internal energy
that leaves my body by heat into the room-temperature surroundings.  My rate of energy output is
equal to my metabolic rate,

2 500
2 500 10 4 186

120
3

 kcal d
 cal

86 400 s
 J

1 cal
 W=

× F
HG

I
KJ =

.
.

My body is in steady state, changing little in entropy, as the environment increases in entropy at the
rate

∆
∆ ∆

∆S
t

Q T
t

Q t
T

= = = =
120

0 4 1
 W

293 K
 W K  W K. ~ .

When using powerful appliances or an automobile, my personal contribution to entropy production
is much greater than the above estimate, based only on metabolism.

P22.44 (a) V
nRT

P
i

i
= =

⋅

×
= × =−40 0 8 314 473

39 9 100 10
39 4 10 39 4

3
3. .

.
. .

 g  J mol K  K

 g mol  Pa
 m  L3b gb ga f

b ge j

(b) ∆ ∆E nC TVint
 gm

39.9 g mol
 J mol K C  kJ= =

F
HG

I
KJ ⋅L
NM

O
QP − ° = −

40 0 3
2

8 314 200 2 50
.

. .b g a f

(c) W = 0 so Q E= = −∆ int  kJ2 50.

(d) ∆S
dQ
T

nC
T

Ti

f

V
f

i
argon = =

F
HG
I
KJz ln

 =
F
HG

I
KJ ⋅L
NM

O
QP
F
HG
I
KJ = −

40 0 3
2

8 314
273
473

6 87
.

. ln .
 g

39.9 g mol
 J mol K  J Kb g

(e) ∆Sbath
 kJ

273 K
 J K= = +

2 50
9 16

.
.

The total change in entropy is

∆ ∆ ∆

∆

S S S

S
total argon bath

total

 J K  J K  J K

 for this irreversible process.

= + = − + = +

>

6 87 9 16 2 29

0

. . .
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P22.45 ∆S nR
V

V
Rf

i
=
F
HG
I
KJ = =ln ln .2 5 76 J K

There is no change in temperature .

FIG. P22.45

P22.46 ∆S nR
V

V
Rf

i
=
F
HG
I
KJ =ln . ln0 044 0 2 2b ga f

∆S = =0 088 0 8 314 2 0 507. . ln .a f  J K

 

FIG. P22.46

P22.47 For any infinitesimal step in a process on an ideal gas,

dE dQ dWint = + : dQ dE dW nC dT PdV nC dT
nRTdV

VV V= − = + = +int

and
dQ
T

nC
dT
T

nR
dV
VV= +

If the whole process is reversible, ∆S
dQ

T
nC

dT
T

nR
dV
V

nC
T

T
nR

V

V
r

i

f

V
i

f

V
f

i

f

i
= = +F

HG
I
KJ =

F
HG
I
KJ +

F
HG
I
KJz z ln ln

Also, from the ideal gas law,
T

T

P V

PV
f

i

f f

i i
=

∆S = ⋅L
NM

O
QP
F
HG

I
KJ + ⋅

F
HG

I
KJ

=

1 00
3
2

8 314
2 00 0 040 0

1 00 0 025 0
1 00 8 314

0 040 0
0 025 0

18 4

. . ln
. .

. .
. . ln

.

.

.

 mol  J mol K  mol  J mol K

 J K

a f b g a fb g
a fb g a fb g

P22.48 ∆S nC
T

T
nR

V

VV
f

i

f

i
=

F
HG
I
KJ +

F
HG
I
KJln ln

= ⋅L
NM

O
QP

⋅F
HG

I
KJ + ⋅ F

HG
I
KJ

=

1 00
5
2

8 314
2 2

1 00 8 314
2

34 6

. . ln . . ln

.

 mol  J mol K  mol  J mol K

 J K

a f b g a fb gP V
PV

V
V

S∆
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Section 22.8 Entropy on a Microscopic Scale

P22.49 (a) A 12 can only be obtained one  way 6 6+

(b) A 7 can be obtained six  ways: 6 1+ , 5 2+ , 4 3+ , 3 4+ , 2 5+ , 1 6+

P22.50 (a) The table is shown below. On the basis of the table, the most probable result of a toss is
2 heads and 2 tails .

(b) The most ordered state is the least likely state. Thus, on the basis of the table this is
either all heads or all tails .

(c) The most disordered is the most likely state. Thus, this is 2 heads and 2 tails .

Result Possible Combinations Total
All heads HHHH 1

3H, 1T THHH, HTHH, HHTH, HHHT 4
2H, 2T TTHH, THTH, THHT, HTTH, HTHT, HHTT 6
1H, 3T HTTT, THTT, TTHT, TTTH 4
All tails TTTT 1

P22.51 (a) Result Possible Combinations Total
All red RRR 1
2R, 1G RRG, RGR, GRR 3
1R, 2G RGG, GRG, GGR 3

All green GGG 1

(b) Result Possible Combinations Total
All red RRRRR 1
4R, 1G RRRRG, RRRGR, RRGRR, RGRRR, GRRRR 5
3R, 2G RRRGG, RRGRG, RGRRG, GRRRG, RRGGR,

RGRGR, GRRGR, RGGRR, GRGRR, GGRRR 10
2R, 3G GGGRR, GGRGR, GRGGR, RGGGR, GGRRG,

GRGRG, RGGRG, GRRGG, RGRGG, RRGGG 10
1R, 4G RGGGG, GRGGG, GGRGG, GGGRG, GGGGR 5

All green GGGGG 1

Additional Problems

P22.52 The conversion of gravitational potential energy into kinetic energy as the water falls is reversible.
But the subsequent conversion into internal energy is not. We imagine arriving at the same final
state by adding energy by heat, in amount mgy, to the water from a stove at a temperature
infinitesimally above 20.0°C. Then,

∆S
dQ
T

Q
T

mgy
T

= = = = = ×z 5 000 1 000 9 80 50 0

293
8 36 106

 m  kg m  m s  m

 K
 J K

3 3 2e je ja f. .
. .
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P22.53 (a) Pelectric =
H

t
ET

∆
 so if all the electric energy is converted into internal energy, the steady-state

condition of the house is described by H QET = .

Therefore, Pelectric  W= =
Q

t∆
5 000

(b) For a heat pump, COP
 K

27 KCarnota f = = =
T

T
h

∆
295

10 92.

Actual COP = = = =0 6 10 92 6 55. . .a f Q
W

Q t
W t

h h ∆

∆

Therefore, to bring 5 000 W of energy into the house only requires input power

Pheat pump COP
 W

6.56
 W= = = =

W
t

Q th

∆

∆ 5 000
763

P22.54 Q mc T mL mc Tc = + + =∆ ∆

Q

Q

Q
W

T
T T

W
Q T T

T

c

c

c
c

c

h c

c h c

c

= ⋅° ° + × + ⋅° °

= ×

= =
−

=
−

=
× ° − − °

−
=

0 500 10 0 500 0 500 20

2 08 10

2 08 10 20 0 20 0

273 20 0
32 9

5

5

. . .

.

. . .

.
.

 kg 4 186 J kg C C  kg 3.33 10  J kg  kg 2 090 J kg C C

 J

COP refrigerator

 J C C

 K
 kJ

5b ga f e j b ga f

b g

b g e j a f
a f

P22.55 ∆Shot
 J

600 K
=
−1 000

∆Scold
 J

350 K
=
+750

(a) ∆ ∆ ∆S S SU = + =hot cold  J K0 476.

(b) e
T
Tc = − =1 0 4171

2
.

W e Qc heng  J  J= = =0 417 1 000 417. b g

(c) Wnet  J  J  J= − =417 250 167

T SU1 350 167∆ = = K 0.476 J K  Jb g
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*P22.56 (a) The energy put into the engine by the hot reservoir is dQ mcdTh h= . The energy put into the

cold reservoir by the engine is dQ mcdT e dQ
T
T

mcdTc c h
c

h
h= − = − = − −

F
HG
I
KJ

L
NMM

O
QPP

1 1 1a f . Then

− =

− =

− =

=

=

=

z z

dT
T

dT
T

dT
T

dT
T

T T

T
T

T

T

T T T

T T T

c

c

h

h

T

T

T

T

T
T

T
T

c

f

f

h

f c h

f h c

c

f

h

f

c

f

h

fln ln

ln ln

2

1 2b g

(b) The hot reservoir loses energy Q mc T Th h f= −d i . The cold reservoir gains Q mc T Tc f c= −d i .
Then Q W Qh c= +eng .

W mc T T mc T T

mc T T T T T T

mc T T T T mc T T

h f f c

h h c h c c

h h c c h c

eng = − − −

= − − +

= − + = −

d i d i
e j
e j e j2

2

P22.57 (a) For an isothermal process, Q nRT
V
V

=
F
HG
I
KJln 2

1

Therefore, Q nR Ti1 3 2= b g ln
and Q nR Ti3

1
2

= F
HG
I
KJb g ln

For the constant volume processes, Q E nR T Ti i2
3
2

3= = −∆ int, 2 b g
and Q E nR T Ti i4

3
2

3= = −∆ int, 4 b g
The net energy by heat transferred is then

Q Q Q Q Q= + + +1 2 3 4 FIG. P22.57

or Q nRTi= 2 2ln .

(b) A positive value for heat represents energy transferred into the system.

Therefore, Q Q Q nRTh i= + = +1 4 3 1 2lna f
Since the change in temperature for the complete cycle is zero,

∆Eint = 0  and W Qeng =

Therefore, the efficiency is e
W

Q
Q
Qc

h h
= = =

+
=

eng 2 2
3 1 2

0 273
ln

ln
.a f
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P22.58 (a)
W

t
eng

electrical W= ×1 50 108. a f, Q mL t
W

t= =
L
N
MM
O
Q
PP

eng

0 150.
∆ ,

and L = = ×33 0 33 0 106. . kJ g  J kg

m
W t t

L

m

=
L
NM

O
QP

=
×

×
=

eng

 W  s day

 J kg  kg metric ton
 metric tons day

0 150

1 50 10 86 400

0 150 33 0 10 10
2 620

8

6 3

.

.

. .

∆

e jb g
e je j

(b) Cost = $8.00 2 618 365metric ton  metric tons day  days yrb gb gb g
Cost = $7.65 million year

(c) First find the rate at which heat energy is discharged into the water.  If the plant is 15.0%
efficient in producing electrical energy then the rate of heat production is

Q
t

W

t e
c =
F
HG
I
KJ −FHG
I
KJ = × −F

HG
I
KJ = ×

eng  W  W
1

1 1 50 10
1

0 150
1 8 50 108 8.

.
.e j .

Then, 
Q
t

mc T
t

c =
∆

 and

m
t c T

Q
t

c

= =
×
⋅° °

= ×
∆

8 50 10
4 186 5 00

4 06 10
8

4.
.

.
 J s

 J kg C C
 kg sb ga f .

P22.59 e
T
T

W

Qc
c

h h

W
t

Q
t
h

= − = =1 eng
eng

∆

∆

:
Q

t T T
T

T T
h

c h

h

h c∆
=

−
=

−
P P

1b g

Q W Qh c= +eng :
Q

t
Q

t

W

t
c h

∆ ∆ ∆
= −

eng

Q
t

T
T T

T
T T

c h

h c

c

h c∆
=

−
− =

−
P

P
P

Q mc Tc = ∆ :
Q

t
m
t

c T
T

T T
c c

h c∆
∆
∆

∆= FHG
I
KJ =

−
P

∆
∆ ∆
m
t

T
T T c T

c

h c
=

−
P

b g
∆
∆
m
t
=

×

⋅° °
= ×

1 00 10 300

200 6 00
5 97 10

9
4

.

.
.

 W  K

 K 4 186 J kg C C
 kg s

e ja f
b ga f
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P22.60 e
T
T

W

Qc
c

h h

W
t

Q
t
h

= − = =1 eng
eng

∆

∆

Q
t

T
T T

h
T
T

h

h cc

h
∆

=
−

=
−

P P

1e j
Q

t
Q

t
T

T T
c h c

h c∆ ∆
=
F
HG
I
KJ − =

−
P

P

Q mc Tc = ∆ , where c is the specific heat of water.

Therefore,
Q

t
m
t

c T
T

T T
c c

h c∆
∆
∆

∆= FHG
I
KJ =

−
P

and
∆
∆ ∆
m
t

T
T T c T

c

h c
=

−
P

b g

P22.61 (a) 35 0
5
9

35 0 32 0 1 67 273 15 274 82. . . . . .° = − ° = + =F C  K  Ka f a f

98 6
5
9

98 6 32 0 37 0 273 15 310 15

453 6 1 00 453 6
310 15
274 82

54 86

453 6 1 00
310 15 274 82

310 15
51 67

54 86 51 67 3 19

274.82

310 15

. . . . . .

. . . ln
.
.

.

. .
. .

.
.

. . .

.

° = − ° = + =

= = ⋅ × = F
HG

I
KJ =

= − = −
−

= −

= − =

z z
F C  K  K

 g  cal g K  cal K

 cal K

 cal K

ice water

body
body

system

a f a f

b gb g

a fa f a f
∆

∆

∆

S
dQ
T

dT
T

S
Q

T

S

(b) 453 6 1 274 82 70 0 10 1 310 153. . . .a fa fb g e ja fb gT TF F− = × −

Thus,

70 0 0 453 6 10 70 0 310 15 0 453 6 274 82 103 3. . . . . .+ × = + ×b g a fa f b ga fTF

and TF = = ° = °309 92 36 77 98 19. . . K C F

∆

∆

′ = F
HG

I
KJ =

′ = − × F
HG

I
KJ = −

S

S

ice water

body

 cal K

 cal K

453 6
309 92
274 82

54 52

70 0 10
310 15
309 92

51 933

. ln
.
.

.

. ln
.
.

.e j
∆ ′ = − =Ssys  cal K54 52 51 93 2 59. . .  which is less than the estimate in part (a).
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P22.62 (a) For the isothermal process AB, the work on the gas is

W P V
V
V

W

W

AB A A
B

A

AB

AB

= −
F
HG
I
KJ

= − × × F
HG
I
KJ

= − ×

−

ln

. . ln
.
.

.

5 1 013 10 10 0 10
50 0
10 0

8 15 10

5 3

3

 Pa  m

 J

3e je j

where we have used 1 00 1 013 105. . atm  Pa= ×

and 1 00 1 00 10 3. . L  m3= × −

FIG. P22.62

W P VBC B= − = − × − × = + ×−∆ 1 013 10 10 0 50 0 10 4 05 105 3 3. . . . Pa m  J3e j a f
WCA = 0  and W W WAB BCeng  J  kJ= − − = × =4 11 10 4 113. .

(b) Since AB is an isothermal process, ∆E ABint, = 0

and Q WAB AB= − = ×8 15 103.  J

For an ideal monatomic gas, C
R

V =
3
2

 and C
R

P =
5
2

T T
P V
nR R RB A
B B= = =

× ×
=

×
−1 013 10 50 0 10 5 05 10

5 3 3. . .e je j

Also, T
P V
nR R RC
C C= =

× ×
=

×
−1 013 10 10 0 10 1 01 10

5 3 3. . .e je j

Q nC T R
RCA V= = F

HG
I
KJ

× − ×F
HG

I
KJ =∆ 1 00

3
2

5 05 10 1 01 10
6 08

3 3

.
. .

.  kJ

so the total energy absorbed by heat is Q QAB CA+ = + =8 15 6 08 14 2. . . kJ  kJ  kJ .

(c) Q nC T nR T P VBC P B BC= = =∆ ∆ ∆
5
2

5
2

a f

QBC = × − × = − × = −−5
2

1 013 10 10 0 50 0 10 1 01 10 10 15 3 4. . . . .e j a f  J  kJ

(d) e
W

Q

W

Q Qh AB CA
= =

+
=

×
×

=
eng eng

4
 J

1.42 10  J
4 11 10

0 289
3.

.  or 28 9%.
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*P22.63 Like a refrigerator, an air conditioner has as its purpose the removal of energy by heat from the cold
reservoir.

Its ideal COP is COP
 K

20 KCarnot = −
= =

T
T T

c

h c

280
14 0.

(a) Its actual COP is 0 400 14 0 5 60. . .a f = =
−

=
−

Q
Q Q

Q t

Q t Q t
c

h c

c

h c

∆

∆ ∆

5 60 5 60. .
Q

t
Q

t
Q

t
h c c

∆ ∆ ∆
− =

5 60 10 0 6 60. . . kWa f = Q
t
c

∆
 and 

Q
t
c

∆
= 8 48.  kW

(b) Q W Qh c= +eng :
W

t
Q

t
Q

t
h ceng  kW  kW  kW

∆ ∆ ∆
= − = − =10 0 8 48 1 52. . .

(c) The air conditioner operates in a cycle, so the entropy of the working fluid does not change.
The hot reservoir increases in entropy by

Q
T

h

h
=

×
= ×

10 0 10 3 600

300
1 20 10

3
5

.
.

 J s  s

 K
 J K

e jb g

The cold room decreases in entropy by

∆S
Q
T

c

c
= − = −

×
= − ×

8 48 10 3 600

280
1 09 10

3
5

.
.

 J s  s

 K
 J K

e jb g

The net entropy change is positive, as it must be:

+ × − × = ×1 20 10 1 09 10 1 09 105 5 4. . . J K  J K  J K

(d) The new ideal COP is COP
 K

25 KCarnot = −
= =

T
T T

c

h c

280
11 2.

We suppose the actual COP is 0 400 11 2 4 48. . .a f =
As a fraction of the original 5.60, this is 

4 48
5 60

0 800
.
.

.= , so the fractional change is to

drop by 20.0% .

P22.64 (a) W PdV nRT
dV
V

RT
V

V
RT

V

V

V

V
i

ii

f

i

i

= = =
F
HG
I
KJ =z z

2

1 00
2

2. ln lna f

(b) The second law refers to cycles.
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P22.65 At point A, PV nRTi i i= and n = 1 00.  mol

At point B, 3PV nRTi i B= so T TB i= 3

At point C, 3 2P V nRTi i Cb gb g = and T TC i= 6

At point D, P V nRTi i D2b g = so T TD i= 2

The heat for each step in the cycle is found using C
R

V =
3
2

 and

C
R

P =
5
2

:

Q nC T T nRT

Q nC T T nRT

Q nC T T nRT

Q nC T T nRT

AB V i i i

BC P i i i

CD V i i i

DA P i i i

= − =

= − =

= − = −

= − = −

3 3

6 3 7 50

2 6 6

2 2 50

b g
b g
b g
b g

.

.

FIG. P22.65

(a) Therefore, Q Q Q Q nRTh AB BC ientering = = + = 10 5.

(b) Q Q Q Q nRTc CD DA ileaving = = + = 8 50.

(c) Actual efficiency, e
Q Q

Q
h c

h
=

−
= 0 190.

(d) Carnot efficiency, e
T
T

T
Tc

c

h

i

i
= − = − =1 1

6
0 833.

*P22.66 ∆S
dQ
T

nC dT
T

nC T dT nC T nC T T nC
T

Ti

f
P

i

f

P
i

f

P T
T

P f i P
f

i
i

f= = = = = − =
F
HG
I
KJz z z −1 ln ln ln lnd i

∆S nC
PV

nR
nR
PV

nCP
f

i
P=

F
HG

I
KJ =ln ln 3

*P22.67 (a) The ideal gas at constant temperature keeps constant internal energy. As it puts out energy
by work in expanding it must take in an equal amount of energy by heat. Thus its entropy
increases. Let Pi , Vi , Ti  represent the state of the gas before the isothermal expansion. Let
PC , VC , Ti  represent the state after this process, so that PV P Vi i C C= . Let Pi , 3Vi , Tf  represent

the state after the adiabatic compression.

Then P V P VC C i i
γ γ= 3b g

Substituting P
PV
VC
i i

C
=

gives PV V P Vi i C i i
γ γ γ− =1 3e j

Then V VC i
γ γ γ− −=1 13  and 

V
V

C

i
= −3 1γ γb g

continued on next page
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The work output in the isothermal expansion is

W PdV nRT V dV nRT
V
V

nRT nRT
i

C

i
i

C

i
C

i
i i= = =

F
HG
I
KJ = =

−
F
HG
I
KJz z − −1 13

1
3ln ln lnγ γ γ

γ
b ge j

This is also the input heat, so the entropy change is

∆S
Q
T

nR= =
−
F
HG
I
KJ

γ
γ 1

3ln

Since C C C RP V V= = +γ

we have γ − =1b gC RV , C
R

V =
−γ 1

and C
R

P =
−
γ
γ 1

Then the result is ∆S nCP= ln 3

(b) The pair of processes considered here carry the gas from the initial state in Problem 66 to the
final state there. Entropy is a function of state. Entropy change does not depend on path.
Therefore the entropy change in Problem 66 equals ∆ ∆S Sisothermal adiabatic+  in this problem.
Since ∆Sadiabatic = 0, the answers to Problems 66 and 67 (a) must be the same.

P22.68 Simply evaluate the maximum (Carnot) efficiency.

e
T

TC
h

= = =
∆ 4 00

0 014 4
.

.
 K

277 K

The proposal does not merit serious consideration.

P22.69 The heat transfer over the paths CD and BA is zero
since they are adiabatic.

Over path BC: Q nC T TBC P C B= − >b g 0

Over path DA: Q nC T TDA V A D= − <b g 0

Therefore, Q Qc DA=  and Q Qh BC=

The efficiency is then

e
Q
Q

T T C
T T C

e
T T
T T

c

h

D A V

C B P

D A

C B

= − = −
−

−

= −
−
−

L
NM

O
QP

1 1

1
1

b g
b g

γ

P

B C

D

A

Vi Vi3

Adiabatic
Processes

V

FIG. P22.69
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P22.70 (a) Use the equation of state for an ideal gas

V
nRT

P

V

V

A

C

=

=
×

= ×

=
×

= ×

−

−

1 00 8 314 600

25 0 1 013 10
1 97 10

1 00 8 314 400

1 013 10
32 8 10

5
3

5
3

. .

. .
.

. .

.
.

a fa f
e j
a fa f

 m

 m

3

3

FIG. P22.70

Since AB is isothermal, P V P VA A B B=

and since BC is adiabatic, P V P VB B C C
γ γ=

Combining these expressions, V
P
P

V
VB

C

A

C

A
=
F
HG
I
KJ

L
N
MM

O
Q
PP = FHG

I
KJ

×

×

L

N
MMM

O

Q
PPP

− −

−

γ γ1 1 3 1.40

3

1 0 400

1 00
25 0

32 8 10

1 97 10

b g b g
e j.

.

.

.

.

 m

 m

3

3

VB = × −11 9 10 3.  m3

Similarly, V
P
P

V
VD

A

C

A

C
=
F
HG
I
KJ

L
N
MM

O
Q
PP = FHG

I
KJ

×

×

L

N
MMM

O

Q
PPP

− −

−

γ γ1 1 3 1.40

3

1 0 400

25 0
1 00

1 97 10

32 8 10

b g b g
e j.

.

.

.

.

 m

 m

3

3

or VD = × −5 44 10 3.  m3

Since AB is isothermal, P V P VA A B B=

and P P
V
VB A

A

B
=
F
HG
I
KJ =

×
×

F
HG

I
KJ =

−

−25 0
11 9 10

4 143.
.

. atm
1.97 10  m

 m
 atm

3 3

3

Also, CD is an isothermal and P P
V
VD C

C

D
=
F
HG
I
KJ =

×
×

F
HG

I
KJ =

−

−1 00
5 44 10

6 03
3

3.
.

. atm
32.8 10  m

 m
 atm

3

3

Solving part (c) before part (b):

(c) For this Carnot cycle, e
T
Tc

c

h
= − = − =1 1

400
0 333

 K
600 K

.

(b) Energy is added by heat to the gas during the process AB. For the isothermal process,
∆Eint = 0 .

and the first law gives Q W nRT
V
VAB AB h

B

A
= − =

F
HG
I
KJln

or Q Qh AB= = ⋅ F
HG
I
KJ =1 00 600

11 9
1 97

8 97. ln
.

.
. mol 8.314 J mol K  K  kJb ga f

Then, from e
W

Qh
=

eng

the net work done per cycle is W e Qc heng  kJ  kJ= = =0 333 8 97 2 99. . .a f .
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P22.71 (a) 20 0. °C

(b) ∆S mc
T

T
mc

T

T

T

T

T

T
f f f f= + = ⋅ +

L
NM

O
QP
= ⋅F

HG
I
KJln ln . . ln ln . ln

1 2 1 2
1 00 4 19 4 19

293
283

293
303

 kg  kJ kg K  kJ Kb g b g

(c) ∆S = +4 88.  J K

(d) Yes . Entropy has increased.

ANSWERS TO EVEN PROBLEMS

P22.2 (a) 667 J ; (b) 467 J P22.34 (a), (b) see the solution;
(c) Qh = 149 J ; Qc = 65 0.  J ; Weng  J= 84 3. ;

P22.4 (a) 30 0%. ; (b) 60 0%. (d) 56.5%; (e) 1 42 103. ×  rev min

P22.6 55 4%. P22.36 4 88.  kJ kg K⋅

P22.8 77 8.  W
P22.38 (a) isobaric; (b) 402 kJ; (c) 1 20.  kJ K

P22.10 (a) 869 MJ; (b) 330 MJ
P22.40 3 27.  J K

P22.12 197 kJ
P22.42 718 J K

P22.14 546°C
P22.44 (a) 39 4.  L ; (b) −2 50.  kJ; (c) −2 50.  kJ;

(d) −6 87.  J K ; (e) +9 16.  J KP22.16 33 0%.

P22.46 0 507.  J KP22.18 (a) 5 12%. ; (b) 5 27.  TJ h;
(c) see the solution

P22.48 34 6.  J K
P22.20 453 K

P22.50 (a) 2 heads and 2 tails ;
(b) All heads or all tails ;P22.22 (a), (b) see the solution;
(c) 2 heads and 2 tails(c) 23 7%. ; see the solution

P22.52 8 36.  MJ KP22.24 11.8

P22.26 1 17.  J P22.54 32 9.  kJ

P22.28 (a) 204 W ; (b) 2 43.  kW P22.56 see the solution

P22.30 (a) 2 00. ; (b) 3 00. ; (c) 33 3%. P22.58 (a) 2 62 103. ×  tons d; (b) $7.65 million yr ;
(c) 4 06 104. ×  kg s

P22.32 (a) 51 2%. ; (b) 36 2%.
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P22.60
P T

T T c T
c

h c−b g ∆
P22.68 no; see the solution

P22.70 (a) P, atm V, L
A 25.0 1.97P22.62 (a) 4 11.  kJ ; (b) 14 2.  kJ; (c) 10 1.  kJ; (d) 28 9%.
B 4.14 11.9
C 1.00 32.8P22.64 see the solution
D 6.03 5.44

P22.66 nCP ln3 (b) 2 99.  kJ ; (c) 33.3%
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Electric Fields

ANSWERS TO QUESTIONS

Q23.1 A neutral atom is one that has no net charge. This means that it
has the same number of electrons orbiting the nucleus as it has
protons in the nucleus. A negatively charged atom has one or
more excess electrons.

Q23.2 When the comb is nearby, molecules in the paper are polarized,
similar to the molecules in the wall in Figure 23.5a, and the
paper is attracted. During contact, charge from the comb is
transferred to the paper by conduction. Then the paper has the
same charge as the comb, and is repelled.

Q23.3 The clothes dryer rubs dissimilar materials together as it
tumbles the clothes. Electrons are transferred from one kind of
molecule to another. The charges on pieces of cloth, or on
nearby objects charged by induction, can produce strong
electric fields that promote the ionization process in the
surrounding air that is necessary for a spark to occur. Then you
hear or see the sparks.

Q23.4 To avoid making a spark. Rubber-soled shoes acquire a charge by friction with the floor and could
discharge with a spark, possibly causing an explosion of any flammable material in the oxygen-
enriched atmosphere.

Q23.5 Electrons are less massive and more mobile than protons. Also, they are more easily detached from
atoms than protons.

Q23.6 The electric field due to the charged rod induces charges on near and far sides of the sphere. The
attractive Coulomb force of the rod on the dissimilar charge on the close side of the sphere is larger
than the repulsive Coulomb force of the rod on the like charge on the far side of the sphere. The
result is a net attraction of the sphere to the rod. When the sphere touches the rod, charge is
conducted between the rod and the sphere, leaving both the rod and the sphere like-charged. This
results in a repulsive Coulomb force.

Q23.7 All of the constituents of air are nonpolar except for water. The polar water molecules in the air quite
readily “steal” charge from a charged object, as any physics teacher trying to perform electrostatics
demonstrations in the summer well knows. As a result—it is difficult to accumulate large amounts of
excess charge on an object in a humid climate. During a North American winter, the cold, dry air
allows accumulation of significant excess charge, giving the potential (pun intended) for a shocking
(pun also intended) introduction to static electricity sparks.

1
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Q23.8 Similarities: A force of gravity is proportional to the product of the intrinsic properties (masses) of
two particles, and inversely proportional to the square of the separation distance. An electrical force
exhibits the same proportionalities, with charge as the intrinsic property.

Differences: The electrical force can either attract or repel, while the gravitational force as
described by Newton’s law can only attract. The electrical force between elementary particles is
vastly stronger than the gravitational force.

Q23.9 No. The balloon induces polarization of the molecules in the wall, so that a layer of positive charge
exists near the balloon. This is just like the situation in Figure 23.5a, except that the signs of the
charges are reversed. The attraction between these charges and the negative charges on the balloon
is stronger than the repulsion between the negative charges on the balloon and the negative charges
in the polarized molecules (because they are farther from the balloon), so that there is a net attractive
force toward the wall. Ionization processes in the air surrounding the balloon provide ions to which
excess electrons in the balloon can transfer, reducing the charge on the balloon and eventually
causing the attractive force to be insufficient to support the weight of the balloon.

Q23.10 The electric field due to the charged rod induces a charge in the aluminum foil. If the rod is brought
towards the aluminum from above, the top of the aluminum will have a negative charge induced on
it, while the parts draping over the pencil can have a positive charge induced on them. These
positive induced charges on the two parts give rise to a repulsive Coulomb force. If the pencil is a
good insulator, the net charge on the aluminum can be zero.

Q23.11 So the electric field created by the test charge does not distort the electric field you are trying to
measure, by moving the charges that create it.

Q23.12 With a very high budget, you could send first a proton and then an electron into an evacuated
region in which the field exists. If the field is gravitational, both particles will experience a force in
the same direction, while they will experience forces in opposite directions if the field is electric.

On a more practical scale, stick identical pith balls on each end of a toothpick. Charge one pith
ball + and the other –, creating a large-scale dipole. Carefully suspend this dipole about its center of
mass so that it can rotate freely. When suspended in the field in question, the dipole will rotate to
align itself with an electric field, while it will not for a gravitational field. If the test device does not
rotate, be sure to insert it into the field in more than one orientation in case it was aligned with the
electric field when you inserted it on the first trial.

Q23.13 The student standing on the insulating platform is held at the same electrical potential as the
generator sphere. Charge will only flow when there is a difference in potential. The student who
unwisely touches the charged sphere is near zero electrical potential when compared to the charged
sphere. When the student comes in contact with the sphere, charge will flow from the sphere to him
or her until they are at the same electrical potential.

Q23.14 An electric field once established by a positive or negative charge extends in all directions from the
charge. Thus, it can exist in empty space if that is what surrounds the charge. There is no material at
point A in Figure 23.23(a), so there is no charge, nor is there a force. There would be a force if a
charge were present at point A, however. A field does exist at point A.

Q23.15 If a charge distribution is small compared to the distance of a field point from it, the charge
distribution can be modeled as a single particle with charge equal to the net charge of the
distribution. Further, if a charge distribution is spherically symmetric, it will create a field at exterior
points just as if all of its charge were a point charge at its center.
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Q23.16 The direction of the electric field is the direction in which a positive test charge would feel a force
when placed in the field. A charge will not experience two electrical forces at the same time, but the
vector sum of the two. If electric field lines crossed, then a test charge placed at the point at which
they cross would feel a force in two directions. Furthermore, the path that the test charge would
follow if released at the point where the field lines cross would be indeterminate.

Q23.17 Both figures are drawn correctly. E1  and E2  are the electric fields separately created by the point
charges q1  and q2  in Figure 23.14 or q and –q in Figure 23.15, respectively. The net electric field is the
vector sum of E1  and E2 , shown as E. Figure 23.21 shows only one electric field line at each point
away from the charge. At the point location of an object modeled as a point charge, the direction of
the field is undefined, and so is its magnitude.

Q23.18 The electric forces on the particles have the same magnitude, but are in opposite directions. The
electron will have a much larger acceleration (by a factor of about 2 000) than the proton, due to its
much smaller mass.

Q23.19 The electric field around a point charge approaches infinity as r approaches zero.

Q23.20 Vertically downward.

Q23.21 Four times as many electric field lines start at the surface of the larger charge as end at the smaller
charge. The extra lines extend away from the pair of charges. They may never end, or they may
terminate on more distant negative charges. Figure 23.24 shows the situation for charges +2q and –q.

Q23.22 At a point exactly midway between the two changes.

Q23.23 Linear charge density, λ, is charge per unit length. It is used when trying to determine the electric
field created by a charged rod.

Surface charge density, σ, is charge per unit area. It is used when determining the electric field
above a charged sheet or disk.

Volume charge density, ρ, is charge per unit volume. It is used when determining the electric
field due to a uniformly charged sphere made of insulating material.

Q23.24 Yes, the path would still be parabolic. The electrical force on the electron is in the downward
direction. This is similar to throwing a ball from the roof of a building horizontally or at some angle
with the vertical. In both cases, the acceleration due to gravity is downward, giving a parabolic
trajectory.

Q23.25 No. Life would be no different if electrons were + charged and protons were – charged. Opposite
charges would still attract, and like charges would repel. The naming of + and – charge is merely a
convention.

Q23.26 If the antenna were not grounded, electric charges in the atmosphere during a storm could place the
antenna at a high positive or negative potential. The antenna would then place the television set
inside the house at the high voltage, to make it a shock hazard. The wire to the ground keeps the
antenna, the television set, and even the air around the antenna at close to zero potential.

Q23.27 People are all attracted to the Earth. If the force were electrostatic, people would all carry charge
with the same sign and would repel each other. This repulsion is not observed. When we changed
the charge on a person, as in the chapter-opener photograph, the person’s weight would change
greatly in magnitude or direction. We could levitate an airplane simply by draining away its electric
charge. The failure of such experiments gives evidence that the attraction to the Earth is not due to
electrical forces.
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Q23.28 In special orientations the force between two dipoles can be zero or a force of repulsion. In general
each dipole will exert a torque on the other, tending to align its axis with the field created by the first
dipole. After this alignment, each dipole exerts a force of attraction on the other.

SOLUTIONS TO PROBLEMS

Section 23.1 Properties of Electric Charges

*P23.1 (a) The mass of an average neutral hydrogen atom is 1.007 9u. Losing one electron reduces its
mass by a negligible amount, to

1 007 9 1 660 10 9 11 10 1 67 1027 31 27. . . .× − × = ×− − − kg  kg  kge j .

Its charge, due to loss of one electron, is

0 1 1 60 10 1 60 1019 19− − × = + ×− −. . C  Ce j .

(b) By similar logic, charge = + × −1 60 10 19.  C

mass = × − × = ×− − −22 99 1 66 10 9 11 10 3 82 1027 31 26. . . . kg  kg  kge j

(c) charge of Cl  C− −= − ×1 60 10 19.

mass = × + × = ×− − −35 453 1 66 10 9 11 10 5 89 1027 31 26. . . . kg  kg  kge j

(d) charge of Ca  C  C++ − −= − − × = + ×2 1 60 10 3 20 1019 19. .e j
mass = × − × = ×− − −40 078 1 66 10 2 9 11 10 6 65 1027 31 26. . . . kg  kg  kge j e j

(e) charge of N  C  C3 19 193 1 60 10 4 80 10− − −= − × = − ×. .e j
mass = × + × = ×− − −14 007 1 66 10 3 9 11 10 2 33 1027 31 26. . . . kg  kg  kge j e j

(f) charge of N  C  C4 19 194 1 60 10 6 40 10+ − −= × = + ×. .e j
mass = × − × = ×− − −14 007 1 66 10 4 9 11 10 2 32 1027 31 26. . . . kg  kg  kge j e j

(g) We think of a nitrogen nucleus as a seven-times ionized nitrogen atom.

charge = × = ×− −7 1 60 10 1 12 1019 18. . C  Ce j
mass = × − × = ×− − −14 007 1 66 10 7 9 11 10 2 32 1027 31 26. . . . kg  kg  kge j e j

(h) charge = − × −1 60 10 19.  C

mass = + × + × = ×− − −2 1 007 9 15 999 1 66 10 9 11 10 2 99 1027 31 26. . . . .b g  kg  kg  kg
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P23.2 (a) N =
F
HG

I
KJ ×F
HG

I
KJ
F
HG

I
KJ = ×

10 0
6 02 10 47 2 62 1023 24.
. .

 grams
107.87 grams mol

 
atoms
mol

 
electrons

atom

(b) #
.

. electrons added
 C

1.60 10  C electron
= =

×
×

= ×
−

−
Q
e

1 00 10
6 25 10

3

19
15

or 2 38.  electrons for every 10  already present9 .

Section 23.2 Charging Objects by Induction

Section 23.3 Coulomb’s Law

P23.3 If each person has a mass of ≈ 70 kg  and is (almost) composed of water, then each person contains

N ≅
F
HG

I
KJ ×F
HG

I
KJ
F
HG

I
KJ ≅ ×

70 000
6 02 10 10 2 3 1023 28 grams

18 grams mol
 

molecules
mol

 
protons

molecule
 protons. . .

With an excess of 1% electrons over protons, each person has a charge

q = × × = ×−0 01 1 6 10 2 3 10 3 7 1019 28 7. . . . C  Ce je j .

So F k
q q
re= = ×

×
= ×1 2

2
9

7 2

2
259 10

3 7 10

0 6
4 10e j e j.

.
 N  N ~10  N26 .

This force is almost enough to lift a weight equal to that of the Earth:

Mg = × = ×6 10 6 1024 25 kg 9.8 m s  N ~10  N2 26e j .

*P23.4 The force on one proton is F =
k q q

r
e 1 2

2  away from the other proton. Its magnitude is

8 99 10
1 6 10
2 10

57 59
19

15

2

.
.

.× ⋅
×
×

F
HG

I
KJ =

−

− N m C
 C

 m
 N2e j .

P23.5 (a) F
k q q

re
e= =

× ⋅ ×

×
= ×

−

−

−1 2
2

9 19 2

10 2
9

8 99 10 1 60 10

3 80 10
1 59 10

. .

.
.

 N m C  C

 m
 N  repulsion

2 2e je j
e j

b g

(b) F
Gm m

rg = =
× ⋅ ×

×
= ×

− −

−

−1 2
2

11 27 2

10 2
45

6 67 10 1 67 10

3 80 10
1 29 10

. .

.
.

 N m C  kg

 m
 N

2 2e je j
e j

The electric force is larger by 1.24 10  times36× .

(c) If k
q q
r

G
m m

re
1 2

2
1 2

2=  with q q q1 2= =  and m m m1 2= = , then

q
m

G
ke

= =
× ⋅

× ⋅
= ×

−
−6 67 10

8 99 10
8 61 10

11

9
11.

.
.

 N m kg
 N m C

 C kg
2 2

2 2 .
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P23.6 We find the equal-magnitude charges on both spheres:

F k
q q
r

k
q
re e= =1 2

2

2

2 so q r
F
ke

= =
×

× ⋅
= × −1 00

1 00 10
1 05 10

4
3.

.
. m

 N
8.99 10  N m C

 C9 2 2a f .

The number of electron transferred is then

N
exfer

 C
 C

 electrons=
×

×
= ×

−

− −
1 05 10

1 60 10
6 59 10

3

19
15.

.
. .

The whole number of electrons in each sphere is

N e etot
 g

107.87 g mol
 atoms mol  atom  =

F
HG

I
KJ × = ×− −10 0

6 02 10 47 2 62 1023 24.
. .e je j .

The fraction transferred is then

f
N
N

= =
×
×

F
HG

I
KJ = × =−xfer

tot

6 59 10
2 62 10

2 51 10 2 51
15

24
9.

.
. .  charges in every billion.

P23.7 F k
q q
re1
1 2

2

9 6 6

2

8 99 10 7 00 10 2 00 10

0 500
0 503= =

× ⋅ × ×
=

− −. . .

.
.

 N m C  C  C

 m
 N

2 2e je je j
a f

F k
q q
re2
1 2

2

9 6 6

2

8 99 10 7 00 10 4 00 10

0 500
1 01= =

× ⋅ × ×
=

− −. . .

.
.

 N m C  C  C

 m
 N

2 2e je je j
a f

F
F

x

y

= °+ °=
= °− °= −

= − = °

0 503 60 0 1 01 60 0 0 755
0 503 60 0 1 01 60 0 0 436

0 755 0 436 0 872

. cos . . cos . .

. sin . . sin . .

. � . � .

 N
 N

 N  N  N at an angle of 330F i ja f a f

FIG. P23.7

P23.8 F k
q q
re= =

× ⋅ × ×

×
=

−
1 2

2

9 19 2 23 2

6 2

8 99 10 1 60 10 6 02 10

2 6 37 10
514

. . .

.

 N m C  C

 m
 kN

2 2e je j e j
e j

P23.9 (a) The force is one of attraction . The distance r in Coulomb’s law is the distance between

centers. The magnitude of the force is

F
k q q

r
e= = × ⋅

× ×
= ×

− −
−1 2

2
9

9 9

2
58 99 10

12 0 10 18 0 10

0 300
2 16 10.

. .

.
. N m C

 C  C

 m
 N2 2e j e je j

a f .

(b) The net charge of − × −6 00 10 9.  C  will be equally split between the two spheres, or
− × −3 00 10 9.  C  on each. The force is one of repulsion , and its magnitude is

F
k q q

r
e= = × ⋅

× ×
= ×

− −
−1 2

2
9

9 9

2
78 99 10

3 00 10 3 00 10

0 300
8 99 10.

. .

.
. N m C

 C  C

 m
 N2 2e j e je j

a f .
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P23.10 Let the third bead have charge Q and be located distance   x  from the left end of the rod. This bead
will experience a net force given by

F i i= +
−

−
k q Q

x

k q Q

d x
e e3

2 2

b g b g
a f e j

� � .

The net force will be zero if 
3 1
2 2x d x
=

−a f , or d x
x

− =
3

.

This gives an equilibrium position of the third bead of x d= 0 634. .

The equilibrium is stable if the third bead has positive charge .

P23.11 (a) F
k e
r
e= = × ⋅

×

×
= ×

−

−

−
2

2
9

19 2

10 2
88 99 10

1 60 10

0 529 10
8 22 10.

.

.
. N m C

 C

 m
 N2 2e j e j

e j

(b) We have F
mv

r
=

2

 from which

v
Fr
m

= =
× ×

×
= ×

− −

−

8 22 10 10

9 11 10
2 19 10

8 10

31
6

.

.
.

 N 0.529  m

 kg
 m s

e j
.

P23.12 The top charge exerts a force on the negative charge 
k qQ

x
e

d
2

2 2c h +
 which is directed upward and to the

left, at an angle of tan− F
HG
I
KJ

1

2
d
x

 to the x-axis. The two positive charges together exert force

2
2 2

4
2

4
2 1 2

k qQ

x

x

x
me

d d+

F

H
GG

I

K
JJ

−

+

F

H
GGG

I

K
JJJ
=

e j
a f
e j

�i
a  or for x

d
<<

2
, a x≈

−2
83

k qQ
md

e .

(a) The acceleration is equal to a negative constant times the excursion from equilibrium, as in

a x= −ω 2 , so we have Simple Harmonic Motion with ω 2
3

16
=

k qQ
md

e .

T
md
k qQe

= =
2

2

3π
ω

π
, where m is the mass of the object with charge −Q .

(b) v A a
k qQ
md

e
max = =ω 4 3
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Section 23.4 The Electric Field

P23.13 For equilibrium, F Fe g= −

or q mgE j= − −�e j .

Thus, E j=
mg
q
� .

(a) E j j j= =
×

− ×
= − ×

−

−
−mg

q
� . .

.
� . �9 11 10 9 80

1 60 10
5 58 10

31

19
11

 kg  m s

 C
 N C

2e je j
e j e j

(b) E j j j= =
×

×
= ×

−

−
−mg

q
� . .

.
� . �1 67 10 9 80

1 60 10
1 02 10

27

19
7

 kg  m s

 C
 N C

2e je j
e j e j

P23.14 Fy∑ = 0 : QE mg� �j j+ − =e j 0

∴ = =
×

=
−

m
QE
g

24 0 10 610

9 80
1 49

6.

.
.

 C  N C

 m s
 grams2

e jb g

P23.15 The point is designated in the sketch. The magnitudes of the electric fields,
E1 , (due to the − × −2 50 10 6.  C  charge) and E2  (due to the 6 00 10 6. × −  C
charge) are

E
k q
r d

e
1 2

9 6

2

8 99 10 2 50 10
= =

× ⋅ × −. . N m C  C2 2e je j
(1)

E
k q
r d

e
2 2

9 6

2

8 99 10 6 00 10

1 00
= =

× ⋅ ×

+

−. .

.

 N m C  C

 m

2 2e je j
a f (2)

FIG. P23.15

Equate the right sides of (1) and (2)

to get d d+ =1 00 2 402 2. . ma f

or d d+ = ±1 00 1 55. . m

which yields d = 1 82.  m

or d = −0 392.  m .

The negative value for d is unsatisfactory because that locates a point between the charges where
both fields are in the same direction.

Thus, d = −1 82 2 50. . m to the left of the  C chargeµ .
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P23.16 If we treat the concentrations as point charges,

E j j

E j j

E E E

+

−

+ −

= = × ⋅ − = × −

= = × ⋅ − = × −

= + = ×

k
q

r

k
q

r

e

e

2
9

2
5

2
9

2
5

5

8 99 10
40 0

1 000
3 60 10

8 99 10
40 0

1 000
3 60 10

7 20 10

.
. � . �

.
. � . �

.

 N m C
 C

 m
 N C downward

 N m C
 C

 m
 N C downward

 N C  downward

2 2

2 2

e j a f
b g e j e ja f

e j a f
b g e j e ja f

*P23.17 The first charge creates at the origin field 
k Q
a
e
2  to the right.

Suppose the total field at the origin is to the right. Then q must
be negative:

k Q
a

k q

a

k Q
a

e e e
2 2 23

2� � �i i i+ − =a f e j q Q= −9 .

In the alternative, the total field at the origin is to the left:

k Q
a

k q
a

k Q
a

e e e
2 2 29

2� � �i i i+ − = −e j e j q Q= +27 .

x
q+Q x = 0

FIG. P23.17

P23.18 (a) E
k q
r

e
1 2

9 6

2
5

8 99 10 7 00 10

0 500
2 52 10= =

× ×
= ×

−. .

.
.

e je j
a f  N C

E
k q
r

E E E

E E

e

x

y

2 2

9 6

2
5

2 1
5 5 3

1
5 3

3

8 99 10 4 00 10

0 500
1 44 10

60 1 44 10 2 52 10 60 0 18 0 10

60 0 2 52 10 60 0 218 10

18 0 218 10 18 0 218

= =
× ×

= ×

= − °= × − × °= ×

= − °= − × °= − ×

= − × = −

−. .

.
.

cos . . cos . .

sin . . sin .

. � � . � �

e je j
a f  N C

 N C

 N C

 N C  kN CE i j i j

FIG. P23.18

(b) F E i j i j i j= = × − × = − × = −− −q 2 00 10 18 0 218 10 36 0 436 10 36 0 4366 3 3. . � � . � � . � � C  N C  N  mNe je j e j e j

P23.19 (a) E j j j1
1

1
2

9 9

2
3

8 99 10 3 00 10

0 100
2 70 10= − =

× ×
− = − ×

−k q

r
e � . .

.
� . �e j e je j

a f e j e j N C

E i i i

E E E i j

2
2

2
2

9 9

2
2

2 1
2 3

8 99 10 6 00 10

0 300
5 99 10

5 99 10 2 70 10

= − =
× ×

− = − ×

= + = − × − ×

−k q

r
e � . .

.
� . �

. � . �

e j e je j
a f e j e j

e j e j

 N C

 N C  N C FIG. P23.19

(b) F E i j= = × − −−q 5 00 10 599 2 7009. � � C  N Ce je j
F i j i j= − × − × = − −− −3 00 10 13 5 10 3 00 13 56 6. � . � . � . �e j e j N  Nµ
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P23.20 (a) E
k q
r

e= =
× ×

=
−

2

9 6

2

8 99 10 2 00 10

1 12
14 400

. .

.

e je j
a f  N C

Ex = 0 and Ey = °= ×2 14 400 26 6 1 29 104b gsin . .  N C

so E j= ×1 29 104. �  N C . FIG. P23.20

(b) F E j j= = − × × = − ×− −q 3 00 10 1 29 10 3 86 106 4 2. . � . �e je j  N

P23.21 (a) E r r r i i j j= + + = + °+ ° +
k q
r

k q
r

k q
r

k q

a

k q

a

k q

a
e e e e e e1

1
2 1

2

2
2 2

3

3
2 3 2 2 2

2 3

2
45 0 45 0

4
� � � � � cos . � sin . �b g b g e j b g

E i j= + = °3 06 5 06 5 912 2 2. � . � .
k q
a

k q
a

k q
a

e e e  at 58.8

(b) F E= = °q
k q
a
e5 91

2

2.  at 58.8

P23.22 The electric field at any point x is

E
k q

x a

k q

x a

k q ax

x a

e e e=
−

−
− −

=
−a f a fc h
a f

e j2 2 2 2 2

4
.

When x is much, much greater than a, we find E
a k q

x
e≅

4
3

b g
.

P23.23 (a) One of the charges creates at P a field E =
+

k Q n
R x

e
2 2  at an angle θ to

the x-axis as shown.

When all the charges produce field, for n > 1 , the components
perpendicular to the x-axis add to zero.

The total field is 
nk Q n

R x
k Qx

R x

e eb g
e j

�
cos

�i i
2 2 2 2 3 2+

=
+

θ .
FIG. P23.23

(b) A circle of charge corresponds to letting n grow beyond all bounds, but the result does not
depend on n. Smearing the charge around the circle does not change its amount or its
distance from the field point, so it does not change the field .

P23.24 E r i i i
i

i= = − + − + − + =
−

+ + +F
HG

I
KJ = −∑

k q
r

k q
a

k q

a

k q

a

k q
a

k q
a

e e e e e e
2 2 2 2 2 2 2

2

22 3
1

1
2

1
3 6

� � � �
�

�e j a f e j a f e j … …
π
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Section 23.5 Electric Field of a Continuous Charge Distribution

P23.25 E
k

d d

k Q

d d
k Q

d d
e e e=
+

=
+

=
+

=
× ×

+

−
λA
A

A A
A Aa f
b g
a f a f

e je j
a fa f
8 99 10 22 0 10

0 290 0 140 0 290

9 6. .

. . .

E = ×1 59 106. , N C  directed toward the rod.
FIG. P23.25

P23.26 E
k dq
x
e= z 2 , where dq dx= λ 0

E k
dx
x

k
x

k
xe

x
e

x

e= = −FHG
I
KJ =

∞ ∞

zλ λ
λ

0 2 0
0

00 0

1
The direction is  or left for − >�i λ 0 0

P23.27 E
k xQ

x a

x

x

x

x

e=
+

=
× ×

+
=

×

+

−

2 2 3 2

9 6

2 2 3 2

5

2 3 2

8 99 10 75 0 10

0 100

6 74 10

0 010 0e j
e je j
e j e j

. .

.

.

.

(a) At x = 0 010 0.  m , E i i= × =6 64 10 6 646. � . � N C  MN C

(b) At x = 0 050 0.  m , E i i= × =2 41 10 24 17. � . � N C  MN C

(c) At x = 0 300.  m , E i i= × =6 40 10 6 406. � . � N C  MN C

(d) At x = 1 00.  m , E i i= × =6 64 10 0 6645. � . � N C  MN C

P23.28 E E
i

i i i= =
−L

N
MMM

O

Q
PPP
= − = − −

F
HG

I
KJ = −z z z∞

−
∞ ∞

d
k x dx

x
k x x dx k x

x
k

x
e

x
e

x
e

x

e
λ

λ λ
λ0 0

3 0 0
3

0 0 2
0

00 0 0

1
2 2

�
� � �e j e j

P23.29 E
k Qx

x a

e=
+2 2 3 2e j

For a maximum, 
dE
dx

Qk
x a

x

x a
e=

+
−

+

L

N
MMM

O

Q
PPP
=

1 3
0

2 2 3 2

2

2 2 5 2e j e j
x a x2 2 23 0+ − =  or x

a
=

2
.

Substituting into the expression for E gives

E
k Qa

a

k Q

a

k Q
a

Q
a

e e e= = = =
∈2 3

2
3 3 6 33

2
2 3 2 3

2
2 2

0
2e j π

.
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P23.30 E k
x

x R
e= −

+

F
HG

I
KJ2 1

2 2
π σ

E
x

x

x

x
= × × −

+

F

H
GG

I

K
JJ = × −

+

F
HG

I
KJ

−2 8 99 10 7 90 10 1
0 350

4 46 10 1
0 123

9 3

2 2

8

2
π . .

.
.

.
e je j a f

(a) At x = 0 050 0.  m , E = × =3 83 10 3838.  N C  MN C

(b) At x = 0 100.  m , E = × =3 24 10 3248.  N C  MN C

(c) At x = 0 500.  m , E = × =8 07 10 80 77. . N C  MN C

(d) At x = 2 00.  m , E = × =6 68 10 6 688. . N C  MN C

P23.31 (a) From Example 23.9: E k
x

x R
e= −

+

F
HG

I
KJ2 1

2 2
π σ

σ
π

= = ×

= × = × =

−Q
R

E

2
3

8 7

1 84 10

1 04 10 0 900 9 36 10 93 6

.

. . . .

 C m

 N C  N C  MN C

2

e ja f
appx: E ke= =2 104π σ  MN C  about 11% highb g

(b) E = × −
+

F
HG

I
KJ = × =1 04 10 1

30 0

3 00
1 04 10 0 004 96 0 5168

2

8.
.

.
. . . N C

 cm

30.0  cm
 N C  MN C

2
e j e jb g

appx: E k
Q
re= = ×

×
=

−

2
9

6

28 99 10
5 20 10

0 30
0 519.

.

.
.e j a f b g MN C  about 0.6% high

P23.32 The electric field at a distance x is E k
x

x R
x e= −

+

L
N
MM

O
Q
PP2 1

2 2
π σ

This is equivalent to E k
R x

x e= −
+

L

N
MM

O

Q
PP2 1

1

1 2 2
π σ

For large x, 
R
x

2

2 1<<  and 1 1
2

2

2

2

2+ ≈ +
R
x

R
x

so E k
R x

k
R x

R x
x e e= −

+

F

H
GG

I

K
JJ =

+ −

+
2 1

1

1 2
2

1 2 1

1 22 2

2 2

2 2
π σ π σ

e j
e je j
e j

Substitute σ
π

=
Q
R2 , E

k Q x

R x
k Q x

R
x

e
e=

+
= +
F
HG

I
KJ

1

1 2 2

2

2 2
2

2e j
e j

But for x R>> , 
1

2
1

2 2 2x R x+
≈ , so E

k Q
xx
e≈ 2  for a disk at large distances
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P23.33 Due to symmetry E dEy y= =z 0 , and E dE k
dq

rx e= =z zsin
sin

θ
θ

2

where dq ds rd= =λ λ θ ,

so that, E
k
r

d
k
r

k
rx

e e e= = − =zλ θ θ
λ

θ
λπ

π
sin cos

0
0

2a f

where λ =
q
L

 and r
L

=
π

. FIG. P23.33

Thus, E
k q
Lx
e= =

× ⋅ × −
2 2 8 99 10 7 50 10

0 1402

9 6

2

π π. .

.

 N m C  C

 m

2 2e je j
a f .

Solving, Ex = ×2 16 107.  N C .

Since the rod has a negative charge, E i i= − × = −2 16 10 21 67. � . �e j N C  MN C .

P23.34 (a) We define x = 0  at the point where we are to find the field. One ring, with thickness dx, has

charge 
Qdx

h
 and produces, at the chosen point, a field

d
k x

x R

Qdx
h

eE i=
+2 2 3 2e j

� .

The total field is

E E i
i

E
i i

= =
+

= +

=
+

−
=

+
−

+ +

L

N
MMM

O

Q
PPP

z z z
+ −

=

+

−

=

+

d
k Qxdx

h x R

k Q
h

x R xdx

k Q
h

x R k Q
h d R d h R

e

d

d h
e

x d

d h

e

x d

d h

e

all charge
2 2 3 2

2 2 3 2

2 2 1 2

2 2 1 2 2 2 1 2

2
2

2 1 2
1 1

e j
e j

e j
b g e j a fe j

� �

� �

(b) Think of the cylinder as a stack of disks, each with thickness dx, charge 
Qdx

h
, and charge-

per-area σ
π

=
Qdx
R h2 . One disk produces a field

d
k Qdx
R h

x

x R

eE i= −
+

F

H
GG

I

K
JJ

2
12 2 2 1 2

π
π e j

� .

So, E E i= = −
+

F

H
GG

I

K
JJz z

=

+

d
k Qdx
R h

x

x R

e

x d

d h

all charge

2
12 2 2 1 2e j

�

E
i i

E
i

E
i

= − +
L
N
MM

O
Q
PP = −

+
L

N

MMM

O

Q

PPP

= + − − + + + +L
NM

O
QP

= + + − + +L
NM

O
QP

+ −

=

+
+

+

z z2 1
2

2
2 1

2 1 2

2

2

2
2 2 1 2

2

2 2 1 2

2
2 2 1 2 2 2 1 2

2
2 2 1 2 2 2 1 2

k Q
R h

dx x R xdx
k Q
R h

x
x R

k Q
R h

d h d d h R d R

k Q
R h

h d R d h R

e

d

d h

x d

d h
e

d
d h

d

d h

e

e

� �

�

�

e j e j

a fe j e j

e j a fe j
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P23.35 (a) The electric field at point P due to each element of length dx, is

dE
k dq

x y
e=
+2 2  and is directed along the line joining the element to

point P. By symmetry,
E dEx x= =z 0 and since dq dx= λ ,

E E dE dEy y= = =z z cosθ where cosθ =
+

y

x y2 2
.

Therefore, E k y
dx

x y

k
ye

e=
+

=z2
2

2 2 3 2
0

2
0λ

λ θ

e j
A sin

.
FIG. P23.35

(b) For a bar of infinite length, θ 0 90= ° and E
k
yy
e=

2 λ
.

P23.36 (a) The whole surface area of the cylinder is A r rL r r L= + = +2 2 22π π π a f .
Q A= = × + = ×− −σ π15 0 10 2 0 025 0 0 025 0 0 060 0 2 00 109 10. . . . . C m  m  m  m  C2e j b g

(b) For the curved lateral surface only, A rL= 2π .

Q A= = × = ×− −σ π15 0 10 2 0 025 0 0 060 1 41 109 10. . . . C m  m  0 m  C2e j b ga f

(c) Q V r L= = = × = ×− −ρ ρπ π2 9 2 11500 10 0 025 0 0 060 0 5 89 10 C m  m  m  C3e j b g b g. . .

P23.37 (a) Every object has the same volume, V = = × −8 0 030 2 16 103 4. . 0 m  m3a f .

For each, Q V= = × × = ×− − −ρ 400 10 2 16 10 8 64 109 4 11 C m  m  C3 3e je j. .

(b) We must count the 9 00.  cm2  squares painted with charge:

(i) 6 4 24× =  squares

Q A= = × × = ×− − −σ 15 0 10 24 0 9 00 10 3 24 109 4 10. . . . C m  m  C2 2e j e j
(ii) 34 squares exposed

Q A= = × × = ×− − −σ 15 0 10 34 0 9 00 10 4 59 109 4 10. . . . C m  m  C2 2e j e j
(iii) 34 squares

Q A= = × × = ×− − −σ 15 0 10 34 0 9 00 10 4 59 109 4 10. . . . C m  m  C2 2e j e j
(iv) 32 squares

Q A= = × × = ×− − −σ 15 0 10 32 0 9 00 10 4 32 109 4 10. . . . C m  m  C2 2e j e j
(c) (i) total edge length: A = ×24 0 030 0.  mb g

Q = = × × = ×− −λA 80 0 10 24 0 030 0 5 76 1012 11. . . C m  m  Ce j b g

(ii) Q = = × × = ×− −λA 80 0 10 44 0 030 0 1 06 1012 10. . . C m  m  Ce j b g
continued on next page
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(iii) Q = = × × = ×− −λA 80 0 10 64 0 030 0 1 54 1012 10. . . C m  m  Ce j b g

(iv) Q = = × × = ×− −λA 80 0 10 40 0 030 0 0 960 1012 10. . . C m  m  Ce j b g

Section 23.6 Electric Field Lines

P23.38

FIG. P23.38

P23.39

FIG. P23.39

P23.40 (a)
q
q

1

2

6
18

1
3

=
−

= −

(b) q q1 2 is negative,   is positive

P23.41 (a) The electric field has the general appearance shown. It is zero
at the center , where (by symmetry) one can see that the three

charges individually produce fields that cancel out.

In addition to the center of the triangle, the electric field lines in the
second figure to the right indicate three other points near the
middle of each leg of the triangle where E = 0 , but they are more
difficult to find mathematically.

(b) You may need to review vector addition in Chapter Three. The
electric field at point P can be found by adding the electric field
vectors due to each of the two lower point charges: E E E= +1 2 .

The electric field from a point charge is E r= k
q

re 2
� .

As shown in the solution figure at right,

E1 2= k
q

ae  to the right and upward at 60°

E2 2= k
q

ae  to the left and upward at 60°
FIG. P23.41

E E E i j i j j

j

= + = ° + ° + − ° + ° = °

=

1 2 2 2

2

60 60 60 60 2 60

1 73

k
q

a
k

q
a

k
q

a

e e

e

cos � sin � cos � sin � sin �

. �

e j e j e j



16     Electric Fields

Section 23.7 Motion of Charged Particles in a Uniform Electric Field

P23.42 F qE ma= = a
qE
m

=

v v atf i= + v
qEt
mf =

electron: ve =
× ×

×
= ×

− −

−

1 602 10 520 48 0 10

9 11 10
4 39 10

19 9

31
6

. .

.
.

e ja fe j
 m s

in a direction opposite to the field

proton: vp =
× ×

×
= ×

− −

−

1 602 10 520 48 0 10

1 67 10
2 39 10

19 9

27
3

. .

.
.

e ja fe j
 m s

in the same direction as the field

P23.43 (a) a
qE
m

= =
×

×
= ×

−

−

1 602 10 640

1 67 10
6 14 10

19

27
10.

.
.

a f
 m s2

(b) v v atf i= + 1 20 10 6 14 106 10. .× = ×e jt t = × −1 95 10 5.  s

(c) x x v v tf i i f− = +
1
2
d i x f = × × =−1

2
1 20 10 1 95 10 11 76 5. . .e je j  m

(d) K mv= = × × = ×− −1
2

1
2

1 67 10 1 20 10 1 20 102 27 6 2 15. . . kg  m s  Je je j

P23.44 (a) a
qE
m

= =
× ×

×
= ×

−

−

1 602 10 6 00 10

1 67 10
5 76 10

19 5

27
13

. .

.
.

e je j
e j

 m s  so a i= − ×5 76 1013. � m s2

(b) v v a x xf i f i= + −2 d i
0 2 5 76 10 0 070 02 13= + − ×vi . .e jb g v ii = ×2 84 106. � m s

(c) v v atf i= +

0 2 84 10 5 76 106 13= × + − ×. .e jt t = × −4 93 10 8.  s

P23.45 The required electric field will be in the direction of motion .

Work done = ∆K

so, − = −Fd mvi
1
2

2  (since the final velocity = 0 )

which becomes eEd K=

and E
K
ed

= .
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P23.46 The acceleration is given by

v v a x xf i f i
2 2 2= + −d i  or v a hf

2 0 2= + −a f .

Solving a
v

h
f= −
2

2
.

Now F a∑ = m : − + = −mg q
mv

h
f�
�

j E
j2

2
.

Therefore q
mv

h
mgfE j= − +

F
HG

I
KJ

2

2
� .

(a) Gravity alone would give the bead downward impact velocity

2 9 80 5 00 9 90. . . m s  m  m s2e ja f = .

To change this to 21.0 m/s down, a downward  electric field must exert a downward

electric force.

(b) q
m
E

v

h
gf= −

F
HG

I
KJ
=

×

×
⋅
⋅

F
HG
I
KJ −
L
N
MM

O
Q
PP =

−2 3 2

2
1 00 10 21 0

2 5 00
9 80 3 43

. .

.
. .

 kg
1.00 10  N C

N s
kg m

 m s

 m
 m s  C4

2
2b g

a f µ

P23.47 (a) t
x

vx
= =

×
= × =−0 050 0

4 50 10
1 11 10 1115

7.
.

.  s  ns

(b) a
qE
my = =

× ×

×
= ×

−

−

1 602 10 9 60 10

1 67 10
9 21 10

19 3

27
11

. .

.
.

e je j
e j

 m s2

y y v t a tf i yi y− = +
1
2

2: y f = × × = × =− −1
2

9 21 10 1 11 10 5 68 10 5 6811 7 2 3. . . .e je j  m  mm

(c) vx = ×4 50 105.  m s v v a tyf yi y= + = × × = ×−9 21 10 1 11 10 1 02 1011 7 5. . .e je j  m s

*P23.48 The particle feels a constant force: F E j j= = × − = × −− −q 1 10 2 000 2 106 3 C  N C  Ne jb ge j e j� �

and moves with acceleration: a
F j

j= =
× ⋅ −

×
= × −∑

−

−m

2 10

2 10
1 10

3

16
13

 kg m s

 kg
 m s

2
2e je j

e je j
�

� .

Its x-component of velocity is constant at 1 00 10 37 7 99 105 4. cos .× °= × m s  m se j . Thus it moves in a

parabola opening downward. The maximum height it attains above the bottom plate is described by

v v a y yyf yi y f i
2 2 2= + −d i: 0 6 02 10 2 10 04 2 13= × − × −.  m s  m s2e j e jd iy f

y f = × −1 81 10 4.  m.

continued on next page
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Since this is less than 10 mm, the particle does not strike the top plate, but moves in a symmetric
parabola and strikes the bottom plate after a time given by

y y v t a tf i yi y= + +
1
2

2 0 0 6 02 10
1
2

1 104 13 2= + × + − ×.  m s  m s2e j e jt t

since t > 0 , t = × −1 20 10 8.  s .

The particle’s range is x x v tf i x= + = + × × = ×− −0 7 99 10 1 20 10 9 61 104 8 4. . . m s  s  me je j .

In sum,

The particle strikes the negative plate after moving in a parabola with a height of 0.181 mm
and a width of 0.961 mm.

P23.49 vi = ×9 55 103.  m s

(a) a
eE
my = =

×

×
= ×

−

−

1 60 10 720

1 67 10
6 90 10

19

27
10

.

.
.

e ja f
e j

 m s2

R
v

a
i

y
= = × −

2
32

1 27 10
sin

.
θ

 m so that

9 55 10 2

6 90 10
1 27 10

3 2

10
3

. sin

.
.

×

×
= × −e j θ

sin .2 0 961θ = θ = °36 9. 90 0 53 1. .°− = °θ

^
          

FIG. P23.49

(b) t
R

v
R

vix i
= =

cosθ
If θ = °36 9. , t = 167 ns . If θ = °53 1. , t = 221 ns .

Additional Problems

*P23.50 The two given charges exert equal-size forces of attraction on each
other. If a third charge, positive or negative, were placed between
them they could not be in equilibrium. If the third charge were at a
point x > 15 cm , it would exert a stronger force on the 45 Cµ  than
on the −12 Cµ , and could not produce equilibrium for both. Thus
the third charge must be at x d= − < 0 . Its equilibrium requires

d x
15 cm

q

x = 0
+–

–12   Cµ 45   Cµ

FIG. P23.50

k q

d

k q

d
e e12 45

152 2

 C  C

 cm

µ µb g b g
a f=

+

15 45
12

3 75
2 cm+F

HG
I
KJ = =

d
d

.

15 1 94 cm+ =d d. d = 16 0.  cm .

The third charge is at x = −16 0.  cm . The equilibrium of the −12 Cµ  requires

k q ke e12

16 0

45 12
2 2

 C

 cm

 C  C

15 cm

µ µ µb g
a f

b g
a f.

= q = 51 3.  Cµ .

All six individual forces are now equal in magnitude, so we have equilibrium as required, and this is
the only solution.
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P23.51 The proton moves with acceleration a
qE
mp = =

×

×
= ×

−

−

1 60 10 640

1 673 10
6 13 10

19

27
10

.

.
.

 C  N C

 kg
 m s2e jb g

while the e−  has acceleration a ae p=
×

×
= × =

−

−

1 60 10 640

9 110 10
1 12 10 1 836

19

31
14

.

.
.

 C  N C

 kg
 m s2e jb g

.

(a) We want to find the distance traveled by the proton (i.e., d a tp=
1
2

2 ), knowing:

4 00
1
2

1
2

1 837
1
2

2 2 2.  cm = + = F
HG
I
KJa t a t a tp e p .

Thus, d a tp= = =
1
2

4 00
21 82 .

.
 cm

1 837
 mµ .

(b) The distance from the positive plate to where the meeting occurs equals the distance the

sodium ion travels (i.e., d a tNa Na=
1
2

2 ). This is found from:

4 00
1
2

1
2

2 2.  cm Na Cl= +a t a t : 4 00
1
2 22 99

1
2 35 45

2 2.
. .

 cm
 u  u

= FHG
I
KJ + FHG

I
KJ

eE
t

eE
t .

This may be written as 4 00
1
2

1
2

0 649 1 65
1
2

2 2 2. . . cm Na Na Na= + = F
HG

I
KJa t a t a tb g

so d a tNa Na
 cm

1.65
 cm= = =

1
2

4 00
2 432 .
. .

P23.52 (a) The field, E1 , due to the 4 00 10 9. × −  C  charge is in the –x
direction.

E r i

i

1 2

9 9

2

8 99 10 4 00 10

2 50

5 75

= =
× ⋅ − ×

= −

−
k q
r

e �
. .

.
�

. �

 N m C  C

 m

 N C

2 2e je j
a f

FIG. P23.52(a)

Likewise, E2  and E3 , due to the 5 00 10 9. × −  C  charge and the 3 00 10 9. × −  C  charge are

E r i i2 2

9 9

2

8 99 10 5 00 10

2 00
11 2= =

× ⋅ ×
=

−
k q
r

e �
. .

.
� . � N m C  C

 m
 N C  

2 2e je j
a f

E i i3

9 9

2

8 99 10 3 00 10

1 20
18 7=

× ⋅ ×
=

−. .

.
� . � N m C  C

 m
 N C  

2 2e je j
a f

E E E ER = + + =1 2 3 24 2.  N C  in +x direction.

(b) E r i j1 2 8 46 0 243 0 970= = − +
k q
r

e � . . � . � N Cb ge j
E r j

E r i j

i j

2 2

3 2

1 3 1 2 3

11 2

5 81 0 371

4 21 8 43

= = +

= = −

= + = − = + + =

k q
r
k q
r

E E E E E E E

e

e

x x x y y y y

� . �

� . . � �

. � . �

 N C

 N C +0.928

 N C  N C

b ge j

b ge j

ER = 9 42.  N C θ = ° −63 4.  above  axisx
FIG. P23.52(b)
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*P23.53 (a) Each ion moves in a quarter circle. The electric force causes the centripetal acceleration.

F ma∑ = qE
mv

R
=

2

E
mv
qR

=
2

(b) For the x-motion, v v a x xxf xi x f i
2 2 2= + −d i

0 22= +v a Rx a
v
R

F
m

qE
mx

x x= − = =
2

2

E
mv

qRx = −
2

2
. Similarly for the y-motion,

v a Ry
2 0 2= + a

v
R

qE

my
y

= + =
2

2
E

mv
qRy =

2

2

The magnitude of the field is

E E
mv

qR
xx y

2 2
2

2
+ = ° at 135  counterclockwise from the -axis .

P23.54 From the free-body diagram shown,

Fy∑ = 0 : T cos . .15 0 1 96 10 2°= × −  N .

So T = × −2 03 10 2.  N .

From Fx∑ = 0 , we have qE T= °sin .15 0

or q
T

E
=

°
=

× °

×
= × =

−
−sin . . sin .

.
. .

15 0 2 03 10 15 0

1 00 10
5 25 10 5 25

2

3
6

 N

 N C
 C  C

e j
µ .

FIG. P23.54

P23.55 (a) Let us sum force components to find

F qE Tx x∑ = − =sinθ 0 , and F qE T mgy y∑ = + − =cosθ 0 .

Combining these two equations, we get

q
mg

E Ex y

=
+

=
×

°+ ×
= ×

=

−
−

cot

. .

. cot . .
.

.

θe j
e ja f

a f
1 00 10 9 80

3 00 37 0 5 00 10
1 09 10

10 9

3

5
8  C

 nC

(b) From the two equations for Fx∑  and Fy∑  we also find

T
qEx

=
°
= × =−

sin .
. .

37 0
5 44 10 5 443  N  mN .

Free Body Diagram

FIG. P23.55
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P23.56 This is the general version of the preceding problem. The known quantities are A, B, m, g, and θ. The
unknowns are q and T.

The approach to this problem should be the same as for the last problem, but without
numbers to substitute for the variables. Likewise, we can use the free body diagram given in the
solution to problem 55.

Again, Newton’s second law: F T qAx∑ = − + =sinθ 0 (1)

and F T qB mgy∑ = + + − =cosθ 0 (2)

(a) Substituting T
qA

=
sinθ

, into Eq. (2),
qA

qB mg
cos

sin
θ

θ
+ = .

Isolating q on the left, q
mg

A B
=

+cotθa f .

(b) Substituting this value into Eq. (1), T
mgA

A B
=

+cos sinθ θa f .

If we had solved this general problem first, we would only need to substitute the
appropriate values in the equations for q and T to find the numerical results needed for
problem 55. If you find this problem more difficult than problem 55, the little list at the first
step is useful. It shows what symbols to think of as known data, and what to consider
unknown. The list is a guide for deciding what to solve for in the analysis step, and for
recognizing when we have an answer.

P23.57 F
k q q

r
e= 1 2

2 : tan
.
.

θ =
15 0
60 0

θ = °14 0.

F

F

F

F F F
F F F

x

y

1

9 6 2

2

3

9 6 2

2

2

9 6 2

2

3 2

1 2

8 99 10 10 0 10

0 150
40 0

8 99 10 10 0 10

0 600
2 50

8 99 10 10 0 10

0 619
2 35

14 0 2 50 2 35 14 0 4 78
14 0 40 0 2 35 14 0 40 6

=
× ×

=

=
× ×

=

=
× ×

=

= − − °= − − °= −
= − − °= − − °= −

−

−

−

. .

.
.

. .

.
.

. .

.
.

cos . . . cos . .
sin . . . sin . .

e je j
a f

e je j
a f

e je j
a f

 N

 N

 N

 N
 N

FIG. P23.57

F F F

F

F

x y

y

x

net  N= + = + =

= =
−
−

= °

2 2 2 24 78 40 6 40 9

40 6
4 78

263

. . .

tan
.

.

a f a f
φ

φ
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P23.58 From Figure A: d cos . .30 0 15 0°=  cm,

or d =
°

15 0
30 0

.
cos .

 cm

From Figure B: θ = F
HG

I
KJ

−sin
.

1

50 0
d
 cm

θ =
°

F
HG

I
KJ = °−sin

.
cos .

.1 15 0
30 0

20 3
 cm

50.0 cma f
F

mg
q
= tanθ

or F mgq = °tan .20 3 (1)

From Figure C: F Fq = °2 30 0cos .

F
k q

q
e=

L
N
MM

O
Q
PP °2

0 300
30 0

2

2.
cos .

 ma f (2)

Combining equations (1) and (2),

2
0 300

30 0 20 3
2

2

k q
mge

.
cos . tan .

 ma f
L
N
MM

O
Q
PP °= °

q
mg

k

q

q

e

2
2

2
3 2

9

14 7

0 300 20 3
2 30 0

2 00 10 9 80 0 300 20 3

2 8 99 10 30 0

4 20 10 2 05 10 0 205

=
°

°

=
× °

× ⋅ °

= × = × =

−

− −

. tan .
cos .

. . . tan .

. cos .

. . .

 m

 kg  m s  m

 N m C

 C  C  C

2

2 2

2

a f

e je ja f
e j

µ

Figure A

Figure B

Figure C

FIG. P23.58

P23.59 Charge 
Q
2

 resides on each block, which repel as point charges: F
k Q Q

L
k L Le

i= = −
2 2

2

b gb g b g.

Solving for Q, Q L
k L L

k
i

e
=

−
2
b g

.

*P23.60 If we place one more charge q at the 29th vertex, the total force on the central charge will add up to

zero: F28 charges +
k qQ

a
e

2  away from vertex 29 0= F28 charges
ek

 toward vertex 29=
qQ

a2 .

P23.61 According to the result of Example 23.7, the left-hand rod creates
this field at a distance d from its right-hand end:

E
k Q

d a d

dF
k QQ

a
dx

d d a

F
k Q

a
dx

x x a
k Q

a a
a x
x

e

e

e

x b a

b
e

b a

b

=
+

=
+

=
+

= −
+F

HG
I
KJ

= − −
z

2

2 2

2 2 2
1
2

22

2

2

2

a f

a f

a f ln

FIG. P23.61
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KJ −

F
HG

I
KJ
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2
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P23.62 At equilibrium, the distance between the charges is r = °= × −2 0 100 10 0 3 47 10 2. sin . .m mb g
Now consider the forces on the sphere with charge +q , and use Fy∑ = 0 :

Fy∑ = 0 : T mgcos .10 0°= , or T
mg

=
°cos .10 0

(1)

Fx∑ = 0 : F F F Tnet = − = °2 1 10 0sin . (2)

Fnet  is the net electrical force on the charged sphere. Eliminate T from (2) by use of (1).

F
mg

mgnet
2kg m s  N=

°
°

= °= × °= ×− −sin .
cos .

tan . . . tan . .
10 0

10 0
10 0 2 00 10 9 80 10 0 3 46 103 3e je j

Fnet  is the resultant of two forces, F1  and F2 . F1  is the attractive force on +q  exerted
by −q , and F2  is the force exerted on +q  by the external electric field.

r

L

+q–q

θ θ

FIG. P23.62

F F Fnet = −2 1  or F F F2 1= +net

F1
9

8 8

3 2
28 99 10

5 00 10 5 00 10

3 47 10
1 87 10= × ⋅

× ×

×
= ×

− −

−

−.
. .

.
. N m C

 C  C

 m
 N2 2e j e je j

e j
Thus, F F F2 1= +net  yields F2

3 2 23 46 10 1 87 10 2 21 10= × + × = ×− − −. . . N  N  N

and F qE2 = , or E
F
q

= =
×
×

= × =
−

−
2

2

8
52 21 10

4 43 10 443
.

.
 N

5.00 10  C
 N C  kN C .

P23.63 Q d Rd R R R
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FIG. P23.63

Since the leftward and rightward forces due to the two halves of the semicircle cancel out, Fx = 0 .

P23.64 At an equilibrium position, the net force on the charge Q is zero. The equilibrium position can be
located by determining the angle θ corresponding to equilibrium.

In terms of lengths s, 
1
2

3a , and r, shown in Figure P23.64, the charge at the origin exerts an

attractive force

k Qq

s a

e

+ 1
2

2
3e j

continued on next page
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The other two charges exert equal repulsive forces of magnitude 
k Qq
r
e

2 . The horizontal components

of the two repulsive forces add, balancing the attractive force,

F k Qq
r s a

enet = −
+

L

N
MMM

O

Q
PPP
=

2 1

3
02

1
2

2
cosθ

e j

From Figure P23.64 r
a

=
1
2

sinθ
s a=

1
2

cotθ

The equilibrium condition, in terms of θ, is F
a

k Qqenet =
F
HG
I
KJ −

+

F

H
GG

I

K
JJ =

4
2

1

3
02

2
2cos sin

cot
θ θ

θe j
.

Thus the equilibrium value of θ satisfies 2 3 12 2
cos sin cotθ θ θ+ =e j .

One method for solving for θ is to tabulate the left side. To three significant figures a value of θ
corresponding to equilibrium is 81.7°.

The distance from the vertical side of the triangle to the equilibrium position is

s a a= °=
1
2

81 7 0 072 9cot . . .

FIG. P23.64

θ θ θ θ2 3

60
70
80
90
81

81 5
81 7

2 2
cos sin cot

.

.

+

°
°
°
°
°
°
°

e j
4

2.654
1.226

0
1.091
1.024
0.997

A second zero-field point is on the negative side of the x-axis, where θ = − °9 16.  and s a= −3 10. .

P23.65 (a) From the 2Q charge we have F Te − =2 2 0sinθ  and mg T− =2 2 0cosθ .

Combining these we find
F
mg

T
T

e = =2 2

2 2
2

sin
cos

tan
θ
θ

θ .

From the Q charge we have F Te = =1 1 0sinθ  and mg T− =1 1 0cosθ .

Combining these we find
F
mg

T
T

e = =1 1

1 1
1

sin
cos

tan
θ
θ

θ  or θ θ2 1= .

(b) F
k QQ

r
k Q
re

e e= =
2 2

2

2

2

FIG. P23.65

If we assume θ is small then tanθ ≈
r 2
A

.

Substitute expressions for Fe  and tanθ  into either equation found in part (a) and solve for r.

F
mg

e = tanθ  then 
2 1

2

2

2
k Q
r mg

re F
HG
I
KJ ≈ A

 and solving for r we find r
k Q
mg
e≈

F
HG

I
KJ

4 2 1 3
A

.
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P23.66 (a) The distance from each corner to the center of the square is

L L L
2 2 2

2 2F
HG
I
KJ + FHG
I
KJ = .

The distance from each positive charge to −Q  is then

z
L2

2

2
+ . Each positive charge exerts a force directed

+q +q

+q+q z

–Q

L/2
L/2

x

FIG. P23.66

along the line joining q and −Q , of magnitude
k Qq

z L
e

2 2 2+
.

The line of force makes an angle with the z-axis whose cosine is
z

z L2 2 2+

The four charges together exert forces whose x and y components add to zero, while the

z-components add to F k= −
+

4

22 2 3 2

k Qqz

z L

e

e j
�

(b) For z L>> , the magnitude of this force is F
k Qqz

L

k Qq

L
z maz

e e
z= − = −

F
HG

I
KJ =

4

2

4 2
2 3 2

3 2

3e j
a f

Therefore, the object’s vertical acceleration is of the form a zz = −ω
2

with ω 2
3 2

3 3

4 2 128
= =
a f k Qq

mL
k Qq

mL
e e .

Since the acceleration of the object is always oppositely directed to its excursion from
equilibrium and in magnitude proportional to it, the object will execute simple harmonic
motion with a period given by

T
mL
k Qq

mL
k Qqe e

= = =
2 2

128 81 4

3

1 4

3π
ω

π π
a f a f .

P23.67 (a) The total non-contact force on the cork ball is: F qE mg m g
qE
m

= + = +FHG
I
KJ ,

which is constant and directed downward. Therefore, it behaves like a simple pendulum in
the presence of a modified uniform gravitational field with a period given by:

T
L

g qE m
=

+
=

+ × × ×

=

− −
2 2

0 500

2 00 10 1 00 10 1 00 10

0 307

6 5 3
π π

.

. . .

.

 m

9.80 m s  C  N C  kg

 s

2 e je j

(b) Yes . Without gravity in part (a), we get T
L

qE m
= 2π

T =
× × ×

=
− −

2
0 500

2 00 10 1 00 1 00 10
0 314

6 3
π

.

. . .
.

 m

 C 10  N C  kg
 s

5e je j
 (a 2.28% difference).
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P23.68 The bowl exerts a normal force on each bead, directed along the
radius line or at 60.0° above the horizontal. Consider the free-body
diagram of the bead on the left:

F n mgy = °− =∑ sin .60 0 0 ,

or n
mg

=
°sin .60 0

.

Also, F F nx e∑ = − + °=cos .60 0 0 ,

or
k q
R

n
mg mge

2

2 60 0
60 0 3

= °=
°
=cos .

tan .
.

Thus, q R
mg

ke

=
F
HG
I
KJ3

1 2

.

n

mg

60.0°Fe

FIG. P23.68

P23.69 (a) There are 7 terms which contribute:

3 are s away (along sides)

3 are 2s  away (face diagonals) and sin cosθ θ= =
1
2

1 is 3s  away (body diagonal) and sinφ =
1
3

.

The component in each direction is the same by symmetry.

F i j k i j k= + +
L
NM

O
QP + + = + +

k q
s

k q
s

e e
2

2

2

21
2

2 2
1

3 3
1 90� � � . � � �e j a fe j

FIG. P23.69

(b) F F F F
k q
sx y z
e= + + =2 2 2

2

23 29.  away from the origin

P23.70 (a) Zero contribution from the same face due to symmetry, opposite
face contributes

4 2

k q
r

e sinφF
HG

I
KJ  where r

s s
s s s= FHG

I
KJ + FHG
I
KJ + = =

2 2
1 5 1 22

2 2
2 . .

sinφ =
s
r

E
k qs
r

k q
s

k q
s

e e e= = =4
4

1 22
2 183 3 2 2.
.a f

(b) The direction is the  direction.�k
FIG. P23.70
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P23.71 The field on the axis of the ring is calculated in Example 23.8, E E
k xQ

x a
x

e= =
+2 2 3 2e j

The force experienced by a charge −q  placed along the axis of the ring is F k Qq
x

x a
e= −

+

L

N
MMM

O

Q
PPP2 2 3 2e j

and when x a<< , this becomes F
k Qq

a
xe= −FHG
I
KJ3

This expression for the force is in the form of Hooke’s law, with an

effective spring constant of k
k Qq

a
e= 3

Since ω π= =2 f
k
m

, we have f
k Qq
ma

e=
1

2 3π
.

P23.72 d
k dq
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x

x

k x dx
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e e
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=

+
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FIG. P23.72
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 m  m
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a f
a f
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e je j a f a f
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P23.73 The electrostatic forces exerted on the two charges result in a net torque
τ θ θ= − = −2 2Fa Eqasin sin .

For small θ, sinθ θ≈  and using p qa= 2 , we have τ θ= −Ep .

The torque produces an angular acceleration given by τ α
θ

= =I I
d
dt

2

2 .

Combining these two expressions for torque, we have
d
dt

Ep
I

2

2 0
θ

θ+ FHG
I
KJ = . FIG. P23.73

This equation can be written in the form
d
dt

2

2
2θ

ω θ= −  where ω 2 =
Ep
I

.

This is the same form as Equation 15.5 and the frequency of oscillation is found by comparison with

Equation 15.11, or f
pE
I

qaE
I

= =
1

2
1

2
2

π π
.
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ANSWERS TO EVEN PROBLEMS

P23.2 (a) 2 62 1024. × ; (b) 2.38 electrons for every
109  present

P23.36 (a) 200 pC; (b) 141 pC; (c) 58.9 pC

P23.38 see the solution

P23.4 57 5.  N
P23.40 (a) −

1
3

; (b) q1 is negative  and q2  is positive
P23.6 2 51 10 9. × −

P23.42 electron: 4 39.  Mm s ; proton: 2 39.  km sP23.8 514 kN

P23.10 x d= 0 634. . The equilibrium is stable if the
third bead has positive charge.

P23.44 (a) −57 6. �i Tm s2 ; (b) 2 84. �i Mm s; (c) 49.3 ns

P23.46 (a) down; (b) 3 43.  Cµ

P23.12 (a) period =
π
2

3md
k qQe

 where m is the mass

of the object with charge −Q ; (b) 4 3a
k qQ
md

e

P23.48 The particle strikes the negative plate after
moving in a parabola 0.181 mm high and
0.961 mm.

P23.50 Possible only with +51 3.  Cµ  at
x = −16 0.  cmP23.14 1 49.  g

P23.16 720 kN C  down P23.52 (a) 24 2.  N C  at 0°; (b) 9 42.  N C  at 117°

P23.18 (a) 18 0 218. � �i j− kN C; P23.54 5 25.  Cµ

(b) 36 0 436. � �i j−e jmN
P23.56 (a) 

mg
A Bcotθ +

; (b) 
mgA

A Bcos sinθ θ+
P23.20 (a) 12 9. �j kN C ; (b) −38 6. �j mN

P23.58 0 205.  Cµ
P23.22 see the solution

P23.60
k qQ

a
e

2  toward the 29th vertex
P23.24 −

π 2

26
k q
a

e �i

P23.62 443  kN C�i
P23.26

k
x
eλ 0

0
−�ie j

P23.64 0 072 9. a

P23.28
k

x
eλ 0

02
−�ie j P23.66 see the solution; the period is 

π
81 4

3mL
k Qqe

P23.30 (a) 383 MN C  away; (b) 324 MN C  away;
(c) 80 7. MN C away; (d) 6 68. MN C away

P23.68 R
mg

ke 3

1 2F
HG
I
KJP23.32 see the solution

P23.70 (a) see the solution; (b) �k
P23.34 (a) 

k Q
h

d R d h Re
�i 2 2 1 2 2 2 1 2

+ − + +L
NM

O
QP

− −
e j a fe j ;

P23.72 − +1 36 1 96. � . �i je j kN C
(b) 

2
2

k Q
R h

e
�i

h d R d h R+ + − + +L
NM

O
QP

2 2 1 2 2 2 1 2
e j a fe j
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Gauss’s Law

ANSWERS TO QUESTIONS

Q24.1 The luminous flux on a given area is less when the sun is low in
the sky, because the angle between the rays of the sun and the
local area vector, dA, is greater than zero. The cosine of this
angle is reduced. The decreased flux results, on the average, in
colder weather.

Q24.2 If the region is just a point, line, or plane, no. Consider two
protons in otherwise empty space. The electric field is zero at
the midpoint of the line joining the protons. If the field-free
region is three-dimensional, then it can contain no charges, but
it might be surrounded by electric charge. Consider the interior
of a metal sphere carrying static charge.

Q24.3 The surface must enclose a positive total charge.

Q24.4 The net flux through any gaussian surface is zero. We can argue it two ways. Any surface contains
zero charge so Gauss’s law says the total flux is zero. The field is uniform, so the field lines entering
one side of the closed surface come out the other side and the net flux is zero.

Q24.5 Gauss’s law cannot tell the different values of the electric field at different points on the surface.
When E is an unknown number, then we can say E dA E dAcos cosθ θz z= . When E x y z, ,b g  is an

unknown function, then there is no such simplification.

Q24.6 The electric flux through a sphere around a point charge is independent of the size of the sphere. A
sphere of larger radius has a larger area, but a smaller field at its surface, so that the product of field
strength and area is independent of radius. If the surface is not spherical, some parts are closer to the
charge than others. In this case as well, smaller projected areas go with stronger fields, so that the
net flux is unaffected.

Q24.7 Faraday’s visualization of electric field lines lends insight to this question. Consider a section of a

vertical sheet carrying charge +1 coulomb. It has 
1

0∈
 field lines pointing out from it horizontally to

the right and left, all uniformly spaced. The lines have the same uniform spacing close to the sheet
and far away, showing that the field has the same value at all distances.

29



30     Gauss’s Law

Q24.8 Consider any point, zone, or object where electric field lines begin. Surround it with a close-fitting
gaussian surface. The lines will go outward through the surface to constitute positive net flux. Then
Gauss’s law asserts that positive net charge must be inside the surface: it is where the lines begin.
Similarly, any place where electric field lines end must be just inside a gaussian surface passing net
negative flux, and must be a negative charge.

Q24.9 Inject some charge at arbitrary places within a conducting object. Every bit of the charge repels
every other bit, so each bit runs away as far as it can, stopping only when it reaches the outer surface
of the conductor.

Q24.10 If the person is uncharged, the electric field inside the sphere is zero. The interior wall of the shell
carries no charge. The person is not harmed by touching this wall. If the person carries a (small)
charge q, the electric field inside the sphere is no longer zero. Charge –q is induced on the inner wall
of the sphere. The person will get a (small) shock when touching the sphere, as all the charge on his
body jumps to the metal.

Q24.11 The electric fields outside are identical. The electric fields inside are very different. We have E = 0
everywhere inside the conducting sphere while E decreases gradually as you go below the surface of
the sphere with uniform volume charge density.

Q24.12 There is zero force. The huge charged sheet creates a uniform field. The field can polarize the
neutral sheet, creating in effect a film of opposite charge on the near face and a film with an equal
amount of like charge on the far face of the neutral sheet. Since the field is uniform, the films of
charge feel equal-magnitude forces of attraction and repulsion to the charged sheet. The forces add
to zero.

Q24.13 Gauss’s law predicts, as described in section 24.4, that excess charge on a conductor will reside on
the surface of the conductor. If a car is left charged by a lightning strike, then that charge will remain
on the outside of the car, not harming the occupants. It turns out that during the lightning strike, the
current also remains on the outside of the conductor. Note that it is not necessarily safe to be in a
fiberglass car or a convertible during a thunderstorm.

SOLUTIONS TO PROBLEMS

Section 24.1 Electric Flux

P24.1 (a) ΦE EA= = × × °= ⋅cos . . . cosθ 3 50 10 0 350 0 700 0 8583e ja f  N m C2

(b) θ = °90 0. ΦE = 0

(c) ΦE = × × °= ⋅3 50 10 0 350 0 700 40 0 6573. . . cos .e ja f  N m C2

P24.2 ΦE EA= = × °= ⋅cos . . cos .θ 2 00 10 18 0 10 0 3554  N C  m  kN m C2 2e je j

P24.3 ΦE EA= cosθ A r= = =π π2 20 200 0 126. .a f  m2

5 20 10 0 126 05. . cos× = °Ea f E = × =4 14 10 4 146. . N C  MN C
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P24.4 (a) ′ =A 10 0 30 0. . cm  cma fa f
′ = =

= ′

= × °

= − ⋅

′

′

′

A
EAE A

E A

E A

300 0 030 0

7 80 10 0 030 0 180

2 34

4

 cm  m

 kN m C

2 2

2

.
cos

. . cos

.

,

,

,

Φ

Φ

Φ

θ

e jb g

(b) ΦE A EA A, cos . cos .= = × °θ 7 80 10 60 04e ja f

10.0 cm

 30.0 cm

60.0Þ

FIG. P24.4

A w

E A

= =
°

F
HG

I
KJ = =

= × °= + ⋅

30 0 30 0
10 0

60 0
600 0 060 0

7 80 10 0 060 0 60 0 2 344

. .
.

cos .
.

. . cos . .,

 cm  cm
 cm

 cm  m

 kN m C

2 2

2

a fa f a f

e jb gΦ

(c) The bottom and the two triangular sides all lie parallel to E, so ΦE = 0  for each of these. Thus,

ΦE, . .total
2 2 kN m C  kN m C= − ⋅ + ⋅ + + + =2 34 2 34 0 0 0 0 .

P24.5 (a) ΦE a b A aA= ⋅ = + ⋅ =E A i j ie j

(b) ΦE a b A bA= + ⋅ =i j je j

(c) ΦE a b A= + ⋅ =i j ke j 0

P24.6 Only the charge inside radius R contributes to the total flux.

ΦE
q

=
∈0

P24.7 ΦE EA= cosθ  through the base

ΦE = °= − ⋅52 0 36 0 180 1 87. . cos .a fa f  kN m C2 .

Note the same number of electric field lines go through the base as go through the
pyramid’s surface (not counting the base).

For the slanting surfaces, ΦE = + ⋅1 87.  kN m C2 .

FIG. P24.7

P24.8 The flux entering the closed surface equals the flux exiting the surface. The flux entering the left side
of the cone is ΦE d ERh= ⋅ =zE A . This is the same as the flux that exits the right side of the cone.

Note that for a uniform field only the cross sectional area matters, not shape.



32     Gauss’s Law

Section 24.2 Gauss’s Law

P24.9 (a) ΦE
q

=
∈

=
+ − + −

× ⋅
= − × ⋅−

in
2 2

2 2 C  C  C  C

 C N m
 N m C

0
12

65 00 9 00 27 0 84 0

8 85 10
6 89 10

. . . .

.
.

µ µ µ µb g

ΦE = − ⋅6 89.  MN m C2

(b) Since the net electric flux is negative, more lines enter than leave the surface.

P24.10 (a) E
k Q
r
e= 2 : 8 90 10

8 99 10

0 750
2

9

2.
.

.
× =

×e j
a f

Q

But Q is negative since E points inward. Q = − × = −−5 56 10 55 68. . C  nC

(b) The negative  charge has a spherically symmetric  charge distribution.

P24.11 ΦE
q

=
∈

in

0

Through S1 ΦE
Q Q Q

=
− +

∈
= −

∈
2

0 0

Through S2 ΦE
Q Q

=
+ −
∈

=
0

0

Through S3 ΦE
Q Q Q Q

=
− + −

∈
= −

∈
2 2

0 0

Through S4 ΦE = 0

P24.12 (a) One-half of the total flux created by the charge q goes through the plane. Thus,

Φ ΦE E
q q

, , plane  total= =
∈
F
HG
I
KJ = ∈

1
2

1
2 20 0

.

(b) The square looks like an infinite plane to a charge very close to the surface. Hence,

Φ ΦE E
q

, , square  plane≈ =
∈2 0

.

(c) The plane and the square look the same to the charge.

P24.13 The flux through the curved surface is equal to the flux through the flat circle, E r0
2π .

P24.14 (a) ΦE
q

,
.

.
. .shell

in 2 2 N m C  MN m C=
∈

=
×
×

= × ⋅ = ⋅
−

−
0

6

12
612 0 10

8 85 10
1 36 10 1 36

(b) ΦE, half shell
2 2 2 N m C  N m C  kN m C= × ⋅ = × ⋅ = ⋅

1
2

1 36 10 6 78 10 6786 5. .e j

(c) No,  the same number of field lines will pass through each surface, no matter how the

radius changes.
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P24.15 (a) With δ very small, all points on the hemisphere are nearly at
a distance R from the charge, so the field everywhere on the

curved surface is 
k Q
R
e

2  radially outward (normal to the

surface). Therefore, the flux is this field strength times the
area of half a sphere:

Φ

Φ

curved local hemisphere

curved

= ⋅ =

= FHG
I
KJ
F
HG

I
KJ = ∈

=
+
∈

z E Ad E A

k
Q
R

R Q
Q

e 2
2

0 0

1
2

4
1

4
2

2
π

π
πa f

Q
δ → 0

FIG. P24.15

(b) The closed surface encloses zero charge so Gauss’s law gives

Φ Φcurved flat+ = 0 or Φ Φflat curved= − =
−
∈
Q

2 0
.

*P24.16 Consider as a gaussian surface a box with horizontal area A, lying between 500 and 600 m elevation.

E A⋅ =
∈z d
q

0
: + + − =

∈
120 100

100

0
 N C  N C

 mb g b g a f
A A

Aρ

ρ =
× ⋅

= ×
−

−
20 8 85 10

100
1 77 10

12
12

 N C  C N m

 m
 C m

2 2
3

b ge j.
.

The charge is positive , to produce the net outward flux of electric field.

P24.17 The total charge is Q q− 6 . The total outward flux from the cube is 
Q q−

∈

6

0
, of which one-sixth goes

through each face:

ΦE
Q qb gone face

=
−

∈

6

6 0

ΦE
Q qb g a f

one face

2
2 C N m

 C
 kN m C=

−

∈
=

− × ⋅ ⋅

× ×
= − ⋅

−

−

6

6
5 00 6 00 10

6 8 85 10
18 8

0

6

12 2

. .

.
. .

P24.18 The total charge is Q q− 6 . The total outward flux from the cube is 
Q q−

∈

6

0
, of which one-sixth goes

through each face:

ΦE
Q qb gone face

=
−

∈

6

6 0
.

P24.19 If R d≤ , the sphere encloses no charge and ΦE
q

=
∈

=in

0
0 .

If R d> , the length of line falling within the sphere is 2 2 2R d−

so ΦE
R d

=
−

∈
2 2 2

0

λ
.
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P24.20 ΦE
ek Q

R
r,

. .

.
. hole hole

2 2 N m C  C

 m
 m= ⋅ = FHG

I
KJ =

× ⋅ ×F
H
GG

I
K
JJ ×

−
−E A 2

2
9 6

2
3 28 99 10 10 0 10

0 100
1 00 10π πe j e je j

a f e j

ΦE, . hole
2 N m C= ⋅28 2

P24.21 ΦE
q

=
∈

=
×

× ⋅
= × ⋅

−

−
in

2 2
2 C

8.85 10  C N m
 N m C

0

6

12
7170 10

1 92 10.

(a) Φ ΦE Eb gone face

2 N m C
= =

× ⋅1
6

1 92 10
6

7.
ΦEb gone face

2 MN m C= ⋅3 20.

(b) ΦE = ⋅19 2.  MN m C2

(c) The answer to (a) would change because the flux through each face of the cube would
not be equal with an asymmetric charge distribution.  The sides of the cube nearer the
charge would have more flux and the ones further away would have less.  The answer
to (b) would remain the same,  since the overall flux would remain the same.

P24.22 No charge is inside the cube. The net flux through the cube is zero. Positive flux
comes out through the three faces meeting at g. These three faces together fill
solid angle equal to one-eighth of a sphere as seen from q, and together pass

flux 
1
8 0

q
∈
F
HG
I
KJ . Each face containing a intercepts equal flux going into the cube:

0 3
8

24

0

0

= = +
∈

=
−
∈

Φ Φ

Φ

E E

E

q

q

, ,

,

 net  abcd

 abcd

FIG. P24.22

Section 24.3 Application of Gauss’s Law to Various Charge Distributions

P24.23 The charge distributed through the nucleus creates a field at the surface equal to that of a point

charge at its center: E
k q
r

e= 2

E =
× × ×

×

−

−

8 99 10 82 1 60 10

208 1 20 10

9 19

1 3 15 2

. .

.

 Nm C  C

 m

2 2e je j
a f

E = ×2 33 1021.  N C  away from the nucleus
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P24.24 (a) E
k Qr

a
e= =3 0

(b) E
k Qr

a
e= =

× ×
=

−

3

9 6

3

8 99 10 26 0 10 0 100

0 400
365

. . .

.

e je ja f
a f  kN C

(c) E
k Q
r
e= =

× ×
=

−

2

9 6

2

8 99 10 26 0 10

0 400
1 46

. .

.
.

e je j
a f  MN C

(d) E
k Q
r
e= =

× ×
=

−

2

9 6

2

8 99 10 26 0 10

0 600
649

. .

.

e je j
a f  kN C

The direction for each electric field is radially outward .

*P24.25 mg qE q q
Q A

= =
∈
F
HG
I
KJ = ∈
F
HG
I
KJ

σ
2 20 0

Q
A

mg
q

=
∈

=
×

− ×
= −

−

−

2 2 8 85 10 0 01 9 8

0 7 10
2 480

12

6

. . .

.
.

e ja fa f
 C m2µ

P24.26 (a) E
k
r
e=

2 λ
3 60 10

2 8 99 10 2 40

0 190
4

9

.
. .

.
× =

×e jb gQ

Q = + × = +−9 13 10 9137.  C  nC

(b) E = 0

*P24.27 The volume of the spherical shell is

4
3

0 25 0 20 3 19 103 3 2π . . . m  m  m3a f a f− = × − .

Its charge is

ρV = − × × = − ×− − −1 33 10 3 19 10 4 25 106 2 8. . . C m  m  C3 3e je j .

The net charge inside a sphere containing the proton’s path as its equator is

− × − × = − ×− − −60 10 4 25 10 1 02 109 8 7 C  C  C. . .

The electric field is radially inward with magnitude

k q

r

q

r
e
2

0
2

9 7

2 2
4

4

8 99 10 10

0 25
1 47 10=

∈
=

× ×
= ×

−

π

.

.
.

 Nm 1.02  C

C  m
 N C

2 e j
a f .

For the proton

F ma∑ = eE
mv

r
=

2

v
eEr
m

= FHG
I
KJ =

× ×

×

F
H
GG

I
K
JJ = ×

−

−

1 2 19 4

27

1 2

5
1 60 10 1 47 10 0 25

10
5 94 10

. . .
.

 C  N C  m

1.67  kg
 m s

e j
.
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P24.28 σ = × F
HG

I
KJ = ×− −8 60 10

100
8 60 106

2
2. . C cm

 cm
m

 C m2 2e j

E =
∈

=
×

×
= ×

−

−

σ
2

8 60 10

2 8 85 10
4 86 10

0

2

12
9.

.
.

e j
 N C  away from the wall

The field is essentially uniform as long as the distance from the center of the wall to the field point is
much less than the dimensions of the wall.

P24.29 If ρ is positive, the field must be radially outward. Choose as the
gaussian surface a cylinder of length L and radius r, contained inside
the charged rod. Its volume is π r L2  and it encloses charge ρπ r L2 .
Because the charge distribution is long, no electric flux passes
through the circular end caps; E A⋅ = °=d EdA cos .90 0 0 . The curved
surface has E A⋅ = °d EdA cos0 , and E must be the same strength
everywhere over the curved surface. FIG. P24.29

Gauss’s law, E A⋅ =
∈z d
q

0
, becomes E dA

r L

Curved
Surface

z =
∈

ρπ 2

0
.

Now the lateral surface area of the cylinder is 2π rL :

E r L
r L

2
2

0
π

ρπb g =
∈

. Thus, E =
∈
ρr

2 0
 radially away from the cylinder axis .

*P24.30 Let ρ represent the charge density. For the field inside the sphere at r1 5=  cm we have

E r
q r

1 1
2

0

1
3

0
4

4
3

π
π ρ

=
∈

=
∈

inside E
r

1
1

03
=

∈
ρ

ρ =
∈

=
× − ×

= − ×
−

−3 3 8 85 10 86 10

0 05
4 57 100 1

1

12 3
5E

r C

.

.
.

 C  N

 m Nm
 C m

2

2
3e je j

.

Now for the field outside at r3 15=  cm

E r
r

E
k
r

e

3 3
2 2

3

0

3
3
2

3 5 9 7
4

3

4
4
3

4
3

0 10 4 57 10 8 99 10 1 91 10
7 64 10

76 4

π
π ρ

π

=
∈

=
− ×

=
× − ×

= − ×

=

− −. . . .
.

.

 m  C

m

 Nm  C

0.15 m C
 N C

 kN C  radially inward

3

2

2 2

a f e j e j
a f

E

P24.31 (a) E = 0

(b) E
k Q
r
e= =

× ×
=

−

2

9 6

2

8 99 10 32 0 10

0 200
7 19

. .

.
.

e je j
a f  MN C E = 7 19.  MN C  radially outward

P24.32 The distance between centers is 2 5 90 10 15× × −.  m . Each produces a field as if it were a point charge
at its center, and each feels a force as if all its charge were a point at its center.

F
k q q

r
e= = × ⋅

×

× ×
= × =

−

−

1 2
2

9
2 19 2

15 2
38 99 10

46 1 60 10

2 5 90 10
3 50 10 3 50.

.

.
. . N m C

 C

 m
 N  kN2 2e j

a f e j
e j
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P24.33 Consider two balloons of diameter 0.2 m, each with mass 1 g, hanging apart with a
0.05 m separation on the ends of strings making angles of 10° with the vertical.

(a) F T mg T
mg

y∑ = °− = ⇒ =
°

cos
cos

10 0
10

F T F F Tx e e∑ = °− = ⇒ = °sin sin10 0 10 , so

F
mg

mg

F

e

e

=
°

F
HG

I
KJ °= °= °

≈ × − −

cos
sin tan . . tan

10
10 10 0 001 9 8 10

2 10 3 3

 kg  m s

 N ~10  N or 1 mN

2b ge j
FIG. P24.33

(b) F
k q
re
e=

2

2

2 10
8 99 10

0 25

1 2 10 10

3
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(d) ΦE
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=
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≈
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× ⋅
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−

−
0
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41 2 10
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*P24.34 The charge density is determined by Q a=
4
3

3π ρ ρ
π

=
3

4 3
Q
a

(a) The flux is that created by the enclosed charge within radius r:

ΦE
q r r Q

a
Qr

a
=
∈

=
∈

=
∈

=
∈

in

0

3

0

3

0
3

3

0
3

4
3

4 3
3 4

π ρ π
π

(b) ΦE
Q

=
∈0

. Note that the answers to parts (a) and (b) agree at r a= .

(c)

a
r

ΦE

Q
∈0

0
0

FIG. P24.34(c)
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P24.35 (a) E
k
r
e= =

× ⋅ × −
2 2 8 99 10 2 00 10 7 00

0 100

9 6
λ . . .

.

 N m C  C  m

 m

2 2e j e j

E = 51 4. , kN C  radially outward

(b) ΦE EA E r= = °cos cosθ π2 0b g
ΦE = × = ⋅5 14 10 2 0 100 0 020 0 1 00 6464. . . . N C  m  m  N m C2e j a fb ga fπ

P24.36 (a) ρ
π π

= =
×

= ×
−

−Q
a4

3
3

6

4
3

3
25 70 10

0 040 0
2 13 10

.

.
.

b g
 C m3

q rin  C  nC= FHG
I
KJ = × F

HG
I
KJ = × =− −ρ π π

4
3

2 13 10
4
3

0 020 0 7 13 10 7133 2 3 7. . .e j b g

(b) q rin  C= FHG
I
KJ = × F

HG
I
KJ =−ρ π π µ

4
3

2 13 10
4
3

0 040 0 5 703 2 3
. . .e j b g

P24.37 E =
∈

=
×

× ⋅
=

−

−

σ
2

9 00 10

2 8 85 10
508

0

6

12

.

.

 C m

 C N m
 kN C ,  upward

2

2 2e j

P24.38 Note that the electric field in each case is directed radially inward, toward the filament.

(a) E
k
r
e= =

× ⋅ ×
=

−
2 2 8 99 10 90 0 10

0 100
16 2

9 6
λ . .

.
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 N m C  C m

 m
 MN C

2 2e je j

(b) E
k
r
e= =

× ⋅ ×
=

−
2 2 8 99 10 90 0 10

0 200
8 09

9 6
λ . .

.
.

 N m C  C m

 m
 MN C

2 2e je j

(c) E
k
r
e= =

× ⋅ ×
=

−
2 2 8 99 10 90 0 10

1 00
1 62

9 6
λ . .

.
.

 N m C  C m

 m
 MN C

2 2e je j

Section 24.4 Conductors in Electrostatic Equilibrium

P24.39 EdA E rl
qz = =
∈

2
0

πb g in E
q l

r r
=

∈
=

∈
in

2 20 0π
λ

π

(a) r = 3 00.  cm E = 0

(b) r = 10 0.  cm E =
×

×
=

−

−

30 0 10

2 8 85 10 0 100
5 400

9

12

.

. .π e ja f  N C ,  outward

(c) r = 100 cm E =
×

×
=

−

−

30 0 10

2 8 85 10 1 00
540

9

12

.

. .π e ja f
 N C ,  outward
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P24.40 From Gauss’s Law, EA
Q

=
∈0

σ = =∈ = × − = − × = −− −Q
A

E0
12 98 85 10 130 1 15 10 1 15. . .e ja f  C m  nC m2 2

P24.41 The fields are equal. The Equation 24.9 E =
∈

σ conductor

0
 for the field outside the aluminum looks

different from Equation 24.8 E =
∈

σ insulator

2 0
 for the field around glass. But its charge will spread out to

cover both sides of the aluminum plate, so the density is σ conductor =
Q
A2

. The glass carries charge

only on area A, with σ insulator =
Q
A

. The two fields are 
Q

A2 0∈
 the same in magnitude, and both are

perpendicular to the plates, vertically upward if Q is positive.

*P24.42 (a) All of the charge sits on the surface of the copper sphere at radius 15 cm. The field inside is
zero .

(b) The charged sphere creates field at exterior points as if it were a point charge at the center:

E = =
× ×

= ×
−

k q
r

e
2

9 9

2
4

8 99 10 40 10

0 17
1 24 10 away

 Nm  C

C  m
 outward  N C  outward

2

2

.

.
.

e je j
a f

(c) E =
× ×

=
−8 99 10 40 10

0 75
639

9 9

2

.

.

 Nm  C

C  m
 outward  N C  outward

2

2

e je j
a f

(d) All three answers would be the same.

P24.43 (a) E =
∈
σ

0
σ = × × = ×− −8 00 10 8 85 10 7 08 104 12 7. . .e je j  C m2

σ = 708 nC m2 , positive on one face and negative on the other.

(b) σ =
Q
A

Q A= = × −σ 7 08 10 0 5007 2. .e ja f  C

Q = × =−1 77 10 1777.  C  nC , positive on one face and negative on the other.

P24.44 (a) E = 0

(b) E
k Q
r
e= =

× ×
= ×

−

2

9 6

2
7

8 99 10 8 00 10

0 030 0
7 99 10

. .

.
.

e je j
b g

 N C E = 79 9.  MN C  radially outward

(c) E = 0

(d) E
k Q
r
e= =

× ×
= ×

−

2

9 6

2
6

8 99 10 4 00 10

0 070 0
7 34 10

. .

.
.

e je j
b g

 N C E = 7 34.  MN C  radially outward
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P24.45 The charge divides equally between the identical spheres, with charge 
Q
2

 on each. Then they repel

like point charges at their centers:

F
k Q Q

L R R

k Q

L R
e e=
+ +

=
+

=
× ⋅ ×

=
−2 2

4 2

8 99 10 60 0 10

4 2 01
2 002

2

2

9 6 2

2

b gb g
a f a f

e j
a f

. .

.
.

 N m  C

 C  m
 N

2

2
.

P24.46 The electric field on the surface of a conductor varies inversely with the radius of curvature of the
surface. Thus, the field is most intense where the radius of curvature is smallest and vice-versa. The
local charge density and the electric field intensity are related by

E =
∈
σ

0
or σ =∈0 E .

(a) Where the radius of curvature is the greatest,

σ =∈ = × ⋅ × =−
0

12 48 85 10 2 80 10 248Emin
2 2 2 C N m  N C  nC m. .e je j .

(b) Where the radius of curvature is the smallest,

σ =∈ = × ⋅ × =−
0

12 48 85 10 5 60 10 496Emax . . C N m  N C  nC m2 2 2e je j .

P24.47 (a) Inside surface: consider a cylindrical surface within the metal. Since E inside the conducting
shell is zero, the total charge inside the gaussian surface must be zero, so the inside
charge/length = −λ .

0 = +λ qin so
qin = −λ

Outside surface: The total charge on the metal cylinder is 2λ = +q qin out

qout = +2λ λ so the outside charge/length is 3λ .

(b) E
k

r
k
r r

e e= = =
∈

2 3 6 3
2 0

λ λ λ
π

b g
 radially outward

P24.48 (a) E
k Q
r
e= =

× ×
=

−

2

9 6

2

8 99 10 6 40 10

0 150
2 56

. .

.
.

e je j
a f  MN C ,  radially inward

(b) E = 0

P24.49 (a) The charge density on each of the surfaces (upper and lower) of the plate is:

σ = FHG
I
KJ =

×
= × =

−
−1

2
1
2

4 00 10

0 500
8 00 10 80 0

8

2
8q

A

.

.
. .

 C

 m
 C m  nC m2 2e j

a f .

(b) E k k k=
∈
F
HG
I
KJ =

×

× ⋅

F
HG

I
KJ =

−

−
σ

0

8

12

8 00 10
8 85 10

9 04
.

.
.

 C m
 C N m

 kN C
2

2 2 b g

(c) E k= −9 04.  kN Cb g
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P24.50 (a) The charge +q  at the center induces charge −q  on the inner surface of the conductor,
where its surface density is:

σ
πa

q
a

=
−

4 2 .

(b) The outer surface carries charge Q q+  with density

σ
πb

Q q
b

=
+

4 2 .

P24.51 Use Gauss’s Law to evaluate the electric field in each region, recalling that the electric field is zero
everywhere within conducting materials. The results are:

E = 0 inside the sphere and within the material of the shell

E k
Q
re= 2  between the sphere and shell,  directed radially inward

E k
Q

re=
2

2  outside the shell,  directed radially outward .

Charge −Q is on the outer surface of the sphere .

Charge +Q is on the inner surface of the shell ,

and +2Q is on the outer surface of the shell.

P24.52 An approximate sketch is given at the right. Note that the electric field lines
should be perpendicular to the conductor both inside and outside.

FIG. P24.52

Section 24.5 Formal Derivation of Gauss‘s Law

P24.53 (a) Uniform E, pointing radially outward, so ΦE EA= . The arc length is ds Rd= θ ,
and the circumference is 2 2π π θr R= sin

A rds R Rd R d R R= = = = − = −z zz 2 2 2 2 2 1
0

2

0

2
0

2π π θ θ π θ θ π θ π θ
θ θ

θ
sin sin cos cosb g a f b g

ΦE
Q
R

R
Q

=
∈

⋅ − =
∈

−
1

4
2 1

2
1

0
2

2

0π
π θ θcos cosa f a f  [independent of R!]

FIG. P24.53

(b) For θ = °90 0.  (hemisphere): ΦE
Q Q

=
∈

− ° =
∈2

1 90
20 0

cosa f .

(c) For θ = °180  (entire sphere): ΦE
Q Q

=
∈

− ° =
∈2

1 180
0 0

cosa f  [Gauss’s Law].
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Additional Problems

P24.54 In general, E i j k= + +ay bz cx

In the xy plane, z = 0  and E i k= +ay cx

Φ

Φ

E

E
x

w

x

w

d ay cx dA

ch xdx ch
x chw

= ⋅ = + ⋅

= = =

z z
z
= =

E A i k ke j

0

2

0

2

2 2

�������������������������������������

x

y

z

x = 0

x = w

y = 0 y = h

dA = hdx

FIG. P24.54

P24.55 (a) q Q Q Qin = + − = +3 2

(b) The charge distribution is spherically symmetric and qin > 0 . Thus, the field is directed
radially outward .

(c) E
k q

r
k Q
r

e e= =in
2 2

2
 for r c≥ .

(d) Since all points within this region are located inside conducting material, E = 0  for

b r c< < .

(e) Φ ΦE Ed q= ⋅ = ⇒ =∈ =z E A 0 00in

(f) q Qin = +3

(g) E
k q

r
k Q
r

e e= =in
2 2

3
 (radially outward) for a r b≤ < .

(h) q V
Q
a

r Q
r
ain = =

+F
HG
I
KJ
F
HG
I
KJ = +ρ

π
π

3 4
3

3
4
3

3
3

3

3

(i) E
k q

r
k
r

Q
r
a

k Q
r

a
e e

e= = +
F
HG

I
KJ =

in
2 2

3

3 33 3  (radially outward) for 0 ≤ ≤r a .

(j) From part (d), E = 0  for b r c< < . Thus, for a
spherical gaussian surface with b r c< < ,
q Q qin inner= + + =3 0  where qinner  is the
charge on the inner surface of the
conducting shell. This yields q Qinner = −3 .

(k) Since the total charge on the conducting
shell is q q q Qnet outer inner= + = − , we have

q Q q Q Q Qouter inner= − − = − − − = +3 2b g .

(l) This is shown in the figure to the right.

E

ra b c

FIG. P24.55(l)
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P24.56 The sphere with large charge creates a strong field to polarize the other sphere. That means it
pushes the excess charge over to the far side, leaving charge of the opposite sign on the near side.
This patch of opposite charge is smaller in amount but located in a stronger external field, so it can
feel a force of attraction that is larger than the repelling force felt by the larger charge in the weaker
field on the other side.

P24.57 (a) E A⋅ = =
∈z d E r
q

4 2

0
πe j in

For r a< , q rin = FHG
I
KJρ π

4
3

3

so E
r

=
∈
ρ

3 0
.

For a r b< <  and c r< , q Qin = .

So E
Q
r

=
∈4 2

0π
.

 

FIG. P24.57

For b r c≤ ≤ , E = 0 , since E = 0  inside a conductor.

(b) Let q1 =  induced charge on the inner surface of the hollow sphere. Since E = 0  inside the
conductor, the total charge enclosed by a spherical surface of radius b r c≤ ≤  must be zero.

Therefore, q Q1 0+ = and σ
π π1

1
2 24 4

= =
−q

b
Q
b

.

Let q2 =  induced charge on the outside surface of the hollow sphere. Since the hollow
sphere is uncharged, we require

q q1 2 0+ = and σ
π π2

1
2 24 4

= =
q

c
Q

c
.

P24.58 E A⋅ = =
∈z d E r
q

4 2

0
πe j in

(a) − × =
× ⋅−3 60 10 4 0 100

8 85 10
3 2

12. .
.

 N C  m
 C N m2 2e j a fπ

Q
a r b< <a f

Q = − × = −−4 00 10 4 009. . C  nC

(b) We take ′Q  to be the net charge on the hollow sphere. Outside c,

+ × =
+ ′

× ⋅−2 00 10 4 0 500
8 85 10

2 2
12. .

.
 N C  m

 C N m2 2e j a fπ
Q Q

r c>a f

Q Q+ ′ = + × −5 56 10 9.  C , so ′ = + × = +−Q 9 56 10 9 569. . C  nC

(c) For b r c< < : E = 0  and q Q Qin = + =1 0  where Q1  is the total charge on the inner surface of

the hollow sphere. Thus, Q Q1 4 00= − = + .  nC .

Then, if Q2  is the total charge on the outer surface of the hollow sphere,

Q Q Q2 1 9 56 4 0 5 56= ′ − = − = +. . . nC  nC  nC .
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*P24.59 The vertical velocity component of the moving charge
increases according to

m
dv

dt
Fy

y= m
dv

dx
dx
dt

qEy
y= .

Now 
dx
dt

vx=  has the nearly constant value v. So

dv
q

mv
E dxy y= v dv

q
mv

E dxy y

v

y

y

= =z z
−∞

∞

0

.

 

v x 
v y 

x 

y 

d q 

v 
0 

θ 

Q 

FIG. P24.59

The radially outward compnent of the electric field varies along the x axis, but is described by

E dA E d dx
Q

y y
−∞

∞

−∞

∞

z z= =
∈

2
0

πb g .

So E dx
Q
dy

−∞

∞z =
∈2 0π

 and v
qQ

mv dy = ∈2 0π
. The angle of deflection is described by

tanθ
π

= =
∈

v

v
qQ

dmv
y

2 0
2 θ

π
=

∈
−tan 1

0
22

qQ
dmv

.

P24.60 First, consider the field at distance r R<  from the center of a uniform sphere of positive charge
Q e= +b g  with radius R.

4 2

0 0
4
3

3

4
3

3

0
π

ρ
π

π
r E

q V e
R

re j =
∈

=
∈

=
+F
HG

I
KJ ∈

in  so E
e

R
=

∈

F
HG

I
KJ4 0

3π
 r directed outward

(a) The force exerted on a point charge q e= −  located at distance r from the center is then

F qE e
e

R
r

e
R

r Kr= = −
∈

F
HG

I
KJ = −

∈

F
HG

I
KJ = −

4 40
3

2

0
3π π

.

(b) K
e

R
k e
R
e=

∈
=

2

0
3

2

34π

(c) F m a
k e
R

rr e r
e= = −
F
HG
I
KJ

2

3 , so a
k e

m R
r rr

e

e

= −
F
HG
I
KJ = −

2

3
2ω

Thus, the motion is simple harmonic with frequency f
k e

m R
e

e

= =
ω
π π2

1
2

2

3 .

(d) f
R

= × =
× ⋅ ×

×

−

−
2 47 10

1
2

8 99 10 1 60 10

9 11 10
15

9 19 2

31 3
.

. .

.
 Hz

 N m C  C

 kg

2 2

π
e je j

e j
which yields R3 301 05 10= × −.  m3 , or R = × =−1 02 10 10210.  m  pm .
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P24.61 The field direction is radially outward perpendicular to the axis. The field strength depends on r but
not on the other cylindrical coordinates θ or z. Choose a Gaussian cylinder of radius r and length L.
If r a< ,

ΦE
q

=
∈

in

0
and E rL

L
2

0
π

λb g =
∈

E
r

=
∈

λ
π2 0

or E r=
∈

<
λ

π2 0r
r aa f .

If a r b< < , E rL
L r a L

2
2 2

0
π

λ ρπb g e j
=

+ −

∈

E r=
+ −

∈
< <

λ ρπ

π

r a

r
a r b

2 2

02
e j a f .

If r b> , E rL
L b a L

2
2 2

0
π

λ ρπb g e j
=

+ −

∈

E r=
+ −

∈
>

λ ρπ

π

b a

r
r b

2 2

02
e j a f .

P24.62 Consider the field due to a single sheet and let E+  and E−

represent the fields due to the positive and negative sheets. The
field at any distance from each sheet has a magnitude given by
Equation 24.8:

E E+ −= =
∈
σ

2 0
.

(a) To the left of the positive sheet, E+  is directed toward the
left and E−  toward the right and the net field over this

region is E = 0 .

(b) In the region between the sheets, E+  and E−  are both
directed toward the right and the net field is

E =
∈
σ

0
 to the right .

FIG. P24.62

(c) To the right of the negative sheet, E+  and E−  are again oppositely directed and E = 0 .
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P24.63 The magnitude of the field due to the each sheet given by
Equation 24.8 is

E =
∈
σ

2 0
 directed perpendicular to the sheet.

(a) In the region to the left of the pair of sheets, both fields are
directed toward the left and the net field is

FIG. P24.63

E =
∈
σ

0
 to the left .

(b) In the region between the sheets, the fields due to the individual sheets are oppositely
directed and the net field is

E = 0 .

(c) In the region to the right of the pair of sheets, both are fields are directed toward the right
and the net field is

E =
∈
σ

0
 to the right .

P24.64 The resultant field within the cavity is the superposition of two
fields, one E+  due to a uniform sphere of positive charge of radius
2a, and the other E−  due to a sphere of negative charge of radius a
centered within the cavity.

4
3

4
3

0

2π ρ
π

r
r E

∈

F
HG
I
KJ = + so E r

r
+ = ∈

=
∈

ρ ρr
3 30 0

– −
∈

F
HG
I
KJ = −

4
3

41
3

0
1
2π ρ

π
r

r E so E r r− = ∈
− =

−
∈

ρ ρr1

0
1

0
13 3

b g .

Since r a r= + 1 , E
r a

− =
− −

∈
ρa f
3 0

 

FIG. P24.64

E E E
r r a a

i j= + =
∈

−
∈

+
∈

=
∈

= +
∈+ −

ρ ρ ρ ρ ρ
3 3 3 3

0
30 0 0 0 0

a
.

Thus, Ex = 0

and E
a

y = ∈
ρ

3 0
 at all points within the cavity.

*P24.65 Consider the charge distribution to be an unbroken charged spherical shell with uniform charge
density σ and a circular disk with charge per area −σ . The total field is that due to the whole sphere,

Q
R

R
R4

4
40

2

2

0
2

0π
π σ
πε

σ
∈

= =
∈

 outward plus the field of the disk −
∈

=
∈

σ σ
2 20 0

 radially inward. The total

field is 
σ σ σ
∈

−
∈

=
∈0 0 02 2

 outward .
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P24.66 The electric field throughout the region is directed along x; therefore, E will be
perpendicular to dA over the four faces of the surface which are perpendicular
to the yz plane, and E will be parallel to dA over the two faces which are parallel
to the yz plane. Therefore,

ΦE x x a x x a c
E A E A a ab a c ab abc a c= − + = − + + + + = +

= = +e j e j e j a fe j a f3 2 3 2 2 22 2 .

Substituting the given values for a, b, and c, we find ΦE = ⋅0 269.  N m C2 .

Q E=∈ = × =−
0

122 38 10 2 38Φ . . C  pC

FIG. P24.66

P24.67 E A⋅ = =
∈z d E r
q

4 2

0
πe j in

(a) For r R> , q Ar r dr
ARR

in = =z 2 2

0

5

4 4
5

π πe j

and E
AR

r
=

∈

5

0
25

.

(b) For r R< , q Ar r dr
Arr

in = =z 2 2

0

5

4
4

5
π

πe j

and E
Ar

=
∈

3

05
.

P24.68 The total flux through a surface enclosing the charge Q is 
Q
∈0

. The flux through the

disk is

Φdisk = ⋅z E Ad

where the integration covers the area of the disk. We must evaluate this integral

and set it equal to 
1
4

0

Q
∈

 to find how b and R are related. In the figure, take dA to be

the area of an annular ring of radius s and width ds. The flux through dA is
FIG. P24.68

E A⋅ = =d EdA E sdscos cosθ π θ2b g .

The magnitude of the electric field has the same value at all points within the annular ring,

E
Q
r

Q
s b

=
∈

=
∈ +

1
4

1
40

2
0

2 2π π
and cosθ = =

+

b
r

b

s b2 2 1 2e j
.

Integrate from s = 0  to s R=  to get the flux through the entire disk.

ΦE

R R
Qb sds

s b

Qb
s b

Q b

R b
, disk =

∈ +
=

∈
− +L
NM

O
QP =

∈
−

+

L

N
MMM

O

Q
PPP

z2 2 2
1

0 2 2 3 2
0 0

2 2 1 2

0 0 2 2 1 2e j
e j

e j
The flux through the disk equals 

Q
4 0∈

 provided that 
b

R b2 2 1 2
1
2+

=
e j

.

This is satisfied if R b= 3 .
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P24.69 E A⋅ =
∈

=
∈z zd

q a
r

r dr
r

in

0 0

2

0

1
4π

E r
a

rdr
a r

E
a

r

4
4 4

2

2

2

0 0 0

2

0

π
π π

=
∈

=
∈

=
∈

=

z
constant magnitude

(The direction is radially outward from center for positive a; radially inward for negative a.)

P24.70 In this case the charge density is not uniform, and Gauss’s law is written as E A⋅ =
∈z zd dV
1

0
ρ . We

use a gaussian surface which is a cylinder of radius r, length , and is coaxial with the charge
distribution.

(a) When r R< , this becomes E r a
r
b

dV
r

2 0

0 0

π
ρb g =
∈

−FHG
I
KJz . The element of volume is a cylindrical

shell of radius r, length , and thickness dr so that dV r dr= 2π .

E r
r a r

b
2

2
2 3

2
0

0
π

π ρb g =
∈

F
HG

I
KJ −FHG

I
KJ  so inside the cylinder, E

r
a

r
b

=
∈

−FHG
I
KJ

ρ0

02
2
3

.

(b) When r R> , Gauss’s law becomes

E r a
r
b

r dr
R

2 20

0 0

π
ρ

πb g b g=
∈

−FHG
I
KJz  or outside the cylinder, E

R
r

a
R
b

=
∈

−FHG
I
KJ

ρ0
2

02
2
3

.

P24.71 (a) Consider a cylindrical shaped gaussian surface perpendicular
to the yz plane with one end in the yz plane and the other end
containing the point x :

Use Gauss’s law: E A⋅ =
∈z d
qin

0

By symmetry, the electric field is zero in the yz plane and is
perpendicular to dA over the wall of the gaussian cylinder.
Therefore, the only contribution to the integral is over the end
cap containing the point x :

E A⋅ =
∈z d
qin

0
 or EA

Ax
=

∈
ρa f

0

so that at distance x from the mid-line of the slab, E
x

=
∈
ρ

0
.

(b) a
F

m
e E

m
e

m
x

e e e
= =

−
= −

∈
F
HG
I
KJ

a f ρ

0
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z x

gaussian 
surface

FIG. P24.71

The acceleration of the electron is of the form a x= −ω 2  with ω
ρ

=
∈
e

me 0
.

Thus, the motion is simple harmonic with frequency f
e

me
= =

∈
ω
π π

ρ
2

1
2 0

.
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P24.72 Consider the gaussian surface described in the solution to problem 71.

(a) For x
d

>
2

, dq dV Adx CAx dx= = =ρ ρ 2

E A⋅ =
∈

=
∈

=
∈
F
HG
I
KJ
F
HG
I
KJ

z z
z

d dq

EA
CA

x dx
CA dd

1

1
3 8

0

0

2

0

2

0

3

E
Cd

=
∈

3

024
or E i E i=

∈
> = −

∈
< −

Cd
x

d Cd
x

d3

0

3

024 2 24 2
; for  for 

(b) For − < <
d

x
d

2 2
E A⋅ =

∈
=
∈

=
∈z z zd dq

CA
x dx

CAxx1
30 0

2

0

3

0

E i E i=
∈

> = −
∈

<
Cx

x
Cx

x
3

0

3

03
0

3
0; for  for 

P24.73 (a) A point mass m creates a gravitational acceleration g r= −
Gm
r 2  at a distance r.

The flux of this field through a sphere is g A⋅ = − = −z d
Gm
r

r Gm2
24 4π πe j .

Since the r has divided out, we can visualize the field as unbroken field lines. The same flux
would go through any other closed surface around the mass. If there are several or no
masses inside a closed surface, each creates field to make its own contribution to the net flux
according to

g A⋅ = −z d Gm4π in .

(b) Take a spherical gaussian surface of radius r. The field is inward so
g A⋅ = °= −z d g r g r4 180 42 2π πcos

and − = −4 4
4
3

3π π π ρGm G rin .

Then, − = −g r G r4 4
4
3

2 3π π π ρ  and g r G=
4
3
π ρ .

Or, since ρ
π

=
M

R
E

E
4
3

3 , g
M Gr

R
E

E

= 3  or g =
M Gr

R
E

E
3  inward .

ANSWERS TO EVEN PROBLEMS

P24.2 355 kN m C2⋅ P24.10 (a) −55 6.  nC ; (b) The negative charge has a
spherically symmetric distribution.

P24.4 (a) − ⋅2 34.  kN m C2 ; (b) + ⋅2 34.  kN m C2 ;
P24.12 (a) 

q
2 0∈

; (b) 
q

2 0∈
; (c) Plane and square

both subtend a solid angle of a hemisphere
at the charge.

(c) 0

P24.6
q
∈0

P24.14 (a) 1 36.  MN m C2⋅ ; (b) 678 kN m C2⋅ ;P24.8 ERh
(c) No; see the solution.
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P24.16 1 77.  pC m3  positive P24.46 (a) 248 nC m2 ; (b) 496 nC m2

P24.18
Q q−

∈

6

6 0

P24.48 (a) 2 56.  MN C  radially inward; (b) 0

P24.50 (a) 
−q

a4 2π
; (b) 

Q q
b
+

4 2πP24.20 28 2.  N m C2⋅

P24.52 see the solution
P24.22

−
∈
q

24 0

P24.54
chw2

2P24.24 (a) 0; (b) 365 kN C ; (c) 1 46.  MN C;
(d) 649 kN C

P24.56 see the solution

P24.26 (a) 913 nC ; (b) 0 P24.58 (a) −4 00.  nC; (b) +9 56.  nC ; (c) +4 00.  nC
and +5 56.  nC

P24.28 4 86.  GN C  away from the wall. It is
constant close to the wall

P24.60 (a, b) see the solution; (c) 
1

2

2

3π
k e

m R
e

e

;
P24.30 76 4.  kN C radially inward

(d) 102 pm
P24.32 3 50.  kN

P24.62 (a) 0; (b) 
σ
∈0

 to the right; (c) 0
P24.34 (a) 

Qr
a

3

0
3∈

; (b) 
Q
∈0

; (c) see the solution

P24.64 see the solution
P24.36 713 nC ; (b) 5 70.  Cµ

P24.66 0 269.  N m C2⋅ ; 2.38 pC
P24.38 (a) 16 2.  MN C  toward the filament;

P24.68 see the solution(b) 8 09.  MN C  toward the filament;
(c) 1 62.  MN C toward the filament

P24.70 (a) 
ρ0

02
2
3

r
a

r
b∈

−FHG
I
KJ ; (b) 

ρ0
2

02
2
3

R
r

a
R
b∈

−FHG
I
KJP24.40 −1 15.  nC m2

P24.72 (a) E i=
∈

>
Cd

x
d3

024 2
 for ;

E i= −
∈

< −
Cd

x
d3

024 2
 for ;

P24.42 (a) 0; (b) 12 4.  kN C  radially outward;
(c) 639 N C radially outward; (d) Nothing
would change.

P24.44 (a) 0; (b) 79 9.  MN C  radially outward;
(b) E i=

∈
>

Cx
x

3

03
0 for ; E i= −

∈
<

Cx
x

3

03
0 for (c) 0; (d) 7 34.  MN C  radially outward
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CHAPTER OUTLINE
25.1 Potential Difference and
 Electric Potential
25.2 Potential Difference in a
  Uniform Electric Field
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  Potential Energy Due to 
  Point Charges      
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  Electric Field from the
  Electric Potential
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  Continuous Charge
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  Distributions

Charged Conductor  
25.7 The Milliken Oil Drop
  Experiment

  
25.8 Application of Electrostatistics

Electric Potential

ANSWERS TO QUESTIONS

Q25.1 When one object B with electric charge is immersed in the
electric field of another charge or charges A, the system
possesses electric potential energy. The energy can be measured
by seeing how much work the field does on the charge B as it
moves to a reference location. We choose not to visualize A’s
effect on B as an action-at-a-distance, but as the result of a two-
step process: Charge A creates electric potential throughout the
surrounding space. Then the potential acts on B to inject the
system with energy.

Q25.2 The potential energy increases. When an outside agent makes it
move in the direction of the field, the charge moves to a region
of lower electric potential. Then the product of its negative
charge with a lower number of volts gives a higher number of
joules. Keep in mind that a negative charge feels an electric force
in the opposite direction to the field, while the potential is the
work done on the charge to move it in a field per unit charge.

Q25.3 To move like charges together from an infinite separation, at which the potential energy of the
system of two charges is zero, requires work to be done on the system by an outside agent. Hence
energy is stored, and potential energy is positive. As charges with opposite signs move together
from an infinite separation, energy is released, and the potential energy of the set of charges
becomes negative.

Q25.4 The charge can be moved along any path parallel to the y-z plane, namely perpendicular to the field.

Q25.5 The electric field always points in the direction of the greatest change in electric potential. This is

implied by the relationships E
V
xx = −

∂
∂

, E
V
yy = −

∂
∂

 and E
V
zz = −

∂
∂

.

Q25.6 (a) The equipotential surfaces are nesting coaxial cylinders around an infinite line of charge.

(b) The equipotential surfaces are nesting concentric spheres around a uniformly charged
sphere.

Q25.7 If there were a potential difference between two points on the conductor, the free electrons in the
conductor would move until the potential difference disappears.

51
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Q25.8 No. The uniformly charged sphere, whether hollow or solid metal, is an equipotential volume. Since
there is no electric field, this means that there is no change in electrical potential. The potential at
every point inside is the same as the value of the potential at the surface.

Q25.9 Infinitely far away from a line of charge, the line will not look like a point. In fact, without any
distinguishing features, it is not possible to tell the distance from an infinitely long line of charge.
Another way of stating the answer: The potential would diverge to infinity at any finite distance, if it
were zero infinitely far away.

Q25.10 The smaller sphere will. In the solution to the example referred to, equation 1 states that each will

have the same ratio of charge to radius, 
q
r

. In this case, the charge density is a surface charge

density, 
q
r4 2π

, so the smaller-radius sphere will have the greater charge density.

Q25.11 The main factor is the radius of the dome. One often overlooked aspect is also the humidity of the
air—drier air has a larger dielectric breakdown strength, resulting in a higher attainable electric
potential. If other grounded objects are nearby, the maximum potential might be reduced.

Q25.12 The intense—often oscillating—electric fields around high voltage lines is large enough to ionize the
air surrounding the cables. When the molecules recapture their electrons, they release that energy in
the form of light.

Q25.13 A sharp point in a charged conductor would imply a large electric field in that region. An electric
discharge could most easily take place at that sharp point.

Q25.14 Use a conductive box to shield the equipment. Any stray electric field will cause charges on the outer
surface of the conductor to rearrange and cancel the stray field inside the volume it encloses.

Q25.15 No charge stays on the inner sphere in equilibrium. If there were any, it would create an electric
field in the wire to push more charge to the outer sphere. All of the charge is on the outer sphere.
Therefore, zero charge is on the inner sphere and 10 0.  Cµ  is on the outer sphere.

Q25.16 The grounding wire can be touched equally well to any point on the sphere. Electrons will drain
away into the ground and the sphere will be left positively charged. The ground, wire, and sphere
are all conducting. They together form an equipotential volume at zero volts during the contact.
However close the grounding wire is to the negative charge, electrons have no difficulty in moving
within the metal through the grounding wire to ground. The ground can act as an infinite source or
sink of electrons. In this case, it is an electron sink.

SOLUTIONS TO PROBLEMS

Section 25.1 Potential Difference and Electric Potential

P25.1 ∆V = −14 0.  V and Q N eA= − = − × × = − ×−6 02 10 1 60 10 9 63 1023 19 4. . .e je j  C

∆V
W
Q

= , so W Q V= = − × − =∆ 9 63 10 14 0 1 354. . . C  J C  MJe jb g



Chapter 25     53

P25.2 ∆ ∆K q V= 7 37 10 11517. × =− qa f

q = × −6 41 10 19.  C

P25.3 (a) Energy of the proton-field system is conserved as the proton moves from high to low
potential, which can be defined for this problem as moving from 120 V down to 0 V.

K U E K Ui i f f+ + = +∆ mech 0 0
1
2

02+ + = +qV mvp

1 60 10 120
1 1

2
1 67 1019 27 2. .×

⋅
F
HG

I
KJ = ×− − C  V

 J
1 V C

 kge ja f e jvp

vp = ×1 52 105.  m s

(b) The electron will gain speed in moving the other way,

from Vi = 0  to Vf = 120 V : K U E K Ui i f f+ + = +∆ mech

0 0 0
1
2

2+ + = +mv qVe

0
1
2

9 11 10 1 60 10 12031 2 19= × + − ×− −. . kg  C  J Ce j e jb gve

ve = ×6 49 106.  m s

P25.4 W K q V= = −∆ ∆

0
1
2

9 11 10 4 20 10 1 60 1031 5 2 19− × × = − − ×− −. . . kg  m s  Ce je j e j∆V

From which, ∆V = −0 502.  V .

Section 25.2 Potential Difference in a Uniform Electric Field

P25.5 (a) We follow the path from (0, 0) to (20.0 cm, 0) to (20.0 cm, 50.0 cm).

∆U = − (work done)

∆U = − (work from origin to (20.0 cm, 0)) – (work from (20.0 cm, 0) to (20.0 cm, 50.0 cm))

Note that the last term is equal to 0 because the force is perpendicular to the displacement.

∆ ∆U qE xx= − = − × = − ×− −b g e jb ga f12 0 10 250 0 200 6 00 106 4. . . C  V m  m  J

(b) ∆
∆

V
U
q

= = −
×
×

= − = −
−

−
6 00 10

50 0 50 0
4

6
.

. .
 J

12.0 10  C
 J C  V

P25.6 E
V
d

= =
×

×
= × =−

∆ 25 0 10
1 50 10

1 67 10 1 67
3

2
6.

.
. .

 J C
 m

 N C  MN C
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P25.7 ∆U m v vf i= − − = − × × − ×L
NM

O
QP = ×− −1

2
1
2

9 11 10 1 40 10 3 70 10 6 23 102 2 31 5 2 6 2 18e j e j e j e j. . . . kg  m s  m s  J

∆ ∆U q V= : + × = − ×− −6 23 10 1 60 1018 19. .e j∆V

∆V = −38 9.  V.  The origin is at highest potential.

P25.8 (a) ∆V Ed= = × =5 90 10 0 010 0 59 03. . . V m  m  Ve jb g

(b)
1
2

2mv q Vf = ∆ :
1
2

9 11 10 1 60 10 59 031 2 19. . .× = ×− −e j e ja fv f

v f = ×4 55 106.  m s

P25.9 V V d d d

V V E dy E dx

V V

B A
A

B

A

C

C

B

B A

B A

− = − ⋅ = − ⋅ − ⋅

− = − ° − °

− = = +

z z z
z z

− −

E s E s E s

cos cos .

.
.

.

.

.

180 90 0

325 0 800 260
0 300

0 500

0 200

0 400

a f a f

a fa f  V

FIG. P25.9

*P25.10 Assume the opposite. Then at some point A on some equipotential surface the electric field has a
nonzero component Ep  in the plane of the surface. Let a test charge start from point A and move

some distance on the surface in the direction of the field component. Then ∆V d
A

B

= − ⋅z E s  is nonzero.

The electric potential charges across the surface and it is not an equipotential surface. The
contradiction shows that our assumption is false, that Ep = 0 , and that the field is perpendicular to

the equipotential surface.

P25.11 (a) Arbitrarily choose V = 0  at 0. Then at other points

V Ex= − and U QV QExe = = − .

Between the endpoints of the motion,

K U U K U Us e i s e f
+ + = + +b g b g

0 0 0 0
1
2

2+ + = + −kx QExmax max  so x
QE
kmax =

2
.

FIG. P25.11

(b) At equilibrium,

F F Fx s e∑ = − + = 0  or kx QE= .

So the equilibrium position is at x
QE
k

= .

continued on next page
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(c) The block’s equation of motion is F kx QE m
d x
dtx∑ = − + =

2

2 .

Let ′ = −x x
QE
k

, or x x
QE
k

= ′ + ,

so the equation of motion becomes:

− ′ +FHG
I
KJ + =

+
k x

QE
k

QE m
d x QE k

dt

2

2

b g
, or 

d x
dt

k
m

x
2

2
′
= −FHG
I
KJ ′ .

This is the equation for simple harmonic motion a xx′ = − ′ω 2

with ω =
k
m

.

The period of the motion is then T
m
k

= =
2

2
π
ω

π .

(d) K U U E K U Us e i s e f
+ + + = + +b g b g∆ mech

0 0 0 0
1
2

2

2+ + − = + −

=
−

µ

µ

k

k

mgx kx QEx

x
QE mg

k

max max max

max
b g

P25.12 For the entire motion, y y v t a tf i yi y− = +
1
2

2

0 0
1
2

2− = +v t a ti y so a
v
ty

i= −
2

F may y∑ = : − − = −mg qE
mv
t

i2

E
m
q

v
t

gi= −F
HG

I
KJ

2
and E j= − −F

HG
I
KJ

m
q

v
t

gi2 � .

For the upward flight: v v a y yyf yi y f i
2 2 2= + −d i

0 2
2

02= + −FHG
I
KJ −v

v
t

yi
i

maxb g and y v timax =
1
4

∆

∆

V d
m
q

v
t

g y
m
q

v
t

g v t

V

y
i

y
i

i= − ⋅ = + −F
HG

I
KJ = −F

HG
I
KJ
F
HG
I
KJ

=
×

−
F
HG

I
KJ
L
NM

O
QP =

z
−

E y
0 0

6

2 2 1
4

2 00
10

2 20 1

4 10
9 80

1
4

20 1 4 10 40 2

max max

. .

.
. . . .

 kg
5.00  C

 m s

 s
 m s  m s  s  kV2b g b ga f

P25.13 Arbitrarily take V = 0  at the initial point. Then at distance d downfield, where L is the rod length,
V Ed= −  and U LEde = −λ .

(a) K U K Ui f+ = +a f a f
0 0

1
2

2 2 40 0 10 100 2 00

0 100
0 400

2

6

+ = −

= =
×

=
−

µ λ

λ
µ

Lv LEd

v
Ed . .

.
.

 C m  N C  m

 kg m
 m s

e jb ga f
b g

(b) The same.
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P25.14 Arbitrarily take V = 0  at point P. Then (from Equation 25.8) the potential at the original position of
the charge is − ⋅ = −E s EL cosθ . At the final point a, V EL= − . Suppose the table is frictionless:
K U K Ui f+ = +a f a f

0
1
2

2 1 2 2 00 10 300 1 50 1 60 0

0 010 0
0 300

2

6

− = −

=
−

=
× − °

=
−

qEL mv qEL

v
qEL

m

cos

cos . . cos .

.
.

θ

θa f e jb ga fa f C  N C  m

 kg
 m s

Section 25.3 Electric Potential and Potential Energy Due to Point Charges

P25.15 (a) The potential at 1.00 cm is V k
q
re1

9 19

2
7

8 99 10 1 60 10

1 00 10
1 44 10= =

× ⋅ ×

×
= ×

−

−
−

. .

.
.

 N m C  C

 m
 V

2 2e je j
.

(b) The potential at 2.00 cm is V k
q
re2

9 19

2
7

8 99 10 1 60 10

2 00 10
0 719 10= =

× ⋅ ×

×
= ×

−

−
−

. .

.
.

 N m C  C

 m
 V

2 2e je j
.

Thus, the difference in potential between the two points is ∆V V V= − = − × −
2 1

87 19 10.  V .

(c) The approach is the same as above except the charge is − × −1 60 10 19.  C . This changes the
sign of each answer, with its magnitude remaining the same.

That is, the potential at 1.00 cm is − × −1 44 10 7.  V .

The potential at 2.00 cm is − × −0 719 10 7.  V , so ∆V V V= − = × −
2 1

87 19 10.  V .

P25.16 (a) Since the charges are equal and placed symmetrically, F = 0 .

(b) Since F qE= = 0 , E = 0 .

(c) V k
q
re= = × ⋅

×F
HG

I
KJ

−

2 2 8 99 10
2 00 109

6

.
.

 N m C
 C

0.800 m
2 2e j

V = × =4 50 10 45 04. . V  kV

FIG. P25.16

P25.17 (a) E
Q

r
=

∈4 0
2π

V
Q

r

r
V
E

=
∈

= = =

4

3 000
6 00

0π
 V

500 V m
 m.

(b) V
Q

= − =
∈

3 000
4 6 000

 V
 mπ .a f

Q =
−

× ⋅
= −

3 000
6 00 2 00

 V

8.99 10  V m C
 m  C

9e j
a f. . µ
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P25.18 (a) E
k q
x

k q

x
x

e e= +
−

=1
2

2
22 00

0
.a f becomes E k

q
x

q

x
x e=

+
+

−

−

F
HG

I
KJ =2 2

2

2 00
0

.a f .

Dividing by ke , 2 2 002 2qx q x= − .a f x x2 4 00 4 00 0+ − =. . .
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The minus sign means it takes 3 86 10 7. × −  J  to pull the two charges apart from 35 cm to a
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An alternate way to get the term 4
2
2

+
F
HG

I
KJ  is to recognize that there are 4 side pairs and 2 face

diagonal pairs.

P25.24 Each charge creates equal potential at the center. The total potential is:
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P25.25 (a) Each charge separately creates positive potential everywhere. The total potential produced
by the three charges together is then the sum of three positive terms. There is no point

located at a finite distance from the charges, at which this total potential is zero.
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P25.26 Consider the two spheres as a system.
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(b) If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than r r1 2+  and the spheres will really be

moving faster than calculated in (a) .

P25.27 Consider the two spheres as a system.
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(b) If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than r r1 2+  and the spheres will really be

moving faster than calculated in (a) .
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*P25.28 (a) In an empty universe, the 20-nC charge can be placed at its location with no energy
investment. At a distance of 4 cm, it creates a potential
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*P25.29 The original electrical potential energy is
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For V = 100 V , 50.0 V, and 25.0 V, r = 0 720.  m,  1.44 m,  and 2.88 m .

The radii are inversely proportional  to the potential.
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P25.33 Using conservation of energy
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P25.35 Each charge moves off on its diagonal line. All charges have equal speeds.
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P25.36 A cube has 12 edges and 6 faces. Consequently, there are 12 edge pairs separated by s, 2 6 12× =  face
diagonal pairs separated by 2s  and 4 interior diagonal pairs separated 3s .
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Section 25.4 Obtaining the Value of the Electric Field from the Electric Potential
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Section 25.5 Electric Potential Due to Continuous Charge Distributions
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Section 25.6 Electric Potential Due to a Charged Conductor
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The smaller sphere carries less charge but creates a much stronger electric field than the
larger sphere.

Section 25.7 The Milliken Oil Drop Experiment

Section 25.8 Application of Electrostatistics

P25.51 (a) E
k Q
r

k Q
r r

V
r

e e
max max.= × = = F

HG
I
KJ =

F
HG
I
KJ3 00 10

1 16
2 V m

V E rmax max . .= = × =3 00 10 0 150 4506 a f  kV

(b)
k Q

r
Ee max

max2 = or 
k Q

r
Ve max

max=RST
UVW Q

E r
ke

max
max . .

.
.= =

×

×
=

2 6 2

9

3 00 10 0 150

8 99 10
7 51

a f
 Cµ

P25.52 V
k q
r
e=  and E

k q
r

e= 2 . Since E
V
r

= ,

(b) r
V
E

= =
×

×
=

6 00 10
0 200

5.
.

 V
3.00 10  V m

 m6  and

(a) q
Vr
ke

= = 13 3.  Cµ
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Additional Problems

P25.53 U qV k
q q
re= = = ×

×

+ ×
= × =

−

−
−1 2

12

9
19 2

15
118 99 10

38 54 1 60 10

5 50 6 20 10
4 04 10 253.

.

. .
.e j

a fa fe j
a f  J  MeV

P25.54 (a) To make a spark 5 mm long in dry air between flat metal plates requires potential difference

∆V Ed= = × × = ×−3 10 5 10 1 5 10 106 3 4 4 V m  m  V  Ve je j . ~ .

(b) The area of your skin is perhaps 1 5 2.  m , so model your body as a sphere with this surface
area. Its radius is given by 1 5 4 2.  m2 = π r , r = 0 35.  m . We require that you are at the
potential found in part (a):

V
k q
r
e= q

Vr
ke

= =
×

× ⋅ ⋅
F
HG
I
KJ

⋅F
HG
I
KJ

1 5 10

8 99 10

4

9

.

.

 V 0.35 m

 N m C
J

V C
N m

J2 2

a f

q = × − −5 8 10 107 6. ~ C  C .

P25.55 (a) U
k q q

r
e= =

− × ×

×
= − × = −

−

−
−1 2

9 19 2

9
18

8 99 10 1 60 10

0 052 9 10
4 35 10 27 2

. .

.
. .

e je j
 J  eV

(b) U
k q q

r
e= =

− × ×

×
= −

−

−
1 2

9 19 2

2 9

8 99 10 1 60 10

2 0 052 9 10
6 80

. .

.
.

e je j
e j

 eV

(c) U
k q q

r
k ee e= =

−
∞

=1 2
2

0

P25.56 From Example 25.5, the potential created by the ring at the electron’s starting point is

V
k Q

x a

k a

x a
i

e

i

e

i

=
+

=
+2 2 2 2

2πλb g

while at the center, it is V kf e= 2π λ . From conservation of energy,

0
1
2

2 4
1

4 1 60 10 8 99 10 1 00 10

9 11 10
1

0 200

0 100 0 200

1 45 10

2

2

2 2

2
19 9 7

31 2 2

7

+ − = + −

= − = −
+

F
H
GG

I
K
JJ

=
× × ×

×
−

+

F

H
GG

I

K
JJ

= ×

− −

−

eV m v eV

v
e

m
V V

ek
m

a

x a

v

v

i e f f

f
e

f i
e

e i

f

f

b g d i

d i

e je je j
a f a f

π λ

π . . .

.
.

. .

.  m s
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*P25.57 The plates create uniform electric field to the right in the picture, with magnitude 
V V

d
V
d

0 0 02− −
=

b g
.

Assume the ball swings a small distance x to the right. It moves to a place where the voltage created

by the plates is lower by − = −Ex
V
d

x
2 0 . Its ground connection maintains it at V = 0  by allowing

charge q to flow from ground onto the ball, where − + = =
2

0
20 0V x

d
k q
R

q
V xR
k d

e

e
. Then the ball

feels electric force F qE
V xR
k de

= =
4 0

2

2  to the right. For equilibrium this must be balanced by the

horizontal component of string tension according to T mg T
V xR
k de

cos sinθ θ= =
4 0

2

2

tanθ = =
4 0

2

2
V xR

k d mg
x
Le

 for small x. Then V
k d mg

RL
e

0

2 1 2

4
=
F
HG

I
KJ .

If V0  is less than this value, the only equilibrium position of the ball is hanging straight down. If V0

exceeds this value the ball will swing over to one plate or the other.

P25.58 (a) Take the origin at the point where we will find the potential. One ring, of width dx, has

charge 
Qdx

h
 and, according to Example 25.5, creates potential

dV
k Qdx

h x R
e=
+2 2

.

The whole stack of rings creates potential

V dV
k Qdx

h x R

k Q
h

x x R
k Q

h

d h d h R

d d R
e

d

d h
e

d

d h
e= =

+
= + +FH IK =

+ + + +

+ +

F

H
GG

I

K
JJz z+ +

all charge
2 2

2 2
2 2

2 2
ln ln

a f
.

(b) A disk of thickness dx has charge 
Qdx

h
 and charge-per-area 

Qdx
R hπ 2 . According to

Example 25.6, it creates potential

dV k
Qdx
R h

x R xe= + −FH IK2 2
2 2π

π
.

Integrating,

V
k Q

R h
x R dx xdx

k Q
R h

x x R
R

x x R
x

V
k Q
R h

d h d h R d d R dh h R
d h d h R

d d R

e

d

d h
e

d

d h

e

= + −FH IK = + + + +FH IK −
L
NM

O
QP

= + + + − + − − +
+ + + +

+ +

F

H
GG

I

K
JJ

L

N
MMM

O

Q
PPP

+ +

z 2 2 1
2 2 2

2

2
2 2

2
2 2

2
2 2

2

2
2 2 2 2 2 2

2 2

2 2

ln

lna f a f a f

P25.59 W Vdq
Q

= z
0

where V
k q
R
e= .

Therefore, W
k Q

R
e=

2

2
.
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P25.60 The positive plate by itself creates a field E =
∈

=
×

× ⋅
=

−

−

σ
2

36 0 10

2 8 85 10
2 03

0

9

12

.

.
.

 C m

 C N m
 kN C

2

2 2e j
 away

from the + plate. The negative plate by itself creates the same size field and between the plates it is
in the same direction. Together the plates create a uniform field 4 07.  kN C  in the space between.

(a) Take V = 0  at the negative plate. The potential at the positive plate is then

V dx− = − −z0 4 07
0

12 0

.
.

 kN C
 cm

b g .

The potential difference between the plates is V = × =4 07 10 0 120 4883. . N C  m  Ve ja f .

(b)
1
2

1
2

2 2mv qV mv qV
i f

+F
HG

I
KJ = +F
HG

I
KJ

qV mv f= × = = ×− −1 60 10 488
1
2

7 81 1019 2 17. . C  V  Je ja f

(c) v f = 306 km s

(d) v v a x xf i f i
2 2 2= + −d i

3 06 10 0 2 0 120

3 90 10

5 2

11

. .

.

× = +

= ×

 m s  m

 m s2

e j a fa

a

(e) F ma∑ = = × × = ×− −1 67 10 3 90 10 6 51 1027 11 16. . . kg  m s  N2e je j

(f) E
F
q

= =
×
×

=
−

−
6 51 10
1 60 10

4 07
16

19
.
.

.
 N
 C

 kN C

P25.61 (a) V V dB A
A

B

− = − ⋅z E s  and the field at distance r from a uniformly

charged rod (where r >  radius of charged rod) is

E
r

k
r
e=

∈
=

λ
π

λ
2

2

0
.

In this case, the field between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that

V V
k
r

dr k
r
rB A

e

r

r

e
a

b
a

b

− = − =
F
HG
I
KJz 2 2

λ
λ ln ,

or ∆V k
r
re

a

b
=

F
HG
I
KJ2 λ ln .

 

FIG. P25.61

continued on next page
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(b) From part (a), when the outer cylinder is considered to be at zero potential, the potential at a
distance r from the axis is

V k
r
re
a= F
HG
I
KJ2 λ ln .

The field at r is given by

E
V
r

k
r
r

r
r

k
re

a

a e= −
∂
∂

= −
F
HG
I
KJ −
F
HG
I
KJ =2

2
2λ

λ
.

But, from part (a), 2k
V

r re
a b

λ =
∆

lnb g .

Therefore, E
V

r r ra b
= F

HG
I
KJ

∆
lnb g

1
.

P25.62 (a) From Problem 61,

E
V

r r ra b
=

∆
lnb g

1
.

We require just outside the central wire

5 50 10
50 0 10

0 850
16

3

.
.

ln .
× =

× F
HG
I
KJ V m

 V
 m r rb bb g

or 110
0 850

11 m
 m− F

HG
I
KJ =e jr rb

b
ln

.
.

We solve by homing in on the required value

rb ma f 0.0100 0.00100 0.00150 0.00145 0.00143 0.00142

110
0 8501 m

 m− F
HG

I
KJe jr rb

b
ln

. 4.89 0.740 1.05 1.017 1.005 0.999

Thus, to three significant figures,

rb = 1 42.  mm .

(b) At ra ,

E = F
HG

I
KJ =

50 0
0 850

1
0 850

9 20
.

ln . .
.

 kV
 m 0.001 42 m  m

 kV mb g .

P25.63 V V d
r

dr
r

r

r

r

2 1
01

2

1

2

2
− = − ⋅ = −

∈z zE r
λ

π

V V
r
r2 1

0

2

12
− =

−
∈
F
HG
I
KJ

λ
π

ln
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*P25.64 Take the illustration presented with the problem as an initial picture.
No external horizontal forces act on the set of four balls, so its center of
mass stays fixed at the location of the center of the square. As the
charged balls 1 and 2 swing out and away from each other, balls 3 and 4
move up with equal y-components of velocity. The maximum-kinetic-
energy point is illustrated. System energy is conserved:

k q
a

k q
a

mv mv mv mv

k q
a

mv v
k q

am

e e

e e

2 2
2 2 2 2

2
2

2

3
1
2

1
2

1
2

1
2

2
3

2
3

= + + + +

= =

v

+
2

4

v

3

v

v

+
1

CM

FIG. P25.64

P25.65 For the given charge distribution, V x y z
k q

r

k q

r
e e, ,b g b g b g= +

−

1 2

2

where r x R y z1
2 2 2= + + +a f  and r x y z2

2 2 2= + + .

The surface on which V x y z, ,b g = 0

is given by k q
r re
1 2

0
1 2
−

F
HG

I
KJ = , or 2 1 2r r= .

This gives: 4 4 42 2 2 2 2 2x R y z x y z+ + + = + +a f

which may be written in the form: x y z R x y z R2 2 2 28
3

0 0
4
3

0+ + + FHG
I
KJ + + + FHG

I
KJ =a f a f . [1]

The general equation for a sphere of radius a centered at x y z0 0 0, ,b g  is:

x x y y z z a− + − + − − =0
2

0
2

0
2 2 0b g b g b g

or x y z x x y y z z x y z a2 2 2
0 0 0 0

2
0
2

0
2 22 2 2 0+ + + − + − + − + + + − =b g b g b g e j . [2]

Comparing equations [1] and [2], it is seen that the equipotential surface for which V = 0  is indeed a
sphere and that:

− =2
8
30x R ; − =2 00y ; − =2 00z ; x y z a R0

2
0
2

0
2 2 24

3
+ + − = .

Thus, x R0
4
3

= − , y z0 0 0= = , and a R R2 2 216
9

4
3

4
9

= −FHG
I
KJ = .

The equipotential surface is therefore a sphere centered at −FHG
I
KJ

4
3

0 0R, , , having a radius 
2
3

R .
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P25.66 (a) From Gauss’s law, EA = 0  (no charge within)

E k
q
r r r

E k
q q

r r r

B e
A

C e
A B

= = ×
×

= FHG
I
KJ

=
+

= ×
− ×

= −FHG
I
KJ

−

−

2
9

8

2 2

9
9

2 2

8 99 10
1 00 10 89 9

8 99 10
5 00 10 45 0

.
. .

.
. .

e j e j

b g e j e j

 V m

 V m

(b) V k
q q

r r rC e
A B=
+

= ×
− ×

= −FHG
I
KJ

−b g e j e j
8 99 10

5 00 10 45 09
9

.
. .

 V

∴At r2 , V = − = −
45 0

0 300
150

.
.

 V

Inside r2 , V
r

dr
r rB

r

r

= − + = − + −FHG
I
KJ = − +F
HG

I
KJz150

89 9
150 89 9

1 1
0 300

450
89 9

2
2

 V  V
.

.
.

.

∴At r1 , V = − + = +450
89 9
0 150

150
.

.
 V  so VA = +150 V .

P25.67 From Example 25.5, the potential at the center of the ring is

V
k Q
Ri
e=  and the potential at an infinite distance from the ring is

Vf = 0 . Thus, the initial and final potential energies of the point

charge-ring system are:

U QV
k Q

Ri i
e= =

2

and U QVf f= = 0 .

From conservation of energy,

K U K Uf f i i+ = +

or
1
2

0 02
2

Mv
k Q

Rf
e+ = +

giving v
k Q
MRf

e=
2 2

.

FIG. P25.67

P25.68 V k
dx

x b
k x x b k

a L a L b

a a b
e

a

a L

e
a

a L

e=
+

= + +L
NM

O
QP =

+ + + +

+ +

L

N
MMM

O

Q
PPP

+ +

z λ
λ λ

2 2

2 2
2 2

2 2
ln lne j a f
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*P25.69 (a) V
k q
r

k q
r

k q
r r

r re e e= − = −
1 2 1 2

2 1b g

From the figure, for r a>> , r r a2 1 2− ≅ cosθ .

Then V
k q
r r

a
k p

r
e e≅ ≅

1 2
22 cos

cos
θ

θ
.

(b) E
V
r

k p
rr

e= −
∂
∂

=
2

3

cosθ

In spherical coordinates, the θ component of the gradient is 
1
r

∂
∂
F
HG
I
KJθ .

FIG. P25.69

Therefore, E
r

V k p
r

e
θ θ

θ
= −

∂
∂
F
HG
I
KJ =

1
3

sin
.

For r a>> E
k p
rr

e0
2

3° =a f

and Er 90 0° =a f ,

Eθ 0 0° =a f

and E
k p
r
e

θ 90 3° =a f .

These results are reasonable for r a>> . Their directions are as shown in Figure 25.13 (c).

However, for r E→ →∞0 0, .a f  This is unreasonable,  since r is not much greater than a if it

is 0.

(c) V
k py

x y

e=
+2 2 3 2e j

and E
V
x

k pxy

x y
x

e= −
∂
∂

=
+

3
2 2 5 2e j

E
V
y

k p y x

x y
y

e
= −

∂
∂

=
−

+

2 2 2

2 2 5 2

e j
e j
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P25.70 Inside the sphere, E E Ex y z= = = 0 .

Outside, E
V
x x

V E z E a z x y zx = −
∂
∂

= −
∂
∂

− + + +FH IK
−

0 0 0
3 2 2 2 3 2e j

So E E a z x y z x E a xz x y zx = − + + −FHG
I
KJ + +

L
NM

O
QP = + +

− −
0 0

3
2

2 30
3 2 2 2 5 2

0
3 2 2 2 5 2e j a f e j

E
V
y y

V E z E a z x y z

E E a z x y z y E a yz x y z

E
V
z

E E a z x y z z E a x y z

E E E a z x y x y

y

y

z

z

= −
∂
∂

= −
∂
∂

− + + +FH IK
= − −FHG

I
KJ + + = + +

= −
∂
∂

= − −FHG
I
KJ + + − + +

= + − − +

−

− −

− −

0 0 0
3 2 2 2 3 2

0
3 2 2 2 5 2

0
3 2 2 2 5 2

0 0
3 2 2 2 5 2

0
3 2 2 2 3 2

0 0
3 2 2 2 2

3
2

2 3

3
2

2

2

e j

e j e j

e j a f e j

e j 2 2 5 2
+

−
ze j

P25.71 For an element of area which is a ring of radius r and width dr, dV
k dq

r x
e=
+2 2

.

dq dA Cr rdr= =σ π2b g  and

V C k
r dr

r x
C k R R x x

x

R R x
e

R

e=
+

= + +
+ +

F
HG

I
KJ

L
N
MM

O
Q
PPz2

2

2 2
0

2 2 2

2 2
π πb g b g ln .

P25.72 dU Vdq=  where the potential V
k q
r
e= .

The element of charge in a shell is dq = ρ  (volume element) or dq r dr= ρ π4 2e j  and the charge q in a

sphere of radius r is

q r dr
rr

= =
F
HG
I
KJz4

4
3

2

0

3

πρ ρ
π

.

Substituting this into the expression for dU, we have

dU
k q
r

dq k
r

r
r dr k r dr

U dU k r dr k R

e
e e

e

R

e

= FHG
I
KJ =

F
HG
I
KJ
F
HG
I
KJ =

F
HG
I
KJ

= =
F
HG
I
KJ =

F
HG
I
KJz z

ρ
π

ρ π
π

ρ

π
ρ

π
ρ

4
3

1
4

16
3

16
3

16
15

3
2

2
2 4

2
2 4

0

2
2 5

e j

But the total charge, Q R= ρ π
4
3

3 . Therefore, U
k Q

R
e=

3
5

2

.
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*P25.73 (a) The whole charge on the cube is
q = × =− −100 10 0 1 106 3 7 C m  m  C3e ja f. . Divide up the cube into

64 or more elements. The little cube labeled a creates at P

potential 
k qe

64 6 25 1 25 1 25 102 2 2 2. . .+ + −  m
. The others in the

horizontal row behind it contribute

k qe

64 10

1

8 75 3 125

1

11 25 3 125

1

13 75 3 1252 2 2 2− +
+

+
+

+

F
HG

I
KJ me j . . . . . .

.

The little cubes in the rows containing b and c add

2

64 10
6 25 1 25 3 75 8 75 15 625

11 25 15 625 13 75 15 625

2
2 2 2 1 2 2 1 2

2 1 2 2 1 2

k qe
−

− −

− −

+ + + +L
NM

+ + + + O
QP

 me j e j e j

e j e j

. . . . .

. . . .

and the bits in row d make potential at P

k qe

64 10
6 25 28 125 13 75 28 125

2
2 1 2 2 1 2

−

− −
+ + + +L

NM
O
QP me j e j e j. . . .… .

a

b
d

c

P

1.25 cm

FIG. P25.73

The whole potential at P is 
8 987 6 10 10

64 10
1 580 190 4 8 876

9 7

2

.
.

× ×
=

−

−

 Nm  C

C  m
 V

2

2 e j
b g . If we use

more subdivisions of the large cube, we get the same answer to four digits.

(b) A sphere centered at the same point would create potential

k q
r
e =

× ×
=

−

−

8 987 6 10 10
10

8 988
9 7

1

.  Nm  C
C  m

 V
2

2 , larger by 112 V .

ANSWERS TO EVEN PROBLEMS

P25.2 6 41 10 19. × −  C P25.22 (a) 32 2.  kV ; (b) −96 5.  mJ

P25.24 −
5k q

R
eP25.4 −0 502.  V

P25.6 1 67.  MN C

P25.26 (a) 10 8.  m s  and 1 55.  m s ; (b) greater
P25.8 (a) 59 0.  V ; (b) 4 55.  Mm s

P25.28 (a) −45 0.  Jµ ; (b) 34 6.  km s
P25.10 see the solution

P25.30 see the solutionP25.12 40 2.  kV

P25.32 27 4.  fmP25.14 0 300.  m s

P25.34 −3 96.  J
P25.16 (a) 0; (b) 0; (c) 45 0.  kV

P25.36 22 8
2

.
k q

s
eP25.18 (a) −4 83.  m ; (b) 0 667.  m  and −2 00.  m

P25.20 (a) −386 nJ ; (b) 103 V
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P25.38 (a) 0; (b) 
k Q
r
e
2  radially outward P25.60 (a) 488 V ; (b) 7 81 10 17. × −  J ; (c) 306 km s ;

(d) 390 Gm s2  toward the negative plate;

(e) 6 51 10 16. × − N  toward the negative plate;P25.40 (a) larger at A; (b) 200 N C  down;
(f) 4 07.  kN C  toward the negative plate(c) see the solution

P25.62 (a) 1 42.  mm ; (b) 9 20.  kV mP25.42 −0 553.
k Q
R
e

P25.64
k q

am
e

2 1 2

3

F
HG
I
KJP25.44 −

+ −

+ +

L

N
MMM

O

Q
PPP

k L b L L

b L L

eα
2

4 2

4 2

2 2

2 2
ln

e j
e j

P25.66 (a) EA = 0 ; EB r
= FHG
I
KJ

89 9
2
.

 V m radially

outward; EC r
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large sphere and 6 74.  MV m  away from
the small sphere

P25.68 k
a L a L b

a a b
eλ ln

+ + + +

+ +

L

N
MMM

O

Q
PPP

a f2 2

2 2

P25.52 (a) 13 3.  Cµ ; (b) 0 200.  m

P25.54 (a) ~104  V ; (b) ~10 6−  C
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Capacitance and Dielectrics

ANSWERS TO QUESTIONS

Q26.1 Nothing happens to the charge if the wires are disconnected. If
the wires are connected to each other, charges in the single
conductor which now exists move between the wires and the
plates until the entire conductor is at a single potential and the
capacitor is discharged.

Q26.2 336 km. The plate area would need to be 
1

0∈
 m2 .

Q26.3 The parallel-connected capacitors store more energy, since they
have higher equivalent capacitance.

Q26.4 Seventeen combinations:

Individual C C C1 2 3, ,

Parallel C C C C C C C C C1 2 3 1 2 1 3 2 3+ + + + +, , ,

Series-Parallel
1 1

1 2

1

3C C
C+

F
HG

I
KJ +
−

, 
1 1

1 3

1

2C C
C+

F
HG

I
KJ +
−

, 
1 1

2 3

1

1C C
C+

F
HG

I
KJ +
−

1 1

1 2 3

1

C C C+
+

F
HG

I
KJ
−

, 
1 1

1 3 2

1

C C C+
+

F
HG

I
KJ
−

, 
1 1

2 3 1

1

C C C+
+

F
HG

I
KJ
−

Series
1 1 1

1 2 3

1

C C C
+ +

F
HG

I
KJ
−

, 
1 1

1 2

1

C C
+

F
HG

I
KJ
−

, 
1 1

2 3

1

C C
+

F
HG

I
KJ
−

, 
1 1

1 3

1

C C
+

F
HG

I
KJ
−

Q26.5 This arrangement would decrease the potential difference between the plates of any individual
capacitor by a factor of 2, thus decreasing the possibility of dielectric breakdown. Depending on the
application, this could be the difference between the life or death of some other (most likely more
expensive) electrical component connected to the capacitors.

Q26.6 No—not just using rules about capacitors in series or in parallel. See Problem 72 for an example. If
connections can be made to a combination of capacitors at more than two points, the combination
may be irreducible.
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Q26.7 A capacitor stores energy in the electric field between the plates. This is most easily seen when using
a “dissectable” capacitor. If the capacitor is charged, carefully pull it apart into its component pieces.
One will find that very little residual charge remains on each plate. When reassembled, the capacitor
is suddenly “recharged”—by induction—due to the electric field set up and “stored” in the
dielectric. This proves to be an instructive classroom demonstration, especially when you ask a
student to reconstruct the capacitor without supplying him/her with any rubber gloves or other
insulating material. (Of course, this is after they sign a liability waiver).

Q26.8 The work you do to pull the plates apart becomes additional electric potential energy stored in the
capacitor. The charge is constant and the capacitance decreases but the potential difference increases

to drive up the potential energy 
1
2

Q V∆ . The electric field between the plates is constant in strength

but fills more volume as you pull the plates apart.

Q26.9 A capacitor stores energy in the electric field inside the dielectric. Once the external voltage source is
removed—provided that there is no external resistance through which the capacitor can
discharge—the capacitor can hold onto this energy for a very long time. To make the capacitor safe
to handle, you can discharge the capacitor through a conductor, such as a screwdriver, provided that
you only touch the insulating handle. If the capacitor is a large one, it is best to use an external
resistor to discharge the capacitor more slowly to prevent damage to the dielectric, or welding of the
screwdriver to the terminals of the capacitor.

Q26.10 The work done, W Q V= ∆ , is the work done by an external agent, like a battery, to move a charge
through a potential difference, ∆V . To determine the energy in a charged capacitor, we must add
the work done to move bits of charge from one plate to the other. Initially, there is no potential
difference between the plates of an uncharged capacitor. As more charge is transferred from one
plate to the other, the potential difference increases as shown in Figure 26.12, meaning that more
work is needed to transfer each additional bit of charge. The total work is the area under the curve of

Figure 26.12, and thus W Q V=
1
2

∆ .

Q26.11 Energy is proportional to voltage squared. It gets four times larger.

Q26.12 Let C = the capacitance of an individual capacitor, and Cs  represent the equivalent capacitance of the
group in series. While being charged in parallel, each capacitor receives charge

Q C V= = × =−∆ charge  F  V  C500 10 800 0 4004e ja f . .

While being discharged in series, ∆V
Q
C

Q
Cs

discharge
 C

5.00 10  F
 kV= = =

×
=−10

0 400
8 005

.
.

(or 10 times the original voltage).

Q26.13 Put a material with higher dielectric strength between the plates, or evacuate the space between the
plates. At very high voltages, you may want to cool off the plates or choose to make them of a
different chemically stable material, because atoms in the plates themselves can ionize, showing
thermionic emission under high electric fields.

Q26.14 The potential difference must decrease. Since there is no external power supply, the charge on the
capacitor, Q, will remain constant—that is assuming that the resistance of the meter is sufficiently
large. Adding a dielectric increases the capacitance, which must therefore decrease the potential
difference between the plates.

Q26.15 Each polar molecule acts like an electric “compass” needle, aligning itself with the external electric
field set up by the charged plates. The contribution of these electric dipoles pointing in the same
direction reduces the net electric field. As each dipole falls into a configuration of lower potential
energy it can contribute to increasing the internal energy of the material.
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Q26.16 The material of the dielectric may be able to support a larger electric field than air, without breaking
down to pass a spark between the capacitor plates.

Q26.17 The dielectric strength is a measure of the potential difference per unit length that a dielectric can
withstand without having individual molecules ionized, leaving in its wake a conducting path from
plate to plate. For example, dry air has a dielectric strength of about 3 MV/m. The dielectric constant
in effect describes the contribution of the electric dipoles of the polar molecules in the dielectric to
the electric field once aligned.

Q26.18 In water, the oxygen atom and one hydrogen atom considered alone have an electric dipole moment
that points from the hydrogen to the oxygen. The other O-H pair has its own dipole moment that
points again toward the oxygen. Due to the geometry of the molecule, these dipole moments add to
have a non-zero component along the axis of symmetry and pointing toward the oxygen.

A non-polarized molecule could either have no intrinsic dipole moments, or have dipole
moments that add to zero. An example of the latter case is CO2. The molecule is structured so that
each CO pair has a dipole moment, but since both dipole moments have the same magnitude and
opposite direction—due to the linear geometry of the molecule—the entire molecule has no dipole
moment.

Q26.19 Heating a dielectric will decrease its dielectric constant, decreasing the capacitance of a capacitor.
When you heat a material, the average kinetic energy per molecule increases. If you refer back to the
answer to Question 26.15, each polar molecule will no longer be nicely aligned with the applied
electric field, but will begin to “dither”—rock back and forth—effectively decreasing its contribution
to the overall field.

Q26.20 The primary choice would be the dielectric. You would want to chose a dielectric that has a large
dielectric constant and dielectric strength, such as strontium titanate, where κ ≈ 233  (Table 26.1). A
convenient choice could be thick plastic or mylar. Secondly, geometry would be a factor. To
maximize capacitance, one would want the individual plates as close as possible, since the
capacitance is proportional to the inverse of the plate separation—hence the need for a dielectric
with a high dielectric strength. Also, one would want to build, instead of a single parallel plate
capacitor, several capacitors in parallel. This could be achieved through “stacking” the plates of the
capacitor. For example, you can alternately lay down sheets of a conducting material, such as
aluminum foil, sandwiched between your sheets of insulating dielectric. Making sure that none of
the conducting sheets are in contact with their next neighbors, connect every other plate together.
Figure Q26.20 illustrates this idea.

ConductorConductor

Dielectric

FIG. Q26.20

This technique is often used when “home-brewing” signal capacitors for radio applications, as
they can withstand huge potential differences without flashover (without either discharge between
plates around the dielectric or dielectric breakdown). One variation on this technique is to sandwich
together flexible materials such as aluminum roof flashing and thick plastic, so the whole product
can be rolled up into a “capacitor burrito” and placed in an insulating tube, such as a PVC pipe, and
then filled with motor oil (again to prevent flashover).



80     Capacitance and Dielectrics

SOLUTIONS TO PROBLEMS

Section 26.1 Definition of Capacitance

P26.1 (a) Q C V= = × = × =− −∆ 4 00 10 12 0 4 80 10 48 06 5. . . . F  V  C  Ce ja f µ

(b) Q C V= = × = × =− −∆ 4 00 10 1 50 6 00 10 6 006 6. . . . F  V  C  Ce ja f µ

P26.2 (a) C
Q
V

= =
×

= × =
−

−

∆
10 0 10

1 00 10 1 00
6

6.
. .

 C
10.0 V

 F  Fµ

(b) ∆V
Q
C

= =
×
×

=
−

−
100 10

10
100

6

6
 C

1.00  F
 V

Section 26.2 Calculating Capacitance

P26.3 E
k q
r

e= 2 : q =
×

× ⋅
=

4 90 10 0 210

8 99 10
0 240

4 2

9

. .

.
.

 N C  m

 N m C
 C

2 2

e ja f
e j

µ

(a) σ
π

µ= =
×

=
−q

A
0 240 10

4 0 120
1 33

6

2
.

.
.a f  C m2

(b) C r= ∈ = × =−4 4 8 85 10 0 120 13 30
12π π . . .e ja f  pF

P26.4 (a) C R= ∈4 0π

R
C

k Ce=
∈

= = × ⋅ × =−

4
8 99 10 1 00 10 8 99

0

9 12

π
. . . N m C  F  mm2 2e je j

(b) C R= ∈ =
× ×

⋅
=

− −

4
4 8 85 10 2 00 10

0 2220

12 3

π
π . .

.
 C  m

N m
 pF

2

2

e je j

(c) Q CV= = × = ×− −2 22 10 100 2 22 1013 11. . F  V  Ce ja f

P26.5 (a)
Q
Q

R
R

1

2

1

2
=

Q Q
R
R

Q Q1 2
1

2
2 21 3 50 7 00+ = +

F
HG

I
KJ = =. .  Cµ

Q Q2 12 00 5 00= =. . C  Cµ µ

(b) V V
Q
C

Q
C1 2

1

1

2

2
1

45 00

0 500
8 99 10 89 9= = = =

×
= × =−

.

.
. .

 C

8.99 10  m F  m
 V  kV

9

µ

e j a f
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P26.6 C
A

d
=

∈
=

× ×

⋅
=

−
κ 0

12 3 2
1 00 8 85 10 1 00 10

800
11 1

. . .
.

a fe je j
a f
 C  m

N m  m
 nF

2

2

The potential between ground and cloud is

∆

∆

V Ed

Q C V

= = × = ×

= = × × =−

3 00 10 800 2 40 10

11 1 10 2 40 10 26 6

6 9

9 9

. .

. . .

 N C  m  V

 C V  V  C

e ja f
a f e je j

P26.7 (a) ∆V Ed=

E =
×

=−
20 0

10
11 13

.
.

 V
1.80  m

 kV m

(b) E =
∈
σ

0

σ = × × ⋅ =−1 11 10 8 85 10 98 34 12. . . N C  C N m  nC m2 2 2e je j

(c) C
A

d
=
∈

=
× ⋅

×
=

−

−
0

12 2

3

8 85 10 7 60 1 00

1 80 10
3 74

. . .

.
.

 C N m  cm  m 100 cm

 m
 pF

2 2 2e je jb g

(d) ∆V
Q
C

=

Q = × =−20 0 3 74 10 74 712. . . V  F  pCa fe j

P26.8 C
A

d
=

∈
= × −κ 0 1560 0 10.  F

d
A

C
d

=
∈

=
× ×

×
= × =

− −

−

−

κ 0
12 12

15

9

1 8 85 10 21 0 10

60 0 10
3 10 10 3 10

a fe je j. .

.
. . m  nm

P26.9 Q
A

d
V=

∈0 ∆a f Q
A

V
d

= =
∈

σ 0 ∆a f

d
V

=
∈

=
× ⋅

× ×
=

−

−
0

12

9 4

8 85 10 150

30 0 10 1 00 10
4 42

∆a f e ja f
e je jσ

µ
.

. .
.

 C N m  V

 C cm  cm m
 m

2 2

2 2 2
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P26.10 With θ π= , the plates are out of mesh and the overlap area is zero. With

θ = 0 , the overlap area is that of a semi-circle, 
π R2

2
. By proportion, the

effective area of a single sheet of charge is 
π θ−a fR2

2
When there are two plates in each comb, the number of adjoining

sheets of positive and negative charge is 3, as shown in the sketch. When
there are N plates on each comb, the number of parallel capacitors is 2 1N −
and the total capacitance is

FIG. P26.10

C N
A N R

d
N R

d
= −

∈
=

− ∈ −
=

− ∈ −
2 1

2 1 2
2

2 10 0
2

0
2

a f a f a f a f a feffective

distance
π θ π θ

.

P26.11 (a) C
ke

b
a

= =
×

=
2

50 0

2 8 99 10
2 68

9 7 27
2 58

ln
.

. ln
.

.

.c h e j c h
 nF

(b) Method 1: ∆V k
b
ae= F
HG
I
KJ2 λ ln

λ = =
×

= ×

= × × F
HG
I
KJ =

−
−

−

q

V

8 10 10
1 62 10

2 8 99 10 1 62 10
7 27
2 58

3 02

6
7

9 7

.
.

. . ln
.
.

.

 C
50.0 m

 C m

 kV∆ e je j

Method 2: ∆V
Q
C

= =
×
×

=
−

−
8 10 10
2 68 10

3 02
6

9
.
.

.  kV

P26.12 Let the radii be b and a with b a= 2 . Put charge Q on the inner conductor and –Q on the outer.

Electric field exists only in the volume between them. The potential of the inner sphere is V
k Q

aa
e= ;

that of the outer is V
k Q

bb
e= . Then

V V
k Q

a
k Q

b
Q b a

aba b
e e− = − =

∈
−F
HG
I
KJ4 0π

 and C
Q

V V
ab

b aa b
=

−
=

∈
−

4 0π
.

Here C
a

a
a=

∈
= ∈

4 2
80

2

0
π

π a
C

=
∈8 0π

.

The intervening volume is Volume = − = FHG
I
KJ =
F
HG
I
KJ ∈

=
∈

4
3

4
3

7
4
3

7
4
3 8

7
384

3 3 3
3

3 3
0
3

3

2
0
3π π π π

π π
b a a

C C

Volume =
× ⋅

× ⋅
= ×

−

−

7 20 0 10

384 8 85 10
2 13 10

6 3

2 12 3
16

.

.
.

 C N m

 C N m
 m

2

2 2

3e j
e jπ

.

The outer sphere is 360 km in diameter.

P26.13 (a) C
ab

k b ae
=

−
=

× −
=a f

b ga f
e jb g

0 070 0 0 140

8 99 10 0 140 0 070 0
15 6

9

. .

. . .
.  pF

(b) C
Q
V

=
∆

∆V
Q
C

= =
×
×

=
−

−
4 00 10
15 6 10

256
6

12
.
.

 C
 F

 kV
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P26.14 Fy∑ = 0 : T mgcosθ − = 0

Fx∑ = 0 : T Eqsinθ − = 0

Dividing, tanθ =
Eq
mg

so E
mg
q

= tanθ

and ∆V Ed
mgd

q
= =

tanθ
.

P26.15 C R= ∈ = × ⋅ × = ×− −4 4 8 85 10 6 37 10 7 08 100
12 6 4π π . . . C N m  m  F2e je j

Section 26.3 Combinations of Capacitors

P26.16 (a) Capacitors in parallel add. Thus, the equivalent capacitor has a value of

C C Ceq = + = + =1 2 5 00 12 0 17 0. . . F  F  Fµ µ µ .

(b) The potential difference across each branch is the same and equal to the voltage of the
battery.

∆V = 9 00.  V

(c) Q C V5 5 00 9 00 45 0= = =∆ . . . F  V  Cµ µb ga f

and Q C V12 12 0 9 00 108= = =∆ . . F  V  Cµ µb ga f

P26.17 (a) In series capacitors add as

1 1 1 1
5 00

1
12 01 2C C Ceq

= + = +
. . F  Fµ µ

and Ceq = 3 53.  Fµ .

(c) The charge on the equivalent capacitor is Q C Veq eq= = =∆ 3 53 9 00 31 8. . . F  V  Cµ µb ga f .

Each of the series capacitors has this same charge on it.

So Q Q1 2 31 8= = .  Cµ .

(b) The potential difference across each is ∆V
Q
C1

1

1

31 8
6 35= = =

.
.

 C
5.00 F

 V
µ
µ

and ∆V
Q
C2

2

2

31 8
2 65= = =

.
.

 C
12.0 F

 V
µ
µ

.
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P26.18 The circuit reduces first according to the rule for capacitors in
series, as shown in the figure, then according to the rule for
capacitors in parallel, shown below.

C C C Ceq = + +F
HG

I
KJ = =1

1
2

1
3

11
6

1 83.

⇒

FIG. P26.18

P26.19 C C Cp = +1 2
1 1 1

1 2C C Cs
= +

Substitute C C Cp2 1= −
1 1 1

1 1

1 1

1 1
C C C C

C C C

C C Cs p

p

p

= +
−

=
− +

−e j
.

Simplifying, C C C C Cp p s1
2

1 0− + = .

C
C C C C

C C C C
p p p s

p p p s1

2
2

4

2
1
2

1
4

=
± −

= ± −

We choose arbitrarily the + sign. (This choice can be arbitrary, since with the case of the minus sign,
we would get the same two answers with their names interchanged.)

C C C C C

C C C C C C C

p p p s

p p p p s

1
2 2

2 1
2

1
2

1
4

1
2

9 00
1
4

9 00 9 00 2 00 6 00

1
2

1
4

1
2

9 00 1 50 3 00

= + − = + − =

= − = − − = − =

. . . . .

. . .

 pF  pF  pF  pF  pF

 pF  pF  pF

b g b g b gb g

b g

P26.20 C C Cp = +1 2

and
1 1 1

1 2C C Cs
= + .

Substitute C C Cp2 1= − :
1 1 1

1 1

1 1

1 1
C C C C

C C C

C C Cs p

p

p

= +
−

=
− +

−e j
.

Simplifying, C C C C Cp p s1
2

1 0− + =

and C
C C C C

C C C C
p p p s

p p p s1

2
2

4

2
1
2

1
4

=
± −

= + −

where the positive sign was arbitrarily chosen (choosing the negative sign gives the same values for
the capacitances, with the names reversed).

Then, from C C Cp2 1= −

C C C C Cp p p s2
21

2
1
4

= − − .
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P26.21 (a)
1 1

15 0
1

3 00Cs
= +

. .

C
C

C

s

p

eq

=
= + =

= +
F
HG

I
KJ =
−

2 50
2 50 6 00 8 50

1
8 50

1
20 0

5 96
1

.
. . .

. .
.

 F
 F

 F  F
 F

µ
µ

µ µ
µ

(b) Q C V= = =∆ 5 96 15 0 89 5. . . F  V  Cµ µb ga f  on 20 0.  Fµ

∆

∆

V
Q
C

Q C V

= = =

− =

= = =

89 5
4 47

15 0 4 47 10 53

6 00 10 53 63 2

.
.

. . .

. . .

 C
20.0 F

 V

 V

 F  V  C  on 6.00 F

µ
µ

µ µ µb ga f
89 5 63 2 26 3. . .− =  Cµ  on 15 0.  Fµ  and 3 00.  Fµ

FIG. P26.21

*P26.22 (a) Capacitors 2 and 3 are in parallel and present equivalent capacitance 6C. This is in series

with capacitor 1, so the battery sees capacitance 
1

3
1

6
2

1

C C
C+LNM

O
QP =
−

.

(b) If they were initially unchanged, C1  stores the same charge as C2  and C3  together. With

greater capacitance, C3  stores more charge than C2 . Then Q Q Q1 3 2> > .

(c) The C C2 3||b g  equivalent capacitor stores the same charge as C1 . Since it has greater

capacitance, ∆V
Q
C

=  implies that it has smaller potential difference across it than C1 . In

parallel with each other, C2  and C3  have equal voltages: ∆ ∆ ∆V V V1 2 3> = .

(d) If C3  is increased, the overall equivalent capacitance increases. More charge moves through
the battery and Q increases. As ∆V1  increases, ∆V2  must decrease so Q2  decreases. Then

Q3  must increase even more: Q Q Q3 1 2 and  increase;   decreases .

P26.23 C
Q
V

=
∆

 so 6 00 10
20 0

6.
.

× =− Q

and Q = 120 Cµ

Q Q1 2120= − Cµ

and ∆V
Q
C

= :
120 2

1

2

2

−
=

Q
C

Q
C

or
120

6 00 3 00
2 2−
=

Q Q
. .

3 00 120 6 002 2. .a fb g a f− =Q Q

Q2
360
9 00

40 0= =
.

.  Cµ Q1 120 40 0 80 0= − = C  C  Cµ µ µ. .

FIG. P26.23
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P26.24 (a) In series , to reduce the effective capacitance:

1
32 0

1
34 8

1

1
2 51 10

3983

. .

.

 F  F

F
 F

µ µ

µ
µ

= +

=
×

=−

C

C

s

s

(b) In parallel , to increase the total capacitance:

29 8 32 0

2 20

. .

.

 F  F

 F

µ µ

µ

+ =

=

C

C

p

p

P26.25 nC
n CC C C

n

=
+ + +

=
100 100

1 1 1

 capacitors

nC
C

n
=

100
 so n2 100=  and n = 10

*P26.26 For C1  connected by itself, C V1 30 8∆ = .  Cµ  where ∆V  is the battery voltage: ∆V
C

=
30 8

1

.  Cµ
.

For C1  and C2  in series:

1
1 1

23 1
1 2C C

V
+

F
HG

I
KJ =∆ .  Cµ

substituting, 
30 8 23 1 23 1

1 1 2

. . . C  C  Cµ µ µ
C C C

= + C C1 20 333= . .

For C1  and C3  in series:

1
1 1

25 2
1 3C C

V
+

F
HG

I
KJ =∆ .  Cµ

30 8 25 2 25 2

1 1 3

. . . C  C  Cµ µ µ
C C C

= + C C1 30 222= . .

For all three:

Q
C C C

V
C V

C C C C
=

+ +

F
HG

I
KJ =

+ +
=

+ +
=

1
1 1 1 1

30 8
1 0 333 0 222

19 8
1 2 3

1

1 2 1 3
∆

∆ .
. .

.
 C

 C
µ

µ .

This is the charge on each one of the three.

P26.27 C

C

C

C

s

p

p

eq

= +F
HG

I
KJ =

= + =

= =

= +F
HG

I
KJ =

−

−

1
5 00

1
10 0

3 33

2 3 33 2 00 8 66

2 10 0 20 0

1
8 66

1
20 0

6 04

1

1

2

1

. .
.

. . .

. .

. .
.

 F

 F

 F

 F

µ

µ

µ

µ

a f
a f

FIG. P26.27
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P26.28 Q C Veq eq= = × = ×− −∆a f e ja f6 04 10 60 0 3 62 106 4. . . F  V  C

Q Qp eq1 = , so ∆V
Q

Cp
eq

p
1

1

4

6
3 62 10
8 66 10

41 8= =
×
×

=
−

−
.
.

.
 C
 F

 V

Q C Vp3 3 1
62 00 10 41 8= = × =−∆e j e ja f. . F  V 83.6 Cµ

P26.29 C

C

s

p

= +F
HG

I
KJ =

= + + =

−1
5 00

1
7 00

2 92

2 92 4 00 6 00 12 9

1

. .
.

. . . .

 F

 F

µ

µ

FIG. P26.29

*P26.30 According to the suggestion, the combination of
capacitors shown is equivalent to 

Then
1 1 1 1

0 0 0

0 0 0

0 0C C C C C
C C C C C

C C C
= +

+
+ =

+ + + +
+b g

C C C C C C

C C C C

C
C C C

0 0
2 2

0
2

0 0
2

0 0
2

0
2

2 3

2 2 0

2 4 4 2

4

+ = +

+ − =

=
− ± + e j

Only the positive root is physical

C
C

= −0

2
3 1e j

FIG. P26.30

Section 26.4 Energy Stored in a Charged Capacitor

P26.31 (a) U C V= = =
1
2

1
2

3 00 12 0 2162 2∆a f b ga f. . F  V  Jµ µ

(b) U C V= = =
1
2

1
2

3 00 6 00 54 02 2∆a f b ga f. . . F  V  Jµ µ

P26.32 U C V=
1
2

2∆

∆V
U
C

= =
×

= ×−
2 2 300

30 10
4 47 106

3 J

 C V
 V

a f
.
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P26.33 U C V=
1
2

2∆a f
The circuit diagram is shown at the right.

(a) C C Cp = + = + =1 2 25 0 5 00 30 0. . . F  F  Fµ µ µ

U = × =−1
2

30 0 10 100 0 1506 2. .e ja f  J

(b) C
C Cs = +
F
HG

I
KJ = +
F
HG

I
KJ =

− −
1 1 1

25 0
1

5 00
4 17

1 2

1 1

. .
.

 F  F
 F

µ µ
µ

U C V

V
U
C

=

= =
×

=−

1
2

2 2 0 150

4 17 10
268

2

6

∆

∆

a f
a f.

.
 V

FIG. P26.33

P26.34 Use U
Q
C

=
1
2

2

 and C
A

d
=
∈0 .

If d d2 12= , C C2 1
1
2

= . Therefore, the stored energy doubles .

*P26.35 (a) Q C V= = × × = ×− −∆ 150 10 10 10 1 50 1012 3 6 F  V  Ce je j .

(b) U C V=
1
2

2∆a f

∆V
U
C

= =
×

×
= ×

−

−
2 2 250 10

150 10
1 83 10

6

12
3

 J

 F
 V

e j
.

P26.36 u
U
V

E= = ∈
1
2 0

2

1 00 10 1
2

8 85 10 3 000

2 51 10 2 51 10
1 000

2 51

7
12 2

3 3

.
.

. . .

×
= ×

= × = × F
HG

I
KJ =

−
−

− −

V

V

e jb g

e j m  m
 L

m
 L3 3

3

P26.37 W U Fdx= = z
so F

dU
dx

d
dx

Q
C

d
dx

Q x
A

Q
A

= =
F
HG
I
KJ = ∈

F
HG

I
KJ = ∈

2 2

0

2

02 2 2
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P26.38 With switch closed, distance ′ =d d0 500.  and capacitance ′ =
∈

′
=

∈
=C

A
d

A
d

C0 02
2 .

(a) Q C V C V= ′ = = × =−∆ ∆a f a f e ja f2 2 2 00 10 100 4006.  F  V  Cµ

(b) The force stretching out one spring is

F
Q

A
C V

A
C V

A d d
C V

d
=

∈
=

∈
=

∈
=

2

0

2 2

0

2 2

0

2

2
4

2
2 2∆ ∆ ∆a f a f
b g

a f
.

One spring stretches by distance x
d

=
4

, so

k
F
x

C V
d d

C V

d
= = F

HG
I
KJ = =

×

×
=

−

−

2 4 8 8 2 00 10 100

8 00 10
2 50

2 2

2

6 2

3 2

∆ ∆a f a f e ja f
e j

.

.
.

 F  V

 m
 kN m .

P26.39 The energy transferred is H Q VET  C  V  J= = × = ×
1
2

1
2

50 0 1 00 10 2 50 108 9∆ . . .a fe j
and 1% of this (or ∆Eint  J= ×2 50 107. ) is absorbed by the tree. If m is the amount of water boiled
away,

then ∆E m mint  J kg C C C  J kg  J= ⋅° ° − ° + × = ×4 186 100 30 0 2 26 10 2 50 106 7b ga f e j. . .

giving m = 9 79.  kg .

*P26.40 (a) U C V C V C V= + =
1
2

1
2

2 2 2∆ ∆ ∆a f a f a f

(b) The altered capacitor has capacitance ′ =C
C
2

. The total charge is the same as before:

C V C V C V
C

V∆ ∆ ∆ ∆a f a f a f a f+ = ′ + ′
2

∆
∆

′ =V
V4

3
.

(c) ′ = F
HG
I
KJ + F

HG
I
KJ =U C

V
C

V
C

V1
2

4
3

1
2

1
2

4
3

4
3

2 2 2∆ ∆ ∆a f

(d) The extra energy comes from work put into the system by the agent pulling the capacitor
plates apart.

P26.41 U C V=
1
2

2∆a f  where C R
R
ke

= ∈ =4 0π  and ∆V
k Q
R

k Q
R

e e= − =0

U
R
k

k Q
R

k Q
Re

e e=
F
HG
I
KJ
F
HG
I
KJ =

1
2 2

2 2
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*P26.42 (a) The total energy is U U U
q
C

q
C

q
R

Q q

R
= + = + =

∈
+

−

∈1 2
1
2

1

2
2

2

1
2

0 1

1
2

0
2

1
2

1
2

1
2 4

1
2 4π π
b g

.

For a minimum we set 
dU
dq1

0= :

1
2

2
4

1
2

2

4
1 01

0 1

1

0 2

2 1 1 1 1 1
1

1 2

q
R

Q q

R

R q R Q R q q
R Q

R R

π π∈
+

−

∈
− =

= − =
+

b g a f

Then q Q q
R Q

R R
q2 1

2

1 2
2= − =

+
= .

(b) V
k q
R

k R Q
R R R

k Q
R R

e e e
1

1

1

1

1 1 2 1 2
= =

+
=

+b g
V

k q
R

k R Q
R R R

k Q
R R

e e e
2

2

2

2

2 1 2 1 2
= =

+
=

+b g
and V V1 2 0− = .

Section 26.5 Capacitors with Dielectrics

P26.43 (a) C
A

d
=

∈
=

× ×

×
= × =

− −

−
−κ 0

12 4

5
11

2 10 8 85 10 1 75 10

4 00 10
8 13 10 81 3

. . .

.
. .

 F m  m

 m
 F  pF

2e je j

(b) ∆V E dmax max . . .= = × × =−60 0 10 4 00 10 2 406 5 V m  m  kVe je j

P26.44 Q C Vmax max= ∆ ,

but ∆V E dmax max= .

Also, C
A

d
=

∈κ 0 .

Thus, Q
A

d
E d AEmax max max=

∈
= ∈

κ
κ0

0b g .

(a) With air between the plates, κ = 1 00.

and Emax .= ×3 00 106  V m .

Therefore,

Q AEmax max . . . .= ∈ = × × × =− −κ 0
12 4 68 85 10 5 00 10 3 00 10 13 3 F m  m  V m  nC2e je je j .

(b) With polystyrene between the plates, κ = 2 56.  and Emax .= ×24 0 106  V m .

Q AEmax max . . . .= ∈ = × × × =− −κ 0
12 4 62 56 8 85 10 5 00 10 24 0 10 272 F m  m  V m  nC2e je je j



Chapter 26     91

P26.45 C
A

d
=

∈κ 0

or 95 0 10
3 70 8 85 10 0 070 0

0 025 0 10
9

12

3.
. . .

.
× =

×

×
−

−

−

e jb g

= 1 04.  m

P26.46 Consider two sheets of aluminum foil, each 40 cm by 100 cm, with one sheet of plastic between

them. Suppose the plastic has κ ≅ 3 , Emax ~107  V m  and thickness 1 mil =
2 54.  cm
1 000

. Then,

C
A

d

V E d

=
∈ × ⋅

×

= ×

−

−
−

−

κ 0
12

5
6

7 5 2

3 8 85 10 0 4

2 54 10
10

10 2 54 10 10

~
. .

.
~

~ . ~max max

 C N m  m

 m
 F

 V m  m  V

2 2 2e je j

e je j∆

P26.47 Originally, C
A

d
Q
V i

=
∈

=0

∆a f .

(a) The charge is the same before and after immersion, with value Q
A V

d
i=

∈0 ∆a f
.

Q =
× ⋅ ×

×
=

− −

−

8 85 10 25 0 10 250

1 50 10
369

12 4

2

. .

.

 C N m  m  V

 m
 pC

2 2 2e je ja f
e j

(b) Finally,

C
A

d
Q
Vf

f

=
∈

=
κ 0

∆a f C f =
× ⋅ ×

×
=

− −

−

80 0 8 85 10 25 0 10

1 50 10
118

12 4

2

. . .

.

 C N m  m

 m
 pF

2 2 2e je j
e j

∆
∆ ∆

V
Qd

A

A V d

Ad

V
f

i ia f a f a f
=

∈
=
∈

∈
= = =

κ κ κ0

0

0

250
3 12

 V
80.0

 V. .

(c) Originally, U C V
A V

di i
i= =

∈1
2 2

2 0
2

∆
∆a f a f

.

Finally, U C V
A V

d

A V

df f f
i i= =

∈
=
∈1

2 2 2
2 0

2

2
0

2

∆
∆ ∆a f a f a fκ

κ κ
.

So, ∆
∆

U U U
A V

df i
i= − =

− ∈ −0
2 1

2

a f a fκ
κ

∆U = −
× ⋅ ×

×
= −

− −

−

8 85 10 25 0 10 250 79 0

2 1 50 10 80 0
45 5

12 4 2

2

. . .

. .
.

 C N m  m  V

 m
 nJ

2 2 2e je ja f a f
e ja f

.
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P26.48 (a) C C
A

d
= =

∈
=

× ×

×
=

− −

−κ
κ

0
0

12 4

3

173 8 85 10 1 00 10

0 100 10
1 53

a fe je j. .

.
.

 m

 m
 nF

2

(b) The battery delivers the free charge

Q C V= = × =−∆a f e ja f1 53 10 12 0 18 49. . . F  V  nC .

(c) The surface density of free charge is

σ = =
×
×

= ×
−

−
−Q

A
18 4 10

10
1 84 10

9

4
4.

.
 C

1.00  m
 C m2

2 .

The surface density of polarization charge is

σ σ
κ

σp = −FHG
I
KJ = −FHG

I
KJ = × −1

1
1

1
173

1 83 10 4.  C m2 .

(d) We have E
E

= 0

κ
 and E

V
d0 =
∆

; hence,

E
V
d

= =
×

=
−

∆
κ

12 0

1 00 10
694

4

.

.

 V

173  m
 V ma fe j

.

P26.49 The given combination of capacitors is equivalent to the circuit diagram
shown to the right.

Put charge Q on point A. Then,

Q V V VAB BC CD= = =40 0 10 0 40 0. . . F  F  Fµ µ µb g b g b g∆ ∆ ∆ . FIG. P26.49

So, ∆ ∆ ∆V V VBC AB CD= =4 4 , and the center capacitor will break down first, at ∆VBC = 15 0.  V . When
this occurs,

∆ ∆ ∆V V VAB CD BC= = =
1
4

3 75b g .  V

and V V V VAD AB BC CD= + + = + + =3 75 15 0 3 75 22 5. . . . V  V  V  V .

Section 26.6 Electric Dipole in an Electric Field

P26.50 (a) The displacement from negative to positive charge is

2 1 20 1 10 1 40 1 30 2 60 2 40 10 3a = − + − − = − + × −. . . . . .i j i j i je j e j e j mm  mm  m.

The electric dipole moment is

p a i j i j= = × − + × = − + × ⋅− − −2 3 50 10 2 60 2 40 10 9 10 8 40 109 3 12q . . . . . C  m  C me je j e j .

(b) ττττ = × = − + × ⋅ × − ×−p E i j i j9 10 8 40 10 7 80 4 90 1012 3. . . .e j e j C m  N C

ττττ = + − × ⋅ = − × ⋅− −44 6 65 5 10 2 09 109 8. . .k k ke j  N m  N m

continued on next page
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(c) U = − ⋅ = − − + × ⋅ ⋅ − ×−p E i j i j9 10 8 40 10 7 80 4 90 1012 3. . . .e j e j C m  N C

U = + × =−71 0 41 2 10 1129. .a f  J  nJ

(d) p = + × ⋅ = × ⋅− −9 10 8 40 10 12 4 102 2 12 12. . .a f a f  C m  C m

E

p E

= + × = ×

= = = −

− =

7 80 4 90 10 9 21 10

114 114

228

2 2 3 3. . .

max min

max min

a f a f  N C  N C

 nJ,  nJ

 nJ

U U

U U

P26.51 (a) Let x represent the coordinate of the negative charge.
Then x a+ 2 cosθ  is the coordinate of the positive
charge. The force on the negative charge is
F i− = −qE xa f . The force on the positive charge is

F i i i+ = + + ≈ +qE x a qE x q
dE
dx

a2 2cos cosθ θa f a f a f .
E

θ

p F+

F-

FIG. P26.51(a)

The force on the dipole is altogether F F F i i= + = =− + q
dE
dx

a p
dE
dx

2 cos cosθ θa f .

(b) The balloon creates field along the x-axis of 
k q
x

e
2 i .

Thus, 
dE
dx

k q

x
e=

−2
3

a f
.

At x = 16 0.  cm , 
dE
dx

=
− × ×

= − ⋅
−2 8 99 10 2 00 10

0 160
8 78

9 6

3

a fe je j
a f

. .

.
.  MN C m

F i i= × ⋅ − × ⋅ ° = −−6 30 10 8 78 10 0 55 39 6. . cos . C m  N C m  mNe je j

Section 26.7 An Atomic Description of Dielectrics

P26.52 2
0

π r E
q

=
∈

in

so E
r

=
∈

λ
π2 0

∆

∆

∆

V d
r

dr
r
r

E r

V

V

r

r

r

r

= − ⋅ =
∈

=
∈
F
HG
I
KJ

∈
=

= × × F
HG
I
KJ

=

z z

−

E r
1

2

1

2

2 2

2

1 20 10 0 100 10
25 0

0 200

579

0 0

1

2

0

6 3

λ
π

λ
π

λ
π

ln

. . ln
.

.

max
max

max

inner

 V m  m

 V

e je j

FIG. P26.52
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P26.53 (a) Consider a gaussian surface in the form of a cylindrical pillbox with ends of area ′ <<A A
parallel to the sheet. The side wall of the cylinder passes no flux of electric field since this
surface is everywhere parallel to the field. Gauss’s law becomes

EA EA
Q
A

A′ + ′ =
∈

′ , so E
Q

A
=

∈2
 directed away from the positive sheet.

(b) In the space between the sheets, each creates field 
Q

A2∈
 away from the positive and

toward the negative sheet. Together, they create a field of

E
Q
A

=
∈

.

(c) Assume that the field is in the positive x-direction. Then, the potential of the positive plate
relative to the negative plate is

∆V d
Q
A

dx
Qd

A
= − ⋅ = −

∈
⋅ − = +

∈−

+

−

+

z zE s i i
plate

plate

plate

plate

e j .

(d) Capacitance is defined by: C
Q
V

Q
Qd A

A
d

A
d

= =
∈

=
∈

=
∈

∆
κ 0 .

Additional Problems

P26.54 (a) C = +L
NM

O
QP + +L
NM

O
QP =

− −1
3 00

1
6 00

1
2 00

1
4 00

3 33
1 1

. . . .
.  Fµ

(c) Q C Vac ac ac= = =∆b g b ga f2 00 90 0 180. . F  V  Cµ µ

Therefore, Q Q3 6 180= =  Cµ

Q C Vdf df df= = =∆d i b ga f1 33 90 0 120. . F  V  Cµ µ FIG. P26.54

(b) ∆V
Q
C3

3

3

180
60 0= = =

 C
3.00 F

 V
µ
µ

.

∆

∆

∆

V
Q
C

V
Q
C

V
Q
C

6
6

6

2
2

2

4
4

4

180
30 0

120
60 0

120
30 0

= = =

= = =

= = =

 C
6.00 F

 V

 C
2.00 F

 V

 C
4.00 F

 V

µ
µ
µ
µ
µ
µ

.

.

.

(d) U C VT eq= = × =−1
2

1
2

3 33 10 90 0 13 42 6 2∆a f e ja f. . . V  mJ
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*P26.55 (a) Each face of P2  carries charge, so the three-plate system is equivalent to

P1
P2

P2
P3

Each capacitor by itself has capacitance

C
A

d
=

∈
=

× ×

⋅ ×
=

− −

−
κ 0

12 4

3

1 8 85 10 7 5 10

1 19 10
5 58

. .

.
.

 C  m

N m  m
 pF

2 2

2

e j
.

Then equivalent capacitance = + =5 58 5 58 11 2. . .  pF .

(b) Q C V C V= + = × =−∆ ∆ 11 2 10 12 13412.  F  V  pCa f

(c) Now P3  has charge on two surfaces and in effect three capacitors are in parallel:

C = =3 5 58 16 7. . pF  pFb g .

(d) Only one face of P4  carries charge:

Q C V= = × =−∆ 5 58 10 66 912. . F 12 V  pCa f .

*P26.56 From the example about a cylindrical capacitor,

V V k
b
a

V

V

b a e

b

b

− = −

− = − × ×

= − ×

= − ×

= × − × = ×

−

2

345 2 8 99 10 1 40 10
12

2 8 99 1 4 10 500

1 564 3 10

3 45 10 1 56 10 1 89 10

9 6

3

5

5 5 5

λ ln

. . ln

. . ln

.

. . .

 kV  Nm C  C m
 m

0.024 m

 J C

 V

 V  V  V

2 2e je j
a fe j

*P26.57 Imagine the center plate is split along its midplane and pulled apart.
We have two capacitors in parallel, supporting the same ∆V  and

carrying total charge Q. The upper has capacitance C
A

d1
0=

∈
 and the

lower C
A

d2
0

2
=
∈

. Charge flows from ground onto each of the outside

plates so that Q Q Q1 2+ = ∆ ∆ ∆V V V1 2= = .

Then
Q
C

Q
C

Q d
A

Q d
A

1

1

2

2

1

0

2

0

2
= =

∈
=
∈

Q Q1 22= 2 2 2Q Q Q+ = .

d

2d

FIG. P26.57

(a) Q
Q Q

2 3 3
= −. .On the lower plate the charge is 

Q
Q Q

1
2
3

2
3

= −. .On the upper plate the charge is 

(b) ∆V
Q
C

Qd
A

= =
∈

1

1 0

2
3
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P26.58 (a) We use Equation 26.11 to find the potential energy of the capacitor. As we will see, the
potential difference ∆V  changes as the dielectric is withdrawn. The initial and final

energies are U
Q
Ci

i
=
F
HG
I
KJ

1
2

2

and U
Q
Cf

f
=
F
HG
I
KJ

1
2

2

.

But the initial capacitance (with the dielectric) is C Ci f=κ . Therefore, U
Q
Cf

i
=
F
HG
I
KJ

1
2

2

κ .

Since the work done by the external force in removing the dielectric equals the change in

potential energy, we have W U U
Q
C

Q
C

Q
Cf i

i i i
= − =

F
HG
I
KJ −
F
HG
I
KJ =
F
HG
I
KJ −

1
2

1
2

1
2

1
2 2 2

κ κa f .
To express this relation in terms of potential difference ∆Vi , we substitute Q C Vi i= ∆b g , and

evaluate: W C Vi i= − = × − = ×− −1
2

1
1
2

2 00 10 100 5 00 1 00 4 00 102 9 2 5∆b g a f e ja f a fκ . . . . F  V  J .

The positive result confirms that the final energy of the capacitor is greater than the initial
energy. The extra energy comes from the work done on the system by the external force that
pulled out the dielectric.

(b) The final potential difference across the capacitor is ∆V
Q
Cf

f
= .

Substituting C
C

f
i=

κ
 and Q C Vi i= ∆b g  gives ∆ ∆V Vf i= = =κ 5 00 100 500.  V  Va f .

Even though the capacitor is isolated and its charge remains constant, the potential
difference across the plates does increase in this case.

P26.59 κ = 3 00. , E
V
dmax
max.= × =2 00 108  V m

∆

For C
A

d
=

∈
= × −κ 0 60 250 10.  F

A
Cd C V

E
=

∈
=

∈
=

×

× ×
=

−

−κ κ0 0

6

12 8

0 250 10 4 000

3 00 8 85 10 2 00 10
0 188

∆ max

max

.

. . .
.

e jb g
e je j

 m2

*P26.60 The original kinetic energy of the particle is

K mv= = × × = ×− −1
2

1
2

2 10 2 10 4 00 102 16 6 2 4 kg  m s  Je je j . .

The potential difference across the capacitor is ∆V
Q
C

= = =
1 000

100
 C

10 F
 V

µ
µ

.

For the particle to reach the negative plate, the particle-capacitor system would need energy

U q V= = − × − = × −∆ 3 10 100 3 00 106 4 C  V  Je ja f . .

Since its original kinetic energy is greater than this, the particle will reach the negative plate .

As the particle moves, the system keeps constant total energy

K U K U+ = ++ −a f a fat plate at plate : 4 00 10 3 10 100
1
2

2 10 04 6 16 2. × + − × + = × +− − − J  C  Ve ja f e jv f

v f =
×

×
= ×

−

−

2 1 00 10

2 10
1 00 10

4

16
6

.
.

 J

 kg
 m s

e j
.
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P26.61 (a) C
A

d1
1 0 2

=
∈κ

; C
A

d2
2 0 2

2
=

∈κ
; C

A
d3

3 0 2
2

=
∈κ

1 1

1 1
2

2 3

1
2 3

2 3

0 2 3

2 3

1
2 3

1
0 1 2 3

2 3

C C
C C

C C
A

d

C C
C C

A
d

+
F
HG

I
KJ =

+
=
∈

+
F
HG

I
KJ

= + +
F
HG

I
KJ =

∈
+

+
F
HG

I
KJ

−

−

κ κ
κ κ

κ κ κ
κ κ FIG. P26.61

(b) Using the given values we find: Ctotal  F  pF= × =−1 76 10 1 7612. . .

*P26.62 The initial charge on the larger capacitor is

Q C V= = =∆ 10 150 F 15 V  Cµ µa f .

An additional charge q is pushed through the 50-V battery, giving the smaller capacitor charge q and
the larger charge 150 Cµ + q .

Then 50
5

150
10

 V
 F

 C
 F

= +
+q q

µ
µ
µ

500 2 150
117
 C  C

 C
µ µ

µ
= + +

=
q q

q

So across the 5- Fµ  capacitor ∆V
q
C

= = =
117

23 3
 C

5 F
 V

µ
µ

. .

Across the 10- Fµ  capacitor ∆V =
+

=
150 117

26 7
 C  C

10 F
 V

µ µ
µ

. .

P26.63 (a) Put charge Q on the sphere of radius a and –Q on the other sphere. Relative to V = 0  at
infinity,

the potential at the surface of a is V
k Q

a
k Q

da
e e= −

and the potential of b is V
k Q
b

k Q
db

e e=
−

+ .

The difference in potential is V V
k Q

a
k Q

b
k Q

d
k Q

da b
e e e e− = + − −

and C
Q

V V a b da b
=

−
=

∈
+ −

F
HG

I
KJ

4
1 1 2

0π
b g b g b g .

(b) As d →∞ , 
1
d

 becomes negligible compared to 
1
a

. Then,

C
a b

=
∈
+

4
1 1

0π
 and 

1 1
4

1
40 0C a b

=
∈

+
∈π π

as for two spheres in series.



98     Capacitance and Dielectrics

P26.64 (a) C
d

x x
d

x=
∈

− + =
∈

+ −0 0 2 1a f a fκ κ

(b) U C V
V

d
x= =

∈F
HG

I
KJ

+ −
1
2

1
2

12 0
2

2∆
∆a f a f a fκ

(c) F i= −FHG
I
KJ =

∈
−

dU
dx

V
d

0
2

2
1

∆a f a fκ  to the left  (out of the capacitor)

(d) F =
× −

×
= ×

−

−
−

2 000 8 85 10 0 050 0 4 50 1

2 2 00 10
1 55 10

2 12

3
3

b g e jb ga f
e j

. . .

.
.  N

P26.65 The portion of the capacitor nearly filled by metal has

capacitance
κ ∈

→∞0 x
d
a f

and stored energy
Q

C

2

2
0→ .

The unfilled portion has

capacitance
∈ −0 x

d
a f

.

The charge on this portion is Q
x Q

=
−a f 0 .

(a) The stored energy is

U
Q

C

x Q

x d
Q x d

= =
−

∈ −
=

−

∈

2
0

2

0

0
2

0
32 2 2

a f
a f

a f
.

(b) F
dU
dx

d
dx

Q x d Q d
= − = −

−

∈

F
HG

I
KJ = + ∈

0
2

0
3

0
2

0
32 2

a f

F =
∈
Q d0

2

0
32

 to the right  (into the capacitor)

(c) Stress = =
∈

F
d

Q0
2

0
42

(d) u E
Q Q

= ∈ = ∈
∈
F
HG
I
KJ = ∈

∈

F
HG
I
KJ =

∈
1
2

1
2

1
2 20

2
0

0

2

0
0

0
2

2
0
2

0
4

σ
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P26.66 Gasoline: 126 000 1 054
1 00 1 00

670
5 24 103

7 Btu gal  J Btu
 gal

3.786 10  m
 m
 kg

 J kg3

3

b gb g . .
.

×
F
HG

I
KJ
F
HG

I
KJ = ×−

Battery:
12 0 100 3 600

16 0
2 70 105.

.
.

 J C  C s  s

 kg
 J kg

b gb gb g
= ×

Capacitor:
1
2

20 100 12 0
0 100

72 0
. .

.
.

 F  V
 kg

 J kg
a fa f

=

Gasoline has 194 times the specific energy content of the battery and 727 000 times that of the
capacitor.

P26.67 Call the unknown capacitance Cu

Q C V C C V

C
C V

V V

u i u f

u
f

i f

= = +

=
−

=
−

=

∆ ∆

∆

∆ ∆

b g b gd i
d i

b g d i
b ga f
a f
10 0 30 0
100 30 0

4 29
. .

.
.

 F  V
 V  V

 F
µ

µ

*P26.68 She can clip together a series combination of parallel combinations of two
100- Fµ  capacitors. The equivalent capacitance is

1

200 200
1001 1 F  F

 F
µ µ

µb g b g− −+
= . When 90 V is connected across the

combination, only 45 V  appears across each individual capacitor. FIG. P26.68

P26.69 (a) C
A

d
Q
V0

0 0

0
=
∈

=
∆

When the dielectric is inserted at constant voltage,

C C
Q
V

U
C V

U
C V C V

= =

=

= =

κ

κ

0
0

0
0 0

2

0
2

0 0
2

2

2 2

∆

∆

∆ ∆

;

b g

b g e j

and
U
U0

=κ .

The extra energy comes from (part of the) electrical work done by the battery in separating
the extra charge.

(b) Q C V0 0 0= ∆

and Q C V C V= =∆ ∆0 0 0κ

so
Q
Q0

=κ .
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P26.70 The vertical orientation sets up two capacitors in parallel, with equivalent capacitance

C
A

d

A

d
A

dp =
∈

+
∈

=
+F
HG
I
KJ
∈0 0 02 2 1

2
b g b gκ κ

where A is the area of either plate and d is the separation of the plates. The horizontal orientation
produces two capacitors in series. If f is the fraction of the horizontal capacitor filled with dielectric,
the equivalent capacitance is

1 1 1

0 0 0C
fd

A

f d

A

f f d
As

=
∈

+
−

∈
=

+ −L
NMM

O
QPP ∈κ

κ
κ

b g b g
, or C

f f
A

ds = + −

L
NMM

O
QPP
∈κ

κ 1
0

b g .

Requiring that C Cp s=  gives 
κ κ

κ
+

=
+ −

1
2 1f fb g , or κ κ κ+ + − =1 1 2a f b gf f .

For κ = 2 00. , this yields 3 00 2 00 1 00 4 00. . . .− =a f f , with the solution f =
2
3

.

P26.71 Initially (capacitors charged in parallel),

q C V1 1 6 00 250 1 500= = =∆a f b ga f.  F  V  Cµ µ

q C V2 2 2 00 250 500= = =∆a f b ga f.  F  V  Cµ µ .

After reconnection (positive plate to negative plate),

′ = − =q q qtotal  C1 2 1 000 µ  and ∆ ′ =
′

= =V
q
C

total

total

 C
8.00 F

 V
1 000

125
µ
µ

.

Therefore,

′ = ′ = =q C V1 1 6 00 125 750∆a f b ga f.  F  V  Cµ µ

′ = ′ = =q C V2 2 2 00 125 250∆a f b ga f.  F  V  Cµ µ .

P26.72 Assume a potential difference across a and b, and notice that the potential difference across the
8 00.  Fµ  capacitor must be zero by symmetry. Then the equivalent capacitance can be determined
from the following circuit:

 ⇒   ⇒  

FIG. P26.72

Cab = 3 00.  Fµ .
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P26.73 Emax  occurs at the inner conductor’s surface.

E
k
a
e

max =
2 λ

 from Equation 24.7.

∆V k
b
ae= F
HG
I
KJ2 λ ln  from Example 26.2

E
V

a b a

V E a
b
a

max

max max

ln

ln . . ln
.

.
. .

=

= F
HG
I
KJ = × × F

HG
I
KJ =

−

∆

∆

b g
e je j18 0 10 0 800 10

3 00
0 800

19 06 3 V m  m  kV

P26.74 E
a

=
2κλ

; ∆V
b
a

= F
HG
I
KJ2κλ ln

∆V E a
b
a

dV
da

E
b
a

a
b a

b
a

max max

max
max

ln

ln

= F
HG
I
KJ

= F
HG
I
KJ +
F
HG
I
KJ −
F
HG
I
KJ

L
N
MM

O
Q
PP =

1
02

ln
b
a
F
HG
I
KJ = 1  or 

b
a

e= 1  so a
b
e

=

P26.75 By symmetry, the potential difference across 3C is zero, so the circuit reduces to

C
C C

C Ceq = +FHG
I
KJ = =
−1

2
1

4
8
6

4
3

1

.

FIG. P26.75
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P26.76 The electric field due to the charge on the positive wire is perpendicular to the wire, radial, and of
magnitude

E
r+ = ∈

λ
π2 0

.

The potential difference between wires due to the presence of this charge is

∆V d
dr
r

D d
dD d

d

1
0 02 2

= − ⋅ = −
∈

=
∈

−F
HG
I
KJ

−

+

−
z zE r

wire

wire λ
π

λ
π

ln .

The presence of the linear charge density −λ  on the negative wire makes an identical contribution
to the potential difference between the wires. Therefore, the total potential difference is

∆ ∆V V
D d

d
= =

∈
−F
HG
I
KJ2 1

0
b g λ

π
ln

and the capacitance of this system of two wires, each of length , is

C
Q
V V D d d D d d

= = =
∈ −

=
∈
−∆ ∆

λ λ
λ π

π

0

0

b g a f a fln ln
.

The capacitance per unit length is: 
C

D d d
=

∈
−

π 0

ln a f .

*P26.77 The condition that we are testing is that the capacitance increases by less than 10%, or,

′
<

C
C

1 10. .

Substituting the expressions for C and ′C  from Example 26.2, we have,

′
= = <

C
C

k

k

e
b

a

e
b
a

b
a
b

a

2

2

1 101.10

1.10

ln

ln

ln

ln
.

c h

c h

c h
c h .

This becomes,

ln . ln
.

. ln . ln
.

. ln . ln .
b
a

b
a

b
a

b
a

F
HG
I
KJ <

F
HG
I
KJ =

F
HG
I
KJ +

F
HG
I
KJ =

F
HG
I
KJ −1 10

1 10
1 10 1 10

1
1 10

1 10 1 10 1 10a f .

We can rewrite this as,

− F
HG
I
KJ < −

F
HG
I
KJ > =

0 10 1 10 1 10

11 0 1 10 1 10 11.0

. ln . ln .

ln . ln . ln .

b
a

b
a

a f

a f a f

where we have reversed the direction of the inequality because we multiplied the whole expression
by –1 to remove the negative signs. Comparing the arguments of the logarithms on both sides of the
inequality, we see that,

b
a
> =1 10 2 8511.0. .a f .

Thus, if b a> 2 85. , the increase in capacitance is less than 10% and it is more effective to increase .
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ANSWERS TO EVEN PROBLEMS

P26.2 (a) 1 00.  Fµ ; (b) 100 V
P26.40 (a) C V∆a f2 ; (b) 

4
3
∆V

; (c) 4
3

2

C
V∆a f

;

P26.4 (a) 8 99.  mm ; (b) 0 222.  pF ; (c) 22 2.  pC (d) Positive work is done on the system by
the agent pulling the plates apart.

P26.6 11 1.  nF ; 26 6.  C

P26.42 (a) q
R Q

R R1
1

1 2
=

+
 and q

R Q
R R2

2

1 2
=

+
;

P26.8 3 10.  nm
(b) see the solution

P26.10
2 1 0

2N R
d

− ∈ −a f a fπ θ
P26.44 (a) 13 3.  nC ; (b) 272 nC

P26.46 ~10 6−  F  and ~102  V  for two 40 cm by
100 cm sheets of aluminum foil
sandwiching a thin sheet of plastic.

P26.12 2 13 1016. ×  m3

P26.14
mgd

q
tanθ

P26.48 (a) 1 53.  nF ; (b) 18 4.  nC ; (c) 184 C m2µ

free; 183 C m2µ  induced; (d) 694 V m
P26.16 (a) 17 0.  Fµ ; (b) 9 00.  V ;

(c) 45 0.  Cµ  and 108 Cµ
P26.50 (a) − + ⋅9 10 8 40. .i je j pC m ;

(b) − ⋅20 9.  nN mk ; (c) 112 nJ ; (d) 228 nJP26.18 1 83. C

P26.20
C C

C Cp p
p s2 4

2

+ −  and 
C C

C Cp p
p s2 4

2

− −
P26.52 579 V

P26.54 (a) 3 33.  Fµ ;
(b) ∆V3 60 0= .  V ; ∆V6 30 0= .  V ;
∆V2 60 0= .  V ; ∆V4 30 0= .  V ;

P26.22 (a) 2C ; (b) Q Q Q1 3 2> > ;
(c) ∆ ∆ ∆V V V1 2 3> = ;

(c) Q Q3 6 180= =  Cµ ; Q Q2 4 120= =  Cµ ;
(d) Q Q3 1 and  increase  and Q2  decreases

(d) 13 4.  mJ

P26.24 (a) 398 Fµ  in series; (b) 2 20.  Fµ  in parallel P26.56 189 kV

P26.58 (a) 40 0.  Jµ ; (b) 500 VP26.26 19 8.  Cµ

P26.60 yes; 1 00.  Mm sP26.28 83.6 Cµ

P26.62 23 3.  V ; 26 7.  V
P26.30 3 1

2
0−e jC

P26.64 (a) 
∈ + −0

2 1x

d

κa f
;

P26.32 4 47.  kV

(b) 
∈ + −0

2 2 1

2

∆V x

d

a f a fκ
;P26.34 energy doubles

(c) 
∈ −0

2 1
2

∆V
d

a f a fκ
 to the left ;P26.36 2 51 10 2 513. .× =−  m  L3

(d) 1 55.  mN leftP26.38 (a) 400 Cµ ; (b) 2 50.  kN m
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P26.66 Gasoline has 194 times the specific energy
content of the battery, and 727 000 times
that of the capacitor.

P26.72 3 00.  Fµ

P26.74 see the solution

P26.68 see the solution; 45 V P26.76 see the solution

P26.70
2
3
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27.1 Electric Current
27.2 Resistance
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Current and Resistance

ANSWERS TO QUESTIONS

Q27.1 Individual vehicles—cars, trucks and motorcycles—would
correspond to charge. The number of vehicles that pass a
certain point in a given time would correspond to the current.

Q27.2 Voltage is a measure of potential difference, not of current.
“Surge” implies a flow—and only charge, in coulombs, can flow
through a system. It would also be correct to say that the victim
carried a certain current, in amperes.

Q27.3 Geometry and resistivity. In turn, the resistivity of the material
depends on the temperature.

Q27.4 Resistance is a physical property of the conductor based on the
material of which it is made and its size and shape, including
the locations where current is put in and taken out. Resistivity
is a physical property only of the material of which the resistor
is made.

Q27.5 The radius of wire B is 3  times the radius of wire A, to make its cross–sectional area 3 times larger.

Q27.6 Not all conductors obey Ohm’s law at all times. For example, consider an experiment in which a
variable potential difference is applied across an incandescent light bulb, and the current is
measured. At very low voltages, the filament follows Ohm’s law nicely. But then long before the

filament begins to glow, the plot of 
∆V

I
 becomes non-linear, because the resistivity is temperature-

dependent.

Q27.7 A conductor is not in electrostatic equilibrium when it is carrying a current, duh! If charges are
placed on an isolated conductor, the electric fields established in the conductor by the charges will
cause the charges to move until they are in positions such that there is zero electric field throughout
the conductor. A conductor carrying a steady current is not an isolated conductor—its ends must be
connected to a source of emf, such as a battery. The battery maintains a potential difference across
the conductor and, therefore, an electric field in the conductor. The steady current is due to the
response of the electrons in the conductor due to this constant electric field.
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Q27.8 The bottom of the rods on the Jacob’s Ladder are close enough so that the supplied voltage is
sufficient to produce dielectric breakdown of the air. The initial spark at the bottom includes a tube
of ionized air molecules. Since this tube containing ions is warmer than the air around it, it is buoyed
up by the surrounding air and begins to rise. The ions themselves significantly decrease the
resistivity of the air. They significantly lower the dielectric strength of the air, marking longer sparks
possible. Internal resistance in the power supply will typically make its terminal voltage drop, so
that it cannot produce a spark across the bottom ends of the rods. A single “continuous” spark,
therefore will rise up, becoming longer and longer, until the potential difference is not large enough
to sustain dielectric breakdown of the air. Once the initial spark stops, another one will form at the
bottom, where again, the supplied potential difference is sufficient to break down the air.

Q27.9 The conductor does not follow Ohm’s law, and must have a resistivity that is current-dependent, or
more likely temperature-dependent.

Q27.10 A power supply would correspond to a water pump; a resistor corresponds to a pipe of a certain
diameter, and thus resistance to flow; charge corresponds to the water itself; potential difference
corresponds to difference in height between the ends of a pipe or the ports of a water pump.

Q27.11 The amplitude of atomic vibrations increases with temperature. Atoms can then scatter electrons
more efficiently.

Q27.12 In a metal, the conduction electrons are not strongly bound to individual ion cores. They can move
in response to an applied electric field to constitute an electric current. Each metal ion in the lattice
of a microcrystal exerts Coulomb forces on its neighbors. When one ion is vibrating rapidly, it can set
its neighbors into vibration. This process represents energy moving though the material by heat.

Q27.13 The resistance of copper increases with temperature, while the resistance of silicon decreases with
increasing temperature. The conduction electrons are scattered more by vibrating atoms when
copper heats up. Silicon’s charge carrier density increases as temperature increases and more atomic
electrons are promoted to become conduction electrons.

Q27.14 A current will continue to exist in a superconductor without voltage because there is no resistance
loss.

Q27.15 Superconductors have no resistance when they are below a certain critical temperature. For most
superconducting materials, this critical temperature is close to absolute zero. It requires expensive
refrigeration, often using liquid helium. Liquid nitrogen at 77 K is much less expensive. Recent
discoveries of materials that have higher critical temperatures suggest the possibility of developing
superconductors that do not require expensive cooling systems.

Q27.16 In a normal metal, suppose that we could proceed to a limit of zero resistance by lengthening the
average time between collisions. The classical model of conduction then suggests that a constant
applied voltage would cause constant acceleration of the free electrons, and a current steadily
increasing in time.

On the other hand, we can actually switch to zero resistance by substituting a
superconducting wire for the normal metal. In this case, the drift velocity of electrons is established
by vibrations of atoms in the crystal lattice; the maximum current is limited; and it becomes
impossible to establish a potential difference across the superconductor.

Q27.17 Because there are so many electrons in a conductor (approximately 1028  electrons m3 ) the average
velocity of charges is very slow. When you connect a wire to a potential difference, you establish an
electric field everywhere in the wire nearly instantaneously, to make electrons start drifting
everywhere all at once.
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Q27.18 Current moving through a wire is analogous to a longitudinal wave moving through the electrons of
the atoms. The wave speed depends on the speed at which the disturbance in the electric field can
be communicated between neighboring atoms, not on the drift velocities of the electrons
themselves. If you leave a direct-current light bulb on for a reasonably short time, it is likely that no
single electron will enter one end of the filament and leave at the other end.

Q27.19 More power is delivered to the resistor with the smaller resistance, since P =
∆V

R

2

.

Q27.20 The 25 W bulb has a higher resistance. The 100 W bulb carries more current.

Q27.21 One ampere–hour is 3 600 coulombs. The ampere–hour rating is the quantity of charge that the
battery can lift though its nominal potential difference.

Q27.22 Choose the voltage of the power supply you will use to drive the heater. Next calculate the required

resistance R as 
∆V 2

P
. Knowing the resistivity ρ of the material, choose a combination of wire length

and cross–sectional area to make 
A

RF
HG
I
KJ =
F
HG
I
KJρ . You will have to pay for less material if you make both

 and A smaller, but if you go too far the wire will have too little surface area to radiate away the
energy; then the resistor will melt.

SOLUTIONS TO PROBLEMS

Section 27.1 Electric Current

P27.1 I
Q
t

=
∆
∆

∆ ∆Q I t= = × = ×− −30 0 10 40 0 1 20 106 3. . . A  s  Ce ja f

N
Q
e

= =
×

×
= ×

−

−
1 20 10

1 60 10
7 50 10

3

19
15.

.
.

 C
 C electron

 electrons

P27.2 The molar mass of silver = 107 9.  g mole  and the volume V is

V = = × × = ×− − −area thickness  m  m  m2 3a fa f e je j700 10 0 133 10 9 31 104 3 6. . .

The mass of silver deposited is m VAg
3 3 kg m  m  kg= = × × = ×− −ρ 10 5 10 9 31 10 9 78 103 6 2. . .e je j .

And the number of silver atoms deposited is

N

I
V

R

t
Q
I

Ne
I

= ×
×F

HG
I
KJ
F
HG

I
KJ = ×

= = = =

= = =
× ×

= × =

−

−

9 78 10
6 02 10 1 000

5 45 10

12 0
6 67 6 67

5 45 10 1 60 10

6 67
1 31 10 3 64

2
23

23

23 19
4

.
.

.

.
. .

. .

.
. .

 kg
 atoms

107.9 g
 g

1 kg
 atoms

 V
1.80 

 A  C s

 C

 C s
 s  h

e j

e je j

∆
Ω

∆
∆
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P27.3 Q t Idt I e
t

ta f e j= = −z −

0
0 1τ τ

(a) Q I e Iτ τ τa f e j a f= − =−
0

1
01 0 632.

(b) Q I e I10 1 0 999 950
10

0τ τ τa f e j b g= − =− .

(c) Q I e I∞ = − =−∞a f e j0 01τ τ

P27.4 (a) Using 
k e
r

mv
r

e
2

2

2

= , we get: v
k e
mr
e= = ×

2
62 19 10.  m s .

(b) The time for the electron to revolve around the proton once is:

t
r

v
= =

×

×
= ×

−
−2 2 5 29 10

2 19 10
1 52 10

11

6
16π π .

.
.

 m

 m s
 s

e j
e j

.

The total charge flow in this time is 1 60 10 19. × −  C , so the current is

I =
×
×

= × =
−

−
−1 60 10

1 05 10 1 05
19

16
3.

. .
 C

1.52 10  s
 A  mA .

P27.5 The period of revolution for the sphere is T =
2π
ω

, and the average current represented by this

revolving charge is I
q
T

q
= =

ω
π2

.

P27.6 q t t= + +4 5 63

A = F
HG

I
KJ = × −2 00

1 00
2 00 10

2
4.

.
. cm

 m
100 cm

 m2 2e j

(a) I
dq
dt

t
t t

1 00 12 5 17 0
1.00

2

1.00
. . s  A

 s  s
a f e j= = + =

= =

(b) J = =
×

=−
I
A

17 0
2 00 10

85 04
.

.
.

 A
 m

 kA m2
2

P27.7 I
dq
dt

=

q dq Idt
t

dt

q

= = = F
HG

I
KJ

=
− F

HG
I
KJ −

L
NM

O
QP =

+
=

z z z 100
120

100
120 2

0
100

0 265

0

1 240

 A
s

 C  C
120

 C

 s

a fsin

cos cos .

π

π
π

π
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P27.8 (a) J
I
A

= =
×

=
−

5 00
99 5

3 2
.

.
 A

4.00 10  m
 kA m2

π e j

(b) J J2 1
1
4

= ; 
I

A
I

A2 1

1
4

=

A A1 2
1
4

=  so π π4 00 10
1
4

3 2
2
2. × =−e j r

r2
3 32 4 00 10 8 00 10 8 00= × = × =− −. . .e j  m  mm

P27.9 (a) J
I
A

= =
×

×
=

−

−

8 00 10

1 00 10
2 55

6

3 2
.

.
.

 A

 m
 A m2

π e j

(b) From J nevd= , we have n
J

evd
= =

× ×
= ×

−
−2 55

1 60 10 3 00 10
5 31 10

19 8
10 3.

. .
.

 A m

 C  m s
 m

2

e je j
.

(c) From I
Q
t

=
∆
∆

, we have ∆
∆

t
Q
I

N e
I

= = =
× ×

×
= ×

−

−
A

 C

 A
 s

6 02 10 1 60 10

8 00 10
1 20 10

23 19

6
10

. .

.
.

e je j
.

(This is about 382 years!)

P27.10 (a) The speed of each deuteron is given by K mv=
1
2

2

2 00 10 1 60 10
1
2

2 1 67 106 19 27 2. . .× × = × ×− −e je j e j J  kg v  and v = ×1 38 107.  m s .

The time between deuterons passing a stationary point is t in I
q
t

=

10 0 10 1 60 106 19. .× = ×− − C s  C t  or t = × −1 60 10 14.  s .

So the distance between them is vt = × × = ×− −1 38 10 1 60 10 2 21 107 14 7. . . m s  s  me je j .

(b) One nucleus will put its nearest neighbor at potential

V
k q
r
e= =

× ⋅ ×

×
= ×

−

−
−

8 99 10 1 60 10

2 21 10
6 49 10

9 19

7
3

. .

.
.

 N m C  C

 m
 V

2 2e je j
.

This is very small compared to the 2 MV accelerating potential, so repulsion within the
beam is a small effect.
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P27.11 We use I nqAvd= n is the number of charge carriers per unit volume, and is identical to the number
of atoms per unit volume. We assume a contribution of 1 free electron per atom in the relationship
above. For aluminum, which has a molar mass of 27, we know that Avogadro’s number of atoms,
NA , has a mass of 27.0 g. Thus, the mass per atom is

27 0 27 0
6 02 10

4 49 1023
23. .

.
.

 g  g
 g atom

NA
=

×
= × − .

Thus, n = =
× −

density of aluminum
mass per atom

 g cm
 g atom

32 70
4 49 10 23

.
.

n = × = ×6 02 10 6 02 1022 28. . atoms cm  atoms m3 3 .

Therefore, v
I

nqAd = =
× × ×

= ×
− − −

−5 00

6 02 10 1 60 10 4 00 10
1 30 10

28 3 19 6
4.

. . .
.

 A

 m  C  m
 m s

2e je je j
or, vd = 0 130.  mm s .

Section 27.2 Resistance

*P27.12 J E
E

= = =
× ⋅

⋅F
HG

I
KJ = ×−σ

ρ
0 740

2 44 10
1

3 03 108
7.

.
.

 V m
 m

 A
1 V

 A m2

Ω
Ω

P27.13 I
V

R
= = = =
∆

Ω
120

0 500 500
 V

240 
 A  mA.

P27.14 (a) Applying its definition, we find the resistance of the rod,

R
V
I

= =
×

=−
∆

Ω Ω
15 0

10
3 7503

.  V
4.00  A

 = 3.75 k .

(b) The length of the rod is determined from the definition of resistivity: R
A

=
ρ

. Solving for 

and substituting numerical values for R, A, and the value of ρ given for carbon in Table 27.1,
we obtain

= =
× ×

× ⋅
=

−

−

RA
ρ

3 75 10 5 00 10

3 50 10
536

3 6

5

. .

.

  m

 m
 m

2Ω

Ω

e je j
e j

.

P27.15 ∆V IR=

and R
A

=
ρ

: A =
F
HG

I
KJ = × −0 600

1 00
6 00 102

2
7.

.
. mm

 m
1 000 mm

 m2a f

∆V
I
A

=
ρ

: I
VA

= =
×

× ⋅

−

−

∆

Ωρ

0 900 6 00 10

5 60 10 1 50

7

8

. .

. .

 V  m

 m  m

2a fe j
e ja f

I = 6 43.  A
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P27.16 J
I
r

E= = = =
π

σ
π

σ2 2
3 00

120
.  A

0.012 0 m
 N C

b g b g

σ = ⋅ −55 3 1. Ω ma f ρ
σ

= = ⋅
1

0 018 1.  mΩ

P27.17 (a) Given M V Ad d= =ρ ρ where ρd ≡  mass density,

we obtain: A
M

d
=
ρ

. Taking ρ r ≡  resistivity, R
A M M
r r

d

r d= = =
ρ ρ

ρ
ρ ρ 2

.

Thus, = =
×

× ×

−

−

MR

r dρ ρ

1 00 10 0 500

1 70 10 8 92 10

3

8 3

. .

. .

e ja f
e je j

= 1 82.  m .

(b) V
M

d
=
ρ

, or π
ρ

r
M

d

2 = .

Thus, r
M

d
= =

×

×

−

π ρ π
1 00 10

8 92 10 1 82

3

3

.

. .e ja f
r = × −1 40 10 4.  m .

The diameter is twice this distance: diameter = 280 mµ .

*P27.18 The volume of the gram of gold is given by ρ =
m
V

V
m

A

A

R
A

= =
×

= × = ×

= ×

= =
× ⋅ ×

×
= ×

−
−

−

−

−

ρ

ρ

10
19 3 10

5 18 10 2 40 10

2 16 10

2 44 10

2 16 10
2 71 10

3

3
8 3

11

8

11
6

 kg
 kg m

 m  m

 m

 m 2.4 10  m

 m
 

3
3

2

3

2

.
. .

.

.

.
.

e j

e jΩ
Ω

P27.19 (a) Suppose the rubber is 10 cm long and 1 mm in diameter.

R
A d

= =
⋅

=
−

−

ρ ρ
π π

4 4 10 10

10
102

13 1

3 2
18~ ~

 m  m

 m
 

Ω
Ω

e je j
e j

(b) R
d

=
× ⋅

×

− −

−

−4 4 1 7 10 10

2 10
102

8 3

2 2
7ρ

π π
~

.
~

 m  m

 m
 

Ω
Ω

e je j
e j

(c) I
V

R
= −∆

Ω
~ ~

10
10

2
16 V

10  
 A18

I ~ ~
10

10
2

7
9 V

10  
 A− Ω
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P27.20 The distance between opposite faces of the cube is =
F
HG

I
KJ =

90 0
2 05

1 3
.

.
 g

10.5 g cm
 cm3 .

(a) R
A

= = = =
× ⋅
×

= × =
−

−
−ρ ρ ρ

2

8

2
71 59 10

10
7 77 10 777

.
.

 m
2.05  m

  n
Ω

Ω Ω

(b) I
V

R
= =

×
×

=
−

−
∆

Ω
1 00 10
7 77 10

12 9
5

7
.
.

.
 V
 

 A

n

n

= ×

= ×
×F

HG
I
KJ = ×

10 5
107 87

6 02 10

5 86 10
1 00 10

1 00
5 86 10

23

22
6

28

.
.

.

.
.

.
.

 g cm
 g mol

 electrons mol

 electrons cm
 cm

 m
m

3

3
3

3
3

e j

e j

I nqvA=  and v
I

nqA
= =

× ×
=

−

12 9

5 86 10 1 60 10 0 020 5
3 28

28 19 2

.

. . .
.

 C s

m  C  m
 m s

3e je jb g
µ

P27.21 Originally, R
A

=
ρ

. Finally, R
A A

R
f = = =

ρ ρ3

3 9 9
b g

.

P27.22
ρ

π

ρ

π
Al

Al

Cu

Cur rb g b g2 2=

r
r

Al

Cu

Al

Cu
= =

×
×

=
−

−
ρ
ρ

2 82 10
1 70 10

1 29
8

8
.
.

.

P27.23 J E= σ so σ = =
×

= × ⋅
−

− −J
E

6 00 10
100

6 00 10
13

15 1.
.

 A m
 V m

 m
2

Ωa f

P27.24 R
A A d

= + =
+ρ ρ ρ ρ1 1

1

2 2

2

1 1 2 2
2

R =
× ⋅ + × ⋅

×
=

− −

−

4 00 10 0 250 6 00 10 0 400

3 00 10
378

3 3

3 2

. . . .

.

 m  m  m  m

 m
 

Ω Ω
Ω

e ja f e ja f
e j

Section 27.3 A Model for Electrical Conduction

P27.25 ρ
τ

=
m

nq2

so τ
ρ

= =
×

× × ×
= ×

−

− −
−m

nq2

31

8 28 19
14

9 11 10

1 70 10 8 49 10 1 60 10
2 47 10

.

. . .
.

e j
e je je j

 s

v
qE
md = τ

so 7 84 10
1 60 10 2 47 10

9 11 10
4

19 14

31.
. .

.
× =

× ×

×
−

− −

−

e j e jE

Therefore, E = 0 181.  V m .
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P27.26 (a) n is unaffected

(b) J
I
A

I= ∝

so it doubles .

(c) J nevd=

so vd  doubles .

(d) τ
σ

=
m
nq2  is unchanged as long as σ does not change due to a temperature change in the

conductor.

P27.27 From Equation 27.17,

τ
ρ

τ

= =
×

× × ×
= ×

= = × × = × =

−

− −

−

− −

m
nq

v

e
2

31

19 2 8

14

5 14 8

9 11 10

1 60 10 1 70 10
2 47 10

8 60 10 2 47 10 2 12 10 21 2

.

. .
.

. . . .

8.49 10
 s

 m s  s  m  nm

28e je j e j
e je j

Section 27.4 Resistance and Temperature

P27.28 At the low temperature TC  we write R
V

I
R T TC

C
C= = + −

∆
0 01 αb g  where T0 20 0= °. C .

At the high temperature Th , R
V

I
V

R T Th
h

h= = = + −
∆ ∆

1
10 0 A

αb g .

Then
∆

∆
V

V IC

a f a f
a f

e ja f
e ja f

1 00 1 3 90 10 38 0

1 3 90 10 108

3

3

. . .

.

 A
=

+ ×

+ × −

−

−

and IC = F
HG
I
KJ =1 00

1 15
0 579

1 98.
.
.

. A  Aa f .

P27.29 R R T= +0 1 α ∆a f  gives 140 19 0 1 4 50 10 3  CΩ Ω ∆= + × °−. .a f e j T .

Solving, ∆T T= × ° = − °1 42 10 20 03. . C C .

And, the final temperature is T = × °1 44 103.  C .
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P27.30 R R R R T T R T Tc n c c n n= + = + − + + −1 10 0α αb g b g

0 0 0= − + −R T T R T Tc c n nα αb g b g  so R Rc n
n

c
= −

α
α

R R R

R R R R

R

n
n

c
n

n
n

c
c

c

n

n

= − +

= −
F
HG

I
KJ = −

F
HG

I
KJ

= −
× °

− × °

L

N
MM

O

Q
PP

− −

−

−

−

α
α

α
α

α
α

1 1

10 0 1
0 400 10

0 500 10

1 1

3

3

1

.
.

.
 k

C

C
Ω
e j
e j

Rn = 5 56.  kΩ and Rc = 4 44.  kΩ

P27.31 (a) ρ ρ α= + − = × ⋅ + × ° = × ⋅− − −
0 0

8 3 81 2 82 10 1 3 90 10 30 0 3 15 10T Tb g e j a f. . . . m  mΩ Ω

(b) J
E

= =
× ⋅

= ×−ρ
0 200

3 15 10
6 35 108

6.
.

.
 V m

 m
 A m2

Ω

(c) I JA J
d

= =
F
HG
I
KJ = ×

×L

N
MMM

O

Q
PPP
=

−
π π2

6
4 2

4
6 35 10

1 00 10

4
49 9.

.
. A m

 m
 mA2e j e j

(d) n =
×

×
= ×

6 02 10

26 98
6 02 10

23
28.

.
.

 electrons

 g 2.70 10  g m
 electrons m

6 3
3

e j

v
J

ned = =
×

× ×
=

−

6 35 10

6 02 10 1 60 10
659

6

28 19

.

. .

 A m

 electrons m  C
 m s

2

3

e j
e je j

µ

(e) ∆V E= = =0 200 2 00 0 400. . . V m  m  Vb ga f

P27.32 For aluminum,

α E = × °− −3 90 10 3 1.  C (Table 27.1)

α = × °− −24 0 10 6 1.  C (Table 19.1)

R
A

T T

A T
R

T
T

E E= =
+ +

+
=

+

+
=

F
HG

I
KJ =

ρ ρ α α

α

α
α

0
2 0

1 1

1

1
1

1 234
1 39

1 002 4
1 71

∆ ∆

∆

∆

∆
Ω Ω

b g a f
a f

b g
a f a f.

.
.

.  
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P27.33 R R T= +0 1 α

R R R T
R R

R
T

− =
−

= = × =−

0 0

0

0

35 00 10 25 0 0 125

α

α

∆

∆ . . .e j

P27.34 Assuming linear change of resistance with temperature, R R T= +0 1 α∆a f
R77

31 00 1 3 92 10 216 0 153 K  C  = + × − ° =−. . .Ω Ωa f e ja f .

P27.35 ρ ρ α= +0 1 ∆Ta f  or ∆TW
W

W

W
= −
F
HG

I
KJ

1
1

0α
ρ
ρ

Require that ρ ρW = 4 0Cu
 so that ∆TW =

× °

F
HG

I
KJ

×

×
−

F
H
GG

I
K
JJ = °−

−

−
1

4 50 10

4 1 70 10

5 60 10
1 47 63

8

8.

.

.
.

C
C

e j
.

Therefore, T TW = ° + = °47 6 67 60. .C C .

Section 27.5 Superconductors

Problem 48 in Chapter 43 can be assigned with this section.

Section 27.6 Electric Power

P27.36 I
V

= = =
P
∆

600
5 00

 W
120 V

 A.

and R
V
I

= = =
∆

Ω
120

24 0
 V

5.00 A
 . .

*P27.37 P = = × × =−I V∆ 500 10 15 10 7 506 3 A  V  We j .

P27.38 P = = ×0 800 1 500 746 8 95 105. . hp  W hp  Wb gb g
P = I V∆ 8 95 10 2 0005. × = Ib g I = 448 A

P27.39 The heat that must be added to the water is

Q mc T= = ° ° = ×∆ 1 50 4 186 40 0 2 51 105. . . kg  J kg C C  Jb gb ga f .

Thus, the power supplied by the heater is

P = = =
×

=
W

t
Q

t∆ ∆
2 51 10

419
5.  J

600 s
 W

and the resistance is R
V

= = =
∆

Ω
a f a f2 2110

419
28 9

P
 V
 W

 . .
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*P27.40 The battery takes in energy by electric transmission

P∆ ∆ ∆t V I t= = × F
HG

I
KJ =

−a f a f e j2 3 13 5 10 4 2
3 600

4693. . . J C  C s  h
 s

1 h
 J .

It puts out energy by electric transmission

∆ ∆V I ta f a f e j= × F
HG

I
KJ =

−1 6 18 10 2 4
3 600

2493. . J C  C s  h
 s

1 h
 J .

(a) efficiency = = =
useful output

total input
 J

469 J
249

0 530.

(b) The only place for the missing energy to go is into internal energy:

469 249

221

 J  J

 J
int

int

= +

=

∆

∆

E

E

(c) We imagine toasting the battery over a fire with 221 J of heat input:

Q mc T

T
Q
mc

=

= =
°

= °

∆

∆
221

15 1
 J kg C

0.015 kg 975 J
C.

P27.41
P
P0

2

0
2

0

2 2140
120

1 361= =
F
HG
I
KJ = FHG

I
KJ =

∆

∆

∆
∆

V R

V R

V
V

a f
b g

.

∆% . .=
−F
HG
I
KJ = −

F
HG
I
KJ = − =

P P
P

P
P

0

0 0
100% 1 100% 1 361 1 100% 36 1%a f a f a f

P27.42 P = = =I V
V
R

∆
∆a f a f

2

500 W

R = =
110
500

24 2
2 V

 W
 

a f
a f . Ω

(a) R
A

=
ρ

so = =
×

× ⋅
=

−

−
RA
ρ

π24 2 2 50 10

1 50 10
3 17

4 2

6

. .

.
.

  m

 m
 m

Ω

Ω

a f e j

(b) R R T= + = + × =−
0

31 24 2 1 0 400 10 1 180 35 6α∆ Ω Ω. . .  e jb g

P = = =
∆V

R
a f a f2 2110

35 6
340

.
 W
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P27.43 R
A

= =
× ⋅

×
=

−

−

ρ

π

1 50 10 25 0
298

6

3 2

. . m  m

0.200 10  m
 

Ω
Ω

e j
e j

∆ ΩV IR= = =0 500 298 149.  A   Va fa f

(a) E
V

= = =
∆ 149

5 97
 V

25.0 m
 V m.

(b) P = = =∆V Ia f a fa f149 0 500 74 6 V  A  W. .

(c) R R T T= + − = + × ° ° =−
0 0

31 298 0 400 10 320 337αb g e j 1 C C  Ω Ω.

I
V

R

V I

= = =

= = =

∆
Ω

∆

149
337

0 443

149 0 443 66 1

 V
 

 A

 V  A  W

a f
a f

a f a fa f
.

. .P

P27.44 (a) ∆ ∆ ∆U q V It V= = = ⋅
⋅

F
HG
I
KJ ⋅
F
HG

I
KJ

⋅F
HG

I
KJ = ⋅ =a f a f a fa f55 0 12 0

1 1 1
660 0 660. . . A h  V

 C
1 A s

 J
1 V C

 W s
1 J

 W h  kWh

(b) Cost = F
HG

I
KJ =0 660

060 0
1

3 96¢.
$0.

. kWh
 kWh

P27.45 P = I V∆a f ∆V IR=

P = = =
∆V

R
a f a f2 210 0

120
0 833

.
.  W

*P27.46 (a) The resistance of 1 m of 12-gauge copper wire is

R
A d d

= = = =
× ⋅

×
= ×

−

−

−ρ ρ

π

ρ
π π2

4 4 1 7 10 1

10
5 14 102 2

8

2 2
3

b g
e j
e j
.

.
 m  m

0.205 3  m
 

Ω
Ω .

The rate of internal energy production is P = = = × =−I V I R∆ Ω2 2 320 5 14 10 2 05 A   Wa f . . .

(b) PAl
Al= =I R

I
d

2
2

2
4ρ
π

P
P

Al

Cu

Al

Cu
=
ρ
ρ

PAl
 m

1.7  m
 W  W=

× ⋅
× ⋅

=
−

−
2 82 10

10
2 05 3 41

8

8
.

. .
Ω
Ω

Aluminum of the same diameter will get hotter than copper.
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*P27.47 The energy taken in by electric transmission for the fluorescent lamp is

P∆t = F
HG

I
KJ = ×

= × F
HG
I
KJ
F
HG
I
KJ

⋅F
HG
I
KJ
F
HG

I
KJ =

11 100
3 600

3 96 10

3 96 10
08

088

6

6

 J s  h
 s

1 h
 J

cost  J
kWh

k
1 000

W s
J

h
3 600 s

a f .

.
$0.

$0.

For the incandescent bulb,

P∆t = F
HG

I
KJ = ×

= ×
×

F
HG

I
KJ =

= − =

40 100
3 600

1 44 10

1 44 10
08

32

32 088 232

7

7

 W  h
 s

1 h
 J

cost  J
3.6 10  J

saving

6

a f .

.
$0.

$0.

$0. $0. $0.

P27.48 The total clock power is

270 10 2 50
3 600

2 43 106 12× F
HG

I
KJ
F
HG

I
KJ = × clocks  

J s
clock

 s
1 h

 J he j . . .

From e
W
Q

= out

in
, the power input to the generating plants must be:

Q
t

W t
e

in out  J h
 J h

∆
∆

= =
×

= ×
2 43 10

0 250
9 72 10

12
12.

.
.

and the rate of coal consumption is

Rate = ×
×

F
HG

I
KJ = × =9 72 10

1 00
2 95 10 29512 5.

.
. J h

 kg coal
33.0 10  J

 kg coal h  metric ton h6e j .

P27.49 P = = =I V∆a f a fa f1 70 110 187.  A  V  W

Energy used in a 24-hour day = =0 187 24 0 4 49. . . kW  h  kWha fa f

∴ =
F
HG

I
KJ = =cost  kWh

$0.060 0
kWh

4 49 269 26 9¢. $0. .

P27.50 P = = =I V∆ 2 120 240.00 A  V  Wa fa f
∆

∆
∆

E

t
E

int

int

 kg  J kg C C  kJ

 J
 W

 s

= ⋅° ° =

= =
×

=

0 500 4 186 77 0 161

1 61 10
240

672
5

. .

.

b gb ga f

P
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P27.51 At operating temperature,

(a) P = = =I V∆ 1 53 120 184.  A  V  Wa fa f

(b) Use the change in resistance to find the final operating temperature of the toaster.

R R T= +0 1 α∆a f 120
1 53

120
1 80

1 0 400 10 3

. .
.= + × −e j∆T

∆T = °441 C T = ° + ° = °20 0 441 461. C C C

*P27.52 You pay the electric company for energy transferred in the amount E t= P ∆

(a) P ∆t = F
HG

I
KJ
F
HG

I
KJ ⋅
F
HG

I
KJ =40 2

86 400 1
48 4 W  weeks

7 d
1 week

 s
1 d

 J
1 W s

 MJa f .

P

P

∆

∆

t

t

= F
HG

I
KJ
F
HG
I
KJ
F
HG
I
KJ =

= F
HG

I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ =

40 2
24

1 000
13 4

40 2
24

1 000
0 12

61

 W  weeks
7 d

1 week
 h

1 d
k

 kWh

 W  weeks
7 d

1 week
 h

1 d
k  $

kWh

a f

a f

.

.
$1.

(b) P ∆t = F
HG

I
KJ
F
HG
I
KJ
F
HG
I
KJ = =970 3

1 000
0 12

005 82 0 582¢ W  min
1 h

60 min
k  $

kWh
a f .

$0. .

(c) P ∆t = F
HG

I
KJ
F
HG
I
KJ
F
HG
I
KJ =5 200 40 min

1 000
0 12

416 W
1 h

60 min
k  $

kWh
a f .

$0.

P27.53 Consider a 400-W blow dryer used for ten minutes daily for a year. The energy transferred to the
dryer is

P ∆t = ≈ ×
×

F
HG

I
KJ ≈400 600 365 9 10

1
207 J s  s d  d  J

 kWh
3.6 10  J

 kWh6b gb ga f .

We suppose that electrically transmitted energy costs on the order of ten cents per kilowatt-hour.
Then the cost of using the dryer for a year is on the order of

Cost ≅ =20 10 kWh kWha fb g$0. $2 ~ $1 .
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Additional Problems

P27.54 (a) I
V

R
=
∆

so P = =I V
V
R

∆
∆a f2

R
V

= = =
∆

Ω
a f a f2 2120

25 0
576 

P
 V
 W.

and R
V

= = =
∆

Ω
a f a f2 2120

100
144

P
 V
 W

 

(b) I
V

Q
t t

= = = = =
P
∆ ∆ ∆

25 0
0 208

1 00.
.

. W
120 V

 A
 C

∆t = =
1 00

4 80
.

.
 C

0.208 A
 s

The bulb takes in charge at high potential and puts out the same amount of charge at low
potential.

(c) P = = =25 0
1 00

.
.

 W
 J∆

∆ ∆
U
t t

∆t = =
1 00

0 040 0
.

.
 J

25.0 W
 s

The bulb takes in energy by electrical transmission and puts out the same amount of energy
by heat and light.

(d) ∆ ∆U t= = = ×P 25 0 86 400 30 0 64 8 108. . . J s  s d  d  Jb gb ga f
The electric company sells energy .

Cost  J
$0.070 0

kWh
k

1 000
W s

J
h

3 600 s

Cost per joule
kWh

kWh
3.60 10  J

J6

= ×
F
HG

I
KJ
F
HG
I
KJ

⋅F
HG
I
KJ
F
HG

I
KJ =

=
×

F
HG

I
KJ = × −

64 8 10 26

070 0
94 10

6

8

. $1.

$0.
$1.

*P27.55 The original stored energy is U Q V
Q
Ci i= =

1
2

1
2

2

∆ .

(a) When the switch is closed, charge Q distributes itself over the plates of C and 3C in parallel,

presenting equivalent capacitance 4C. Then the final potential difference is ∆V
Q
Cf = 4

for

both.

(b) The smaller capacitor then carries charge C V
Q
C

C
Q

f∆ = =
4 4

. The larger capacitor carries

charge 3
4

3
4

C
Q
C

Q
= .

(c) The smaller capacitor stores final energy 
1
2

1
2 4 32

2 2 2

C V C
Q
C

Q
Cf∆d i = F

HG
I
KJ = . The larger

capacitor possesses energy 
1
2

3
4

3
32

2 2

C
Q
C

Q
C

F
HG
I
KJ = .

(d) The total final energy is 
Q

C
Q

C
Q

C

2 2 2

32
3
32 8

+ = . The loss of potential energy is the energy

appearing as internal energy in the resistor: 
Q

C
Q

C
E

2 2

2 8
= + ∆ int ∆E

Q
Cint =

3
8

2

.
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P27.56 We find the drift velocity from I nqv A nqv rd d= = π 2

v
I

nq r

v
x
t

t
x
v

d = =
× ×

= ×

= = =
×
×

= × =

− − −

−

−

π π
2 28 3 19 2 2

4

3

4
8

1 000

8 49 10 1 60 10 10
2 34 10

200 10
10

8 54 10 27.0 yr

 A

 m  C  m
 m s

 m
2.34  m s

 s

. .
.

.

e j e j

P27.57 We begin with the differential equation α
ρ

ρ
=

1 d
dT

.

(a) Separating variables,
d

dT
T

Tρ
ρ

α
ρ

ρ

0 0

z z=
ln

ρ
ρ

α
0

0
F
HG
I
KJ = −T Tb g  and ρ ρ α= −

0
0e T Tb g .

(b) From the series expansion e xx ≅ +1 , x << 1a f ,
ρ ρ α≅ + −0 01 T Tb g .

P27.58 The resistance of one wire is 
0 500

100 50 0
.

.
 

mi
 mi  

Ω
ΩF

HG
I
KJ =a f .

The whole wire is at nominal 700 kV away from ground potential, but the potential difference
between its two ends is

IR = =1 000 50 0 50 0 A   kVb ga f. .Ω .

Then it radiates as heat power P = = × =∆V Ia f e jb g50 0 10 1 000 50 03. . V  A  MW .

P27.59 ρ = =
RA V

I
A∆a f  (m)  ( )  ( m)

0.540

1.028

1.543

10.4

21.1

31.8

R Ω Ωρ ⋅
×

×

×

−

−

−

1 41 10

1 50 10

1 50 10

6

6

6

.

.

.

ρ = × ⋅−1 47 10 6.  mΩ  (in agreement with tabulated value of 1 50 10 6. × ⋅−  mΩ  in Table 27.1)

P27.60 2 wires → = 100 m

R = =
0 108

100 0 036 0
.

.
 

300 m
 m  

Ω
Ωa f

(a) ∆ ∆V V IRa f a f a fb ghome line  V= − = − =120 110 0 036 0 116.

(b) P = = =I V∆a f a fa f110 116 12 8 A  V  kW.

(c) Pwires  A   W= = =I R2 2110 0 036 0 436a f b g. Ω
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P27.61 (a) E i i= − = −
−

−
=

dV
dx

.
.

.
0 4 00

0 500 0
8 00

a f
a f

 V
 m

 V m

(b) R
A

= =
× ⋅

×
=

−

−

ρ

π

4 00 10 0 500

1 00 10
0 637

8

4 2

. .

.
.

 m  m

 m
 

Ω
Ω

e ja f
e j

(c) I
V

R
= = =
∆

Ω
4 00

6 28
.

.
 V

0.637 
 A

(d) J i i i= =
×

= × =
−

I
A

.

.
.

6 28

1 00 10
2 00 10 200

4 2
8 A

 m
 A m  MA m2 2

π e j

(e) ρJ i i E= × ⋅ × = =−4 00 10 2 00 10 8 008 8. . . m  A m  V m2Ωe je j

P27.62 (a) E i i= − =
dV x

dx
V
L

a f

(b) R
A

L
d

= =
ρ ρ

π
4

2

(c) I
V

R
V d

L
= =
∆ π

ρ

2

4

(d) J i i= =
I
A

V
Lρ

(e) ρ J i E= =
V
L

P27.63 R R T T= + −0 01 αb g so T T
R
R

T
I
I

= + −
L
NM
O
QP
= + −LNM

O
QP0

0
0

01
1

1
1

α α
.

In this case, I
I

= 0

10
, so T T= + = °+

°
= °0

1
9 20

9
0 004 50

2 020
α
a f

. C
C .

P27.64 R
V
I I I

= = =
−

∆ 12 0 6 00
3 00

. .
.a f  thus 12 0 36 0 6 00. . .I I− =  and I = 6 00.  A .

Therefore, R = =
12 0

2 00
.

.
 V

6.00 A
 Ω .
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P27.65 (a) P = I V∆

so I
V

= =
×

=
P
∆

8 00 10
667

3.  W
12.0 V

 A .

(b) ∆
∆

t
U

= =
×
×

= ×
P

2 00 10
2 50 10

7
3.

.
 J

8.00 10  W
 s3

and ∆ ∆x v t= = × =20 0 2 50 10 50 03. . . m s  s  kmb ge j .

P27.66 (a) We begin with R
A

T T T T

A T T
= =

+ − + ′ −

+ ′ −
ρ ρ α α

α
0 0 0 0

0 0

1 1

1 2

b g b g
b g ,

which reduces to R
R T T T T

T T
=

+ − + ′ −

+ ′ −
0 0 0

0

1 1

1 2

α α

α

b g b g
b g .

(b) For copper: ρ0
81 70 10= × ⋅−.  mΩ , α = × °− −3 90 10 3 1.  C , and ′ = × °− −α 17 0 10 6 1.  C

R
A0
0 0

0

8

3 2

1 70 10 2 00

0 100 10
1 08= =

×

×
=

−

−

ρ

π

. .

.
.

e ja f
e j

 Ω .

The simple formula for R gives:

R = + × ° ° − ° =− −1 08 1 3 90 10 100 20 0 1 4203 1. . . .  C C C  Ω Ωa f e ja f
while the more complicated formula gives:

R =
+ × ° ° + × ° °

+ × ° °
=

− − − −

− −

1 08 1 3 90 10 80 0 1 17 0 10 80 0

1 2 17 0 10 80 0
1 418

3 1 6 1

6 1

. . . . .

. .
.

  C C  C C

 C C
 

Ω
Ω

a f e ja f e ja f
e ja f

.

P27.67 Let α be the temperature coefficient at 20.0°C, and ′α  be the temperature coefficient at 0 °C. Then
ρ ρ α= + − °0 1 20 0T . Ca f , and ρ ρ α= ′ + ′ − °1 0T Ca f  must both give the correct resistivity at any

temperature T. That is, we must have:

ρ α ρ α0 1 20 0 1 0+ − ° = ′ + ′ − °T T. C Ca f a f . (1)

Setting T = 0  in equation (1) yields: ′ = − °ρ ρ α0 1 20 0. Ca f ,

and setting T = °20 0. C  in equation (1) gives: ρ ρ α0 1 20 0= ′ + ′ °. Ca f .

Put ′ρ  from the first of these results into the second to obtain:

ρ ρ α α0 0 1 20 0 1 20 0= − ° + ′ °. .C Ca f a f .

continued on next page
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Therefore 1 20 0
1

1 20 0
+ ′ ° =

− °
α

α
.

.
C

C
a f a f

which simplifies to ′ =
− °

α
α

α1 20 0. Ca f .

From this, the temperature coefficient, based on a reference temperature of 0°C, may be computed
for any material. For example, using this, Table 27.1 becomes at 0 C° :

Material Temp Coefficients at 0°C
Silver 4 1 10 3. × °− C
Copper 4 2 10 3. × °− C
Gold 3 6 10 3. × °− C
Aluminum 4 2 10 3. × °− C
Tungsten 4 9 10 3. × °− C
Iron 5 6 10 3. × °− C
Platinum 4 25 10 3. × °− C
Lead 4 2 10 3. × °− C
Nichrome 0 4 10 3. × °− C
Carbon − × °−0 5 10 3. C
Germanium − × °−24 10 3 C
Silicon − × °−30 10 3 C

P27.68 (a) A thin cylindrical shell of radius r, thickness dr, and length L contributes resistance

dR
d
A

dr
r L L

dr
r

= = =
F
HG
I
KJ

ρ ρ
π

ρ
π2 2b g .

The resistance of the whole annulus is the series summation of the contributions of the thin
shells:

R
L

dr
r L

r
rr

r
b

aa

b

= =
F
HG
I
KJzρ

π
ρ
π2 2

ln .

(b) In this equation 
∆V

I L
r
r

b

a
=

F
HG
I
KJ

ρ
π2

ln

we solve for ρ
π

=
2 L V

I r rb a

∆
lnb g .
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P27.69 Each speaker receives 60.0 W of power. Using P = I R2 , we then have

I
R

= = =
P 60 0

3 87
.

.
 W

4.00 
 A

Ω
.

The system is not adequately protected  since the fuse should be set to melt at 3.87 A,  or less .

P27.70 ∆V E= − ⋅  or dV E dx= − ⋅

∆V IR E

I
dq
dt

E
R

A
E

A
E A

dV
dx

A
dV
dx

= − = − ⋅

= =
⋅

= ⋅ = = − =
ρ ρ

σ σ

Current flows in the direction of decreasing voltage. Energy flows as heat in the direction of
decreasing temperature.

P27.71 R
dx
A

dx
wy

= =z zρ ρ
 where y y

y y
L

x= +
−

1
2 1

R
w

dx
y y y L x

L
w y y

y
y y

L
x

R
L

w y y
y
y

L L

=
+ −

=
−

+
−L

NM
O
QP

=
−

F
HG
I
KJ

zρ ρ

ρ

1 2 10 2 1
1

2 1

0

2 1

2

1

b g b g

b g

ln

ln
FIG. P27.71

P27.72 From the geometry of the longitudinal section of the resistor shown in the figure,
we see that

b r
y

b a
h

−
=

−a f a f
.

From this, the radius at a distance y from the base is r a b
y
h

b= − +a f .

For a disk-shaped element of volume dR
dy
r

=
ρ
π 2 : R

dy

a b y h b

h

=
− +
zρπ a fb g 2
0

.

Using the integral formula 
du

au b a au b+
= −

+z a f a f2
1

, R
h
ab

=
ρ
π

.

FIG. P27.72

*P27.73 (a) The resistance of the dielectric block is R
A

d
A

= =
ρ

σ
.

The capacitance of the capacitor is C
A

d
=

∈κ 0 .

Then RC
d
A

A
d

=
∈

=
∈

σ
κ κ

σ
0 0  is a characteristic of the material only.

(b) R
C C

=
∈

=
∈

=
× ⋅ ×

× ⋅
= ×

−

−
κ
σ

ρκ0 0
16 12

9
1575 10 8 85 10

14 10
1 79 10

 m 3.78  C

 F N m
 

2

2

Ω
Ω

a f .
.
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P27.74 I I
e V
k TB

=
F
HG
I
KJ −

L
NMM

O
QPP0 1exp

∆
 and R

V
I

=
∆

with I0
91 00 10= × −.  A , e = × −1 60 10 19.  C , and kB = × −1 38 10 23.  J K .

The following includes a partial table of calculated values and a graph for each of the specified
temperatures.

(i) For T = 280 K :

∆ ΩV I RV Aa f a f a f
0 400 0 015 6 25 6
0 440 0 081 8 5 38
0 480 0 429 1 12
0 520 2 25 0 232
0 560 11 8 0 047 6
0 600 61 6 0 009 7

. . .

. . .

. . .

. . .

. . .

. . .

FIG. P27.74(i)

(ii) For T = 300 K :

∆ ΩV I RV Aa f a f a f
0 400 0 005 77 3
0 440 0 024 18 1
0 480 0 114 4 22
0 520 0 534 0 973
0 560 2 51 0 223
0 600 11 8 0 051

. . .

. . .

. . .

. . .

. . .

. . .

FIG. P27.74(ii)

(iii) For T = 320 K :

∆ ΩV I RV Aa f a f a f
0 400 0 002 0 203
0 440 0 008 4 52 5
0 480 0 035 7 13 4
0 520 0 152 3 42
0 560 0 648 0 864
0 600 2 76 0 217

. .

. . .

. . .

. . .

. . .

. . .

FIG. P27.74(iii)
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*P27.75 (a) Think of the device as two capacitors in parallel. The one on the left has κ 1 1= ,

A x1 2
= +FHG

I
KJ . The equivalent capacitance is

κ κ κ
κ κ1 0 1 2 0 2 0 0 0

2 2 2
2 2

∈
+

∈
=
∈

+FHG
I
KJ +

∈
−FHG
I
KJ =

∈
+ + −

A
d

A
d d

x
d

x
d

x xa f .

(b) The charge on the capacitor is Q C V= ∆

Q
V

d
x x=

∈
+ + −0

2
2 2

∆
κ κa f.

The current is

I
dQ
dt

dQ
dx

dx
dt

V
d

v
Vv

d
= = =

∈
+ + − = −

∈
−0 0

2
0 2 0 2 1

∆ ∆
κ κa f a f.

The negative value indicates that the current drains charge from the capacitor. Positive

current is clockwise 
∈

−0 1
∆Vv
d

κa f .

ANSWERS TO EVEN PROBLEMS

P27.2 3 64.  h P27.32 1 71.  Ω

P27.4 (a) see the solution; (b) 1 05.  mA P27.34 0 153.  Ω

P27.6 (a) 17 0.  A ; (b) 85 0.  kA m2 P27.36 5 00.  A , 24 0.  Ω

P27.38 448 AP27.8 (a) 99 5.  kA m2 ; (b) 8 00.  mm

P27.40 (a) 0.530; (b) 221 J; (c) 15.1°CP27.10 (a) 221 nm ; (b) no; see the solution

P27.42 (a) 3 17.  m ; (b) 340 WP27.12 30 3.  MA m2

P27.44 (a) 0 660.  kWh ; (b) 3 96¢.P27.14 (a) 3.75 kΩ ; (b) 536 m

P27.46 (a) 2.05 W; (b) 3.41 W; noP27.16 0 018 1.  mΩ⋅

P27.48 295 metric ton hP27.18 2 71.  MΩ

P27.50 672 sP27.20 (a) 777 nΩ ; (b) 3 28.  m sµ

P27.52 (a) $1.61; (b) $0.005 82; (c) $0.416
P27.22

r
r

Al

Cu
= 1 29.

P27.54 (a) 576 Ω  and 144 Ω ;
(b) 4.80 s; The charge is the same. The
charge-field system is in a lower-energy
configuration.

P27.24 378 Ω

P27.26 (a) nothing; (b) doubles; (c) doubles;
(c) 0.040 0 s; The energy enters by electric
transmission and exits by heat and
electromagnetic radiation;

(d) nothing

P27.28 1 98.  A
(d) $1.26; energy; 1 94 10 8. × −  $ J

P27.30 carbon, 4 44.  kΩ ; nichrome, 5 56.  kΩ
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P27.56 27 0.  yr P27.66 (a) see the solution;
(b) 1 418.  Ω  nearly agrees with 1 420.  Ω

P27.58 50 0.  MW

P27.68 (a) R
L

r
r

b

a
=

ρ
π2

ln ; (b) ρ
π

=
2 L V

I r rb a

∆
lnb gP27.60 (a) 116 V ; (b) 12 8.  kW ; (c) 436 W

P27.62 (a) E
i

=
V
L

; (b) R
L

d
=

4
2

ρ
π

; (c) I
V d

L
=

π
ρ

2

4
;

P27.70 see the solution

P27.72 see the solution
(d) J

i
=

V
Lρ

; (e) see the solution
P27.74 see the solution

P27.64 2 00.  Ω
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Direct Current Circuits

ANSWERS TO QUESTIONS

Q28.1 The load resistance in a circuit is the effective resistance of all of
the circuit elements excluding the emf source. In energy terms,
it can be used to determine the energy delivered to the load by
electrical transmission and there appearing as internal energy
to raise the temperature of the resistor. The internal resistance
of a battery represents the limitation on the efficiency of the
chemical reaction that takes place in the battery to supply
current to the load. The emf of the battery represents its
conversion of chemical energy into energy which it puts out by
electric transmission; the battery also creates internal energy
within itself, in an amount that can be computed from its
internal resistance. We model the internal resistance as
constant for a given battery, but it may increase greatly as the
battery ages. It may increase somewhat with increasing current
demand by the load. For a load described by Ohm’s law, the
load resistance is a precisely fixed value.

Q28.2 The potential difference between the terminals of a battery will equal the emf of the battery when
there is no current in the battery. At this time, the current though, and hence the potential drop
across the internal resistance is zero. This only happens when there is no load placed on the
battery—that includes measuring the potential difference with a voltmeter! The terminal voltage
will exceed the emf of the battery when current is driven backward through the battery, in at its
positive terminal and out at its negative terminal.

Q28.3 No. If there is one battery in a circuit, the current inside it will be from its negative terminal to its
positive terminal. Whenever a battery is delivering energy to a circuit, it will carry current in this
direction. On the other hand, when another source of emf is charging the battery in question, it will
have a current pushed through it from its positive terminal to its negative terminal.

Q28.4 Connect the resistors in series. Resistors of 5.0 kΩ, 7.5 kΩ and 2.2 kΩ connected in series present
equivalent resistance 14.7 kΩ.

Q28.5 Connect the resistors in parallel. Resistors of 5.0 kΩ, 7.5 kΩ and 2.2 kΩ connected in parallel present
equivalent resistance 1.3 kΩ.

129
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Q28.6

Q28.7 In series, the current is the same through each resistor. Without knowing individual resistances,
nothing can be determined about potential differences or power.

Q28.8 In parallel, the potential difference is the same across each resistor. Without knowing individual
resistances, nothing can be determined about current or power.

Q28.9 In this configuration, the power delivered to one individual resistor is significantly less than if only
one equivalent resistor were used. This decreases the possibility of component failure, and possible
electrical disaster to some more expensive circuit component than a resistor.

Q28.10 Each of the two conductors in the extension cord itself has a small resistance. The longer the
extension cord, the larger the resistance. Taken into account in the circuit, the extension cord will
reduce the current from the power supply, and also will absorb energy itself in the form of internal
energy, leaving less power available to the light bulb.

Q28.11 The whole wire is very nearly at one uniform potential. There is essentially zero difference in
potential between the bird’s feet. Then negligible current goes through the bird. The resistance
through the bird’s body between its feet is much larger than the resistance through the wire
between the same two points.

Q28.12 The potential difference across a resistor is positive when it is measured against the direction of the
current in the resistor.

Q28.13 The bulb will light up for a while immediately after the switch is closed. As the capacitor charges, the
bulb gets progressively dimmer. When the capacitor is fully charged the current in the circuit is zero
and the bulb does not glow at all. If the value of RC is small, this whole process might occupy a very
short time interval.

Q28.14 An ideal ammeter has zero resistance. An ideal voltmeter has infinite resistance. Real meters cannot
attain these values, but do approach these values to the degree that they do not alter the current or
potential difference that is being measured within the accuracy of the meter. Hooray for
experimental uncertainty!

Q28.15 A short circuit can develop when the last bit of insulation frays away between the two conductors in
a lamp cord. Then the two conductors touch each other, opening a low-resistance branch in parallel
with the lamp. The lamp will immediately go out, carrying no current and presenting no danger. A
very large current exists in the power supply, the house wiring, and the rest of the lamp cord up to
the contact point. Before it blows the fuse or pops the circuit breaker, the large current can quickly
raise the temperature in the short-circuit path.



Chapter 28     131

Q28.16 A wire or cable in a transmission line is thick and made of material with very low resistivity. Only
when its length is very large does its resistance become significant. To transmit power over a long
distance it is most efficient to use low current at high voltage, minimizing the I R2  power loss in the
transmission line. Alternating current, as opposed to the direct current we study first, can be stepped
up in voltage and then down again, with high-efficiency transformers at both ends of the power
line.

Q28.17 Car headlights are in parallel. If they were in series, both would go out when the filament of one
failed. An important safety factor would be lost.

Q28.18 Kirchhoff’s junction rule expresses conservation of electric charge. If the total current into a point
were different from the total current out, then charge would be continuously created or annihilated
at that point.

Kirchhoff’s loop rule expresses conservation of energy. For a single-loop circle with two
resistors, the loop rule reads + − − =ε IR IR1 2 0 . This is algebraically equivalent to q qIR qIRε = +1 2 ,
where q I t= ∆  is the charge passing a point in the loop in the time interval ∆t . The equivalent
equation states that the power supply injects energy into the circuit equal in amount to that which
the resistors degrade into internal energy.

Q28.19 At their normal operating temperatures, from P =
∆V

R

2

, the bulbs present resistances

R
V

= = =
∆

Ω
2 2120

60
240

P
 V
 W

 
a f

, and 
120
75

190
2 V

 W
 

a f
= Ω , and 

120
200

72
2 V

 W
 

a f
= Ω . The nominal 60 W lamp

has greatest resistance. When they are connected in series, they all carry the same small current.
Here the highest-resistance bulb glows most brightly and the one with lowest resistance is faintest.
This is just the reverse of their order of intensity if they were connected in parallel, as they are
designed to be.

Q28.20 Answer their question with a challenge. If the student is just looking at a diagram, provide the
materials to build the circuit. If you are looking at a circuit where the second bulb really is fainter, get
the student to unscrew them both and interchange them. But check that the student’s
understanding of potential has not been impaired: if you patch past the first bulb to short it out, the
second gets brighter.

Q28.21 Series, because the circuit breaker trips and opens the circuit when the current in that circuit loop
exceeds a certain preset value. The circuit breaker must be in series to sense the appropriate current
(see Fig. 28.30).

Q28.22 The hospital maintenance worker is right. A hospital room is full of electrical grounds, including the
bed frame. If your grandmother touched the faulty knob and the bed frame at the same time, she
could receive quite a jolt, as there would be a potential difference of 120 V across her. If the 120 V is
DC, the shock could send her into ventricular fibrillation, and the hospital staff could use the
defibrillator you read about in Section 26.4. If the 120 V is AC, which is most likely, the current could
produce external and internal burns along the path of conduction. Likely no one got a shock from
the radio back at home because her bedroom contained no electrical grounds—no conductors
connected to zero volts. Just like the bird in Question 28.11, granny could touch the “hot” knob
without getting a shock so long as there was no path to ground to supply a potential difference
across her. A new appliance in the bedroom or a flood could make the radio lethal. Repair it or
discard it. Enjoy the news from Lake Wobegon on the new plastic radio.
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Q28.23 So long as you only grab one wire, and you do not touch anything that is grounded, you are safe
(see Question 28.11). If the wire breaks, let go! If you continue to hold on to the wire, there will be a
large—and rather lethal—potential difference between the wire and your feet when you hit the
ground. Since your body can have a resistance of about 10 kΩ, the current in you would be sufficient
to ruin your day.

Q28.24 Both 120-V and 240-V lines can deliver injurious or lethal shocks, but there is a somewhat better
safety factor with the lower voltage. To say it a different way, the insulation on a 120-V line can be
thinner. On the other hand, a 240-V device carries less current to operate a device with the same
power, so the conductor itself can be thinner. Finally, as we will see in Chapter 33, the last step-
down transformer can also be somewhat smaller if it has to go down only to 240 volts from the high
voltage of the main power line.

Q28.25 As Luigi Galvani showed with his experiment with frogs’ legs, muscles contract when electric
current exists in them. If an electrician contacts a “live” wire, the muscles in his hands and fingers
will contract, making his hand clench. If he touches the wire with the front of his hand, his hand will
clench around the wire, and he may not be able to let go. Also, the back of his hand may be drier
than his palm, so an actual shock may be much weaker.

Q28.26 Grab an insulator, like a stick or baseball bat, and bat for a home run. Hit the wire away from the
person or hit them away from the wire. If you grab the person, you will learn very quickly about
electrical circuits by becoming part of one.

Q28.27 A high voltage can lead to a high current when placed in a circuit. A device cannot supply a high
current—or any current—unless connected to a load. A more accurate sign saying potentially high
current would just confuse the poor physics student who already has problems distinguishing
between electrical potential and current.

Q28.28 The two greatest factors are the potential difference between the wire and your feet, and the
conductivity of the kite string. This is why Ben Franklin’s experiment with lightning and flying a
kite was so dangerous. Several scientists died trying to reproduce Franklin’s results.

Q28.29 Suppose ε = 12 V  and each lamp has R = 2 Ω. Before the switch is closed the current is 
12

2
 V

6 
 A

Ω
= .

The potential difference across each lamp is 2 2 4 A   Va fa fΩ = . The power of each lamp is
2 4 8 A  V  Wa fa f = , totaling 24 W for the circuit. Closing the switch makes the switch and the wires

connected to it a zero-resistance branch. All of the current through A and B will go through the
switch and (b) lamp C goes out, with zero voltage across it. With less total resistance, the (c) current

in the battery 
12

3
 V

4 
 A

Ω
=  becomes larger than before and (a) lamps A and B get brighter. (d) The

voltage across each of A and B is 3 2 6 A   Va fa fΩ = , larger than before. Each converts power
3 6 18 A  V  Wa fa f = , totaling 36 W, which is (e) an increase.

Q28.30 The starter motor draws a significant amount of current from the battery while it is starting the car.
This, coupled with the internal resistance of the battery, decreases the output voltage of the battery
below its the nominal 12 V emf. Then the current in the headlights decreases.
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Q28.31 Two runs in series:  . Three runs in parallel: . Junction of one lift and

two runs: .

Gustav Robert Kirchhoff, Professor of Physics at Heidelberg and Berlin, was master of the
obvious. A junction rule: The number of skiers coming into any junction must be equal to the
number of skiers leaving. A loop rule: the total change in altitude must be zero for any skier
completing a closed path.

SOLUTIONS TO PROBLEMS

Section 28.1 Electromotive Force

P28.1 (a) P =
∆V

R
a f2

becomes 20 0
11 6 2

.
.

 W
 V

=
a f

R

so R = 6 73.  Ω .

(b) ∆V IR=

so 11 6 6 73. . V  = I Ωa f
and I = 1 72.  A

ε = +IR Ir

so 15 0 11 6 1 72. . . V  V  A= + a fr
r = 1 97.  Ω .

FIG. P28.1

P28.2 (a) ∆V IRterm =

becomes 10 0 5 60. . V  = I Ωa f
so I = 1 79.  A .

(b) ∆V Irterm = −ε

becomes 10 0 1 79 0 200. . . V  A  = −ε a fa fΩ
so ε = 10 4.  V .

P28.3 The total resistance is R = =
3 00

5 00
.

.
 V

0.600 A
 Ω .

(a) R R rlamp batteries    = − = − =5 00 0 408 4 59. . .Ω Ω Ω

(b)
P
P
batteries

total

 

 
= = =

0 408

5 00
0 081 6 8 16%

2

2

.

.
. .

Ω

Ω

a f
a f

I

I FIG. P28.3
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P28.4 (a) Here ε = +I R ra f , so I
R r

=
+

=
+

=
ε 12 6

0 080 0
2 48

.
.

.
 V

5.00  
 A

Ω Ωb g .

Then, ∆ ΩV IR= = =2 48 5 00 12 4. . . A   Va fa f .

(b) Let I1  and I2  be the currents flowing through the battery and the
headlights, respectively.
Then, I I1 2 35 0= + .  A , and ε − − =I r I r1 2 0

so ε = + + =I I2 235 0 0 080 0 5 00 12 6. . . . A    Vb gb g a fΩ Ω

giving I2 1 93= .  A .

Thus, ∆ ΩV2 1 93 5 00 9 65= =. . . A   Va fa f .

FIG. P28.4

Section 28.2 Resistors in Series and Parallel

P28.5 ∆V I R R= =1 1 12 00.  Aa f  and ∆ ΩV I R R R= + = +2 1 2 11 60 3 00b g a fb g. . A  

Therefore, 2 00 1 60 3 001 1. . . A  A  a f a fb gR R= + Ω  or R1 12 0= .  Ω .

P28.6 (a) Rp = +
=

1
1 7 00 1 10 0

4 12
. .

.
  

 
Ω Ω

Ωb g b g
R R R Rs = + + = + + =1 2 3 4 00 4 12 9 00 17 1. . . .  Ω

(b) ∆V IR=
34 0 17 1. . V  = I Ωa f
I = 1 99.  A  for 4 00.  Ω , 9 00.  Ω  resistors.

Applying ∆V IR= , 1 99 4 12 8 18. . . A   Va fa fΩ =

8 18 7 00. . V  = I Ωa f
so I = 1 17.  A  for 7 00.  Ω  resistor

8 18 10 0. . V  = I Ωa f
so I = 0 818.  A  for 10 0.  Ω  resistor.

FIG. P28.6

P28.7 For the bulb in use as intended,

I
V

= = =
P
∆

75 0
0 625

.
.

 W
120 V

 A

and R
V
I

= = =
∆

Ω
120

192
 V

0.625 A
 .

Now, presuming the bulb resistance is unchanged,

I = =
120

0 620
 V

193.6 
 A

Ω
. .

Across the bulb is ∆ ΩV IR= = =192 119 0.620 A  Va f
so its power is P = = =I V∆ 0 620 73 8. . A 119 V  Wa f .

FIG. P28.7
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P28.8 120
1 2 3 4

 V eq= = + + +
F
HG

I
KJIR I

A A A A
ρ ρ ρ ρA A A A

, or I
A A A A

ρA =
+ + +

120
1 1 1 1

1 2 3 4

 Va f
e j

∆V
I
A A A A A A

2
2 2

1 1 1 1

120
29 5

1 2 3 4

= =
+ + +

=
ρA  V

 V
a f

e j
.

P28.9 If we turn the given diagram on its side, we find that it is the same as figure
(a). The 20 0.  Ω  and 5 00.  Ω  resistors are in series, so the first reduction is
shown in (b). In addition, since the 10 0.  Ω , 5 00.  Ω , and 25 0.  Ω  resistors are
then in parallel, we can solve for their equivalent resistance as:

Req
   

 =
+ +

=
1

2 94
1

10 0
1

5 00
1

25 0. . .

.
Ω Ω Ω

Ωc h .

This is shown in figure (c), which in turn reduces to the circuit shown in
figure (d).

Next, we work backwards through the diagrams applying I
V

R
=
∆

 and

∆V IR=  alternately to every resistor, real and equivalent. The 12 94.  Ω
resistor is connected across 25.0 V, so the current through the battery in
every diagram is

I
V

R
= = =
∆

Ω
25 0

1 93
.

.
 V

12.94 
 A .

In figure (c), this 1.93 A goes through the 2 94.  Ω  equivalent resistor to give a
potential difference of:

∆ ΩV IR= = =1 93 2 94 5 68. . . A   Va fa f .

From figure (b), we see that this potential difference is the same across ∆Vab ,
the 10 Ω  resistor, and the 5 00.  Ω  resistor.

(b) Therefore, ∆Vab = 5 68.  V .

(a) Since the current through the 20 0.  Ω  resistor is also the current
through the 25 0.  Ω  line ab,

I
V

R
ab

ab
= = = =
∆

Ω
5 68

0 227 227
.

.
 V

25.0 
 A  mA . FIG. P28.9

*P28.10 We assume that the metal wand makes low-resistance contact with the person’s hand and that the
resistance through the person’s body is negligible compared to the resistance Rshoes  of the shoe soles.
The equivalent resistance seen by the power supply is 1 00.  M shoesΩ+ R . The current through both

resistors is 
50.0 V

1.00 M shoesΩ+ R
. The voltmeter displays

∆ Ω
Ω

Ω
∆V I

R
V= =

+
=1 00

50 0
1 00

.
.

.
 M

 V 1.00 M
 M shoes

a f a f
.

(a) We solve to obtain 50 0 1 00. . V 1.00 M  M shoesΩ ∆ Ω ∆a f a f b g= +V V R

R
V

Vshoes
 M 50.0

=
−1 00. Ω ∆

∆
a f

.

(b) With Rshoes → 0 , the current through the person’s body is
50 0

50 0
.

.
 V

1.00 M
 A

Ω
= µ The current will never exceed 50 Aµ .
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P28.11 (a) Since all the current in the circuit must pass through the series
100 Ω  resistor, P = I R2

Pmax max= RI 2

so I
Rmax

.
.= = =

P 25 0
0 500

 W
100 

 A
Ω

R

V R I

eq

eq

= + +F
HG

I
KJ =

= =

−

100
1

100
1

100
150

75 0

1

   

 V

Ω Ω Ω

∆ max max .

(b) P = = =I V∆ 0 500 75 0 37 5. . . A  V  Wa fa f  total power

P

P P

1

2 3
2 2

25 0

100 0 250 6 25

=

= = =

.

. .

 W

  A  WRI Ωa fa f

FIG. P28.11

P28.12 Using 2.00-Ω, 3.00-Ω, 4.00-Ω resistors, there are 7 series, 4 parallel, and 6 mixed combinations:
Series
2.00 Ω 6.00 Ω
3.00 Ω 7.00 Ω
4.00 Ω 9.00 Ω
5.00 Ω

Parallel Mixed
0.923 Ω 1.56 Ω
1.20 Ω 2.00 Ω
1.33 Ω 2.22 Ω
1.71 Ω 3.71 Ω

4.33 Ω
5.20 Ω

 The resistors may be arranged in patterns:

 

P28.13 The potential difference is the same across either combination.

∆V IR I
R

= =
+

3
1

1 1
500c h so R

R
1 1

500
3+FHG
I
KJ =

1
500

3+ =
R

and R = =1 000 1 00  kΩ Ω. .

FIG. P28.13

*P28.14 When S is open, R1 , R2 , R3  are in series with the battery. Thus:

R R R1 2 3 3
6

10
6+ + = =−

 V
 A

 kΩ . (1)

When S is closed in position 1, the parallel combination of the two R2 ’s is in series with R1 , R3 , and the
battery. Thus:

R R R1 2 3 3
1
2

6
1 2 10

5+ + =
×

=−
 V

 A
 k

.
Ω . (2)

When S is closed in position 2, R1  and R2  are in series with the battery. R3  is shorted. Thus:

R R1 2 3
6

2 10
3+ =

×
=−

 V
 A

 kΩ . (3)

From (1) and (3): R3 3=  kΩ .

Subtract (2) from (1): R2 2=  kΩ .

From (3): R1 1=  kΩ .

Answers: R R R1 2 31 00 2 00 3 00= = =. . . k ,   k ,   kΩ Ω Ω .
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P28.15 R

R

I
V

R

p

s

s

= +F
HG

I
KJ =

= + + =

= = =

−1
3 00

1
1 00

0 750

2 00 0 750 4 00 6 75
18 0

2 67

1

. .
.

. . . .
.

.

 

  
 V

6.75 
 Abattery

Ω

Ω Ω
∆

Ω

a f

P = I R2 : P2
22 67 2 00= . . A  a f a fΩ

P2 14 2= .  W  in 2.00 Ω

P

P

P

4
2

2

4

2 4 3 1

3
3

2

3

2

1
1

1

2

2 67 4 00 28 4

2 67 2 00 5 33

2 67 4 00 10 67

18 0 2 00

2 00
3 00

1 33

2 00
1 00

4 00

= =

= =

= =

= − − = = =

= = =

= = =

. . .

. . .

. . .

. .

.
.

.

.
.

.

 A  A  W  in 4.00 

 A   V,

 A   V

 V  V

 V
 

 W  in 3.00 

 V
 

 W  in 1.00 

a f a f
a fa f
a fa f

b g
b g a f

b g a f

Ω

∆ Ω

∆ Ω

∆ ∆ ∆ ∆ ∆

∆

Ω
Ω

∆

Ω
Ω

V

V

V V V V V

V
R

V
R

p

FIG. P28.15

P28.16 Denoting the two resistors as x and y,

x y+ = 690, and 
1

150
1 1

= +
x y

1
150

1 1
690

690
690

690 103 500 0

690 690 414 000

2
470 220

2

2

= +
−

=
− +
−

− + =

=
± −

= =

x x
x x

x x

x x

x

x y

a f
a f

a f

  Ω Ω

*P28.17 A certain quantity of energy ∆Eint time= P a f  is required to raise the temperature of the water to

100°C. For the power delivered to the heaters we have P = =I V
V
R

∆
∆a f2

 where ∆Va f is a constant.

Thus comparing coils 1 and 2, we have for the energy 
∆ ∆ ∆ ∆V t

R
V t

R
a f a f2

1

2

2

2
= . Then R R2 12= .

(a) When connected in parallel, the coils present equivalent resistance

R
R R R R

R
p = +

=
+

=
1

1 1
1

1 1 2
2

31 2 1 1

1 . Now 
∆ ∆ ∆ ∆V t

R

V t

R
pa f a f2

1

2

12 3
= ∆

∆
t

t
p =

2
3

.

(b) For the series connection, R R R R R Rs = + = + =1 2 1 1 12 3  and 
∆ ∆ ∆ ∆V t

R
V t

R
sa f a f2

1

2

13
=

∆ ∆t ts = 3 .
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P28.18 (a) ∆V IR= : 33 0 11 01. . V  = I Ωa f 33 0 22 02. . V  = I Ωa f
I3 3 00= .  A I2 1 50= .  A

P = I R2 : P1
23 00 11 0= . . A  a f a fΩ P2

21 50 22 0= . . A  a f a fΩ
P1 99 0= .  W P2 49 5= .  W

The 11.0-  resistor uses more power.Ω

(b) P P1 2 148+ =  W P = = =I V∆a f a fa f4 50 33 0 148. .  W

FIG. P28.18(a)

(c) R R Rs = + = + =1 2 11 0 22 0 33 0. . .   Ω Ω Ω

∆V IR= : 33 0 33 0. . V  = I Ωa f , so I = 1 00.  A

P = I R2 : P1
21 00 11 0= . . A  a f a fΩ P2

21 00 22 0= . . A  a f a fΩ
P1 11 0= .  W P2 22 0= .  W

The 22.0-  resistor uses more power.Ω

FIG. P28.18(c)

(d) P P1 2
2

1 2
21 00 33 0 33 0+ = + = =I R Rb g a f a f. . . A   WΩ

P = = =I V∆a f a fa f1 00 33 0 33 0. . . A  V  W

(e) The parallel configuration uses more power.

*P28.19 (a) The resistors 2, 3, and 4 can be combined to a single 2R resistor. This is in series with
resistor 1, with resistance R, so the equivalent resistance of the whole circuit is 3R. In series,

potential difference is shared in proportion to the resistance, so resistor 1 gets 
1
3

 of the

battery voltage and the 2-3-4 parallel combination get 
2
3

 of the battery voltage. This is the

potential difference across resistor 4, but resistors 2 and 3 must share this voltage. 
1
3

 goes to

2 and 
2
3

 to 3. The ranking by potential difference is ∆ ∆ ∆ ∆V V V V4 3 1 2> > > .

(b) Based on the reasoning above the potential differences are

∆ ∆ ∆ ∆V V V V1 2 3 43
2
9

4
9

2
3

= = = =
ε ε ε ε

, , , .

(c) All the current goes through resistor 1, so it gets the most. The current then splits at the
parallel combination. Resistor 4 gets more than half, because the resistance in that branch is
less than in the other branch. Resistors 2 and 3 have equal currents because they are in
series. The ranking by current is I I I I1 4 2 3> > = .

(d) Resistor 1 has a current of I. Because the resistance of 2 and 3 in series is twice that of
resistor 4, twice as much current goes through 4 as through 2 and 3. The current through

the resistors are I I I I
I

I
I

1 2 3 43
2
3

= = = =, , .

continued on next page
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(e) Increasing resistor 3 increases the equivalent resistance of the entire circuit. The current in
the circuit, which is the current through resistor 1, decreases. This decreases the potential
difference across resistor 1, increasing the potential difference across the parallel
combination. With a larger potential difference the current through resistor 4 is increased.
With more current through 4, and less in the circuit to start with, the current through
resistors 2 and 3 must decrease. To summarize, I I I I4 1 2 3 increases and and  decrease, , .

(f) If resistor 3 has an infinite resistance it blocks any current from passing through that branch,
and the circuit effectively is just resistor 1 and resistor 4 in series with the battery. The circuit

now has an equivalent resistance of 4R. The current in the circuit drops to 
3
4

 of the original

current because the resistance has increased by 
4
3

. All this current passes through resistors 1

and 4, and none passes through 2 or 3. Therefore I
I

I I I
I

1 2 3 4
3
4

0
3
4

= = = =, , .

Section 28.3 Kirchhoff’s Rules

P28.20 + − − =15 0 7 00 2 00 5 00 01. . . .a f a fa fI

5 00 7 00 1. .= I so I1 0 714= .  A

I I I3 1 2 2 00= + = .  A

0 714 2 002. .+ =I so I2 1 29= .  A

+ − − =ε 2 00 1 29 5 00 2 00 0. . . .a f a f ε = 12 6.  V
FIG. P28.20

P28.21 We name currents I1 , I2 , and I3  as shown.

From Kirchhoff’s current rule, I I I3 1 2= + .

Applying Kirchhoff’s voltage rule to the loop containing I2  and I3 ,

12 0 4 00 6 00 4 00 0

8 00 4 00 6 00
3 2

3 2

. . . .

. . .

 V  V− − − =

= +

a f a f
a f a f

I I

I I

Applying Kirchhoff’s voltage rule to the loop containing I1  and I2 ,

− − + =6 00 4 00 8 00 02 1. . .a f a fI I V 8 00 4 00 6 001 2. . .a f a fI I= + .
FIG. P28.21

Solving the above linear system, we proceed to the pair of simultaneous equations:

8 4 4 6
8 4 6

1 2 2

1 2

= + +
= +

RST
I I I

I I
or

8 4 10
1 33 0 667

1 2

2 1

= +
= −

RST
I I

I I. .

and to the single equation 8 4 13 3 6 671 1= + −I I. .

I1
14 7

0 846= =
.

.
 V

17.3 
 A

Ω
. Then I2 1 33 0 846 0 667= −. . . Aa f

and I I I3 1 2= + give I I I1 2 3846 462 1 31= = = mA,   mA,   A. .

All currents are in the directions indicated by the arrows in the circuit diagram.
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P28.22 The solution figure is shown to the right.

FIG. P28.22

P28.23 We use the results of Problem 28.21.

(a) By the 4.00-V battery: ∆ ∆ ∆U V I t= = − = −a f a fa f4 00 0 462 120 222. . V  A  s  J .

By the 12.0-V battery: 12 0 1 31 120 1 88. . . V  A  s  kJa fa f = .

(b) By the 8.00-Ω resistor: I R t2 20 846 8 00 120 687∆ Ω= =. . A   s  Ja f a f .

By the 5.00-Ω resistor: 0 462 5 00 120 1282. . A   s  Ja f a fΩ = .

By the 1.00-Ω resistor: 0 462 1 00 120 25 62. . . A   s  Ja f a fΩ = .

By the 3.00-Ω resistor: 1 31 3 00 120 6162. . A   s  Ja f a fΩ = .

By the 1.00-Ω resistor: 1 31 1 00 120 2052. . A   s  Ja f a fΩ = .

(c) − + =222 1 88 1 66 J  kJ  kJ. .  from chemical to electrical.

687 128 25 6 616 205 1 66 J  J  J  J  J  kJ+ + + + =. .  from electrical to internal.

P28.24 We name the currents I1 , I2 , and I3  as shown.

[1] 70 0 60 0 3 00 2 00 02 1. . . .− − − =I I k  kΩ Ωa f a f
[2] 80 0 4 00 60 0 3 00 03 2. . . .− − − =I I k  kΩ Ωa f a f
[3] I I I2 1 3= +

(a) Substituting for I2  and solving the resulting simultaneous
equations yields

I R

I R

I R

1 1

3 3

2 2

0 385

2 69

3 08

=

=

=

.

.

.

 mA  through 

 mA  through 

 mA  through 

b g
b g
b g

(b) ∆ ΩVcf = − − = −60 0 3 08 3 00 69 2. . . . V  mA  k  Va fa f
Point  is at higher potential.c

FIG. P28.24
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P28.25 Label the currents in the branches as shown in the first figure.
Reduce the circuit by combining the two parallel resistors as shown
in the second figure.

Apply Kirchhoff’s loop rule to both loops in Figure (b) to obtain:

2 71 1 71 2501 2. .R I R Ia f a f+ =

and 1 71 3 71 5001 2. .R I R Ia f a f+ = .

With R = 1 000 Ω , simultaneous solution of these equations yields:

I1 10 0= .  mA

and I2 130 0= .  mA.

From Figure (b), V V I I Rc a− = + =1 2 1 71 240b ga f.  V .

Thus, from Figure (a), I
V V

R
c a

4 4
240

60 0=
−

= =
 V

4 000 
 mA

Ω
. .

Finally, applying Kirchhoff’s point rule at point a in Figure (a)
gives:

I I I= − = − = +4 1 60 0 10 0 50 0. . . mA  mA  mA,

or I a e= 50 0.  mA from point  to point .

(a)

(b)

FIG. P28.25

P28.26 Name the currents as shown in the figure to the right. Then w x z y+ + = . Loop
equations are

− − + =
− + + − =
+ − − + =

200 40 0 80 0 0
80 0 40 0 360 20 0 0
360 20 0 70 0 80 0 0

w x
x y

y z

. .
. . .

. . .

FIG. P28.26

Eliminate y by substitution.
x w

x w z
w x z

= +
− − − =
− − − =

R
S|
T|

2 50 0 500
400 100 20 0 20 0 0
440 20 0 20 0 90 0 0

. .
. .

. . .

Eliminate x .
350 270 20 0 0
430 70 0 90 0 0

− − =
− − =

RST
w z
w z

.
. .

Eliminate z w= −17 5 13 5. .  to obtain 430 70 0 1 575 1 215 0− − + =. w w

w = =
70 0
70 0

1 00
.
.

.  A upward in 200 Ω .

Now z = 4 00.  A upward in 70.0 Ω

x = 3 00.  A upward in 80.0 Ω

y = 8 00.  A downward in 20.0 Ω

and for the 200 Ω, ∆ ΩV IR= = =1 00 200 200.  A   Va fa f .
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P28.27 Using Kirchhoff’s rules,

12 0 0 010 0 0 060 0 0

10 0 1 00 0 060 0
1 3

2 3

. . .

. . .

− − =

+ − =

b g b g
a f a f

I I

I I 0

and I I I1 2 3= +

12 0 0 010 0 070 0

10 0 1 00 0 060 0 0
2 3

2 3

. . .

. . .

− − =

+ − =

 0  0a f a f
a f b g

I I

I I FIG. P28.27

Solving simultaneously,

I2 0 283= .  A downward  in the dead battery

and I3 171=  A downward  in the starter.

The currents are forward in the live battery and in the starter, relative to normal starting operation.
The current is backward in the dead battery, tending to charge it up.

P28.28 ∆

∆

∆

V I I I

V I I I I I

V I I I I I

ab

ab

ab

= + −

= + + − +

= − + − +

1 00 1 00

1 00 1 00 5 00

3 00 5 00

1 1 2

1 2 1 2

1 1 2

. .

. . .

. .

a f a fb g
a f a f a fb g
a fb g a fb g

Let I = 1 00.  A , I x1 = , and I y2 = .

Then, the three equations become:

∆V x yab = −2 00. , or y x Vab= −2 00. ∆

∆V x yab = − + +4 00 6 00 5 00. . .

and ∆V x yab = − +8 00 8 00 5 00. . . .

Substituting the first into the last two gives:

7 00 8 00 5 00. . .∆V xab = +  and 6 00 2 00 8 00. . .∆V xab = + .

Solving these simultaneously yields ∆Vab =
27
17

 V .

Then, R
V
Iab

ab= =
∆ 27

17  V
1.00 A

or Rab =
27
17

 Ω .

FIG. P28.28

P28.29 We name the currents I1 , I2 , and I3  as shown.

(a) I I I1 2 3= +

Counterclockwise around the top loop,

12 0 2 00 4 00 03 1. . . V   − − =Ω Ωa f a fI I .

Traversing the bottom loop,

8 00 6 00 2 00 02 3. . . V   − + =Ω Ωa f a fI I

I I1 33 00
1
2

= −. , I I2 3
4
3

1
3

= + , and I3 909=  mA .

(b) V Va b− =0 909 2 00. . A  a fa fΩ
V Vb a− = −1 82.  V

FIG. P28.29
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P28.30 We apply Kirchhoff’s rules to the second diagram.

50 0 2 00 2 00 01 2. . .− − =I I (1)

20 0 2 00 2 00 03 2. . .− + =I I (2)

I I I1 2 3= + (3)

Substitute (3) into (1), and solve for I1 , I2 , and I3

I1 20 0= .  A ; I2 5 00= .  A ; I3 15 0= .  A.

Then apply P = I R2  to each resistor:

2 00 1.  Ωa f : P = = =I1
2 22 00 20 0 2 00 800. . .  A   WΩ Ωa f a f a f

4 00.  Ωa f : P = FHG
I
KJ =

5 00
2

4 00 25 0
2.

. . A   WΩa f
(Half of I2  goes through each)

2 00 3.  Ωa f : P = = =I3
2 22 00 15 0 2 00 450. . .  A   WΩ Ωa f a f a f .

FIG. P28.30

Section 28.4 RC Circuits

P28.31 (a) RC = × × =−1 00 10 5 00 10 5 006 6. . .  F  sΩe je j

(b) Q C= = × =−ε µ5 00 10 30 0 1506. . C  V  Ce ja f

(c) I t
R

e t RCa f
e je j

= =
×

F
HG

I
KJ

−

× ×

L

N
MM

O

Q
PP =

−
−

ε
µ

30 0 10 0

1 00 10 5 00 10
4 06

6 6

.
exp

.

. .
.

1.00 10
 A6

FIG. P28.31

P28.32 (a) I t I e t RCa f = − −
0

I
Q

RC

I t

0

6

9

6

9

5 10 10

2 00 10
1 96

1 96
9 00 10

2 00 10
61 6

= =
×

×
=

= −
− ×

×

L

N
MM

O

Q
PP = −

−

−

−

−

.

.
.

. exp
.

.
.

 C

1 300  F
 A

 A
 s

1 300  F
 mA

Ω

Ω

b ge j

a f a f b ge j

(b) q t Qe t RCa f b g a fe j
= =

− ×

×

L

N
MM

O

Q
PP =

−
−

−
5 10

8 00 10

2 00 10
0 235

6

9
. exp

.

.
. C

 s

1 300  F
 Cµ µ

Ω

(c) The magnitude of the maximum current is I0 1 96= .  A .

P28.33 U C V=
1
2

2∆a f  and ∆V
Q
C

= .

Therefore, U
Q

C
=

2

2
 and when the charge decreases to half its original value, the stored energy is one-

quarter its original value: U Uf =
1
4 0 .
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P28.34 q t Q e t RCa f = − −1 so
q t
Q

e t RCa f
= − −1

0 600 1 0 900. .= − −e RC or e RC− = − =0 900 1 0 600 0 400. . .

−
=

0 900
0 400

.
ln .

RC
a f thus RC =

−
=

0 900
0 400

0 982
.

ln .
.a f  s .

*P28.35 We are to calculate

e dt
RC

e
dt

RC
RC

e
RC

e e
RC RCt RC t RC t RC−

∞
−

∞
− ∞ −∞z z= − −FHG

I
KJ = − = − − = − − = +2

0

2

0

2
0

0

2
2

2 2 2
0 1

2
.

P28.36 (a) τ = = × × =−RC 1 50 10 10 0 10 1 505 6. . .  F  sΩe je j

(b) τ = × × =−1 00 10 10 0 10 1 005 6. . .  F  sΩe je j

(c) The battery carries current
10 0

200
.  V

50.0 10  
 A3×

=
Ω

µ .

The 100 kΩ  carries current of magnitude I I e et RC t= =
×

F
HG

I
KJ

− −
0

1.0010 0.  V
100 10  3

 s

Ω
.

So the switch carries downward current 200 100 1.00 A  A  sµ µ+ −b ge t .

P28.37 (a) Call the potential at the left junction VL  and at the right VR . After a
“long” time, the capacitor is fully charged.

VL = 8 00.  V  because of voltage divider:

I

V

L

L

= =

= − =

10 0
2 00

10 0 2 00 1 00 8 00

.
.

. . . .

 V
5.00 

 A

 V  A   V
Ω

Ωa fa f
Likewise, VR =

+
F
HG

I
KJ =

2 00
8 00

10 0 2 00
.

.
. .

 
2.00  

 V  V
Ω

Ω Ω
a f

or IR = =
10 0

1 00
.

.
 V

10.0 
 A

Ω

VR = − =10 0 8 00 1 00 2 00. . . . V   A  Va f a fa fΩ .

Therefore, ∆V V VL R= − = − =8 00 2 00 6 00. . .  V .

FIG. P28.37(a)

(b) Redraw the circuit R =
+

=
1

1 9 00 1 6 00
3 60

. .
.

  
 

Ω Ω
Ωb g b g

RC = × −3 60 10 6.  s

and e t RC− =
1

10

so t RC= =ln .10 8 29 sµ . FIG. P28.37(b)
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*P28.38 (a) We model the person’s body and street shoes
as shown. For the discharge to reach 100 V,

q t Qe C V t C V et RC t RCa f a f= = =− −∆ ∆ 0

∆
∆

V
V

e t RC

0
= − ∆

∆
V
V

e t RC0 = + t
RC

V
V

= FHG
I
KJln

∆
∆

0

150 pF 80 pF 5 000 MΩ

3 000 V

FIG. P28.38(a)

t RC
V
V

= F
HG
I
KJ = × × F

HG
I
KJ =

−ln ln .
∆
∆

Ω0 6 125 000 10 230 10
3 000
100

3 91  F  se j

(b) t = × × =−1 10 230 10 30 7826 12 V A  C V  se j ln µ

P28.39 (a) τ = = × × =−RC 4 00 10 3 00 10 12 06 6. . .  F  sΩe je j

(b) I
R

e et RC t= =
×

− −ε 12 0
4 00 106

12 0.
.

.  s

q C e e

q e I e

t RC t

t t

= − = × −

= − =

− − −

− −

ε

µ µ

1 3 00 10 12 0 1

36 0 1 3 00

6 12 0

12 0 12 0

. .

. .

.

. .

a f
 C  A

FIG. P28.39

P28.40 ∆V
Q
C0 =

Then, if q t Q e t RC( ) = − ∆ ∆V t V e t RC( ) = −
0b g

and ∆
∆
V t
V

e t RC( )

0b g =
− .

When ∆ ∆V t V( ) =
1
2 0b g, then e t RC− =

1
2

− = FHG
I
KJ = −

t
RC

ln ln
1
2

2.

Thus, R
t

C
=

ln 2a f .

Section 28.5 Electrical Meters

P28.41 ∆V I r I I Rg g g p= = −e j , or R
I r

I I

I

I I
p

g g

g

g

g

=
−

=
−e j
a f
e j

60 0.  Ω

Therefore, to have I = =0 100 100.  A  mA  when I g = 0 500.  mA :

Rp = =
0 500 60 0

99 5
0 302

. .
.

.
 mA  

 mA
 

a fa fΩ
Ω .

FIG. P28.41
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P28.42 Applying Kirchhoff’s loop rule, − + − =I I I Rg g p75 0 0.  Ωa f e j .

Therefore, if I = 1 00.  A  when I g = 1 50.  mA ,

R
I

I I
p

g

g

=
−

=
×

− ×
=

−

−

75 0 1 50 10 75 0

1 00 1 50 10
0 113

3

3

. . .

. .
.

  A  

 A  A
 

Ω Ω
Ω

a f
e j

e ja f
.

FIG. P28.42

P28.43 Series Resistor → Voltmeter

∆V IR= : 25 0 1 50 10 75 03. . .= × +− Rsb g
Solving, Rs = 16 6.  kΩ .

FIG. P28.43

P28.44 (a) In Figure (a), the
emf sees an
equivalent
resistance of
200 00.  Ω .

I =

=

6 000 0
200 00
0 030 000

.
.

.

 V
 

 A
Ω

6.0000 V

20.000 Ω

180.00 Ω

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ��� ��� ��� ��� ��� ��� ��� ���
��

�
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��
�
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��
�
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��
�
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180.00 Ω 180.00 Ω

A
V AV

(a) (b) (c)

20.000 Ω 20.000 Ω

FIG. P28.44

The terminal potential difference is ∆ ΩV IR= = =0 030 000 180 00 5 400 0. . . A   Vb ga f .

(b) In Figure (b), Req = +
F
HG

I
KJ =
−

1
180 00

1
20 000

178 39
1

.
.

  
 

Ω Ω
Ω .

The equivalent resistance across the emf is 178 39 0 500 00 20 000 198 89. . . .    Ω Ω Ω Ω+ + = .

The ammeter reads I
R

= = =
ε 6 000 0

0 030 167
.

.
 V

198.89 
 A

Ω

and the voltmeter reads ∆ ΩV IR= = =0 030 167 178 39 5 381 6. . . A   Vb ga f .

(c) In Figure (c),
1

180 50
1

20 000
178 89

1

.
.

  
 

Ω Ω
Ω+

F
HG

I
KJ =
−

.

Therefore, the emf sends current through Rtot    = + =178 89 20 000 198 89. . .Ω Ω Ω .

The current through the battery is I = =
6 000 0

0 030 168
.

.
 V

198.89 
 A

Ω

but not all of this goes through the ammeter.

The voltmeter reads ∆ ΩV IR= = =0 030 168 178 89 5 396 6. . . A   Vb ga f .

The ammeter measures current I
V

R
= = =
∆

Ω
5 396 6

0 029 898
.

.
 V

180.50 
 A .

The connection shown in Figure (c) is better than that shown in Figure (b) for accurate
readings.
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P28.45 Consider the circuit diagram shown, realizing that
I g = 1 00.  mA . For the 25.0 mA scale:

24 0 1 00 25 01 2 3. . . mA  mA  a fb g a fa fR R R+ + = Ω

FIG. P28.45

or R R R1 2 3
25 0
24 0

+ + = FHG
I
KJ

.

.
 Ω . (1)

For the 50.0 mA scale: 49 0 1 00 25 01 2 3. . . mA  mA  a fb g a fb gR R R+ = +Ω

or 49 0 25 01 2 3. .R R R+ = +b g  Ω . (2)

For the 100 mA scale: 99 0 1 00 25 01 2 3. . . mA  mA  a f a fb gR R R= + +Ω

or 99 0 25 01 2 3. .R R R= + + Ω . (3)

Solving (1), (2), and (3) simultaneously yields

R R R1 2 30 260 0 261 0 521= = =. . . ,   ,   Ω Ω Ω .

P28.46 ∆V IR=

(a) 20 0 1 00 10 60 03
1. . . V  A  = × +−e jb gR Ω

R1
41 994 10 19 94= × =. .  kΩ Ω

FIG. P28.46

(b) 50 0 1 00 10 60 03
2 1. . . V  A  = × + +−e jb gR R Ω R2 30 0= .  kΩ

(c) 100 1 00 10 60 03
3 1 V  A  = × + +−. .e jb gR R Ω R3 50 0= .  kΩ

P28.47 Ammeter: I r Ig g= −0 500 0 220. . A  e ja fΩ
or I rg + =0 220 0 110. .  VΩa f (1)

Voltmeter: 2 00 2 500.  V  = +I rg Ωb g (2)

Solve (1) and (2) simultaneously to find:

I g = 0 756.  mA  and r = 145 Ω .

FIG. P28.47

Section 28.6 Household Wiring and Electrical Safety

P28.48 (a) P = = FHG
I
KJ =

× ⋅

×
=

−

−
I R I

A
2 2

2 8

3 2

1 00 1 70 10 16 0 0 304 8

0 512 10
0 101

ρ

π

A . . . .

.
.

 A  m  ft  m ft

 m
 W

a f e ja fb g
e j

Ω

(b) P = = =I R2 100 0 101 10 1. .  WΩa f
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P28.49 (a) P = I V∆ : So for the Heater, I
V

= = =
P
∆

1 500
12 5

 W
120 V

 A. .

For the Toaster, I = =
750

6 25
 W

120 V
 A. .

And for the Grill, I = =
1 000

8 33
 W

120 V
 A. .

(b) 12 5 6 25 8 33 27 1. . . .+ + =  A

The current draw is greater than 25.0 amps, so this circuit breaker would not be sufficient.

P28.50 I R I RAl
2

Al Cu
2

Cu= so I
R
R

I IAl
Cu

Al
Cu

Cu

Al
Cu  A= = = = =

ρ
ρ

1 70
2 82

20 0 0 776 20 0 15 5
.
.

. . . .a f a f

P28.51 (a) Suppose that the insulation between either of your fingers and the conductor adjacent is a
chunk of rubber with contact area 4 mm2 and thickness 1 mm. Its resistance is

R
A

= ≈
⋅

×
≈ ×

−

−
ρA 10 10

4 10
2 10

13 3

6
15

 m  m

 m
 2

Ω
Ω

e je j
.

The current will be driven by 120 V through total resistance (series)

2 10 10 2 10 5 1015 4 15 15× + + × ≈ ×    Ω Ω Ω Ω .

It is: I
V

R
=

×
−∆

Ω
~ ~

120
10 14 V

5 10  
 A15 .

(b) The resistors form a voltage divider, with the center of your hand at potential 
Vh

2
, where Vh

is the potential of the “hot” wire. The potential difference between your finger and thumb is
∆ ΩV IR= − −~ ~10 10 1014 4 10 A   Ve je j . So the points where the rubber meets your fingers are

at potentials of

~
Vh

2
10 10+ −  V and ~

Vh

2
10 10− −  V .

Additional Problems

P28.52 The set of four batteries boosts the electric potential of each bit of charge that goes through them by
4 1 50 6 00× =. . V  V . The chemical energy they store is

∆ ∆U q V= = =240 6 00 1 440 C  J C  Ja fb g. .

The radio draws current I
V

R
= = =
∆

Ω
6 00

0 030 0
.

.
 V

200 
 A .

So, its power is P = = = =∆V Ia f a fb g6 00 0 030 0 0 180 0 180. . . . V  A  W  J s.

Then for the time the energy lasts, we have P =
E

t∆
: ∆ t

E
= = = ×
P

1 440
8 00 103 J

0.180 J s
 s. .

We could also compute this from I
Q

t
=
∆

: ∆ t
Q
I

= = = × =
240

8 00 10 2 223 C
0.030 0 A

 s  h. . .
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P28.53 I
R r

=
+
ε

, so P = =
+

I R
R

R r
2

2

2
ε
a f  or R r R+ =

F
HG
I
KJa f2

2ε
P

.

Let x ≡
ε 2

P
, then R r xR+ =a f2  or R r x R r2 22 0+ − − =a f .

With r = 1 20.  Ω , this becomes R x R2 2 40 1 44 0+ − − =. .a f ,

which has solutions of R
x x

=
− − ± − −2 40 2 40 5 76

2

2. . .a f a f
.

(a) With ε = 9 20.  V  and P = 12 8.  W, x = 6 61. :

R =
+ ± −

=
4 21 4 21 5 76

2
3 84

2. . .
.

a f
 Ω  or 0 375.  Ω .

(b) For ε = 9 20.  V  and P = 21 2.  W , x ≡ =
ε 2

3 99
P

.

R =
+ ± −

=
± −1 59 1 59 5 76

2
1 59 3 22

2

2. . . . .a f
.

The equation for the load resistance yields a complex number, so there is no resistance

that will extract 21.2 W from this battery. The maximum power output occurs when

R r= = 1 20.  Ω , and that maximum is: Pmax .= =
ε 2

4
17 6

r
 W .

P28.54 Using Kirchhoff’s loop rule for the closed loop, + − − =12 0 2 00 4 00 0. . .I I , so I = 2 00.  A

V Vb a− = + − − = −4 00 2 00 4 00 0 10 0 4 00. . . . . V  A    Va fa f a fa fΩ Ω .

Thus, ∆Vab = 4 00.  V  and point  is at the higher potentiala .

P28.55 (a) R Req = 3 I
R

=
ε

3
Pseries = =ε

ε
I

R

2

3

(b) R
R R R

R
eq =

+ +
=

1
1 1 1 3b g b g b g I

R
=

3ε
Pparallel = =ε

ε
I

R
3 2

(c) Nine times more power is converted in the parallel  connection.

*P28.56 (a) We model the generator as a constant-voltage power supply.
Connect two light bulbs across it in series. Each bulb is designed to

carry current I
V

= = =
P
∆

100
0 833

 W
120 V

 A. . Each has resistance

R
V
I

= = =
∆

Ω
120

144
 V

0.833 A
 . In the 240-V circuit the equivalent

resistance is 144 144 288   Ω Ω Ω+ = . The current is

I
V

R
= = =
∆

Ω
240

0 833
 V

288 
 A.  and the generator delivers power

P = = =I V∆ 0 833 240 200.  A  V  Wa f .

FIG. P28.56(a)

continued on next page
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(b) The hot pot is designed to carry
current

I
V

= = =
P
∆

500
4 17

 W
120 V

 A. .

It has resistance

R
V
I

= = =
∆

Ω
120

28 8
 V

4.17 A
 . .

28.8 Ω

240 V 144 Ω

FIG. P28.56(b)

In terms of current, since 
4 17

5
.  A

0.833 A
= , we can place five light bulbs in parallel and the hot

pot in series with their combination. The current in the generator is then 4 17.  A  and it

delivers power P = = =I V∆ 4 17 240 1 000.  A  V  Wa f .

P28.57 The current in the simple loop circuit will be I
R r

=
+
ε

.

(a) ∆V Ir
R

R rter = − =
+

ε
ε

and ∆Vter →ε  as R→∞ .

(b) I
R r

=
+
ε

and I
r

→
ε

 as R→ 0 .

(c) P = =
+

I R
R

R r
2 2

2ε a f
d
dR

R

R r R r

P
=

−

+
+

+
=

2
0

2

3

2

2
ε ε
a f a f

Then 2R R r= + and R r= .

FIG. P28.57

P28.58 The potential difference across the capacitor ∆ ∆V t V e t RCa f e j= − −
max 1 .

Using 1 Farad = 1 s Ω , 4 00 10 0 1
3 00 10 0 10 6

. .
. .

 V  V
 s  s

= −
L
NM

O
QP

− × −a f a f e je
R Ω

.

Therefore, 0 400 1 00
3 00 105

. .
.

= −
− ×

e
R Ωe j .

Or e
R− ×
=

3 00 105

0 600
.

.
 Ωe j .

Taking the natural logarithm of both sides, −
×

=
3 00 10

0 600
5.

ln .
 Ω

R
a f

and R = −
×

= + × =
3 00 10

0 600
5 87 10 587

5
5.

ln .
.

 
  k

Ω
Ω Ωa f .
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P28.59 Let the two resistances be x and y.

Then, R x y
Is

s= + = = =
P

2 2
225

9 00
 W

5.00 A
 a f . Ω y x= −9 00.  Ω

and R
xy

x y Ip
p

=
+

= = =
P

2 2
50 0

2 00
.

.
 W

5.00 A
 a f Ω

so
x x

x x
9 00
9 00

2 00
.
.

.
 
 

 
Ω
Ω

Ω
−

+ −
=

a f
a f x x2 9 00 18 0 0− + =. . .

Factoring the second equation, x x− − =6 00 3 00 0. .a fa f
so x = 6 00.  Ω  or x = 3 00.  Ω .

Then, y x= −9 00.  Ω  gives y = 3 00.  Ω  or y = 6 00.  Ω .

The two resistances are found to be 6 00.  Ω  and 3 00.  Ω .

x y

x

y

FIG. P28.59

P28.60 Let the two resistances be x and y.

Then, R x y
Is

s= + =
P

2  and R
xy

x y Ip
p

=
+

=
P

2 .

From the first equation, y
I

xs= −
P

2 , and the second

becomes 
x I x

x I x I
s

s

pP

P

P2

2 2

−

+ −
=

e j
e j

 or x
I

x
I

s s p2
2 4 0− FHG
I
KJ + =

P P P
.

Using the quadratic formula, x
I

s s s p
=

± −P P P P2

2

4

2
.

Then, y
I

xs= −
P

2  gives y
I

s s s p
=

−P P P P∓ 2

2

4

2
.

The two resistances are 
P P P Ps s s p

I

+ −2

2

4

2
 and 

P P P Ps s s p

I

− −2

2

4

2
.

x y

x

y

FIG. P28.60

P28.61 (a) ε ε ε− − + =∑I Rc h b g1 2 0

40 0 4 00 2 00 0 300 0 300 6 00 6 00 0. . . . . . . V  A  V− + + + − + =a f a f a fR Ω ; so R = 4 40.  Ω

(b) Inside the supply, P = = =I R2 24 00 2 00 32 0. . . A   Wa f a fΩ .

Inside both batteries together, P = = =I R2 24 00 0 600 9 60. . . A   Wa f a fΩ .

For the limiting resistor, P = =4 00 4 40 70 42. . . A   Wa f a fΩ .

(c) P = + = + =I ε ε1 2 4 00 6 00 6 00 48 0b g a f a f. . . . A  V  W
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*P28.62 (a) ∆ ∆V V I R I R

I I I I
I R
R

I
R R

R

I
IR

R R

I
I R
R

IR
R R

I

1 2 1 1 2 2

1 2 1
1 1

2
1

2 1

2

1
2

1 2

2
1 1

2

1

1 2
2

= =

= + = + =
+

=
+

= =
+

=

I
R1

R2

I1

I2

FIG. P28.62(a)

(b) The power delivered to the pair is P = + = + −I R I R I R I I R1
2

1 2
2

2 1
2

1 1
2

2b g . For minimum power

we want to find I1  such that 
d
dI
P

1
0= .

d
dI

I R I I R
P

1
1 1 1 22 2 1 0= + − − =b ga f I R IR I R1 1 2 1 2 0− + =

I
IR

R R1
2

1 2
=

+

This is the same condition as that found in part (a).

P28.63 Let Rm =  measured value, R =  actual value,

IR =  current through the resistor R

I =  current measured by the ammeter.

(a) When using circuit (a), I R V I IR R= = −∆ 20 000b g  or R
I

IR
= −

L
NM
O
QP

20 000 1 .

But since I
V

Rm
=
∆

 and I
V

RR =
∆

, we have
I

I
R

RR m
=

(a)

(b)

FIG. P28.63

and R
R R

R
m

m
=

−
20 000
b g

. (1)

When R Rm> , we require
R R

R
m−

≤
b g

0 050 0. .

Therefore, R Rm ≥ −1 0 050 0.b g and from (1) we find R ≤ 1 050 Ω .

(b) When using circuit (b), I R V IR R= −∆ Ω0 5.  a f .

But since I
V

RR
m

=
∆

, R Rm = +0 500.a f . (2)

When R Rm > , we require
R R

R
m −

≤
b g

0 050 0. .

From (2) we find R ≥ 10 0.  Ω .



Chapter 28     153

P28.64 The battery supplies energy at a changing rate
dE
dt

I
R

e RC= = = FHG
I
KJ

−P ε ε
ε 1 .

Then the total energy put out by the battery is dE
R

t
RC

dt
t

z z= −FHG
I
KJ

=

∞ ε 2

0

exp

dE
R

RC
t

RC
dt
RC

C
t

RC
C Cz z= − −FHG

I
KJ −
F
HG
I
KJ = − −FHG

I
KJ = − − =

∞ ∞
ε

ε ε ε
2

0

2

0

2 20 1a f exp exp .

The power delivered to the resistor is
dE
dt

V I I R R
R

t
RCR= = = = −FHG
I
KJP ∆ 2

2

2
2ε

exp .

So the total internal energy appearing in the resistor is dE
R

t
RC

dtz z= −FHG
I
KJ

∞ ε 2

0

2
exp

dE
R

RC t
RC

dt
RC

C t
RC

C Cz z= −FHG
I
KJ −FHG

I
KJ −
F
HG
I
KJ = − −FHG

I
KJ = − − =

∞ ∞
ε ε ε ε2

0

2

0

2 2

2
2 2

2
2

2
0 1

2
exp exp .

The energy finally stored in the capacitor is U C V C= =
1
2

1
2

2 2∆a f ε . Thus, energy of the circuit is

conserved ε ε ε2 2 21
2

1
2

C C C= +  and resistor and capacitor share equally in the energy from the

battery.

P28.65 (a) q C V e t RC= − −∆ 1e j

q e= × −
L
NM

O
QP =

− − × × −

1 00 10 10 0 1 9 936 10 0 2 00 10 1.00 106 6

. . .
. .

 F  V  Ce ja f e je j µ

(b) I
dq
dt

V
R

e t RC= = FHG
I
KJ

−∆

I e=
×

F
HG

I
KJ = × =− −10 0

2 00 10
3 37 10 33 76

5 00 8.
.

. .. V
 

 A  nA
Ω

(c)
dU
dt

d
dt

q
C

q
C

dq
dt

q
C

I=
F
HG
I
KJ =
F
HG
I
KJ = FHG

I
KJ

1
2

2

dU
dt

=
×

×

F
HG

I
KJ × = × =

−

−
− −9 93 10

3 37 10 3 34 10 334
6

6
8 7.

. .
 C

1.00 10  C V
 A  W  nWe j

(d) Pbattery  A  V  W  nW= = × = × =− −Iε 3 37 10 10 0 3 37 10 3378 7. . .e ja f
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P28.66 Start at the point when the voltage has just reached 
2
3
∆V

and the switch has just closed. The voltage is 
2
3
∆V  and is

decaying towards 0 V with a time constant R C2

∆ ∆V t V eC
t R Ca f = LNM
O
QP

−2
3

2 .

We want to know when ∆V tC a f  will reach 
1
3
∆V .

Therefore,
1
3

2
3

2∆ ∆V V e t R C= LNM
O
QP

−

or e t R C− =2
1
2

or t R C1 2 2= ln .

V

R1

R2

∆V

+

C ∆Vc

Voltage
controlled
switch

FIG. P28.66

After the switch opens, the voltage is 
1
3
∆V , increasing toward ∆V  with time constant R R C1 2+b g :

∆ ∆ ∆V t V V eC
t R R Ca f b g= − LNM
O
QP

− +2
3

1 2 .

When ∆ ∆V t VC a f = 2
3

2
3

2
3

1 2∆ ∆ ∆V V Ve t R R C= − − +b g or e t R R C− + =1 2
1
2

b g .

So t R R C2 1 2 2= +b g ln and T t t R R C= + = +1 2 1 22 2b g ln .

P28.67 (a) First determine the resistance of each light bulb: P =
∆V

R
a f2

R
V

= = =
∆

Ω
a f a f2 2120

60 0
240

P
 V
 W

 
.

.

We obtain the equivalent resistance Req  of the network of light

bulbs by identifying series and parallel equivalent resistances: FIG. P28.67

R R
R Req    = +

+
= + =1

2 3

1
1 1

240 120 360b g b g Ω Ω Ω .

The total power dissipated in the 360 Ω is P = = =
∆

Ω
V

R
a f a f2 2120

360
40 0

eq

 V
 

 W. .

(b) The current through the network is given by P = I R2
eq : I

R
= = =

P

eq

 W
360 

 A
40 0 1

3
.
Ω

.

The potential difference across R1  is ∆ ΩV IR1 1
1
3

240 80 0= = FHG
I
KJ = A   Va f . .

The potential difference ∆V23  across the parallel combination of R2  and R3  is

∆
Ω Ω

V IR23 23
1
3

1
1 240 1 240

40 0= = FHG
I
KJ +

F
HG

I
KJ = A

  
 Vb g b g . .
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*P28.68 (a) With the switch closed, current exists in a simple series
circuit as shown. The capacitors carry no current. For R2

we have

P = I R2
2 I

R
= =

⋅
=

P

2

2 40
18 5

.
.

 V A
7 000 V A

 mA .

The potential difference across R1  and C1  is

∆V IR= = × =−
1

21 85 10 4 000 74 1. . A  V A  Ve jb g .

The charge on C1

FIG. P28.68(a)

Q C V= = × =−
1

63 00 10 74 1 222∆ . . C V  V  Ce ja f µ .

The potential difference across R2  and C2  is

∆ ΩV IR= = × =−
2

21 85 10 7 000 130.  A   Ve jb g .

The charge on C2

Q C V= = × =−
2

66 00 10 130 778∆ .  C V  V  Ce ja f µ .

The battery emf is

IR I R Req = + = × + =−
1 2

21 85 10 7 000 204b g b g.  A 4 000  V A  V .

(b) In equilibrium after the switch has been opened, no current
exists. The potential difference across each resistor is zero. The
full 204 V appears across both capacitors. The new charge C2

Q C V= = × =−
2

66 00 10 204 1 222∆ .  C V  V  Ce ja f µ

for a change of 1 222 778 444 C  C  Cµ µ µ− = . FIG. P28.68(b)

*P28.69 The battery current is

150 45 14 4 213+ + + =a f mA  mA.

(a) The resistor with highest resistance is that
carrying 4 mA. Doubling its resistance will
reduce the current it carries to 2 mA. Then
the total current is

FIG. P28.69

150 45 14 2 211+ + + =a f mA  mA, nearly the same as before. The ratio is 
211
213

0 991= . .

(b) The resistor with least resistance carries 150 mA. Doubling its resistance changes this current
to 75 mA and changes the total to

75 45 14 4 138+ + + =a f mA  mA. The ratio is 
138
213

0 648= . , representing a much larger

reduction (35.2% instead of 0.9%).

(c) This problem is precisely analogous. As a battery maintained a potential difference in parts
(a) and (b), a furnace maintains a temperature difference here. Energy flow by heat is
analogous to current and takes place through thermal resistances in parallel. Each resistance
can have its “R-value” increased by adding insulation. Doubling the thermal resistance of
the attic door will produce only a negligible (0.9%) saving in fuel. Doubling the thermal
resistance of the ceiling  will produce a much larger saving. The ceiling originally has the

smallest thermal resistance.
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*P28.70 From the hint, the equivalent resistance of .

That is, R
R R

RT
L eq

eq+
+

=
1

1 1

R
R R

R R
R

R R R R R R R R R

R R R R R

R
R R R R

T
L eq

L eq
eq

T L T eq L eq L eq eq

eq T eq T L

eq
T T T L

+
+

=

+ + = +

− − =

=
± − −

2

2

2

0

4 1

2 1

a fb g
a f

Only the + sign is physical:

R R R R Req T L T T= + +FH IK
1
2

4 2 .

For example, if RT = 1 Ω .

And RL = 20 Ω , Req = 5 Ω .

P28.71 (a) After steady-state conditions have been reached, there is no DC current through the
capacitor.

Thus, for R3: IR3
0=  steady-stateb g .

For the other two resistors, the steady-state current is simply determined by the 9.00-V emf
across the 12-kΩ and 15-kΩ resistors in series:

For R1  and R2 : I
R RR R1 2

1 2

9 00
15 0

333+ =
+

=
+

=b g a f b gε
µ

.
.

 V
12.0 k  k

 A steady-state
Ω Ω

.

(b) After the transient currents have ceased, the potential
difference across C is the same as the potential
difference across R IR2 2=b g  because there is no voltage
drop across R3 . Therefore, the charge Q on C is

Q C V C IRR= = =

=

∆ Ωa f b g b gb ga f
2 2 10 0 333 15 0

50 0

. .

. .

 F  A  k

 C

µ µ

µ
FIG. P28.71(b)

continued on next page
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(c) When the switch is opened, the branch containing R1

is no longer part of the circuit. The capacitor discharges
through R R2 3+b g with a time constant of
R R C2 3 15 0 3 00 10 0 0 180+ = + =b g a fb g. . . . k  k  F  sΩ Ω µ . The

initial current Ii  in this discharge circuit is determined
by the initial potential difference across the capacitor
applied to R R2 3+b g in series:

I
V

R R
IR

R Ri
C=

+
=

+
=

+
=

∆ Ω
Ω Ω

a f
b g b g

b ga f
a f2 3

2

2 3

333 15 0
15 0 3 00

278
 A  k
 k  k

 A
µ

µ
.

. .
.

FIG. P28.71(c)

Thus, when the switch is opened, the current through R2  changes instantaneously from
333 Aµ  (downward) to 278 Aµ  (downward) as shown in the graph. Thereafter, it decays
according to

I I e e tR i
t R R C t

2
2 3 278 00 180= = >− + −b g a fb g a f A  for  sµ . .

(d) The charge q on the capacitor decays from Qi  to 
Qi

5
 according to

q Q e
Q

Q e

e
t

t

i
t R R C

i
i

t

t

=

=

=

=

= =

− +

−

2 3

5
5

5
180

0 180 5 290

0 180

0 180

b g

b g

a fa f

.

.

ln

. ln

 s

 s

 ms
 s  ms

*P28.72 (a) First let us flatten the circuit on a 2-D plane
as shown; then reorganize it to a format
easier to read. Notice that the five resistors
on the top are in the same connection as
those in Example 28.5; the same argument
tells us that the middle resistor can be
removed without affecting the circuit. The
remaining resistors over the three parallel
branches have equivalent resistance

Req = + +F
HG

I
KJ =
−1

20
1
20

1
10

5 00
1

.  Ω .

(b) So the current through the battery is

∆
Ω

V
Req

= =
12 0

2 40
.

.
 V

5.00 
 A .

FIG. P28.72(a)
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P28.73 ∆V e t RC= −ε

so ln
ε
∆V RC

tF
HG
I
KJ =
F
HG
I
KJ

1
.

A plot of ln
ε
∆V
F
HG
I
KJ  versus   t  should

be a straight line with slope equal

to 
1

RC
.

Using the given data values:

FIG. P28.73

(a) A least-square fit to this data yields the graph above.

xi∑ = 282 , xi
2 41 86 10∑ = ×. ,

x yi i∑ = 244, yi∑ = 4 03. , N = 8

Slope =
−

−
=

∑ ∑ ∑
∑ ∑

N x y x y

N x x

i i i i

i i

c h c hc h
e j c h2 2 0 011 8.

Intercept =
−

−
=

∑ ∑ ∑ ∑
∑ ∑

x y x x y

N x x

i i i i i

i i

2

2 2 0 088 2
e jc h c hc h

e j c h
.

t s V V Va f a f b g∆ ∆ln ε
0
4.87

11.1
19.4
30.8
46.6
67.3

102.2

6.19
5.55
4.93
4.34
3.72
3.09
2.47
1.83

0
0.109
0.228
0.355
0.509
0.695
0.919
1.219

The equation of the best fit line is: ln . .
ε
∆V

tF
HG
I
KJ = +0 011 8 0 088 2b g .

(b) Thus, the time constant is τ = = = =RC
1 1

0 011 8
84 7

slope
 s

.
.

and the capacitance is C
R

= =
×

=
τ

µ
84 7

10 0 10
8 476

.
.

.
 s

 
 F

Ω
.

P28.74 (a) For the first measurement, the equivalent circuit is as
shown in Figure 1.

R R R R Rab y y y= = + =1 2

so R Ry =
1
2 1. (1)

For the second measurement, the equivalent circuit is
shown in Figure 2.

Thus, R R R Rac y x= = +2
1
2

. (2)

Substitute (1) into (2) to obtain:

R R Rx2 1
1
2

1
2

= FHG
I
KJ + , or R R Rx = −2 1

1
4

.

(b) If R1 13 0= .  Ω  and R2 6 00= .  Ω , then Rx = 2 75.  Ω .

a bc
RyRy Rx

R1

Figure 1

a c

RxRyRy

R2

Figure 2

FIG. P28.74

The antenna is inadequately grounded  since this exceeds the limit of 2 00.  Ω .
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P28.75 The total resistance between points b and c is:

R =
+

=
2 00 3 00
2 00 3 00

1 20
. .
. .

.
 k  k
 k  k

 k
Ω Ω
Ω Ω

Ω
a fa f

.

The total capacitance between points d and e is:
C = + =2 00 3 00 5 00. . . F  F  Fµ µ µ .

The potential difference between point d and e in this series RC
circuit at any time is:

∆V e et RC t= − = −− −ε 1 120 0 1 1 000 6.  Va f .

Therefore, the charge on each capacitor between points d and e is:

+ -
a

b c d e

f

S
120 V

2.00 kΩ

3.00 kΩ

C1 = 2.00 µF

C2 = 3.00 µF

FIG. P28.75

q C V e et t
1 1

1 000 6 1 000 62 00 120 0 1 240 1= = − = −− −∆ . . F  V  Cµ µb ga f b g
and q C V e et t

2 2
1 000 6 1 000 63 00 120 0 1 360 1= = − = −− −∆a f b ga f b g. . F  V  Cµ µ .

*P28.76 (a) Let i represent the current in the battery and ic  the current charging the capacitor. Then i ic−  is

the current in the voltmeter. The loop rule applied to the inner loop is + − − =ε iR
q
C

0 . The loop

rule for the outer perimeter is ε − − − =iR i i rcb g 0 . With i
dq
dtc = , this becomes ε − − + =iR ir

dq
dt

r 0 .

Between the two loop equations we eliminate i
R

q
RC

= −
ε

 by substitution to obtain

ε
ε

ε ε

ε

− + −FHG
I
KJ + =

−
+

+
+

+ =

−
+

+ +
+

=

R r
R

q
RC

dq
dt

r

R r
R

R r
RC

q
dq
dt

r

r
R r

q
C

Rr
R r

dq
dt

a f 0

0

0

This is the differential equation required.

(b) To solve we follow the same steps as on page 875.

dq
dt R

R r
RrC

q
R r
RrC

q
rC

R r

dq
q rC R r

R r
RrC

dt q
rc

R r
R r
RrC

t

q rc R r
rc R r

R r
RrC

t q
rc

R r
rc

R r
e

q
r

r R
C e R

Rr
R r

q t q t

R r RrC t

t R C

= −
+

= −
+

−
+

F
HG

I
KJ

− +
= −

+
−

+
F
HG

I
KJ = −

+

− +
− +

F
HG

I
KJ = −

+
−

+
= −

+

=
+

− =
+

z z
− +

−

ε ε

ε
ε

ε
ε

ε ε

ε

a f
a f
a f
e j

a f
0 0 0 0

1

ln

ln

eq  where eq

The voltage across the capacitor is V
q
C

r
r R

eC
t R C= =

+
− −ε 1 eqe j .

(c) As t →∞  the capacitor voltage approaches 
r

r R
r

r R+
− =

+
ε

ε
1 0a f . If the switch is then opened,

the capacitor discharges through the voltmeter. Its voltage decays exponentially according

to 
r

r R
e t rCε

+
− .
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ANSWERS TO EVEN PROBLEMS

P28.2 (a) 1 79.  A; (b) 10 4.  V P28.42 0 113.  Ω

P28.44 (a) 30 000.  mA , 5 400 0.  V ;P28.4 (a) 12 4.  V ; (b) 9 65.  V
(b) 30 167.  mA, 5 381 6.  V ;

P28.6 (a) 17 1.  Ω ; (b) 1 99.  A  in 4 Ω  and 9 Ω;
1 17.  A  in 7 Ω; 0 818.  A  in 10 Ω

(c) 29 898.  mA ; 5 396 6.  V

P28.46 see the solution
P28.8 29 5.  V

P28.48 (a) 0.101 W; (b) 10.1 W
P28.10 (a) see the solution; (b) no

P28.50 15.5 A
P28.12 see the solution

P28.52 2 22.  h
P28.14 R1 1 00= .  kΩ; R2 2 00= .  kΩ ; R3 3 00= .  kΩ

P28.54 a is 4 00.  V  higher
P28.16 470 Ω  and 220 Ω

P28.56 (a) see the solution; 833 mA; 200 W;
P28.18 (a) 11 0.  Ω ; (b) and (d) see the solution; (b) see the solution; 4.17 A; 1.00 kW

(c) 220 Ω; (e) Parallel
P28.58 587 kΩ

P28.20 I1 714=  mA ; I2 1 29= .  A ; ε = 12 6.  V

P28.60
P P P Ps s s p

I

+ −2

2

4

2
 and 

P P P Ps s s p

I

− −2

2

4

2
P28.22 see the solution

P28.24 (a) 0 385.  mA  in R1 ; 2 69.  mA  in R3;
3 08.  mA  in R2 ; (b) c higher by 69 2.  V P28.62 (a) I

IR
R R1

2

1 2
=

+b g ; I
IR

R R2
1

1 2
=

+
;

(b) see the solutionP28.26 1 00.  A up in 200 Ω ; 4 00.  A up in 70 Ω ;
3 00.  A up in 80 Ω ; 8 00.  A down in 20 Ω ;
200 V P28.64 see the solution

P28.66 R R C1 22 2+b g lnP28.28 see the solution

P28.30 800 W  to the left-hand resistor; 25 0.  W to
each 4 Ω; 450 W  to the right-hand resistor

P28.68 (a) 222 Cµ ; (b) increase by 444 Cµ

P28.70 see the solution
P28.32 (a) −61 6.  mA ; (b) 0 235.  Cµ ; (c) 1 96.  A

P28.72 (a) 5 00.  Ω; (b) 2.40 A
P28.34 0 982.  s

P28.74 (a) R R
R

x = −2
1

4
; (b) no; Rx = 2 75.  ΩP28.36 (a) 1 50.  s ; (b) 1 00.  s ;

(c) 200 100 1.00 A  A  sµ µ+ −b ge t

P28.76 (a) and (b) see the solution; (c) 
r

r R
e t rCε

+
−

P28.38 (a) 3.91 s; (b) 0.782 ms

P28.40
t

C ln 2
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Magnetic Fields

ANSWERS TO QUESTIONS

Q29.1 The force is in the +y direction. No, the proton will not
continue with constant velocity, but will move in a circular
path in the x-y plane. The magnetic force will always be
perpendicular to the magnetic field and also to the velocity of
the proton. As the velocity changes direction, the magnetic
force on the proton does too.

Q29.2 If they are projected in the same direction into the same
magnetic field, the charges are of opposite sign.

Q29.3 Not necessarily. If the magnetic field is parallel or antiparallel
to the velocity of the charged particle, then the particle will
experience no magnetic force.

Q29.4 One particle veers in a circular path clockwise in the page,
while the other veers in a counterclockwise circular path. If the
magnetic field is into the page, the electron goes clockwise and
the proton counterclockwise.

Q29.5 Send the particle through the uniform field and look at its path. If the path of the particle is
parabolic, then the field must be electric, as the electric field exerts a constant force on a charged
particle. If you shoot a proton through an electric field, it will feel a constant force in the same
direction as the electric field—it’s similar to throwing a ball through a gravitational field. If the path
of the particle is helical or circular, then the field is magnetic—see Question 29.1. If the path of the
particle is straight, then observe the speed of the particle. If the particle accelerates, then the field is
electric, as a constant force on a proton with or against its motion will make its speed change. If the
speed remains constant, then the field is magnetic—see Question 29.3.

Q29.6 Similarities: Both can alter the velocity of a charged particle moving through the field. Both exert
forces directly proportional to the charge of the particle feeling the force. Positive and negative
charges feel forces in opposite directions. Differences: The direction of the electric force is parallel or
antiparallel to the direction of the electric field, but the direction of the magnetic force is
perpendicular to the magnetic field and to the velocity of the charged particle. Electric forces can
accelerate a charged particle from rest or stop a moving particle, but magnetic forces cannot.

161
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Q29.7 Since F v BB q= ×a f , then the acceleration produced by a magnetic field on a particle of mass m is

a v BB
q
m

= ×a f . For the acceleration to change the speed, a component of the acceleration must be in

the direction of the velocity. The cross product tells us that the acceleration must be perpendicular to
the velocity, and thus can only change the direction of the velocity.

Q29.8 The magnetic field in a cyclotron essentially keeps the charged particle in the electric field for a
longer period of time, and thus experiencing a larger change in speed from the electric field, by
forcing it in a spiral path. Without the magnetic field, the particle would have to move in a straight
line through an electric field over a distance that is very large compared to the size of the cyclotron.

Q29.9 (a) The qv B×  force on each electron is down. Since electrons are negative, v B×  must be up.
With v to the right, B must be into the page, away from you.

(b) Reversing the current in the coils would reverse the direction of B, making it toward you.
Then v B×  is in the direction right × toward you = down, and qv B×  will make the electron
beam curve up.

Q29.10 If the current is in a direction parallel or antiparallel to the magnetic field, then there is no force.

Q29.11 Yes. If the magnetic field is perpendicular to the plane of the loop, then it exerts no torque on the loop.

Q29.12 If you can hook a spring balance to the particle and measure the force on it in a known electric field,

then q
F
E

=  will tell you its charge. You cannot hook a spring balance to an electron. Measuring the

acceleration of small particles by observing their deflection in known electric and magnetic fields can
tell you the charge-to-mass ratio, but not separately the charge or mass. Both an acceleration
produced by an electric field and an acceleration caused by a magnetic field depend on the

properties of the particle only by being proportional to the ratio 
q
m

.

Q29.13 If the current loop feels a torque, it must be caused by a magnetic field. If the current loop feels no
torque, try a different orientation—the torque is zero if the field is along the axis of the loop.

Q29.14 The Earth’s magnetic field exerts force on a charged incoming cosmic ray,
tending to make it spiral around a magnetic field line. If the particle energy is
low enough, the spiral will be tight enough that the particle will first hit some
matter as it follows a field line down into the atmosphere or to the surface at a
high geographic latitude.

FIG. Q29.14

Q29.15 The net force is zero, but not the net torque.

Q29.16 Only a non-uniform field can exert a non-zero force on a magnetic dipole. If the dipole is aligned
with the field, the direction of the resultant force is in the direction of increasing field strength.
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Q29.17 The proton will veer upward when it enters the field and move in a counter-clockwise semicircular
arc. An electron would turn downward and move in a clockwise semicircular arc of smaller radius
than that of the proton, due to its smaller mass.

Q29.18 Particles of higher speeds will travel in semicircular paths of proportionately larger radius. They will
take just the same time to travel farther with their higher speeds. As shown in Equation 29.15, the
time it takes to follow the path is independent of particle’s speed.

Q29.19 The spiral tracks are left by charged particles gradually losing kinetic energy. A straight path might
be left by an uncharged particle that managed to leave a trail of bubbles, or it might be the
imperceptibly curving track of a very fast charged particle.

Q29.20 No. Changing the velocity of a particle requires an accelerating force. The magnetic force is proportional
to the speed of the particle. If the particle is not moving, there can be no magnetic force on it.

Q29.21 Increase the current in the probe. If the material is a semiconductor, raising its temperature may
increase the density of mobile charge carriers in it.

SOLUTIONS TO PROBLEMS

Section 29.1 Magnetic Fields and Forces

P29.1 (a) up

(b) out of the page, since the
charge is negative.

(c) no deflection

(d) into the page

FIG. P29.1

P29.2 At the equator, the Earth’s magnetic field is
horizontally north. Because an electron has
negative charge, F v B= ×q  is opposite in direction
to v B× . Figures are drawn looking down.

(a) Down × North = East, so the force is
directed West .

(a) (c) (d)

FIG. P29.2

(b) North × North = °=sin0 0 : Zero deflection .

(c) West × North = Down, so the force is directed Up .

(d) Southeast × North = Up, so the force is Down .
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P29.3 F v BB q= × ; F j v i BB e− = − ×e j
Therefore, B = −B ke j  which indicates the negative  directionz .

FIG. P29.3

P29.4 (a) F qvBB = = × × × °− −sin . . . sin .θ 1 60 10 3 00 10 3 00 10 37 019 6 1 C  m s  Te je je j
FB = × −8 67 10 14.  N

(b) a
F
m

= =
×
×

= ×
−

−
8 67 10
1 67 10

5 19 10
14

27
13.

.
.

 N
 kg

 m s2

P29.5 F ma qvB

B
F
qv

= = × × = × = °

= =
×

× ×
= ×

− −

−

−
−

1 67 10 2 00 10 3 34 10 90

3 34 10

1 60 10 1 00 10
2 09 10

27 13 14

14

19 7
2

. . . sin

.

. .
.

 kg  m s  N

 N

 C  m s
 T

2e je j

e je j
The right-hand rule shows that B must be in the −y  direction to yield a force in
the +x direction when v is in the z direction.

FIG. P29.5

P29.6 First find the speed of the electron.

∆ ∆ ∆K mv e V U= = =
1
2

2 : v
e V
m

= =
×

×
= ×

−

−

2 2 1 60 10 2 400

9 11 10
2 90 10

19

31
7∆ .

.
.

 C  J C

 kg
 m s

e jb g
e j

(a) F qvBB, . . . . max  C  m s  T  N= = × × = ×− −1 60 10 2 90 10 1 70 7 90 1019 7 12e je ja f

(b) FB, min = 0  occurs when v is either parallel to or anti-parallel to B.

P29.7 F qvBB = sinθ so 8 20 10 1 60 10 4 00 10 1 7013 19 6. . . . sin× = × ×− − N  C  m s  Te je ja f θ

sin .θ = 0 754 and θ = = ° °−sin . .1 0 754 48 9a f  or 131 .

P29.8 Gravitational force: F mgg = = × = ×− −9 11 10 9 80 8 93 1031 30. . . kg  m s  N down2e je j .

Electric force: F qEe = = − × = ×− −1 60 10 100 1 60 1019 17. . C  N C  down  N upe jb g .

Magnetic force: F v B E NB q= × = − × × × × ⋅ ⋅− −1 60 10 6 00 10 50 0 1019 6 6. . . C  m s   N s C m e je j e j .

FB = − × = ×− −4 80 10 4 80 1017 17. . N up  N down .
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P29.9 F v BB q= ×

v B
i j k

i j k i j k

v B

F v B

× = + − +
+ + −

= − + + + + = + +

× = + + = ⋅

= × = × ⋅ = ×− −

.

. . .

2 4 1
1 2 3

12 2 1 6 4 4 10 7 8

10 7 8 14 6

1 60 10 14 6 2 34 10

2 2 2

19 18

a f a f a f

e jb g
 T m s

 C  T m s  NB q

P29.10 qE k k= − × = − ×− −1 60 10 20 0 3 20 1019 18. . . C  N C  Ne jb g e j
F E v B a

k i B k

k i B k

i B k

∑ = + × =

− × − × × × = × ×

− × − × ⋅ × = ×

× ⋅ × = − ×

− − −

− − −

− −

q q m

3 20 10 1 60 10 9 11 10 2 00 10

3 20 10 1 92 10 1 82 10

1 92 10 5 02 10

18 19 31 12

18 15 18

15 18

. . . .

. . .

. .

 N  C 1.20 10  m s  m s

 N  C m s  N

 C m s  N

4 2e j e j e je j
e j e j e j
e j e j
The magnetic field may have any -componentx . Bz = 0  and By = −2 62.  mT .

Section 29.2 Magnetic Force Acting on a Current-Carrying Conductor

P29.11 F ILBB = sinθ with F F mgB g= =

mg ILB= sinθ so
m
L

g IB= sinθ

I = 2 00.  A and
m
L
=

F
HG

I
KJ = × −0 500

100
1 000

5 00 10 2. . g cm
 cm m
 g kg

 kg mb g .

Thus 5 00 10 9 80 2 00 90 02. . . sin .× = °−e ja f a fB

FIG. P29.11

B = 0 245.  Tesla  with the direction given by right-hand rule: eastward .

P29.12 F B i k jB I= × = × = −2 40 0 750 1 60 2 88. . . . A  m  T  Na fa f a f e j

P29.13 (a) F ILBB = = °=sin . . . sin . .θ 5 00 2 80 0 390 60 0 4 73 A  m  T  Na fa fa f

(b) FB = °=5 00 2 80 0 390 90 0 5 46. . . sin . . A  m  T  Na fa fa f

(c) FB = °=5 00 2 80 0 390 120 4 73. . . sin . A  m  T  Na fa fa f
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P29.14
F BB mg I

I
mg
B

= =
×

= = =
0 040 0 9 80

3 60
0 109

. .

.
.

 kg m  m s

 T
 A

2b ge j

The direction of I in the bar is to the right . Bin

F

FIG. P29.14

P29.15 The rod feels force F d B k j iB I Id B IdB= × = × − =a f e j e j e j .
The work-energy theorem is K K E K K

i ftrasn rot trans rot+ + = +b g b g∆

0 0
1
2

1
2

2 2+ + = +F mv Is cosθ ω

IdBL mv mR
v
R

cos0
1
2

1
2

1
2

2 2
2

°= + FHG
I
KJ
F
HG
I
KJ  and IdBL mv=

3
4

2

v
IdBL

m
= = =

4
3

4 48 0 0 120 0 240 0 450
3 0 720

1 07
. . . .

.
.

 A  m  T  m
 kg

 m s
a fa fa fa f

b g .

d
I

L

B

y

x
z

FIG. P29.15

P29.16 The rod feels force F d B k j iB I Id B IdB= × = × − =a f e j e j e j .
The work-energy theorem is K K E K K

i ftrans rot trans rot+ + = +b g b g∆

0 0
1
2

1
2

2 2+ + = +Fs mv Icosθ ω

IdBL mv mR
v
R

cos0
1
2

1
2

1
2

2 2
2

°= + FHG
I
KJ
F
HG
I
KJ  and v

IdBL
m

=
4

3
.

P29.17 The magnetic force on each bit of ring is
Id IdsBs B× =  radially inward and upward, at
angle θ above the radial line. The radially
inward components tend to squeeze the ring
but all cancel out as forces. The upward
components IdsBsinθ  all add to

I rB2π θsin  up .

FIG. P29.17
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P29.18 For each segment, I = 5 00.  A  and B j= ⋅0 020 0.  N A m .

Segment
.  m 

0.400 m  mN

.  m .  m  mN

.  m .  m  mN

F B
j

k i

i j k

i k k i

B I
ab

bc

cd

da

= ×
−

−

− + −

− +

a f

a fe j

a fe j

a fe j

0 400 0

40 0

0 400 0 400 40 0

0 400 0 400 40 0

.

.

.
FIG. P29.18

P29.19 Take the x-axis east, the y-axis up, and the z-axis south. The field is

B k j= ° − + ° −52 0 60 0 52 0 60 0. cos . . sin . T  Tµ µb g e j b g e j.

The current then has equivalent length: ′ = − +L k j1 40 0 850. . m  me j e j

F L B j k j k

F i i i

B

B

I= ′ × = − × − −

= × − − = × − =

−

− −

0 035 0 0 850 1 40 45 0 26 0 10

3 50 10 22 1 63 0 2 98 10 2 98

6

8 6

. . . . .

. . . . .

 A  m  T

 N  N  N west

b ge j e j
e j e j µ

.

FIG. P29.19

Section 29.3 Torque on a Current Loop in a Uniform Magnetic Field

P29.20 (a) 2 2 00π r = .  m

so r = 0 318.  m

µ π= = × = ⋅−IA 17 0 10 0 318 5 413 2. . . A  m  mA m2 2e j a f

(b) ττττ µµµµ= ×B

so τ = × ⋅ = ⋅−5 41 10 0 800 4 333. . . A m  T  mN m2e ja f

P29.21 τ µ θ= Bsin  so 4 60 10 0 250 90 03. . sin .× ⋅ = °−  N m µa f
µ = × ⋅ = ⋅−1 84 10 18 42. . A m  mA m2 2
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P29.22 (a) Let θ represent the unknown angle; L, the total length of the wire; and d, the length of one
side of the square coil. Then, using the definition of magnetic moment and the right-hand
rule in Figure 29.15, we find

µ = NAI : µµµµ = FHG
I
KJ

L
d

d I
4

2  at angle θ with the horizontal.

At equilibrium, ττττ µµµµ∑ = × − × =B r gb g b gm 0

ILBd mgd
4

90 0
2

0F
HG
I
KJ °− − FHG

I
KJ =sin . sinθ θa f

and
mgd ILBd

2 4
F
HG
I
KJ = FHG

I
KJsin cosθ θ

θ =
F
HG
I
KJ =

F
H
GG

I
K
JJ = °− −tan tan

. . .

. .
.1 1

2

3 40 4 00 0 010 0

2 0 100 9 80
3 97

ILB
mg

 A  m  T

 kg  m s2

a fa fb g
b ge j

.

(b) τ θm
ILBd

= FHG
I
KJ = °= ⋅

4
1
4

3 40 4 00 0 010 0 0 100 3 97 3 39cos . . . . cos . . A  m  T  m  mN ma fa fb ga f

P29.23 τ φ

τ

τ

=

= × °

= ⋅

NBAI sin

. . . . sin

.

100 0 800 0 400 0 300 1 20 60

9 98

 T  m  A

 N m

2a fe ja f

Note that φ is the angle between the magnetic
moment and the B field. The loop will rotate so as
to align the magnetic moment with the B field.
Looking down along the y-axis, the loop will rotate
in a clockwise  direction.

FIG. P29.23

P29.24 From τ = × = ×µµµµ B A BI , the magnitude of the torque is IABsin .90 0° .

(a) Each side of the triangle is 
40 0.  cm

3
.

Its altitude is 13 3 6 67 11 52 2. . .− = cm  cm and its area is

A = = × −1
2

11 5 13 3 7 70 10 3. . . cm  cm  m2a fa f .

Then τ = × ⋅ ⋅ = ⋅−20 0 7 70 10 0 520 80 13. . . . A  m  N s C m  mN m2a fe jb g .

(b) Each side of the square is 10.0 cm and its area is 100 10 2 cm  m2 2= − .

τ = = ⋅−20 0 10 0 520 0 1042. . . A  m  T  N m2a fe ja f

(c) r = =
0 400

0 063 7
.

.
 m

2
 m

π
A r= = ×

= × = ⋅

−

−

π

τ

2 2

2

1 27 10

20 0 1 27 10 0 520 0 132

.

. . . .

 m

 A  m  N m

2

2a fe ja f

(d) The circular loop experiences the largest torque.
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P29.25 Choose U = 0 when the dipole moment is at θ = °90 0.  to the field. The field exerts torque of magnitude
µ θBsin  on the dipole, tending to turn the dipole moment in the direction of decreasing θ. According
to Equations 8.16 and 10.22, the potential energy of the dipole-field system is given by

U B d B B− = = − = − +
°

°z0 0
90 0

90 0
µ θ θ µ θ µ θ

θ
θ

sin cos cos
.

.
a f or U = − ⋅µµµµ B .

P29.26 (a) The field exerts torque on the needle tending to align it with the field, so the minimum
energy orientation of the needle is:

pointing north at 48.0  below the horizontal°

where its energy is U Bmin cos . . .= − °= − × ⋅ × = − ×− − −µ 0 9 70 10 55 0 10 5 34 103 6 7 A m  T  J2e je j .

It has maximum energy when pointing in the opposite direction,

south at 48.0  above the horizontal°

where its energy is U Bmax cos . . .= − °= + × ⋅ × = + ×− − −µ 180 9 70 10 55 0 10 5 34 103 6 7 A m  T  J2e je j .

(b) U W Umin max+ = : W U U= − = + × − − × =− −
max min . . .5 34 10 5 34 10 1 077 7 J  J  Je j µ

P29.27 (a) τ = ×µµµµ B, so τ µ θ θ= × = =µµµµ B B NIABsin sin

τ π µmax sin . . . .= °= × = ⋅−NIAB 90 0 1 5 00 0 050 0 3 00 10 118
2 3 A  m  T  N ma f b g e j

(b) U = − ⋅µ B , so − ≤ ≤ +µ µB U B

Since µ π µB NIA B= = × =−a f a f b g e j1 5 00 0 050 0 3 00 10 118
2 3. . . A  m  T  J ,

the range of the potential energy is: − ≤ ≤ +118 118 J  Jµ µU .

*P29.28 (a) ττττ µµµµ= × =B NIABsinθ

τmax . . . sin .= ⋅ ⋅ °= × ⋅− −80 10 0 025 0 04 0 8 90 6 40 102 4 A  m  m  N A m  N me ja fb g

(b) Pmax max . .= = × ⋅ F
HG

I
KJ
F
HG
I
KJ =

−τ ω
π

6 40 10
2 1

0 2414  N m 3 600 rev min
 rad

1 rev
 min
60 s

 Wb g

(c) In one half revolution the work is

W U U B B B

NIAB

= − = − °− − ° =

= = × ⋅ = ×− −

max cos cos

. .

min

 N m  J

µ µ µ180 0 2

2 2 6 40 10 1 28 104 3

b g
e j

In one full revolution, W = × = ×− −2 1 28 10 2 56 103 3. . J  Je j .

(d) Pavg
 J

1 60  s
 W= =

×
=

−W
t∆

2 56 10
0 154

3.
.b g

The peak power in (b) is greater by the factor 
π
2

.
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Section 29.4 Motion of a Charged Particle in a Uniform Magnetic Field

P29.29 (a) B = × −50 0 10 6.  T; v = ×6 20 106.  m s

Direction is given by the right-hand-rule: southward

F qvB

F

B

B

=

= × × × °

= ×

− −

−

sin

. . . sin .

.

θ

1 60 10 6 20 10 50 0 10 90 0

4 96 10

19 6 6

17

 C  m s  T

 N

e je je j

(b) F
mv

r
=

2

 so r
mv

F
= =

× ×

×
=

−

−

2 27 6 2

17

1 67 10 6 20 10

4 96 10
1 29

. .

.
.

 kg  m s

 N
 km

e je j

FIG. P29.29

P29.30
1
2

2mv q V= ∆a f 1
2

3 20 10 1 60 10 83326 2 19. .× = ×− − kg  C  Ve j e ja fv v = 91 3.  km s

The magnetic force provides the centripetal force: qvB
mv

r
sinθ =

2

r
mv

qB
=

°
=

× ×

× ⋅ ⋅
=

−

−sin .

. .

. .
.

90 0

3 20 10 9 13 10

1 60 10 0 920
1 98

26 4

19

 kg  m s

 C  N s C m
 cm

e je j
e jb g .

P29.31 For each electron, q vB
mv

r
sin .90 0

2

°=  and v
eBr
m

= .

The electrons have no internal structure to absorb energy, so the collision must be perfectly elastic:

K mv mv mv

K m
e B R

m
m

e B R
m

e B
m

R R

K
e

i f f= + = +

=
F
HG

I
KJ +
F
HG

I
KJ = +

=
× ⋅ ⋅

×
+ =

−

−

1
2

0
1
2

1
2

1
2

1
2 2

1 60 10 0 044 0

2 9 11 10
0 010 0 0 024 0 115

1
2

1
2

2
2

2 2
1
2

2

2 2
2
2

2

2 2

1
2

2
2

19 2

31

2 2

e j

e jb g
e j

b g b g. .

.
. .

 C  N s C m

 kg
 m  m  keV

P29.32 We begin with qvB
mv

R
=

2

, so v
qRB
m

= .

The time to complete one revolution is T
R

v
R

qRB m
m

qB
= = =

2 2 2π π π
.

Solving for B, B
m

qT
= = × −2

6 56 10 2π
.  T .
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P29.33 q V mv∆a f = 1
2

2 or v
q V

m
=

2 ∆a f
.

Also, qvB
mv

r
=

2

so r
mv
qB

m
qB

q V
m

m V

qB
= = =

2 2
2

∆ ∆a f a f
.

Therefore, r
m V

eBp
p2

2

2
=

∆a f

r
m V

q B

m V

eB

m V

eB
rd

d

d

p p
p

2
2 2 2

22 2 2
2

2
2= = =

F
HG

I
KJ =

∆ ∆ ∆a f e ja f a f

and r
m V

q B

m V

e B

m V

eB
r

p p
pα

α

α

2
2 2 2

22 2 4

2
2

2
2= = =

F
HG

I
KJ =

∆ ∆ ∆a f e ja f
a f

a f
.

The conclusion is: r r rd pα = = 2 .

P29.34 (a) We begin with qvB
mv

R
=

2

or qRB mv= .

But L mvR qR B= = 2 .

Therefore, R
L
qB

= =
× ⋅

× ×
= =

−

− −

4 00 10

1 00 10
0 050 5 00

25

19 3

.

.
. .

 J s

1.60 10  C  T
0 m  cm

e je j
.

(b) Thus, v
L

mR
= =

× ⋅

×
= ×

−

−

4 00 10

10 0 050 0
8 78 10

25

31
6.

.
.

 J s

9.11  kg  m
 m s

e jb g .

P29.35 ω = =
×

×
= ×

−

−

qB
m

1 60 10 5 20

1 67 10
4 98 10

19

27
8

. .

.
.

 C  T

 kg
 rad s

e ja f

P29.36
1
2

2mv q V= ∆a f so v
q V

m
=

2 ∆a f

r
mv
qB

= so r
m q V m

qB
=

2 ∆a f

r
m
q

V

B
2

2

2
= ⋅

∆a f
and ′ =

′
′
⋅r

m
q

V

B
a f a f2

2

2 ∆

m
qB r

V
=

2 2

2 ∆a f and ′ =
′ ′

m
q B r

V
a f b g a fa f

2 2

2 ∆
so

′
=

′
⋅

′
= FHG
I
KJ
F
HG
I
KJ =

m
m

q
q

r

r
e

e
R

R
a f2

2

22 2
8
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P29.37 E mv e V= =
1
2

2 ∆

and evB
mv

R
sin90

2

°=

B
mv
eR

m
eR

e V
m R

m V
e

B

= = =

=
×

× ×

×
= ×

−

−
−

2 1 2

1
5 80 10

2 1 67 10 10 0 10

1 60 10
7 88 1010

27 6

19
12

∆ ∆

.

. .

.
.

 m

 kg  V

 C
 T

e je j

*P29.38 (a) At the moment shown in Figure 29.21, the particle must be
moving upward in order for the magnetic force on it to be

 into the page, toward the center of this turn of its

spiral path. Throughout its motion it circulates clockwise.

v

B
+

FIG. P29.38(a)

(b) After the particle has passed the middle of the bottle and
moves into the region of increasing magnetic field, the
magnetic force on it has a component to the left (as well as
a radially inward component) as shown. This force in the
–x direction slows and reverses the particle’s motion along
the axis.

F
B

v

FIG. P29.38(b)

(c) The magnetic force is perpendicular to the velocity and does no work on the particle. The
particle keeps constant kinetic energy. As its axial velocity component decreases, its
tangential velocity component increases.

(d) The orbiting particle constitutes a loop of current in the yz

plane and therefore a magnetic dipole moment I
q
T

 A  A=

in the –x direction. It is like a little bar magnet with its N
pole on the left.

+ N S

FIG. P29.38(d)

(e) Problem 17 showed that a nonuniform magnetic field
exerts a net force on a magnetic dipole. When the dipole is
aligned opposite to the external field, the force pushes it
out of the region of stronger field. Here it is to the left, a
force of repulsion of one magnetic south pole on another
south pole.

B

N S S

FIG. P29.38(e)
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P29.39 r
mv
qB

=  so m
rqB
v

= =
× ×

×

− −7 94 10 1 60 10 1 80

4 60 10

3 19

5

. . .

.

 m  C  T

 m s

e je ja f

m = ×
×

F
HG

I
KJ =

−
−4 97 10 2 9927

27. . kg
1 u

1.66 10  kg
 u

The particle is singly ionized: either a tritium ion, 1
3 H+ , or a helium ion, 2

3 He+ .

Section 29.5 Applications Involving Charged Particles Moving in a Magnetic Field

P29.40 F FB e=

so qvB qE=

where v
K

m
=

2
 and K is kinetic energy of the electron.

E vB
K

m
B= = =

×

×
=

−

−
2 2 750 1 60 10

9 11 10
0 015 0 244

19

31

a fe j b g.

.
.  kV m

P29.41 K mv q V= =
1
2

2 ∆a f so v
q V

m
=

2 ∆a f

F v BB q
mv

r
= × =

2

r
mv
qB

m
q

q V m
B B

m V
q

= = =
2 1 2∆ ∆a f a f

(a) r238

27

19
2

2 238 1 66 10 2 000

1 60 10
1

1 20
8 28 10 8 28=

× ×

×
F
HG
I
KJ = × =

−

−
−

.

. .
. .

e j
 m  cm

(b) r235 8 23= .  cm

r
r

m
m

238

235

238

235

238 05
235 04

1 006 4= = =
.
.

.

The ratios of the orbit radius for different ions are independent of ∆V  and B.

P29.42 In the velocity selector: v
E
B

= = = ×
2 500
0 035 0

7 14 104 V m
 T

 m s
.

. .

In the deflection chamber: r
mv
qB

= =
× ×

×
=

−

−

2 18 10 7 14 10

1 60 10 0 035 0
0 278

26 4

19

. .

. .
.

 kg  m s

 C  T
 m

e je j
e jb g .
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P29.43 (a) F qvB
mv

RB = =
2

ω = = = =
×

×
= ×

−

−
v
R

qBR
mR

qB
m

1 60 10 0 450

1 67 10
4 31 10

19

27
7

. .

.
.

 C  T

 kg
 rad s

e ja f

(b) v
qBR
m

= =
×

×
= ×

−

−

1 60 10 0 450 1 20

1 67 10
5 17 10

19

27
7

. . .

.
.

 C  T  m

 kg
 m s

e ja fa f

P29.44 K mv=
1
2

2 : 34 0 10 1 60 10
1
2

1 67 106 19 27 2. . .× × = ×− − eV  J eV  kge je j e jv

v = ×8 07 107.  m s r
mv
qB

= =
× ×

×
=

−

−

1 67 10 8 07 10

1 60 10 5 20
0 162

27 7

19

. .

. .
.

 kg  m s

 C  T
 m

e je j
e ja f

*P29.45 Note that the “cyclotron frequency” is an angular speed. The motion of the proton is described by

F ma∑ = :

q vB
mv

r

q B m
v
r

m

sin90
2

°=

= = ω

(a) ω = =
× ⋅ ⋅

×

⋅

⋅
F
HG
I
KJ = ×

−

−

q B

m

1 60 10 0 8

1 67 10
7 66 10

19

27
7

. .

.
.

 C  N s C m

 kg

kg m
N s

 rad s2

e jb g
e j

(b) v r= = × F
HG
I
KJ = ×ω 7 66 10 0 350

1
1

2 68 107 7. . . rad s  m
 rad

 m se ja f

(c) K mv= = × ×
×

F
HG

I
KJ = ×−

−
1
2

1
2

1 67 10 2 68 10
1

3 76 102 27 7 2

19
6. . . kg  m s

 eV
1.6 10  J

 eVe je j

(d) The proton gains 600 eV twice during each revolution, so the number of revolutions is

3 76 10
3 13 10

6
3.

.
×

= ×
 eV

2 600 eV
 revolutionsa f .

(e) θ ω= t t = =
×
×

F
HG

I
KJ = × −θ

ω
π3 13 10 2

2 57 10
3

4.
.

 rev
7.66 10  rad s

 rad
1 rev

 s7

P29.46 F qvB
mv

rB = =
2

B
mv
qr

= =
× ⋅

×
=

−

−

4 80 10

1 60 10 1 000
3 00

16

19

.

.
.

 kg m s

 C  m
 T

e jb g
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P29.47 θ = F
HG
I
KJ = °−tan

.

.
.1 25 0

10 0
68 2 and R =

°
=

1 00
68 2

1 08
.

sin .
.

 cm
 cm.

Ignoring relativistic correction, the kinetic energy of the electrons is

1
2

2mv q V= ∆ so v
q V
m

= = ×
2

1 33 108∆
.  m s .

From Newton’s second law 
mv

R
qvB

2

= , we find the magnetic field

B
mv
q R

= =
× ×

× ×
=

−

− −

9 11 10 1 33 10

1 60 10 1 08 10
70 1

31 8

19 2

. .

. .
.

 kg  m s

 C  m
 mT

e je j
e je j

.

FIG. P29.47

Section 29.6 The Hall Effect

P29.48 (a) R
nqH ≡
1

so n
qR

= =
× ×

= ×
− −

−1 1

1 60 10 0 840 10
7 44 10

19 10
28 3

H
3 C  m C

 m
. .

.
e je j

(b) ∆V
IB
nqtH =

B
nqt V

I
= =

× × × ×
=

− − − −
∆ H

 m  C  m  V

 A
 T

b g e je je je j7 44 10 1 60 10 0 200 10 15 0 10

20 0
1 79

28 3 19 3 6. . . .

.
.

P29.49 Since ∆V
IB
nqtH = , and given that I = 50 0.  A , B = 1 30.  T , and t = 0 330.  mm, the number of charge

carriers per unit volume is

n
IB

e V t
= = × −

∆ H
 mb g 1 28 1029 3.

The number density of atoms we compute from the density:

n0

23 6
288 92 1 6 02 10 10

1
8 46 10=

F
HG

I
KJ

×F
HG

I
KJ
F
HG

I
KJ = ×

. .
.

 g
cm

 mole
63.5 g

 atoms
mole

 cm
 m

 atom m3

3

3
3

So the number of conduction electrons per atom is

n
n0

29

28
1 28 10
8 46 10

1 52=
×
×

=
.
.

.
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P29.50 (a) ∆V
IB
nqtH = so

nqt
I

B
V

= =
×

= ×−∆ H

 T
0.700  V

 T V
0 080 0

10
1 14 106

5.
. .

Then, the unknown field is B
nqt

I
V= FHG
I
KJ ∆ Hb g

B = × × = =−1 14 10 0 330 10 0 037 7 37 75 6. . . . T V  V  T  mTe je j .

(b)
nqt

I
= ×1 14 105.  T V so n

I
qt

= ×1 14 105.  T Ve j

n = ×
× ×

= ×
− −

−1 14 10
0 120

10 2 00 10
4 29 105

19 3
25 3.

.

.
. T V

 A

1.60  C  m
 me j e je j

.

P29.51 B
nqt V

I
= =

× × × ×− − − −
∆ H

 m  C  m  V

 A
b g e je je je j8 49 10 1 60 10 5 00 10 5 10 10

8 00

28 3 19 3 12. . . .

.

B = × =−4 33 10 43 35. . T  Tµ

Additional Problems

P29.52 (a) The boundary between a region of strong magnetic field and a
region of zero field cannot be perfectly sharp, but we ignore the
thickness of the transition zone. In the field the electron moves on
an arc of a circle:

F ma∑ = :

q vB
mv

r

v
r

q B

m

sin

.

.
.

90

1 60 10 10

9 11 10
1 76 10

2

19 3

31
8

°=

= = =
× ⋅ ⋅

×
= ×

− −

−
ω

 C  N s C m

 kg
 rad s

e je j
e j

FIG. P29.52(a)

The time for one half revolution is,

from ∆ ∆θ ω= t

∆
∆

t = =
×

= × −θ
ω

π rad
 rad s

 s
1 76 10

1 79 108
8

.
. .

(b) The maximum depth of penetration is the radius of the path.

Then v r= = × = ×−ω 1 76 10 0 02 3 51 108 1 6. . . s  m  m se ja f
and

K mv= = × × = × =
× ⋅
×

=

− −
−

−
1
2

1
2

9 11 10 3 51 10 5 62 10
5 62 10
1 60 10

35 1

2 31 6 2 18
18

19. . .
.
.

. .

 kg  m s  J
 J e
 C

 eV

e je j



Chapter 29     177

P29.53 (a) Define vector h to have the downward direction of the current,
and vector L to be along the pipe into the page as shown. The

electric current experiences a magnetic force .

I h B×a f in the direction of L.

(b) The sodium, consisting of ions and electrons, flows along the
pipe transporting no net charge. But inside the section of
length L, electrons drift upward to constitute downward
electric current J J× =areaa f Lw.

The current then feels a magnetic force I JLwhBh B× = °sin90 .

FIG. P29.53

This force along the pipe axis will make the fluid move, exerting pressure

F JLwhB
hw

JLB
area

= = .

P29.54 Fy∑ = 0 : + − =n mg 0

Fx∑ = 0 : − + °=µ kn IB sin .90 0 0

B
mg

Id
k= = =

µ 0 100 0 200 9 80

10 0 0 500
39 2

. . .

. .
.

 kg  m s

 A  m
 mT

2b ge j
a fa f

P29.55 The magnetic force on each proton, F v BB q qvB= × = °sin90  downward
perpendicular to velocity, causes centripetal acceleration, guiding it into a
circular path of radius r, with

qvB
mv

r
=

2

and r
mv
qB

= .

We compute this radius by first finding the proton’s speed:

K mv

v
K

m

=

= =
× ×

×
= ×

−

−

1
2

2 2 5 00 10 1 60 10

1 67 10
3 10 10

2

6 19

27
7

. .

.
. .

 eV  J eV

 kg
 m s

e je j

Now, r
mv
qB

= =
× ×

× ⋅ ⋅
=

−

−

1 67 10 3 10 10

1 60 10 0 050 0
6 46

27 7

19

. .

. .
.

 kg  m s

 C  N s C m
 m

e je j
e jb g .

FIG. P29.55

(b) From the figure, observe that

sin
.

.

α

α

= =

= °

1 00 1

8 90

 m  m
6.46 mr

(a) The magnitude of the proton momentum stays constant, and its final y component is

− × × °= − × ⋅− −1 67 10 3 10 10 8 90 8 00 1027 7 21. . sin . . kg  m s  kg m se je j .
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P29.56 (a) If B i j k= + +B B Bx y z , F v B i i j k k jB i x y z i y i zq e v B B B ev B ev B= × = × + + = + −e j e j 0 .

Since the force actually experienced is F jB iF= , observe that

Bx  could have any value , By = 0 , and B
F
evz

i

i
= − .

(b) If v i= −vi , then F v B i i j k jB i x
i

i
iq e v B

F
ev

F= × = − × + −
F
HG

I
KJ = −e j 0 .

(c) If q e= −  and v i= vi , then F v B i i j k jB i x
i

i
iq e v B

F
ev

F= × = − × + −
F
HG

I
KJ = −e j 0 .

Reversing either the velocity or the sign of the charge reverses the force.

P29.57 (a) The net force is the Lorentz force given by

F E v B E v B

F i j k i j k i j k

= + × = + ×

= × − − + + − × + +−

q q qa f
e j e j e j e j3 20 10 4 1 2 2 3 1 2 4 119.  N

Carrying out the indicated operations, we find:

F i j= − × −3 52 1 60 10 18. .e j  N .

(b) θ = F
HG
I
KJ = +

F

H
GG

I

K
JJ = °− −cos cos

.

. .
.1 1

2 2

3 52

3 52 1 60
24 4

F
F
x

a f a f

P29.58 A key to solving this problem is that reducing the normal force will reduce

the friction force: F BILB =  or B
F
IL

B= .

When the wire is just able to move, F n F mgy B∑ = + − =cosθ 0

so n mg FB= − cosθ

and f mg FB= −µ θcosb g .
Also, F F fx B∑ = − =sinθ 0 FIG. P29.58

so F fB sinθ = : F mg FB Bsin cosθ µ θ= −b g  and F
mg

B =
+
µ

θ µ θsin cos
.

We minimize B by minimizing FB :
dF
d

mgB

θ
µ

θ µ θ

θ µ θ
µ θ θ=

−

+
= ⇒ =b g b g

cos sin

sin cos
sin cos2 0 .

Thus, θ
µ

=
F
HG
I
KJ = = °− −tan tan . .1 11

5 00 78 7a f  for the smallest field, and

B
F
IL

g
I

m L

B

B

B= = FHG
I
KJ +

=
L

N
MM

O

Q
PP °+ °

=

= °

µ
θ µ θ
b g

a fe j
a f

sin cos

. .

.
.

sin . . cos .
.

.

min

min

0 200 9 80

1 50
0 100

78 7 0 200 78 7
0 128

0 128

 m s

 A
 kg m

 T

 T pointing north at an angle of 78.7  below the horizontal

2
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*P29.59 The electrons are all fired from the electron gun with the same speed v in

U Ki f= qV mv=
1
2

2 − − =e V m vea fa f∆
1
2

2 v
e V
me

=
2 ∆

For φ small, cosφ  is nearly equal to 1. The time T of passage of each electron in the chamber is given
by

d vT= T d
m
e V

e= FHG
I
KJ2

1 2

∆

Each electron moves in a different helix, around a different axis. If each completes just one
revolution within the chamber, it will be in the right place to pass through the exit port. Its
transverse velocity component v v⊥ = sinφ  swings around according to F ma⊥ ⊥=

qv B
mv

r⊥
⊥°=sin90
2

eB
m v

r
m m

T
e

e e= = =⊥ ω
π2

T
m

eB
d

m
e V

e e= = FHG
I
KJ

2
2

1 2π
∆

Then 
2

2

1 2

1 2
π
B

m
e

d

V
eF
HG
I
KJ =

∆a f B
d

m V
e
e= F

HG
I
KJ

2 2 1 2π ∆
.

*P29.60 Let vi  represent the original speed of the alpha particle. Let vα  and vp  represent the particles’

speeds after the collision. We have conservation of momentum 4 4m v m v m vp i p p p= +α  and the

relative velocity equation v v vi p− = −0 α . Eliminating vi ,

4 4 4v v v vp p− = +α α 3 8v vp = α v vpα =
3
8

.

For the proton’s motion in the magnetic field,

F ma∑ = ev B
m v

Rp
p psin90

2

°=
eBR
m

v
p

p= .

For the alpha particle,

2 90
4 2

ev B
m v

r
p

α
α

α
sin °= r

m v

eB
p

α
α

=
2

r
m

eB
v

m

eB
eBR
m

Rp
p

p

p
α = = =

2 3
8

2 3
8

3
4

.

P29.61 Let ∆x1  be the elongation due to the weight of the wire and let ∆x2

be the additional elongation of the springs when the magnetic field
is turned on. Then F k xmagnetic = 2 2∆  where k is the force constant of

the spring and can be determined from k
mg

x
=

2 1∆
. (The factor 2 is

included in the two previous equations since there are 2 springs in
parallel.) Combining these two equations, we find

F
mg

x
x

mg x
xmagnetic =

F
HG
I
KJ =2

2 1
2

2

1∆
∆

∆
∆

; but F L BB I ILB= × = . FIG. P29.61

Therefore, where I = =
24 0

2 00
.

.
 V

12.0 
 A

Ω
, B

mg x
IL x

= =
×

×
=

−

−

∆
∆

2

1

3

3

0 100 9 80 3 00 10

2 00 0 050 0 5 00 10
0 588

. . .

. . .
.

a fa fe j
a fb ge j

 T .
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P29.62 Suppose the input power is

120 120 W  V= a fI : I ~1 100 A  A= .

Suppose ω
π

= F
HG
I
KJ
F
HG

I
KJ2 000

1 2
200 rev min

 min
60 s

 rad
1 rev

 rad s~

and the output power is 20 200 W  rad s= =τω τ b g τ ~10 1− ⋅ N m .

Suppose the area is about 3 4 cm  cma f a f× , or A ~10 3−  m2 .

Suppose that the field is B~10 1−  T .

Then, the number of turns in the coil may be found from τ ≅ NIAB :

0 1 1 10 103 1. ~ N m  C s  m  N s C m2⋅ ⋅ ⋅− −Nb ge je j
giving N ~103 .

*P29.63 The sphere is in translational equilibrium, thus

f Mgs − =sinθ 0 . (1)

The sphere is in rotational equilibrium. If torques are taken about the
center of the sphere, the magnetic field produces a clockwise torque of
magnitude µ θBsin , and the frictional force a counterclockwise torque
of magnitude f Rs , where R is the radius of the sphere. Thus:

f R Bs − =µ θsin 0 . (2)

From (1): f Mgs = sinθ . Substituting this in (2) and canceling out sinθ ,
one obtains

µB MgR= . (3)

I
fs

B

Mg
θ

θ
µµµµ

FIG. P29.63

Now µ π= NI R2 . Thus (3) gives I
Mg
NBR

= = =
π π

0 08 9 80

5 0 350 0 2
0 713

. .

. .
.

 kg  m s

 T  m
 A

2b ge j
a fa fa f . The current must be

counterclockwise as seen from above.

P29.64 Call the length of the rod L and the tension in each wire alone 
T
2

. Then, at equilibrium:

F T ILBx∑ = − °=sin sin .θ 90 0 0 or T ILBsinθ =

F T mgy∑ = − =cosθ 0 , or T mgcosθ =

tanθ = =
ILB
mg

IB
m L gb g or B

m L g

I
g

I
= =
b g

tan tanθ
λ

θ

P29.65 F ma∑ =  or qvB
mv

r
sin .90 0

2

°=

∴ the angular frequency for each ion is 
v
r

qB
m

f= = =ω π2  and

∆

∆

f f f
qB

m m

f f f

= − = −
F
HG

I
KJ =

×

×
−F

HG
I
KJ

= − = × =

−

−

−

12 14
12 14

19

27

12 14
5 1

2
1 1 1 60 10 2 40

2 1 66 10

1
12 0

1
14 0

4 38 10 438

π π

. .

. . .

.

 C  T

 kg u  u  u

 s  kHz

e ja f
e j
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P29.66 Let vx  and v⊥  be the components of the velocity of the positron parallel
to and perpendicular to the direction of the magnetic field.

(a) The pitch of trajectory is the distance moved along x by the
positron during each period, T (see Equation 29.15)

p v T v
m

Bq

p

x= = °
F
HG
I
KJ

=
× ° ×

×
= ×

−

−
−

cos .

. cos . .

. .
.

85 0
2

5 00 10 85 0 2 9 11 10

0 150 1 60 10
1 04 10

6 31

19
4

a f

e ja fa fe j
e j

π

π
 m

FIG. P29.66

(b) From Equation 29.13, r
mv
Bq

mv
Bq

= =
°⊥ sin .85 0

r =
× × °

×
= ×

−

−
−

9 11 10 5 00 10 85 0

0 150 1 60 10
1 89 10

31 6

19
4

. . sin .

. .
.

e je ja f
a fe j

 m

P29.67 τ = IAB  where the effective current due to the orbiting electrons is I
q
t

q
T

= =
∆
∆

and the period of the motion is T
R

v
=

2π
.

The electron’s speed in its orbit is found by requiring 
k q
R

mv
R

e
2

2

2

=  or v q
k

mR
e= .

Substituting this expression for v into the equation for T, we find T
mR
q ke

= 2
3

2π

T =
× ×

× ×
= ×

− −

−

−2
9 11 10 5 29 10

1 60 10 8 99 10
1 52 10

31 11 3

19 2 9

16π
. .

. .
.

e je j
e j e j

 s .

Therefore, τ π= FHG
I
KJ =

×
×

× = × ⋅
−

−
− −q

T
AB

1 60 10
1 52 10

5 29 10 0 400 3 70 10
19

16
11 2 24.

.
. . .e j a f  N m .

P29.68 Use the equation for cyclotron frequency ω =
qB
m

 or m
qB qB

f
= =
ω π2

m =
× ×

×
= ×

− −

−
−

1 60 10 5 00 10

2 5 00 10
3 82 10

19 2

3
25

. .

.
.

 C  T

 rev 1.50  s
 kg

e je j
a fe jπ

.
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P29.69 (a) K mv= = = × × −1
2

6 00 6 00 10 1 60 102 6 19. . . MeV  eV  J eVe je j
K

v

= ×

=
×

×
= ×

−

−

−

9 60 10

2 9 60 10

1 67 10
3 39 10

13

13

27
7

.

.

.
.

 J

 J

 kg
 m s

e j

F qvB
mv

RB = =
2

 so

R
mv
qB

= =
× ×

×
=

−

−

1 67 10 3 39 10

1 60 10 1 00
0 354

27 7

19

. .

. .
.

 kg  m s

 C  T
 m

e je j
e ja f

xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx45.0°

45°
45°

θ '

x

v

R

Bin  T= 1 00.

FIG. P29.69

Then, from the diagram, x R= °= °=2 45 0 2 0 354 45 0 0 501sin . . sin . . m  ma f

(b) From the diagram, observe that ′ = °θ 45 0. .

P29.70 (a) See graph to the right. The
Hall voltage is directly
proportional to the magnetic
field. A least-square fit to the
data gives the equation of the
best fitting line as:

∆V BH  V T= × −1 00 10 4.e j .

(b) Comparing the equation of
the line which fits the data
best to

∆V
nqt

BH =
F
HG
I
KJ

1

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1.0 1.2

B (T)

∆VH     (µV)

FIG. P29.70

observe that: 
I

nqt
= × −1 00 10 4.  V T, or t

I

nq
=

× −1 00 10 4.  V Te j
.

Then, if I = 0 200.  A , q = × −1 60 10 19.  C , and n = × −1 00 1026 3.  m , the thickness of the sample is

t =
× × ×

= × =
− − −

−0 200

1 60 10 1 00 10
1 25 10 0 125

3 19 4
4.

. .
. .

 A

1.00 10  m  C  V T
 m  mm

26e je je j
.
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P29.71 (a) The magnetic force acting on ions in the blood stream will
deflect positive charges toward point A and negative
charges toward point B. This separation of charges
produces an electric field directed from A toward B. At
equilibrium, the electric force caused by this field must
balance the magnetic force, so

qvB qE q
V
d

= = FHG
I
KJ

∆

or v
V

Bd
= =

×

×
=

−

−

∆ 160 10

0 040 0 3 00 10
1 33

6

3

 V

 T  m
 m s

e j
b ge j. .

. .

FIG. P29.71

(b) No . Negative ions moving in the direction of v would be deflected toward point B, giving

A a higher potential than B. Positive ions moving in the direction of v would be deflected
toward A, again giving A a higher potential than B. Therefore, the sign of the potential
difference does not depend on whether the ions in the blood are positively or negatively
charged.

P29.72 When in the field, the particles follow a circular path

according to qvB
mv

r
=

2

, so the radius of the path is: r
mv
qB

=

(a) When r h
mv
qB

= = , that is, when v
qBh
m

= , the

particle will cross the band of field. It will move in
a full semicircle of radius h, leaving the field at

2 0 0h, ,b g  with velocity v jf v= − .

v ji v=

FIG. P29.72

(b) When v
qBh
m

< , the particle will move in a smaller semicircle  of radius r
mv
qB

h= < . It will

leave the field at 2 0 0r , ,b g with velocity v jf v= − .

(c) When v
qBh
m

> , the particle moves in a circular arc  of radius r
mv
qB

h= > , centered at

r , ,0 0b g . The arc subtends an angle given by θ = F
HG
I
KJ

−sin 1 h
r

. It will leave the field at the point

with coordinates r h1 0− cos , ,θa f  with velocity v i jf v v= +sin cosθ θ .

ANSWERS TO EVEN PROBLEMS

P29.2 (a) west; (b) no deflection; (c) up; P29.8 Gravitational force: 8 93 10 30. × −  N down;
(d) down Electric force: 16 0.  aN up;

Magnetic force: 48 0.  aN down
P29.4 (a) 86 7.  fN ; (b) 51 9.  Tm s2

P29.10 By = −2 62.  mT; Bz = 0; Bx  may have any

valueP29.6 (a) 7 90.  pN; (b) 0
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P29.12 −2 88. je j N P29.50 (a) 37 7.  mT ; (b) 4 29 1025 3. × m

P29.52 (a) 17.9 ns; (b) 35.1 eVP29.14 109 mA  to the right

P29.54 39 2.  mT
P29.16

4
3

1 2IdBL
m

F
HG

I
KJ

P29.56 (a) Bx  is indeterminate. By = 0 ; B
F

evz
i

i
=
−

;

P29.18 Fab = 0; F ibc = −40 0.  mNe j ;
F kcd = −40 0.  mNe j ; F i kda = +40 0.  mNa fe j

(b) −Fi j ; (c) −Fi j

P29.58 128 mT north at an angle of 78.7°  below
the horizontal

P29.20 (a) 5 41.  mA m2⋅ ; (b) 4 33.  mN m⋅

P29.60
3
4
R

P29.22 (a)3 97. ° ; (b) 3 39.  mN m⋅

P29.24 (a) 80 1.  mN m⋅ ; (b) 104 mN m⋅ ; P29.62 B ~10 1−  T; τ ~10 1− ⋅ N m; I ~1 A ;
A ~10 3−  m2 ; N ~103(c) 132 mN m⋅ ;

(d) The torque on the circle.

P29.64
λ θg

I
tan

P29.26 (a) minimum: pointing north at 48.0°
below the horizontal; maximum: pointing
south at 48.0° above the horizontal; P29.66 (a) 0 104.  mm; (b) 0 189.  mm
(b) 1 07.  Jµ

P29.68 3 82 10 25. × −  kg
P29.28 (a) 640 N mµ ⋅ ; (b) 241 mW; (c) 2.56 mJ;

(d) 154 mW P29.70 (a) see the solution;
empirically, ∆V BH  V T= 100 µb g ;

P29.30 1 98.  cm
(b) 0 125.  mm

P29.32 65 6.  mT
P29.72 (a) v

qBh
m

= ; The particle moves in a

semicircle of radius h and leaves the field
with velocity −vj;

P29.34 (a) 5 00.  cm; (b) 8 78.  Mm s

P29.36
′
=

m
m

8 (b) The particle moves in a smaller

semicircle of radius 
mv
qB

, attaining final

velocity −vj;
P29.38 see the solution

P29.40 244 kV m (c) The particle moves in a circular arc of

radius r
mv
qB

= , leaving the field with

velocity v vsin cosθ θi j+  where

θ = F
HG
I
KJ

−sin 1 h
r

P29.42 278 mm

P29.44 162 mm

P29.46 3 00.  T

P29.48 (a) 7 44 1028 3. × m ; (b) 1 79.  T
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CHAPTER OUTLINE

30.1 The Biot-Savart Law
30.2 The Magnetic Force
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  Conductors
30.3 Ampère’s Law
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  Solenoid
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30.6 Gauss’s Law in Magnetism
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  Ampère’s Law
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30.8 Magnetism in Matter

Earth      
           
           

           
            

Sources of the Magnetic Field

ANSWERS TO QUESTIONS

Q30.1 It is not. The magnetic field created by a single loop of current
resembles that of a bar magnet—strongest inside the loop, and
decreasing in strength as you move away from the loop.
Neither is it in a uniform direction—the magnetic field lines
loop though the loop!

Q30.2 No magnetic field is created by a stationary charge, as the rate
of flow is zero. A moving charge creates a magnetic field.

Q30.3 The magnetic field created by wire 1 at the position of wire 2 is
into the paper. Hence, the magnetic force on wire 2 is in
direction down × into the paper = to the right, away from wire
1. Now wire 2 creates a magnetic field into the page at the
location of wire 1, so wire 1 feels force up ×into the paper = left,
away from wire 2.

FIG. Q30.3

185
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Q30.4 No total force, but a torque. Let wire one carry current in the y
direction, toward the top of the page. Let wire two be a millimeter
above the plane of the paper and carry current to the right, in the x
direction. On the left-hand side of wire one, wire one creates magnetic
field in the z direction, which exerts force in the � � �i k j× = −  direction on
wire two. On the right-hand side, wire one produces magnetic field in

the − �k  direction and makes a � � �i k j× − = +e j  force of equal magnitude act

on wire two. If wire two is free to move, its center section will twist
counterclockwise and then be attracted to wire one.

1

2

FIG. Q30.4

Q30.5 Ampère’s law is valid for all closed paths surrounding a conductor, but not always convenient.
There are many paths along which the integral is cumbersome to calculate, although not impossible.
Consider a circular path around but not coaxial with a long, straight current-carrying wire.

Q30.6 The Biot-Savart law considers the contribution of each element of current in a conductor to
determine the magnetic field, while for Ampère’s law, one need only know the current passing
through a given surface. Given situations of high degrees of symmetry, Ampère’s law is more
convenient to use, even though both laws are equally valid in all situations.

Q30.7 If the radius of the toroid is very large compared to its cross-sectional area, then the field is nearly
uniform. If not, as in many transformers, it is not.

Q30.8 Both laws use the concept of flux—the “flow” of field lines through a surface to determine the field
strength. They also both relate the integral of the field over a closed geometrical figure to a
fundamental constant multiplied by the source of the appropriate field. The geometrical figure is a
surface for Gauss’s law and a line for Ampère’s.

Q30.9 Apply Ampère’s law to the circular path labeled 1 in the picture. Since there is no
current inside this path, the magnetic field inside the tube must be zero. On the
other hand, the current through path 2 is the current carried by the conductor.
Therefore the magnetic field outside the tube is nonzero.

FIG. Q30.9

Q30.10 The magnetic field inside a long solenoid is given by B
NI

=
µ 0

A
.

(a) If the length A  is doubled, the field is cut in half.

(b) If N is doubled, the magnetic field is doubled.

Q30.11 The magnetic flux is ΦB BA= cosθ . Therefore the flux is maximum when B is perpendicular to the
loop of wire. The flux is zero when there is no component of magnetic field perpendicular to the
loop—that is, when the plane of the loop contains the x axis.
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Q30.12 Maxwell included a term in Ampère’s law to account for the contributions to the magnetic field by
changing electric fields, by treating those changing electric fields as “displacement currents.”

Q30.13 M measures the intrinsic magnetic field in the nail. Unless the nail was previously magnetized, then
M starts out from zero. H is due to the current in the coil of wire around the nail. B is related to the
sum of M and H. If the nail is aluminum or copper, H makes the dominant contribution to B, but M
can add a little in the same or in the opposite direction. If the nail is iron, as it becomes magnetized
M can become the dominant contributor to B.

Q30.14 Magnetic domain alignment creates a stronger external magnetic field. The field of one piece of iron
in turn can align domains in another iron sample. A nonuniform magnetic field exerts a net force of
attraction on magnetic dipoles aligned with the field.

Q30.15 The shock misaligns the domains. Heating will also decrease magnetism.

Q30.16 Magnetic levitation is illustrated in Figure Q30.31. The Earth’s magnetic field is so weak that the
floor of his tomb should be magnetized as well as his coffin. Alternatively, the floor of his tomb could
be made of superconducting material, which exerts a force of repulsion on any magnet.

Q30.17 There is no magnetic material in a vacuum, so M must be zero. Therefore B H= µ0  in a vacuum.

Q30.18 Atoms that do not have a permanent magnetic dipole moment have electrons with spin and orbital
magnetic moments that add to zero as vectors. Atoms with a permanent dipole moment have
electrons with orbital and spin magnetic moments that show some net alignment.

Q30.19 The magnetic dipole moment of an atom is the sum of the dipole moments due to the electrons’
orbital motions and the dipole moments due to the spin of the electrons.

Q30.20 M and H are in opposite directions. Section 30.8 argues that all atoms should be thought of as
weakly diamagnetic due to the effect of an external magnetic field on the motions of atomic
electrons. Paramagnetic and ferromagnetic effects dominate whenever they exist.

Q30.21 The effects of diamagnetism are significantly smaller than those of paramagnetism.

Q30.22 When the substance is above the Curie temperature, random thermal motion of the molecules
prevents the formation of domains. It cannot be ferromagnetic, but only paramagnetic.

Q30.23 A ferromagnetic substance is one in which the magnetic moments of the atoms are aligned within
domains, and can be aligned macroscopically. A paramagnetic substance is one in which the
magnetic moments are not naturally aligned, but when placed in an external magnetic field, the
molecules line their magnetic moments up with the external field. A diamagnetic material is one in
which the magnetic moments are also not naturally aligned, but when placed in an external
magnetic field, the molecules line up to oppose the external magnetic field.

Q30.24 (a) B increases slightly

(b) B decreases slightly

(c) B increases significantly

Equations 30.33 and 30.34 indicate that, when each metal is in the solenoid, the total field is
B H= +µ χ0 1b g . Table 30.2 indicates that B is slightly greater than µ 0H  for aluminum and slightly less
for copper. For iron, the field can be made thousands of times stronger, as seen in Example 30.10.
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Q30.25 A “hard” ferromagnetic material requires much more energy per molecule than a “soft”
ferromagnetic material to change the orientation of the magnetic dipole moments. This way, a hard
ferromagnetic material is more likely to retain its magnetization than a soft ferromagnetic material.

Q30.26 The medium for any magnetic recording should be a hard ferromagnetic substance, so that thermal
vibrations and stray magnetic fields will not rapidly erase the information.

Q30.27 If a soft ferromagnetic substance were used, then the magnet would not be “permanent.” Any
significant shock, a heating/cooling cycle, or just rotating the magnet in the Earth’s magnetic field
would decrease the overall magnetization by randomly aligning some of the magnetic dipole
moments.

Q30.28 You can expect a magnetic tape to be weakly attracted to a magnet. Before you erase the information
on the tape, the net magnetization of a macroscopic section of the tape would be nearly zero, as the
different domains on the tape would have opposite magnetization, and be more or less equal in
number and size. Once your external magnet aligns the magnetic moments on the tape, there would
be a weak attraction, but not like that of picking up a paper clip with a magnet. A majority of the
mass of the tape is non-magnetic, and so the gravitational force acting on the tape will likely be
larger than the magnetic attraction.

Q30.29 To magnetize the screwdriver, stroke one pole of the magnet along the blade of the screwdriver
several or many times. To demagnetize the screwdriver, drop it on a hard surface a few times, or
heat it to some high temperature.

Q30.30 The north magnetic pole is near the south geographic pole. Straight up.

Q30.31 (a) The magnets repel each other with a force equal to the weight of one of them.

(b) The pencil prevents motion to the side and prevents the magnets from rotating under their
mutual torques. Its constraint changes unstable equilibrium into stable.

(c) Most likely, the disks are magnetized perpendicular to their flat faces, making one face a
north pole and the other a south pole. One disk has its north pole on the top side and the
other has its north pole on the bottom side.

(d) Then if either were inverted they would attract each other and stick firmly together.

SOLUTIONS TO PROBLEMS

Section 30.1 The Biot-Savart Law
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P30.3 (a) B
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(b) For a single circular turn with 4 2A = π R ,
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P30.5 For leg 1, ds r× =� 0 , so there is no contribution to the field from this
segment. For leg 2, the wire is only semi-infinite; thus,

B
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=
F
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1
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π

µ
π

 into the paper .

FIG. P30.5

P30.6 We can think of the total magnetic field as the superposition of the field due to the long straight wire

(having magnitude 
µ
π

0

2
I
R

 and directed into the page) and the field due to the circular loop (having

magnitude 
µ0

2
I

R
 and directed into the page). The resultant magnetic field is:
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π
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P30.7 For the straight sections ds r× =� 0 . The quarter circle makes one-fourth the field of a full loop:
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P30.8 Along the axis of a circular loop of radius R,
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FIG. P30.8

x R B B0

0.00 1.00
1.00 0.354
2.00 0.0894
3.00 0.0316
4.00 0.0143
5.00 0.00754

*P30.9 Wire 1 creates at the origin magnetic field
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*P30.10 Every element of current creates magnetic field in the same direction, into the page, at the center of
the arc. The upper straight portion creates one-half of the field that an infinitely long straight wire
would create. The curved portion creates one quarter of the field that a circular loop produces at its

center. The lower straight segment also creates field 
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*P30.11 (a) Above the pair of wires, the field out of the page of the 50 A

current will be stronger than the − �ke j  field of the 30 A

current, so they cannot add to zero. Between the wires,
both produce fields into the page. They can only add to
zero below the wires, at coordinate y y= − . Here the total
field is
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FIG. P30.11

(b) At y = 0 1.  m the total field is B =
µ
π
0

2
I
r  +

µ
π
0

2
I
r  :

B k k k=
× ⋅

−
− + −

F
HG

I
KJ = × −

−
−4 10

2
50

0 28
30

0 10
1 16 10

7
4π

π
 T m A  A

0.10  m
 A
 m

 T
.

�
.

� . �
a f e j e j e j .

The force on the particle is

F v B i k j= × = − × × × × ⋅ ⋅ − = × −− − −q 2 10 150 10 1 16 10 3 47 106 6 4 2 C  m s  N s C m  Ne je je j e je j e j� . � . � .

(c) We require F j E Ee q= × + = = − ×− −3 47 10 2 102 6. � N  Ce j e j .

So E j= − ×1 73 104. � N C .

P30.12 dB
I d

r
=

×µ
π
0

24

A �r

B
I a

a

b

b

I
a b

= −
F
HG

I
KJ

= −FHG
I
KJ

µ
π

π π

µ

0
1
6

2

1
6

2

0

4
2 2

12
1 1

B  directed out of the paper



192     Sources of the Magnetic Field

*P30.13 (a) We use equation 30.4. For the distance a from the wire to

the field point we have tan30
2
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, a L= 0 288 7. . One

wire contributes to the field at P
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P30.14 Apply Equation 30.4 three times:
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P30.15 Take the x-direction to the right and the y-direction up in the plane of the
paper. Current 1 creates at P a field
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. .

.
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FIG. P30.15

Then, B B B i j i j= + = − °− ° + °− °1 2 12 0 67 4 67 4 5 00 22 6 22 6. � cos . � sin . . � cos . � sin . T  Tµ µb ge j b ge j
B j j j= − − = −11 1 1 92 13 0. � . � . � T  T  Tµ µ µb g b g b g

Section 30.2 The Magnetic Force Between Two Parallel Conductors

P30.16 Let both wires carry current in the x direction, the first at y = 0  and the
second at y = 10 0.  cm .

(a) B k k= =
× ⋅−

µ
π

π

π
0

7

2

4 10 5 00

2 0 100
I
r
� .

.
� T m A  A

 m
e ja f

a f
B = × −1 00 10 5.  T out of the page

y

y = 10.0 cm

I1 = 5.00 A

I2 = 8.00 A

z

x

FIG. P30.16(a)
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P30.17 By symmetry, we note that the magnetic forces on the top and bottom
segments of the rectangle cancel. The net force on the vertical segments of
the rectangle is (using Equation 30.11)

F F F i i

F i

F i

= + =
+

−F
HG

I
KJ =

−
+

F
HG

I
KJ

=
× −F

HG
I
KJ

= − ×

−

−

1 2
0 1 2 0 1 2

7

5

2
1 1

2

4 10 5 00 10 0 0 450

2
0 150

0 250

2 70 10

µ
π

µ
π

π

π

I I
c a c

I I a
c c a

A A� �

. . . .
.

�

. �

a f
e ja fa fa f

a fa f
e j

 N A  A  A  m  m
0.100 m  m

 N

2

or F = × −2 70 10 5.  N toward the left .
FIG. P30.17

*P30.18 To attract, both currents must be to the right. The attraction is described by
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Let y represent the distance of the zero-field point below the upper wire.

Then B =
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*P30.19 Carrying oppositely directed currents, wires 1 and 2 repel
each other. If wire 3 were between them, it would have to
repel either 1 or 2, so the force on that wire could not be
zero. If wire 3 were to the right of wire 2, it would feel a
larger force exerted by 2 than that exerted by 1, so the total
force on 3 could not be zero. Therefore wire 3 must be to
the left of both other wires as shown. It must carry
downward current so that it can attract wire 2.

(a) For the equilibrium of wire 3 we have

d 20 cm
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FIG. P30.19
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(b) For the equilibrium of wire 1,
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We know that wire 2 must be in equilibrium because the forces on it are equal in magnitude
to the forces that it exerts on wires 1 and 3, which are equal because they both balance the
equal-magnitude forces that 1 exerts on 3 and that 3 exerts on 1.
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P30.20 The separation between the wires is

a = ° =2 6 00 8 00 1 67. sin . . cm  cma f .

(a) Because the wires repel, the currents are in

opposite directions .

(b) Because the magnetic force acts horizontally,
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FIG. P30.20

Section 30.3 Ampère’s Law

P30.21 Each wire is distant from P by
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Each wire produces a field at P of equal magnitude:
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Carrying currents into the page, A produces at P a field of
7 07.  Tµ  to the left and down at –135°, while B creates a field
to the right and down at – 45°. Carrying currents toward
you, C produces a field downward and to the right at – 45°,
while D ’s contribution is downward and to the left. The
total field is then

FIG. P30.21
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P30.22 Let the current I be to the right. It creates a field B
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P30.23 From Ampere’s law, the magnetic field at point a is given by B
I
ra
a

a
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µ
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2
, where Ia  is the net current

through the area of the circle of radius ra . In this case, Ia = 1 00.  A  out of the page (the current in the
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Similarly at point b : B
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P30.24 (a) In B
I
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=
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2
, the field will be one-tenth as large at a ten-times larger distance: 400 cm
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(c) Call r the distance from cord center to field point and 2 3 00d = .  mm the distance between
conductors.
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The field of the two-conductor cord is weak to start with and falls off rapidly with distance.

(d) The cable creates zero  field at exterior points, since a loop in Ampère’s law encloses zero

total current. Shall we sell coaxial-cable power cords to people who worry about biological
damage from weak magnetic fields?

P30.25 (a) One wire feels force due to the field of the other ninety-nine.
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This field points tangent to a circle of radius 0.200 cm and exerts force
F B= ×IA  toward the center of the bundle, on the single hundredth wire:
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(b) B r∝ , so B is greatest at the outside of the bundle. Since each wire
carries the same current, F is greatest at the outer surface .

FIG. P30.25
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P30.26 (a) B
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*P30.27 We assume the current is vertically upward.

(a) Consider a circle of radius r slightly less than R. It encloses no current so from

B s⋅ =z d Iµ 0 inside B r2 0πb g =
we conclude that the magnetic field is zero .

(b) Now let the r be barely larger than R. Ampere’s law becomes B R I2 0π µb g = ,

so B
I
R

=
µ
π

0

2
. FIG. P30.27(a)

The field’s direction is  tangent to the wall of the cylinder in a counterclockwise sense .

(c) Consider a strip of the wall of width dx and length A . Its width is so small
compared to 2π R  that the field at its location would be essentially
unchanged if the current in the strip were turned off.

The current it carries is I
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I dx
RsA A A

2 2 4
0 0

2

2 2π
µ
π

µ
π

 intopage radially inward .
FIG. P30.27(c)

The pressure on the strip and everywhere on the cylinder is

P
F
A

I dx
R dx

I

R
= = =

µ
π

µ

π
0

2

2 2
0

2

24 2

A
A b g

 inward .

The pinch effect makes an effective demonstration when an aluminum can crushes itself as
it carries a large current along its length.

P30.28 From B ⋅ =z d IA µ 0 , I
rB

= =
×

×
=

−

−

2 2 1 00 10 0 100

4 10
500

0

3

7

π
µ

π

π

. .e ja f
 A .

P30.29 Use Ampère’s law, B s⋅ =z d Iµ0 . For current density J, this becomes

B s J A⋅ = ⋅z zd dµ 0 .

(a) For r R1 < , this gives B r br rdr
r

2 21 0
0

1

π µ π= z a fb g  and

B
br

r R= <
µ 0 1

2

13
 for  or inside the cylinderb g .

FIG. P30.29

(b) When r R2 > , Ampère’s law yields 2 2
2

32 0
0

0
3

π µ π
πµ

r B br rdr
bRR

b g a fb g= =z ,

or B
bR
r

r R= >
µ 0

3

2
23

 for  or outside the cylinderb g .
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P30.30 (a) See Figure (a) to the right.

(b) At a point on the z axis, the contribution from each wire has

magnitude B
I

a z
=

+

µ

π
0
2 22

 and is perpendicular to the line

from this point to the wire as shown in Figure (b). Combining
fields, the vertical components cancel while the horizontal
components add, yielding

B
I

a z

I

a z

z

a z

Iz

a z
y =

+

F
HG

I
KJ = + +

F
HG

I
KJ = +

2
2

0
2 2

0
2 2 2 2

0
2 2

µ

π
θ

µ

π

µ
π

sin
e j

The condition for a maximum is:

dB

dz
Iz z

a z

I

a z

y
=

−

+
+

+
=

µ

π

µ

π
0

2 2 2
0

2 2

2
0

a f
e j e j

, or 
µ
π
0

2 2

2 2
0

I a z

a z

−

+
=

e j
e j

Thus, along the z axis, the field is a maximum at d a= .

(Currents are into the paper)
Figure (a)

Figure (b)

FIG. P30.30

Section 30.4 The Magnetic Field of a Solenoid

P30.31 B
N

I= µ0 A
 so I

B
n

= =
×

× ⋅
=

−

−µ π0

4

7

1 00 10 0 400

10 1 000
31 8

. .
.

 T  m

4  T m A
 mA

e j
e j

*P30.32 Let the axis of the solenoid lie along the y–axis from y = 0  to y = A. We will determine the field at
y a= . This point will be inside the solenoid if 0 < <a A  and outside if a < 0  or a > A . We think of
solenoid as formed of rings, each of thickness dy. Now I is the symbol for the current in each turn of

wire and the number of turns per length is 
N
A
F
HG
I
KJ . So the number of turns in the ring is 

N
dy

A
F
HG
I
KJ  and

the current in the ring is I I
N

dyring = FHG
I
KJA . Now we use the result of Example 30.3 for the field created

by one ring:

B
I R

x R
ring

ring
=

+

µ 0
2

2 2 3 2
2e j

where x is the name of the distance from the center of the ring, at location y, to the field point
x a y= − . Each ring creates field in the same direction, along our y–axis, so the whole field of the
solenoid is

B B
I R

x R

I N dyR

a y R

INR dy

a y R
= =

+
=

− +
=

− +
∑ ∑ z zring

all rings

ringµ µ µ0
2

2 2 3 2
0

2

2 2
3 2

0

0
2

2 2
3 2

02 2 2 2e j
b g
b ge j b ge j

A
A

A A
.

To perform the integral we change variables to u a y= − .

B
INR du

u Ra

a

=
−

+

−zµ 0
2

2 2 3 22A

A

e j
and then use the table of integrals in the appendix:

continued on next page
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(a) B
INR u

R u R

IN a

a R

a

a Ra

a

=
−

+
=

+
−

−

− +

L

N
MMM

O

Q
PPP

−
µ µ0

2

2 2 2
0

2 2 2 22 2A A
A

A

A

a f

(b) If A  is much larger than R and a = 0,

we have B
IN IN

≅ −
−L

N
MM

O
Q
PP =

µ µ0
2

0

2
0

2A
A

A A
.

This is just half the magnitude of the field deep within the solenoid. We would get the same
result by substituting a = A  to describe the other end.

P30.33 The field produced by the solenoid in its interior is given by

B i i= − = × ⋅ F
HG

I
KJ −−

−µ π0
7

24 10
30 0

10
15 0nI � .

. �e j e j a fe j T m A
 m

 A

B i= − × −5 65 10 2. � Te j   

The force exerted on side AB of the square current loop is

F L B j iB AB
Ib g a f e j e je j= × = × × × −− −0 200 2 00 10 5 65 102 2. . � . � A  m  T

F kB ABb g e j= × −2 26 10 4. � N   

Similarly, each side of the square loop experiences a force, lying
in the plane of the loop, of

226 N directed away from the centerµ . From the above

result, it is seen that the net torque exerted on the square loop
by the field of the solenoid should be zero. More formally, the
magnetic dipole moment of the square loop is given by FIG. P30.33

µµµµ = = × − = − ⋅−IA i i0 200 2 00 10 80 02 2
. . � . � A  m  A m2a fe j e j µ   

The torque exerted on the loop is then ττττ µµµµ= × = − ⋅ × − × =−B i i80 0 5 65 10 02. � . � A m  T2µe j e j

Section 30.5 Magnetic Flux

P30.34 (a) ΦB B R B Rb g a fflat = ⋅ = − = −B A π θ π θ2 2180cos cos

(b) The net flux out of the closed surface is zero: Φ ΦB Bb g b gflat curved
+ = 0.

ΦB B Rb gcurved = π θ2 cos

P30.35 (a) ΦB d= ⋅ = ⋅ = + + ⋅ ×z −B A B A i j k i5 4 3 2 50 10 2 2� � � . �e j e j T  m

ΦB = × ⋅ = × =− −3 12 10 3 12 10 3 123 3. . . T m  Wb  mWb2

(b) ΦB db gtotal
= ⋅ =zB A 0  for any closed surface (Gauss’s law for magnetism)
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P30.36 (a) ΦB BA= ⋅ =B A  where A is the cross-sectional area of the solenoid.

ΦB
NI

r= FHG
I
KJ =

µ
π µ0 2 7 40

A e j .  Wb

(b) ΦB BA
NI

r r= ⋅ = = FHG
I
KJ −B A

µ
π0

2
2

1
2

A e j

ΦB =
× ⋅L

N
MM

O

Q
PP − =

−
−

4 10 300 12 0

0 300
8 00 4 00 10 2 27

7
2 2 3 2π

π µ
 T m A  A

 m
 m  Wb

e ja fa f
a f a f a f e j

.

.
. . .

Section 30.6 Gauss’s Law in Magnetism

No problems in this section

Section 30.7 Displacement Current and the General Form of Ampère’s Law

P30.37 (a)
d

dt
dQ dt IEΦ

=
∈

=
∈

=
× ⋅

= × ⋅−
0 0

12
90 100

8 85 10
11 3 10

.

.
.

 A

 C N m
 V m s2 2

a f

(b) I
d

dt
Id

E=∈ = =0 0 100
Φ

.  A

P30.38
d

dt
d
dt

EA
dQ dt IEΦ

= =
∈

=
∈

a f
0 0

(a)
dE
dt

I
A

=
∈

= × ⋅
0

117 19 10.  V m s

(b) B ds
d

dt
E⋅ =∈z 0 0µ

Φ
 so 2 0 0

0

2π µ πrB
d
dt

Q
A

r=∈
∈

⋅
L
NM

O
QP

B
Ir
A

= =
×

= ×
−

−µ µ

π
0 0

2

2
7

2

0 200 5 00 10

2 0 100
2 00 10

. .

.
.

a fe j
a f  T

Section 30.8 Magnetism in Matter

P30.39 (a) I
ev

r
=

2π
µ

π
π= =

F
HG
I
KJ = × ⋅−IA

ev
r

r
2

9 27 102 24.  A m2

The Bohr model predicts the correct magnetic moment. However, the
“planetary model” is seriously deficient in other regards.

(b) Because the electron is (–), its [conventional] current is clockwise, as seen
from above, and µ points downward . FIG. P30.39
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P30.40 B nI
N

r
I= =

F
HG
I
KJµ µ

π2
 so I

r B

N
= =

× ⋅
=

−

2 2 0 100 1 30

5 000 4 10 470
277

7

π
µ

π

π

b g a fa f
e ja f

. . m  T

 Wb A m
 mA

P30.41 Assuming a uniform B inside the toroid is equivalent to assuming

r R<< ; then B
NI

R0 0 2
≈ µ

π
 as for a tightly wound solenoid.

B0 0
630 3 00
2 0 200

0 001 89= =µ
π
a fa f
a f

.
.

.  T

With the steel, B B Bm= = + =κ χ0 01 101 0 001 89b g a fb g.  T    B = 0 191.  T FIG. P30.41

P30.42 C
TM

B
= =

× ×
= ×

⋅
⋅

−4 00 10 0% 8 00 10 5 00 9 27 10

5 00
2 97 10

27 24
4

. . . . .

.
.

 K  atoms m  J T

 T
 

K J
T m

3 2

2 3

a fa fe ja fe j

P30.43 B H M= +µ0 a f  so H
B

M= − = ×
µ 0

62 62 10.  A m

P30.44 In B H M= +µ0 a f  we have 2 00 0.  T = µ M . But also M xn B= µ . Then B xnB= µ µ0  where n is the
number of atoms per volume and x is the number of electrons per atom contributing.

Then x
B

nB
= =

× × ⋅ × ⋅
=

− − −µ µ π0
3 24 7

2 00

9 27 10 4 10
2 02

.

.
.

 T

8.50 10  m  N m T  T m A28e je je j
.

P30.45 (a) Comparing Equations 30.29 and 30.30, we see that the applied field is described by

B H0 0= µ . Then Eq. 30.35 becomes M C
B
T

C
T

H= =0
0µ , and the definition of susceptibility

(Eq. 30.32) is χ µ= =
M
H

C
T 0 .

(b) C
T

= =
×

× ⋅
= ×

⋅
⋅

−

−
χ
µ π0

4

7
4

2 70 10 300

4 10
6 45 10

.
.

e ja f K

 T m A
 

K A
T m

Section 30.9 The Magnetic Field of the Earth

P30.46 (a) B B
NI
Rh = = =

×
=

−

coil  T
µ π

µ0
7

2

4 10 5 00 0 600

0 300
12 6

e ja fa f. .

.
.

(b) B B B
B

h
h= → = =

°
=sin

sin
.

sin .
.φ

φ
µ

µ
12 6

13 0
56 0

 T
 T

P30.47 (a) Number of unpaired electrons =
× ⋅
× ⋅

= ×−
8 00 10
9 27 10

8 63 10
22

24
45.

.
.

 A m
 A m

2

2 .
FIG. P30.46

Each iron atom has two unpaired electrons, so the number of iron atoms required is
1
2

8 63 1045. ×e j .

(b) Mass
 atoms  kg m

 atoms m
 kg

3

3
=

×

×
= ×

4 31 10 7 900

8 50 10
4 01 10

45

28
20

.

.
.

e je j
e j
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Additional Problems

P30.48 B
IR

R R

I
R

=
+

=
µ µ0

2

2 2 3 2
0

5 2
2 2e j

I
BR

= =
× ×

× ⋅

−

−

2 2 7 00 10 6 37 10

4 10

5 2

0

5 2 5 6

7µ π

. . T  m

 T m A

e je j
e j

so I = ×2 01 109.  A  toward the west

P30.49 Consider a longitudinal filament of the strip of width dr as
shown in the sketch. The contribution to the field at point P
due to the current dI in the element dr is

dB
dI
r

=
µ

π
0

2

where dI I
dr
w

= FHG
I
KJ

B B k k= = = +FHG
I
KJz z

+

d
Idr
wr

I
w

w
bb

b w µ
π

µ
π

0 0

2 2
1� ln � .

FIG. P30.49

P30.50 Suppose you have two 100-W headlights running from a 12-V battery, with the whole 
200

17
 W

12 V
=  A

current going through the switch 60 cm from the compass. Suppose the dashboard contains little
iron, so µ µ≈ 0 . Model the current as straight. Then,

B
I
r

= =
× −

−µ
π

π

π
0

7
5

2

4 10 17

2 0 6
10

e j
a f.

~  T .

If the local geomagnetic field is 5 10 5× −  T , this is ~10 1−  times as large,  enough to affect the

compass noticeably.

P30.51 We find the total number of turns: B
NI

=
µ 0

A

N
B

I
= =

× ⋅
= ×

−

A
µ π0

7
30 030 0 0 100

10 1 00
2 39 10

. .

.
.

 T  m  A

4  T m  A

b ga f
e ja f

Each layer contains
10 0

200
.  cm

0.050 0 cm
F
HG

I
KJ =  closely wound turns

so she needs
2 39 10

200
12

3. ×F
HG

I
KJ =  layers .

The inner diameter of the innermost layer is 10.0 mm. The outer diameter of the outermost layer is
10 0 2 12 0 500 22 0. . . mm  mm  mm+ × × = . The average diameter is 16.0 mm, so the total length of
wire is

2 39 10 16 0 10 1203 3. .× × =−e j e jπ  m  m .
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*P30.52 At a point at distance x from the left end of the bar, current

I2  creates magnetic field B =
+

µ

π
0 2
2 22

I

h x
 to the left and

above the horizontal at angle θ where tanθ =
x
h

. This field

exerts force on an element of the rod of length dx

d I I
I dx

h x
I I dx

h x

x

h x

F B= × =
+

=
+ +

1 1
0 2

2 2

0 1 2
2 2 2 2

2

2

A µ

π
θ

µ

π

sin
right hand rule

 into the page
 

d
I I xdx

h x
F k=

+
−

µ
π

0 1 2
2 22 e j e j

�

θ
B

I1x

I2

h
θ

FIG. P30.52

The whole force is the sum of the forces on all of the elements of the bar:

F k
k k

k k

k k

=
+

− =
−

+
=

−
+

=
−

+ − =
− +L
N
MM

O
Q
PP

= × − = × −

=

−

− −

z zµ

π

µ

π

µ

π

µ

π

0 1 2
2 2

0

0 1 2

2 2
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0 1 2 2 2
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0 1 2 2 2 2
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2
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2 4
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4

4
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I I xdx

h x

I I xdx
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h x

I I
h h

x e j e j
e j e j

e j

e j
e j

a fa fe j a f a f
a f

e j e j

�
� �
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�
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�
ln

.

.
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A A
A

A
 N 100 A  A

A
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 N  N

P30.53 On the axis of a current loop, the magnetic field is given by B
IR

x R
=

+

µ 0
2

2 2 3 2
2e j

where in this case I
q

=
2π ωb g . The magnetic field is directed away from the center, with a magnitude

of

B
R q

x R
=

+
=

×

+
= ×

−
−µ ω

π

µ

π

0
2

2 2 3 2

0
2 6

2 2 3 2
10

4

20 0 0 100 10 0 10

4 0 050 0 0 100
1 43 10

e j
a fa f e j
b g a f

. . .

. .
.  T .

P30.54 On the axis of a current loop, the magnetic field is given by B
IR

x R
=

+

µ 0
2

2 2 3 2
2e j

where in this case I
q

=
2π ωb g . Therefore, B

R q

x R
=

+

µ ω

π

0
2

2 2 3 2
4 e j

when x
R

=
2

. then B
R q

R

q

R
= =

µ ω

π

µ ω
π

0
2

5
4

2 3 2
0

4 2 5 5e j .
.



204     Sources of the Magnetic Field

P30.55 (a) Use equation 30.7 twice: B
IR

x R
x =

+

µ 0
2

2 2 3 2
2e j

If each coil has N turns, the field is just N times larger.

B B B
N IR

x R R x R

B
N IR

x R R x xR

x x= + =
+

+
− +

L

N
MMM

O

Q
PPP

=
+

+
+ −

L

N
MMM

O

Q
PPP

1 2
0

2

2 2 3 2 2 2 3 2

0
2

2 2 3 2 2 2 3 2

2
1 1

2
1 1

2 2

µ

µ

e j a f

e j e j

FIG. P30.55

(b)
dB
dx

N IR
x x R R x xR x R= − + − + − −L

NM
O
QP

− −µ0
2

2 2 5 2 2 2 5 2

2
3
2

2
3
2

2 2 2 2a fe j e j a f

Substituting x
R

=
2

 and canceling terms, 
dB
dx

= 0 .

d B
dx

N IR
x R x x R R x xR

x R R x xR

2

2
0

2
2 2 5 2 2 2 2 7 2 2 2 5 2

2 2 2 7 2

3
2

5 2 2

5 2 2

=
−

+ − + + + −L
NM

− − + − O
QP

− − −

−

µ e j e j e j
a f e j

Again substituting x
R

=
2

 and canceling terms, 
d B
dx

2

2 0= .

P30.56 “Helmholtz pair” → separation distance = radius

B
IR

R R

IR

R

I
R

=
+

=
+

=
2

2 2 1 1 40
0

2

2 2
3 2

0
2

1
4

3 2 3
0µ µ µ

b g .
 for 1 turn.

For N turns in each coil, B
NI

R
= =

×
= ×

−
−µ π

0
7

3

1 40

4 10 100 10 0

1 40 0 500
1 80 10

.

.

. .
.

e j a f
a f  T .

*P30.57 Consider first a solid cylindrical rod of radius R carrying
current toward you, uniformly distributed over its cross-
sectional area. To find the field at distance r from its center we
consider a circular loop of radius r:

B s

B k r

⋅ =

= = = ×

z d I

B r r J B
Jr J

µ

π µ π
µ µ

0

0
2 0 02

2 2

inside

�

Now the total field at P inside the saddle coils is the field due to
a solid rod carrying current toward you, centered at the head of
vector a, plus the field of a solid rod centered at the tail of
vector a carrying current away from you.

B B k r k r1 2
0

1
0

22 2
+ = × + − ×

µ µJ J� �e j
Now note a r r+ =1 2

�k

�k

r1r2
a

B1

B2P

FIG. P30.57

B B k r k a r a k1 2
0

1
0

1
0 0

2 2 2 2
+ = × − × + = × =

µ µ µ µJ J J Ja� � �b g  down in the diagram .
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*
P30.58 From example 30.6, the upper sheet creates field

B k=
µ 0

2
Js �  above it and 

µ0

2
Js − �ke j  below it. Consider a

patch of the sheet of width w parallel to the z axis and
length d parallel to the x axis. The charge on it σ wd  passes

a point in time 
d
v

, so the current it constitutes is 
q
t

wdv
d

=
σ

and the linear current density is J
wv
w

vs = =
σ

σ . Then the

magnitude of the magnetic field created by the upper sheet

is 
1
2 0µ σ v . Similarly, the lower sheet in its motion toward

the right constitutes current toward the left. It creates

magnetic field 
1
2 0µ σ v − �ke j  above it and 

1
2 0µ σ v �k  below it.

+
+

+
+

–
–

–
–

d

x

y

z

w

FIG. P30.58

(b) Above both sheets and below both, their equal-magnitude fields add to zero .

(a) Between the plates, their fields add to µ σ µ σ0 0v v− =�ke j  away from you horizontally.

(c) The upper plate exerts no force on itself. The field of the lower plate, 
1
2 0µ σ v − �ke j  will exert

a force on the current in the w- by d-section, given by

I wvd v v wdA × = × − =B i k jσ µ σ µ σ� � �1
2

1
20 0

2 2e j .

The force per area is 
1
2

1
2

0
2 2

0
2 2µ σ

µ σ
v wd

wd
v�j =  up .

(d) The electrical force on our section of the upper plate is q w
w

E j jlower =
∈

− =
∈

−σ
σ σA A

2 20

2

0

� �e j e j .

The electrical force per area is 
A

A
w

w
σ σ2

0

2

02 2∈
=

∈
 down  down. To have 

1
2 20

2 2
2

0
µ σ

σ
v =

∈
 we

require

v =
∈

=
× ×

= ×
− −

1 1

4 10 8 85 10
3 00 10

0 0 7 12 2

8

µ π Tm A N TAm C Nm As C
 m s

2 2b gb g e jb g.
. .

This is the speed of light, not a possible speed for a metal plate.
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P30.59 Model the two wires as straight parallel wires (!)

(a) F
I

aB =
µ

π
0

2

2
A

 (Equation 30.12)

FB =
×

×

=

−

−

4 10 140 2 0 100

2 1 00 10

2 46
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π π
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e ja f a fa f
e j

.

.

.  N  upward

(b) a
m g

mloop
loop

loop

2 N
 m s=

−
=

2 46
107

.
 upward

FIG. P30.59

P30.60 (a) In d
r

IdB s r= ×
µ
π

0
24

� , the moving charge constitutes a bit of current as in I nqvA= . For a

positive charge the direction of ds  is the direction of v, so d
r

nqA dsB v r= ×
µ
π

0
24
a f � . Next,

A dsa f  is the volume occupied by the moving charge, and nA dsa f = 1  for just one charge.
Then,

B v r= ×
µ
π

0
24 r

q � .

(b) B =
× ⋅ × ×

×
° = ×

− −

−

−
4 10 1 60 10 2 00 10

4 1 00 10
90 0 3 20 10

7 19 7

3 2
13

π

π

 T m A  C  m s
 T

e je je j
e j
. .

.
sin . .

(c) F qB = × = × × × °− −v B 1 60 10 2 00 10 3 20 10 90 019 7 13. . . sin . C  m s  Te je je j
FB = × −1 02 10 24.  N directed away from the first proton

(d) F qE
k q q

re
e= = =

× ⋅ ×

×

−

−

1 2
2

9 19 2

3 2

8 99 10 1 60 10

1 00 10

. .

.

 N m C  C2 2e je j
e j

Fe = × −2 30 10 22.  N directed away from the first proton

Both forces act together. The electrical force is stronger by two orders of magnitude. It is
productive to think about how it would look to an observer in a reference frame moving
along with one proton or the other.
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P30.61 (a) B
I
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π

π

π
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7
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4 10 24 0
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.
.

(b) At point C, conductor AB produces a field 
1
2

2 74 10 4. �× −−  Te je jj ,  conductor DE

produces a field of 
1
2

2 74 10 4. �× −−  Te je jj ,  BD produces no field, and AE produces

negligible field. The total field at C is 2 74 10 4. �× −−  T je j .

(c) F B k j iB I= × = × × − = ×− −A 24 0 0 035 0 5 2 74 10 1 15 104 3. . � . � . � A  m  T  Na fe j e je j e j  

(d) a
F i

i= =
×

×
=∑ −

−m

1 15 10

3 0 10
0 384

3

3

. �

.
. � N

 kg
 m s2e j e j

(e) The bar is already so far from AE that it moves through nearly constant magnetic field. The
force acting on the bar is constant, and therefore the bar’s acceleration is constant .

(f) v v axf i
2 2 2 0 2 0 384 1 30= + = + . . m s  m2e ja f , so v if = 0 999. � m sb g

*P30.62 Each turn creates field at the center 
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P30.63 At equilibrium, 
F I I

a
mgB A B
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= =
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P30.64 (a) The magnetic field due to an infinite sheet of current (or the
magnetic field at points near a large sheet of current) is given by

B
Js=

µ 0

2
 . The current density J

I
s =
A

 and in this case the

equivalent current of the moving charged belt is

I
dq
dt

d
dt

x v= = =σ σA Ab g ; v
dx
dt

= .

Therefore, J vs = σ  and B
v

=
µ σ0

2
.

FIG. P30.64

(b) If the sheet is positively charged and moving in the direction shown, the magnetic field is
out of the page,  parallel to the roller axes .
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P30.65 The central wire creates field B =
µ
π
0 1

2
I
R

 counterclockwise. The curved portions of the loop feels no

force since A × =B 0 there. The straight portions both feel IA × B  forces to the right, amounting to

FB I L
I
R

I I L
R

= =2
0 1 0 1 22

2
µ
π

µ
π

 to the right .

P30.66 I
rB

= =
× ×

×
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−

−

2 2 9 00 10 1 50 10

4 10
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0

3 8

7

π
µ

π

π

. .e je j
 A

Flow of positive current is downward  negative charge flows upwardor .

P30.67 By symmetry of the arrangement, the magnitude of the net magnetic field
at point P is B B x= 8 0  where B0  is the contribution to the field due to

current in an edge length equal to 
L
2

. In order to calculate B0 , we use the

Biot-Savart law and consider the plane of the square to be the yz-plane with
point P on the x-axis. The contribution to the magnetic field at point P due
to a current element of length dz and located a distance z along the axis is
given by Equation 30.3.

B
r

0
0

24
=

×zµ
π
I d

r
A �

.

FIG. P30.67

From the figure we see that

r x L z= + +2 2 24e j  and d dz dz
L x

L x z
A × = =

+

+ +
� sinr θ

2 2

2 2 2

4

4

e j
e j

.

By symmetry all components of the field B at P cancel except the components along x
(perpendicular to the plane of the square); and

B Bx0 0= cosφ  where cosφ =
+

L

L x

2

42 2e j
.

Therefore, B0
0

2
0

2

4x

LI dz
r

= zµ
π

θ φsin cos
 and B B x= 8 0 .

Using the expressions given above for sin cosθ φ , and r, we find

B
IL

x L x L
=

+ +

µ

π

0
2

2 2 2 22 4 2e je j e j
.

P30.68 (a) From Equation 30.9, the magnetic field produced by one loop at the center of the second

loop is given by B
IR
x

I R

x x
= = =

µ µ π

π
µ µ
π

0
2
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0
2
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32 2 2

e j
 where the magnetic moment of either loop

is µ π= I R2e j . Therefore,
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P30.69 There is no contribution from the straight portion of the
wire since ds r× =� 0 . For the field of the spiral,
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FIG. P30.69

Substitute r e= θ : B
I

e
I

e e
I

e= − = − − = −− − −µ
π

µ
π

µ
π

θ π π π0
0

2 0 2 0 0 2

4 4 4
1e j  out of the page.

P30.70 (a) B B M= +0 0µ

M
B B

=
− 0

0µ
 and M =

−B B0

0µ

Assuming that B  and B0  are parallel, this

becomes M
B B

=
− 0

0µ
.

The magnetization curve gives a plot of M
versus B0 .

(b) The second graph is a plot of the relative

permeability 
B
B0

F
HG
I
KJ  as a function of the applied

field B0 .

8 000

4 000

0
0.0 1.0 2.0 3.0

B/B0

B0 (mT)

Relative Permeability

FIG. P30.70
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P30.71 Consider the sphere as being built up of little rings of radius r,
centered on the rotation axis. The contribution to the field from
each ring is

dB
r dI

x r
=

+

µ0
2

2 2 3 2
2e j

 where dI
dQ
t

dQ
= =

ω
π2

dQ dV rdr dx= =ρ ρ π2b ga f
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r drdx
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=
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µ ρω0
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2 2 3 2
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R4 3 3b g
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FIG. P30.71
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P30.72 Consider the sphere as being built up of little rings of radius r,
centered on the rotation axis. The current associated with each
rotating ring of charge is

dI
dQ
t

rdr dx= =
ω
π

ρ π
2

2b ga f .

The magnetic moment contributed by this ring is
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P30.73 Note that the current I exists in the conductor with a

current density J
I
A

= , where

A a
a a a

= − −
L
NM

O
QP

=π
π2

2 2 2

4 4 2
.

Therefore, J
I
a

=
2

2π
.

To find the field at either point P1  or P2 , find Bs  which
would exist if the conductor were solid, using Ampère’s
law. Next, find B1  and B2  that would be due to the

conductors of radius 
a
2

 that could occupy the void where

the holes exist. Then use the superposition principle and
subtract the field that would be due to the part of the
conductor where the holes exist from the field of the
solid conductor.
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ANSWERS TO EVEN PROBLEMS

P30.2 20 0.  Tµ P30.8 see the solution

P30.4 200 nT
P30.10

1 1
4 2

0

π
µ

+FHG
I
KJ

I
r

 into the page

P30.6 1
1

2
0+FHG
I
KJπ

µ I
R

 into the page
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P30.12
µ0

12
1 1I
a b

−FHG
I
KJ  out of the page

P30.44 2 02.

P30.46 (a) 12 6.  Tµ ; (b) 56 0.  Tµ

P30.14
µ

π

0
2 2 2 2

2 22

I a d d a d

ad a d

+ − +FH IK
+

 into the page P30.48 2 01.  GA  west

P30.50 ~10 5−  T , enough to affect the compass
noticeablyP30.16 (a) 10 0.  Tµ ; (b) 80 0.  Nµ  toward wire 1;

(c) 16 0.  Tµ ; (d) 80 0.  Nµ  toward wire 2
P30.52 12 0. � mN −ke j

P30.18 Parallel to the wires and
0 167.  m below the upper wire

P30.54
µ ω

π
0

2 5 5

q

R.
P30.20 (a) opposite; (b) 67 8.  A

P30.56 1 80.  mT
P30.22 5.40 cm

P30.58 (a) µ σ0 v  horizontally away from you;
P30.24 (a) 400 cm; (b) 7 50.  nT ; (c) 1 26.  m; (d) zero

(b) 0; (c) 
1
2 0

2 2µ σ v  up; (d) 3 00 108. ×  m s
P30.26 (a) 3 60.  T ; (b) 1 94.  T

P30.60 (a) see the solution; (b) 3 20 10 13. × −  T;
P30.28 500 A

(c) 1 02 10 24. × −  N  away from the first
proton;P30.30 (a) see the solution; (b) d a=
(d) 2 30 10 22. × −  N  away from the first
proton

P30.32 (a) 
µ0

2 2 2 22
IN a

a R

a

a RA
A

A+
−

−

− +

L

N
MMM

O

Q
PPPa f

;
P30.62 347 0µ I m perpendicular to the coil

(b) see the solution
P30.64 (a) 

1
2 0µ σ v ; (b) out of the page,

parallel to the roller axesP30.34 (a) −B Rπ θ2 cos ; (b) B Rπ θ2 cos

P30.36 (a) 7 40.  Wbµ ; (b) 2 27.  Wbµ P30.66 675 A downward

P30.38 (a) 7 19 1011. × ⋅ V m s ; (b) 200 nT P30.68 (a) see the solution; (b) 59 2.  nN

P30.70 see the solutionP30.40 277 mA

P30.72
4

15
5πωρR  upwardP30.42 2 97 104. ×

⋅
⋅

 
K J

T m2 3
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CHAPTER OUTLINE

31.1 Faraday’s Law of Induction
31.2 Motional emf
31.3 Lenz’s Law
31.4 Induced emf and Electric
  Fields
31.5 Generators and Motors
31.6 Eddy Currents
31.7 Maxwell’s Equations
           
           
          
          

          
                                         

         

   
           
           

           
            

Faraday’s Law

ANSWERS TO QUESTIONS

Q31.1 Magnetic flux measures the “flow” of the magnetic field
through a given area of a loop—even though the field does not
actually flow. By changing the size of the loop, or the
orientation of the loop and the field, one can change the
magnetic flux through the loop, but the magnetic field will not
change.

Q31.2 The magnetic flux is ΦB BA= cosθ . Therefore the flux is
maximum when B is perpendicular to the loop of wire and zero
when there is no component of magnetic field perpendicular to
the loop. The flux is zero when the loop is turned so that the
field lies in the plane of its area.

Q31.3 The force on positive charges in the bar is F v B= ×qa f . If the bar
is moving to the left, positive charge will move downward and
accumulate at the bottom end of the bar, so that an electric field
will be established upward.

Q31.4 No. The magnetic force acts within the bar, but has no influence on the forward motion of the bar.

Q31.5 By the magnetic force law F v B= ×qa f : the positive charges in the moving bar will flow downward
and therefore clockwise in the circuit. If the bar is moving to the left, the positive charge in the bar
will flow upward and therefore counterclockwise in the circuit.

Q31.6 We ignore mechanical friction between the bar and the rails. Moving the conducting bar through the
magnetic field will force charges to move around the circuit to constitute clockwise current. The
downward current in the bar feels a magnetic force to the left. Then a counterbalancing applied
force to the right is required to maintain the motion.

Q31.7 A current could be set up in the bracelet by moving the bracelet through the magnetic field, or if the
field rapidly changed.

Q31.8 Moving a magnet inside the hole of the doughnut-shaped toroid will not change the magnetic flux
through any turn of wire in the toroid, and thus not induce any current.
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214     Faraday’s Law

Q31.9 As water falls, it gains speed and kinetic energy. It then pushes against turbine blades, transferring
its energy to the rotor coils of a large AC generator. The rotor of the generator turns within a strong
magnetic field. Because the rotor is spinning, the magnetic flux through its turns changes in time as

ΦB BA t= cosω . Generated in the rotor is an induced emf of ε =
−Nd

dt
BΦ

. This induced emf is the

voltage driving the current in our electric power lines.

Q31.10 Yes. Eddy currents will be induced around the circumference of the copper tube so as to fight the
changing magnetic flux by the falling magnet. If a bar magnet is dropped with its north pole
downwards, a ring of counterclockwise current will surround its approaching bottom end and a ring
of clockwise current will surround the receding south pole at its top end. The magnetic fields created
by these loops of current will exert forces on the magnet to slow the fall of the magnet quite
significantly. Some of the original gravitational energy of the magnet will appear as internal energy
in the walls of the tube.

Q31.11 Yes. The induced eddy currents on the surface of the aluminum will slow the descent of the
aluminum. It may fall very slowly.

Q31.12 The maximum induced emf will increase, increasing the terminal voltage of the generator.

Q31.13 The increasing counterclockwise current in
the solenoid coil produces an upward
magnetic field that increases rapidly. The
increasing upward flux of this field
through the ring induces an emf to
produce clockwise current in the ring. The
magnetic field of the solenoid has a
radially outward component at each point
on the ring. This field component exerts
upward force on the current in the ring
there. The whole ring feels a total upward
force larger than its weight.

FIG. Q31.13

Q31.14 Oscillating current in the solenoid produces an always-changing magnetic field. Vertical flux
through the ring, alternately increasing and decreasing, produces current in it with a direction that
is alternately clockwise and counterclockwise. The current through the ring’s resistance produces
internal energy at the rate I R2 .

Q31.15 (a) The south pole of the magnet produces an upward magnetic field that increases as the
magnet approaches. The loop opposes change by making its own downward magnetic field;
it carries current clockwise, which goes to the left through the resistor.

(b) The north pole of the magnet produces an upward magnetic field. The loop sees decreasing
upward flux as the magnet falls away, and tries to make an upward magnetic field of its
own by carrying current counterclockwise, to the right in the resistor.
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Q31.16 (a) The battery makes counterclockwise current
I1  in the primary coil, so its magnetic field
B1  is to the right and increasing just after the
switch is closed. The secondary coil will
oppose the change with a leftward field B2 ,
which comes from an induced clockwise
current I2  that goes to the right in the
resistor.

(b) At steady state the primary magnetic field is
unchanging, so no emf is induced in the
secondary.

(c) The primary’s field is to the right and
decreasing as the switch is opened. The
secondary coil opposes this decrease by
making its own field to the right, carrying
counterclockwise current to the left in the
resistor.

FIG. Q31.16

Q31.17 The motional emf between the wingtips cannot be used to run a light bulb. To connect the light, an
extra insulated wire would have to be run out along each wing, making contact with the wing tip.
The wings with the extra wires and the bulb constitute a single-loop circuit. As the plane flies
through a uniform magnetic field, the magnetic flux through this loop is constant and zero emf is
generated. On the other hand, if the magnetic field is not uniform, a large loop towed through it will
generate pulses of positive and negative emf. This phenomenon has been demonstrated with a cable
unreeled from the Space Shuttle.

Q31.18 No, they do not. Specifically, Gauss’s law in magnetism prohibits magnetic monopoles. If magnetic
monopoles existed, then the magnetic field lines would not have to be closed loops, but could begin
or terminate on a magnetic monopole, as they can in Gauss’s law in electrostatics.

Q31.19 (a) A current is induced by the changing magnetic flux through the a ring of the tube, produced
by the high frequency alternating current in the coil.

(b) The higher frequency implies a greater rate of change in the magnetic field, for a larger
induced voltage.

(c) The resistance of one cubic centimeter in the bulk sheet metal is low, so the I R2  rate of
production of internal energy is low. At the seam, the current starts out crowded into a small
area with high resistance, so the temperature rises rapidly, and the edges melt together.

(d) The edges must be in contact to allow the induced emf to create an electric current around
the circumference of the tube. Additionally, (duh) the two edges must be in contact to be
welded at all, just as you can’t glue two pieces of paper together without putting them in
contact with each other.
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SOLUTIONS TO PROBLEMS

Section 31.1 Faraday’s Law of Induction

Section 31.3 Lenz’s Law
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∆

∆
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(c) At t = 0  ε = 28 0.  mV

P31.5 Noting unit conversions from F v B= ×q  and U qV= , the induced voltage is
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P31.7 ε µ= = = × −d BA
dt
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(c) Coil’s field points downward, and is increasing, so
Bring  points upward .

FIG. P31.7
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(c) The coil’s field points downward, and is increasing, so
Bring  points upward .

FIG. P31.8

P31.9 (a) d d
I
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The long wire produces magnetic flux into the page through the rectangle,
shown by the first hand in the figure to the right.

As the magnetic flux increases, the rectangle produces its own magnetic
field out of the page, which it does by carrying counterclockwise  current

(second hand in the figure).
FIG. P31.9
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P31.10 ΦB nI A= µ0b g solenoid
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P31.11 For a counterclockwise trip around the left-hand loop, with
B At=

d
dt

At a I R I RPQ2 0 5 02
1e j a fcos ° − − =

and for the right-hand loop,

d
dt

Ata I R I RPQ
2

2 3 0+ − =a f
where I I IPQ = −1 2  is the upward current in QP.

Thus, 2 5 02
2Aa R I I I RPQ PQ− + − =d i

FIG. P31.11

and Aa I R I RPQ
2

2 3+ = a f

2 6
5
3

02 2Aa RI Aa I RPQ PQ− − + =e j

I
Aa

RPQ =
2

23
 upward, and since R = =0 100 0 650 0 065 0. . . m  m  Ω Ωb ga f

IPQ =
×

=
−1 00 10 0 650

23 0 065 0
283

3 2. .

.

 T s  m

 
 A upward

e ja f
b gΩ

µ .

P31.12 ε = = FHG
I
KJ = +

∆Φ
∆

B

t
N

dB
dt

A N t A0 010 0 0 080 0. .b g

At t = 5 00.  s , ε π= =30 0 0 410 0 040 0 61 8
2

. . . . T s  m  mVb g b g

P31.13 B nI n e t= = − −µ µ0 0
1.6030 0 1.  Aa fe j

ΦB
tBdA n e dA= = −z z−µ 0

1.6030 0 1.  Aa fe j
ΦB

tn e R= − −µ π0
1.60 230 0 1.  Aa fe j

ε µ π= − = − −N
d

dt
N n R eB tΦ

0
2 1.6030 0 1 60. . Aa f a f

FIG. P31.13
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*P31.14 (a) Each coil has a pulse of voltage tending to produce
counterclockwise current as the projectile
approaches, and then a pulse of clockwise voltage
as the projectile recedes.
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FIG. P31.14
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*P31.16 (a) Suppose, first, that the central wire is long and straight. The enclosed current of unknown
amplitude creates a circular magnetic field around it, with the magnitude of the field given
by Ampere’s Law.

B s⋅ =z d Iµ0 : B
I t

R
=

µ ω
π

0

2
max sin

at the location of the Rogowski coil, which we assume is centered on the wire. This field
passes perpendicularly through each turn of the toroid, producing flux

B A⋅ =
µ ω

π
0

2
I A t

R
max sin

.

The toroid has 2π Rn  turns. As the magnetic field varies, the emf induced in it is

ε π
µ

π
ω µ ω ω= − ⋅ = − = −N

d
dt

Rn
I A

R
d
dt

t I nA tB A 2
2
0

0
max

maxsin cos .

This is an alternating voltage with amplitude ε µ ωmax max= 0nA I . Measuring the amplitude
determines the size Imax  of the central current. Our assumptions that the central wire is long
and straight and passes perpendicularly through the center of the Rogowski coil are all
unnecessary.

(b) If the wire is not centered, the coil will respond to stronger magnetic fields on one side, but
to correspondingly weaker fields on the opposite side. The emf induced in the coil is
proportional to the line integral of the magnetic field around the circular axis of the toroid.
Ampere’s Law says that this line integral depends only on the amount of current the coil
encloses. It does not depend on the shape or location of the current within the coil, or on
any currents outside the coil.
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P31.17 In a toroid, all the flux is confined to the inside of the
toroid.
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*P31.18 The upper loop has area π 0 05 7 85 102 3 2. . m  ma f = × − . The induced emf in it is

ε θ= − = − ° = − × = − ×− −N
d
dt

BA A
dB
dt

cos cos . .1 0 7 85 10 2 1 57 103 2 m  T s  V2 b g .

The minus sign indicates that it tends to produce counterclockwise current, to make its own
magnetic field out of the page. Similarly, the induced emf in the lower loop is

ε θ π= − = − = − × = + ×− −NA
dB
dt

cos . . .0 09 2 5 09 10 5 09 102 2 2 m  T s  V  Va f  to produce

counterclockwise current in the lower loop,  which becomes clockwise current in the upper loop .

The net emf for current in this sense around the figure 8 is

5 09 10 1 57 10 3 52 102 2 2. . .× − × = ×− − − V  V  V .

It pushes current in this sense through series resistance 2 0 05 2 0 09 3 2 64π π. . . m  m  m  a f a f+ =Ω Ω .

The current is I
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Ω
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Section 31.2 Motional emf

Section 31.3 Lenz’s Law

P31.19 (a) For maximum induced emf, with positive charge at the top of the antenna,

F v B+ += ×q a f , so the auto must move east .

(b) ε = = ×
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KJ ° = ×− −B v 5 00 10 1 20
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3 600 s
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FIG. P31.20

P31.21 (a) F BB I I B= × =
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ε
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The applied force is 3 00.  N to the right .
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FIG. P31.21

P31.22 F I BB =  and ε = B v
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(c) For constant force, P = ⋅ = =F v 1 00 2 00 2 00. . . N  m s  Wa fb g .

*P31.23 Model the magnetic flux inside the metallic tube as constant as it shrinks form radius R to radius r:
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*P31.24 Observe that the homopolar generator has no commutator and
produces a voltage constant in time: DC with no ripple. In time dt, the
disk turns by angle d dtθ ω= . The outer brush slides over distance rdθ .
The radial line to the outer brush sweeps over area

dA rrd r dt= =
1
2

1
2

2θ ω .

The emf generated is ε = − ⋅N
d
dt

B A

ε ω= − ° = − FHG
I
KJ1 0

1
2

2a fB dA
dt

B rcos

(We could think of this as following from the result of Example 31.4.)
The magnitude of the emf is FIG. P31.24
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A free positive charge q shown, turning with the disk, feels a magnetic force qv B×  radially

outward. Thus the outer contact is positive .

*P31.25 The speed of waves on the wire is

v
T
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×
=−µ

267
2983

 N m
3 10  kg

 m s .

In the simplest standing-wave vibration state,

dNN = =0 64
2

.  m
λ λ = 1 28.  m
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= = =
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298
1 28

233
 m s

 m
 Hz

.
.

(a) The changing flux of magnetic field through the circuit containing the wire will drive
current to the left in the wire as it moves up and to the right as it moves down. The emf will
have this same frequency of 233 Hz .

(b) The vertical coordinate of the center of the wire is described by

x A t t= =cos . cosω π1 5 2 233 cm sa f b g .

Its velocity is v
dx
dt

t= = − 1 5 2 2 233. sin cm 233 s  sa fb g b gπ π .

Its maximum speed is 1 5 2 233 22 0. . cm s  m sπa f = .

The induced emf is ε = −B v , with amplitude

ε max max . . .= = × = ×− −B v 4 50 10 0 02 22 1 98 103 3 T  m  m s  Va f .
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FIG. P31.26

The flux is into the page and decreasing. The loop makes its own magnetic field into the page by
carrying clockwise  current.

P31.27 ω π π= =2 00 2 4 00. . rev s  rad rev  rad sb gb g

ε ω= =
1
2

2 832B .  mV

P31.28 (a) B iext extB=  and Bext  decreases; therefore, the

induced field is B i0 0= B  (to the right) and the

current in the resistor is directed to the right .

(b) B iext extB= −e j  increases; therefore, the induced

field B i0 0= +B e j  is to the right, and the current in

the resistor is directed to the right .

(c) B kext extB= −e j  into the paper and Bext  decreases;

therefore, the induced field is B k0 0= −B e j  into the

paper, and the current in the resistor is directed
to the right . FIG. P31.28

(d) By the magnetic force law, F qB = ×v Ba f . Therefore, a positive charge will move to the top of

the bar if B is into the paper .
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P31.29 (a) The force on the side of the coil entering the field
(consisting of N wires) is

F N ILB N IwB= =a f a f .
The induced emf in the coil is

ε = = =N
d

dt
N

d Bwx
dt

NBwvBΦ a f
.

so the current is I
R

NBwv
R

= =
ε

 counterclockwise.

The force on the leading side of the coil is then:

F N
NBwv

R
wB

N B w v
R

= FHG
I
KJ =

2 2 2

 to the left .

(b) Once the coil is entirely inside the field,
ΦB NBA= = constant ,

so ε = 0 , I = 0 , and F = 0 . FIG. P31.29

(c) As the coil starts to leave the field, the flux decreases at the rate Bwv, so the magnitude of the
current is the same as in part (a), but now the current is clockwise. Thus, the force exerted on
the trailing side of the coil is:

F
N B w v

R
=

2 2 2

 to the left again .

P31.30 Look in the direction of ba. The bar magnet creates a field into the page, and the field increases. The
loop will create a field out of the page by carrying a counterclockwise current. Therefore, current
must flow from b to a through the resistor. Hence, V Va b−  will be negative .

P31.31 Name the currents as shown in the diagram:

Left loop: + − − =Bdv I R I R2 2 2 1 1 0

Right loop: + − + =Bdv I R I R3 3 3 1 1 0

At the junction: I I I2 1 3= +

Then, Bdv I R I R I R2 1 2 3 2 1 1 0− − − =

I
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R

I R
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1 1

3
= + . FIG. P31.31
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Section 31.4 Induced emf and Electric Fields

P31.32 (a)
dB
dt

t t= −6 00 8 002. . ε =
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FIG. P31.32

P31.33
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P31.34 (a) E ⋅ =z d
d

dt
BΦ

2 2π πrE r
dB
dt

= e j so E t= 9 87 100. cos mV mb g b gπ

(b) The E field is always opposite to increasing B. ∴ clockwise .

Section 31.5 Generators and Motors

P31.35 (a) ε ω πmax . . .= = =NAB 1 000 0 100 0 200 120 7 54b ga fa fa f  kV

(b) ε ω ω ω θt NBA t NBAa f = =sin sin

ε  is maximal when sinθ = 1

or θ
π

= ±
2

so the plane of coil is parallel to B .

FIG. P31.35
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P31.36 For the alternator, ω
π

= F
HG

I
KJ
F
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I
KJ =3 000

2 1
314 rev min

 rad
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60 s

 rad sb g

ε = − = − × ⋅ = + × ⋅− −N
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t tBΦ
250 2 50 10 314 250 2 50 10 314 3144 4. cos . sin T m s  T m s2 2e j b g e jb g a f

(a) ε = 19 6 314. sin Va f a ft

(b) ε max .= 19 6 V

P31.37 B nI= = × ⋅ = ×− − −µ π0
7 1 34 10 200 15 0 3 77 10 T m A  m  A  Te je ja f. .

For the small coil, ΦB N NBA t NB r t= ⋅ = =B A cos cosω π ω2e j .

Thus, ε π ω ω= − =
d

dt
NB r tBΦ 2 sin

ε π π π π= × =− −30 0 3 77 10 0 080 0 4 00 4 00 28 6 4 003 2 1. . . . sin . . sin .a fe j b g e j b g a f b g T  m  s  mVt t .

P31.38 As the magnet rotates, the flux
through the coil varies
sinusoidally in time with ΦB = 0
at t = 0 . Choosing the flux as
positive when the field passes
from left to right through the
area of the coil, the flux at any
time may be written as
Φ ΦB t= − max sinω  so the
induced emf is given by

ε ω ω= − =
d

dt
tBΦ

Φmax cos .
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0 0.5 1 1.5 2

t/T = (ω t/2π )

I/Imax

FIG. P31.38

The current in the coil is then I
R R

t I t= = =
ε ω

ω ω
Φmax

maxcos cos .

*P31.39 M

850 mA

120 V  To analyze the actual circuit, we model it as 

850 mA

120 V
11.8  Ω

εback

.

(a) The loop rule gives + − − =120 0 85 11 8 0 V  A  back. . Ωa f ε ε back  V= 110 .

(b) The resistor is the device changing electrical work input into internal energy:
P = = =I R2 20 85 11 8 8 53. . . A   Wa f a fΩ .

(c) With no motion, the motor does not function as a generator, and ε back = 0 . Then

120 11 8 0 10 2

10 2 11 8 1 222 2

 V   A

 A   kW

− = =

= = =

I I

I R

c c

c c

. .

. . .

Ω

Ω

a f
a f a fP



Chapter 31     227
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I
KJBA B R

1
2

2

ε
π

π

ε

max

max

. . .

.

=

=

1 30
2

0 250 4 00

1 60

2 T  m  rad s

 V

a f a f b g

(b) ε
ε
π

θ
ω

π
θ θ

π π

= = =z z2 2
0

0

2

0

2

d
BA

dsin

(c) The maximum and average ε  would remain
unchanged.

(d) See Figure 1 at the right.

(e) See Figure 2 at the right.

Figure 2

ε

ε

Figure 1

t

t

FIG. P31.40

P31.41 (a) ΦB BA BA t t t= = = = ⋅cos cos . . cos . . cosθ ω π0 800 0 010 0 2 60 0 8 00 377 T  m  mT m2 2a fe j a f e j a f

(b) ε = − =
d

dt
tBΦ

3 02 377. sin Va f a f

(c) I
R

t= =
ε

3 02 377. sin Aa f a f

(d) P = =I R t2 29 10 377. sin Wa f a f

(e) P = =Fv τω  so τ
ω

= = ⋅
P

24 1 3772. sin mN ma f a ft

Section 31.6 Eddy Currents

P31.42 The current in the magnet creates an  upward magnetic field, so the N and S poles on the

solenoid core are shown correctly. On the rail in front of the brake, the upward flux of B increases as

the coil approaches, so a current is induced here to create a downward magnetic field. This is 

clockwise current, so the S pole on the rail is shown correctly. On the rail behind the brake, the
upward magnetic flux is decreasing. The induced current in the rail will produce upward magnetic

field by being  counterclockwise as the picture correctly shows.
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P31.43 (a) At terminal speed,

Mg F IwB
R

wB
Bwv

R
wB

B w v
RB

T T= = = FHG
I
KJ = FHG

I
KJ =

ε 2 2

or v
MgR
BT = 2 2ω

.

(b) The emf is directly proportional to vT , but the
current is inversely proportional to R. A large R
means a small current at a given speed, so the loop
must travel faster to get F mgB = . FIG. P31.43

(c) At a given speed, the current is directly proportional to the magnetic field. But the force is
proportional to the product of the current and the field. For a small B, the speed must
increase to compensate for both the small B and also the current, so v BT ∝ 2 .

Section 31.7 Maxwell’s Equations

P31.44 F a E v B= = + ×m q q  so a E v B=
−

+ ×
e

m
 where v B

i j k
j× = = −.

.
.10 0 0 0

0 0 0 400
4 00

a i j j i j

a i j

=
− ×

×
+ − = − × +

= − × − ×

−

−

1 60 10

9 11 10
2 50 5 00 4 00 1 76 10 2 50 1 00

4 39 10 1 76 10

19

31
11

11 11

.

.
. . . . . .

. .

e j e j

e j m s2

P31.45 F a E v B= = + ×m q q

a E v B= + ×
e
m

 where v B
i j k

j k× = = − +
. . .

. .200 0 0
0 200 0 300 0 400

200 0 400 200 0 300a f a f

a j j k j k

a j k j k

=
×
×

− + = × − +

= × − + = − × ×

−

−
1 60 10
1 67 10

50 0 80 0 60 0 9 58 10 30 0 60 0

2 87 10 2 2 87 10

19

27
7

9 9

.

.
. . . . . .

. . m s +5.75 10  m s2 9 2e j

Additional Problems

P31.46 ε θ π= − = − °FHG
I
KJN

d
dt

BA N r
dB
dt

cos cosa f e j2 0

ε π π

ε π π π

ε π

= − ×L
NM

O
QP +

= − ×L
NM

O
QP ×

= − ×

− −

− − − −

− −

30 0 2 70 10 1 50 0 3 20 2 523

30 0 2 70 10 3 20 10 2 523 2 523

7 22 10 2 523

3 2 1

3 2 3 1 1

3 1

. . . . sin

. . . cos

. cos

a f e j a f a f e j
a f e j e j e j e j

e j e j

 m  mT  mT  s

 m  T  s  s

 V  s

d
dt

t

t

t
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P31.47 (a) Doubling the number of turns.

Amplitude doubles:  period unchanged

(b) Doubling the angular velocity.

doubles the amplitude:  cuts the period in half

(c) Doubling the angular velocity while reducing the
number of turns to one half the original value.

Amplitude unchanged:  cuts the period in half

FIG. P31.47

P31.48 ε θ π= − = − ° = −
−

×
F
HG

I
KJ =−N

t
BA N r

B
t

∆
∆

∆
∆

cos cos .
. .

.
.a f e j e ja f2

30 1 0 005 00 1
1 50 5 00
20 0 10

0 875 m
 T  T

 s
 V2

(a) I
R

= = =
ε 0 875

43 8
.

.
 V

0.020 0 
 A

Ω

(b) P = = =εI 0 875 43 8 38 3. . . V  A  Wa fa f

P31.49 In the loop on the left, the induced emf is

ε π π= = = =
d

dt
A

dB
dt

BΦ
0 100 1002.  m  T s  Va f b g

and it attempts to produce a counterclockwise
current in this loop.

In the loop on the right, the induced emf is

ε π π= = =
d

dt
BΦ

0 150 100 2 252. . m  T s  Va f b g FIG. P31.49

and it attempts to produce a clockwise current. Assume that I1  flows down through the 6.00-Ω
resistor, I2  flows down through the 5.00-Ω resistor, and that I3  flows up through the 3.00-Ω
resistor.

From Kirchhoff’s junction rule: I I I3 1 2= + (1)

Using the loop rule on the left loop: 6 00 3 001 3. .I I+ = π (2)

Using the loop rule on the right loop: 5 00 3 00 2 252 3. . .I I+ = π (3)

Solving these three equations simultaneously,

I1 0 062 3= .  A , I2 0 860= .  A , and I3 0 923= .  A .
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P31.50 The emf induced between the ends of the moving bar is

ε = = =B v 2 50 0 350 8 00 7 00. . . . T  m  m s  Va fa fb g .

The left-hand loop contains decreasing flux away from you, so the induced current in it will be 
clockwise, to produce its own field directed away from you. Let I1  represent the current flowing
upward through the 2.00-Ω resistor. The right-hand loop will carry counterclockwise current. Let I3

be the upward current in the 5.00-Ω resistor.

(a) Kirchhoff’s loop rule then gives: + − =7 00 2 00 01. . V  I Ωa f I1 3 50= .  A

and + − =7 00 5 00 03. . V  I Ωa f I3 1 40= .  A .

(b) The total power dissipated in the resistors of the circuit is

P I I I I= + = + = + =ε ε ε1 3 1 3 7 00 3 50 1 40 34 3b g a fa f. . . . V  A  A  W .

(c) Method 1: The current in the sliding conductor is downward with value
I2 3 50 1 40 4 90= + =. . . A  A  A . The magnetic field exerts a force of

F I Bm = = =4 90 0 350 2 50 4 29. . . . A  m  T  Na fa fa f  directed  toward the right on this

conductor. An outside agent must then exert a force of 4 29.  N  to the left to keep the bar

moving.

Method 2: The agent moving the bar must supply the power according to P = ⋅ = °F v Fv cos0 .
The force required is then:

F
v

= = =
P 34 3

4 29
.

.
 W

8.00 m s
 N .

P31.51 Suppose we wrap twenty turns of wire into a flat compact circular coil of diameter 3 cm. Suppose we
use a bar magnet to produce field 10 3−  T  through the coil in one direction along its axis. Suppose
we then flip the magnet to reverse the flux in 10 1−  s . The average induced emf is then

ε
θ

π

ε π

= − = − = −
°− °F

HG
I
KJ

= −
−F
HG

I
KJ

−
−

−

N
t

N
BA

t
NB r

t
B∆Φ

∆
∆

∆ ∆
cos cos cos

. ~

2

3 2
1

4

180 0

20 10 0 015 0
2

10
10

e j

a fe j b g T  m
 s

 V



Chapter 31     231

P31.52 I
R

=
+ε ε induced and ε induced = −

d
dt

BAa f

F m
dv
dt

IBd

dv
dt

IBd
m

Bd
mR

dv
dt

Bd
mR

Bvd

= =

= = +

= −

ε ε

ε

inducedb g
a f

To solve the differential equation, let u Bvd= −ε
du
dt

Bd
dv
dt

Bd
du
dt

Bd
mR

u

= −

− =
1

so
du
u

Bd
mR

dt
u

u t

0

2

0
z z= −

a f
.

FIG. P31.52

Integrating from t = 0  to t t= , ln
u

u
Bd
mR

t
0

2

= −
a f

or
u

u
e B d t mR

0

2 2
= − .

Since v = 0  when t = 0 , u0 = ε
and u Bvd= −ε

ε ε− = −Bvd e B d t mR2 2
.

Therefore, v
Bd

e B d t mR= − −ε
1

2 2e j .

*P31.53 The enclosed flux is ΦB BA B r= = π 2 .

The particle moves according to F a∑ = m : qvB
mv

r
sin90

2

° =

r
mv
qB

= .

Then ΦB
B m v

q B
=

π 2 2

2 2 .

(a) v
q B
m

B= =
× ⋅ ×

×
= ×

− −

−

Φ 2

2

6 9 2

16 2
5

15 10 30 10 0 6

2 10
2 54 10

π π

 T m  C  T

 kg
 m s

2e je j a f
e j

.
.

(b) Energy for the particle-electric field system is conserved in the firing process:

U Ki f= : q V mv∆ =
1
2

2

∆V
mv

q
= =

× ×

×
=

−

−

2 16 5 2

92

2 10 2 54 10

2 30 10
215

 kg  m s

 C
 V

e je j
e j

.
.
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*P31.54 (a) Consider an annulus of radius r, width dr, height b, and resistivity ρ. Around its
circumference, a voltage is induced according to

ε ω π π ω ω= − ⋅ = − = +N
d
dt

d
dt

B t r B r tB A 1 2 2
max maxcos sinb g .

The resistance around the loop is
ρ ρ π
A

r

bdrx
=

2b g
.

The eddy current in the ring is dI
B r t bdr

r
B rb dr t

= = =
ε π ω ω

ρ π
ω ω

ρresistance
max maxsin sin2

2 2
b g
b g .

The instantaneous power is d dI
B r b dr t

iP = =ε
π ω ω

ρ
max sin2 3 2 2

2
.

The time average of the function sin cos2 1
2

1
2

2ω ωt t= −  is 
1
2

0
1
2

− =

so the time-averaged power delivered to the annulus is

d
B r b dr

P = max
2 3 2

4
π ω

ρ
.

The power delivered to the disk is P P= =z zd
B b

r dr
R

max
2 2

3

0 4
π ω
ρ

P = −
F
HG

I
KJ =

B b R B R bmax max
2 2 4 2 4 2

4 4
0

16
π ω
ρ

π ω
ρ

.

(b) When Bmax  gets two times larger, Bmax
2  and P get 4  times larger.

(c) When f and ω π= 2 f  double, ω 2  and P get 4  times larger.

(d) When R doubles, R4  and P become 2 164 =  times larger.

P31.55 I
R

B
R

A
t

= =
ε

∆

so q I t= = =∆
Ω

15 0 0 200
0 500

1 20
2. .

.
.

 T  m
 

 C
µ

µ
b ga f

P31.56 (a) I
dq
dt R

= =
ε

 where ε = −N
d

dt
BΦ

 so dq
N
R

d Bz z= Φ
Φ

Φ

1

2

and the charge through the circuit will be Q
N
R

= −Φ Φ2 1b g .

(b) Q
N
R

BA BA
BAN

R
= − F

HG
I
KJ

L
NM

O
QP =cos cos0

2
π

so B
RQ
NA

= =
×

×
=

−

−

200 5 00 10

100 40 0 10
0 250

4

4

  C

 m
 T

2

Ωa fe j
a fe j

.

.
. .
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P31.57 (a) ε = =B v 0 360.  V I
R

= =
ε

0 900.  A

(b) F I BB = = 0 108.  N

(c) Since the magnetic flux B A⋅  is in effect decreasing, the
induced current flow through R is from b to a. Point b  is

at higher potential.
FIG. P31.57

(d) No . Magnetic flux will increase through a loop to the left of ab. Here counterclockwise

current will flow to produce upward magnetic field. The current in R is still from b to a.

P31.58 ε = B v  at a distance r from wire

ε
µ
π

=
F
HG
I
KJ

0

2
I
r

v

 

v

FIG. P31.58

P31.59 (a) At time t , the flux through the loop is ΦB BA a bt r a bt r= = + ° = +cos cosθ π πa fe j a f2 20 .

At t = 0 , ΦB ar= π 2 .

(b) ε π π= − = −
+

= −
d

dt
r

d a bt
dt

brBΦ 2 2a f

(c) I
R

br
R

= = −
ε π 2

(d) P = = −
F
HG

I
KJ − =ε

π
π

π
I

br
R

br
b r
R

2
2

2 2 4

e j

P31.60 ε π π= − = − FHG
I
KJ =

d
dt

NBA
dB
dt

a a Ka f 1 2 2

(a) Q C C a K= =ε π 2

(b) B into the paper is decreasing; therefore, current will attempt to counteract this. Positive
charge will go to upper plate .

(c) The changing magnetic field through the enclosed area induces an electric field ,

surrounding the B-field, and this pushes on charges in the wire.
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P31.61 The flux through the coil is ΦB BA BA t= ⋅ = =B A cos cosθ ω . The induced emf is

ε
ω

ω ω= − = − =N
d

dt
NBA

d t

dt
NBA tBΦ cos

sin
b g

.

(a) ε ωmax . . . . . .= = × =NBA 60 0 1 00 0 100 0 200 30 0 36 0 T  m  rad s  V2a fe jb g

(b)
d

dt N
BΦ

=
ε

, thus 
d

dt N
BΦ

max

max .
. .= = = =

ε 36 0
0 600 0 600

 V
60.0

 V  Wb s

(c) At t = 0 050 0.  s , ω t = 1 50.  rad  and
ε ε= = =max sin . . sin . .1 50 36 0 1 50 35 9 rad  V  rad  Va f a f a f .

(d) The torque on the coil at any time is

τ µ ω
ε

ω
ε

ω= × = × = = FHG
I
KJ
F
HG
I
KJB A BNI NAB I t

R
ta f sin sinmax .

When ε ε= max, sin .ω t = 1 00  and τ
ε
ω

= = = ⋅max .
. .

.
2 236 0

30 0 10 0
4 32

R
 V

 rad s  
 N m

a f
b ga fΩ

.

P31.62 (a) We use ε = −N
t
B∆Φ

∆
, with N = 1 .

Taking a = × −5 00 10 3.  m  to be the radius of the washer, and h = 0 500.  m ,

∆ΦB B A B A A B B a
I

h a
I
a

a I
h a a

ahI
h a

= − = − =
+

−
F
HG

I
KJ = +

−F
HG

I
KJ =

−
+2 1 2 1

2 0 0
2

0 0

2 2 2
1 1

2
b g a f a fπ

µ
π

µ
π

µ µ
.

The time for the washer to drop a distance h (from rest) is: ∆t
h

g
=

2
.

Therefore, ε
µ µ µ

=
+

=
+

=
+

0 0 0

2 2 2 2 2
ahI

h a t
ahI

h a
g
h

aI
h a

gh
a f a f a f∆

and ε
π

=
× ⋅ ×

+
=

− −4 10 5 00 10 10 0

2 0 500 0 005 00

9 80 0 500

2
97 4

7 3 T m A  m  A

 m  m

 m s  m
 nV

2e je ja f
b g

e ja f. .

. .

. .
. .

(b) Since the magnetic flux going through the washer (into the plane of the paper) is decreasing
in time, a current will form in the washer so as to oppose that decrease. Therefore, the
current will flow in a clockwise direction .

P31.63 Find an expression for the flux through a rectangular area “swept out”
by the bar in time t. The magnetic field at a distance x from wire is

B
I
x

=
µ
π

0

2
 and ΦB BdA= z . Therefore,

ΦB
r

rIvt dx
x

=
+zµ

π
0

2
 where vt is the distance the bar has moved in time t.

Then, ε
µ

π
= = +FHG

I
KJ

d
dt

Iv
r

BΦ 0

2
1ln .

vtvr
I

FIG. P31.63
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P31.64 The magnetic field at a distance x from a long wire is B
I
x

=
µ
π

0

2
. Find an expression for the flux

through the loop.

d
I
x

dxBΦ =
µ
π

0

2
a f  so ΦB

r

r wI dx
x

I w
r

= = +FHG
I
KJ

+zµ
π

µ
π

0 0

2 2
1ln

Therefore, ε
µ

π
= − =

+
d

dt
I v
r

w
r w

BΦ 0

2 a f  and I
R

I v
Rr

w
r w

= =
+

ε µ
π
0

2 a f .

P31.65 We are given ΦB t t= − ⋅6 00 18 03 2. .e j T m2

and ε = − = − +
d

dt
t tBΦ

18 0 36 02. . .

Maximum E occurs when
d
dt

t
ε

= − + =36 0 36 0 0. .

which gives t = 1 00.  s .

Therefore, the maximum current (at t = 1 00.  s ) is I
R

= =
− +

=
ε 18 0 36 0

6 00
. .

.
a f V

3.00 
 A

Ω
.

P31.66 For the suspended mass, M: F Mg T Ma∑ = − = .

For the sliding bar, m: F T I B ma∑ = − = , where I
R

B v
R

= =
ε

Mg
B v

R
m M a− = +

2 2

a f  or a
dv
dt

Mg
m M

B v
R M m

= =
+

−
+

2 2

a f
dv

v
dt

v t

α β−
=z zb g0 0

 where α =
+

Mg
M m

 and β =
+

B
R M m

2 2

a f .

Therefore, the velocity varies with time as v e
MgR
B

et B t R M m= − = −− − +α
β

β1 12 2

2 2e j a f .

P31.67 (a) ε µ= − = − = −N
d

dt
NA

dB
dt

NA
d
dt

nIBΦ
0b g where A =  area of coil

N =  number of turns in coil

and n =  number of turns per unit length in solenoid.

Therefore, ε µ π µ π π= =N An
d
dt

t N An t0 04 120 480 120sin cosb g a f b g
ε π π π π

ε π

= × ×

=

−40 4 10 0 050 0 2 00 10 480 120

1 19 120

7 2 3e j b g e ja f b g
a f b g

. . cos

. cos

 m

 V

t

t

(b) I
V

R
=

∆
and P = =∆

Ω
VI

t1 19 120

8 00

2 2. cos

.

 V

 

a f b gπ

From cos cos2 1
2

1
2

2θ θ= +

the average value of cos2 θ  is 
1
2

, so P = =
1
2

1 19
8 00

88 5
2.

.
.

 V
 

 mW
a f
a fΩ

.
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*P31.68 (a) ε θ
θ θ

ω= − = − ° = − = − = −

= − =

N
d
dt

BA
d
dt

B
a Ba d

dt
Bacos cos . .

. .

1
2

0
2

1
2

1
2

0 5 0 5 2

0 125 0 125

2 2
2 2 T  m  rad s

 V  V clockwise

a fa f

The – sign indicates that the induced emf produces clockwise current, to make its own
magnetic field into the page.

(b) At this instant θ ω= = =t 2 0 25 0 5 rad s  s  rad. .a f . The arc PQ has length
rθ == =0 5 0 5 0 25. . . rad  m  ma fa f . The length of the circuit is 0 5 0 5 0 25 1 25. . . . m  m  m  m+ + =  its

resistance is 1 25 6 25. . m 5 m  Ω Ωb g = . The current is 
0 125

0 020 0
.

.
 V

6.25 
 A clockwise

Ω
= .

*P31.69 Suppose the field is vertically down. When an electron is moving away
from you the force on it is in the direction given by

q cv B×  as − × = −away downb g = − =left right .

Therefore, the electrons circulate clockwise.

FIG. P31.69

(a) As the downward field increases, an emf is induced to produce some current that in turn

produces an upward field. This current is directed  counterclockwise, carried by

negative electrons moving clockwise. Therefore the original electron motion speeds up.

(b) At the circumference, we have F mac c∑ = : q vB
mv

rc sin90
2

° =

mv q rBc= .

The increasing magnetic field Bav  in the area enclosed by the orbit produces a tangential
electric field according to

E s B A⋅ = − ⋅z d
d
dt av E r r

dB
dt

av2 2π πb g = E
r dB

dt
av=

2
.

An electron feels a tangential force according to F mat t∑ = : q E m
dv
dt

= .

Then q
r dB

dt
m

dv
dt

av

2
= q

r
B mv q rBav c2

= =

and B Bav c= 2 .

P31.70 The induced emf is ε = B v  where B
I
y

=
µ
π

0

2
, v v gt tf i= + = 9 80.  m s2e j , and

y y gt tf i= − = −
1
2

0 800 4 902 2. . m  m s2e j .

ε
π

π
=

× ⋅

−
=

×

−

− −4 10 200

2 0 800 4 90
0 300 9 80

1 18 10

0 800 4 90

7

2

4

2

 T m A  A

 m  m s
 m  m s  V

2
2e ja f

e j
a fe j e j

. .
. .

.

. .t
t

t

t

At t = 0 300.  s , ε µ=
×

−
=

−1 18 10 0 300

0 800 4 90 0 300
98 3

4

2

. .

. . .
.

e ja f
a f

 V  V .



Chapter 31     237

P31.71 The magnetic field produced by the current in the straight wire is
perpendicular to the plane of the coil at all points within the coil. The

magnitude of the field is B
I
r

=
µ
π
0

2
. Thus, the flux linkage is

N
NIL dr

r
NI L h w

h
tB

h

h w

Φ = =
+F
HG
I
KJ +

+zµ
π

µ
π

ω φ0 0

2 2
max ln sinb g .

Finally, the induced emf is
FIG. P31.71

ε
µ ω

π
ω φ

ε
π π

π
ω φ

ε π φ

= − +FHG
I
KJ +

= −
×

+FHG
I
KJ +

= − +

− −

0

7 1

2
1

4 10 100 50 0 0 200 200

2
1

5 00

87 1 200

NI L w
h

t

t

t

max ln cos

. .
ln

.
cos

. cos

b g

e ja fa fa fe j b g
a f b g

 m  s  cm
5.00 cm

 mV

The term sin ω φt +b g  in the expression for the current in the straight wire does not change

appreciably when ω t  changes by 0.10 rad or less. Thus, the current does not change appreciably
during a time interval

∆t < = ×
−

−0 10

200
1 6 10

1
4.

.
π s

 s
e j

.

We define a critical length, c t∆ = × × = ×−3 00 10 1 6 10 4 8 108 4 4. . . m s  s  me je j  equal to the distance to

which field changes could be propagated during an interval of 1 6 10 4. × −  s . This length is so much
larger than any dimension of the coil or its distance from the wire that, although we consider the
straight wire to be infinitely long, we can also safely ignore the field propagation effects in the
vicinity of the coil. Moreover, the phase angle can be considered to be constant along the wire in the
vicinity of the coil.

If the frequency w were much larger, say, 200 105 1π × − s , the corresponding critical length would be
only 48 cm. In this situation propagation effects would be important and the above expression for ε
would require modification. As a “rule of thumb” we can consider field propagation effects for

circuits of laboratory size to be negligible for frequencies, f =
ω
π2

, that are less than about 106  Hz.

P31.72 ΦB BA= cosθ
d

dt
BABΦ

= −ω θsin ;

I

IB

∝ −

∝ ∝ −

sin

sin sin

θ

τ θ θ2 θ

FIG. P31.72
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ANSWERS TO EVEN PROBLEMS

P31.2 0 800.  mA P31.40 (a) 1 60.  V ; (b) 0; (c) no change;
(d) and (e) see the solution

P31.4 (a) see the solution; (b) 3 79.  mV ;
(c) 28 0.  mV P31.42 both are correct; see the solution

P31.6 78 5.  sµ P31.44 − −4 39 1 76 1011. .i je j  m s2

P31.8 (a) 
µ π0 2

2

2
n r

R
I
t

∆
∆

 counterclockwise; P31.46 − 7 22 2 523. cos mV sa f b gπ t

(b) 
µ π0

2
2
2

14
n r
r R

I
t

∆
∆

; (c) upward P31.48 (a) 43 8.  A; (b) 38 3.  W

P31.50 (a) 3 50.  A  up in 2 Ω  and 1 40.  A  up in 5 Ω;
P31.10 −14 2 120. cos mV ta f (b) 34 3.  W ; (c) 4 29.  N

P31.12 61 8.  mV P31.52 see the solution

P31.14 (a) see the solution; (b) 625 m/s
P31.54 (a) 

π ω
ρ

B R bmax
2 4 2

16
; (b) 4 times larger;

P31.16 see the solution
(c) 4 times larger; (d) 16 times larger

P31.18 13 3.  mA counterclockwise in the lower
loop and clockwise in the upper loop. P31.56 (a) see the solution; (b) 0 250.  T

P31.58 see the solutionP31.20 1 00.  m s

P31.60 (a) C a Kπ 2 ; (b) the upper plate;P31.22 (a) 500 mA; (b) 2 00.  W; (c) 2 00.  W
(c) see the solution

P31.24 24 1.  V  with the outer contact positive
P31.62 (a) 97 4.  nV; (b) clockwise

P31.26 121 mA  clockwise
P31.64

µ
π
0

2
I v
Rr

w
r w+a fP31.28 (a) to the right; (b) to the right;

(c) to the right; (d) into the paper

P31.66
MgR
B

e B t R M m
2 2 1

2 2
− − +a f

P31.30 negative; see the solution

P31.68 (a) 0.125 V to produce clockwise current;P31.32 (a) 8 00 10 21. × −  N downward
perpendicular to r1 ; (b) 1 33.  s (b) 20.0 mA clockwise

P31.70
1 18 10

0 800 4 90

4

2
.

. .
×
−

−

t
; 98 3.  VµP31.34 (a) 9 87 100. cos mV mb g b gπ t ; (b) clockwise

P31.36 (a) 19 6 314. sin Va f a ft ; (b) 19 6.  V
P31.72 see the solution

P31.38 see the solution
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ANSWERS TO QUESTIONS

Q32.1 The emf induced in an inductor is opposite to the direction of the
changing current. For example, in a simple RL circuit with current
flowing clockwise, if the current in the circuit increases, the
inductor will generate an emf to oppose the increasing current.

Q32.2 The coil has an inductance regardless of the nature of the current
in the circuit. Inductance depends only on the coil geometry and
its construction. Since the current is constant, the self-induced
emf in the coil is zero, and the coil does not affect the steady-state
current. (We assume the resistance of the coil is negligible.)

Q32.3 The inductance of a coil is determined by (a) the geometry of the
coil and (b) the “contents” of the coil. This is similar to the
parameters that determine the capacitance of a capacitor and the
resistance of a resistor. With an inductor, the most important
factor in the geometry is the number of turns of wire, or turns per
unit length. By the “contents” we refer to the material in which the
inductor establishes a magnetic field, notably the magnetic
properties of the core around which the wire is wrapped.

Q32.4 If the first set of turns is wrapped clockwise around a spool, wrap the second set counter-clockwise,
so that the coil produces negligible magnetic field. Then the inductance of each set of turns
effectively negates the inductive effects of the other set.

Q32.5 After the switch is closed, the back emf will not exceed that of the battery. If this were the case, then
the current in the circuit would change direction to counterclockwise. Just after the switch is opened,
the back emf can be much larger than the battery emf, to temporarily maintain the clockwise current
in a spark.

Q32.6 The current decreases not instantaneously but over some span of time. The faster the decrease in the
current, the larger will be the emf generated in the inductor. A spark can appear at the switch as it is
opened because the self-induced voltage is a maximum at this instant. The voltage can therefore
briefly cause dielectric breakdown of the air between the contacts.

Q32.7 When it is being opened. When the switch is initially standing open, there is no current in the
circuit. Just after the switch is then closed, the inductor tends to maintain the zero-current condition,
and there is very little chance of sparking. When the switch is standing closed, there is current in the
circuit. When the switch is then opened, the current rapidly decreases. The induced emf is created in
the inductor, and this emf tends to maintain the original current. Sparking occurs as the current
bridges the air gap between the contacts of the switch.

239
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Q32.8 A physicist’s list of constituents of the universe in 1829 might include matter, light, heat, the stuff of
stars, charge, momentum, and several other entries. Our list today might include the quarks,
electrons, muons, tauons, and neutrinos of matter; gravitons of gravitational fields; photons of
electric and magnetic fields; W and Z particles; gluons; energy; momentum; angular momentum;
charge; baryon number; three different lepton numbers; upness; downness; strangeness; charm;
topness; and bottomness. Alternatively, the relativistic interconvertability of mass and energy, and
of electric and magnetic fields, can be used to make the list look shorter. Some might think of the
conserved quantities energy, momentum, … bottomness as properties of matter, rather than as
things with their own existence. The idea of a field is not due to Henry, but rather to Faraday, to
whom Henry personally demonstrated self-induction. Still the thesis stated in the question has an
important germ of truth. Henry precipitated a basic change if he did not cause it. The biggest
difference between the two lists is that the 1829 list does not include fields and today’s list does.

Q32.9 The energy stored in the magnetic field of an inductor is proportional to the square of the current.

Doubling I makes U LI=
1
2

2  get four times larger.

Q32.10 The energy stored in a capacitor is proportional to the square of the electric field, and the energy
stored in an induction coil is proportional to the square of the magnetic field. The capacitor’s energy
is proportional to its capacitance, which depends on its geometry and the dielectric material inside.
The coil’s energy is proportional to its inductance, which depends on its geometry and the core
material. On the other hand, we can think of Henry’s discovery of self-inductance as fundamentally
new. Before a certain school vacation at the Albany Academy about 1830, one could visualize the
universe as consisting of only one thing, matter. All the forms of energy then known (kinetic,
gravitational, elastic, internal, electrical) belonged to chunks of matter. But the energy that
temporarily maintains a current in a coil after the battery is removed is not energy that belongs to
any bit of matter. This energy is vastly larger than the kinetic energy of the drifting electrons in the
wires. This energy belongs to the magnetic field around the coil. Beginning in 1830, Nature has
forced us to admit that the universe consists of matter and also of fields, massless and invisible,
known only by their effects.

Q32.11 The inductance of the series combination of inductor L1  and inductor L2  is L L M1 2 12+ + , where
M12  is the mutual inductance of the two coils. It can be defined as the emf induced in coil two when
the current in coil one changes at one ampere per second, due to the magnetic field of coil one
producing flux through coil two. The coils can be arranged to have large mutual inductance, as by
winding them onto the same core. The coils can be arranged to have negligible mutual inductance,
as separate toroids do.

Q32.12 The mutual inductance of two loops in free space—that is, ignoring the use of cores—is a maximum
if the loops are coaxial. In this way, the maximum flux of the primary loop will pass through the
secondary loop, generating the largest possible emf given the changing magnetic field due to the
first. The mutual inductance is a minimum if the magnetic field of the first coil lies in the plane of the
second coil, producing no flux through the area the second coil encloses.

Q32.13 The answer depends on the orientation of the solenoids. If they are coaxial, such as two solenoids
end-to-end, then there certainty will be mutual induction. If, however, they are oriented in such a
way that the magnetic field of one coil does not go through turns of the second coil, then there will
be no mutual induction. Consider the case of two solenoids physically arranged in a “T” formation,
but still connected electrically in series. The magnetic field lines of the first coil will not produce any
net flux in the second coil, and thus no mutual induction will be present.
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Q32.14 When the capacitor is fully discharged, the current in the circuit is a maximum. The inductance of
the coil is making the current continue to flow. At this time the magnetic field of the coil contains all
the energy that was originally stored in the charged capacitor. The current has just finished
discharging the capacitor and is proceeding to charge it up again with the opposite polarity.

Q32.15 The oscillations would eventually decrease, but perhaps with very small damping. The original
potential energy would be converted to internal energy within the wires. Such a situation
constitutes an RLC circuit. Remember that a real battery generally contains an internal resistance.

Q32.16 If R
L

C
>

4
, then the oscillator is overdamped—it will not oscillate. If R

L
C

<
4

, then the oscillator is

underdamped and can go through several cycles of oscillation before the radiated signal falls below
background noise.

Q32.17 The condition for critical damping must be investigated to design a circuit for a particular purpose.
For example, in building a radio receiver, one would want to construct the receiving circuit so that it
is underdamped. Then it can oscillate in resonance and detect the desired signal. Conversely, when
designing a probe to measure a changing signal, such free oscillations are undesirable. An electrical
vibration in the probe would constitute “ringing” of the system, where the probe would measure an
additional signal—that of the probe itself! In this case, one would want to design a probe that is
critically damped or overdamped, so that the only signal measured is the one under study. Critical
damping represents the threshold between underdamping and overdamping. One must know the
condition for it to meet the design criteria for a project.

Q32.18 An object cannot exert a net force on itself. An object cannot create momentum out of nothing. A coil
can induce an emf in itself. When it does so, the actual forces acting on charges in different parts of
the loop add as vectors to zero. The term electromotive force does not refer to a force, but to a
voltage.

SOLUTIONS TO PROBLEMS

Section 32.1 Self-Inductance

P32.1 ε = = ×
−F

HG
I
KJ = × =− −L

I
t

∆
∆

3 00 10
1 50 0 200

1 95 10 19 53 2.
. .

. . H
 A  A
0.200 s

 V  mVe j

P32.2 Treating the telephone cord as a solenoid, we have:

L
N A

= =
× ⋅ ×

=
− −

µ π π
µ0

2 7 2 3 2
4 10 70 0 6 50 10

0 600
1 36

 T m A  m

 m
 H

e ja f e j. .

.
. .

P32.3 ε = − = −
−F
HG

I
KJ

⋅
⋅

F
HG

I
KJ =L

I
t

∆
∆

2 00
0 0 500 1

100.
.

 H
 A

0.010 0 s
 V s

1 H A
 Va f

P32.4 L
N

I
LI
N

B
B= → = = ⋅

Φ
Φ 240 nT m2  through each turn

P32.5 ε ε ω ω ω π ωback = − = = = = × −L
dI
dt

L
d
dt

I t L I t tmax maxsin cos . . cosb g e ja fa f10 0 10 120 5 003

ε π πback  V= =6 00 120 18 8 377. cos . cosa f b g a f a ft t
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P32.6 From ε = FHG
I
KJL

I
t

∆
∆

, we have L
I t

= =
×

= ×
−

−ε
∆ ∆b g

24 0 10
2 40 10

3
3.

.
 V

10.0 A s
 H .

From L
N

I
B=

Φ
, we have ΦB

LI
N

= =
×

= ⋅
−2 40 10 4 00

500
19 2

3. .
.

 H  A
 T m2e ja f
µ .

P32.7 L
N A

= =
×

= ×
−

−µ µ
0

2 0
2 4

4
420 3 00 10

0 160
4 16 10

a f e j.

.
.  H

ε
ε

= − → =
−

=
− ×

×
= −

−

−L
dI
dt

dI
dt L

175 10
0 421

6  V
4.16 10  H

 A s4 .

P32.8 ε = = × −−L
dI
dt

d
dt

t t90 0 10 63 2.e j e j V

(a) At t = 1 00.  s , ε = 360 mV

(b) At t = 4 00.  s , ε = 180 mV

(c) ε = × − =−90 0 10 2 6 03.e ja ft

when t = 3 00.  s .

P32.9 (a) B nI= = FHG
I
KJ =µ µ µ0 0

450
0 120

0 040 0 188
.

.  A  Tb g

(b) ΦB BA= = × ⋅−3 33 10 8.  T m2

(c) L
N

I
B= =

Φ
0 375.  mH

(d) B LB and  are proportional to current;   is independent of currentΦ

P32.10 (a) L
N A

= =
×

=
−

µ µ π
µ0

2 0
2 3 2

120 5 00 10

0 090 0
15 8

a f e j.

.
.  H

(b) ′ = → = = × =−Φ ΦB
m

B
mL

N Aµ
µ

µ

0

2
5800 1 58 10 12 6. . H  mHe j

*P32.11 We can directly find the self inductance of the solenoid:

ε = −L
dI
dt

+ = −
−

0 08
0 1 8

.
.

 V
 A

0.12 s
L L

N A
= × =−5 33 10 3 0

2

.  Vs A
µ

.

Here A r=π 2 , 200 2 m= N rπ , and = −N 10 3  me j . Eliminating extra unknowns step by step, we have

5 33 10
200 40 000

4

10 40 000

4 10
5 33 10

0 750

3 0
2 2

0
2 2

0
7

3

3

.

.
.

× = =
F
HG

I
KJ = =

=
×

×
=

−
−

−

−

 Vs A
 m

2
 m  m Tm

A

 WbmA
 AVs

 m

2 2
µ π µ π

π
µ

π
N r N

N

e j
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P32.12 L
N

I
NBA

I
NA

I
NI
R

N A
R

B= = ≈ ⋅ =
Φ µ

π
µ

π
0 0

2

2 2

FIG. P32.12

P32.13 ε ε= = −−
0e L

dI
dt

kt

dI
L

e dtkt= − −ε 0

If we require I → 0  as t → ∞ , the solution is I
kL

e
dq
dt

kt= =−ε 0

Q Idt
kL

e dt
k L

kt= = = −z z −
∞ ε ε0

0

0
2 Q

k L
=

ε 0
2 .

Section 32.2 RL Circuits

P32.14 I
R

e Rt L= − −ε
1e j : 0 900 1 3 00 2 50. . .ε ε

R R
e R= − −  s  Ha f

exp
.

.
.

.
ln . .

−
F
HG

I
KJ =

= =

R

R

3 00
2 50

0 100

2 50
10 0 1 92

 s
 H

 H
3.00 s

 

a f

Ω

P32.15 (a) At time t, I t
e

R

t

a f e j
=

− −ε τ1

where τ = =
L
R

0 200.  s .

After a long time, I
e

R Rmax =
−

=
−∞ε ε1e j

.

At I t Ia f = 0 500. max 0 500
1 0 200

.
.

a f e jε ε

R

e

R

t

=
− −  s

1

0.5

0
0 0.2 0.4 0.6

t (s)

I (A)
Imax

FIG. P32.15

so 0 500 1 0 200. .= − −e t  s .

Isolating the constants on the right, ln ln ..e t− =0 200 0 500 se j a f
and solving for t, − = −

t
0 200

0 693
.

.
 s

or t = 0 139.  s .

(b) Similarly, to reach 90% of Imax , 0 900 1. = − −e t τ

and t = − −τ ln .1 0 900a f .
Thus, t = − =0 200 0 100 0 461. ln . . s  sa f a f .
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P32.16 Taking τ =
L
R

, I I e t= −
0

τ :
dI
dt

I e t= −FHG
I
KJ

−
0

1τ

τ

IR L
dI
dt

+ = 0  will be true if I L I et t
0 0

1
0Re− −+ −FHG
I
KJ =

τ τ

τe j .

Because τ =
L
R

, we have agreement with 0 0= .

P32.17 (a) τ = = × =−L
R

2 00 10 2 003. . s  ms

(b) I I e et= − = FHG
I
KJ − =− −

max
. ..

.1
6 00

1 0 1760 250 2 00τe j e j V
4.00 

 A
Ω

(c) I
Rmax

.
.= = =

ε 6 00
1 50

 V
4.00 

 A
Ω

(d) 0 800 1 2 00 0 200 3 222 00. . ln . ..= − → = − =−e tt  ms  ms  msa f a f
FIG. P32.17

P32.18 I
R

e et= − = − =− −ε τ1
120
9 00

1 3 021.80 7 00e j e j.
..  A

∆

∆ ∆

V IR

V V
R

L R

= = =

= − = − =

3 02 9 00 27 2

120 27 2 92 8

. . .

. .

a fa f  V

 Vε

P32.19 Note: It may not be correct to call the voltage or emf across a coil a “potential
difference.” Electric potential can only be defined for a conservative electric
field, and not for the electric field around an inductor.
(a) ∆ ΩV IRR = = =8 00 2 00 16 0. . .  A  Va fa f

and ∆ ∆V VL R= − = − =ε 36 0 16 0 20 0. . . V  V  V .

Therefore,
∆
∆

V
V

R

L
= =

16 0
0 800

.
.

 V
20.0 V

.

(b) ∆ ΩV IRR = = =4 50 8 00 36 0. . . A   Va fa f
∆ ∆V VL R= − =ε 0

FIG. P32.19

P32.20 After a long time, 12 0 0 200. . V  A= a fR . Thus, R = 60 0.  Ω . Now, τ =
L
R

 gives

L R= = × =−τ 5 00 10 60 0 30 04. . . s  V A  mHe jb g .

P32.21 I I e t= − −
max 1 τe j : dI

dt
I e t= − −FHG

I
KJ

−
max

τ

τe j 1

τ = = =
L
R

15 0
0 500

.
.

 H
30.0 

 s
Ω

:
dI
dt

R
L

I e t= −
max

τ  and I
Rmax =
ε

(a) t = 0 : 
dI
dt

R
L

I e
L

= = = =max .0 100
6 67

ε  V
15.0 H

 A s

(b) t = 1 50.  s : 
dI
dt L

e e et= = = =− − −ε τ 6 67 6 67 0 3321.50 0 500 3 00. . .. . A s  A s  A sb g b ga f
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P32.22 I I e t= − −
max 1 τe j : 0 980 1 3 00 10 3

. .= − − × −
e τ

0 020 0

3 00 10
0 020 0

7 67 10

3 00 10

3
4

3
.

.
ln .

.

.=

= −
×

= ×

− ×

−
−

−
e τ

τ b g  s

τ =
L
R

, so L R= = × =−τ 7 67 10 10 0 7 674. . .e ja f  mH
FIG. P32.22

P32.23 Name the currents as shown. By Kirchhoff’s laws:

I I I1 2 3= + (1)

+ − − =10 0 4 00 4 00 01 2. . . V I I (2)

+ − − − =10 0 4 00 8 00 1 00 01 3
3. . . . V I I

dI
dt

a f (3)

From (1) and (2), + − − + =10 0 4 00 4 00 4 00 01 1 3. . . .I I I

and I I1 30 500 1 25= +. .  A .

FIG. P32.23

Then (3) becomes 10 0 4 00 0 500 1 25 8 00 1 00 03 3
3. . . . . . V  A− + − − =I I

dI
dt

b g a f

1 00 10 0 5 003
3. . . H   Va f a fdI

dt
IF

HG
I
KJ + =Ω .

We solve the differential equation using Equations 32.6 and 32.7:

I t e e

I I e

t t

t

3
10 0 1.00 10

1 3
10

5 00
1 0 500 1

1 25 0 500 1 50 0 250

a f a f
a f

a f= FHG
I
KJ − = −

= + = −

− −

−

.
.

. . . .

. V
10.0 

 A

 A  A

  H s

s

Ω
Ω

P32.24 (a) Using τ = =RC
L
R

, we get R
L
C

= =
×

= × =−
3 00

1 00 10 1 006
3.

. .
 H

3.00 10  F
  kΩ Ω .

(b) τ = = × × = × =− −RC 1 00 10 3 00 10 3 00 10 3 003 6 3. . . .  F  s  msΩe je j
P32.25 For t ≤ 0 , the current in the inductor is zero . At t = 0 , it starts to

grow from zero toward 10.0 A with time constant

τ = = = × −L
R

10 0
100

1 00 10 4.
.

 mH
 

 s
a f
a fΩ

.

For 0 200≤ ≤t  sµ , I I e et t= − = −− −
max .1 10 0 1 10 000τe j a fe j A s .

At t = 200 sµ , I e= − =−10 00 1 8 652 00. .. A  Aa fe j .

Thereafter, it decays exponentially as I I e t= − ′
0

τ , so for t ≥ 200 sµ ,

FIG. P32.25

I e e e e et t t t= = = =− − − + − −8 65 8 65 8 65 63 910 000 200 10 000 2 00 2 00 10 000 10 000. . . .. . A  A  A  A s s s s sa f a f e j a fb gµ .
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P32.26 (a) I
R

= = =
ε 12 0

1 00
.

.
 V

12.0 
 A

Ω

(b) Initial current is 1.00 A: ∆ ΩV12 1 00 12 00 12 0= =. . . A   Va fa f
∆ ΩV1 200 1 00 1 200 1 20= =. . A   kVa fb g
∆VL = 1 21.  kV . FIG. P32.26

(c) I I e Rt L= −
max :

dI
dt

I
R
L

e Rt L= − −
max

and − = = −L
dI
dt

V I R eL
Rt L∆ max .

Solving 12 0 1 212 1 212 2 00. . V  V= −b ge t

so 9 90 10 3 606. × =− −e t .

Thus, t = 7 62.  ms .

P32.27 τ = = =
L
R

0 140
4 90

28 6
.
.

.  ms

I
Rmax

.
.= = =

ε 6 00
1 22

 V
4.90 

 A
Ω

(a) I I e t= − −
max 1 τe j so 0 220 1 22 1. .= − −e t τe j

e t− =τ 0 820. : t = − =τ ln . .0 820 5 66a f  ms

(b) I I e e= − = − =− −
max

. . . .1 1 22 1 1 2210 0 0 028 6 350e j a fe j A  A

FIG. P32.27

(c) I I e t= −
max

τ and 0 160 1 22. .= −e t τ

so t = − =τ ln . .0 131 58 1a f  ms .

P32.28 (a) For a series connection, both inductors carry equal currents at every instant, so 
dI
dt

 is the

same for both. The voltage across the pair is

L
dI
dt

L
dI
dt

L
dI
dteq = +1 2 so L L Leq = +1 2 .

(b) L
dI
dt

L
dI
dt

L
dI
dt

VLeq = = =1
1

2
2 ∆ where I I I= +1 2  and 

dI
dt

dI
dt

dI
dt

= +1 2 .

Thus, 
∆ ∆ ∆V
L

V
L

V
L

L L L

eq
= +

1 2
and

1 1 1

1 2L L Leq
= + .

(c) L
dI
dt

R I L
dI
dt

IR L
dI
dt

IReq eq+ = + + +1 1 2 2

Now I and 
dI
dt

 are separate quantities under our control, so functional equality requires

both L L L R R Req eqand= + = +1 2 1 2 .

continued on next page
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(d) ∆V L
dI
dt

R I L
dI
dt

R I L
dI
dt

R I= + = + = +eq eq 1
1

1 1 2
2

2 2  where I I I= +1 2  and 
dI
dt

dI
dt

dI
dt

= +1 2 .

We may choose to keep the currents constant in time. Then,
1 1 1

1 2R R Req
= + .

We may choose to make the current swing through 0. Then,
1 1 1

1 2L L Leq
= + .

This equivalent coil with resistance will be equivalent to the pair of real inductors for
all other currents as well.

Section 32.3 Energy in a Magnetic Field

P32.29 L
N

I
B= =

×
=

−
Φ 200 3 70 10

1 75
42 3

4.

.
.

e j
 mH  so U LI= = =

1
2

1
2

0 423 1 75 0 064 82 2. . . H  A  Ja fa f .

P32.30 (a) The magnetic energy density is given by

µ
µ

= =
× ⋅

= ×
−

B2

0

2

6
6

2
4 50

2 1 26 10
8 06 10

.

.
.

 T

 T m A
 J m3a f

e j
.

(b) The magnetic energy stored in the field equals u times the volume of the solenoid (the
volume in which B is non-zero).

U uV= = × =8 06 10 0 260 0 031 0 6 326 2
. . . . J m  m  m  kJ3e j a f b gπ

P32.31 L
N A

= =
×L

NM
O
QP =

−

µ µ
π

µ0

2

0

2 2 2
68 0 0 600 10

0 080 0
8 21

. .

.
.

a f e j
 H

U LI= = × =−1
2

1
2

8 21 10 0 770 2 442 6 2. . . H  A  Je ja f µ

P32.32 (a) U LI L
R

L
R

= = F
HG
I
KJ = = =

1
2

1
2 2 8

0 800 500

8 30 0
27 82

2 2

2

2

2
ε ε .

.
.

a fa f
a f  J

(b) I
R

e R L t= FHG
I
KJ − −ε

1 b g so
ε ε

2
1

1
2R R

e eR L t R L t= FHG
I
KJ − → =− −b g b g

R
L

t = ln 2 so t
L
R

= = =ln
.

.
ln .2

0 800
30 0

2 18 5 ms

P32.33 u
E

=∈ =0

2

2
44 2.  nJ m3 u

B
= =

2

02
995

µ
µ J m3

*P32.34 e dt
L
R

e
Rdt
L

L
R

e
L
R

e e
L
R

L
R

Rt L Rt L Rt L−
∞

−
∞

− ∞ −∞z z= −
−F
HG

I
KJ = − = − − = − =2

0

2

0

2
0

0

2
2

2 2 2
0 1

2e j a f
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P32.35 (a) U LI= =
1
2

1
2

4 00 0 5002 2. . H  Aa fa f U = 0 500.  J

(b) When the current is 1.00 A,
Kirchhoff’s loop rule reads + − − =22 0 1 00 5 00 0. . . V  A  a fa fΩ ∆VL .
Then ∆VL = 17 0.  V .
The power being stored in the inductor is

I VL∆ = =1 00 17 0 17 0. . . A  V  Wa fa f .
FIG. P32.35

(c) P = =I V∆ 0 500 22 0. . A  Va fa f P = 11 0.  W

P32.36 From Equation 32.7, I
R

e Rt L= − −ε
1e j .

(a) The maximum current, after a long time t , is I
R

= =
ε

2 00.  A .

At that time, the inductor is fully energized and P = = =I V∆a f a fa f2 00 10 0 20 0. . . A  V  W .

(b) Plost  A   W= = =I R2 22 00 5 00 20 0. . .a f a fΩ

(c) Pinductor drop= =I V∆e j 0

(d) U
LI

= = =
2 2

2
10 0 2 00

2
20 0

. .
.

 H  A
 J

a fa f

P32.37 We have u
E

=∈0

2

2
and u

B
=

2

02µ
.

Therefore ∈ =0

2 2

02 2
E B

µ
so B E2

0 0=∈ µ 2

B E= ∈ =
×

×
= × −

0 0

5

8
36 80 10

3 00 10
2 27 10µ

.
.

.
 V m
 m s

 T .

P32.38 The total magnetic energy is the volume integral of the energy density, u
B

=
2

02µ
.

Because B changes with position, u is not constant. For B B
R
r

= FHG
I
KJ0

2

, u
B R

r
=
F
HG
I
KJ
F
HG
I
KJ

0
2

0

4

2µ
.

Next, we set up an expression for the magnetic energy in a spherical shell of radius r and thickness
dr. Such a shell has a volume 4 2π r dr , so the energy stored in it is

dU u r dr
B R dr

r
= =

F
HG

I
KJ4

22 0
2 4

0
2π

π
µe j .

We integrate this expression for r R=  to r = ∞  to obtain the total magnetic energy outside the
sphere. This gives

U
B R

= =
× ×

× ⋅
= ×

−

−

2 2 5 00 10 6 00 10

1 26 10
2 70 100

2 3

0

5 2 6 3

6
18π

µ

π . .

.
.

 T  m

 T m A
 J

e j e j
e j

.
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Section 32.4 Mutual Inductance

P32.39 I t I e tt
1 a f = −

max
α ωsin  with Imax .= 5 00 A , α = −0 025 0 1.  s , and ω = 377 rad s

dI
dt

I e t tt1 = − +−
max sin cosα α ω ω ωb g .

At t = 0 800.  s ,
dI
dt

e1 0 020 05 00 0 025 0 0 800 377 377 0 800 377= − +−. . sin . cos .. A sb g b g a fc h a fc h
dI
dt

1 31 85 10= ×.  A s .

Thus, ε 2
1= −M

dI
dt

: M
dI dt

=
−

=
+
×

=
ε 2

1

3 20
1 73

.
.

 V
1.85 10  A s

 mH3 .

P32.40 ε 2
1 4 41 00 10 1 00 10 1 000= − = − × ×−M

dI
dt

t. . cos H  A se je j b g

ε 2 1 00b gmax
.=  V

P32.41 M
dI dt

= = =
ε 2

1

96 0
80 0

.
.

 mV
1.20 A s

 mH

P32.42 Assume the long wire carries current I. Then the magnitude of the magnetic field it generates at

distance x from the wire is B
I
x

=
µ
π

0

2
, and this field passes perpendicularly through the plane of the

loop. The flux through the loop is

ΦB d BdA B dx
I dx

x
I

= ⋅ = = = = F
HG
I
KJz z z zB A a f µ

π
µ

π
0

0 400

0

2 2
1 70

0 400.

ln
.
. mm

1.70 mm

.

The mutual inductance between the wire and the loop is then

M
N

I
N I

I
N

M

= = F
HG
I
KJ = =

× ⋅ ×

= × =

− −

−

2 12

1

2 0 2 0
7 3

10

2
1 70

0 400 2
1 45

1 4 10 2 70 10

2
1 45

7 81 10 781

Φ µ
π

µ
π

π

π
ln

.
.

.
.

.

.

a f e je j a f T m A  m

 H  pH

P32.43 (a) M
N

I
B BA

A
= =

×
=

−
Φ 700 90 0 10

3 50
18 0

6.

.
.

e j
 mH

(b) L
IA

A

A
= =

×
=

−
Φ 400 300 10

3 50
34 3

6e j
.

.  mH

(c) ε B
AM

dI
dt

= − = − = −18 0 0 500 9 00. . . mH  A s  mVa fb g
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*P32.44 The large coil produces this field at the center of the small coil: 
N I R

x R

1 0 1 1
2

2
1
2 3 2

2

µ

+e j
. The field is normal to

the area of the small coil and nearly uniform over this area, so it produces flux

Φ12
1 0 1 1

2

2
1
2 3 2 2

2

2
=

+

N I R

x R
R

µ
π

e j
 through the face area of the small coil. When current I1  varies, this is the

emf induced in the small coil:

ε
µ π πµ

2 2
1 0 1

2
2
2

2
1
2 3 2 1

1 2 0 1
2

2
2

2
1
2 3 2

1 1

2 2
= −

+
= −

+
= −N

d
dt

N R R

x R
I

N N R R

x R

dI
dt

M
dI
dte j e j

 so M
N N R R

x R
=

+

1 2 0 1
2

2
2

2
1
2 3 2

2

πµ

e j
.

P32.45 With I I I= +1 2 , the voltage across the pair is:

∆V L
dI
dt

M
dI
dt

L
dI
dt

M
dI
dt

L
dI
dt

= − − = − − = −1
1 2

2
2 1

eq .

So, − = +
dI
dt

V
L

M
L

dI
dt

1

1 1

2∆

and − + + =L
dI
dt

M V
L

M
L

dI
dt

V2
2

1

2

1

2∆
∆

a f
(a) (b)

FIG. P32.45

− + = −L L M
dI
dt

V L M1 2
2 2

1e j b g∆ . [1]

By substitution, − = +
dI
dt

V
L

M
L

dI
dt

2

2 2

1∆

leads to − + = −L L M
dI
dt

V L M1 2
2 1

2e j b g∆ . [2]

Adding [1] to [2], − + = + −L L M
dI
dt

V L L M1 2
2

1 2 2e j b g∆ .

So, L
V

dI dt
L L M

L L Meq = − =
−

+ −
∆ 1 2

2

1 2 2
.

Section 32.5 Oscillations in an LC Circuit

P32.46 At different times, U UC Lb g b gmax max
=  so 

1
2

1
2

2 2C V LI∆a fL
NM

O
QP = FHG

I
KJmax max

I
C
L

Vmax max
.

. .= =
×
×

=
−

−∆a f a f1 00 10
40 0 0 400

6  F
10.0 10  H

 V  A3 .
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P32.47
1
2

1
2

2 2C V LI∆a fL
NM

O
QP = FHG

I
KJmax max

 so ∆V
L
C

ICb g a fmax max
.

.
. .= =

×
×

=
−

−
20 0 10
0 500 10

0 100 20 0
3

6
 H
 F

 A  V

P32.48 When the switch has been closed for a long time, battery, resistor, and

coil carry constant current I
Rmax =
ε

. When the switch is opened,

current in battery and resistor drops to zero, but the coil carries this
same current for a moment as oscillations begin in the LC loop.

We interpret the problem to mean that the voltage amplitude of these

oscillations is ∆V , in 
1
2

1
2

2 2C V LI∆a f = max . FIG. P32.50

Then, L
C V

I

C V R
= = =

×
=

−
∆ ∆ Ωa f a f e ja f a f

a f
2

2

2 2

2

6 2 2

2

0 500 10 150 250

50 0
0 281

max

.

.
.

ε

 F  V  

 V
 H .

P32.49 This radio is a radiotelephone on a ship, according to frequency assignments made by international
treaties, laws, and decisions of the National Telecommunications and Information Administration.

The resonance frequency is f
LC0

1
2

=
π

.

Thus, C
f L

= =
× ×

=
−

1

2

1

2 6 30 10 1 05 10
608

0
2 6 2 6π πb g e j e j. . Hz  H

 pF .

P32.50 f
LC

=
1

2π
: L

f C
= =

×
=

−

1

2

1

2 120 8 00 10
0 2202 2 6π πb g a f e j.
.  H

P32.51 (a) f
LC

= =
×

=
−

1
2

1

2 0 082 0 17 0 10
135

6π π . . H  F
 Hz

b ge j

(b) Q Q t= = × =max cos cos .ω µ µ180 847 0 001 00 119 C  Cb g b g

(c) I
dQ
dt

Q t= = − = − = −ω ωmax sin sin .847 180 0 847 114a fa f a f  mA

P32.52 (a) f
LC

= =
×

=
−

1
2

1

2 0 100 1 00 10
503

6π π . . H  F
 Hz

a fe j

(b) Q C= = × =−ε µ1 00 10 12 0 12 06. . . F  V  Ce ja f

(c)
1
2

1
2

2 2C LIε = max

I
C
Lmax .= =

×
=

−

ε 12 37 9
6

 V
1.00 10  F

0.100 H
 mA

FIG. P32.52

(d) At all times U C= = × =−1
2

1
2

1 00 10 12 0 72 02 6 2ε µ. . . F  V  Je ja f .
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P32.53 ω = =
×

= ×
−

1 1

3 30 840 10
1 899 10

12

4

LC .
.

 H  F
 rad s

a fe j
Q Q t= max cosω , I

dQ
dt

Q t= = −ω ωmax sin

(a) U
Q

CC = =
× × ×

×
=

− −

−

2
6 4 3

2

122

105 10 1 899 10 2 00 10

2 840 10
6 03

cos . .
.

 rad s  s
 J

e je je j
e j

(b) U LI L Q t
Q t

CL = = =
1
2

1
2 2

2 2 2 2
2 2

ω ω
ω

max
maxsin

sinb g b g

UL =
× × ×

×
=

− −

−

105 10 1 899 10 2 00 10

2 840 10
0 529

6 2 2 4 3

12

 C  rad s  s

 F
 J

e j e je j
e j

sin . .
.

(c) U U UC Ltotal  J= + = 6 56.

Section 32.6 The RLC Circuit

P32.54 (a) ω d LC
R
L

= − FHG
I
KJ =

× ×
−

×

F
H
GG

I
K
JJ = ×

− − −

1
2

1

2 20 10 1 80 10

7 60

2 2 20 10
1 58 10

2

3 6 3

2

4

. .

.

.
.

e je j e j
 rad s

Therefore, fd
d= =

ω
π2

2 51.  kHz .

(b) R
L

Cc = =
4

69 9.  Ω

P32.55 (a) ω 0
6

1 1

0 500 0 100 10
4 47= =

×
=

−LC . .
.

a fe j
 krad s

(b) ω d LC
R
L

= − FHG
I
KJ =

1
2

4 36
2

.  krad s

(c)
∆ω
ω 0

2 53%= .  lower

P32.56 Choose to call positive current clockwise in Figure 32.21. It drains charge from the capacitor

according to I
dQ
dt

= − . A clockwise trip around the circuit then gives

+ − − =
Q
C

IR L
dI
dt

0

+ + + =
Q
C

dQ
dt

R L
d
dt

dQ
dt

0 , identical with Equation 32.28.
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*P32.57 The period of damped oscillation is T
d

=
2π
ω

. After one oscillation the charge returning to the

capacitor is Q Q e Q eRT L R L d= =− −
max max

2 2 2π ω . The energy is proportional to the charge squared, so

after one oscillation it is U U e UR L d= =−
0

2
00 99π ω . . Then

e

L

L L
LC

R
L

L
C

L
C

R L

d

d

d2

2

2

1 2

6
2

6

1
0 99

2 2
1 010 1 0 001 005

2 2
1 250

1
4

1 563 10
2

4

1 563 10

π ω

π
ω

ω
π

=

= =

= = = −
F
HG

I
KJ

× = −

= ×

.

ln . .

.

.

 

 
0.001 005

 

 
 

 

2

2

Ω

Ω
Ω

Ω
Ω

Ω

b g

a f

We are also given

ω π

π

= × =

=
×

= × −

2 10
1

1

2 10
2 533 10

3

3 2
8

s

s
 s2

LC

LC
e j

.

Solving simultaneously,

C L

L
L

C C

= ×

×
= × =

=
×

= =

−

−

−

2 533 10

2 533 10
1 563 10 0 199

2 533 10
0 199

127

8

2

8
6

8

.

.
. .

.
.

 s

 s
  H

 s
 H

 nF

2

2
2

2

Ω

P32.58 (a) Q Q e tRt L
d= −

max cos2 ω so I e Rt L
max ∝ − 2

0 500 2. = −e Rt L and
Rt
L2

0 500= − ln .a f

t
L

R
L

R
= − = F

HG
I
KJ

2
0 500 0 693

2
ln . .a f

(b) U Q0
2∝ max  and U U= 0 500 0. so Q Q Q= =0 500 0 707. .max max

t
L

R
L

R
= − = F

HG
I
KJ

2
0 707 0 347

2
ln . .a f  (half as long)
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Additional Problems

*P32.59 (a) Let Q represent the magnitude of the opposite charges on the plates of a parallel plate
capacitor, the two plates having area A and separation d. The negative plate creates electric

field E =
∈
Q

A2 0
 toward itself. It exerts on the positive plate force F =

∈
Q

A

2

02
 toward the

negative plate. The total field between the plates is 
Q

A∈0
. The energy density is

u E
Q

A
Q

AE = ∈ = ∈
∈

=
∈

1
2

1
2 20

2
0

2

0
2 2

2

0
2 . Modeling this as a negative or inward pressure, we

have for the force on one plate F PA
Q

A
= =

∈

2

0
22

, in agreement with our first analysis.

(b) The lower of the two current sheets shown creates

above it magnetic field B k= −
µ 0

2
Js e j . Let  and w

represent the length and width of each sheet. The
upper sheet carries current J ws  and feels force

F B i k j= × = × − =I J w
J w J

s
s sµ µ0 0

2

2 2e j .

The force per area is P
F
w

Js= =
µ 0

2

2
.

y

x

z

Js

Js

FIG. P32.59(b)

(c) Between the two sheets the total magnetic field is 
µ µ

µ0 0
02 2

J J
Js s

s− + − =k k ke j e j , with

magnitude B Js= µ 0 . Outside the space they enclose, the fields of the separate sheets are

in opposite directions and add to zero .

(d) u B
J J

B
s s= = =

1
2 2 20

2 0
2 2

0

0
2

µ
µ

µ
µ

(e) This energy density agrees with the magnetic pressure found in part (b).

P32.60 With Q Q= max  at t = 0 , the charge on the capacitor at any time is Q Q t= max cosω  where ω =
1
LC

.

The energy stored in the capacitor at time t is then

U
Q

C
Q

C
t U t= = =

2 2
2

0
2

2 2
max cos cosω ω .

When U U=
1
4 0 , cosω t =

1
2

and ω πt =
1
3

 rad .

Therefore,
t
LC

=
π
3

or
t
LC

2 2

9
=

π
.

The inductance is then: L
t
C

=
9 2

2π
.
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P32.61 (a) ε L L
dI
dt

d t
dt

= − = − = −1 00
20 0

20 0.
.

. mH  mVa f a f

(b) Q Idt t dt t
t t

= = =z z
0 0

220 0 10 0. .a f

∆V
Q

C
t

tC =
−

=
−

×
= −−

10 0
1 00 10

10 0
2

6
2.

.
.

 F
 MV s2e j

(c) When 
Q

C
LI

2
2

2
1
2

≥ , or 
−

×
≥ ×

−
−

10 0

2 1 00 10

1
2

1 00 10 20 0
2 2

6
3 2.

.
. .

t
t

e j
e j e ja f ,

then 100 400 104 9 2t t≥ × −e j . The earliest time this is true is at t = × =−4 00 10 63 29. . s  sµ .

P32.62 (a) ε L L
dI
dt

L
d
dt

Kt LK= − = − = −a f

(b) I
dQ
dt

= , so Q Idt Ktdt Kt
t t

= = =z z
0 0

21
2

and ∆V
Q

C
Kt

CC =
−

= −
2

2

(c) When 
1
2

1
2

2 2C V LIC∆b g = ,
1
2 4

1
2

2 4

2
2 2C

K t
C

L K t
F
HG
I
KJ = e j

Thus t LC= 2

P32.63
1
2

1
2 2

1
2

2 2
2Q

C C
Q

LI= F
HG
I
KJ + so I

Q
CL

=
3
4

2

.

The flux through each turn of the coil is ΦB
LI
N

Q
N

L
C

= =
2

3

where N is the number of turns.

P32.64 B
NI
r

=
µ

π
0

2

(a) ΦB
a

b

a

b

BdA
NI
r

hdr
NIh dr

r
NIh b

a
= = = = F

HG
I
KJz z zµ

π
µ

π
µ

π
0 0 0

2 2 2
ln

L
N

I
N h b

a
B= = F

HG
I
KJ

Φ µ
π

0
2

2
ln

(b) L = F
HG
I
KJ =

µ
π

µ0
2500 0 010 0

2
12 0
10 0

91 2
a f b g.

ln
.
.

.  H

FIG. P32.64

(c) L
N A

Rappx

2 m
 H= F

HG
I
KJ =

×F
HG

I
KJ =

−µ
π

µ
π

µ0
2

0
2 4

2
500
2

2 00 10
0 110

90 9
a f .

.
. , only 0.3% different.
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P32.65 (a) At the center, B
N IR

R

N I
R

=
+

=
µ µ0

2

2 2 3 2
0

2 0 2e j
.

So the coil creates flux through itself ΦB BA
N I

R
R N IR= = ° =cos cosθ

µ
π

π
µ0 2

02
0

2
.

When the current it carries changes, ε
π

µL
BN

d
dt

N N R
dI
dt

L
dI
dt

= − ≈ − FHG
I
KJ = −

Φ
2 0

so L N R≈
π

µ
2

2
0 .

(b) 2 3 0 3π r = .  ma f so r ≈ 0 14.  m

L

L

≈ × ⋅ = ×− −π
π

2
1 4 10 0 14 2 8 10

100

2 7 7e je ja f T m A  m  H

 nH

. .

~

(c)
L
R

=
× ⋅

= ×
−

−2 8 10
270

1 0 10
7

9.
.

 V s A
 V A

 s
L
R

~1 ns

P32.66 (a) If unrolled, the wire forms the diagonal of a
0.100 m (10.0 cm) rectangle as shown. The length of
this rectangle is

′ = −L 9 80 0 1002 2. . m  ma f a f .  ′ L  

0.100 m9.80 m

FIG. P32.66(a)

The mean circumference of each turn is C r= ′2π , where ′ =
+

r
24 0 0 644

2
. .

 mm  is the mean

radius of each turn. The number of turns is then:
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P32.67 From Ampere’s law, the magnetic field at distance r R≤  is found as:

B r J r
I
R

r2 0
2

0 2
2π µ π µ

π
πb g e j e j= =

F
HG
I
KJ , or B

Ir
R

=
µ
π

0
22

.

The magnetic energy per unit length within the wire is then

U B
rdr

I
R

r dr
I
R

R IR R

= = =
F
HG
I
KJ =z z2

00

0
2

4
3

0

0
2

4

4
0

2

2
2

4 4 4 16µ
π

µ
π

µ
π

µ
π

b g .

This is independent of the radius of the wire.

P32.68 The primary circuit (containing the battery and solenoid) is an RL
circuit with R = 14 0.  Ω , and

L
N A

= =
× ×

=
− −

µ π
0

2 7 2 44 10 12 500 1 00 10

0 070 0
0 280

e jb g e j.

.
.  H .

(a) The time for the current to reach 63.2% of the maximum value
is the time constant of the circuit:

τ = = = =
L
R

0 280
0 020 0 20 0

.
. .

 H
14.0 

 s  ms
Ω

.

(b) The solenoid’s average back emf is ε L
fL

I
t

L
I

t
= FHG
I
KJ =

−F
HG
I
KJ

∆
∆ ∆

0 FIG. P32.68

where I I
V

Rf = = F
HG
I
KJ =

F
HG

I
KJ =0 632 0 632 0 632

60 0
2 71. . .

.
.max

∆
Ω
 V

14.0 
 A .

Thus, ε L =
F
HG

I
KJ =0 280

2 71
37 9.

.
. H

 A
0.020 0 s

 Va f .

(c) The average rate of change of flux through each turn of the overwrapped concentric coil is
the same as that through a turn on the solenoid:

∆Φ
∆

∆
∆

B

t
n I A

t
= =

× ⋅ ×

=

− −
µ π

0
7 44 10 12 500 0 070 0 2 71 1 00 10

0 020

3 04

a f e jb ga fe j T m A  m  A  m

0 s

 mV

2. . .

.

.

(d) The magnitude of the average induced emf in the coil is ε L
BN

t
= FHG

I
KJ

∆Φ
∆

 and magnitude of

the average induced current is

I
R

N
R t

L B= = FHG
I
KJ = × = =−ε ∆Φ

∆ Ω
820

24 0
3 04 10 0 104 1043

.
. .

 
 V  A  mAe j .
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P32.69 Left-hand loop: ε − + − =I I R I R2 1 2 2 0b g .

Outside loop: ε − + − =I I R L
dI
dt2 1 0b g .

Eliminating I2  gives ′ − ′ − =ε IR L
dI
dt

0 .

This is of the same form as Equation 32.6, so its solution is of the same
form as Equation 32.7:

FIG. P32.69

I t
R

e R t La f e j=
′
′

− − ′ε
1 .

But ′ =
+

R
R R

R R
1 2

1 2
 and ′ =

+
ε

εR
R R

2

1 2
, so

′
′

=
+

+
=

ε ε ε
R

R R R
R R R R R

2 1 2

1 2 1 2 1

b g
b g .

Thus I t
R

e R t La f e j= − − ′ε

1
1 .

P32.70 When switch is closed, steady current I0 = 1.20 A . When the switch is
opened after being closed a long time, the current in the right loop is

I I e R t L= −
0

2

so e
I
I

Rt L = 0 and
Rt
L

I
I

= FHG
I
KJln 0 .

Therefore, L
R t
I I

= = = =2

0

1 00 0 150
1 20

0 095 6 95 6
ln

. .
ln .

. .b g
a fa f
b g

  s
 A 0.250 A

 H  mH
Ω

.
FIG. P32.70

P32.71 (a) While steady-state conditions exist, a 9.00 mA flows clockwise around the right loop of the
circuit. Immediately after the switch is opened, a 9.00 mA current will flow around the outer
loop of the circuit. Applying Kirchhoff’s loop rule to this loop gives:

+ − + × × =

+ =

−ε

ε

0
3 3

0

2 00 6 00 10 9 00 10 0

72 0

. . .

.

a f e j  A

 V with end  at the higher potential

Ω

b

(b)

FIG. P32.71(b)

(c) After the switch is opened, the current around the outer loop decays as

I I e Rt L= −
max  with Imax .= 9 00 mA , R = 8 00.  kΩ , and L = 0 400.  H .

Thus, when the current has reached a value I = 2 00.  mA , the elapsed time is:

t
L
R

I
I

= FHG
I
KJ
F
HG
I
KJ = ×
F
HG

I
KJ
F
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I
KJ = × =−ln

.
ln

.

.
. .max 0 400 9 00

2 00
7 52 10 75 25 H

8.00 10  
 s  s3 Ω

µ .
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P32.72 (a) The instant after the switch is closed, the situation
is as shown in the circuit diagram of Figure (a). The
requested quantities are:

I I
R

I
R

V V V

L C R

L C R

= = =

= = =

0

0

0 0

0 0

, ,

, ,

ε ε

ε ε∆ ∆ ∆

(b) After the switch has been closed a long time, the
steady-state conditions shown in Figure (b) will
exist. The currents and voltages are:

I I I

V V V

L C R

L C R

= = =

= = =

0 0 0

0 00

, ,

, ,∆ ∆ ∆ε
+ –

+ –IL = 0 VL=∆ 0

IR = 0

VR =∆ 0
Q = ε 0C

VC=∆ ε 0

ε 0

Figure (b)

+ –

+ –IL = 0 VL=∆ ε 0

VR =∆
Q = 0

VC=∆ 0

ε 0

Figure (a)

ε 0

IR =ε 0 /R

IC =ε 0 /R

FIG. P32.72

P32.73 When the switch is closed, as shown in
figure (a), the current in the inductor is I :

12 0 7 50 10 0 0 0 267. . . .− − = → =I I  A .

When the switch is opened, the initial
current in the inductor remains at 0.267 A.

IR V= ∆ : 0 267 80 0. . A  Va fR ≤

R ≤ 300 Ω
(a) (b)

FIG. P32.73
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P32.75 (a) It has a magnetic field, and it stores energy, so L
U

I
=

2
2  is non-zero.

(b) Every field line goes through the rectangle between the conductors.

(c) Φ = LI  so L
I I

BdA
y a

w a

= =
=

−

zΦ 1
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xdy
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w y I
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w a
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P32.76 For an RL circuit,

I t I e R L ta f b g= −
max :

I t
I

e
R
L

tR L ta f b g
max

= − = ≅ −− −1 10 19

R
L

t = −10 9 so Rmax

.

. .
.=

×

×
= ×

− −
−

3 14 10 10

2 50 3 16 10
3 97 10

8 9

7
25e je j

b ge j yr  s yr
 Ω .

(If the ring were of purest copper, of diameter 1 cm, and cross-sectional area 1 mm2 , its resistance
would be at least 10 6−  Ω ).

P32.77 (a) U LIB = = × = ×
1
2

1
2

50 0 50 0 10 6 25 102 3 2 10. . . H  A  Ja fe j

(b) Two adjacent turns are parallel wires carrying current in the same direction. Since the loops
have such large radius, a one-meter section can be regarded as straight.

Then one wire creates a field of B
I
r

=
µ
π
0

2
.

This causes a force on the next wire of F I B= sinθ

giving F I
I
r

I
r

= ° =
µ
π

µ
π

0 0
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2
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2
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Evaluating the force, F = ×
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2 0 250
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P32.78 P = I V∆ I
V

= =
×
×

= ×
P

∆
1 00 10

5 00 10
9

3.
.

 W
200 10  V

 A3

From Ampere’s law, B r I2 0π µb g = enclosed  or B
I

r
=

µ
π

0

2
enclosed .

(a) At r a= = 0 020 0.  m , Ienclosed  A= ×5 00 103.
FIG. P32.73

and B =
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(b) At r b= = 0 050 0.  m , I Ienclosed  A= = ×5 00 103.

and B =
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(d) The magnetic field created by the inner conductor exerts a force of repulsion on the current
in the outer sheath. The strength of this field, from part (b), is 20.0 mT. Consider a small
rectangular section of the outer cylinder of length  and width w.

It carries a current of 5 00 10
2 0 050 0

3.
.

×
F
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I
KJ A

 me j b g
w

π

and experiences an outward force
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×
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.
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The pressure on it is P
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P32.79 (a) B
NI

= =
× ⋅

= ×
−

−µ π
0

7
3

4 10 1 400 2 00

1 20
2 93 10

 T m A  A

 m
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e jb ga f b g.

.
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(b) u
B

= =
×

× ⋅
=

⋅F
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I
KJ = =

−

−

2

0

3 2

72

2 93 10

2 4 10
3 42

1
3 42 3 42

µ π

.
. . .

 T

 T m A
 J m

 N m
1 J

 N m  Pa3 2e j
e j e j

(c) To produce a downward magnetic field, the surface of the superconductor must carry a
clockwise  current.

(d) The vertical component of the field of the solenoid exerts an inward force on the
superconductor. The total horizontal force is zero. Over the top end of the solenoid, its field
diverges and has a radially outward horizontal component. This component exerts upward
force on the clockwise superconductor current. The total force on the core is upward . You

can think of it as a force of repulsion between the solenoid with its north end pointing up,
and the core, with its north end pointing down.

(e) F PA= = ×L
NM

O
QP = ×− −3 42 1 10 10 1 30 102 2 3. . . Pa  m  Na f e jπ

Note that we have not proven that energy density is pressure. In fact, it is not in some cases;
Equation 21.2 shows that the pressure is two-thirds of the translational energy density in an
ideal gas.

ANSWERS TO EVEN PROBLEMS

P32.2 1 36.  Hµ P32.26 (a) 1 00.  A; (b) ∆V12 12 0= .  V ,
∆V1 200 1 20= .  kV, ∆VL = 1 21.  kV ; (c)
7 62.  msP32.4 240 nWb

P32.28 (a), (b), and (c) see the solution;P32.6 19 2.  Wbµ
(d) yes; see the solution

P32.8 (a) 360 mV ; (b) 180 mV; (c) t = 3 00.  s
P32.30 (a) 8 06.  MJ m3 ; (b) 6 32.  kJ

P32.10 (a) 15 8.  Hµ ; (b) 12 6.  mH
P32.32 (a) 27 8.  J; (b) 18 5.  ms

P32.12 see the solution P32.34 see the solution

P32.14 1 92.  Ω P32.36 (a) 20 0.  W; (b) 20 0.  W; (c) 0;(d) 20 0.  J

P32.38
2

2 70 100
2 3

0

18π
µ
B R

= ×.  J
P32.16 see the solution

P32.18 92 8.  V
P32.40 1 00.  V

P32.20 30 0.  mH
P32.42 781 pH

P32.22 7 67.  mH

P32.44 M
N N R R

x R
=

+

1 2 0 1
2

2
2

2
1
2 3 2

2

πµ

e jP32.24 (a) 1 00.  kΩ ; (b) 3 00.  ms
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P32.46 400 mA P32.64 (a) see the solution; (b) 91 2.  Hµ ;
(c) 90.9 µH , 0.3% smaller

P32.48 281 mH

P32.66 (a) 127; (b) 0 522.  Ω; (c) 76 8.  mH
P32.50 220 mH

P32.68 (a) 20.0 ms; (b) 37.9 V; (c) 3.04 mV;
P32.52 (a) 503 Hz ; (b) 12 0.  Cµ ; (c) 37 9.  mA ; (d) 104 mA

(d) 72 0.  Jµ
P32.70 95.6 mH

P32.54 (a) 2 51.  kHz; (b) 69 9.  Ω

P32.72 (a) I I
R

I
RL C R= = =0 0 0, ,

ε ε
,

∆ ∆ ∆V V VL C R= = =ε ε0 00, , ;
P32.56 see the solution

P32.58 (a) 0 693
2

.
L

R
F
HG
I
KJ ; (b) 0 347

2
.

L
R
F
HG
I
KJ

(b) I I IL C R= = =0 0 0, , ,
∆ ∆ ∆V V VL C R= = =0 00, ,ε

P32.60
9 2

2
t
Cπ

P32.74 (a) 251 Hµ ; (b) 25 1.  Hµ ; (c) 25 1.  nC

P32.76 3 97 10 25. × −  Ω

P32.62 (a) ε L LK= − ; (b) ∆V
Kt
Cc =

− 2

2
; P32.78 (a) 50.0 mT; (b) 20.0 mT; (c) 2.29 MJ;

(d) 318 Pa(c) t LC= 2
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Alternating Current Circuits

ANSWERS TO QUESTIONS

Q33.1 If the current is positive half the time and negative half the
time, the average current can be zero. The rms current is not
zero. By squaring all of the values of the current, they all
become positive. The average (mean) of these positive values is
also positive, as is the square root of the average.

Q33.2 ∆
∆

V
V

avg =
max

2
, ∆

∆
V

V
rms =

max

2

Q33.3 AC ammeters and voltmeters read rms values. With an
oscilloscope you can read a maximum voltage, or test whether
the average is zero.

Q33.4 Suppose the voltage across an inductor varies sinusoidally.
Then the current in the inductor will have its instantaneous

peak positive value 
1
4

 cycle after the voltage peaks. The voltage

is zero and going positive 
1
4

 cycle (90°) before the current is

zero and going positive.

Q33.5 If it is run directly from the electric line, a fluorescent light tube can dim considerably twice in every
cycle of the AC current that drives it. Looking at one sinusoidal cycle, the voltage passes through
zero twice. We don’t notice the flickering due to a phenomenon called retinal imaging. We do not
notice that the lights turn on and off since our retinas continue to send information to our brains
after the light has turned off. For example, most TV screens refresh at between 60 to 75 times per
second, yet we do not see the evening news flickering. Home video cameras record information at
frequencies as low as 30 frames per second, yet we still see them as continuous action. A vivid
display of retinal imaging is that persistent purple spot you see after someone has taken a picture of
you with a flash camera.

Q33.6 The capacitive reactance is proportional to the inverse of the frequency. At higher and higher
frequencies, the capacitive reactance approaches zero, making a capacitor behave like a wire. As the
frequency goes to zero, the capacitive reactance approaches infinity—the resistance of an open
circuit.

Q33.7 The second letter in each word stands for the circuit element. For an inductor L, the emf ε  leads the
current I—thus ELI. For a capacitor C, the current leads the voltage across the device. In a circuit in
which the capacitive reactance is larger than the inductive reactance, the current leads the source
emf—thus ICE.

265
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Q33.8 The voltages are not added in a scalar form, but in a vector form, as shown in the phasor diagrams
throughout the chapter. Kirchhoff’s loop rule is true at any instant, but the voltages across different
circuit elements are not simultaneously at their maximum values. Do not forget that an inductor can
induce an emf in itself and that the voltage across it is 90° ahead of the current in the circuit in phase.

Q33.9 In an RLC series circuit, the phase angle depends on the source frequency. At very low frequency
the capacitor dominates the impedance and the phase angle is near –90°. The phase angle is zero at
the resonance frequency, where the inductive and capacitive reactances are equal. At very high
frequencies φ approaches + °90 .

Q33.10 − °≤ ≤ °90 90φ . The extremes are reached when there is no significant resistance in the circuit.

Q33.11 The resistance remains unchanged, the inductive resistance doubles, and the capacitive reactance is
reduced by one half.

Q33.12 The power factor, as seen in equation 33.29, is the cosine of the phase angle between the current and
applied voltage. Maximum power will be delivered if ∆V  and I are in phase. If ∆V  and I are 90° out
of phase, the source voltage drives a net current of zero in each cycle and the average power is zero.

Q33.13 The person is doing work at a rate of P = Fv cosθ . One can consider the emf as the “force” that
moves the charges through the circuit, and the current as the “speed” of the moving charges. The
cosθ  factor measures the effectiveness of the cause in producing the effect. Theta is an angle in real
space for the vacuum cleaner and phi is the analogous angle of phase difference between the emf
and the current in the circuit.

Q33.14 As mentioned in Question 33.5, lights that are powered by alternating current flicker or get slightly
brighter and dimmer at twice the frequency of the AC power source. Even if you tried using two
banks of lights, one driven by AC 180° of phase from the other, you would not have a stable light
source, but one that exhibits a “ripple” in intensity.

Q33.15 In 1881, an assassin shot President James Garfield. The bullet was lost in his body. Alexander
Graham Bell invented the metal detector in an effort to save the President’s life. The coil is preserved
in the Smithsonian Institution. The detector was thrown off by metal springs in Garfield’s mattress, a
new invention itself. Surgeons went hunting for the bullet in the wrong place and Garfield died.

Q33.16 As seen in Example 33.8, it is far more economical to transmit at high voltage than at low voltage, as
the I R2  loss on the transmission line is significantly lower. Transmitting power at high voltage
permits the use of step-down transformers to make “low” voltages and high currents available to the
end user.

Q33.17 Insulation and safety limit the voltage of a transmission line. For an underground cable, the
thickness and dielectric strength of the insulation between the conductors determines the maximum
voltage that can be applied, just as with a capacitor. For an overhead line on towers, the designer
must consider electrical breakdown of the surrounding air, possible accidents, sparking across the
insulating supports, ozone production, and inducing voltages in cars, fences, and the roof gutters of
nearby houses. Nuisance effects include noise, electrical noise, and a prankster lighting a hand-held
fluorescent tube under the line.

Q33.18 No. A voltage is only induced in the secondary coil if the flux through the core changes in time.
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Q33.19 This person needs to consider the difference between the power delivered by a power plant and
I R2  losses in transmission lines. At lower voltages, transmission lines must carry higher currents to
transmit the same power, as seen in Example 33.8. The high transmitted current at low voltage
actually results in more internal energy production than a lower current at high voltage. In his

formula 
∆V

R
a f2

, the ∆V  does not represent the line voltage but the potential difference between the

ends of one conductor. This is very small when the current is small.

Q33.20 The Q factor determines the selectivity of the radio receiver. For example, a receiver with a very low
Q factor will respond to a wide range of frequencies and might pick up several adjacent radio
stations at the same time. To discriminate between 102.5 MHz and 102.7 MHz requires a high-Q
circuit. Typically, lowering the resistance in the circuit is the way to get a higher quality resonance.

Q33.21 Both coils are wrapped around the same core so that nearly all of the magnetic flux created by the
primary passes through the secondary coil, and thus induces current in the secondary when the
current in the primary changes.

Q33.22 The frequency of a DC signal is zero, making the capacitive reactance at DC infinite. The capacitor
then acts as an open switch. An AC signal has a non-zero frequency, and thus the capacitive
reactance is finite, allowing a signal to pass from Circuit A to Circuit B.

SOLUTIONS TO PROBLEMS

Section 33.1 AC Sources

Section 33.2 Resistors in an AC Circuit

P33.1 ∆ ∆ ∆v t V t V t t ta f b g b g a f a f a f= = = =max sin sin sin sinω ω π2 200 2 2 100 283 628rms  V

P33.2 ∆Vrms
 V
2

 V= =
170

120

(a) P = → = =
∆

Ω
V

R
Rrms  V

 W
 

b g a f2 2120
75 0

193
.

(b) R = =
120
100

144
2 V

 W
 

a f
Ω

P33.3 Each meter reads the rms value.

∆

∆
Ω

V

I
V
R

rms

rms
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 V
2

 V

 V
24.0 

 A

= =

= = =

100
70 7

70 7
2 95

.

.
.

FIG. P33.3
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P33.4 (a) ∆ ∆v V tR = max sinω

∆ ∆v VR = 0 250. maxb g, so sin .ω t = 0 250 , or ω t = −sin .1 0 250a f.
The smallest angle for which this is true is ω t = 0 253.  rad Thus, if t = 0 010 0.  s ,

ω = =
0 253

25 3
.

.
 rad

0.010 0 s
 rad s .

(b) The second time when ∆ ∆v VR = 0 250. maxb g, ω t = −sin .1 0 250a f again. For this occurrence,
ω πt = − =0 253 2 89. . rad  rad  (to understand why this is true, recall the identity
sin sinπ θ θ− =a f  from trigonometry). Thus,

t = =
2 89

0 114
.

.
 rad

25.3 rad s
 s .

P33.5 i I tR = max sinω becomes 0 600 0 007 00. sin .= ωb g .
Thus, 0 007 00 0 600 0 6441. sin . .b g a fω = =−

and ω π= =91 9 2.  rad s f so f = 14 6.  Hz .

P33.6 P = I Vrms rms∆b g  and ∆Vrms  V= 120  for each bulb (parallel circuit), so:

I I
V1 2

1 150
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P
∆ rms
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V
I
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2
120
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∆
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 .
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P
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I R

max
max .

.

.
. .

= = = =

= =
F
HG

I
KJ =

∆
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P a f

Section 33.3 Inductors in an AC Circuit

P33.8 For Imax .= 80 0 mA , Irms
 mA
2
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80 0

56 6
.

.

X
V
I

X fL L
X
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L
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.
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P33.9 (a) X
V
IL = = =
∆

Ωmax

max .
.

100
7 50

13 3 

L
XL= = = =
ω π

13 3
2 50 0

0 042 4 42 4
.

.
. .a f  H  mH

(b) X
V
IL = = =
∆

Ωmax

max .
.

100
2 50

40 0 

ω = =
×

=−
X
L

L 40 0
42 4 10

9423
.

.
 rad s

P33.10 At 50.0 Hz, X L
X

L
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F
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54 0 45 060 0π π
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Section 33.4 Capacitors in an AC Circuit

P33.14 (a) X
f CC =

1
2π

: 
1

2 22 0 10
175

6π f . ×
<

−e j
 Ω

1

2 22 0 10 1756π . ×
<

−e ja f
f f > 41 3.  Hz

(b) X
CC ∝
1

, so X X44
1
2

22a f a f= : XC < 87 5.  Ω

P33.15 I I
V

X
V f C

C
max = = =2

2
2 2rms

rms
rms

∆
∆

b g b g π

(a) Imax . .= × =−2 120 2 60 0 2 20 10 1416 V s  C V  mAa f b ge jπ

(b) Imax . .= × =−2 240 2 50 0 2 20 10 2356 V s  F  mAa f b ge jπ

P33.16 Q C V C V C Vmax max= = =∆ ∆ ∆b g b g b g2 2rms rms

P33.17 I V Cmax max . . .= = × =− −∆b g a fa fe je jω π48 0 2 90 0 3 70 10 1001 6 V  s  F  mA

P33.18 X
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1 1
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Ω
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i
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X
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L
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∆
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.
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Section 33.5 The RLC Series Circuit

P33.19 (a) X LL = = × =−ω π2 50 0 400 10 1263.a fe j  Ω

X
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=
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∆ FIG. P33.19

(b) φ =
−F

HG
I
KJ =

−F
HG

I
KJ = − °− −tan tan .1 1 126 719

500
49 9

X X
R

L C . Thus, the Current leads the voltage.
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× ×
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1 1 1
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1 75 10

6 6

4

. .
.

e je j
 rad s

f = =
ω
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P33.21 (a) X LL = = × =− −ω π2 50 0 250 10 78 51 3. . s  H  e je j Ω

(b) X
CC = = × =− − −1

2 50 0 2 00 10 1 591 6
1

ω
π . . . s  F  ke je j Ω

(c) Z R X XL C= + − =2 2 1 52b g .  kΩ

(d) I
V
Zmax
max= =

×
=

∆
Ω

210
138

 V
1.52 10  

 mA3

(e) φ =
−L

NM
O
QP = − = − °− −tan tan . .1 1 10 1 84 3

X X
R

L C a f

P33.22 (a) Z R X XL C= + − = + − =2 2 2 268 0 16 0 101 109b g a f. .  Ω

X L

X
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= =
×
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6

a fa f

a fe j

. .

.

 

 

Ω

Ω

(b) I
V
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∆

Ω
40 0

0 367
 V

109 
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(c) tan
.

.
.φ =

−
=

−
= −

X X
R

L C 16 0 101
68 0

1 25 :

φ = − = − °0 896 51 3. . rad

Imax .= 0 367 A  ω = 100 rad s  φ = − = − °0 896 51 3. . rad

P33.23 X f LL = = =2 2 60 0 0 460 173π π . .a fa f  Ω

X
f CC = =

×
=

−

1
2

1

2 60 0 21 0 10
126

6π π . .a fe j
 Ω

(a) tan .φ =
−

=
−

=
X X

R
L C 173 126

0 314
  
150 
Ω Ω

Ω
φ = = °0 304 17 4. . rad

(b) Since X XL C> , φ is positive; so voltage leads the current .

*P33.24 For the source-capacitor circuit, the rms source voltage is ∆V Xs C= 25 1.  mAa f . For the circuit with

resistor, ∆V R X Xs C C= + =15 7 25 12 2. . mA  mAa f a f . This gives R XC= 1 247. . For the circuit with ideal
inductor, ∆V X X Xs L C C= − =68 2 25 1. . mA  mAa f a f . So X X XL C C− = 0 368 0. . Now for the full circuit

∆V I R X X

X I X X

I
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C C C
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2 2
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19 3
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P33.25 X
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.
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FIG. P33.26

P33.27 R = 300 Ω
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FIG. P33.27

*P33.28 Let Xc  represent the initial capacitive reactance. Moving the plates to half their original separation

doubles the capacitance and cuts X
CC =

1
ω

 in half. For the current to double, the total impedance
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+ − = + −FHG
I
KJb g ,

R R X R R
X

R RX X R RX X

X R

C
C

C C C C

C

2 2 2
2

2 2 2 2

4
2

2 2 8 4

3

+ − = + −FHG
I
KJ

F
HG

I
KJ

− + = − +

=

b g



Chapter 33     273

P33.29 (a) XL = = ×2 100 20 5 1 29 104π  Hz  H  a fa f. . Ω
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FIG. P33.29

Section 33.6 Power in an AC Circuit
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= + −
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P33.32 Z R X XL C= + −2 2b g  or X X Z RL C− = −b g 2 2
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2 so 1 29 10 9 003 2. .× = a f R and R = 16 0.  Ω .

(b) tanφ =
−X X
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16
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P33.36 One-half the time, the left side of the generator is positive, the top
diode conducts, and the bottom diode switches off. The power
supply sees resistance

1
2

1
2

1

R R
R+LNM

O
QP =
−

 and the power is 
∆V

R
rmsb g2

.

The other half of the time the right side of the generator is positive,
the upper diode is an open circuit, and the lower diode has zero
resistance. The equivalent resistance is then

R R
R R

R
eq = + +LNM

O
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−1

3
1 7

4

1
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∆ ∆V
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FIG. P33.36

The overall time average power is:
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Section 33.7 Resonance in a Series RLC Circuit

P33.37 ω π0
6 82 99 7 10 6 26 10

1
= × = × =. .e j  rad s
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= .
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P33.40 L = 20 0.  mH , C = × −1 00 10 7. , R = 20 0.  Ω , ∆Vmax = 100 V

(a) The resonant frequency for a series –RLC circuit is f
LC

= =
1

2
1

3 56
π

.  kHz .

(b) At resonance, I
V
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max .= =

∆
5 00 A .

(c) From Equation 33.38, Q
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= =
ω 0 22 4. .

(d) ∆V X I LIL L, max max . max  kV= = =ω 0 2 24

P33.41 The resonance frequency is ω 0
1

=
LC

. Thus, if ω ω= 2 0 ,

X L
LC

L
L
CL = =

F
HG
I
KJ =ω

2
2 and X

C
LC
C

L
CC = = =

1
2

1
2ω

Z R X X R
L
CL C= + − = + F
HG
I
KJ

2 2 2 2 25b g . so I
V
Z

V

R L C
rms

rms rms= =
+

∆ ∆
2 2 25. b g

and the energy delivered in one period is E t= P ∆ :

E
V R

R L C

V RC

R C L
LC

V RC LC

R C L
=

+
F
HG
I
KJ = +

=
+

∆ ∆ ∆rms rms rmsb g
b g

b g e j b g2

2

2

2

2

22 25
2

2 25

4

4 9 00. . .
π
ω

π
π

.

With the values specified for this circuit, this gives:

E =
× ×

× + ×
=

− −

− −

4 50 0 10 0 100 10 10 0 10

4 10 0 100 10 9 00 10 0 10
242

2 6 3 2 3 1 2

2 6 3

π . . .

. . .

 V   F  H

  F  H
 mJ

a f a fe j e j
a f e j e j

Ω

Ω
.

P33.42 The resonance frequency is ω 0
1

=
LC

. Thus, if ω ω= 2 0 ,

X L
LC

L
L
CL = =

F
HG
I
KJ =ω

2
2 and X

C
LC
C

L
CC = = =

1
2

1
2ω

.

Then Z R X X R
L
CL C= + − = + F
HG
I
KJ

2 2 2 2 25b g . so I
V
Z

V

R L C
rms

rms rms= =
+

∆ ∆
2 2 25. b g

and the energy delivered in one period is

E t
V R

R L C

V RC

R C L
LC

V RC LC

R C L
= =

+
F
HG
I
KJ = +

=
+

P∆
∆ ∆ ∆rms rms rmsb g
b g

b g e j b g2

2

2

2

2

22 25
2

2 25

4

4 9 00. . .
π
ω

π
π

.
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P33.43 For the circuit of Problem 22, ω 0
3 6

1 1

160 10 99 0 10
251= =

× ×
=

− −LC  H  F
 rad s

e je j.

Q
L

R
= =

×
=

−
ω 0

3251 160 10

68 0
0 591

 rad s  H

 

b ge j
.

.
Ω

.

For the circuit of Problem 23, Q
L

R
L

R LC R
L
C

= = = =
×
×

=
−

−
ω 0

3

6
1 1

150
460 10

10
0 987

 
 H

21.0  FΩ
. .

The circuit of Problem 23  has a sharper resonance.

Section 33.8 The Transformer and Power Transmission

P33.44 (a) ∆V2
1

13
120 9 23, rms  V  V= =a f .

(b) ∆ ∆V I V I1 1 2 2, , , , rms  rms  rms  rms=

120 0 350 9 23 2 V  A  V , rmsa fa f a f. .= I

I2
42 0

4 55,
.

. rms
 W

9.23 V
 A= =  for a transformer with no energy loss.

(c) P = 42 0.  W  from part (b).

P33.45 ∆ ∆V
N
N

Vout in  V  Vb g b g a fmax max
= = FHG

I
KJ =2

1

2 000
350

170 971

∆Vout rms

 V
 Vb g a f

= =
971

2
687

P33.46 (a) ∆ ∆V
N
N

V2
2

1
1, rms , rmsd i d i= N2

2 200 80

110
1 600= =

b ga f
 windings

(b) I V I V1 1 2, rms , rms , rms 2, rms∆ ∆d i d i= I1, rms  A= =
1 50 2 200

110
30 0

.
.

a fb g

(c) 0 950 1 2. I V I V, rms 1, rms , rms 2, rms∆ ∆d i d i= I1
1 20 2 200

110 0 950
25 3,

.

.
. rms  A= =

a fb g
a f
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P33.47 The rms voltage across the transformer primary is

N
N

V1

2
∆ 2, rmsd i

so the source voltage is ∆ ∆V I R
N
N

Vs s, rms , rms , rms= +1
1

2
2d i .

The secondary current is 
∆V

RL

2, rmsd i
, so the primary current is

N
N

V

R
I

L

2

1

2
1

∆ , rms
, rms

d i
= .

FIG. P33.47

Then ∆
∆ ∆

V
N V R

N R

N V

Ns
s

L
, rms

, rms , rms
= +

2 2

1

1 2

2

d i d i

and R
N R

N V
V

N V

Ns
L

s= −
F
HGG

I
KJJ
= −

F
HG

I
KJ =

1

2 2

1 2

2

5 50 0
2 25 0

80 0
5 25 0

2
87 5

∆
∆

∆ Ω
Ω

, rms
, rms

 rms  
 V

 V
 V

 d i
d i a f

a f
a f, .

.
.

.
. .

P33.48 (a) ∆ ∆V
N
N

V2
2

1
1, rms , rms= d i N

N

V

V
2

1

2

1

310 0 10
83 3= =

×
=

∆

∆
,

,

.
. rms

 rms

 V
120 V

(b) I V I V2 2 0 900, rms , rms 1, rms 1, rms∆ ∆d i d i= .

I2, rms  V
 V

24.0 
 V10 0 10 0 900

120
1203. .× = F

HG
I
KJe j a f

Ω
I2, rms  mA= 54 0.

(c) Z
V

I2
2

2

310 0 10
185= =

×
=

∆
Ω, rms

, rms

 V
0.054 A

 k
.

P33.49 (a) R = × × =−4 50 10 6 44 10 2904 5. . M  m  Ω Ωe je j  and I
Vrms

rms
5
 W

5.00 10  V
 A= =

×
×

=
P

∆
5 00 10

10 0
6.

.

Ploss rms
2  A   kW= = =I R 10 0 290 29 02. .a f a fΩ

(b)
P
P
loss =

×
×

= × −2 90 10
5 00 10

5 80 10
4

6
3.

.
.

(c) It is impossible to transmit so much power at such low voltage. Maximum power transfer
occurs when load resistance equals the line resistance of 290 Ω , and is

4 50 10

2 2 290
17 5

3 2
.

.
×

⋅
=

 V

 
 kW

e j
a fΩ  far below the required 5 000 kW.



Chapter 33     279

Section 33.9 Rectifiers and Filters

*P33.50 (a) Input power = 8 W

Useful output power = = =I V∆ 0 3 2 7. . A 9 V  Wa f
efficiency = = = =

useful output
total input

 W
8 W

2 7
0 34 34%

.
.

(b) Total input power = Total output power

8 2 7

5 3

 W  W wasted power

wasted power  W

= +

=

.

.

(c) E t= = F
HG

I
KJ
F
HG
I
KJ = ×

×

F
HG

I
KJ =P ∆ 8 31

86 400
1 29 10 88 W 6  d

 s
1 d

1 J
1 Ws

 J
$0.135

3.6 10  J6a fa f . $4.

*P33.51 (a) The input voltage is ∆V IZ I R X I R
CCin = = + = +
F
HG
I
KJ

2 2 2
2

1
ω

. The output voltage is

∆V IRout = . The gain ratio is 
∆
∆
V
V

IR

I R C

R

R C

out

in
=

+
=

+2 2 2 21 1ω ωb g b g
.

(b) As ω → 0 , 
1

ωC
→∞  and 

∆
∆
V
V

out

in
→ 0

As ω →∞ , 
1

0
ωC

→  and 
∆
∆
V
V

R
R

out

in
→ = 1

(c)
1
2 12 2
=

+

R

R Cωb g

R
C

R2
2 2

21
4+ =

ω
ω 2 2

2
1

3
C

R
= ω π= =2

1
3

f
RC

f
RC

=
1

2 3π

P33.52 (a) The input voltage is ∆V IZ I R X I R CCin = = + = +2 2 2 2
1 ωb g . The output voltage is

∆V IX
I
CCout = =

ω
. The gain ratio is 

∆
∆
V
V

I C

I R C

C

R C

out

in
=

+
=

+

ω

ω

ω

ω2 2 2 2
1

1

1b g b g
.

(b) As ω → 0 , 
1

ωC
→∞  and R becomes negligible in comparison. Then 

∆
∆
V
V

C
C

out

in
→ =

1
1

1
ω
ω

. As

ω →∞ , 
1

0
ωC

→  and 
∆
∆
V
V

out

in
→ 0 .

(c)
1
2

1

12 2
=

+

ω

ω

C

R Cb g
R

C C
2

2

2 2
1 4

+
F
HG
I
KJ =

ω ω
R C2 2 2 3ω = ω π= =2

3
f

RC

f
RC

=
3

2π
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P33.53 For this RC high-pass filter, 
∆
∆
V
V

R

R XC

out

in
=

+2 2
.

(a) When 
∆
∆
V
V

out

in
= 0 500. ,

then 
0 500

0 500
2 2

.
.

 

0.500 

Ω

Ωa f +
=

XC

 or XC = 0 866.  Ω .

If this occurs at f = 300 Hz, the capacitance is

C
f XC

= = = × =−1
2

1
2 300 0 866

6 13 10 6134

π π
µ

 Hz  
 F  Fa fa f.

.
Ω

.

(b) With this capacitance and a frequency of 600 Hz,

XC =
×

=
−

1

2 600 6 13 10
0 433

4π  Hz  F
 a fe j.

. Ω

∆
∆

Ω

Ω Ω

V
V

R

R XC

out

in

 

0.500  
=

+
=

+
=

2 2 2 2

0 500

0 433
0 756

.

.
.

a f a f
.

FIG. P33.53

P33.54 For the filter circuit, 
∆
∆
V
V

X

R X
C

C

out

in
=

+2 2
.

(a) At f = 600 Hz, X
f CC = =

×
= ×

−

1
2

1

2 600 8 00 10
3 32 10

9
4

π π  Hz  F
 a fe j.

. Ω

and
∆
∆

Ω

Ω Ω

V
V

out

in

 

90.0  
=

×

+ ×
≈

3 32 10

3 32 10
1 00

4

2 4 2

.

.
.

a f e j
.

(b) At f = 600 kHz , X
f CC = =

× ×
=

−

1
2

1

2 600 10 8 00 10
33 2

3 9π π  Hz  F
 

e je j.
. Ω

and
∆
∆

Ω

Ω Ω

V
V

out

in

 

90.0 .2 
=

+
=

33 2

33
0 346

2 2

.
.

a f a f
.
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P33.55
∆
∆
V
V

R

R X XL C

out

in
=

+ −2 2b g

(a) At 200 Hz:
1
4

8 00

8 00 400 1 400

2

2 2=
+ −

.

.

 

 

Ω

Ω

a f
a f π πL C

.

At 4 000 Hz: 8 00 8 000
1

8 000
4 8 002

2
2. .  Ω Ωa f a f+ −

L
NM

O
QP

=π
π

L
C

.
FIG. P33.55(a)

At the low frequency, X XL C− < 0 . This reduces to 400
1

400
13 9π

π
L

C
− = − .  Ω . [1]

For the high frequency half-voltage point, 8 000
1

8 000
13 9π

π
L

C
− = + .  Ω . [2]

Solving Equations (1) and (2) simultaneously gives C = 54 6.  Fµ  and L = 580 Hµ .

(b) When X XL C= ,
∆
∆

∆
∆

V
V

V
V

out

in

out

in
=
F
HG
I
KJ =

max

.1 00 .

(c) X XL C=  requires f
LC0

4 5

1
2

1

2 5 80 10 5 46 10
894= =

× ×
=

− −π π . . H  F
 Hz

e je j
.

(d) At 200 Hz, 
∆
∆
V
V

R
Z

out

in
= =

1
2

 and X XC L> ,

so the phasor diagram is as shown:

φ = − F
HG
I
KJ = −

F
HG
I
KJ

− −cos cos1 1 1
2

R
Z

 so

∆ ∆V Vout in leads  by 60.0° .

At f0 , X XL C=  so

R

Z
XL - XC

φ or φ
∆Vout

∆Vin

R

Z
XL - XC φ

or
φ ∆Vout

∆Vin

FIG. P33.55(d)
∆ ∆V Vout in and  have a phase difference of 0° .

At 4 000 Hz, 
∆
∆
V
V

R
Z

out

in
= =

1
2

 and X XL C− > 0 .

Thus, φ = F
HG
I
KJ = °−cos .1 1

2
60 0

or ∆ ∆V Vout in lags  by 60.0° .

(e) At 200 Hz and at 4 kHz,

P = = = = =
∆ ∆ ∆

Ω

V

R

V

R

V

R
out, rms in, rms in, max  V

 
 W

d i b gd i b g b g a f
a f

2 2 2 21 2 1 2 1 2 10 0
8 8 00

1 56
.
.

. .

At f0 , P = = = = =
∆ ∆ ∆

Ω

V

R

V

R

V

R
out, rms in, rms in, max  V

 
.25 W

d i d i b g a f
a f

2 2 2 21 2 10 0
2 8 00

6
.
.

.

(f) We take: Q
L

R
f L

R
= = =

×
=

−
ω π π

0 0
4

2 2 894 5 80 10

8 00
0 408

 Hz  H

 

a fe j.

.
.

Ω
.
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Additional Problems

P33.56 The equation for ∆v ta f  during the first period (using y mx b= + ) is:

∆
∆

∆

∆ ∆
∆

v t
V t
T

V

v
T

v t dt
V

T T
t dt

T T

a f b g

a f a f b g
= −

= = −LNM
O
QPz z

2

1 2
12 2

0

2 2

0

max
max

max

ave FIG. P33.56

∆
∆ ∆ ∆

∆ ∆
∆ ∆

v
V

T
T t T V V

V v
V V

t

t T

a f b g b g a f a f b g

a f b g

2
2 3

0

2
3 3

2

2
2

2

2 1

3 6
1 1

3

3 3

ave

rms
ave

max

= F
HG
I
KJ

−
= + − − =

= = =

=

=

max max max

max

P33.57 ω 0
6

11 1

0 050 0 5 00 10
2 000= =

×
=

−

−

LC . . H  F
 s

b ge j
so the operating angular frequency of the circuit is

ω
ω

= = −0 1

2
1 000 s .

Using Equation 33.37, P =
+ −

∆V R

R L

rmsb g
e j

2 2

2 2 2 2
0
2 2

ω

ω ω ω

P =
+ − ×

=
400 8 00 1 000

8 00 1 000 0 050 0 1 00 4 00 10
56 7

2 2

2 2 2 6 2

a f a fb g
a f b g b g a f

.

. . . .
.  W .

Q ≈ 12 5.b g

FIG. P33.57

*P33.58 The angular frequency is ω π= =2 60 377s s . When S is open, R, L, and C are in series with the
source:

R X X
V
IL C

s2 2
2 2

420
1 194 10+ − = FHG

I
KJ = FHG

I
KJ = ×b g ∆

Ω
 V

0.183 A
 2. . (1)

When S is in position 1, a parallel combination of two R’s presents equivalent resistance 
R
2

, in series

with L and C:

R
X XL C2

20
4 504 10

2
2

2
3F

HG
I
KJ + − = FHG

I
KJ = ×b g  V

0.298 A
 2. Ω . (2)

When S is in position 2, the current by passes the inductor. R and C are in series with the source:

R XC
2 2

2
420

2 131 10+ = FHG
I
KJ = ×

 V
0.137 A

 2. Ω . (3)

Take equation (1) minus equation (2):

3
4

7 440 102 3R = ×.  2Ω R = 99 6.  Ω

continued on next page
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(only the positive root is physical.) Now equation (3) gives

X
CC = × − = =2 131 10 99 6 106 7

14 2 1 2
. . .a f   Ω Ω

ω
 (only the positive root is physical.)

C X CC= = = × =− − −ωb g b g1 1 5377 106 7 2 49 10s   F. .Ω .

Now equation (1) gives

X X

X L

L
X

L

L C

L

L

− = ± × − = ±

= + = =

= = =

1 194 10 99 6 44 99

106 7 44 99 61 74

0 164

4 2 1 2
. . .

. . .

.

a f   

    or 151.7 

 H or 0.402 H

Ω Ω

Ω Ω Ω Ω ω

ω

P33.59 The resistance of the circuit is R
V
I

= = =
∆

Ω
12 0

19 0
.

.
 V

0.630 A
 .

The impedance of the circuit is Z
V
I

= = =
∆

Ωrms

rms

 V
0.570 A

 
24 0

42 1
.

. .

Z R L

L Z R

2 2 2 2

2 2 2 21 1
377

42 1 19 0 99 6

= +

= − = − =

ω

ω
. . .a f a f  mH

*P33.60 The lowest-frequency standing-wave state is NAN. The distance between the clamps we represent

as L d= =NN
λ
2

. The speed of transverse waves on the string is v f
T

f L= = =λ
µ

2 . The magnetic

force on the wire oscillates at 60 Hz, so the wire will oscillate in resonance at 60 Hz.

T
L

0 019
60 4

2 2

.  kg m
s= b g T L= 274 2 kg ms2e j

Any values of T and L related according to this expression will work, including
if  m  NL T= =0 200 10 9. . . We did not need to use the value of the current and magnetic field. If

we assume the subsection of wire in the field is 2 cm wide, we can find the rms value of the
magnetic force:

F I B TB = = °=sin . . sin .θ 9 0 02 0 015 3 90 2 75 A  m  mNa fa fb g .

So a small force can produce an oscillation of noticeable amplitude if internal friction is small.

P33.61 (a) When ω L  is very large, the bottom branch carries negligible current. Also, 
1

ωC
 will be

negligible compared to 200 Ω  and 
45 0

225
.  V

200 
 mA

Ω
=  flows in the power supply and the

top branch.

(b) Now 
1

ωC
→∞  and ω L→ 0  so the generator and bottom branch carry 450 mA .
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P33.62 (a) With both switches closed, the current goes only through generator
and resistor.

i t
V
R

ta f = ∆ max cosω

(b) P =
1
2

2∆V

R
maxb g

(c) i t
V

R L
t

L
R

a f =
+

+ F
HG
I
KJ

L
NM

O
QP

∆ max cos arctan
2 2 2ω

ω
ω

FIG. P33.62

(d) For 0
10 0= =

−F
HG

I
KJφ

ω ω
arctan

L C

R
b g

.

We require ω
ω0

0

1
L

C
= , so C

L
=

1

0
2ω

.

(e) At this resonance frequency, Z R= .

(f) U C V CI XC C= =
1
2

1
2

2 2 2∆b g

U CI X C
V

R C

V L

RCmax max
max max= = =

1
2

1
2

1
2

2 2
2

2
0
2 2

2

2

∆ ∆b g b g
ω

(g) U LI L
V

Rmax max
max= =

1
2

1
2

2
2

2

∆b g

(h) Now ω ω= =2
2

0 LC
.

So φ
ω ω

=
−F

HG
I
KJ =

−F
HG

I
KJ
=

F
HG

I
KJarctan arctan arctan

L C

R

L C L C

R R
L
C

1 2 1 2 3
2

b g b g
.

(i) Now ω
ω

L
C

=
1
2

1
ω

ω
= =

1
2 2

0

LC
.

P33.63 (a) I
V
RR , . rms
rms  V

80.0 
 A= = =

∆
Ω

100
1 25

(b) The total current will lag  the applied voltage as seen in the phasor

diagram at the right.

I
V
XL

L
, rms

rms  V

2 60.0 s  H
 A= = =

−

∆ 100

0 200
1 33

1π e ja f.
.

Thus, the phase angle is: φ =
F
HG

I
KJ =

F
HG

I
KJ = °− −tan tan

.
.,1 1 1 33

46 7
I

I
L

R

 rms

, rms

 A
1.25 A

.

φ

IR

IL

∆V

I

FIG. P33.63
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P33.64 Suppose each of the 20 000 people uses an average power of 500 W. (This means 12 kWh per day, or
$36 per 30 days at 10¢ per kWh). Suppose the transmission line is at 20 kV. Then

I
Vrms

rms

 W

 V
 A= =

P
∆

20 000 500

20 000
103b ga f

~ .

If the transmission line had been at 200 kV, the current would be only ~102  A .

P33.65 R = 200 Ω , L = 663 mH , C = 26 5.  Fµ , ω = −377 1 s , ∆Vmax .= 50 0 V

ω L = 250 Ω , 
1

100
ωC
F
HG
I
KJ =  Ω , Z R X XL C= + − =2 2 250b g  Ω

(a) I
V
Zmax
max .

.= = =
∆

Ω
50 0

0 200
 V

250 
 A

φ =
−F

HG
I
KJ = °−tan .1 36 8

X X
R

L C  ( ∆V  leads I)

(b) ∆V I RR , max  V= =max .40 0  at φ = °0

(c) ∆V
I

CC ,
max . max  V= =
ω

20 0  at φ = − °90 0.  (I leads ∆V )

(d) ∆V I LL , max . max  V= =ω 50 0  at φ = + °90 0.  ( ∆V  leads I)

P33.66 L = 2 00.  H , C = × −10 0 10 6.  F , R = 10 0.  Ω , ∆v t ta f b g= 100 sinω

(a) The resonant frequency ω 0  produces the maximum current and thus the maximum power
delivery to the resistor.

ω 0
6

1 1

2 00 10 0 10
224= =

×
=

−LC . .a fe j
 rad s

(b) P = = =
∆V

R
max

.
b g a f

a f
2 2

2
100

2 10 0
500 W

(c) I
V
Z

V

R L C
rms

rms rms= =
+ −

∆ ∆

2 2
1ω ωb gd i

and I
V
Rrms
rmsb gmax

=
∆

I R I Rrms
2

rms
2=

1
2 e jmax

or
∆ ∆V

Z
R

V

R
Rrms rmsb g b g2

2

2

2
1
2

= .

This occurs where Z R2 22= : R L
C

R2
2

21
2+ −

F
HG

I
KJ =ω

ω

ω ω ω4 2 2 2 2 2 22 1 0L C L C R C− − + = or L C LC R C2 2 4 2 2 22 1 0ω ω− + + =e j
2 00 10 0 10 2 2 00 10 0 10 10 0 10 0 10 1 02 6 2 4 6 2 6 2 2. . . . . .a f e j a fe j a f e j×L
NM

O
QP − × + ×L
NM

O
QP + =− − −ω ω .

Solving this quadratic equation, we find that ω 2 51 130= , or 48 894

ω 1 48 894 221= =  rad s and ω 2 51 130 226= =  rad s .
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P33.67 (a) From Equation 33.41,
N
N

V
V

1

2

1

2
=
∆
∆

.

Let input impedance Z
V
I1

1

1
=
∆

and the output impedance Z
V
I2

2

2
=
∆

so that
N
N

Z I
Z I

1

2

1 1

2 2
= . But from Eq. 33.42,

I
I

V
V

N
N

1

2

2

1

2

1
= =
∆
∆

.

So, combining with the previous result we have 
N
N

Z
Z

1

2

1

2
= .

(b)
N
N

Z
Z

1

2

1

2

8 000
8 00

31 6= = =
.

.

P33.68 P I R
V
Z

R= = FHG
I
KJrms

2 rms∆ 2

, so 250
120

40 0
2

2 W
 V

 =
a f a f

Z
. Ω : Z R L

C
= + −

F
HG

I
KJ

2
2

1
ω

ω

250
120 40 0

40 0 2 0 185 1 2 65 0 10

2

2 6
2=

+ − × −

a f a f
a f a f e j

.

. . .π πf f
and 250

576 000

1 600 1 162 4 2 448 5

2

2 2 2=
+ −

f

f f. .e j

1
2 304

1 600 1 351 1 5 692 3 5 995 300

2

2 4 2=
+ − +

f
f f f. .

so 1 351 1 6 396 3 5 995 300 04 2. .f f− + =

f 2
26 396 3 6 396 3 4 1 351 1 5 995 300

2 1 351 1
3 446 5 1 287 4=

± −
=

. . .

.
. .

b g b gb g
b g  or 

f = 58 7.  Hz  or  35.9 Hz

P33.69 I
V
RR =

∆ rms ; I
V

LL =
∆ rms

ω
; I

V

C
C = −

∆ rms

ωb g 1

(a) I I I I V
R

C
LR C Lrms rms= + − = F

HG
I
KJ + −
F
HG

I
KJ

2 2
2

2
1 1b g ∆ ω

ω

(b) tanφ =
−

= −
L
NM

O
QP
F
HG

I
KJ

I I
I

V
X X V R

C L

R C L
∆

∆rms
rms

1 1 1

tanφ = −
L
NM

O
QP

R
X XC L

1 1
FIG. P33.69



Chapter 33     287

P33.70 (a) I V
R

C
Lrms rms= + −

F
HG

I
KJ∆

1 1
2

2

ω
ω

∆ ∆V Vrms rms→ b gmax
 when ω

ω
C

L
=

1

f
LC

= =
× ×

=
− −

1
2

1

2 200 10 0 150 10
919

3 6π π  H  F
 Hz

.e j

(b) I
V
RR = = =

∆
Ω

rms  V
80.0 

 A
120

1 50.

I
V

LL = = =
−

∆ rms  V

374 s  H
 A

ω
120

0 200
1 60

1e ja f.
.

I V CC = = × =− −∆ rms  V  s  F  mAωb g a fe je j120 374 0 150 10 6 731 6. .

(c) I I I IR C Lrms  A= + − = + − =2 2 2 21 50 0 006 73 1 60 2 19b g a f b g. . . .

(d) φ =
−L

NM
O
QP
=

−L
NM

O
QP = − °− −tan tan

. .
.

.1 1 0 006 73 1 60
1 50

46 7
I I

I
C L

R

The current is lagging the voltage .

FIG. P33.70

P33.71 (a) X XL C= = 1 884 Ω  when f = 2 000 Hz

L
X

f
L= = =

2
1 884

0 150
π π

 
4 000  rad s

 H
Ω

.  and

C
f XC

= = =
1

2
1

4 000 1 884
42 2

π πb g b gb g rad s  
 nF

Ω
.

X fL = 2 0 150π .  Ha f X
f

C =
× −

1

2 4 22 10 8πb ge j.  F

Z X XL C= + −40 0 2 2.  Ωa f b g

f X X ZL C  (Hz)       
300
600
800

1 000
1 500
2 000
3 000
4 000
6 000

10 000

283
565
754
942

1 410
1 880
2 830
3 770
5 650
9 420

12 600
6 280
4 710
3 770
2 510
1 880
1 260

942
628
377

1 2300
5 720
3 960
2 830
1 100

40
1 570
2 830
5 020
9 040

( ) ( ) ( )Ω Ω Ω

(b) Impedence, Ω

FIG. P33.71(b)
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P33.72 ω 0
61

1 00 10= = ×
LC

.  rad s

For each angular frequency, we find

Z R L C= + −2 2
1ω ωb g

then I
Z

=
1 00.  V

and P = I 2 1 00.  Ωa f .
The full width at half maximum is:

∆
∆

∆

f

f

= =
−

=
×

=
−

ω
π

ω
π

π

2

1 000 5 0 999 5

2
1 00 10

2
159

0

3 1

. .

.

b g

 s
 Hz

while

R
L2

1 00
159

3π π
=

×
=

−

.  

2 1.00 10  H
 Hz

Ω

e j
.

ω
ω

ω
ω0

2L
C

Z P I R 
1

   W

0.9990
0.9991
0.9993
0.9995
0.9997
0.9999
1.0000
1.0001
1.0003
1.0005
1.0007
1.0009
1.0010

  999.0
  999.1
  999.3
  999.5
  999.7
  999.9
1000
1000.1
1000.3
1000.5
1000.7
1000.9
1001

1001.0
1000.9
1000.7
1000.5
1000.3
1000.1
1000.0
  999.9
  999.7
  999.5
  999.3
  999.1
  999.0

2.24
2.06
1.72
1.41
1.17
1.02
1.00
1.02
1.17
1.41
1.72
2.06
2.24

0.19984
0.23569
0.33768
0.49987
0.73524
0.96153
1.00000
0.96154
0.73535
0.50012
0.33799
0.23601
0.20016

Ω Ω Ωa f a f a f a f=

1.0

0.8

0.6

0.4

0.2

0.0
0.996 0.998 1 1.002 1.004

I  R2

(W)

ω/ω 0

FIG. P33.72

P33.73
∆
∆
V
V

R

R C

R

R f C

out

in
=

+
=

+2 2 2 2
1 1 2ω πb g b g

(a)
∆
∆
V
V

out

in
=

1
2

 when 
1

3
ωC

R= .

Hence, f
RC

= = =
ω
π π2

1
2 3

1 84.  kHz .

∆Vin R

C

∆Vout

FIG. P33.73

continued on next page
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(b) Log Gain versus Log Frequency

–4

–3

–2

–1

0

0 1 2 3 4 5 6

Log f

Log ∆Vout/∆Vin 

FIG. P33.73(b)

ANSWERS TO EVEN PROBLEMS

P33.2 (a) 193 Ω ; (b) 144 Ω P33.32 353 W

P33.34 (a) 5 43.  A; (b) 0 905. ; (c) 281 Fµ ; (d) 109 VP33.4 (a) 25.3 rad/s; (b) 0.114 s

P33.36
11

14

2∆V
R
rmsb gP33.6 1 25.  A  and 96 0.  Ω  for bulbs 1 and 2;

0 833.  A  and 144 Ω  for bulb 3

P33.8 7 03.  H or more P33.38 46 5.  pF to 419 pF

P33.10 3 14.  A P33.40 (a) 3 56.  kHz; (b) 5 00.  A ; (c) 22 4. ;
(d) 2 24.  kV

P33.12 3.80 J

P33.42
4

4 9

2

2

π ∆V RC LC

R C L
rmsb g

+
P33.14 (a) greater than 41 3.  Hz ;

(b) less than 87 5.  Ω

P33.44 (a) 9 23.  V ; (b) 4 55.  A ; (c) 42 0.  W
P33.16 2C V∆ rmsb g

P33.46 (a) 1 600 turns ; (b) 30 0.  A ; (c) 25 3.  A
P33.18 –32.0 A

P33.48 (a) 83 3. ; (b) 54 0.  mA; (c) 185 kΩ
P33.20 2 79.  kHz

P33.50 (a) 0.34; (b) 5.3 W; (c) $4.8
P33.22 (a) 109 Ω ; (b) 0 367.  A ; (c) Imax .= 0 367 A ,

ω = 100 rad s, φ = −0 896.  rad P33.52 (a) see the solution; (b) 1; 0; (c) 
3

2π RC
P33.24 19.3 mA

P33.54 (a) 1.00; (b) 0.346
P33.26 (a) 146 V ; (b) 212 V ; (c) 179 V ; (d) 33 4.  V

P33.56 see the solution
P33.28 X RC = 3

P33.58 R = 99 6.  Ω , C = 24 9.  Fµ , L = 164 mH  or
402 mHP33.30 (a) 2 00.  A; (b) 160 W; (c) see the solution
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P33.60 L = 0 200.  m and T = 10 9.  N , or any values
related by T L= 274 2 kg ms2e j

P33.64 ~103  A

P33.66 (a) 224 rad s ; (b) 500 W ;
(c) 221 rad s  and 226 rad s

P33.62 (a) i t
V
R

ta f = ∆ max cosω ; (b) P =
∆V

R
maxb g2
2

;
P33.68 either 58 7.  Hz  or 35.9 Hz

(c) i t
V

R L
t

L
R

a f =
+

+ F
HG
I
KJ

L
NM

O
QP

−∆ max cos tan
2 2 2

1

ω
ω

ω
;

P33.70 (a) 919 Hz ;
(b) IR = 1 50.  A, IL = 1 60.  A , IC = 6 73.  mA ;

(d) C
L

=
1

0
2ω

; (e) Z R= ; (f) 
∆V L

R
maxb g2

22
; (c) 2 19.  A ; (d) − °46 7. ; current lagging

(g) 
∆V L

R
maxb g2

22
; (h) tan− F

HG
I
KJ

1 3
2R

L
C

;
P33.72 see the solution

(i) 
1

2LC
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Electromagnetic Waves

ANSWERS TO QUESTIONS

Q34.1 Radio waves move at the speed of light. They can travel around
the curved surface of the Earth, bouncing between the ground
and the ionosphere, which has an altitude that is small when
compared to the radius of the Earth. The distance across the
lower forty-eight states is approximately 5 000 km, requiring a

transit time of 
5 10

10
6

2×
×

− m
3 10  m s

 s8 ~ . To go halfway around the

Earth takes only 0.07 s. In other words, a speech can be heard
on the other side of the world before it is heard at the back of a
large room.

Q34.2 The Sun’s angular speed in our sky is our rate of rotation,
360
24

15
°
= °

 h
h . In 8.3 minutes it moves west by

θ ω= = ° FHG
I
KJ = °t 15

1
8 3 2 1h

 h
60 min

 minb g a f. . . This is about four

times the angular diameter of the Sun.

Q34.3 Energy moves. No matter moves. You could say that electric and magnetic fields move, but it is nicer
to say that the fields at one point stay at that point and oscillate. The fields vary in time, like sports
fans in the grandstand when the crowd does the wave. The fields constitute the medium for the
wave, and energy moves.

Q34.4 No. If a single wire carries DC current, it does not emit electromagnetic waves. In this case, there is a
constant magnetic field around the wire. Alternately, if the cable is a coaxial cable, it ideally does not
emit electromagnetic waves even while carrying AC current.

Q34.5 Acceleration of electric charge.

Q34.6 The changing magnetic field of the solenoid induces eddy currents in the conducting core. This is
accompanied by I R2  conversion of electrically-transmitted energy into internal energy in the
conductor.

Q34.7 A wire connected to the terminals of a battery does not radiate electromagnetic waves. The battery
establishes an electric field, which produces current in the wire. The current in the wire creates a
magnetic field. Both fields are constant in time, so no electromagnetic induction or “magneto-electric
induction” happens. Neither field creates a new cycle of the other field. No wave propagation
occurs.
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Q34.8 No. Static electricity is just that: static. Without acceleration of the charge, there can be no
electromagnetic wave.

Q34.9 Sound

The world of sound extends to the top of the
atmosphere and stops there; sound requires a
material medium. Sound propagates by a chain
reaction of density and pressure disturbances
recreating each other. Sound in air moves at
hundreds of meters per second. Audible sound
has frequencies over a range of three decades
(ten octaves) from 20 Hz to 20 kHz. Audible
sound has wavelengths of ordinary size (1.7 cm
to 17 m). Sound waves are longitudinal.

Light

The universe of light fills the whole universe.
Light moves through materials, but faster in a
vacuum. Light propagates by a chain reaction of
electric and magnetic fields recreating each
other. Light in air moves at hundreds of millions
of meters per second. Visible light has
frequencies over a range of less than one octave,
from 430 to 750 Terahertz. Visible light has
wavelengths of very small size (400 nm to
700 nm). Light waves are transverse.

Sound and light can both be reflected, refracted, or absorbed to produce internal energy. Both have
amplitude and frequency set by the source, speed set by the medium, and wavelength set by both
source and medium. Sound and light both exhibit the Doppler effect, standing waves, beats,
interference, diffraction, and resonance. Both can be focused to make images. Both are described by
wave functions satisfying wave equations. Both carry energy. If the source is small, their intensities
both follow an inverse-square law. Both are waves.

Q34.10 The Poynting vector S describes the energy flow associated with an electromagnetic wave. The
direction of S is along the direction of propagation and the magnitude of S is the rate at which
electromagnetic energy crosses a unit surface area perpendicular to the direction of S.

Q34.11 Photons carry momentum. Recalling what we learned in Chapter 9, the impulse imparted to a
particle that bounces elastically is twice that imparted to an object that sticks to a massive wall.
Similarly, the impulse, and hence the pressure exerted by a photon reflecting from a surface must be
twice that exerted by a photon that is absorbed.

Q34.12 Different stations have transmitting antennas at different locations. For best reception align your
rabbit ears perpendicular to the straight-line path from your TV to the transmitting antenna. The
transmitted signals are also polarized. The polarization direction of the wave can be changed by
reflection from surfaces—including the atmosphere—and through Kerr rotation—a change in
polarization axis when passing through an organic substance. In your home, the plane of
polarization is determined by your surroundings, so antennas need to be adjusted to align with the
polarization of the wave.

Q34.13 You become part of the receiving antenna! You are a big sack of salt water. Your contribution usually
increases the gain of the antenna by a few tenths of a dB, enough to noticeably improve reception.

Q34.14 On the TV set, each side of the dipole antenna is a 1/4 of the wavelength of the VHF radio wave. The
electric field of the wave moves free charges in the antenna in electrical resonance, giving maximum
current in the center of the antenna, where the cable connects it to the receiver.

Q34.15 The loop antenna is essentially a solenoid. As the UHF radio wave varies the magnetic field inside
the loop, an AC emf is induced in the loop as described by Faraday’s and Lenz’s laws. This signal is
then carried down a cable to the UHF receiving circuit in the TV. An excellent reference for antennas
and all things radio is the ARRL Handbook.
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Q34.16 The voltage induced in the loop antenna is proportional to the rate of change of the magnetic field in
the wave. A wave of higher frequency induces a larger emf in direct proportion. The instantaneous
voltage between the ends of a dipole antenna is the distance between the ends multiplied by the
electric field of the wave. It does not depend on the frequency of the wave.

Q34.17 The radiation resistance of a broadcast antenna is the equivalent resistance that would take the same
power that the antenna radiates, and convert it into internal energy.

Q34.18 Consider a typical metal rod antenna for a car radio. The rod detects the electric field portion of the
carrier wave. Variations in the amplitude of the incoming radio wave cause the electrons in the rod
to vibrate with amplitudes emulating those of the carrier wave. Likewise, for frequency modulation,
the variations of the frequency of the carrier wave cause constant-amplitude vibrations of the
electrons in the rod but at frequencies that imitate those of the carrier.

Q34.19 The frequency of EM waves in a microwave oven, typically 2.45 GHz, is chosen to be in a band of
frequencies absorbed by water molecules. The plastic and the glass contain no water molecules.
Plastic and glass have very different absorption frequencies from water, so they may not absorb any
significant microwave energy and remain cool to the touch.

Q34.20 People of all the world’s races have skin the same color in the infrared. When you blush or exercise
or get excited, you stand out like a beacon in an infrared group picture. The brightest portions of
your face show where you radiate the most. Your nostrils and the openings of your ear canals are
bright; brighter still are just the pupils of your eyes.

Q34.21 Light bulbs and the toaster shine brightly in the infrared. Somewhat fainter are the back of the
refrigerator and the back of the television set, while the TV screen is dark. The pipes under the sink
show the same weak sheen as the walls until you turn on the faucets. Then the pipe on the right
turns very black while that on the left develops a rich glow that quickly runs up along its length. The
food on your plate shines; so does human skin, the same color for all races. Clothing is dark as a rule,
but your bottom glows like a monkey’s rump when you get up from a chair, and you leave behind a
patch of the same blush on the chair seat. Your face shows you are lit from within, like a jack-o-
lantern: your nostrils and the openings of your ear canals are bright; brighter still are just the pupils
of your eyes.

Q34.22 Welding produces ultraviolet light, along with high intensity visible and infrared.

Q34.23 12.2 cm waves have a frequency of 2.46 GHz. If the Q value of the phone is low (namely if it is
cheap), and your microwave oven is not well shielded (namely, if it is also cheap), the phone can
likely pick up interference from the oven. If the phone is well constructed and has a high Q value,
then there should be no interference at all.
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SOLUTIONS TO PROBLEMS

Section 34.1 Maxwell’s Equations and Hertz’s Discoveries

*P34.1 (a) The rod creates the same electric field that it would if
stationary. We apply Gauss’s law to a cylinder of radius
r = 20 cm  and length A :

E A⋅ =
∈

°=
∈

z d
q

E rl
l

inside

0

0
2 0π

λb gcos
FIG. P34.1

E j j=
∈

=
× ⋅

×
= ×

−

−

λ
π π2

35 10

2 8 85 10 0 2
3 15 10

0

9

12
3

r
 radially outward

 C m  N m

 C  m
 N C

2

2

e j
e ja f. .

� . � .

(b) The charge in motion constitutes a current of 35 10 15 10 0 5259 6× × =−  C m  m s  Ae je j . . This

current creates a magnetic field.

B =
µ
π
0

2
I
r

=
× ⋅

= ×
−

−
4 10 0 525

2 0 2
5 25 10

7
7

π

π

 T m A  A

 m
 T

e ja f
a f

.

.
� . �k k

(c) The Lorentz force on the electron is F q q= + ×E v B

F

F

= − × × + − × × × ×
⋅
⋅

F
HG

I
KJ

= × − + × + = × −

− − −

− − −

1 6 10 3 15 10 1 6 10 240 10 5 25 10

5 04 10 2 02 10 4 83 10

19 3 19 6 7

16 17 16

. . � . � . �

. � . � . �

 C  N C  C  m s  
N s
C m

 N  N  N

e je j e je j

e j e j e j

j i k

j j j

Section 34.2 Plane Electromagnetic Waves

P34.2 (a) Since the light from this star travels at 3 00 108. ×  m s

the last bit of light will hit the Earth in 
6 44 10

2 15 10 680
18

10.
.

×
×

= × =
 m

3.00 10  m s
 s  years8 .

Therefore, it will disappear from the sky in the year 2 004 680 2 68 103+ = ×.  C.E. .

The star is 680 light-years away.

(b) ∆
∆

t
x

v
= =

×
×

= =
1 496 10

499 8 31
11.

.
 m

3 10  m s
 s  min8

(c) ∆
∆

t
x

v
= =

×

×
=

2 3 84 10

3 10
2 56

8

8

.
.

 m

 m s
 s

e j

(d) ∆
∆

t
x

v
= =

×

×
=

2 6 37 10

3 10
0 133

6

8

π .
.

 m

 m s
 s

e j

(e) ∆
∆

t
x

v
= =

×
×

= × −10 10
3 33 10

3
5 m

3 10  m s
 s8 .
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P34.3 v c c=
∈

= = = ×
1 1

1 78
0 750 2 25 10

0 0

8

κµ .
. .  m s

P34.4
E
B

c=

or 
220

3 00 108

B
= ×.

so B = × =−7 33 10 7337.  T  nT .

P34.5 (a) f cλ =

or f 50 0 3 00 108. . m  m sa f = ×

so f = × =6 00 10 6 006. . Hz  MHz .

(b)
E
B

c=

or
22 0

3 00 108.
.

maxB
= ×

so B kmax . �= −73 3  nT .

(c) k = = = −2 2
50 0

0 126 1π
λ

π
.

.  m

and ω π π= = × = ×−2 2 6 00 10 3 77 106 1 7f . . s  rad se j
B B k= − = − − ×max cos . cos . . �kx t x tωb g e j73 3 0 126 3 77 107  nT .

P34.6 ω π π= = × = ×− −2 6 00 10 1 88 109 1 10 1f . . s  s

k
c

= = =
×

×
= =

−
−2 6 00 10

3 00 10
20 0 62 8

9 1

8
1π

λ
ω π

π
.
.

. .
 s

 m s
 m B

E
cmax .

.= =
×

=
300

3 00 10
1 008

 V m
 m s

 Tµ

E x t= − ×300 62 8 1 88 1010 V mb g e jcos . . B x t= − ×1 00 62 8 1 88 1010. cos . . Tµb g e j

P34.7 (a) B
E
c

= =
×

= × =−100
3 00 10

3 33 10 0 3338
7 V m
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 T  T

.
. . µ

(b) λ
π π
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2 2
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.
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= =
×
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3 00 10
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P34.8 E E kx t= −max cos ωb g
∂
∂

= − −

∂
∂

= − − −

∂
∂

= − −

∂
∂

= − − −

E
x

E kx t k

E
t

E kx t

E
x

E kx t k

E
t

E kx t

max

max

max

max

sin

sin

cos

cos

ω

ω ω

ω

ω ω

b ga f

b ga f

b ge j

b ga f

2

2
2

2

2
2

We must show:
∂
∂

= ∈
∂
∂

E
x

E
t2 0 0

2

2µ .

That is, − − = − ∈ − −k E kx t E kx t2
0 0

2e j b g a f b gmax maxcos cosω µ ω ω .

But this is true, because
k

f c

2

2

2

2 0 0
1 1

ω λ
µ=

F
HG
I
KJ = = ∈ .

The proof for the wave of magnetic field follows precisely the same steps.

P34.9 In the fundamental mode, there is a single loop in the standing wave between the plates. Therefore,
the distance between the plates is equal to half a wavelength.

λ = = =2 2 2 00 4 00L . . m  ma f

Thus, f
c

= =
×

= × =
λ

3 00 10
4 00

7 50 10 75 0
8

7.
.

. .
 m s

 m
 Hz  MHz .

P34.10 dA to A  cm= ± =6 5%
2
λ

λ

λ

= ±

= = ± × = × ±−

12 5%

0 12 5% 2 45 10 2 9 10 5%9 1 8

 cm

 m  s  m sv f . . .a fe j

Section 34.3 Energy Carried by Electromagnetic Waves

P34.11 S I
U
At

Uc
V

uc= = = =
Energy

Unit Volume
 W m

 m s
 J m

2
3= = =

×
=u

I
c

1 000
3 00 10

3 338.
. µ

P34.12 S
rav

2 W

4 4.00 1 609 m
 W m= =

×

×
=

P
4

4 00 10
7 682

3

2π π
µ

.
.

b g
E cSmax .= =2 0 076 10µ av  V m

∆V E Lmax max . . .= = =76 1 0 650 49 5 mV m  m  mV amplitudeb ga f b g  or 35.0 mV (rms)
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P34.13 r = = ×5 00 1 609 8 04 103. . mi  m mi  ma fb g
S

r
= =

×

×
=

P
4

250 10
3072

3

2π π
µ

 W

4 8.04 10  W
 W m

3

2

e j

P34.14 I = =
100

7 962
 W

4 1.00 m
 W m2

π a f .

u
I
c

= = × =−2 65 10 26 58. . J m  nJ m3 3

(a) u uE = =
1
2

13 3.  nJ m3

(b) u uB = =
1
2

13 3.  nJ m3

(c) I = 7 96.  W m2

P34.15 Power output = (power input)(efficiency).

Thus, Power input
Power out

eff
 W

0.300
 W= =

×
= ×

1 00 10
3 33 10

6
6.

.

and A
I

= =
×

×
= ×

P 3 33 10
3 33 10

6
3.

.
 W

1.00 10  W m
 m3 2

2 .

P34.16 I
B c

r
= =max

2

0
22 4µ π

P

B
r cmax

.

. .
.=

F
HG
I
KJ
F
HG
I
KJ =

× ×

× ×
= ×

−
−P

4
2 10 0 10 2 4 10

4 5 00 10 3 00 10
5 16 102

0
3 7

3 2 8

10

π
µ π

π

e ja fe j
e j e j

 T

Since the magnetic field of the Earth is approximately 5 10 5× −  T , the Earth’s field is some 100 000
times stronger.

P34.17 (a) P = =I R2 150 W

A rL= = × = ×− −2 2 0 900 10 0 080 0 4 52 103 4π π . . . m  m  m2e jb g
S

A
= =
P

332 kW m2  (points radially inward)

(b) B
I
r

= =
×

=
−

µ
π

µ

π
µ0 0

32
1 00

2 0 900 10
222

.

.

a f
e j

 T

E
V
x

IR
L

= = = =
∆
∆

150
1 88

 V
0.080 0 m

 kV m.

Note: S
EB

= =
µ0

332 kW m2
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*P34.18 (a) I
E

c
= =

×

× ⋅ × ⋅
F
HG
I
KJ ⋅
F
HG
I
KJ

⋅ ⋅
⋅

F
HG

I
KJ

⋅F
HG
I
KJ−

max
2

0

6 2

7 8

2

2

3 10

2 4 10 3 10µ π

 V m

 T m A  m s

J
V C

C
A s

T C m
N s

N m
J

e j
e je j

I = ×1 19 1010.  W m2

(b) P = = ×
×F
HG

I
KJ = ×

−

IA 1 19 10
5 10

2 34 1010
3 2

5. . W m
 m

2
 W2e jπ

P34.19 (a) E B i j k i j k⋅ = + − ⋅ + +80 0 32 0 64 0 0 200 0 080 0 0 290. � . � . � . � . � . �e jb g e jN C  Tµ

E B⋅ = + − ⋅ ⋅ =16 0 2 56 18 56 0. . .a f N s C m2 2

(b) S E B
i j k i j k

= × =
+ − × + +

× ⋅−
1 80 0 32 0 64 0 0 200 0 080 0 0 290

4 100
7µ

µ

π

. � . � . � . � . � . �e j e j N C  T

 T m A

S
k j k i j i

=
− − + − + ×

×

−

−

6 40 23 2 6 40 9 28 12 8 5 12 10

4 10

6

7

. � . � . � . � . � . �e j  W m2

π

S i j= − =11 5 28 6 30 9. � . � .e j W m  W m2 2  at − °68 2.  from the +x axis.

*P34.20 The energy put into the water in each container by electromagnetic radiation can be written as
e t eIA tP ∆ ∆=  where e is the percentage absorption efficiency. This energy has the same effect as heat
in raising the temperature of the water:
eIA t mc T Vc T

T
eI t

c
eI t

c

∆ ∆ ∆

∆
∆ ∆

= =

= =

ρ

ρ ρ
A
A A

2

3

where A  is the edge dimension of the container and c the specific heat of water. For the small
container,

∆T =
×

⋅°
= °

0 7 25 10 480

0 06 4 186
33 4

3.

.
.

 W m  s

10  kg m  m  J kg C
C

2

3 3

e j
e ja f .

For the larger,

∆T =
⋅

°
= °

0 91 25 480

0 12 4 186
21 7

.

.
.

 J s m  s

m  J C
C

2

2

e j
e j

.

P34.21 We call the current Irms  and the intensity I. The power radiated at this frequency is

P = = =0 010 0
0 010 0

1 31
2

.
.

.b gb g b g
∆

∆
V I

V
Rrms rms

rms  W .

If it is isotropic, the intensity one meter away is

I
A

S
c

B

B
I

c

= = = = =

= =
× ⋅

×
=

−

P 1 31
0 104

2

2 2 4 10 0 104

3 00 10
29 5

2
0

2

0
7

8

.
.

.

.
.

max

max

 W

4 1.00 m
 W m

 T m A  W m

 m s
 nT

2
av

2

π µ

µ π

a f
e je j
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P34.22 (a) efficiency
useful power output

total power input
 W

1 400 W
= × = FHG

I
KJ × =100%

700
100% 50 0%.

(b) S
Aav

2 W
0.068 3 m  m

 W m= = = ×
P 700

0 038 1
2 69 105

b gb g.
.

Sav
2 kW m  toward the oven chamber= 269

(c) S
E

cav = max
2

02µ

Emax . . .

.

= × ⋅ × × = ×

=

−2 4 10 3 00 10 2 69 10 1 42 10

14 2

7 8 5 4π  T m A  m s  W m  V m

 kV m

2e je je j

P34.23 (a) B
E

cmax
max= : Bmax

.
.

.=
×

×
=

7 00 10
3 00 10

2 33
5

8

 N C
 m s

 mT

(b) I
E

c
= max

2

02µ
: I =

×

× ×
=

−

7 00 10

2 4 10 3 00 10
650

5 2

7 8

.

.

e j
e je jπ

 MW m2

(c) I
A

=
P

: P = = × ×L
NM

O
QP =

−IA 6 50 10
4

1 00 10 5108 3 2
. . W m  m  W2e j e jπ

P34.24 (a) I =
×

×
=

−

−

10 0 10
4 97

3

3 2

.
.

e j
e j

 W

0.800 10  m
 kW m2

π

(b) u
I
cav

2
3 J m s

 m s
 J m= =

× ⋅

×
=

4 97 10
3 00 10

16 6
3

8

.
.

. µ

P34.25 (a) E cB= = × × =−3 00 10 1 80 10 5408 6. . m s  T  V me je j

(b) u
B

av
3 J m= =

×

×
=

−

−

2

0

6 2

7

1 80 10

4 10
2 58

µ π
µ

.
.

e j

(c) S cuav av
2 W m= = × × =−3 00 10 2 58 10 7738 6. .e je j

(d) This is 77 3%.  of the intensity in Example 34.5 . It may be cloudy, or the Sun may be setting.
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Section 34.4 Momentum and Radiation Pressure

P34.26 The pressure P upon the mirror is P
S
c

=
2 av

where A is the cross-sectional area of the beam and S
Aav =
P

.

The force on the mirror is then F PA
c A

A
c

= = FHG
I
KJ =

2 2P P
.

Therefore, F =
×

×
= ×

−
−

2 100 10

3 10
6 67 10

3

8
10e j

e j
.  N .

P34.27 For complete absorption, P
S
c

= =
×

=
25 0

3 00 10
83 38

.
.

.  nPa .

P34.28 (a) The radiation pressure is
2 1 340

3 00 10
8 93 108

6
 W m

 m s
 N m

2

2
2e j

.
.

×
= × − .

Multiplying by the total area, A = ×6 00 105.  m2  gives: F = 5 36.  N .

(b) The acceleration is: a
F
m

= = = × −5 36
8 93 10 4.
.

 N
6 000 kg

 m s2 .

(c) It will arrive at time t where d at=
1
2

2

or t
d
a

= =
×

×
= × =

−

2 2 3 84 10

8 93 10
9 27 10 10 7

8

4
5

.

.
. .

 m

 m s
 s  days

2

e j
e j

.

P34.29 I
r

E
c

= =
P

π µ2

2

02
max

(a) E
c

rmax .= =
P 2

1 900
2

µ
π
b g

 kN C

(b)
15 10

3 00 10
1 00 50 0

3

8

×

×
=

−  J s
 m s

 m  pJ
.

. .a f

(c) p
U
c

= =
×
×

= × ⋅
−

−5 10
3 00 10

1 67 10
11

8
19

.
.  kg m s
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P34.30 (a) If PS  is the total power radiated by the Sun, and rE  and rM  are the radii of the orbits of the
planets Earth and Mars, then the intensities of the solar radiation at these planets are:

I
rE

S

E

=
P

4 2π

and I
rM
S

M

=
P

4 2π
.

Thus, I I
r
rM E

E

M
=
F
HG
I
KJ =

×
×

F
HG

I
KJ =

2 11 2

1 340
1 496 10

577 W m
 m

2.28 10  m
 W m2

11
2e j .

.

(b) Mars intercepts the power falling on its circular face:

PM M MI R= = ×L
NM

O
QP = ×π π2 6 2 16577 3 37 10 2 06 10e j e j e j W m  m  W2 . . .

(c) If Mars behaves as a perfect absorber, it feels pressure P
S

c
I
c

M M= =

and force F PA
I
c

R
c

M
M

M= = = =
×
×

= ×π 2
16

72 06 10
6 87 10e j P .
.

 W
3.00 10  m s

 N8 .

(d) The attractive gravitational force exerted on Mars by the Sun is

F
GM M

rg
S M

M

= =
× ⋅ × ×

×
= ×

−

2

11 30 23

11 2
21

6 67 10 1 991 10 6 42 10

2 28 10
1 64 10

. . .

.
.

 N m kg  kg  kg

 m
 N

2 2e je je j
e j

which is ~1013  times stronger  than the repulsive force of part (c).

P34.31 (a) The total energy absorbed by the surface is

U I At= FHG
I
KJ = LNM

O
QP × =

1
2

1
2

750 0 500 1 00 60 0 11 3 W m  m  s  kJ2 2e j e ja f. . . . .

(b) The total energy incident on the surface in this time is 2 22 5U = .  kJ , with U = 11 3.  kJ  being
absorbed and U = 11 3.  kJ  being reflected. The total momentum transferred to the surface is

p

p
U
c

U
c

U
c

= +

= FHG
I
KJ +
F
HG
I
KJ = =

×

×
= × ⋅−

momentum from absorption momentum from reflection

 J

 m s
 kg m s

b g a f
e j2 3 3 11 3 10

3 00 10
1 13 10

3

8
4

.

.
.
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*P34.32 The radiation pressure on the disk is P
S
c

I
c

F
A

F
r

= = = =
π 2 .

Then F
r I
c

=
π 2

.

Take torques about the hinge: τ∑ = 0

H H mgr
r Ir
cx y0 0 0
2

a f a f+ − + =sinθ
π

θ
π π

= =
×

F
HG

I
KJ

= = °

− −

−

sin sin
.

sin . .

1
2

1
2 7

1

0 4 10 1
1

0 071 2 4 09

r I
mgc

 m  W s  s

0.024 kg  m 9.8 m 3 10  m

 kg m
 W s

2

2 8

2

3

a f
b g a fe j

mg
PA

Hx
Hy

r

θ

FIG. P34.32

Section 34.5 Production of Electromagnetic Waves by an Antenna

P34.33 λ = =
c
f

536 m so h = =
λ
4

134 m

λ = =
c
f

188 m so h = =
λ
4

46 9.  m

P34.34 P =
∆V

R
a f2

 or P ∝ ∆Va f2

∆ ∆V E y Ey y= − ⋅ = ⋅a f Acosθ

∆V ∝ cosθ  so P ∝ cos2 θ

(a) θ = °15 0. : P P P= ° = =max maxcos . . .2 15 0 0 933 93 3%a f

(b) θ = °45 0. : P P P= ° = =max maxcos . . .2 45 0 0 500 50 0%a f

(c) θ = °90 0. : P P= ° =max cos .2 90 0 0a f

θ
  A

receiving 
antenna∆y

FIG. P34.34
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P34.35 (a) Constructive interference occurs when
d ncosθ λ=  for some integer n.

cosθ
λ λ

λ
= =

F
HG
I
KJ =n

d
n n

2
2

n = ± ±0 1 2, , , …

∴ = = ° °−strong signal @ θ cos ,1 0 90 270

(b) Destructive interference occurs when

d
n

cosθ λ=
+F

HG
I
KJ

2 1
2

: cosθ = +2 1n

∴ = ± = ° °−weak signal @ θ cos ,1 1 0 180a f

FIG. P34.35

P34.36 For the proton, F ma∑ =  yields qvB
mv

R
sin .90 0

2

°= .

The period of the proton’s circular motion is therefore: T
R

v
m

qB
= =

2 2π π
.

The frequency of the proton’s motion is f
T

=
1

.

The charge will radiate electromagnetic waves at this frequency, with λ
π

= = =
c
f

cT
mc

qB
2

.

*P34.37 (a) The magnetic field B k= −
1
2 0µ ωJ kx tmax cos �b g  applies for x > 0 , since it describes a wave

moving in the �i  direction. The electric field direction must satisfy S E B= ×
1

0µ
 as � � �i j k= ×  so

the direction of the electric field is �j  when the cosine is positive. For its magnitude we have

E cB= , so altogether we have E j= −
1
2 0µ ωcJ kx tmax cos �b g .

(b) S E B i= × = −
1 1 1

40 0
0
2 2 2

µ µ
µ ωcJ kx tmax cos �b g

S i= −
1
4 0

2 2µ ωcJ kx tmax cos �b g

(c) The intensity is the magnitude of the Poynting vector averaged over one or more cycles. The

average of the cosine-squared function is 
1
2

, so I cJ=
1
8 0

2µ max .

(d) J
I
cmax .= =

× ×
=−

8 8 570

4 10 3 10
3 48

0
7 8µ π

 W m

Tm A  m s
 A m

2e j
b g
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Section 34.6 The Spectrum of Electromagnetic Waves

P34.38 From the electromagnetic spectrum chart and accompanying text discussion, the following
identifications are made:

Frequency, f Wavelength, λ =
c
f

Classification

2 2 100 Hz  Hz= × 150 Mm Radio
2 2 103 kHz  Hz= × 150 km Radio
2 2 106 MHz  Hz= × 150 m Radio
2 2 109 GHz  Hz= × 15 cm Microwave
2 2 1012 THz  Hz= × 150 µm Infrared
2 2 1015 PHz  Hz= × 150 nm Ultraviolet
2 2 1018 EHz  Hz= × 150 pm X-ray
2 2 1021 ZHz  Hz= × 150 fm Gamma ray
2 2 1024 YHz  Hz= × 150 am Gamma ray

Wavelength, λ Frequency, f
c

=
λ

Classification

2 2 103 km  m= × 1 5 105. ×  Hz Radio
2 2 100 m  m= × 1 5 108. ×  Hz Radio
2 2 10 3 mm  m= × − 1 5 1011. ×  Hz Microwave
2 2 10 6 m  mµ = × − 1 5 1014. ×  Hz Infrared
2 2 10 9 nm  m= × − 1 5 1017. ×  Hz Ultraviolet/X-ray
2 2 10 12 pm  m= × − 1 5 1020. ×  Hz X-ray/Gamma ray
2 2 10 15 fm  m= × − 1 5 1023. ×  Hz Gamma ray
2 2 10 18 am  m= × − 1 5 1026. ×  Hz Gamma ray

P34.39 f
c

= =
×

×
= ×−λ

3 00 10
5 50 10

5 45 10
8

7
14.

.
.

 m s
 m

 Hz

P34.40 (a) f
c

= =
×

λ
3 10

1 7
10

8
8 m s

 m
 Hz radio wave

.
~

(b) 1 000 pages, 500 sheets, is about 3 cm thick so one sheet is about 6 10 5× −  m  thick.

f =
×

× −

3 00 10
6 10

10
8

5
13.

~
 m s
 m

 Hz infrared

P34.41 (a) f cλ = gives 5 00 10 3 00 1019 8. .× = × Hz  m se jλ : λ = × =−6 00 10 6 0012. . m  pm

(b) f cλ = gives 4 00 10 3 00 109 8. .× = × Hz  m se jλ : λ = =0 075 7 50. . m  cm
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P34.42 (a) λ = =
×

×
=−

c
f

3 00 10
1 150

261
8

1

.  m s
10  s

 m3 so
180

0 690
 m

261 m
 wavelengths= .

(b) λ = =
×

×
=−

c
f

3 00 10
98 1 10

3 06
8

6 1

.
.

.
 m s
 s

 m so
180

58 9
 m

3.06 m
 wavelengths= .

P34.43 Time to reach object = = × = ×− −1
2

1
2

4 00 10 2 00 104 4total time of flight  s  sb g e j. . .

Thus, d vt= = × × = × =−3 00 10 2 00 10 6 00 10 60 08 4 4. . . . m s  s  m  kme je j .

P34.44 The time for the radio signal to travel 100 km is: ∆tr =
×
×

= × −100 10
3 33 10

3
4 m

3.00 10  m s
 s8 . .

The sound wave travels 3.00 m across the room in: ∆ts = = × −3 00
8 75 10 3.
.

 m
343 m s

 s .

Therefore, listeners 100 km away  will receive the news before the people in the news room by a

total time difference of

∆t = × − × = ×− − −8 75 10 3 33 10 8 41 103 4 3. . . s  s  s .

P34.45 The wavelength of an ELF wave of frequency 75.0 Hz is λ = =
×

= ×
c
f

3 00 10
75 0

4 00 10
8

6.
.

.
 m s

 Hz
 m .

The length of a quarter-wavelength antenna would be L = × = ×1 00 10 1 00 106 3. . m  km

or L = F
HG

I
KJ =1 000

0 621
621 km

 mi
1.00 km

 mib g .
.

Thus, while the project may be theoretically possible, it is not very practical.

P34.46 (a) For the AM band, λmax
min

.
= =

×

×
=

c
f

3 00 10
540 10

556
8

3

 m s
 Hz

 m

λmin
max

.
= =

×

×
=

c
f

3 00 10
1 600 10

187
8

3

 m s
 Hz

 m .

(b) For the FM band, λmax
min

.
.

.= =
×

×
=

c
f

3 00 10
88 0 10

3 41
8

6

 m s
 Hz

 m

λmin
max

.
.= =

×

×
=

c
f

3 00 10
108 10

2 78
8

6

 m s
 Hz

 m .
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Additional Problems

P34.47 (a) P = SA : P = ×L
NM

O
QP = ×1 340 4 1 496 10 3 77 1011 2 26 W m  m  W2e j e jπ . .

(b) S
cB

= max
2

02µ
so B

S
cmax .

.= =
×

×
=

−
2 2 4 10 1 340

3 00 10
3 350

7

8
µ π

µ
 N A  W m

 m s
 T

2 2e je j

S
E

c
= max

2

02µ
so E cSmax . .= = × × =−2 2 4 10 3 00 10 1 340 1 010

7 8µ πe je jb g  kV m

P34.48 Suppose you cover a 1.7 m-by-0.3 m section of beach blanket. Suppose the elevation angle of the Sun
is 60°. Then the target area you fill in the Sun’s field of view is

1 7 0 3 30 0 4. . cos . m  m  m2a fa f °= .

Now I
A

U
At

= =
P

U IAt= = 1 340 0 6 0 5 0 4 3 600 106 W m  m  s  J2 2e j a fa fe j b g. . . ~ .

P34.49 (a) ε θ= − = −
d

dt
d
dt

BABΦ
cosa f ε ω θ ω ω θ= − =A

d
dt

B t AB tmax maxcos cos sin cosb g b g

ε π π θt fB A f ta f = 2 2max sin cos ε π θ πt r fB f ta f = 2 22 2
max cos sin

Thus, ε π θmax max cos= 2 2 2r f B

where θ is the angle between the magnetic field and the normal to the loop.

(b) If E is vertical, B is horizontal, so the plane of the loop should be vertical

and the plane should contain the line of sight of the transmitter .

P34.50 (a) F
GM m

R
GM

R
rS S

grav = = FHG
I
KJ
F
HG
I
KJ

L
NM

O
QP2 2

34
3

ρ π

where MS =  mass of Sun, r =  radius of particle and R =  distance from Sun to particle.

Since F
S r

crad =
π 2

,

F
F r

SR
cGM r

rad

Sgrav
= FHG
I
KJ
F
HG

I
KJ ∝

1 3
4

12

ρ
.

(b) From the result found in part (a), when F Fradgrav = ,

we have r
SR

cGMS
=

3
4

2

ρ

r =
×

× ⋅ × ×

= ×

−

−

3 214 3 75 10

4 6 67 10 1 991 10 1 500 3 00 10

3 78 10

11 2

11 30 8

7

 W m  m

 N m kg  kg  kg m  m s

 m

2

2 2 3

e je j
e je je je j

.

. . .

.
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P34.51 (a) B
E

cmax
max .= = × −6 67 10 16  T

(b) S
E

cav
2 W m= = × −max .

2

0

17

2
5 31 10

µ

(c) P = = × −S Aav  W1 67 10 14.

(d) F PA
S

c
A= = FHG
I
KJ = × −av  N5 56 10 23.  (≅ the weight of

3 000 H atoms!) FIG. P34.51

P34.52 (a) The power incident on the mirror is: PI IA= = = ×1 340 100 4 21 102 7 W m  m  W2e j a fπ . .

The power reflected through the atmosphere is PR = × = ×0 746 4 21 10 3 14 107 7. . . W  We j .

(b) S
A
R= =

×

×
=

P 3 14 10
0 625

7

2
.

.
 W

4.00 10  m
 W m

3

2

π e j

(c) Noon sunshine in Saint Petersburg produces this power-per-area on a horizontal surface:

PN

A
= °=0 746 1 340 7 00 122. sin . W m  W m2 2e j .

The radiation intensity received from the mirror is

0 625
100% 0 513%

.
.

 W m
122 W m

2

2

F
HG

I
KJ =  of that from the noon Sun in January.

P34.53 u E= ∈
1
2 0

2
max E

u
max .=

∈
=

2
95 1

0
 mV m

P34.54 The area over which we model the antenna as radiating is the lateral surface of a cylinder,

A r= = × = ×− −2 2 4 00 10 0 100 2 51 102 2π πA . . . m  m  m2e ja f .

(a) The intensity is then: S
A

= =
×

=−
P 0 600

23 92
.

.
 W

2.51 10  m
 W m2

2 .

(b) The standard is:

0 570 0 570
1 00 10 1 00 10

1 00
5 70

3 4

. .
. .

.
. mW cm mW cm

 W
1.00 mW

 cm
 m

 W m2 2
2

2
2=

×F
HG

I
KJ

×F
HG

I
KJ =

−

e j .

While it is on, the telephone is over the standard by 
23 9
5 70

4 19
.

.
.

 W m
 W m

 times
2

2 = .
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P34.55 (a) B
E

cmax
max

.
.= =

×
= × −175

3 00 10
5 83 108

7 V m
 m s

 T

k = = =
2 2

0 015 0
419

π
λ

π
.  m

 rad m ω = = ×kc 1 26 1011.  rad s

Since S is along x, and E is along y, B must be in the  directionz . (That is S E B∝ × .)

(b) S
E B

av = =max max .
2

40 6
0µ

 W m2 S iav = 40 6. � W m2e j

(c) P
S
cr = = × −2

2 71 10 7.  N m2

(d) a
F

m
PA
m

= = =
×

= ×∑ −
−

2 71 10 0 750

0 500
4 06 10

7
7

. .

.
.

 N m  m

 kg
 m s

2 2
2e je j

a i= 406 nm s2e j�

P34.56 Of the intensity S = 1 340 W m2

the 38.0% that is reflected exerts a pressure P
S
c

S
c

r
1

2 2 0 380
= =

.a f
.

The absorbed light exerts pressure P
S
c

S
c

a
2

0 620
= =

.
.

Altogether the pressure at the subsolar point on Earth is

(a) P P P
S

ctotal

2 W m

 m s
 Pa= + = =

×
= × −

1 2 8
61 38 1 38 1 340

3 00 10
6 16 10

. .

.
.

e j

(b)
P

P
a

total

2

2

 N m
 N m

 times smaller than atmospheric pressure=
×

×
= ×−

1 01 10
6 16 10

1 64 10
5

6
10.

.
.

P34.57 (a) P
F
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I
c

= = F
IA
c c

a= = =
×

= × =−P 100
3 00 10

3 33 10 1108
7 J s

 m s
 N  kg

.
. b g

a = × −3 03 10 9.  m s2  and x at=
1
2

2

t
x
a

= = × =
2

8 12 10 22 64. . s  h

(b) 0 107 3 00 12 0 107 36 0 3 00= − − = − ⋅ + kg  kg  m s  kg  kg m s  kgb g b gb g b g b gv v v v. . . .

v = =
36 0
110

0 327
.

.  m s t = 30 6.  s
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P34.58 The mirror intercepts power P = = × =I A1 1
3 21 00 10 0 500 785. . W m  m  W2e j a fπ .

In the image,

(a) I
A2

2
=
P

: I2 2
785

625= =
 W

0.020 0 m
 kW m2

π b g

(b) I
E

c2

2

02
= max

µ
 so E cImax . . .= = × × × =−2 2 4 10 3 00 10 6 25 10 21 70 2

7 8 5µ πe je je j  kN C

B
E

cmax
max .= = 72 4 Tµ

(c) 0 400. P∆ ∆t mc T=

0 400 785 1 00 4 186 100 20 0

3 35 10
1 07 10 17 8

5
3

. . .

.
. .

 W  kg  J kg C C C

 J
314 W

 s  min

a f b gb ga f∆

∆

t

t

= ⋅° ° − °

=
×

= × =

P34.59 Think of light going up and being absorbed by the bead which presents a face area π rb
2 .

The light pressure is P
S
c

I
c

= = .

(a) F
I r

c
mg r gb

bA = = =
π

ρ π
2

34
3

and I
gc m

=
F
HG
I
KJ = ×

4
3

3
4

8 32 10
1 3

7ρ
π ρ

.  W m2

(b) P = = × × =−IA 8 32 10 2 00 10 1 057 3 2
. . . W m  m  kW2e j e jπ

P34.60 Think of light going up and being absorbed by the bead, which presents face area π rb
2 .

If we take the bead to be perfectly absorbing, the light pressure is P
S

c
I
c

F
A

= = =av A .

(a) F FgA =

so I
F c
A

F c

A
mgc

r
g

b

= = =A

π 2 .

From the definition of density, ρ
π

= =
m
V

m
rb4 3 3b g

so
1 4 3

1 3

r mb
=
F
HG

I
KJ

b gπ ρ
.

Substituting for rb , I
mgc

m
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m gc m
= F
HG
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KJ = FHG
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HG
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KJ =
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I
KJπ

π ρ ρ
π

ρ
π ρ

4
3

4
3
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3

3
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2 3 2 3 1 3 1 3

.

(b) P = IA P =
F
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I
KJ

4
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3
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2 1 3
π ρ

πρ
r gc m
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P34.61 (a) λ = =
×

×
=−

c
f

3 00 10
20 0 10

1 50
8

9 1
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 s

 cm

(b) U t= = × × = ×
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 Jµ FIG. P34.61
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P34.62 (a) On the right side of the equation, 
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The radiated power is then: P =
∈

=
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P34.64 F PA
SA
c

A A

c c
= = = =

P Pb g
, τ = FHG

I
KJ =F
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P34.65 The light intensity is I S
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= =av
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The light pressure is P
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*P34.67 (a) m V r= =ρ ρ π
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4 2 0 161 0 1632 2π π . . m  m2a f

(c) I e T= = × ⋅ =−σ 4 8 40 970 5 67 10 304 470. .  W m K  K  W m2 4 2e ja f

(d) P = = =IA 470 0 163 76 8 W m  m  W2 2e j . .
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02µ
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(g) The sleeping cats are uncharged and nonmagnetic. They carry no macroscopic current. They
are a source of infrared radiation. They glow not by visible-light emission but by infrared
emission.

(h) Each kitten has radius rk = ×
F
HG

I
KJ =

6 0 8
990 4

0 072 8
1 3

.
.

a f
π

 m  and radiating area

2 0 072 8 0 033 32π . . m  m2b g = . Eliza has area 2
6 5 5

990 4
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π
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.
.

a f
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F
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I
KJ =  m2 . The total glowing

area is 0 120 4 0 033 3 0 254. . . m  m  m2 2 2+ =e j  and has power output

P = = =IA 470 0 254 119 W m  m  W2 2e j . .

P34.68 (a) At steady state, P Pin out=  and the power radiated out is Pout = e ATσ 4 ..

Thus, 0 900 1 000 0 700 5 67 10 8 4. . . W m  W m K2 2 4e j e jA AT= × ⋅−

or T =
× ⋅
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N
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Q
PP = = °
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0 700 5 67 10
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(b) The box of horizontal area A, presents projected area A sin .50 0° perpendicular to the
sunlight. Then by the same reasoning,
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P34.69 We take R to be the planet’s distance from its star. The planet, of radius r, presents a

projected area π r 2  perpendicular to the starlight. It radiates over area 4 2π r .

At steady-state, P Pin out= : eI r e r Tin π σ π2 2 44e j e j=

e
R

r e r T
6 00 10

4
23

2 2 4. ×F
HG

I
KJ =

 W
4 2π

π σ πe j e j  so that 6 00 10 1623 2 4. × = W πσR T

R
T

=
×

=
×

× ⋅
= × =

−

6 00 10 6 00 10

310
4 77 10 4 77

23

4

23

8 4
9. .

. .
 W

16
 W

16 5.67 10  W m K  K
 m  Gm

2 4πσ π e ja f .

ANSWERS TO EVEN PROBLEMS

P34.2 (a) 2 68 103. ×  AD ; (b) 8 31.  min ; (c) 2 56.  s ; P34.30 (a) 577 W m2 ; (b) 2 06 1016. ×  W;
(d) 0 133.  s; (e) 33 3.  sµ (c) 68 7.  MN ; (d) The gravitational force is

~1013  times stronger  and in the opposite
direction.P34.4 733 nT

P34.6 E x t= − ×300 62 8 1 88 1010 V mb g e jcos . . ;

B x t= − ×1 00 62 8 1 88 1010. cos . . Tµb g e j
P34.32 4.09°

P34.34 (a) 93 3%. ; (b) 50 0%. ; (c) 0

P34.8 see the solution
P34.36

2π m c

eB
p

P34.10 2 9 10 5%8. × ± m s
P34.38 see the solution

P34.12 49 5.  mV
P34.40 (a) ~108  Hz radio wave;

P34.14 (a) 13 3.  nJ m3 ; (b) 13 3.  nJ m3 ; (b) ~1013  Hz infrared light
(c) 7 96.  W m2

P34.42 (a) 0 690.  wavelengths ;
P34.16 516 pT, ~105  times stronger than the

Earth’s field
(b) 58 9.  wavelengths

P34.44 The radio audience gets the news 8 41.  ms
sooner.P34.18 (a) 11 9.  GW m2 ; (b) 234 kW

P34.46 (a) 187 m to 556 m; (b) 2 78.  m  to 3 41.  mP34.20 33.4°C for the smaller container and 21.7°C
for the larger

P34.48 ~106  J
P34.22 (a) 50 0%. ;

P34.50 (a) see the solution; (b) 378 nm(b) 269 kW m  toward the oven chamber2 ;
(c) 14 2.  kV m

P34.52 (a) 31.4 MW; (b) 0 625.  W m2 ; (c) 0.513%

P34.24 (a) 4 97.  kW m2 ; (b) 16 6.  J m3µ
P34.54 (a) 23 9.  W m2 ; (b) 4 19.  times  the standard

P34.26 667 pN
P34.56 (a) 6 16.  Paµ ; (b) 1 64 1010. ×  times less than

atmospheric pressureP34.28 (a) 5 36.  N; (b) 893 m s2µ ; (c) 10 7.  days
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P34.58 (a) 625 kW m2 ; P34.66 (a) 3 33.  m, 11 1.  ns , 6 67.  pT ;

(b) E j= −
F
HG

I
KJ2 00 2

3 33 11 1
. cos

. .
�mV m

m ns
b g π

x t
;

(b) 21 7.  kN C and 72 4.  Tµ ; (c) 17 8.  min

P34.60 (a) 
16

9

2 1 3
m

gc
ρ
π

F
HG

I
KJ ; (b) 

16
9

2 2 1 3
2π ρm

r gc
F
HG

I
KJ B k= −F

HG
I
KJ6 67 2

3 33 11 1
. � cos

. .
 pT

 m  ns
b g π

x t
;

(c) 5 31.  nW m2 ; (d) 1 77 10 17. × −  J m3 ;
(e) 3 54 10 17. × −  PaP34.62 (a) see the solution;

(b) 17 6.  Tm s2 , 1 75 10 27. × −  W ;
P34.68 (a) 388 K; (b) 363 K(c) 1 80 10 24. × −  W

P34.64 3 00 10 2. × −  deg
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The Nature of Light and the
Laws of Geometric Optics

ANSWERS TO QUESTIONS

Q35.1 The ray approximation, predicting sharp shadows, is valid for
λ << d . For λ~ d  diffraction effects become important, and the
light waves will spread out noticeably beyond the slit.

Q35.2 Light travels through a vacuum at a speed of 300 000 km per
second. Thus, an image we see from a distant star or galaxy
must have been generated some time ago. For example, the star
Altair is 16 light-years away; if we look at an image of Altair
today, we know only what was happening 16 years ago. This
may not initially seem significant, but astronomers who look at
other galaxies can gain an idea of what galaxies looked like
when they were significantly younger. Thus, it actually makes
sense to speak of “looking backward in time.”

Q35.3 Sun

Moon

Note: Figure not at all to scale

no eclipse

 partial eclipse

Earth’s surface total eclipse
(full shadow)

no eclipse

FIG. Q35.3

315
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Q35.4 With a vertical shop window, streetlights and his own
reflection can impede the window shopper’s clear view of
the display. The tilted shop window can put these
reflections out of the way. Windows of airport control
towers are also tilted like this, as are automobile
windshields.

FIG. Q35.4

Q35.5 We assume that you and the child are
always standing close together. For a flat
wall to make an echo of a sound that you
make, you must be standing along a normal
to the wall. You must be on the order of
100 m away, to make the transit time
sufficiently long that you can hear the echo
separately from the original sound. Your
sound must be loud enough so that you can
hear it even at this considerable range. In
the picture, the dashed rectangle represents
an area in which you can be standing. The
arrows represent rays of sound.

Now suppose two vertical
perpendicular walls form an inside corner
that you can see. Some of the sound you
radiate horizontally will be headed
generally toward the corner. It will reflect
from both walls with high efficiency to
reverse in direction and come back to you.
You can stand anywhere reasonably far
away to hear a retroreflected echo of sound
you produce.

If the two walls are not
perpendicular, the inside corner will not
produce retroreflection. You will generally
hear no echo of your shout or clap.

If two perpendicular walls have a
reasonably narrow gap between them at
the corner, you can still hear a clear echo. It
is not the corner line itself that retroreflects
the sound, but the perpendicular walls on
both sides of the corner. Diagram (b)
applies also in this case.

 

(a)

 

(b)

FIG. Q35.4
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Q35.6 The stealth fighter is designed so that adjacent panels are not joined at right angles, to prevent any
retroreflection of radar signals. This means that radar signals directed at the fighter will not be
channeled back toward the detector by reflection. Just as with sound, radar signals can be treated as
diverging rays, so that any ray that is by chance reflected back to the detector will be too weak in
intensity to distinguish from background noise. This author is still waiting for the automotive
industry to utilize this technology.

Q35.7 An echo is an example of the reflection of sound. Hearing the noise of a distant highway on a cold
morning, when you cannot hear it after the ground warms up, is an example of acoustical refraction.
You can use a rubber inner tube inflated with helium as an acoustical lens to concentrate sound in
the way a lens can focus light. At your next party, see if you can experimentally find the
approximate focal point!

Q35.8 No. If the incidence angle is zero, then the ray does not change direction. Also, if the ray travels from
a medium of relatively high index of refraction to one of lower index of refraction, it will bend away
from the normal.

Q35.9 Suppose the light moves into a medium of higher refractive index. Then its wavelength decreases.
The frequency remains constant. The speed diminishes by a factor equal to the index of refraction.

Q35.10 If a laser beam enters a sugar solution with a concentration gradient (density and index of refraction
increasing with depth) then the laser beam will be progressively bent downward (toward the
normal) as it passes into regions of greater index of refraction.

Q35.11 As measured from the diagram, the incidence angle is 60°, and the refraction angle is 35°. Using

equation 35.3, 
sin
sin

θ
θ

2

1

2

1
=

v
v

, then 
sin
sin

35
60

2°
°
=

v
c

 and the speed of light in Lucite is 2 0 108. ×  m s .

The frequency of the light does not change upon refraction. Knowing the wavelength in a
vacuum, we can use the speed of light in a vacuum to determine the frequency: c f= λ , thus

3 00 10 632 8 108 9. .× = × −f e j , so the frequency is 474.1 THz. To find the wavelength of light in Lucite,

we use the same wave speed relation, v f= λ , so 2 0 10 4 741 108 14. .× = ×e jλ , so λLucite  nm= 420 .

Q35.12 Blue light would be refracted at a smaller angle from the normal, since the index of refraction for
blue light—a smaller wavelength than red light—is larger.

Q35.13 The index of refraction of water is 1.33, quite different from 1.00 for air. Babies learn that the
refraction of light going through the water indicates the water is there. On the other hand, the index
of refraction of liquid helium is close to that of air, so it gives little visible evidence of its presence.

Q35.14 The outgoing beam would be a rainbow, with the different colors of light traveling parallel to each
other. The white light would undergo dispersion upon refraction into the slab, with blue light
bending towards the normal more than the red light. Upon refraction out of the block, all rays of
light would exit the slab at the same angle at which they entered the slab, but offset from each other.

Q35.15 Diamond has higher index of refraction than glass and consequently a smaller critical angle for total
internal reflection. A brilliant-cut diamond is shaped to admit light from above, reflect it totally at
the converging facets on the underside of the jewel, and let the light escape only at the top. Glass
will have less light internally reflected.
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Q35.16 Light coming up from underwater is bent away from the normal. Therefore the part of the oar that is
submerged appears bent upward.

Q35.17 Highly silvered mirrors reflect about 98% of the incident light. With a 2-mirror periscope, that results
in approximately a 4% decrease in intensity of light as the light passes through the periscope. This
may not seem like much, but in low-light conditions, that lost light may mean the difference
between being able to distinguish an enemy armada or an iceberg from the sky beyond. Using
prisms results in total internal reflection, meaning that 100% of the incident light is reflected through
the periscope. That is the “total” in total internal reflection.

Q35.18 Sound travels faster in the warmer air, and thus the sound traveling through the warm air aloft will
refract much like the light refracting through the nonuniform sugar-water solution in Question
35.10. Sound that would normally travel up over the tree-tops can be refracted back towards the
ground.

Q35.19 The light with the greater change in speed will have the larger deviation. If the glass has a higher
index than the surrounding medium, X travels slower in the glass.

Q35.20 Immediately around the dark shadow of my head, I see a halo brighter than the rest of the dewy
grass. It is called the heiligenschein. Cellini believed that it was a miraculous sign of divine favor
pertaining to him alone. Apparently none of the people to whom he showed it told him that they
could see halos around their own shadows but not around Cellini’s. Thoreau knew that each person
had his own halo. He did not draw any ray diagrams but assumed that it was entirely natural.
Between Cellini’s time and Thoreau’s, the Enlightenment and Newton’s explanation of the rainbow
had happened. Today the effect is easy to see, whenever your shadow falls on a retroreflecting
traffic sign, license plate, or road stripe. When a bicyclist’s shadow falls on a paint stripe marking the
edge of the road, her halo races along with her. It is a shame that few people are sufficiently curious
observers of the natural world to have noticed the phenomenon.

Q35.21 Suppose the Sun is low in the sky and an observer faces away from the Sun toward a large uniform
rain shower. A ray of light passing overhead strikes a drop of water. The light is refracted first at the
front surface of the drop, with the violet light deviating the most and the red light the least. At the
back of the drop the light is reflected and it returns to the front surface where it again undergoes
refraction with additional dispersion as it moves from water into air. The rays leave the drop so that
the angle between the incident white light and the most intense returning violet light is 40°, and the
angle between the white light and the most intense returning red light is 42°. The observer can see a
ring of raindrops shining violet, a ring with angular radius 40° around her shadow. From the locus of
directions at 42° away from the antisolar direction, the observer receives red light. The other spectral
colors make up the rainbow in between. An observer of a rainbow sees violet light at 40° angular
separation from the direction opposite the Sun, then the other spectral colors, and then red light on
the outside the rainbow, with angular radius 42°.

Q35.22 At the altitude of the plane the surface of the Earth need not block off the lower half of the rainbow.
Thus, the full circle can be seen. You can see such a rainbow by climbing on a stepladder above a
garden sprinkler in the middle of a sunny day. Set the sprinkler for fine mist. Do not let the slippery
children fall from the ladder.

Q35.23 Total internal reflection occurs only when light moving originally in a medium of high index of
refraction falls on an interface with a medium of lower index of refraction. Thus, light moving from
air (n = 1) to water (n = 1 33. ) cannot undergo total internal reflection.
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Q35.24 A mirage occurs when light changes direction as it moves between batches of air having different
indices of refraction because they have different densities at different temperatures. When the sun
makes a blacktop road hot, an apparent wet spot is bright due to refraction of light from the bright
sky. The light, originally headed a little below the horizontal, always bends up as it first enters and
then leaves sequentially hotter, lower-density, lower-index layers of air closer to the road surface.

SOLUTIONS TO PROBLEMS

Section 35.1 The Nature of Light

Section 35.2 Measurements of the Speed of Light

P35.1 The Moon’s radius is 1 74 106. ×  m  and the Earth’s radius is 6 37 106. ×  m . The total distance traveled
by the light is:

d = × − × − × = ×2 3 84 10 1 74 10 6 37 10 7 52 108 6 6 8. . . . m  m  m  me j .

This takes 2.51 s, so v =
×

= × =
7 52 10

2 995 10 299 5
8

8.
. .

 m
2.51 s

 m s  Mm s .

P35.2 ∆x ct= ; c
x
t

= =
×

= × =
∆ 2 1 50 10 1 000

22 0 60 0
2 27 10 227

8
8

.

. .
.

 km  m km

 min  s min
 m s  Mm s

e jb g
a fb g

P35.3 The experiment is most convincing if the wheel turns fast enough to pass outgoing light through

one notch and returning light through the next: t
c

=
2A

θ ω ω= = FHG
I
KJt

c
2A

so ω
θ π

= =
×

×
=

c
2

2 998 10 2 720

2 11 45 10
114

8

3A

.

.

e j a f
e j

 rad s .

The returning light would be blocked by a tooth at one-half the angular speed, giving another data
point.

P35.4 (a) For the light beam to make it through both slots, the time for the light to travel the distance d
must equal the time for the disk to rotate through the angle θ, if c is the speed of light,

d
c
=
θ
ω

, so c
d

=
ω
θ

.

(b) We are given that

d = 2 50.  m , θ
π

=
°

°
F
HG
I
KJ = × −1 00

60 0
2 91 10 4.

.
.

 rad
180

 rad , ω
π

= F
HG

I
KJ = ×5 555

2
3 49 104 rev s

 rad
1.00 rev

 rad s.

c
d

= =
×

×
= × =−

ω
θ

2 50 3 49 10

2 91 10
3 00 10 300

4

4
8

. .

.
.

 m  rad s

 rad
 m s  Mm s

a fe j
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Section 35.3 The Ray Approximation in Geometric Optics

Section 35.4 Reflection

Section 35.5 Refraction

*P35.5 (a) Let AB be the originally horizontal ceiling, BC its originally vertical
normal, AD the new ceiling and DE its normal. Then angle
BAD = φ . By definition DE is perpendicular to AD and BC is
perpendicular to AB. Then the angle between DE extended and BC
is φ because angles are equal when their sides are perpendicular,
right side to right side and left side to left side.

A B

C

D

E

FIG. P35.5(a)

(b) Now CBE = φ  is the angle of incidence of the vertical light beam. Its
angle of reflection is also φ. The angle between the vertical incident
beam and the reflected beam is 2φ .

A D

E

FIG. P35.5(b)

(c) tan
.

.2
1 40

0 001 94φ = =
 cm

720 cm
φ = °0 055 7.

P35.6 (a) From geometry, 1 25 40 0. sin . m = °d

so d = 1 94.  m .

(b) 50 0. °  above the horizontal

or parallel to the incident ray.

Mirror 2

50°

40°

50°
50°

40°
d

i1= 40°

i2= 50°

Mirror 11.25 m

40.0°

1.25 m
Mirror 1

Mirror 2 Light
beam

P

FIG. P35.6

*P35.7 (a) Method One:
The incident ray makes angle α θ= °−90 1

with the first mirror. In the picture, the law of reflection implies
that

θ θ1 1= ′ .

Then β θ θ α= °− ′ = − =90 901 1 . FIG. P35.7

In the triangle made by the mirrors and the ray passing between them,

β γ
γ β
+ °+ = °
= °−

90 180
90

Further, δ γ β α= °− = =90
and ∈= =δ α .

Thus the final ray makes the same angle with the first mirror as did the incident ray. Its
direction is opposite to the incident ray.

continued on next page
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Method Two:
The vector velocity of the incident light has a component vy  perpendicular to the first mirror

and a component vx  perpendicular to the second. The vy  component is reversed upon the

first reflection, which leaves vx  unchanged. The second reflection reverses vx  and leaves vy

unchanged. The doubly reflected ray then has velocity opposite to the incident ray.

(b) The incident ray has velocity v v vx y z
� � �i j k+ + . Each reflection reverses one component and

leaves the other two unchanged. After all the reflections, the light has velocity

− − −v v vx y z
� � �i j k , opposite to the incident ray.

P35.8 The incident light reaches the left-hand mirror at distance

1 00 5 00 0 087 5. tan . . m  ma f °=

above its bottom edge. The reflected light first reaches the
right-hand mirror at height

2 0 087 5 0 175. . m  mb g = .

It bounces between the mirrors with this distance between
points of contact with either.

Since
1 00

5 72
.

.
 m

0.175 m
=

Mirror Mirror

reflected beam
1.00 m

5.00°

1.00 m

FIG. P35.8

the light reflects five times from the right-hand mirror and six times from the left .

*P35.9 Let d represent the perpendicular distance from the
person to the mirror. The distance between lamp and
peson measured parallel to the mirror can be written in
two ways: 2d d dtan tan tanθ θ φ+ = . The condition on the

distance traveled by the light is 
2 2d d d

cos cos cosφ θ θ
= + . We

have the two equations 3 tan tanθ φ=  and
2 3cos cosθ φ= . To eliminate φ we write

9 2

2

2

2
sin

cos
sin
cos

θ
θ

φ
φ

= 4 92 2cos cosθ φ=

2d

d d

φ

2d tanθ θ

d tanθθ
d tanφ

FIG. P35.9

9 1

4 1
4
9

4 1
4
9

1 36 9 4 4

5
32

23 3

2 2 2 2

2 2 2 2

2 2 2 2

2

cos sin cos cos

cos sin cos cos

sin sin sin sin

sin .

φ θ θ φ

θ θ θ θ

θ θ θ θ

θ θ

= −

= −FHG
I
KJ

= − − = − +

= = °

e j

e j
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P35.10 Using Snell’s law, sin sinθ θ2
1

2
1=

n
n

θ 2 25 5= °.

λ
λ

2
1

1
442= =

n
 nm .

FIG. P35.10

*P35.11 The law of refraction n n1 1 2 2sin sinθ θ=  can be put into the more general form

c
v

c
v

v v

1
1

2
2

1

1

2

2

sin sin

sin sin

θ θ

θ θ

=

=

In this form it applies to all kinds of waves that move through space.
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=
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a f

P35.12 (a) f
c

= =
×

×
= ×−λ

3 00 10
6 328 10

4 74 10
8

7
14.

.
.

 m s
 m

 Hz

(b) λ
λ

glass
air  nm

1.50
 nm= = =

n
632 8

422
.

(c) v
c
nglass
air  m s

 m s  Mm s= =
×

= × =
3 00 10

1 50
2 00 10 200

8
8.

.
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P35.13 n n1 1 2 2sin sinθ θ=

sin . sin

sin . . .

. .

θ
θ

θ

1

1

1

1 333 45

1 33 0 707 0 943

70 5 19 5

= °

= =

= °→ °

a fa f
 above the horizon

FIG. P35.13

*P35.14 We find the angle of incidence:

n n1 1 2 2

1

1

1 333 1 52 19 6
22 5

sin sin
. sin . sin .

.

θ θ
θ

θ

=
= °

= °

The angle of reflection of the beam in water is then also 22 5. ° .
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P35.15 (a) n n1 1 2 2sin sinθ θ=

1 00 30 0 19 24

1 52

. sin . sin .

.

°= °

=

n

n

(c) f
c

= =
×

×
= ×−λ

3 00 10
6 328 10

4 74 10
8

7
14.

.
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 m s
 m

 Hz  in air and in syrup.

(d) v
c
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P35.16 (a) Flint Glass: v
c
n

= =
×

= × =
3 00 10
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1 81 10 181

8
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 m s  Mm s

(b) Water: v
c
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3 00 10
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(c) Cubic Zirconia: v
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P35.17 n n1 1 2 2sin sinθ θ= : 1 333 37 0 25 02. sin . sin .°= °n

n
c
v2 1 90= =. : v

c
= = × =

1 90
1 58 10 1588

.
.  m s  Mm s

P35.18 sin sinθ θ1 2= nw

sin
.

sin
.

sin . . .

sin . .

tan
.

.

θ θ

θ

θ

2 1

2
1

2

1
1 333

1
1 333

90 0 28 0 0 662

0 662 41 5
3 00

3 39
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= =
°
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a f
a f

h
d  m

tan41.5
 m

water

air

28°

3.0 m

h

n = 1.00

n = 1.333

θ  = 62°1

θ2

FIG. P35.18
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P35.19 n n1 1 2 2sin sinθ θ= : θ
θ

2
1 1 1

2
=
F
HG

I
KJ

−sin
sinn
n

θ 2
1 1 00 30

1 50
19 5=

°RST
UVW = °−sin

. sin
.

.

θ 2  and θ 3  are alternate interior angles formed by the ray cutting
parallel normals.

So, θ θ3 2 19 5= = °.

1 50 1 00

30 0
3 4

4

. sin . sin

.

θ θ

θ

=

= °

FIG. P35.19

*P35.20 For α β+ = °90

with ′ + + + = °θ α β θ1 2 180

we have ′ + = °θ θ1 2 90 .

Also, ′ =θ θ1 1

and 1 1 2sin sinθ θ= n .

Then, sin sin cosθ θ θ1 1 190= − =n nb g FIG. P35.20

sin
cos

tan
θ
θ

θ1

1
1= =n θ 1

1= −tan n .

P35.21 At entry, n n1 1 2 2sin sinθ θ=

or 1 00 30 0 1 50 2. sin . . sin°= θ

θ 2 19 5= °. .

The distance h the light travels in the medium is given by

cos
.

θ 2
2 00

=
 cm

h

or h =
°
=

2 00
2 12

.
.

 cm
cos19.5

 cm .

 

FIG. P35.21

The angle of deviation upon entry is α θ θ= − = °− °= °1 2 30 0 19 5 10 5. . . .

The offset distance comes from sinα =
d
h

: d = °=2 21 10 5 0 388. sin . . cm  cma f .

P35.22 The distance, h, traveled by the light is h =
°
=

2 00
2 12

.
.

 cm
cos19.5
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..

The speed of light in the material is v
c
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= =
×

= ×
3 00 10

1 50
2 00 10

8
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.
.
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..

Therefore, t
h
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= =
×
×

= × =
−

−2 12 10
1 06 10 106

2
10.

.
 m

2.00 10  m s
 s  ps8 .
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P35.23 Applying Snell’s law at the air-oil interface,

n nair oilsin sin .θ = °20 0

yields θ = °30 4. .

Applying Snell’s law at the oil-water interface

n nw sin sin .′ = °θ oil 20 0

yields ′ = °θ 22 3. .

FIG. P35.23

*P35.24 For sheets 1 and 2 as described,

n n
n n

1 2

1 2

26 5 31 7
0 849

sin . sin .
.

°= °
=

For the trial with sheets 3 and 2,

n n
n n

3 2

3 2

26 5 36 7
0 747

sin . sin .
.

°= °
=

Now

0 747 0 849
1 14

3 1

3 1

. .
.

n n
n n

=
=

For the third trial,

n n n1 3 3 1 3

3

26 5 1 14

23 1

sin . sin . sin

.

°= =

= °

θ θ

θ

P35.25 Consider glass with an index of refraction of 1.5, which is 3 mm thick. The speed of light in the glass
is

3 10
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8×
= ×
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.
.

The extra travel time is
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For light of wavelength 600 nm in vacuum and wavelength 
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1.5
 nm=  in glass,

the extra optical path, in wavelengths, is
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P35.26 Refraction proceeds according to 1 00 1 661 2. sin . sina f a fθ θ= . (1)

(a) For the normal component of velocity to be constant, v v1 1 2 2cos cosθ θ=

or c
ca fcos
.

cosθ θ1 21 66
= FHG
I
KJ . (2)

We multiply Equations (1) and (2), obtaining: sin cos sin cosθ θ θ θ1 1 2 2=

or sin sin2 21 2θ θ= .

The solution θ θ1 2 0= =  does not satisfy Equation (2) and must be rejected. The physical
solution is 2 180 21 2θ θ= °−  or θ θ2 190 0= °−. . Then Equation (1) becomes:

sin . cosθ θ1 11 66= , or tan .θ 1 1 66=

which yields θ 1 58 9= °. .

(b) Light entering the glass slows down and makes a smaller angle with the normal. Both effects
reduce the velocity component parallel to the surface of the glass, so that component cannot
remain constant, or will remain constant only in the trivial case θ θ1 2 0= = .

P35.27 See the sketch showing the path of the
light ray. α and γ are angles of incidence at
mirrors 1 and 2.

For triangle abca,

2 2 180α γ β+ + = °

or β α γ= °− +180 2b g . (1)

Now for triangle bcdb,

90 0 90 0 180. .°− + °− + = °α γ θa f b g
or θ α γ= + . (2)

FIG. P35.27

Substituting Equation (2) into Equation (1) gives β θ= °−180 2 .

Note: From Equation (2), γ θ α= − . Thus, the ray will follow a path like that shown only if α < 0 .
For α > 0 , γ is negative and multiple reflections from each mirror will occur before the incident and
reflected rays intersect.
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Section 35.6 Huygen’s Principle

*P35.28 (a) For the diagrams of contour lines and wave fronts and rays, see Figures (a) and (b) below.
As the waves move to shallower water, the wave fronts bend to become more nearly parallel
to the contour lines.

(b) For the diagrams of contour lines and wave fronts and rays, see Figures (c) and (d) below.
We suppose that the headlands are steep underwater, as they are above water. The rays are
everywhere perpendicular to the wave fronts of the incoming refracting waves. As shown,
the rays bend toward the headlands and deliver more energy per length at the headlands.

 

(a) Contour lines (b) Wave fronts (c) Contour lines (d) Wave fronts
and rays and rays

FIG. P35.28

Section 35.7 Dispersion and Prisms

P35.29 From Fig 35.21 nv = 1 470.  at 400 nm and nr = 1 458.  at 700 nm.

Then 1 00 1 470. sin . sinθ θ= v and 1 00 1 458. sin . sinθ θ= r

δ δ θ θ
θ θ

δ

r v r v− = − = F
HG
I
KJ −

F
HG
I
KJ

=
°F

HG
I
KJ −

°F
HG

I
KJ = °

− −

− −

sin
sin
.

sin
sin
.

sin
sin .

.
sin

sin .
.

.

1 1

1 1

1 458 1 470
30 0

1 458
30 0

1 470
0 171∆

P35.30 n 700 1 458 nma f = .

(a) 1 00 75 0 1 458 2. sin . . sina f °= θ ; θ 2 41 5= °.

(b) Let θ β3 90 0+ = °. , θ α2 90 0+ = °.  then α β+ + °= °60 0 180. .

So 60 0 0 60 0 41 5 18 52 3 3. . . .°− − = ⇒ °− °= = °θ θ θ .

(c) 1 458 18 5 1 00 4. sin . . sin°= θ θ 4 27 6= °.

(d) γ θ θ β θ= − + − °−1 2 490 0b g b g.

γ = °− °+ °− ° − °− ° = °75 0 41 5 90 0 18 5 90 0 27 6 42 6. . . . . . .a f a f

60.0°
γα

θ1 θ2 θ3

θ4
β

FIG. P35.30
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P35.31 Taking Φ to be the apex angle and δ min  to be the angle of minimum deviation, from Equation 35.9,
the index of refraction of the prism material is

n =
+sin

sin
minΦ

Φ

δb g
b g

2

2

Solving for δ min , δ min sin sin sin . sin . . .= F
HG

I
KJ − = ° − °= °− −2

2
2 2 20 25 0 50 0 86 81 1n

Φ
Φ a f a f .

P35.32 Note for use in every part: Φ+ °− + °− = °90 0 90 0 1802 3. .θ θb g b g
so θ θ3 2= −Φ .

At the first surface the deviation is α θ θ= −1 2 .

At exit, the deviation is β θ θ= −4 3 .

The total deviation is therefore δ α β θ θ θ θ θ θ= + = + − − = + −1 4 2 3 1 4 Φ . FIG. P35.32

(a) At entry: n n1 1 2 2sin sinθ θ= or θ 2
1 48 6

1 50
30 0=

°F
HG

I
KJ = °−sin

sin .
.

. .

Thus, θ 3 60 0 30 0 30 0= °− °= °. . . .

At exit: 1 50 30 0 1 00 4. sin . . sin°= θ or θ 4
1 1 50 30 0 48 6= ° = °−sin . sin . .a f

so the path through the prism is symmetric when θ 1 48 6= °. .

(b) δ = °+ °− °= °48 6 48 6 60 0 37 2. . . .

(c) At entry: sin
sin .

.
.θ θ2 2

45 6
1 50

28 4=
°
⇒ = ° θ 3 60 0 28 4 31 6= °− °= °. . . .

At exit: sin . sin . .θ θ4 41 50 31 6 51 7= ° ⇒ = °a f δ = °+ °− °= °45 6 51 7 60 0 37 3. . . . .

(d) At entry: sin
sin .

.
.θ θ2 2

51 6
1 50

31 5=
°
⇒ = ° θ 3 60 0 31 5 28 5= °− °= °. . . .

At exit: sin . sin . .θ θ4 41 50 28 5 45 7= ° ⇒ = °a f δ = °+ °− °= °51 6 45 7 60 0 37 3. . . . .

P35.33 At the first refraction, 1 00 1 2. sin sinθ θ= n .

The critical angle at the second surface is given by n sin .θ 3 1 00= :

or θ 3
1 1 00

1 50
41 8= F

HG
I
KJ = °−sin

.

.
. .

But, θ θ2 360 0= °−. .
FIG. P35.33

Thus, to avoid total internal reflection at the second surface (i.e., have θ 3 41 8< °. )

it is necessary that θ 2 18 2> °. .

Since sin sinθ θ1 2= n , this becomes sin . sin . .θ 1 1 50 18 2 0 468> °=

or θ 1 27 9> °. .
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P35.34 At the first refraction, 1 00 1 2. sin sinθ θ= n .
The critical angle at the second surface is given by

n sin .θ 3 1 00= , or θ 3
1 1 00

= F
HG
I
KJ

−sin
.
n

.

But 90 0 90 0 1802 3. .°− + °− + = °θ θb g b g Φ

which gives θ θ2 3= −Φ .

Φ

θ2

θ1

θ3

FIG. P35.34

Thus, to have θ 3
1 1 00

< F
HG
I
KJ

−sin
.
n

 and avoid total internal reflection at the second surface,

it is necessary that θ 2
1 1 00

> − F
HG
I
KJ

−Φ sin
.
n

.

Since sin sinθ θ1 2= n , this requirement becomes sin sin sin
.

θ 1
1 1 00

> − F
HG
I
KJ

L
NM

O
QP

−n
n

Φ

or θ 1
1 1 1 00

> − F
HG
I
KJ

L
NM

O
QP

F
HG

I
KJ

− −sin sin sin
.

n
n

Φ .

Through the application of trigonometric identities, θ 1
1 2 1> − −FH IK−sin sin cosn Φ Φ .

P35.35 For the incoming ray, sin
sin

θ
θ

2
1=

n
.

Using the figure to the right, θ 2
1 50 0

1 66
27 48b gviolet

=
°F

HG
I
KJ = °−sin

sin .
.

.

θ 2
1 50 0

1 62
28 22b gred

=
°F

HG
I
KJ = °−sin

sin .
.

. .

For the outgoing ray, θ θ3 260 0= °−.
FIG. P35.35

and sin sinθ θ4 3= n : θ 4
1 1 66 32 52 63 17b gviolet

= ° = °−sin . sin . .

θ 4
1 1 62 31 78 58 56b gred

= ° = °−sin . sin . . .

The angular dispersion is the difference ∆θ θ θ4 4 4 63 17 58 56 4 61= − = °− °= °b g b gviolet red
. . . .

Section 35.8 Total Internal Reflection

P35.36 n sinθ = 1 . From Table 35.1,

(a) θ = F
HG
I
KJ = °−sin

.
.1 1

2 419
24 4

(b) θ = F
HG
I
KJ = °−sin

.
.1 1

1 66
37 0

(c) θ = F
HG
I
KJ = °−sin

.
.1 1

1 309
49 8
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P35.37 sinθ c
n
n

= 2

1
: θ c

n
n

=
F
HG
I
KJ

−sin 1 2

1

(a) Diamond: θ c =
F
HG
I
KJ = °−sin

.

.
.1 1 333

2 419
33 4

(b) Flint glass: θ c =
F
HG
I
KJ = °−sin

.
.

.1 1 333
1 66

53 4

(c) Ice: Since n n2 1> , there is no critical angle .

P35.38 sin
.
.

.θ c
n

n
= = =air

pipe

1 00
1 36

0 735 θ c = °47 3.

Geometry shows that the angle of refraction at the end is
φ θ= °− = °− °= °90 0 90 0 47 3 42 7. . . .c .

Then, Snell’s law at the end, 1 00 1 36 42 7. sin . sin .θ = °

gives θ = °67 2. .

The 2-µm diameter is unnecessary information.

FIG. P35.38

P35.39 sinθ c
n
n

= 2

1

n n2 1 88 8 1 000 3 0 999 8 1 000 08= °= =sin . . . .b gb g
FIG. P35.39

*P35.40 (a) A ray along the inner edge will escape if any ray escapes. Its angle of

incidence is described by sinθ =
−R d
R

 and by n sin sinθ > °1 90 . Then

n R d
R
−

>
a f

1 nR nd R− > nR R nd− > R
nd

n
>

− 1
.

(b) As d → 0 , Rmin → 0 . This is reasonable.
As n increases, Rmin  decreases. This is reasonable.
As n decreases toward 1, Rmin  increases. This is reasonable.

FIG. P35.40

(c) Rmin

.

.
=

×
= ×

−
−

1 40 100 10

0 40
350 10

6
6

 m
 m

e j

P35.41 From Snell’s law, n n1 1 2 2sin sinθ θ= .
At the extreme angle of viewing, θ 2 90 0= °.

1 59 1 00 90 01. sin . sin .a fb g a fθ = ° .

So θ 1 39 0= °. .

Therefore, the depth of the air bubble is

r
d

r
d p

tan tanθ θ1 1
< <

or 1 08 1 17. . cm  cm< <d . FIG. P35.41
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P35.42 (a)
sin
sin

θ
θ

2

1

2

1
=

v
v

and θ 2 90 0= °.  at the critical angle

sin .
sin

90 0 1 850
343

°
=

θ c

 m s
 m s

so θ c = = °−sin . .1 0 185 10 7a f .

(b) Sound can be totally reflected if it is traveling in the medium where it travels slower: air .

(c) Sound in air falling on the wall from most directions is 100% reflected , so the wall is a

good mirror.

P35.43 For plastic with index of refraction n ≥ 1 42.  surrounded by air, the critical angle for total internal

reflection is given by

θ c n
= F
HG
I
KJ ≤

F
HG
I
KJ = °− −sin sin

.
.1 11 1

1 42
44 8 .

In the gasoline gauge, skylight from above travels down the plastic. The rays close to the vertical are
totally reflected from the sides of the slab and from both facets at the lower end of the plastic, where
it is not immersed in gasoline. This light returns up inside the plastic and makes it look bright.
Where the plastic is immersed in gasoline, with index of refraction about 1.50, total internal
reflection should not happen. The light passes out of the lower end of the plastic with little reflected,
making this part of the gauge look dark. To frustrate total internal reflection in the gasoline, the
index of refraction of the plastic should be n < 2 12. .

since θ c =
F
HG
I
KJ = °−sin

.

.
.1 1 50

2 12
45 0 .

Section 35.9 Fermat‘s Principle

P35.44 Assume the lifeguard’s initial path makes angle θ 1  with the north-
south normal to the shoreline, and angle θ 2  with this normal in
the water. By Fermat’s principle, his path should follow the law of
refraction:
sin
sin

.

.
.

θ
θ

1

2

1

2

7 00
1 40

5 00= = =
v
v

 m s
 m s

 or θ
θ

2
1 1

5
= F
HG
I
KJ

−sin
sin

.
FIG. P35.44

The lifeguard on land travels eastward a distance x = 16 0 1. tan ma f θ . Then in the water, he travels

26 0 20 0 2. . tan m  m− =x a f θ  further east. Thus, 26 0 16 0 20 01 2. . tan . tan m  m  m= +a f a fθ θ

or 26 0 16 0 20 0
51

1 1. . tan . tan sin
sin

 m  m  m= + F
HG
I
KJ

L
NM

O
QP

−a f a fθ
θ

.

We home in on the solution as follows:

θ 1  (deg) 50.0 60.0 54.0 54.8 54.81

right-hand side 22.2 m 31.2 m 25.3 m 25.99 m 26.003 m

The lifeguard should start running at 54 8. °  east of north .
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Additional Problems

*P35.45 Scattered light leaves the center of the photograph (a) in all
horizontal directions between θ 1 0= °  and 90° from the
normal. When it immediately enters the water (b), it is
gathered into a fan between 0° and θ 2 max  given by

n n1 1 2 2

2

2

1 00 90 1 333
48 6

sin sin
. sin . sin

.

θ θ
θ

θ

=
=

= °
 max

 max

The light leaves the cylinder without deviation, so the
viewer only receives light from the center of the
photograph when he has turned by an angle less than
48.6°. When the paperweight is turned farther, light at the
back surface undergoes total internal reflection (c). The
viewer sees things outside the globe on the far side.

     
θ 1 max

(a)

θ 2 max

(b)

(c)

FIG. P35.45

P35.46 Let n xa f  be the index of refraction at distance x below the top of the atmosphere and n x h n= =a f  be
its value at the planet surface.

Then, n x
n

h
xa f = +

−F
HG

I
KJ1 000

1 000
.

.
.

(a) The total time interval required to traverse the atmosphere is

∆t
dx
v

n x
c

dx
h h

= =z z
0 0

a f
: ∆t

c
n

h
x dx

h

= +
−F
HG

I
KJ

L
NM

O
QPz1 1 000

1 000

0

.
.

∆t
h
c

n
ch

h h
c

n
= +

− F
HG
I
KJ =

+F
HG

I
KJ

1 000
2

1 000
2

2. .a f
.

(b) The travel time in the absence of an atmosphere would be 
h
c

.

Thus, the time in the presence of an atmosphere is 
n +F
HG

I
KJ

1 000
2
.

 times larger .

P35.47 Let the air and glass be medium 1 and 2, respectively. By Snell’s law, n n2 2 1 1sin sinθ θ=

or 1 56 2 1. sin sinθ θ= .

But the conditions of the problem are such that θ θ1 22= . 1 56 22 2. sin sinθ θ= .

We now use the double-angle trig identity suggested. 1 56 22 2 2. sin sin cosθ θ θ=

or cos
.

.θ 2
1 56

2
0 780= = .

Thus, θ 2 38 7= °.  and θ θ1 22 77 5= = °. .
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P35.48 (a) ′ = = °θ θ1 1 30 0. n n1 1 2 2sin sinθ θ=

1 00 30 0 1 55

18 8
2

2

. sin . . sin

.

°=

= °

θ

θ

(b) ′ = = °θ θ1 1 30 0. θ
θ

2
1 1 1

2

1 1 55 30 0
1

50 8

=
F
HG

I
KJ

=
°F

HG
I
KJ = °

−

−

sin
sin

sin
. sin .

.

n
n

FIG. P35.48

(c), (d) The other entries are computed similarly, and are shown in the table below.

(c) air into glass, angles in degrees (d) glass into air, angles in degrees

incidence reflection refraction incidence reflection refraction
0 0 0 0 0 0

10.0 10.0 6.43 10.0 10.0 15.6
20.0 20.0 12.7 20.0 20.0 32.0
30.0 30.0 18.8 30.0 30.0 50.8
40.0 40.0 24.5 40.0 40.0 85.1
50.0 50.0 29.6 50.0 50.0 none*
60.0 60.0 34.0 60.0 60.0 none*
70.0 70.0 37.3 70.0 70.0 none*
80.0 80.0 39.4 80.0 80.0 none*
90.0 90.0 40.2 90.0 90.0 none*

*total internal reflection

P35.49 For water, sinθ c = =
1

4 3
3
4

.

Thus θ c = = °−sin . .1 0 750 48 6a f
and d c= 2 1 00. tan ma f θ

d = °=2 00 48 6 2 27. tan . . m  ma f . FIG. P35.49

P35.50 Call θ 1  the angle of incidence and of reflection on the
left face and θ 2  those angles on the right face. Let α
represent the complement of θ 1  and β be the
complement of θ 2 . Now α γ=  and β δ=  because
they are pairs of alternate interior angles. We have

A = + = +γ δ α β

and B A A A= + + = + + =α β α β 2 .

FIG. P35.50
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P35.51 (a) We see the Sun moving from east to west across the sky. Its angular speed is

ω
θ π

= = = × −∆
∆t

2
7 27 10 5 rad

86 400 s
 rad s. .

The direction of sunlight crossing the cell from the window changes at this rate, moving on
the opposite wall at speed

v r= = × = × =− −ω 2 37 7 27 10 1 72 10 0 1725 4. . . . m  rad s  m s  mm sa fe j .

(b) The mirror folds into the cell the motion that would occur in a room twice as wide:

v r= = =ω 2 0 174 0 345. . mm s  mm sb g .

(c), (d) As the Sun moves southward and upward at 50.0°, we may regard the corner of the window
as fixed, and both patches of light move northward and downward at 50.0° .

*P35.52 (a) 45 0. ° as shown in the first figure to the right.

(b) Yes

If grazing angle is halved, the number of reflections from
the side faces is doubled. FIG. P35.52

P35.53 Horizontal light rays from the setting Sun pass
above the hiker. The light rays are twice refracted
and once reflected, as in Figure (b). The most
intense light reaching the hiker, that which
represents the visible rainbow, is located between
angles of 40° and 42° from the hiker’s shadow.

The hiker sees a greater percentage of the violet
inner edge, so we consider the red outer edge. The
radius R of the circle of droplets is

R = °=8 00 42 0 5 35. sin . . km  kma f .

Then the angle φ, between the vertical and the
radius where the bow touches the ground, is given
by

cos
. .

.φ = = =
2 00 2 00

0 374
 km  km

5.35 kmR

or φ = °68 1. .

The angle filled by the visible bow is
360 2 68 1 224°− × ° = °.a f
so the visible bow is 

224
360

62 2%
°
°
= .  of a circle .

Figure (a)

Figure (b)

FIG. P35.53
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P35.54 Light passing the top of the pole makes an angle of incidence
φ θ1 90 0= °−. . It falls on the water surface at distance from the pole

s
L d

1 =
−

tanθ
and has an angle of refraction φ 2  from 1 00 1 2. sin sinφ φ= n .
Then s d2 2= tanφ
and the whole shadow length is

s s
L d

d
n1 2

1 1+ =
−

+ F
HG
I
KJ

F
HG

I
KJ

−

tan
tan sin

sin
θ

φ

s s
L d

d
n1 2

1

12 00
40 0

2 00
40 0

1 33
3 79

+ =
−

+ F
HG
I
KJ

F
HG

I
KJ

=
°
+

°F
HG

I
KJ

F
HG

I
KJ =

−

−

tan
tan sin

cos

.
tan .

. tan sin
cos .

.
.

θ
θ

 m
 m  ma f FIG. P35.54

P35.55 As the beam enters the slab,

1 00 50 0 1 48 2. sin . . sin°= θ

giving θ 2 31 2= °. .
FIG. P35.55

The beam then strikes the top of the slab at x1
1 55

31 2
=

°
.

tan .
 mm

 from the left end. Thereafter, the beam

strikes a face each time it has traveled a distance of 2 1x  along the length of the slab. Since the slab is
420 mm long, the beam has an additional 420 1 mm − x  to travel after the first reflection. The number
of additional reflections is

420
2

1 55 31 2
3 10 31 2

81 51

1

 mm 420 mm  mm
 mm

−
=

− °
°

=
x

x
. tan .

. tan .
. or 81 reflections

since the answer must be an integer. The total number of reflections made in the slab is then 82 .

P35.56 (a)
′
=

−
+

L
NM

O
QP

=
−
+

L
NM

O
QP =

S
S

n n
n n

1

1

2 1

2 1

2 21 52 1 00
1 52 1 00

0 042 6
. .
. .

.

(b) If medium 1 is glass and medium 2 is air,
′
=

−
+

L
NM

O
QP

=
−
+

L
NM

O
QP =

S
S

n n
n n

1

1

2 1

2 1

2 21 00 1 52
1 00 1 52

0 042 6
. .
. .

. .

There is no difference .

P35.57 (a) With n1 1=
and n n2 =

the reflected fractional intensity is
′
=

−
+
F
HG
I
KJ

S
S

n
n

1

1

21
1

.

The remaining intensity must be transmitted:

S
S

n
n

n n

n

n n n n

n

n

n
2

1

2 2 2

2

2 2

2 21
1
1

1 1

1

2 1 2 1

1

4

1
= −

−
+
F
HG
I
KJ =

+ − −

+
=

+ + − + −

+
=

+

a f a f
a f a f a f .

continued on next page
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(b) At entry,
S
S

n
n

2

1

2

21
1
1

4 2 419

2 419 1
0 828= −

−
+
F
HG
I
KJ =

+
=

.

.
.

a f
a f .

At exit,
S
S

3

2
0 828= . .

Overall,
S
S

S
S

S
S

3

1

3

2

2

1

20 828 0 685=
F
HG
I
KJ
F
HG
I
KJ = =. .a f

or 68 5%. .

P35.58 Define T
n

n
=

+

4

1 2a f  as the transmission coefficient for one

encounter with an interface. For diamond and air, it is 0.828, as
in Problem 57.

As shown in the figure, the total amount transmitted is

T T T T T T T

T T n

2 2 2 2 4 2 6

2 2

1 1 1

1

+ − + − + −

+ + − +

a f a f a f
a f… …

We have 1 1 0 828 0 172− = − =T . .  so the total transmission is

0 828 1 0 172 0 172 0 1722 2 4 6. . . .a f a f a f a f+ + + +… .

To sum this series, define F = + + + +1 0 172 0 172 0 1722 4 6. . .a f a f a f … .

Note that 0 172 0 172 0 172 0 1722 2 4 6. . . .a f a f a f a fF = + + +… , and

1 0 172 1 0 172 0 172 0 1722 2 4 6+ = + + + + =. . . .a f a f a f a fF F… .

FIG. P35.58

Then, 1 0 172 2= −F F.a f  or F =
−

1

1 0 172 2.a f .

The overall transmission is then 
0 828

1 0 172
0 706

2

2

.

.
.

a f
a f−

=  or 70 6%. .

P35.59 Define n1  to be the index of refraction of the surrounding medium and n2  to
be that for the prism material. We can use the critical angle of 42.0° to find the

ratio 
n
n

2

1
:

n n2 142 0 90 0sin . sin .°= ° .

So,
n
n

2

1

1
42 0

1 49=
°
=

sin .
. .

Call the angle of refraction θ 2  at the surface 1. The ray inside the prism forms
a triangle with surfaces 1 and 2, so the sum of the interior angles of this
triangle must be 180°.

FIG. P35.59

Thus, 90 0 60 0 90 0 42 0 1802. . . .°− + °+ °− ° = °θb g a f .

Therefore, θ 2 18 0= °. .
Applying Snell’s law at surface 1, n n1 1 2 18 0sin sin .θ = °

sin sin . sin .θ θ1
2

1
2 1 49 18 0=

F
HG
I
KJ = °

n
n

θ 1 27 5= °. .
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*P35.60 (a) As the mirror turns through angle θ, the angle of incidence
increases by θ and so does the angle of reflection. The incident ray
is stationary, so the reflected ray turns through angle 2θ . The
angular speed of the reflected ray is 2ωm . The speed of the dot of

light on the circular wall is 2ωmR .

(b) The two angles marked θ in the figure to the right are equal
because their sides are perpendicular, right side to right side and
left side to left side.

We have cosθ =
+

=
d

x d

ds
dx2 2

and
ds
dt

x dm= +2 2 2ω .

So
dx
dt

ds
dt

x d
d

x d
dm=

+
=

+2 2 2 2

2ω .

FIG. P35.60

P35.61 (a) For polystyrene surrounded by air, internal reflection requires

θ 3
1 1 00

1 49
42 2= F

HG
I
KJ = °−sin

.

.
. .

Then from geometry, θ θ2 390 0 47 8= °− = °. . .

From Snell’s law, sin . sin . .θ 1 1 49 47 8 1 10= °= .

This has no solution.

Therefore, total internal reflection always happens .

(b) For polystyrene surrounded by water, θ 3
1 1 33

1 49
63 2= F

HG
I
KJ = °−sin

.

.
.

and θ 2 26 8= °. .

From Snell’s law, θ 1 30 3= °. .

FIG. P35.61

(c) No internal refraction is possible

since the beam is initially traveling in a medium of lower index of refraction.
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*P35.62 The picture illustrates optical sunrise. At the center of the earth,

cos
.

.
. .

φ

φ
θ

=
×

× +
= °
= − °= °

6 37 10
8 614

2 98
90 2 98 87 0

6

2

 m
6.37 10  m6

At the top of the atmosphere

n n1 1 2 2

1

1

1 1 000 293 87 0
87 4

sin sin
sin . sin .

.

θ θ
θ

θ

=
= °

= °

δ
1

2

θ1

θ2

φ

FIG. P35.62

Deviation upon entry is

δ θ θ
δ
= −

= °− °= °
1 2

87 364 87 022 0 342. . .

Sunrise of the optical day is before geometric sunrise by 0 342
86 400

82 2. .°
°

F
HG

I
KJ =

 s
360

 s. Optical sunset

occurs later too, so the optical day is longer by 164 s .

P35.63 tan
.

θ 1
4 00

=
 cm

h

and tan
.

θ 2
2 00

=
 cm

h

tan . tan . tan2
1 2

2 2
22 00 4 00θ θ θ= =b g

sin
sin

.
sin

sin

2
1

2
1

2
2

2
21

4 00
1

θ
θ

θ
θ−

=
−

F
HG

I
KJ . (1)

Snell’s law in this case is: n n1 1 2 2sin sinθ θ=

sin . sinθ θ1 21 333= .

Squaring both sides, sin . sin2
1

2
21 777θ θ= . (2)

Substituting (2) into (1),
1 777

1 1 777
4 00

1

2
2

2
2

2
2

2
2

. sin
. sin

.
sin

sin
θ
θ

θ
θ−

=
−

F
HG

I
KJ .

Defining x = sin2 θ ,
0 444

1 1 777
1

1
.
.−

=
−x x .

FIG. P35.63

Solving for x, 0 444 0 444 1 1 777. . .− = −x x and x = 0 417. .

From x we can solve for θ 2 : θ 2
1 0 417 40 2= = °−sin . . .

Thus, the height is h = =
°
=

2 00 2 00
40 2

2 36
2

.
tan

.
tan .

.
 cm  cm

 cm
θ

.
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P35.64 δ θ θ= − = °1 2 10 0. and n n1 1 2 2sin sinθ θ=

with n1 1= , n2
4
3

= .

Thus, θ θ θ1
1

2 2
1

2 1 10 0= = − °− −sin sin sin sin .n nb g b g .

(You can use a calculator to home in on an approximate solution to this equation, testing different
values of θ 1  until you find that θ 1 36 5= °. . Alternatively, you can solve for θ 1  exactly, as shown

below.)

We are given that sin sin .θ θ1 1
4
3

10 0= − °b g .

This is the sine of a difference, so
3
4

10 0 10 01 1 1sin sin cos . cos sin .θ θ θ= °− ° .

Rearranging, sin . cos cos . sin10 0 10 0
3
41 1° = °−F

HG
I
KJθ θ

sin .
cos . .

tan
10 0

10 0 0 750 1
°

°−
= θ  and θ 1

1 0 740 36 5= = °−tan . .a f .

P35.65 To derive the law of reflection, locate point O so that the time of travel
from point A to point B will be minimum.

The total light path is L a b= +sec secθ θ1 2 .

The time of travel is t
v

a b= FHG
I
KJ +

1
1 2sec secθ θb g .

If point O is displaced by dx, then

FIG. P35.65

dt
v

a d b d= FHG
I
KJ + =

1
01 1 1 2 2 2sec tan sec tanθ θ θ θ θ θb g (1)

(since for minimum time dt = 0 ).

Also, c d a b+ = + =tan tanθ θ1 2 constant

so, a d b dsec sec2
1 1

2
2 2 0θ θ θ θ+ = . (2)

Divide equations (1) and (2) to find θ θ1 2= .
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P35.66 Observe in the sketch that the angle of incidence at point P is γ, and
using triangle OPQ:

sinγ =
L
R

.

Also, cos sinγ γ= − =
−

1 2
2 2R L
R

.

Applying Snell’s law at point P, 1 00. sin sinγ φ= n .

Thus, sin
sin

φ
γ

= =
n

L
nR

and cos sinφ φ= − =
−

1 2
2 2 2n R L

nR
.

FIG. P35.66

From triangle OPS, φ α γ+ + ° + °− = °90 0 90 0 180. .a f b g  or the angle of incidence at point S is α γ φ= − .

Then, applying Snell’s law at point S

gives 1 00. sin sin sinθ α γ φ= = −n n b g

or sin sin cos cos sinθ γ φ γ φ= − = FHG
I
KJ

−
−

− F
HG
I
KJ

L
N
MM

O
Q
PPn n

L
R

n R L
nR

R L
R

L
nR

2 2 2 2 2

sinθ = − − −FH IK
L

R
n R L R L2

2 2 2 2 2

and θ = − − −FH IKL
NM

O
QP

−sin 1
2

2 2 2 2 2L
R

n R L R L .

P35.67 As shown in the sketch, the angle of incidence at point A is:

θ = F
HG
I
KJ =

F
HG

I
KJ = °− −sin sin

.
.1 12 1 00

30 0
d
R

 m
2.00 m

.

If the emerging ray is to be parallel to the incident ray, the path
must be symmetric about the centerline CB of the cylinder. In
the isosceles triangle ABC,

γ α= and β θ= °−180 .

Therefore, α β γ+ + = °180

becomes 2 180 180α θ+ °− = °

or α
θ

= = °
2

15 0. .

Then, applying Snell’s law at point A,

n sin . sinα θ= 1 00

or n = =
°
°
=

sin
sin

sin .
sin .

.
θ
α

30 0
15 0

1 93 .

FIG. P35.67



Chapter 35     341

*P35.68 (a) The apparent radius of the glowing sphere
is R3  as shown. For it

sin

sin

sin sin

θ

θ

θ θ

1
1

2

2
3

2

1 2

1

2

3

2
3 1

1

=

=

=

= =

R
R
R
R

n

n
R
R

R
R

R nR

R1

R2

R3
θ1

θ2

FIG. P35.68(a)

(b) If nR R1 2> , then sinθ 2  cannot be equal to
nR
R

1

2
. The ray considered in part (a)

undergoes total internal reflection. In this
case a ray escaping the atmosphere as
shown here is responsible for the apparent
radius of the glowing sphere and

R R3 2= .

R3

FIG. P35.68(b)

P35.69 (a) At the boundary of the air and glass, the critical angle is given by

sinθ c n
=

1
.

Consider the critical ray PBB′ : tanθ c
d

t
=

4
 or 

sin
cos

θ
θ

c

c

d
t

=
4

.

Squaring the last equation gives:
sin
cos

sin
sin

2

2

2

2

2

1 4
θ
θ

θ
θ

c

c

c

c

d
t

=
−

= FHG
I
KJ .

t
n

P

B

B'

θc

air

d

d /4

FIG. P35.69

Since sinθ c n
=

1
, this becomes

1
1 42

2

n
d
t−

= FHG
I
KJ  or n

t
d

= + FHG
I
KJ1

4 2

.

(b) Solving for d, d
t

n
=

−

4

12
.

Thus, if n = 1 52.  and t = 0 600.  cm , d =
−

=
4 0 600

1 52 1
2 10

2

.

.
.

 cm
 cm

a f
a f

.

(c) Since violet light has a larger index of refraction, it will lead to a smaller critical angle and
the inner edge of the white halo will be tinged with violet  light.
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P35.70 From the sketch, observe that the angle of
incidence at point A is the same as the
prism angle θ at point O. Given that
θ = °60 0. , application of Snell’s law at
point A gives

1 50 1 00 60 0. sin . sin .β = °  or β = °35 3. .

From triangle AOB, we calculate the angle
of incidence (and reflection) at point B.

FIG. P35.70

θ β γ= °− + °− = °90 0 90 0 180. .b g b g  so γ θ β= − = °− °= °60 0 35 3 24 7. . . .

Now, using triangle BCQ: 90 0 90 0 90 0 180. . .°− + °− + °− = °γ δ θb g b g a f .

Thus the angle of incidence at point C is δ θ γ= °− − = °− °= °90 0 30 0 24 7 5 30. . . .a f .

Finally, Snell’s law applied at point C gives 1 00 1 50 5 30. sin . sin .φ = °

or φ = ° = °−sin . sin . .1 1 50 5 30 7 96a f .

P35.71 (a) Given that θ 1 45 0= °.  and θ 2 76 0= °. .

Snell’s law at the first surface gives

n sin . sin .α = °1 00 45 0 (1)

Observe that the angle of incidence at the second
surface is

β α= °−90 0. .

Thus, Snell’s law at the second surface yields

n nsin sin . . sin .β α= °− = °90 0 1 00 76 0a f
or n cos sin .α = °76 0 . (2)

FIG. P35.71

Dividing Equation (1) by Equation (2), tan
sin .
sin .

.α =
°
°
=

45 0
76 0

0 729

or α = °36 1. .

Then, from Equation (1), n =
°
=

°
°
=

sin .
sin

sin .
sin .

.
45 0 45 0

36 1
1 20

α
.

(b) From the sketch, observe that the distance the light travels in the plastic is d
L

=
sinα

. Also,

the speed of light in the plastic is v
c
n

= , so the time required to travel through the plastic is

∆t
d
v

nL
c

= = =
× °

= × =−

sin
. .

. sin .
. .

α
1 20 0 500

3 00 10 36 1
3 40 10 3 40

8
9 m

 m s
 s  ns

a f
e j

.
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P35.72
sin sin

sin
sin

θ θ
θ
θ1 2

1

2

0.174
0.342
0.500
0.643
0.766
0.866
0.940
0.985

0.131
0.261
0.379
0.480
0.576
0.647
0.711
0.740

1.330 4
1.312 9
1.317 7
1.338 5
1.328 9
1.339 0
1.322 0
1.331 5

The straightness of the graph line demonstrates Snell’s
proportionality.

The slope of the line is n = ±1 327 6 0 01. .

and n = ±1 328 0 8%. . .

FIG. P35.72

ANSWERS TO EVEN PROBLEMS

P35.2 227 Mm s P35.30 (a) 41 5. ° ; (b) 18 5. °; (c) 27 6. ° ; (d) 42 6. °

P35.32 (a) see the solution; (b) 37 2. ° ; (c) 37 3. ° ;P35.4 (a) see the solution; (b) 300 Mm s
(d) 37 3. °

P35.6 (a) 1 94.  m; (b) 50 0. °  above the horizontal :
antiparallel to the incident ray P35.34 sin sin cos− − −FH IK1 2 1n Φ Φ

P35.8 five times by the right-hand mirror and
six times by the left-hand mirror

P35.36 (a) 24 4. ° ; (b) 37 0. ° ; (c) 49 8. °

P35.38 67 2.
P35.10 25 5. ° ; 442 nm

P35.40 (a) 
nd

n − 1
; (b) yes; (c) 350 mµP35.12 (a) 474 THz ; (b) 422 nm; (c) 200 Mm s

P35.14 22 5. ° P35.42 (a) 10 7. °; (b) air; (c) Sound falling on the
wall from most directions is 100%
reflected.P35.16 (a) 181 Mm s; (b) 225 Mm s;

(c) 136 Mm s
P35.44 54 8. °  east of north

P35.18 3 39.  m
P35.46 (a) 

h
c

n +F
HG
I
KJ

1
2

; (b) larger by 
n + 1

2
 times

P35.20 θ 1
1= −tan n

P35.48 see the solution
P35.22 106 ps

P35.50 see the solution
P35.24 23.1°

P35.52 (a) 45 0. ° ; (b) yes; see the solution
P35.26 (a) 58 9. ° ; (b) Only if θ θ1 2 0= =

P35.54 3 79.  m
P35.28 see the solution
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P35.56 (a) 0 042 6. ; (b) no difference
P35.66 θ = − − −FH IK

L
NM

O
QP

−sin 1
2

2 2 2 2 2L
R

n R L R L

P35.58 0 706.
P35.68 (a) nR1 ; (b) R2

P35.60 (a) 2ωmR ; (b) 2
2 2

ωm
x d

d
+

P35.70 7 96. °

P35.62 164 s P35.72 see the solution; n = ±1 328 0 8%. .

P35.64 36 5. °
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Image Formation

ANSWERS TO QUESTIONS

Q36.1 The mirror shown in the textbook picture produces an inverted
image. It actually reverses top and bottom. It is not true in the
same sense that “Most mirrors reverse left and right.” Mirrors
don’t actually flip images side to side—we just assign the labels
“left” and “right” to images as if they were real people
mimicking us. If you stand face to face with a real person and
raise your left hand, then he or she would have to raise his or
her right hand to “mirror” your movement. Try this while
facing a mirror. For sake of argument, let’s assume you are
facing north and wear a watch on your left hand, which is on
the western side. If you raise your left hand, you might say that
your image raises its right hand, based on the labels we assign
to other people. But your image raises its western-side hand,
which is the hand with the watch.

Q36.2 With a concave spherical mirror, for objects beyond the focal length the image will be real and
inverted. For objects inside the focal length, the image will be virtual, upright, and magnified. Try a
shaving or makeup mirror as an example.

Q36.3 With a convex spherical mirror, all images of real objects are upright, virtual and smaller than the
object. As seen in Question 36.2, you only get a change of orientation when you pass the focal
point—but the focal point of a convex mirror is on the non-reflecting side!

Q36.4 The mirror equation and the magnification equation apply to plane mirrors. A curved mirror is
made flat by increasing its radius of curvature without bound, so that its focal length goes to infinity.

From 
1 1 1

0
p q f

+ = =  we have 
1 1
p q

= − ; therefore, p q= − . The virtual image is as far behind the mirror

as the object is in front. The magnification is M
q
p

p
p

= − = = 1 . The image is right side up and actual

size.

Q36.5 Stones at the bottom of a clear stream always appears closer to the surface because light is refracted
away from the normal at the surface. Example 36.8 in the textbook shows that its apparent depth is
three quarters of its actual depth.

345
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Q36.6 For definiteness, we consider real objects (p > 0 ).

(a) For M
q
p

= −  to be negative, q must be positive. This will happen in 
1 1 1
q f p

= −  if p f> , if the

object is farther than the focal point.

(b) For M
q
p

= −  to be positive, q must be negative.

From 
1 1 1
q f p

= −  we need p f< .

(c) For a real image, q must be positive.
As in part (a), it is sufficient for p to be larger than f.

(d) For q < 0  we need p f< .

(e) For M > 1, we consider separately M < −1  and M > 1 .

If M
q
p

= − < −1, we need
q
p

> 1 or q p>

or
1 1
q p

<

From 
1 1 1
p q f

+ = ,
1 1 1
p p f

+ > or
2 1
p f

>

or
p

f
2

< or p f< 2 .

Now if − >
q
p

1 or − >q p or q p< −

we may require q < 0 , since then
1 1 1
p f q

= − with
1

0
f

>

gives 
1 1
p q

> −  as required or − >p q.

For q < 0  in 
1 1 1
q f p

= −  we need p f< .

Thus the overall condition for an enlarged image is simply p f< 2 .

(f) For M < 1, we have the reverse of part (e), requiring p f> 2 .

Q36.7 Using the same analysis as in Question 36.6 except f < 0 .

(a) Never.

(b) Always.

(c) Never, for light rays passing through the lens will always diverge.

(d) Always.

(e) Never.

(f) Always.
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Q36.8 We assume the lens has a refractive index higher than its surroundings. For the biconvex lens in

Figure 36.27(a), R1 0>  and R2 0< . Then all terms in n
R R

− −
F
HG

I
KJ1

1 1

1 2
a f  are positive and f > 0 . For the

other two lenses in part (a) of the figure, R1  and R2  are both positive but R1  is less than R2 . Then
1 1

1 2R R
>  and the focal length is again positive.

For the biconcave lens and the plano-concave lens in Figure 36.27(b), R1 0<  and R2 0> . Then

both terms are negative in 
1 1

1 2R R
−  and the focal length is negative. For the middle lens in part (b)

of the figure, R1  and R2  are both positive but R1  is greater than R2 . Then 
1 1

1 2R R
<  and the focal

length is again negative.

Q36.9 Both words are inverted. However OXIDE has up-down symmetry whereas LEAD does not.

Q36.10 An infinite number. In general, an infinite number
of rays leave each point of any object and travel in
all directions. Note that the three principal rays
that we use for imaging are just a subset of the
infinite number of rays. All three principal rays can
be drawn in a ray diagram, provided that we
extend the plane of the lens as shown in
Figure Q36.10.

I
O F

F

FIG. Q36.10

Q36.11 In this case, the index of refraction of the lens material is less than that of the surrounding medium.
Under these conditions, a biconvex lens will be diverging.

Q36.12 Chromatic aberration arises because a material medium’s refractive index can be frequency
dependent. A mirror changes the direction of light by reflection, not refraction. Light of all
wavelengths follows the same path according to the law of reflection, so no chromatic aberration
happens.

Q36.13 This is a convex mirror. The mirror gives the driver a wide field of view and an upright image with
the possible disadvantage of having objects appear diminished. Your brain can then interpret them
as farther away than the objects really are.

Q36.14 As pointed out in Question 36.11, if the converging lens is immersed in a liquid with an index of
refraction significantly greater than that of the lens itself, it will make light from a distant source
diverge. This is not the case with a converging (concave) mirror, as the law of reflection has nothing
to do with the indices of refraction.
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Q36.15 As in the diagram, let the center of curvature C of the fishbowl
and the bottom of the fish define the optical axis, intersecting
the fishbowl at vertex V. A ray from the top of the fish that
reaches the bowl surface along a radial line through C has
angle of incidence zero and angle of refraction zero. This ray
exits from the bowl unchanged in direction. A ray from the top
of the fish to V is refracted to bend away from the normal. Its
extension back inside the fishbowl determines the location of
the image and the characteristics of the image. The image is
upright, virtual, and enlarged.

C O I
V

FIG. Q36.15

Q36.16 Because when you look at the  in your rear view mirror, the apparent left-right
inversion clearly displays the name of the AMBULANCE behind you. Do not jam on your brakes
when a MIAMI city bus is right behind you.

Q36.17 The entire image is visible, but only at half the intensity. Each point on the object is a source of rays
that travel in all directions. Thus, light from all parts of the object goes through all unblocked parts
of the lens and forms an image. If you block part of the lens, you are blocking some of the rays, but
the remaining ones still come from all parts of the object.

Q36.18 With the meniscus design, when you direct your gaze near the outer circumference of the lens you
receive a ray that has passed through glass with more nearly parallel surfaces of entry and exit.
Thus, the lens minimally distorts the direction to the object you are looking at. If you wear glasses,
turn them around and look through them the wrong way to maximize this distortion.

Q36.19 The eyeglasses on the left are diverging lenses that correct for nearsightedness. If you look carefully
at the edge of the person’s face through the lens, you will see that everything viewed through these
glasses is reduced in size. The eyeglasses on the right are converging lenses, which correct for
farsightedness. These lenses make everything that is viewed through them look larger.

Q36.20 The eyeglass wearer’s eye is at an object distance from the lens that is quite small—the eye is on the
order of 10 2−  meter from the lens. The focal length of an eyeglass lens is several decimeters, positive
or negative. Therefore the image distance will be similar in magnitude to the object distance. The
onlooker sees a sharp image of the eye behind the lens. Look closely at the left side of Figure Q36.19
and notice that the wearer’s eyes seem not only to be smaller, but also positioned a bit behind the
plane of his face—namely where they would be if he was not wearing glasses. Similarly, in the right
half of Figure Q36.19, his eyes seem to be in front of the plane of his face and magnified. We as
observers take this light information coming from the object through the lens and perceive or
photograph the image as if it were an object.

Q36.21 In the diagram, only two of the three principal rays have
been used to locate images to reduce the amount of visual
clutter. The upright shaded arrows are the objects, and the
correspondingly numbered inverted arrows are the images.
As you can see, object 2 is closer to the focal point than
object 1, and image 2 is farther to the left than image 1. I

V

F
C

O1 O2

1I2

FIG. Q36.21
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Q36.22 Absolutely. Only absorbed light, not transmitted light, contributes internal energy to a transparent
object. A clear lens can stay ice-cold and solid as megajoules of light energy pass through it.

Q36.23 One can change the f number either by changing the focal length (if using a “zoom” lens) or by
changing the aperture of the camera lens. As the f number increases, the exposure time required
increases also, as both increasing the focal length or decreasing the aperture decreases the light
intensity reaching the film.

Q36.24 Make the mirror an efficient reflector (shiny). Make it reflect to the image even rays far from the axis,
by giving it a parabolic shape. Most important, make it large in diameter to intercept a lot of solar
power. And you get higher temperature if the image is smaller, as you get with shorter focal length;
and if the furnace enclosure is an efficient absorber (black).

Q36.25 For the explanation, we ignore the lens and consider two objects. Hold your two thumbs parallel
and extended upward in front of you, at different distances from your nose. Alternately close your
left eye and your right eye. You see both thumbs jump back and forth against the background of
more distant objects. Parallax by definition is this apparent motion of a stationary object (one
thumb) caused by motion of the observer (jumping from right eye to left eye). Your nearer thumb
jumps by a larger angle against the background than your farther thumb does. They will jump by
the same amount only if they are equally distant from your face. The method of parallax for
adjusting one object so that it is the same distance away from you as another object will work even if
one ’object’ is an image.

Q36.26 The artist’s statements are accurate, perceptive, and eloquent. The image you see is “almost one’s
whole surroundings,” including things behind you and things farther in front of you than the globe
is, but nothing eclipsed by the opaque globe or by your head. For example, we cannot see Escher’s
index and middle fingers or their reflections in the globe.

The point halfway between your eyes is indeed the focus in a figurative sense, but it is not an
optical focus. The principal axis will always lie in a line that runs through the center of the sphere
and the bridge of your nose. Outside the globe, you are at the center of your observable universe. If
you wink at the ball, the center of the looking-glass world hops over to the location of the image of
your open eye.

Q36.27 The three mirrors, two of which are shown as M
and N in the figure to the right, reflect any incident
ray back parallel to its original direction. When you
look into the corner you see image I3  of yourself.

FIG. Q36.21
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Q36.28 You have likely seen a Fresnel mirror for sound.
The diagram represents first a side view of a band
shell. It is a concave mirror for sound, designed to
channel sound into a beam toward the audience in
front of the band shell. Sections of its surface can
be kept at the right orientations as they are pushed
around inside a rectangular box to form an
auditorium with good diffusion of sound from
stage to audience, with a floor plan suggested by
the second part of the diagram.

FIG. Q36.28

SOLUTIONS TO PROBLEMS

Section 36.1 Images Formed by Flat Mirrors

P36.1 I stand 40 cm from my bathroom mirror. I scatter light, which travels to the mirror and back to me in
time

0 8
3 10

108
9.

~
 m
 m s

 s
×

−

showing me a view of myself as I was at that look-back time. I’m no Dorian Gray!

P36.2 The virtual image is as far behind the mirror as the choir is in front
of the mirror. Thus, the image is 5.30 m behind the mirror. The
image of the choir is 0 800 5 30 6 10. . . m  m  m+ =  from the organist.
Using similar triangles:

′
=

h
0 600

6 10
.

.
 m

 m
0.800 m

or ′ = F
HG

I
KJ =h 0 600

6 10
4 58.

.
. m

 m
0.800 m

 ma f .

h'

South
image of choir

mirror

0.600 m

5.30 m
0.800 m

Organist

View Looking Down

FIG. P36.2
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P36.3 The flatness of the mirror is described

by R = ∞ , f = ∞

and
1

0
f

= .

By our general mirror equation,

1 1 1
0

p q f
+ = =

or q p= − .

FIG. P36.3

Thus, the image is as far behind the mirror as the person is in front. The magnification is then

M
q

p
h
h

=
−

= =
′

1

so ′ = =h h 70 0.  inches .

The required height of the mirror is defined by the triangle from the person’s eyes to the top and
bottom of his image, as shown. From the geometry of the triangle, we see that the mirror height
must be:

′
−
F
HG
I
KJ = ′
F
HG
I
KJ =

′
h

p
p q

h
p
p

h
2 2

.

Thus, the mirror must be at least 35.0 inches high .

P36.4 A graphical construction produces 5 images, with images I1  and I2

directly into the mirrors from the object O,

and O I I, ,3 4b g
and I I I2 1 5, ,b g
forming the vertices of equilateral triangles.

FIG. P36.4

P36.5 (1) The first image in the left mirror is 5.00 ft behind the mirror, or 10 0.  ft  from the position of

the person.

(2) The first image in the right mirror is located 10.0 ft behind the right mirror, but this location
is 25.0 ft from the left mirror. Thus, the second image in the left mirror is 25.0 ft behind the
mirror, or 30 0.  ft  from the person.

(3) The first image in the left mirror forms an image in the right mirror. This first image is 20.0 ft
from the right mirror, and, thus, an image 20.0 ft behind the right mirror is formed. This
image in the right mirror also forms an image in the left mirror. The distance from this
image in the right mirror to the left mirror is 35.0 ft. The third image in the left mirror is,
thus, 35.0 ft behind the mirror, or 40 0.  ft  from the person.



352     Image Formation

*P36.6 (a) The flat mirrors have

R → ∞

and f → ∞ .

The upper mirror M1

produces a virtual, actual
sized image I1  according
to

1 1 1 1
0

1 1

1 1

p q f
q p

+ = =
∞

=

= −

with M
q
p1

1

1
1= − = + .

As shown, this image is
above the upper mirror. It
is the object for mirror
M 2 , at object distance

p p h2 1= + .

The lower mirror
produces a virtual, actual-
size, right-side-up image
according to

FIG. P36.6

1 1
0

2 2

2 2 1

p q

q p p h

+ =

= − = − +b g

with M
q
p2

2

2
1= − = +  and M M Moverall = =1 2 1.

Thus the final image is at distance p h1 +  behind the lower mirror.

(b) It is virtual .

(c) Upright

(d) With magnification +1 .

(e) It does not appear to be reversed  left and right. In a top view of the periscope, parallel

rays from the right and left sides of the object stay parallel and on the right and left.
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Section 36.2 Images Formed by Spherical Mirrors

P36.7 For a concave mirror, both R and f are positive.

We also know that f
R

= =
2

10 0.  cm .

(a)
1 1 1 1

10 0
1

40 0
3

40 0q f p
= − = − =

. . . cm  cm  cm

and q = 13 3.  cm

M
q
p

= = − = −
13 3

0 333
.

.
 cm

40.0 cm
.

The image is 13.3 cm in front of the mirror, real,  and inverted .

(b)
1 1 1 1

10 0
1

20 0
1

20 0q f p
= − = − =

. . . cm  cm  cm

and q = 20 0.  cm

M
q
p

= = − = −
20 0

1 00
.

.
 cm

20.0 cm
.

The image is 20.0 cm in front of the mirror, real,  and inverted .

(c)
1 1 1 1

10 0
1

10 0
0

q f p
= − = − =

. . cm  cm

Thus, q = infinity.

No image is formed . The rays are reflected parallel to each other.

P36.8
1 1 1 1

0 275
1

10 0q f p
= − = − −

. . m  m
gives q = −0 267.  m .

Thus, the image is virtual .

M
q

p
=

−
= −

−
=

0 267
10 0

0 026 7
.
.

.
 m

Thus, the image is upright +Ma f and diminished M < 1c h .
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P36.9 (a)
1 1 2
p q R

+ = gives
1

30 0
1 2

40 0. . cm  cm
+ =

−q a f
1 2

40 0
1

30 0
0 083 3 1

q
= − − = − −

. .
.

 cm  cm
 cm so q = −12 0.  cm

M
q

p
=

−
= −

−
=

12 0
30 0

0 400
.

.
.

 cm
 cm

a f
.

(b)
1 1 2
p q R

+ = gives
1

60 0
1 2

40 0. . cm  cm
+ =

−q a f
1 2

40 0
1

60 0
0 066 6 1

q
= − − = − −

. .
.

 cm  cm
 cm so q = −15 0.  cm

M
q

p
=

−
= −

−
=

15 0
60 0

0 250
.

.
.

 cm
 cm

a f
.

(c) Since M > 0 , the images are upright .

P36.10 With radius 2.50 m, the cylindrical wall is a highly efficient mirror for sound, with focal length

f
R

= =
2

1 25.  m .

In a vertical plane the sound disperses as usual, but that radiated in a horizontal plane is
concentrated in a sound image at distance q from the back of the niche, where

1 1 1
p q f

+ = so
1

2 00
1 1

1 25. . m  m
+ =

q

q = 3 33.  m .

P36.11 (a)
1 1 2
p q R

+ = becomes
1 2

60 0
1

90 0q
= −

. . cm  cm

q = 45 0.  cm and M
q

p
=

−
= − = −

45 0
0 500

.
.

 cm
90.0 cm

.

(b)
1 1 2
p q R

+ = becomes
1 2

60 0
1

20 0q
= −

. . cm  cm

q = −60 0.  cm and M
q

p
=

−
= −

−
=

60 0
20 0

3 00
.

.
.

 cm
 cm

a f
a f .

(c) The image (a) is real, inverted and diminished. That of (b) is
virtual, upright, and enlarged. The ray diagrams are similar
to Figure 36.15(a) and 36.15(b) in the text, respectively. FIG. P36.11
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P36.12 For a concave mirror, R and f are positive. Also, for an erect image, M is positive. Therefore,

M
q
p

= − = 4  and q p= −4 .

1 1 1
f p q

= +  becomes 
1

40 0
1 1

4
3
4.  cm

= − =
p p p

; from which, p = 30 0.  cm .

*P36.13 The ball is a convex mirror with R = −4 25.  cm and

f
R

= = −
2

2 125.  cm. We have

M
q
p

= = −
3
4

q p= −
3
4

1 1 1
p q f

+ =

1 1
3 4

1
2 125p p

+
−

=
−b g .  cm

3
3

4
3

1
2 125p p

− =
− .  cm

3 2 125p = .  cm

p = 0 708.  cm  in front of the sphere.

The image is upright, virtual, and diminished.

O I F C

FIG. P36.13

*P36.14 (a) M
q
p

= − = −4 q p= 4

q p p p− = = −0 60 4.  m p = 0 2.  m q = 0 8.  m

1 1 1 1
0 2

1
0 8f p q

= + = +
. . m  m

f = 160 mm

(b) M
q
p

= + = −
1
2

p q= −2

q p q p q q+ = = − + = − −0 20 2.  m

q = −66 7.  mm p = 133 mm

1 1 2 1
0 133

1
0 066 7p q R

+ = = +
−. . m  m

R = −267 mm
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*P36.15 M
q
p

= −

q Mp

p q f R

R

R

= − = − = −

+ = =

+
−

=

=
−

= −−

0 013 30 0 39
1 1 1 2

1
30

1
0 39

2

2
2 53

0 7901

. .

.

.
.

 cm  cm

 cm  cm

 m
 cm

a f

FIG. P36.15

The cornea is convex, with radius of curvature 0 790.  cm .

*P36.16 With

M
h
h

q
p

=
′

=
+

= + = −
4 00

0 400
.

.
 cm

10.0 cm
q p= −0 400.

the image must be virtual.

(a) It is a convex  mirror that produces a diminished upright virtual image.

(b) We must have

p q p q+ = = −42 0.  cm

p q= +42 0.  cm

p p= −42 0 0 400. . cm

p = =
42 0

30 0
.

.
 cm

1.40
 cm

The mirror is at the 30.0 cm mark .

(c)
1 1 1 1

30
1

0 4 30
1

0 050 0
p q f f

+ = = +
−

= = −
 cm  cm

cm
.

.a f f = −20 0.  cm

The ray diagram looks like Figure 36.15(c) in the text.

P36.17 (a) q p= + 5 00.  mb g  and, since the image must be real,

M
q
p

= − = −5 or q p= 5 .

Therefore, p p+ =5 00 5.  m

or p = 1 25.  m and q = 6 25.  m .

From
1 1 2
p q R

+ = , R
pq

p q
=

+
=

+

=

2 2 1 25 6 25
1 25 6 25

2 08

. .
. .

.

a fa f

a f m concave

FIG. P36.17

(b) From part (a), p = 1 25.  m ; the mirror should be 1 25.  m  in front of the object.
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P36.18 Assume that the object distance is the same in both cases (i.e., her face is the same distance from the
hubcap regardless of which way it is turned). Also realize that the near image ( q = −10 0.  cm ) occurs
when using the convex side of the hubcap. Applying the mirror equation to both cases gives:

(concave side: R R= , q = −30 0.  cm )
1 1

30 0
2

p R
− =

.

or
2 30 0

30 0R
p
p

=
−.

.
 cm
 cma f (1)

(convex side: R R= − , q = −10 0.  cm )
1 1

10 0
2

p R
− = −

.

or
2 10 0

10 0R
p

p
=

− .
.

 cm
 cma f . (2)

(a) Equating Equations (1) and (2) gives:

30 0
3 00

10 0
.

.
.

 cm
 cm

−
= −

p
p

or p = 15 0.  cm .

Thus, her face is 15 0.  cm  from the hubcap.

(b) Using the above result ( p = 15 0.  cm ) in Equation (1) gives:

2 30 0 15 0
15 0R

=
−. .

.
 cm  cm

30.0 cm  cma fa f
or

2 1
30 0R

=
.  cm

and R = 60 0.  cm .

The radius of the hubcap is 60 0.  cm .

*P36.19 (a) The flat mirror produces an image according to

1 1 1 2
p q f R

+ = =
1

24
1 1

0
 cm

+ =
∞

=
q

q = −24 0.  m.

The image is 24.0 m behind the mirror, distant from your eyes by

1 55 24 0 25 6. . . m  m  m+ = .

(b) The image is the same size as the object, so θ = = =
h
d

1 50
0 058 7

.
.

 m
25.6 m

 rad .

(c)
1 1 2
p q R

+ =
1

24
1 2

2 m  m
+ =

−q a f q =
− −

= −
1

1 1 1 24
0 960

 m  m
 mb g b g .

This image is distant from your eyes by 1 55 0 960 2 51. . . m  m  m+ = .

continued on next page
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(d) The image size is given by M
h
h

q
p

=
′

= − ′ = − = −
−F
HG

I
KJ =h h

q
p

1 50
0 960

0 060 0.
.

. m
 m

24 m
 m.

So its angular size at your eye is ′ =
′

= =θ
h
d

0 06
0 023 9

.
.

 m
2.51 m

 rad .

(e) Your brain assumes that the car is 1.50 m high and calculate its distance as

′ =
′

= =d
h

θ
1 50

62 8
.

.
 m

0.023 9
 m .

P36.20 (a) The image starts from a point whose height above the mirror vertex is given by

1 1 1 2
p q f R

+ = =
1

3 00
1 1

0 500. . m  m
+ =

q
. Therefore, q = 0 600.  m.

As the ball falls, p decreases and q increases. Ball and image pass when q p1 1= . When this is
true,

1 1 1
0 500

2

1 1 1p p p
+ = =

.  m
or p1 1 00= .  m.

As the ball passes the focal point, the image switches from infinitely far above the mirror to
infinitely far below the mirror. As the ball approaches the mirror from above, the virtual
image approaches the mirror from below, reaching it together when p q2 2 0= = .

(b) The falling ball passes its real image when it has fallen

3 00 1 00 2 00
1
2

2. . . m  m  m− = = gt , or when t = =
2 2 00

9 80
0 639

.

.
.

 m

 m s
 s2

a f
.

The ball reaches its virtual image when it has traversed

3 00 0 3 00
1
2

2. . m  m− = = gt , or at t = =
2 3 00

9 80
0 782

.

.
.

 m

 m s
 s2

a f
.

Section 36.3 Images Formed by Refraction

P36.21
n
p

n
q

n n
R

1 2 2 1 0+ =
−

=  and R → ∞

q
n
n

p= − = − = −2

1

1
1 309

50 0 38 2
.

. . cm  cma f

Thus, the virtual image of the dust speck is 38 2.  cm below the top surface  of the ice.
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P36.22 When R → ∞ , the equation describing image formation at a single refracting surface becomes

q p
n
n

= −
F
HG
I
KJ

2

1
. We use this to locate the final images of the two surfaces of the glass plate. First, find

the image the glass forms of the bottom of the plate.

qB1
1 33
1 66

8 00 6 41= −FHG
I
KJ = −

.

.
. . cm  cma f

This virtual image is 6.41 cm below the top surface of the glass of 18.41 cm below the water surface.
Next, use this image as an object and locate the image the water forms of the bottom of the plate.

qB2
1 00
1 33

18 41 13 84= −FHG
I
KJ = −

.

.
. . cm  cma f or 13.84 cm below the water surface.

Now find image the water forms of the top surface of the glass.

q3
1

1 33
12 0 9 02= −FHG
I
KJ = −

.
. . cm  cma f or 9.02 cm below the water surface.

Therefore, the apparent thickness of the glass is ∆t = − =13 84 9 02 4 82. . . cm  cm  cm .

P36.23 From Equation 36.8
n
p

n
q

n n
R

1 2 2 1+ =
−

.

Solve for q to find q
n Rp

p n n n R
=

− −
2

2 1 1b g .

In this case, n1 1 50= . , n2 1 00= . , R = −15 0.  cm

and p = 10 0.  cm .

So q =
−

− − −
= −

1 00 15 0 10 0
10 0 1 00 1 50 1 50 15 0

8 57
. . .

. . . . .
.

a fa fa f
a fa f a fa f

 cm  cm
 cm  cm

 cm .

Therefore, the apparent depth is 8.57 cm .

P36.24
n
p

n
q

n n
R

1 2 2 1+ =
−

so
1 00 1 40

21 0
1 40 1 00
6 00

. .
.

. .
.∞

+ =
−

 mm  mm

and 0 066 7 0 066 7. .= .

They agree. The image is inverted,  real and diminished.

P36.25
n
p

n
q

n n
R

1 2 2 1+ =
−

becomes
1 00 1 50 1 50 1 00

6 00
1

12 0
. . . .

. .p q
+ =

−
=

 cm  cm

(a)
1 00

20 0
1 50 1

12 0
.

.
.

. cm  cm
+ =

q
or q =

−
=

1 50

1 00 12 0 1 00 20 0
45 0

.

. . . .
.

 cm  cm
 cmb g b g

(b)
1 00

10 0
1 50 1

12 0
.

.
.

. cm  cm
+ =

q
or q =

−
= −

1 50

1 00 12 0 1 00 10 0
90 0

.

. . . .
.

 cm  cm
 cmb g b g

(c)
1 00

3 0
1 50 1

12 0
.

.
.

. cm  cm
+ =

q
or q =

−
= −

1 50

1 00 12 0 1 00 3 0
6 00

.

. . . .
.

 cm  cm
 cmb g b g
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P36.26 p = ∞  and q R= +2

1 00 1 002 2. .
p

n
q

n
R

+ =
−

0
2

1 002 2+ =
−n

R
n

R
.

so n2 2 00= .

FIG. P36.26

P36.27 For a plane surface,
n
p

n
q

n n
R

1 2 2 1+ =
−

 becomes q
n p
n

= − 2

1
.

Thus, the magnitudes of the rate of change in the image and object positions are related by

dq
dt

n
n

dp
dt

= 2

1
.

If the fish swims toward the wall with a speed of 2 00.  cm s , the speed of the image is given by

v
dq
dtimage  cm s  cm s= = =

1 00
1 33

2 00 1 50
.
.

. .b g .

Section 36.4 Thin Lenses

P36.28 Let R1 =  outer radius and R2 =  inner radius

1
1

1 1
1 50 1

1
2 00

1
2 50

0 050 0
1 2

1

f
n

R R
= − −

L
NM

O
QP

= − −L
NM

O
QP =

−a f a f.
. .

.
 m  cm

 cm

so f = 20 0.  cm .

P36.29 (a)
1

1
1 1

0 440
1

12 0
1

18 01 2f
n

R R
= − −

L
NM

O
QP

= −
−

L
NM

O
QP

a f a f a f.
. . cm  cm

f = 16 4.  cm

(b)
1

0 440
1

18 0
1

12 0f
= −

−

L
NM

O
QP

.
. .

a f a f cm  cm

f = 16 4.  cm
FIG. P36.29
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P36.30 For a converging lens, f is positive. We use
1 1 1
p q f

+ = .

(a)
1 1 1 1

20 0
1

40 0
1

40 0q f p
= − = − =

. . . cm  cm  cm
q = 40 0.  cm

M
q
p

= − = − = −
40 0
40 0

1 00
.
.

.

The image is real,  inverted , and located 40.0 cm past the lens.

(b)
1 1 1 1

20 0
1

20 0
0

q f p
= − = − =

. . cm  cm
q = infinity

No image  is formed. The rays emerging from the lens are parallel to each other.

(c)
1 1 1 1

20 0
1

10 0
1

20 0q f p
= − = − = −

. . . cm  cm  cm
q = −20 0.  cm

M
q
p

= − = −
−

=
20 0

10 0
2 00

.
.

.
a f

The image is upright,  virtual  and 20.0 cm in front of the lens.

P36.31 (a)
1 1 1 1

25 0
1

26 0q f p
= − = −

. . cm  cm
q = 650 cm

The image is real,  inverted,  and enlarged .

(b)
1 1 1 1

25 0
1

24 0q f p
= − = −

. . cm  cm
q = −600 cm

The image is virtual,  upright,  and enlarged .

P36.32 (a)
1 1 1
p q f

+ = :
1

32 0
1

8 00
1

. . cm  cm
+ =

f

so f = 6 40.  cm

(b) M
q
p

= − = − = −
8 00

0 250
.

.
 cm

32.0 cm

(c) Since f > 0 , the lens is converging .
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P36.33 We are looking at an enlarged, upright, virtual image:

M
h
h

q
p

=
′

= = −2 so p
q

= − = −
−

= +
2

2 84
2

1 42
.

.
 cm

 cm
a f

1 1 1
p q f

+ = gives
1

1 42
1

2 84
1

. . cm  cm
+

−
=a f f

f = 2 84.  cm .

FIG. P36.33

P36.34 (a)
1 1 1
p q f

+ = :
1 1

30 0
1

12 5p
+

−
=

. . cm  cm

p = 8 82.  cm M
q
p

= − = −
−

=
30 0

8 82
3 40

.
.

.
a f

,  upright

(b) See the figure to the right.

FIG. P36.34(b)

P36.35
1 1 1
p q f

+ = : p q− −+ =1 1 constant

We may differentiate through with respect to p: − − =− −1 1 02 2p q
dq
dp

dq
dp

q
p

M= − = −
2

2
2 .

P36.36 The image is inverted: M
h
h

q
p

=
′

=
−

= − =
−1 80

75 0
.

.
 m

0.024 0 m
q p= 75 0. .

(b) q p p p+ = = +3 00 75 0. . m p = 39 5.  mm

(a) q = 2 96.  m
1 1 1 1

0 039 5
1

2 96f p q
= + = +

. . m  m
f = 39 0.  mm

P36.37 (a)
1 1 1
p q f

+ =
1

20 0
1 1

32 0. . cm  cm
+ =

−q a f
so q = − +F

HG
I
KJ = −

−1
20 0

1
32 0

12 3
1

. .
.  cm

The image is 12.3 cm to the left of the lens.

(b) M
q
p

= − = −
−

=
12 3

20 0
0 615

.
.

.
 cm

 cm
a f

(c) See the ray diagram to the right.

FIG. P36.37
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*P36.38 In
1 1 1
p q f

+ =

p q− −+ =1 1 constant,

we differentiate with respect to time

− − =− −1 1 02 2p
dp
dt

q
dq
dte j e j

dq
dt

q
p

dp
dt

=
− 2

2 .

We must find the momentary image location q:
1

20
1 1

0 3 m  m
+ =

q .

q = 0 305.  m.

Now 
dq
dt

= − = − =
0 305

20
5 0 001 16 1 16

2

2

.
. .

 m

 m
 m s  m s  mm s  toward the lens

a f
a f .

*P36.39 (a)
1 1 1
p q f

+ =
1

480
1 1

7 00 cm  cm
+ =

q .
q = 7 10.  cm

(b) M
h
h

q
p

=
′

= − ′ =
−

=
−

= −h
hq
p

5 00 7 10
480

0 074 0
. .

.
 mm  cm

 cm
 mm

a fa f

diameter of illuminated spot = 74 0.  mµ

(c) I
A d

= = =
×

= ×
−

P P 4 0 100

74 0 10
2 33 102 6 2

7

π π

.

.
.

 W 4

 m
 W m2a f

e j

P36.40 (a)
1

1
1 1

1 50 1
1

15 0
1

12 01 2f
n

R R
= − −

L
NM

O
QP

= − −
−

L
NM

O
QP

a f a f a f.
. . cm  cm

or f = 13 3.  cm

(b)

The square is imaged as a trapezoid.

FIG. P36.40(b)

continued on next page
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(c) To find the area, first find qR  and qL , along with the heights ′hR  and ′hL , using the thin lens
equation.

1 1 1
p q fR R

+ = becomes
1

20 0
1 1

13 3. . cm  cm
+ =

qR
or qR = 40 0.  cm

′ = =
−F
HG
I
KJ = − = −h hM h

q
pR R

R

R
10 0 2 00 20 0. . . cm  cma fa f

1
30 0

1 1
13 3. . cm  cm

+ =
qL

or qL = 24 0.  cm

′ = = − = −h hML L 10 0 0 800 8 00. . . cm  cma fa f
Thus, the area of the image is: Area = − ′ + − ′ − ′ =q q h q q h hR L L R L R L

1
2

224 cm2 .

P36.41 (a) The image distance is: q d p= − .

Thus,
1 1 1
p q f

+ = becomes
1 1 1
p d p f

+
−

= .

This reduces to a quadratic equation: p d p fd2 0+ − + =a f

which yields: p
d d fd d d

fd=
± −

= ± −
2 24
2 2 4

.

Since f
d

<
4

, both solutions are meaningful and the two solutions are not equal to each

other. Thus, there are two distinct lens positions that form an image on the screen.

(b) The smaller solution for p gives a larger value for q, with a real,  enlarged,  inverted image .

The larger solution for p describes a real,  diminished,  inverted image .

P36.42 To properly focus the image of a distant object, the lens must be at a distance equal to the focal
length from the film (q1 65 0= .  mm). For the closer object:

1 1 1

2 2p q f
+ =

becomes
1

2 000
1 1

65 02 mm  mm
+ =

q .

and q2 65 0
2 000

2 000 65 0
=

−

F
HG

I
KJ.

.
 mma f .

The lens must be moved away from the film  by a distance

D q q= − =
−

F
HG

I
KJ − =2 1 65 0

2 000
2 000 65 0

65 0 2 18.
.

. . mm  mm  mma f .
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*P36.43 In the first arrangement the lens is used as a magnifying glass, producing an upright, virtual
enlarged image:

M
h
h

q
p

q p

=
′

= = = −

= − = − = −

120
33 3

33 3 33 3 20 667

 cm
3.6 cm

 cm  cm

.

. . a f
For the lens,
1 1 1 1

20
1

667
1

20 62
p q f f
f

+ = = +
−

=

=
 cm  cm

 cm.
In the second arrangement the lens us used as a projection lens to produce a real inverted enlarged
image:

− = − = −
120

33 3 2

2

 cm
3.6 cm

.
q
p

q p2 233 3= .

1 1
33 3

1
20 622 2p p

+ =
. .  cm

34 3
33 3

1
20 622

.
. .p

=
 cm

p2 21 24= .  cm

The lens was moved 21 24 20 0 1 24. . . cm  cm  cm− = .

Section 36.5 Lens Aberrations

P36.44 (a) The focal length of the lens is given by

1
1

1 1
1 53 1 00

1
32 5

1
42 5

34 7
1 2f

n
R R

f

= − −
F
HG

I
KJ = −

−
−F

HG
I
KJ

= −

a f a f. .
. .

.

 cm  cm

 cm

Note that R1  is negative because the center of curvature of the
first surface is on the virtual image side.

When p = ∞

the thin lens equation gives q f= .

Thus, the violet image of a very distant object is formed

at q = −34 7.  cm .

The image is virtual,  upright and diminshed . FIG. P36.44

(b) The same ray diagram and image characteristics apply for red light.

Again, q f=

and now
1

1 51 1 00
1

32 5
1

42 5f
= −

−
−F

HG
I
KJ. .

. .
a f

 cm  cm

giving f = −36 1.  cm .
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P36.45 Ray h1  is undeviated at the plane surface and strikes the second
surface at angle of incidence given by

θ 1
1 1 1 0 500

1 43= F
HG
I
KJ =

F
HG

I
KJ = °− −sin sin

.
.

h
R

 cm
20.0 cm

.

Then, 1 00 1 60 1 60
0 500

20 02 1. sin . sin .
.
.

θ θ= = F
HG

I
KJa f

 cm FIG. P36.45
so θ 2 2 29= °. .

The angle this emerging ray makes with the horizontal is θ θ2 1 0 860− = °. .

It crosses the axis at a point farther out by f1

where f
h

1
1

2 1

0 500
0 860

33 3=
−

=
°

=
tan

.
tan .

.
θ θb g a f

 cm
 cm .

The point of exit for this ray is distant axially from the lens vertex by

20 0 20 0 0 500 0 006 252 2. . . . cm  cm  cm  cm− − =a f a f
so ray h1  crosses the axis at this distance from the vertex:

x1 33 3 0 006 25 33 3= − =. . . cm  cm  cm .

Now we repeat this calculation for ray h2 :

θ = F
HG

I
KJ = °−sin

.
.1 12 0

36 9
 cm

20.0 cm

1 00 1 60 1 60
12 00
20 02 1. sin . sin .

.
.

θ θ= = F
HG
I
KJa f θ 2 73 7= °.

f
h

2
2

1 2

12 0
36 8

16 0=
−

=
°

=
tan

.
tan .

.
θ θb g

 cm
 cm

x2
2 216 0 20 0 20 0 12 0 12 0= − −F

H
I
K =. . . . . cm  cm  cm  cm  cma f a f a f .

Now ∆x = − =33 3 12 0 21 3. . . cm  cm  cm .

Section 36.6 The Camera

*P36.46 The same light intensity is received from the subject, and the same light energy on the film is
required:

IA t IA t

d
t

d
t

f
d

d
f f

1 1 2 2

1
2

1
2
2

2

2

2
2

2

4 4

4
1

16
1

128

128
16 4 1 41

∆ ∆

∆ ∆

=

=

F
HG
I
KJ
F
HG
I
KJ =
F
HG
I
KJ

= =

π π

 s  s

.
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Section 36.7 The Eye

P36.47 P
f p q

= = + =
∞

− = − = −
1 1 1 1 1

0 250
4 00 4 00

.
. .

 m
 diopters  diopters,  a diverging lens

P36.48 For starlight going through Nick’s glasses,
1 1 1
p q f

+ =

1 1
0 800

1
1 25

∞
+

−
= = −

.
.

 m
 dioptersa f f

.

For a nearby object,
1 1

0 180
1 25 1

p
+

−
= − −

.
.

 m
 ma f , so p = 23 2.  cm .

P36.49 Consider an object at infinity, imaged at the person’s far point:

1 1 1
p q f

+ =
1 1

4 00 1

∞
+ = − −

q
.  m q = −25 0.  cm .

The person’s far point is 25 0 2 00 27 0. . . cm  cm  cm+ =  from his eyes. For the contact lenses we want

1 1
0 270

1
3 70

∞
+

−
= = −

.
.

 m
 dioptersa f f

.

Section 36.8 The Simple Magnifier

Section 36.9 The Compound Microscope

Section 36.10 The Telescope

P36.50 (a) From the thin lens equation: 
1 1

25 0
1

5 00p
+

−
=

. . cm  cma f  or p = 4 17.  cm .

(b) M
q
p f

= − = + = + =1
25 0

1
25 0

6 00
. .

.
 cm  cm

5.00 cm

P36.51 Using Equation 36.24, M
L
f fo e

≈ −
F
HG
I
KJ
F
HG

I
KJ = −FHG

I
KJ
F
HG

I
KJ = −

25 0 23 0 25 0
575

. . . cm  cm
0.400 cm

 cm
2.50 cm

.

P36.52 M M m M
f

f
M
Mo e o

e
e

o= =
F
HG

I
KJ⇒ = FHG

I
KJ =

−
−
F
HG
I
KJ =

25 0
25 0

12 0
140

25 0 2 14
.

.
.

. .
 cm

 cm  cm  cma f a f

P36.53 fo = 20 0.  m fe = 0 025 0.  m

(a) The angular magnification produced by this telescope is: m
f
f
o

e
= − = −800 .

(b) Since m < 0 , the image is inverted .
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P36.54 (a) The lensmaker’s equation
1 1 1
p q f

+ =

gives q
f p p f fp

fp
p f

=
−

=
−

=
−

1
1 1

1
b g .

Then, M
h
h

q
p

f
p f

=
′

= − = −
−

gives ′ =
−

h
hf

f p
.

(b) For p f>> , f p p− ≈ − . Then, ′ = −h
hf
p

.

(c) Suppose the telescope observes the space station at the zenith:

′ = − = −
×

= −h
hf
p

108 6 4 00

407 10
1 073

. .
.

 m  m

 m
 mm

a fa f
.

P36.55 (b) Call the focal length of the objective fo  and that of the eyepiece − fe . The distance between

the lenses is f fo e− . The objective forms a real diminished inverted image of a very distant

object at q fo1 = . This image is a virtual object for the eyepiece at p fe2 = − .

For it
1 1 1
p q f

+ = becomes
1 1 1

−
+ =

−f q fe e
, 

1
0

2q
=

and q2 = ∞ .

(a) The user views the image as virtual . Letting

′h  represent the height of the first image,

θ o
o

h
f

=
′

 and θ =
′h

fe
. The angular

magnification is

m
h f
h f

f
fo

e

o e
= =

′

′
=

θ
θ

0 .

(c) Here, f fo e− = 10 0.  cm  and 
f
f
o

e
= 3 00. .

Thus, f
f

e
o=

3 00.
and

2
3

10 0fo = .  cm .

fo = 15 0.  cm

fe = 5 00.  cm and fe = −5 00.  cm

F0

I

θ 0

h’F0 θ 0

L1

Fe

OFe

θ

L2

FIG. P36.55
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P36.56 Let I0  represent the intensity of the light from the nebula and θ 0  its angular diameter. With the

first telescope, the image diameter ′h  on the film is given by θ o
o

h
f

= −
′

 as ′ = −h oθ 2 000 mmb g .

The light power captured by the telescope aperture is P1 0 1 0

2200
4

= =
L
N
MM

O
Q
PPI A I

π  mma f
, and the light

energy focused on the film during the exposure is E t I1 1 1 0

2200
4

1 50= =
L
N
MM

O
Q
PPP ∆

π  mm
 min

a f a f. .

Likewise, the light power captured by the aperture of the second telescope is

P2 0 2 0

260 0
4

= =
L
N
MM

O
Q
PPI A I

π .  mma f
 and the light energy is E I t2 0

2

2
60 0

4
=
L
N
MM

O
Q
PP

π .  mma f
∆ . Therefore, to have

the same light energy per unit area, it is necessary that

I t I

o o

0
2

2

2

0
2

2

60 0 4

900 4

200 4 1 50

2 000 4

π

π θ

π

π θ

. . mm

 mm

 mm  min

 mm

a f
a f

a f a f
b g

∆
= .

The required exposure time with the second telescope is

∆t2

2 2

2 2

200 900

60 0 2 000
1 50 3 38= =

 mm  mm

 mm  mm
 min  min

a f a f
a f b g

a f
.

. . .

Additional Problems

P36.57 Only a diverging lens gives an upright diminished image. The image is virtual and

d p q p q= − = + : M
q
p

= −  so q Mp= −  and d p Mp= −

p
d
M

=
−1

:
1 1 1 1 1 1 1 2

p q f p Mp
M
Mp

M
Md

+ = = +
−

=
− +
−

=
−
−
a f

f
Md

M
=

−

−
=

−

−
= −

1

0 500 20 0

1 0 500
40 02 2a f

a fa f
a f
. .

.
.

 cm
 cm .

P36.58 If M < 1 , the lens is diverging and the image is virtual. d p q p q= − = +

M
q
p

= − so q Mp= − and d p Mp= −

p
d
M

=
−1

:
1 1 1 1 1 1 1 2

p q f p Mp
M
Mp

M
Md

+ = = +
−

=
− +
−

=
−
−b g

a f a f
f

Md

M
=

−

−1 2a f .

If M > 1 , the lens is converging and the image is still virtual.

Now d q p= − − .

We obtain in this case f
Md

M
=

− 1 2a f .
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P36.59 (a)
1

1
1 1

1 2f
n

R R
= − −

F
HG

I
KJa f

1
65 0

1 66 1
1

50 0
1

2−
= − −

F
HG

I
KJ.

.
. cm  cm

a f
R

1 1
50 0

1
42 92R

= +
. . cm  cm

so R2 23 1= .  cm

(b) The distance along the axis from B to A is

D

B

R1

R2

2.00 cm

A

C

FIG. P36.59

R R1 1
2 2 2 22 00 50 0 50 0 2 00 0 040 0− − = − − =. . . . . cm  cm  cm  cm  cma f a f a f .

Similarly, the axial distance from C to D is

23 1 23 1 2 00 0 086 82 2. . . . cm  cm  cm  cm− − =a f a f .

Then, AD = − + =0 100 0 040 0 0 086 8 0 147. . . . cm  cm  cm  cm .

*P36.60 We consider light entering the rod. The surface of entry is convex
to the object rays, so R1 4 50= + .  cm

n
p

n
q

n n
R q

q
q

1

1

2

1

2 1

1 1

1
1

1 33
100

1 50 1 50 1 33
4 50

1 50
0 037 8 0 013 3 0 024 5 61 3

+ =
−

+ =
−

= − = =

. . . .
.

.
. . . .

 cm  cm

cm cm cm  cm

The first image is real, inverted and diminished. To find its
magnification we can use two similar triangles in the ray diagram
with their vertices meeting at the center of curvature:

V
C

O1

I1

V
CO2I2

FIG. P36.60

h h h
h

1 1 1

1100 4 5 61 3 4 5
0 543

 cm  cm  cm  cm+
=

′

−
′

= −
. . .

. .

Now the first image is a real object for the second surface at object distance from its vertex

75 0 4 50 4 50 61 3 22 7
1 50

22 7
1 33 1 33 1 50

4 50
1 33

0 037 8 0 066 0 0 028

47 1

2

2

2

. . . . .
.

.
. . .

.
.

. . .

.

 cm  cm  cm  cm  cm

 cm  cm

cm cm  2 cm

 cm

+ + − =

+ =
−

−

= − = −

= −

q

q
q

(a) The final image is inside the rod,  47.1 cm from the second surface .

(b) It is virtual,  inverted,  and enlarged . Again by similar triangles meeting at C we have

h h h
h

2 2 2

222 7 4 5 47 1 4 5
2 34

. . . .
.

 cm  cm  cm  cm−
=

′
−

′
= .

Since h h2 1= ′ , the overall magnification is M M
h
h

h
h

h
h1 2

1

1

2

2

2

1
0 543 2 34 1 27=

′ ′
=

′
= − = −. . .a fa f .
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*P36.61 (a)
1 1 1 1

5
1

7 5
15

1 1 1
1q f p

q= − = − ∴ =
 cm  cm

 cm
.

M
q
p

M M M M

M
q
p

p q

p q f q q
q p

p q p q

1
1

1

1 2 2

2
2

2
2 2

2 2 2 2 2
2 2

1 2 2

15
2

1 2

1
2

2

1 1 1 1
2

1 1
10

15 30

7 5 15 30 15 67 5

= − = − = −

= ∴ = −

∴ = − = − ∴ =

+ = ∴ + = ∴ = =

+ + + = + + + =

 cm
7.5 cm

 cm
 cm,  cm

 cm  cm  cm  cm  cm1

a f

. .

(b)
1 1 1 1

51 1 1′
+

′
= =

p q f  cm

Solve for ′q1  in terms of ′p1 : ′ =
′

′ −
q

p
p1

1

1

5
5

(1)

′ = −
′
′

= −
′ −

M
q
p p1

1

1 1

5
5

, using (1).

′ = ′ ′ ∴ ′ =
′
′

= − ′ − = −
′
′

M M M M
M
M

p
q
p1 2 2

1
1

2

2

3
5

5b g

∴ ′ = ′ ′ −q p p2 2 1
3
5

5b g (2)

Substitute (2) into the lens equation 
1 1 1 1

102 2 2′
+

′
= =

p q f  cm
 and obtain ′p2  in terms of ′p1 :

′ =
′ −

′ −
p

p

p2
1

1

10 3 10

3 5
b g
b g . (3)

Substituting (3) in (2), obtain ′q2  in terms of ′p1 :
′ = ′ −q p2 12 3 10b g. (4)

Now, ′ + ′ + ′ + ′ =p q p q1 1 2 2 a constant.
Using (1), (3) and (4), and the value obtained in (a):

′ +
′

′ −
+

′ −

′ −
+ ′ − =p

p
p

p

p
p1

1

1

1
1

5
5

10 3 10

3 5
2 3 10 67 5

b g
b g b g . .

This reduces to the quadratic equation
21 322 5 1 212 5 01

2
1′ − ′ + =p p. . ,

which has solutions ′ =p1 8 784.  cm and 6.573 cm.
Case 1: ′ =p1 8 784.  cm

∴ ′ − = − =p p1 1 8 784 7 5 1 28. . . cm  cm  cm.
From (4): ′ =q2 32 7.  cm

∴ ′ − = − =q q2 2 32 7 15 17 7. . cm  cm  cm.
Case 2: ′ =p1 6 573.  cm

∴ ′ − = − = −p p1 1 6 573 7 5 0 927. . . cm  cm  cm.
From (4): ′ =q2 19 44.  cm

∴ ′ = = − =q q2 2 19 44 15 4 44. . cm  cm  cm.
From these results it is concluded that:

The lenses can be displaced in two ways.  The first lens can be moved 1.28 cm farther from
the object and the second lens 17.7 cm toward the object.  Alternatively,  the first lens can
be moved 0.927 cm toward the object and the second lens 4.44 cm toward the object.
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P36.62
1 1 1 1

10 0
1

12 51 1 1q f p
= − = −

. . cm  cm

so q1 50 0= .  cm  (to left of mirror).

This serves as an object for the lens (a virtual object), so

1 1 1 1
16 7

1
25 02 2 2q f p

= − =
−

−
−. . cm  cma f a f  and q2 50 3= − .  cm,

meaning 50.3 cm to the right of the lens. Thus, the final image is located
25 3.  cm to right of mirror .

M
q
p

M
q
p

M M M

1
1

1

2
2

2

1 2

50 0
4 00

50 3
25 0

2 01

8 05

= − = − = −

= − = −
−
−

= −

= =

.
.

.

.
.

.

 cm
12.5 cm

 cm
 cm

a f
a f

Thus, the final image is virtual,  upright , 8.05 times the size of object, and 25.3 cm to right of the

mirror.

P36.63 We first find the focal length of the mirror.

1 1 1 1
10 0

1
8 00

9
40 0f p q

= + = + =
. . . cm  cm  cm

and f = 4 44.  cm .

Hence, if p = 20 0.  cm ,
1 1 1 1

4 44
1

20 0
15 56

88 8q f p
= − = − =

. .
.

. cm  cm  cm
.

Thus, q = 5 71.  cm , real.

*P36.64 A telescope with an eyepiece decreases the diameter of a
beam of parallel rays. When light is sent through the same
device in the opposite direction, the beam expands. Send
the light first through the diverging lens. It will then be
diverging from a virtual image found like this:

1 1 1
p q f

+ =
1 1 1

12∞
+ =

−q  cm

q = −12 cm .

FIG. P36.64

Use this image as a real object for the converging lens, placing it at the focal point on the object side
of the lens, at p = 21 cm . Then

1 1 1
p q f

+ =
1

21
1 1

21 cm  cm
+ =

q

q = ∞ .

The exiting rays will be parallel. The lenses must be 21 0 12 0 9 00. . . cm  cm  cm− =  apart.

By similar triangles,
d
d

2

1

21
1 75= =

 cm
12 cm

 times. .
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P36.65 A hemisphere is too thick to be described as a thin
lens. The light is undeviated on entry into the flat
face. We next consider the light’s exit from the
second surface, for which R = −6 00.  cm .

The incident rays are parallel, so p = ∞ .

Then,
n
p

n
q

n n
R

1 2 2 1+ =
−

becomes 0
1 1 00 1 56

6 00
+ =

−
−q
. .

.  cm

and q = 10 7.  cm .

FIG. P36.65

P36.66 (a) I
r

= =
×

=
−

P
4

4 50

4 1 60 10
1 402 2 2π π

.

.
.

 W

 m
 kW m2

e j

(b) I
r

= = =
P

4
4 50

6 912 2π π
.

.
 W

4 7.20 m
 mW m2

a f

(c)
1 1 1
p q f

+ = :
1

7 20
1 1

0 350. . m  m
+ =

q

so q = 0 368.  m

and M
h q

p
=

′
= − = −

3 20
0 368

.
.

 cm
 m

7.20 m

′ =h 0 164.  cm

(d) The lens intercepts power given by P = = × L
NM

O
QP

−IA 6 91 10
4

0 1503 2. . W m  m2e j a fπ

and puts it all onto the image where I
A

= =
× −

P 6 91 10 15 0 4

0 164 4

3 2

2

. .

.

 W m  cm

 cm

2e j a f
a f

π

π

I = 58 1.  W m2 .
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P36.67 From the thin lens equation, q
f p

p f1
1 1

1 1

6 00 12 0
12 0 6 00

4 00=
−

=
−

− −
= −

. .
. .

.
 cm  cm

 cm  cm
 cm

a fa f
a f .

When we require that q2 → ∞ , the thin lens equation becomes p f2 2= .

In this case, p d2 4 00= − − .  cma f .
Therefore, d f+ = =4 00 12 02. . cm  cm and d = 8 00.  cm .

FIG. P36.67

*P36.68 The inverted real image is formed by the lens operating on light directly from the object, on light
that has not reflected from the mirror.

For this we have M
q
p

= − = −1 50. q p= 1 50.

1 1 1
p q f

+ =
1 1

1 50
1

10
2 50

1 50p p p
+ = =

.
.

. cm
p = F

HG
I
KJ =10

2 5
1 5

16 7 cm  cm
.
.

.

Then the object is distant from the mirror by 40 0 16 7 23 3. . . cm  cm  cm− = .

The second image seen by the person is formed by light that first reflects from the mirror and then
goes through the lens. For it to be in the same position as the inverted image, the lens must be
receiving light from an image formed by the mirror at the same location as the physical object. The
formation of this image is described by

1 1 1
p q f

+ =
1

23 3
1

23 3
1

. . cm  cm
+ =

f
f = 11 7.  cm .

P36.69 For the mirror, f
R

= = +
2

1 50.  m . In addition, because the distance to the Sun is so much larger than

any other distances, we can take p = ∞ .

The mirror equation, 
1 1 1
p q f

+ = , then gives q f= = 1 50.  m .

Now, in M
q
p

h
h

= − =
′

the magnification is nearly zero, but we can be more precise: 
h
p

 is the angular diameter of the object.

Thus, the image diameter is

′ = − = − °
°

F
HG
I
KJ = − = −h

hq
p

0 533 1 50 0 014 0 1 40. . . .a f a fπ rad
180

 m  m  cm .
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P36.70 (a) For the light the mirror intercepts,
P = =I A I Ra0 0

2π

350 1 000 2 W  W m2= e jπ Ra

and Ra = 0 334.  m or larger .

(b) In
1 1 1 2
p q f R

+ = =

we have p → ∞

so q
R

=
2

M
h
h

q
p

=
′

= −

so ′ = −
F
HG
I
KJ = −FHG

I
KJ °

°
F
HG
I
KJ

L
NM

O
QP = −FHG

I
KJh q

h
p

R R
2

0 533
2

9 30. .
π rad
180

 m rada f

where 
h
p

 is the angle the Sun subtends. The intensity at the image is

then I
h

I R
h

I R

R

a a=
′

=
′

=
× −

P
π

π
π2

0
2

2
0

2

2 3 24
4 4

2 9 30 10b g e j.  rad

120 10
16 1 000

9 30 10

3
2

2 3 2× =
× −

 W m
 W m

 rad

2
2e j

e j
R

R

a

.

so
R
R

a = 0 025 5.  or larger .

P36.71 In the original situation, p q1 1 1 50+ = .  m .

In the final situation, p p2 1 0 900= + .  m

and q q p2 1 10 900 0 600= − = −. . m  m .

Our lens equation is
1 1 1 1 1

1 1 2 2p q f p q
+ = = + .

Substituting, we have
1 1

1 50
1
0 900

1
0 6001 1 1 1p p p p

+
−

=
+

+
−. . . m

.

Adding the fractions,
1 50

1 50
0 600 0 900

0 900 0 600
1 1

1 1

1 1

1 1

.
.

. .
. .

 m
 m
− +

−
=

− + +
+ −

p p
p p

p p
p pb g b gb g .

Simplified, this becomes p p p p1 1 1 11 50 0 900 0 600. . . m − = + −b g b gb g .

FIG. P36.71

(a) Thus, p1
0 540
1 80

0 300= =
.
.

. m  m p p2 1 0 900 1 20= + =. .  m

(b)
1 1

0 300
1

1 50 0 300f
= +

−. . . m  m  m
and f = 0 240.  m

(c) The second image is real,  inverted,  and diminished

with M
q
p

= − = −2

2
0 250. .
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P36.72 (a) The lens makers’ equation,
1

1
1 1

1 2f
n

R R
= − +

F
HG

I
KJa f

becomes: 
1

5 00
1

1
9 00

1
11 0. . . cm  cm  cm

= − −
−

L
NM

O
QP

na f a f  giving n = 1 99. .

(b) As the light passes through the lens for the first time, the thin lens equation
1 1 1

1 1p q f
+ =

becomes:
1

8 00
1 1

5 001. . cm  cm
+ =

q

or q1 13 3= .  cm , and M
q
p1

1

1

13 3
1 67= − = − = −

.
.

 cm
8.00 cm

.

This image becomes the object for the concave mirror with:
p qm = − = − =20 0 20 0 13 3 6 671. . . . cm  cm  cm  cm

and f
R

= = +
2

4 00.  cm .

The mirror equation becomes:
1

6 67
1 1

4 00. . cm  cm
+ =

qm

giving qm = 10 0.  cm

and M
q
p

m

m
2

10 0
1 50= − = − = −

.
.

 cm
6.67 cm

.

The image formed by the mirror serves as a real object for the lens on the second pass of the
light through the lens with:

p qm3 20 0 10 0= − = +. . cm  cm .

The thin lens equation yields:
1

10 0
1 1

5 003. . cm  cm
+ =

q

or q3 10 0= .  cm

and M
q
p3

3

3

10 0
1 00= − = − = −

.
.

 cm
10.0 cm

.

The final image is a real image located 10 0.  cm to the left of the lens .

The overall magnification is M M M Mtotal = = −1 2 3 2 50. .

(c) Since the total magnification is negative, this final image is inverted .

P36.73 For the objective: 
1 1 1
p q f

+ =  becomes
1

3 40
1 1

3 00. . mm  mm
+ =

q
 so q = 25 5.  mm .

The objective produces magnification M
q
p1

25 5
7 50= − = − = −

.
.

 mm
3.40 mm

.

For the eyepiece as a simple magnifier, m
fe = = =

25 0 25 0
10 0

. .
.

 cm  cm
2.50 cm

and overall M M me= = −1 75 0. .
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P36.74 (a) Start with the second lens: This lens must form a virtual image located 19.0 cm to the left of
it (i.e., q2 19 0= − .  cm ). The required object distance for this lens is then

p
q f

q f2
2 2

2 2

19 0 20 0
19 0 20 0

380
39 0

=
−

=
−
− −

=
. .
. . .

 cm  cm
 cm  cm

 cma fa f
.

The image formed by the first lens serves as the object for the second lens. Therefore, the
image distance for the first lens is

q p1 250 0 50 0
380 1 570

= − = − =. . cm  cm
 cm

39.0
 cm

39.0
.

The distance the original object must be located to the left of the first lens is then given by

1 1 1 1
10 0

39 0
1 570

157 39 0
1 570

118

1 1 1p f q
= − = − =

−
=

.
. .

 cm  cm  cm 1 570 cm
or p1

1 570
13 3= =

 cm
118

 cm. .

(b) M M M
q
p

q
p

= = −
F
HG
I
KJ −
F
HG
I
KJ =
F
HG

I
KJ
F
HG

I
KJ

L
N
MM

O
Q
PP

−L
NM

O
QP = −1 2

1

1

2

2

1 570 118
1 570

19 0 39 0
380

5 90
 cm

39.0  cm
 cm

 cm
. .

.
a fa f

(c) Since M < 0 , the final image is inverted .

P36.75 (a) P
f p q

= = + = +
∞

=
1 1 1 1

0 022 4
1

44 6
.

.
 m

 dioptersb g

(b) P
f p q

= = + = +
∞

=
1 1 1 1

0 330
1

3 03
.

.
 m

 dioptersa f

P36.76 The object is located at the focal point of the upper mirror. Thus, the
upper mirror creates an image at infinity (i.e., parallel rays leave this
mirror).

The lower mirror focuses these parallel rays at its focal point, located at
the hole in the upper mirror.

Thus, the image is real,  inverted,  and actual size .

For the upper mirror:

1 1 1
p q f

+ = :
1

7 50
1 1

7 501. . cm  cm
+ =

q
q1 = ∞ .

For the lower mirror:

1 1 1
7 502∞

+ =
q .  cm

q2 7 50= .  cm.

Light directed into the hole in the upper mirror reflects as shown, to
behave as if it were reflecting from the hole.

FIG. P36.76
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P36.77 (a) For lens one, as shown in the first
figure,

1
40 0

1 1
30 0

120

120
3 00

1

1

1
1

1

. .

.

 cm  cm
 cm

 cm
40.0 cm

+ =

=

= − = − = −

q
q

M
q
p

This real image I O1 2=  is a virtual
object for the second lens. That is, it is
behind the lens, as shown in the second
figure. The object distance is

p

q

q

M
q
p

M M M

2

2

2

2
2

2

1 2

110 120 10 0
1

10 0
1 1

20 0

20 0

20 0
2 00

6 00

= − = −

−
+ =

−

=

= − = −
−

= +

= = −

 cm  cm  cm

 cm  cm

 cm

 cm
10.0 cm

overall

.

. .
:

.

.
.

.

a f

(b) Moverall < 0 , so final image is

inverted .

(c) If lens two is a converging lens (third
figure):

1
10 0

1 1
20 0

6 67

6 67
10 0

0 667

2 00

2

2

2

1 2

−
+ =

=

= −
−

= +

= = −

. .

.

.
.

.

.

 cm  cm

 cm

 cm
 cm

overall

q

q

M

M M M

a f

FIG. P36.77

Again, Moverall < 0  and the final image is inverted .
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*P36.78 The first lens has focal length described by

1
1

1 1
1

1 1 1

1
1

11 12
1

1

f
n

R R
n

R
n

R
= − −

F
HG

I
KJ = −

∞
−FHG
I
KJ = −

−b g b g .

For the second lens

1
1

1 1
1

1 1 2 1

2
2

21 22
2

2

f
n

R R
n

R R
n

R
= − −

F
HG

I
KJ = −

+
−

−
F
HG

I
KJ = +

−b g b g b g
.

Let an object be placed at any distance p1  large compared to the thickness of the doublet. The first
lens forms an image according to

1 1 1

1 1 1p q f
+ =

1 1 1

1

1

1q
n

R p
=

− +
− .

This virtual q1 0<b g image is a real object for the second lens at distance p q2 1= − . For the second lens

1 1 1

2 2 2p q f
+ =

1 2 2 1 2 2 1 2 2 1 1 2 1 1

2

2

2

2

1

2 1

1

2 1

1q
n

R p
n

R q
n

R
n

R p
n n

R p
=

−
− =

−
+ =

−
+

− +
− =

− −
− .

Then 
1 1 2 1

1 2

2 1

p q
n n

R
+ =

− −
 so the doublet behaves like a single lens with 

1 2 12 1

f
n n

R
=

− −
.

ANSWERS TO EVEN PROBLEMS

P36.2 4 58.  m P36.22 4 82.  cm

P36.4 see the solution P36.24 see the solution;
real,  inverted,  diminished

P36.6 (a) p h1 + ; (b) virtual; (c) upright; (d) +1;
(e) No P36.26 2 00.

P36.8 at q = −0 267.  m virtual  upright and
diminished  with M = 0 026 7.

P36.28 20 0.  cm

P36.30 (a) q = 40 0.  cm  real,  inverted, actual size
M = −1 00. ;P36.10 at 3 33.  m from the deepest point of the

niche (b) q = ∞ , M = ∞ , no image is formed;
(c) q = −20 0.  cm upright,  virtual , enlarged
M = +2 00.P36.12 30 0.  cm

P36.14 (a) 160 mm; (b) R = −267 mm P36.32 (a) 6 40.  cm; (b) −0 250. ; (c) converging

P36.16 (a) convex; (b) At the 30.0 cm mark; P36.34 (a) 3 40. ,  upright; (b) see the solution
(c) –20.0 cm

P36.36 (a) 39 0.  mm; (b) 39 5.  mmP36.18 (a) 15 0.  cm; (b) 60 0.  cm

P36.38 1 16.  mm s  toward the lensP36.20 (a) see the solution;
(b) at 0.639 s and at 0.782 s
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P36.40 (a) 13 3.  cm; P36.60 (a) inside the rod,  47.1 cm from the
second surface ;(b) see the solution; a trapezoid;

(c) 224 cm2 (b) virtual,  inverted,  and enlarged

P36.42 2 18.  mm away from the film P36.62 25 3.  cm to right of mirror ,
virtual,  upright , enlarged 8.05 times

P36.44 (a) at q = −34 7.  cm
virtual,  upright and diminshed; P36.64 place the lenses 9.00 cm apart and let light

pass through the diverging lens first.
1 75.  times

(b) at q = −36 1.  cm
virtual,  upright and diminshed

P36.66 (a) 1 40.  kW m2 ; (b) 6 91.  mW m2 ;
P36.46

f
1 41. (c) 0 164.  cm; (d) 58 1.  W m2

P36.48 23 2.  cm P36.68 11 7.  cm

P36.50 (a) at 4 17.  cm; (b) 6 00. P36.70 (a) 0 334.  m or larger ;

(b) 
R
R

a = 0 025 5.  or largerP36.52 2 14.  cm

P36.54 (a) see the solution; (b) ′ = −h
hf
p

; P36.72 (a) 1 99. ;
(b) 10 0.  cm to the left of the lens ; −2 50. ;
(c) inverted(c) −1 07.  mm

P36.74 (a) 13 3.  cm; (b) −5 90. ; (c) invertedP36.56 3 38.  min

P36.76 see the solution;
real,  inverted,  and actual size

P36.58 if M < 1 , f
Md

M
=

−

−1 2a f ,

if M > 1 , f
Md

M
=

− 1 2a f P36.78 see the solution
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Interference of Light Waves

ANSWERS TO QUESTIONS

Q37.1 (a) Two waves interfere constructively if their path
difference is zero, or an integral multiple of the
wavelength, according to δ λ= m , with
m = 0 1 2 3, , , , ….

(b) Two waves interfere destructively if their path
difference is a half wavelength, or an odd multiple of
λ
2

, described by δ λ= +FHG
I
KJm

1
2

, with m = 0 1 2 3, , , , ….

Q37.2 The light from the flashlights consists of many different
wavelengths (that’s why it’s white) with random time
differences between the light waves. There is no coherence
between the two sources. The light from the two flashlights
does not maintain a constant phase relationship over time.
These three equivalent statements mean no possibility of an
interference pattern.

Q37.3 Underwater, the wavelength of the light would decrease, λ
λ

water
air

water
=

n
. Since the positions of light

and dark bands are proportional to λ, (according to Equations 37.2 and 37.3), the underwater fringe
separations will decrease.

Q37.4 Every color produces its own pattern, with a spacing between the maxima that is characteristic of the
wavelength. With several colors, the patterns are superimposed and it can be difficult to pick out a
single maximum. Using monochromatic light can eliminate this problem.

Q37.5 The threads that are woven together to make the cloth have small meshes between them. These bits
of space act as pinholes through which the light diffracts. Since the cloth is a grid of such pinholes,
an interference pattern is formed, as when you look through a diffraction grating.

Q37.6 If the oil film is brightest where it is thinnest, then n n nair oil water< < . With this condition, light
reflecting from both the top and the bottom surface of the oil film will undergo phase reversal. Then
these two beams will be in phase with each other where the film is very thin. This is the condition
for constructive interference as the thickness of the oil film decreases toward zero.

381
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Q37.7 As water evaporates from the ‘soap’ bubble, the thickness of the bubble wall approaches zero. Since
light reflecting from the front of the water surface is phase-shifted 180° and light reflecting from the
back of the soap film is phase-shifted 0°, the reflected light meets the conditions for a minimum.
Thus the soap film appears black, as in the illustration accompanying textbook Example 37.5,
“Interference in a Wedge-Shaped Film.”

Q37.8 If the film is more than a few wavelengths thick, the interference fringes are so close together that
you cannot resolve them.

Q37.9 If R is large, light reflecting from the lower surface of the lens can interfere with light reflecting from
the upper surface of the flat. The latter undergoes phase reversal on reflection while the former does
not. Where there is negligible distance between the surfaces, at the center of the pattern you will see
a dark spot because of the destructive interference associated with the 180° phase shift. Colored
rings surround the dark spot. If the lens is a perfect sphere the rings are perfect circles. Distorted
rings reveal bumps or hollows on the fine scale of the wavelength of visible light.

Q37.10 A camera lens will have more than one element, to correct (at least) for chromatic aberration. It will
have several surfaces, each of which would reflect some fraction of the incident light. To maximize
light throughput the surfaces need antireflective coatings. The coating thickness is chosen to
produce destructive interference for reflected light of some wavelength.

Q37.11 To do Young’s double-slit interference experiment with light from an ordinary source, you must first
pass the light through a prism or diffraction grating to disperse different colors into different
directions. With a single narrow slit you select a single color and make that light diffract to cover
both of the slits for the interference experiment. Thus you may have trouble lining things up and
you will generally have low light power reaching the screen. The laser light is already
monochromatic and coherent across the width of the beam.

Q37.12 Suppose the coating is intermediate in index of refraction between vacuum and the glass. When the
coating is very thin, light reflected from its top and bottom surfaces will interfere constructively, so
you see the surface white and brighter. As the thickness reaches one quarter of the wavelength of
violet light in the coating, destructive interference for violet will make the surface look red or
perhaps orange. Next to interfere destructively are blue, green, yellow, orange, and red, making the
surface look red, purple, and then blue. As the coating gets still thicker, we can get constructive
interference for violet and then for other colors in spectral order. Still thicker coating will give
constructive and destructive interference for several visible wavelengths, so the reflected light will
start to look white again.

Q37.13 Assume the film is higher in refractive index than the medium on both sides of it. The condition for

destructive interference of the two transmitted beams is that the waves be out of phase by 
λ
2

. The

ray that reflects through the film undergoes phase reversal both at the bottom and at the top surface.

Then this ray should also travel an extra distance of 
λ
2

. Since this ray passes through two extra

thicknesses of film, the thickness should be 
λ
4

. This is different from the condition for destructive

interference of light reflected from the film, but it is the same as the condition for constructive
interference of reflected light. The energy of the extra reflected light is energy diverted from light
otherwise transmitted.
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Q37.14 The metal body of the airplane is reflecting radio waves broadcast by the television station. The
reflected wave that your antenna receives has traveled an extra distance compared to the stronger
signal that came straight from the transmitter tower. You receive it with a short time delay. On the
television screen you see a faint image offset to the side.

SOLUTIONS TO PROBLEMS

Section 37.1 Conditions for Interference

Section 37.2 Young’s Double-Slit Experiment

P37.1 ∆y
L

dbright  m  cm= =
×

×
=

−

−
λ 632 8 10 5 00

2 00 10
1 58

9

4

. .

.
.

e ja f

P37.2 y
L

d
mbright =

λ

For m = 1 , λ = =
× ×

=
− −

yd
L

3 40 10 5 00 10

3 30
515

3 4. .

.

 m  m

 m
 nm

e je j

P37.3 Note, with the conditions given, the small angle approximation does not
work well. That is, sinθ , tanθ , and θ are significantly different. We treat
the interference as a Fraunhofer pattern.

(a) At the m = 2  maximum, tan .θ = =
400

0 400
 m

1 000 m

θ = °21 8.

so λ
θ

= =
°
=

d
m
sin sin .

.
300 21 8

2
55 7

 m
 m

a f
.

(b) The next minimum encountered is the m = 2  minimum;

1 000 m

400 m

300 m

FIG. P37.3

and at that point, d msinθ λ= +FHG
I
KJ

1
2

which becomes d sinθ λ=
5
2

or sin
.

.θ
λ

=
5

= FHG
I
KJ =2

5
2

55 7
0 464

d
 m

300 m

and θ = °27 7.

so y = °=1 000 27 7 524 m  mb gtan . .

Therefore, the car must travel an additional 124 m .

If we considered Fresnel interference, we would more precisely find

(a) λ = + − +FH IK =
1
2

550 1 000 250 1 000 55 22 2 2 2 .  m and (b) 123 m.
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P37.4 λ = = =−
v
f

354
2 000

0 1771

 m s
 s

 m.

(a) d msinθ λ= so 0 300 1 0 177. sin . m  ma f a fθ = and θ = °36 2.

(b) d msinθ λ= so d sin . .36 2 1 0 030 0°=  mb g and d = 5 08.  cm

(c) 1 00 10 36 2 16. sin .× °=−  me j a fλ so λ = 590 nm

f
c

= =
×

×
=−λ

3 00 10
5 90 10

508
8

7

.
.

 m s
 m

 THz

P37.5 In the equation d msinθ λ= +FHG
I
KJ

1
2

.

The first minimum is described by m = 0

and the tenth by m = 9 : sinθ
λ

= +FHG
I
KJd

9
1
2

.

Also, tanθ =
y
L

but for small θ, sin tanθ θ≈ .

Thus, d
L

y
= =

9 5 9 5.
sin

.λ
θ

λ

d =
×

×
= × =

−

−
−

9 5 5 890 10 2 00

7 26 10
1 54 10 1 54

10

3
3

. .

.
. .

 m  m

 m
 m  mm

e ja f
.

L

d
Source

y

FIG. P37.5

P37.6 λ = =
340
2 000

0 170
 m s

 Hz
 m.

Maxima are at d msinθ λ= :

m = 0 gives θ = °0

m = 1 gives sin
.

θ
λ

= =
d

0 170 m
0.350 m

θ = °29 1.

m = 2 gives sin .θ
λ

= =
2

0 971
d

θ = °76 3.

m = 3 gives sin .θ = 1 46 No solution.

Minima are at d msinθ λ= +FHG
I
KJ

1
2

:

m = 0 gives sin .θ
λ

= =
2

0 243
d

θ = °14 1.

m = 1 gives sin .θ
λ

= =
3
2

0 729
d

θ = °46 8.

m = 2 gives sin .θ = 1 21 No solution.

So we have maxima at 0 ,  29.1 ,  and 76.3 ;  minima at 14.1  and 46.8° ° ° ° ° .
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P37.7 (a) For the bright fringe,

y
m L

dbright =
λ

 where m = 1

y =
×

×
= × =

−

−
−

546 1 10 1 20

0 250 10
2 62 10 2 62

9

3
3

. .

.
. .

 m  m

 m
 m  mm

e ja f
.

(b) For the dark bands, y
L

d
mdark = +FHG
I
KJ

λ 1
2

; m = 0 1 2 3, , , , …

y y
L

d
L

d2 1

9

3

1
1
2

0
1
2

1

546 1 10 1 20

0 250 10

− = +FHG
I
KJ − +FHG

I
KJ

L
NM

O
QP =

=
×

×

−

−

λ λ a f

e ja f. .

.

 m  m

 m

∆y = 2 62.  mm .

L

dSource

y

= 1.20 m

= 0.250 m

bright
dark

bright
dark

bright
dark

y1

y2

FIG. P37.7

P37.8 Taking m = 0  and y = 0 200.  mm  in Equation 37.6 gives

L
dy

L

≈ =
× ×

×
=

≈

− −

−

2 2 0 400 10 0 200 10

442 10
0 362

36 2

3 3

9λ

. .
.

.

 m  m

 m
 m

 cm

e je j

Geometric optics incorrectly predicts bright regions opposite the
slits and darkness in between. But, as this example shows,
interference can produce just the opposite.

L

0.2 mm

0.2 mm

Bright

Bright

Bright

Dark

Dark

FIG. P37.7

P37.9 Location of A =  central maximum,

Location of B =  first minimum.

So, ∆y y y
L

d
L

d
= − = +FHG

I
KJ − = =min max .

λ λ
0

1
2

0
1
2

20 0 m .

Thus, d
L

= = =
λ

2 20 0
3 00 150

40 0
11 3

.
.

.
.

 m
 m  m

 m
 ma f

a fa f
.

P37.10 At 30 0. ° , d msinθ λ=

3 20 10 30 0 500 104 9. sin .× °= ×− − m  me j e jm so m = 320

There are 320 maxima to the right, 320 to the left, and one for m = 0  straight ahead.

There are 641 maxima .
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*P37.11 Observe that the pilot must not only home in on the airport, but must be headed in the right
direction when she arrives at the end of the runway.

(a) λ = =
×

×
=−

c
f

3 10
30 10

10 0
8

6 1

 m s
 s

 m.

(b) The first side maximum is at an angle given by d sinθ λ= 1a f .

40 10 m  ma fsinθ = θ = °14 5. tanθ =
y
L

y L= = °=tan tan .θ 2 000 14 5 516 m  mb g

(c) The signal of 10-m wavelength in parts (a) and (b) would show maxima at 0°, 14.5°, 30.0°,
48.6°, and 90°. A signal of wavelength 11.23-m would show maxima at 0°, 16.3°, 34.2°, and
57.3°. The only value in common is 0°. If λ1  and λ 2  were related by a ratio of small integers

(a just musical consonance!) in 
λ
λ

1

2

1

2
=

n
n

, then the equations d nsinθ λ= 2 1  and d nsinθ λ= 1 2

would both be satisfied for the same nonzero angle. The pilot could come flying in with that
inappropriate bearing, and run off the runway immediately after touchdown.

*P37.12 In d msinθ λ= d
y
L

m= λ y
m L

d
=

λ

dy
dt

m
d

dL
dt

= =
×

×
=

−

−

λ 1 633 10

0 3 10
3 6 33

9

3

 m

 m
 m s  mm s

e j
e j.

.

P37.13 φ
π
λ

θ
π
λ

= = F
HG
I
KJ

2 2
d d

y
L

sin

(a) φ
π

=
×

× ° =
−

−2

5 00 10
1 20 10 0 500 13 2

7
4

.
. sin . .

 m
 m  rad

e j e j a f

(b) φ
π

=
×

×
×F

HG
I
KJ =−

−
−2

5 00 10
1 20 10

5 00 10
6 28

7
4

3

.
.

.
.

 m
 m

 m
1.20 m

 rad
e j e j

(c) If φ
π θ
λ

= =0 333
2

.
sin

 rad
d

θ
λφ
π π

=
F
HG
I
KJ =

×

×

L

N
MM

O

Q
PP

− −
−

−
sin sin

. .

.
1 1

7

42

5 00 10 0 333

2 1 20 10d

 m  rad

 m

e ja f
e j

θ = × −1 27 10 2.  deg .

(d) If d sinθ
λ

=
4

θ
λ

= F
HG
I
KJ =

×

×

L

N
MM

O

Q
PP

− −
−

−
sin sin

.
1 1

7

44
5 10

4 1 20 10d
 m

 me j
θ = × −5 97 10 2.  deg .
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P37.14 The path difference between rays 1 and 2 is: δ θ θ= −d dsin sin1 2 .

For constructive interference, this path difference must be equal to an integral number of
wavelengths: d d msin sinθ θ λ1 2− = , or

d msin sinθ θ λ1 2− =b g .

P37.15 (a) The path difference δ θ= d sin  and when L y>>

δ µ= =
× ×

= × =
− −

−yd
L

1 80 10 1 50 10

1 40
1 93 10 1 93

2 4
6

. .

.
. .

 m  m

 m
 m  m

e je j
.

(b)
δ
λ
=

×
×

=
−

−
1 93 10
6 43 10

3 00
6

7
.
.

.
 m
 m

, or δ λ= 3 00.

(c) Point P will be a maximum  since the path difference is an integer multiple of the

wavelength.

Section 37.3 Intensity Distribution of the Double-Slit Interference Pattern

P37.16 (a)
I

Imax
cos= F
HG
I
KJ

2

2
φ

(Equation 37.11)

Therefore, φ = = =− −2 2 0 640 1 291 1cos cos . .
max

I
I

 rad .

(b) δ
λφ
π π

= = =
2

486 1 29
2

99 8
 nm  rad

 nm
a fa f.

.

P37.17 I I
d

av =
F
HG

I
KJmax cos

sin2 π θ
λ

For small θ, sinθ =
y
L

and I Iav = 0 750. max

y
L
d

I
I

y
I

I

av=

=
×

×
=

−

−

−
−

λ
π

π
µ

cos

. .

.
cos

.
.

max

max

max

1

7

3
1

6 00 10 1 20

2 50 10

0 750
48 0

e ja f
e j

 m

 m
 m

P37.18 I I
yd
L

= F
HG
I
KJmax cos2 π

λ

I
Imax

cos
. .

. .
.=

× ×

×

L

N
MM

O

Q
PP =

− −

−
2

3 4

9

6 00 10 1 80 10

656 3 10 0 800
0 968

π  m  m

 m  m

e je j
e ja f
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P37.19 (a) From Equation 37.8,

φ
π
λ

θ
π
λ

φ
π
λ

π

= = ⋅
+

≈ =
× ×

×
=

− −

−

2 2

2 2 0 850 10 2 50 10

600 10 2 80
7 95

2 2

3 3

9

d d y

y D

yd
D

sin

. .

.
.

 m  m

 m  m
 rad

e je j
e ja f

(b)
I

I

d

d mmax max

cos sin

cos sin

cos

cos
= =

2

2

2

2

2π λ θ

π λ θ

φ

π

b g
b g

b g

I
Imax

cos cos
.

.= = F
HG

I
KJ =

2 2

2
7 95

0 453
φ  rad

2

P37.20 (a) The resultant amplitude is

E E t E t E tr = + + + +0 0 0 2sin sinω ω φ ω φb g b g, where φ
π
λ

θ=
2

d sin .

E E t t t t t

E E t E t

E E t t E t

r

r

r

= + + + +

= + + − + +

= + + = + +

0

0
2

0

0 0

2 2

1 2 1 2

1 2 1 2

sin sin cos cos sin sin cos cos sin

sin cos cos cos sin sin cos

cos sin cos cos sin cos sin

ω ω φ ω φ ω φ ω φ

ω φ φ ω φ φ φ

φ ω φ ω φ φ ω φ

b g
b ge j b gb g
b gb g b g b g

Then the intensity is I E Er∝ = + F
HG
I
KJ

2
0
2 21 2

1
2

cosφb g

where the time average of sin2 ω φt +b g  is 
1
2

.

From one slit alone we would get intensity I Emax ∝
F
HG
I
KJ0

2 1
2

 so

I I
d

= + F
HG

I
KJ

L
NM

O
QPmax cos

sin
1 2

2
2π θ

λ
.

(b) Look at the N = 3  graph in Figure 37.14. Minimum intensity is zero, attained where

cosφ = −
1
2

. One relative maximum occurs at cos .φ = −1 00 , where I I= max .

The larger local maximum happens where cos .φ = +1 00 , giving I I= 9 00 0. .

The ratio of intensities at primary versus secondary maxima is 9 00. .
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Section 37.4 Phasor Addition of Waves

P37.21 (a) We can use sin sin sin cosA B
A B A B

+ = +FHG
I
KJ −FHG

I
KJ2

2 2 2 2
 to find the sum of the two sine functions

to be

E E x t

E E x t
1 2

1 2

24 0 15 4 5 35 0 35 0

19 7 15 4 5 35 0

+ = − + ° °

+ = − + °

. sin . . cos .

. sin . .

 kN C

 kN C

b g a f
b g a f

Thus, the total wave has amplitude 19 7.  kN C  and has a constant phase difference of

35 0. °  from the first wave.

(b) In units of kN/C, the resultant phasor is

E E E i i j i j

E

R

R

= + = + ° + = +

= + F
HG
I
KJ = °−

1 2

2 2 1

12 0 12 0 70 0 12 0 70 0 16 1 11 3

16 1 11 3
11 3
16 1

19 7

. � . cos . � . sin . � . � . �

. . tan
.
.

.

e j e j
a f a f  at  kN C  at 35.0

E1

E2

70.0°

ER

α
x

y kx - ωt

FIG. P37.21(b)

(c) E i jR = ° + °12 0 70 0 12 0 70 0. cos . � . sin . �

+ ° − °

+ ° + °

= − + = °

15 5 80 0 15 5 80 0

17 0 160 17 0 160

9 18 1 83 9 36

. cos . � . sin . �

. cos � . sin �

. � . � .

i j

i j

E i jR  kN C  at 169

The wave function of the total wave is
E x tP = − + °9 36 15 4 5 169. sin . kN Cb g a f .

E1

E2ER

x

y
kx - ωt

E3

FIG. P37.21(c)

P37.22 (a) E i i j i jR E= + °+ ° + °+ °0 20 0 20 0 40 0 40 0� � cos . � sin . � cos . � sin .e j e j

E i jR E E= + =0 02 71 0 985 2 88. � . � .  at 20 0 2 88 0. .°= E  at 0.349 rad

E E tP = +2 88 0 3490. sin .ωb g E1

E2
E3

ER

y

x

FIG. P37.22(a)

(b) E i i j i jR E= + °+ ° + °+ °0 60 0 60 0 120 120� � cos . � sin . � cos � sine j e j

E i jR E E= + =0 01 00 1 73 2 00. � . � .  at 60 0 2 00
30. .°= E  at  rad
π

E E tP = +FHG
I
KJ2 00

30. sin ω
π E1

E2

E3

ER

y

x

FIG. P37.22(b)

continued on next page
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(c) E i i j i jR E= + °+ ° + °+ °0 120 120 240 240� � cos � sin � cos � sine j e j

E i jR

P

E

E

= + =

=

0 0 0 0

0

� �

E1

E2

E3

y

x

FIG. P37.22(c)

(d) E i i j i jR E= + +F
HG

I
KJ + +

L
NM

O
QP0

3
2

3
2

3 3� � cos � sin � cos � sin
π π

π πe j

E i jR

P

E E E

E E t

= − = °=

= +FHG
I
KJ

0 0 0

0

0 1 00
3
2

3
2

� . �

sin

 at 270  at  rad
π

ω
π E1

E2

E3

y

x

FIG. P37.22(d)

P37.23 E i jR = + = + F
HG
I
KJ

−6 00 8 00 6 00 8 00
8 00
6 00

2 2 1. � . � . . tan
.
.

a f a f  at 

ER

PE t

= °=

= +

10 0 53 1 10 0 0 927

10 0 100 0 927

. . . .

. sin .

 at  at  rad

πb g
6.00

8.00

y

x

ER

  π 2α

FIG. P37.23

P37.24 If E E t1 01= sinω  and E E t2 02= +sin ω φb g , then by phasor addition,
the amplitude of E is

E E E E E E E E0 01 02
2

02
2

01
2

01 02 02
22= + + = + +cos sin cosφ φ φb g b g

and the phase angle is found from sin
sin

θ
φ

=
E

E
02

0
. E01

E02E0

x

y

θ φ

FIG. P37.24

P37.25 E i i jR = + ° + °12 0 18 0 60 0 18 0 60 0. � . cos . � . sin . �e j
E i jR

RE t

= + = °

= + °

21 0 15 6 26 2

26 2 36 6

. � . � .

. sin .

 at 36.6

ωb g
12.0

18.0
ER

x

y

θ 60.0°

FIG. P37.25

P37.26 Constructive interference occurs where m = 0 1 2 3, , , , … , for

2
2

6
2

2
8

21 2π
λ

π
π π

λ
π

π
π

x
ft

x
ft m− +F

HG
I
KJ − − +F
HG

I
KJ =

2
6 8

21 2π
λ

π π
π

x x
m

−
+ −FHG

I
KJ =

b g

x x
m1 2 1

12
1

16
−

+ − =
b g

λ
x x m m1 2

1
48

0 1 2 3− = −FHG
I
KJ =λ , , , , … .
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P37.27 See the figure to the right:

φ
π

=
2

.

ωt

π /2

π /2

π /2

FIG. P37.27

P37.28 E E E E ER
2

1
2

2
2

1 22= + − cosβ where β φ= −180 .

Since I E∝ 2

I I I I IR = + +1 2 1 22 cosφ .

β
E1

=π /4φ
E2

ER

FIG. P37.28

P37.29 Take φ =
°360

N
 where N defines the

number of coherent sources. Then,

E E t mR
m

N
= + =

=
∑ 0

1
0sin ω φb g .

In essence, the set of N electric field
components complete a full circle and
return to zero.

x

y

The N = 6 case

    
φ =

360°

N
=

360°

6
= 60. 0°

60.0°

FIG. P37.29

Section 37.5 Change of Phase Due to Reflection

Section 37.6 Interference in Thin Films

P37.30 Light reflecting from the first surface suffers phase reversal. Light reflecting from the second surface
does not, but passes twice through the thickness t of the film. So, for constructive interference, we
require

λ
λn

nt
2

2+ =

where λ
λ

n n
=  is the wavelength in the material.

Then 2
2 2

t
n

n= =
λ λ

λ = = =4 4 1 33 115 612nt .a fa f nm  nm .



392     Interference of Light Waves

P37.31 (a) The light reflected from the top of the oil film undergoes phase
reversal. Since 1 45 1 33. .> , the light reflected from the bottom
undergoes no reversal. For constructive interference of reflected
light, we then have

2
1
2

nt m= +FHG
I
KJλ

or λm
nt

m m
=

+
=

+
2

1 2
2 1 45 280

1 2b g
a fa f
b g

.  nm
.

FIG. P37.31

Substituting for m gives: m = 0 , λ 0 1 620=  nm  (infrared)

m = 1 , λ1 541=  nm  (green)

m = 2 , λ 2 325=  nm  (ultraviolet).

Both infrared and ultraviolet light are invisible to the human eye, so the dominant color in
reflected light is green .

(b) The dominant wavelengths in the transmitted light are those that produce destructive
interference in the reflected light. The condition for destructive interference upon reflection
is

2nt m= λ

or λm
nt
m m

= =
2 812 nm

.

Substituting for m gives: m = 1 , λ1 812=  nm  (near infrared)

m = 2 , λ 2 406=  nm  (violet)

m = 3 , λ 3 271=  nm  (ultraviolet).

Of these, the only wavelength visible to the human eye (and hence the dominate
wavelength observed in the transmitted light) is 406 nm. Thus, the dominant color in the
transmitted light is violet .

P37.32 Since 1 1 25 1 33< <. . , light reflected both from the top and from the bottom surface of the oil suffers
phase reversal.

For constructive interference we require 2t
m

n
=

λ cons

and for destructive interference, 2
1 2

t
m

n
=

+ b g λdes
.

Then
λ
λ

cons

dest

 nm
512 nm

= + = =1
1

2
640

1 25
m

.  and m = 2 .

Therefore, t = =
2 640

2 1 25
512

 nm
 nm

a f
a f.

.
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P37.33 Treating the anti-reflectance coating like a camera-lens coating,

2
1
2

t m
n

= +FHG
I
KJ
λ

.

Let m = 0 : t
n

= = =
λ
4

3 00
0 500

.
.

 cm
4 1.50

 cma f .

This anti-reflectance coating could be easily countered by changing the wavelength of the radar—to
1.50 cm—now creating maximum reflection!

P37.34 2
1
2

nt m= +FHG
I
KJλ so t m

n
= +FHG

I
KJ

1
2 2

λ

Minimum t = FHG
I
KJ =

1
2

500
2 1 30

96 2
 nm

 nm
a f
a f.

. .

P37.35 Since the light undergoes a 180° phase change at each surface of the film, the condition for

constructive interference is 2nt m= λ , or λ =
2nt
m

. The film thickness is

t = × = × =− −1 00 10 1 00 10 1005 7. . cm  m  nm. Therefore, the wavelengths intensified in the reflected
light are

λ = =
2 1 38 100 276.a fa f nm  nm

m m
 where m = 1 2 3, , , …

or λ1 276=  nm , λ 2 138=  nm , . . . . All reflection maxima are in the ultraviolet and beyond.

No visible wavelengths are intensified.

P37.36 (a) For maximum transmission, we want destructive interference in the light reflected from the
front and back surfaces of the film.

If the surrounding glass has refractive index greater than 1.378, light reflected from the front
surface suffers no phase reversal and light reflected from the back does undergo phase
reversal. This effect by itself would produce destructive interference, so we want the

distance down and back to be one whole wavelength in the film: 2t
n

=
λ

.

t
n

= = =
λ
2

656 3
238

.  nm
2 1.378

 nma f

(b) The filter will expand. As t increases in 2nt = λ , so does λ increase .

(c) Destructive interference for reflected light happens also for λ in 2 2nt = λ ,

or λ = =1 378 238 328.  nm  nm  near ultravioleta f a f .

P37.37 If the path length difference ∆ = λ , the transmitted light will be bright. Since ∆ = =2d λ ,

dmin = = =
λ
2

580
290

 nm
2

 nm .
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P37.38 The condition for bright fringes is

2
2

t
n

m
n

+ =
λ λ

m = 1 2 3, , , … .

From the sketch, observe that

t R R
R r

R
r
R

= − ≈ − +
F
HG

I
KJ =
F
HG
I
KJ =1 1 1

2 2 2

2 2 2

cosθ
θa f .

The condition for a bright fringe becomes
r
R

m
n

2 1
2

= −FHG
I
KJ
λ

.

Thus, for fixed m and λ, nr 2 = constant .

R
θ

 r 

t

FIG. P37.38

Therefore, n r n rf iliquid air
2 2=  and nliquid

 cm

 cm
= =1 00

1 50

1 31
1 31

2

2.
.

.
.a f a f

a f .

P37.39 For destructive interference in the air,

2t m= λ .

For 30 dark fringes, including the one where the plates
meet,

t = = × −29 600
2

8 70 10 6 nm
 m

a f
. .

Therefore, the radius of the wire is

r
t

= = =
2

8 70
4 35

.
.

 m
2

 m
µ

µ .

FIG. P37.39

P37.40 For total darkness, we want destructive interference for reflected light for both 400 nm and 600 nm.
With phase reversal at just one reflecting surface, the condition for destructive interference is

2n t mair = λ m = 0 1 2, , , … .

The least common multiple of these two wavelengths is 1 200 nm, so we get no reflected light at
2 1 00 3 400 2 600 1 200.a f a f a ft = = = nm  nm  nm , so t = 600 nm  at this second dark fringe.

By similar triangles,
600 0 050 0 nm  mm

10.0 cmx
=

.
,

or the distance from the contact point is x = ×
×

F
HG

I
KJ =

−
−600 10

0 100
10

1 209
5 m

 m
5.00  m

 mme j .
. .



Chapter 37     395

Section 37.7 The Michelson Interferometer

P37.41 When the mirror on one arm is displaced by ∆A , the path difference changes by 2∆A . A shift
resulting in the reversal between dark and bright fringes requires a path length change of one-half

wavelength. Therefore, 2
2

∆A = mλ
, where in this case, m = 250 .

∆A = =
×

=
−

m
λ

µ
4

250 6 328 10

4
39 6

7a fe j.
.

 m
 m

P37.42 Distance = × =−2 3 82 10 1 7004.  me j λ λ = × =−4 49 10 4497.  m  nm

The light is blue .

P37.43 Counting light going both directions, the number of wavelengths originally in the cylinder is

m
L

1
2

=
λ

. It changes to m
L
n

nL
2

2 2
= =
λ λ

 as the cylinder is filled with gas. If N is the number of bright

fringes passing, N m m
L

n= − = −2 1
2

1
λ
a f, or the index of refraction of the gas is

n
N

L
= +1

2
λ

Additional Problems

*P37.44 (a) Where fringes of the two colors coincide we have d m msinθ λ λ= = ′ ′ , requiring 
λ
λ′

=
′m

m
.

(b) λ = 430 nm, ′ =λ 510 nm

∴
′
= =

m
m

430 43
51

 nm
510 nm

, which cannot be reduced any further. Then m = 51, ′ =m 43 .

θ
λ

θ

m

m m

m
d

y L

= F
HG
I
KJ =

×

×

L

N
MM

O

Q
PP = °

= = °=

− −
−

−sin sin
.

.

tan . tan . .

1 1
9

3

51 430 10

0 025 10
61 3

1 5 61 3 2 74

a fe j

a f

 m

 m

 m  m

P37.45 The wavelength is λ = =
×

×
=−

c
f

3 00 10
60 0 10

5 00
8

6 1

.
.

.
 m s
 s

 m.

Along the line AB the two traveling waves going in opposite directions add to give a standing wave.
The two transmitters are exactly 2.00 wavelengths apart and the signal from B, when it arrives at A,
will always be in phase with transmitter B. Since B is 180° out of phase with A, the two signals
always interfere destructively at the position of A.

The first antinode (point of constructive interference) is located at distance

λ
4

5 00
1 25= =

.
.

 m
4

 m  from the node at A.
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*P37.46 Along the line of length d joining the source, two identical waves
moving in opposite directions add to give a standing wave. An

antinode is halfway between the sources. If 
d
2 2
>
λ

, there is space for

two more antinodes for a total of three. If 
d
2
> λ , there will be at least

five antinodes, and so on. To repeat, if 
d
λ
> 0 , the number of antinodes

is 1 or more. If 
d
λ
> 1, the number of antinodes is 3 or more. If 

d
λ
> 2 , the

number of antinodes is 5 or more. In general,

s N A N s

λ
4

FIG. P37.46

The number of antinodes is 1 plus 2 times the greatest integer less than or equal to 
d
λ

.

If 
d
2 4
<
λ

, there will be no nodes. If 
d
2 4
>
λ

, there will be space for at least two nodes, as shown in the

picture. If 
d
2

3
4

>
λ

, there will be at least four nodes. If 
d
2

5
4

>
λ

 six or more nodes will fit in, and so on.

To repeat, if 2d < λ  the number of nodes is 0. If 2d > λ  the number of nodes is 2 or more. If 2 3d > λ

the number of nodes is 4 or more. If 2 5d > λ  the number of nodes is 6 or more. Again, if 
d
λ
+FHG
I
KJ >

1
2

1,

the number of nodes is at least 2. If 
d
λ
+FHG
I
KJ >

1
2

2 , the number of nodes is at least 4. If 
d
λ
+FHG
I
KJ >

1
2

3 , the

number of nodes is at least 6. In general,

the number of nodes is 2 times the greatest nonzero integer less than 
d
λ
+FHG
I
KJ

1
2

.

Next, we enumerate the zones of constructive interference. They are described by d msinθ λ= ,
m = 0 1 2, , , … with θ counted as positive both left and right of the maximum at θ = 0  in the center.

The number of side maxima on each side is the greatest integer satisfying sinθ ≤ 1, d m1 ≥ λ , m
d

≤
λ

.

So the total

number of bright fringes is one plus 2 times the greatest integer less than or equal to 
d
λ

.

It is equal to the number of antinodes on the line joining the sources.

The interference minima are to the left and right at angles described by d msinθ λ= +FHG
I
KJ

1
2

,

m = 0 1 2, , , …. With sinθ < 1, d m1
1
2

> +F
HG

I
KJmax λ , m

d
max < −

λ
1
2

 or m
d

max + < +1
1
2λ

. Let n = 1 2 3, , , ….

Then the number of side minima is the greatest integer n less than 
d
λ
+

1
2

. Counting both left and

right, the number of dark fringes is two times the greatest positive integer less than 
d
λ
+FHG
I
KJ

1
2

.  It is

equal to the number of nodes in the standing wave between the sources.
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P37.47 My middle finger has width d = 2 cm .

(a) Two adjacent directions of constructive interference for 600-nm light are described by

d msin

sin

θ λ
θ

θ

=
=

× = ×− −

0

2
1

7

0

2 10 1 6 10 m  me j e j
Thus, θ 1

32 10= × −  degree

and θ θ1 0
310− −~  degree .

(b) Choose θ 1 20= °

2 10 20 1

7

2× °=

=

−  m

 mm

e j a fsin λ

λ

Millimeter waves are microwaves .

f
c

=
λ

: f =
×

× −

3 10
7 10

10
8

3
11 m s

 m
 Hz~

P37.48 If the center point on the screen is to be a dark spot rather than bright, passage through the plastic
must delay the light by one-half wavelength. Calling the thickness of the plastic t.

t t
n

nt
λ λ λ
+ = =

1
2

or t
n

=
−
λ

2 1a f  where n is the index of refraction for the plastic.

P37.49 No phase shift upon reflection from the upper surface (glass to air) of the film, but there will be a

shift of 
λ
2

 due to the reflection at the lower surface of the film (air to metal). The total phase

difference in the two reflected beams is

then δ
λ

= +2
2

nt .

For constructive interference, δ λ= m

or 2 1 00
2

.a ft m+ =
λ

λ .

Thus, the film thickness for the mth  order bright fringe is

t m mm = −FHG
I
KJ = FHG

I
KJ −

1
2 2 2 4

λ λ λ

and the thickness for the m −1  bright fringe is:

t mm− = − FHG
I
KJ −1 1

2 4
a f λ λ

.

Therefore, the change in thickness required to go from one bright fringe to the next is

∆t t tm m= − =−1 2
λ

.

continued on next page
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To go through 200 bright fringes, the change in thickness of the air film must be:

200
2

100
λ

λF
HG
I
KJ = .

Thus, the increase in the length of the rod is

∆L = = × = ×− −100 100 5 00 10 5 00 107 5λ . . m  me j .

From ∆ ∆L L ti= α

we have: α = =
×

°
= × °

−
− −∆

∆
L

L Ti

5 00 10
0 100 25 0

20 0 10
5

6 1.
. .

.
 m

 m C
 Ca fa f .

P37.50 Since 1 1 25 1 34< <. . , light reflected from top and bottom surfaces of the oil undergoes phase reversal.
The path difference is then 2t, which must be equal to

m
m
nnλ
λ

=

for maximum reflection, with m = 1  for the given first-order condition and n = 1 25. . So

t
m

n
= = =

λ
2

1 500
2 1 25

200
 nm

 nm
a f
a f.

.

The volume we assume to be constant: 1 00 200.  m  nm3 = a fA

A = = × =
−

1 00

200 10
5 00 10 5 00

9
6.

. .
 m

 m
 m  km

3
2 2

e j
.

P37.51 One radio wave reaches the receiver R directly from the distant
source at an angle θ above the horizontal. The other wave
undergoes phase reversal as it reflects from the water at P.

Constructive interference first occurs for a path difference of

d =
λ
2

(1)

It is equally far from P to R as from P to ′R , the mirror image of
the telescope.

The angles θ in the figure are equal because they each form
part of a right triangle with a shared angle at ′R .

FIG. P37.51

So the path difference is d = =2 20 0 40 0. sin . sin m  ma f a fθ θ .

The wavelength is λ = =
×

×
=

c
f

3 00 10
60 0 10

5 00
8

6

.
.

.
 m s
 Hz

 m .

Substituting for d and λ in Equation (1), 40 0
5 00

. sin
.

 m
 m

2
a f θ = .

Solving for the angle θ, sin
.

θ =
5 00 m
80.0 m

 and θ = °3 58. .
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P37.52 For destructive interference, the path length must differ by mλ . We may treat this problem as a

double slit experiment if we remember the light undergoes a 
π
2

-phase shift at the mirror. The

second slit is the mirror image of the source, 1.00 cm below the mirror plane. Modifying
Equation 37.5,

y
m L

ddark

 m  m

 m
 mm= =

×

×
=

−

−

λ 1 5 00 10 100

2 00 10
2 50

7

2

.

.
.

e ja f
e j

.

P37.53 2 15 0 30 1752 2. . km  kma f + =h

15 0 227 63

1 62

2 2. .

.

 km

 km

a f + =

=

h

h FIG. P37.53

P37.54 For dark fringes, 2nt m= λ

and at the edge of the wedge, t =
84 500

2
 nma f

.

When submerged in water, 2nt m= λ

m =
2 1 33 42 500

500
.a fa fa f nm

 nm

so m + =1 113 dark fringes . FIG. P37.54

P37.55 From Equation 37.13,
I

I
yd
Lmax

cos=
F
HG
I
KJ

2 π
λ

.

Let λ 2  equal the wavelength for which
I

I
I

Imax max
.→ =2 0 640 .

Then λ
π

2 1
2

1 2=
−

yd L

I Icos maxb g
.

But
π

λ
yd
L

I
I

=
F
HG
I
KJ = =− −

1
1 1

1 2
1600 0 900 271cos cos .

max
 nm  nma f a f .

Substituting this value into the expression for λ 2 , λ 2 1 1 2

271

0 640
421= =

−

 nm
 nm

cos .e j
.

Note that in this problem, cos
max

− F
HG
I
KJ

1
1 2

I
I

 must be expressed in radians.
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P37.56 At entrance, 1 00 30 0 1 38 2. sin . . sin°= θ θ 2 21 2= °.
Call t the unknown thickness. Then

cos .21 2°=
t
a

a
t

=
°cos .21 2

tan .21 2°=
c
t

c t= °tan .21 2

sinθ 1 2
=

b
c

b t= ° °2 21 2 30 0tan . sin .

The net shift for the second ray, including the phase reversal on reflection
of the first, is

FIG. P37.56

2
2

an b− −
λ

where the factor n accounts for the shorter wavelength in the film. For constructive interference, we
require

2
2

an b m− − =
λ

λ .

The minimum thickness will be given by 2
2

0an b− − =
λ

.

λ
2

2 2
21 2

2 21 2 30 0= − =
°
− ° °an b

nt
t

cos .
tan . sin .a f

590 2 1 38
21 2

2 21 2 30 0 2 57
 nm
2

=
×

°
− ° °F

HG
I
KJ =

.
cos .

tan . sin . .t t t = 115 nm

P37.57 The shift between the two reflected waves is δ
λ

= − −2
2

na b

where a and b are as shown in the ray diagram, n is the index of

refraction, and the term 
λ
2

 is due to phase reversal at the top

surface. For constructive interference, δ λ= m  where m has
integer values. This condition becomes

2
1
2

na b m− = +FHG
I
KJλ (1)

From the figure’s geometry, a
t

=
cosθ 2

FIG. P37.57

c a
t

b c
t

= =

= =

sin
sin

cos

sin
sin

cos
sin

θ
θ
θ

φ
θ
θ

φ

2
2

2

1
2

2
12

2

Also, from Snell’s law, sin sinφ θ1 2= n .

Thus, b
nt

=
2 2

2

2

sin
cos

θ
θ

.

With these results, the condition for constructive interference given in Equation (1) becomes:

2
2 2

1
1
22

2
2

2 2

2
2n

t nt nt
m

cos
sin

cos cos
sin

θ
θ

θ θ
θ λ

F
HG

I
KJ − = − = +FHG

I
KJe j

or 2
1
22nt mcosθ λ= +FHG
I
KJ .
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P37.58 (a) Minimum: 2 2nt m= λ for m = 0 1 2, , , …

Maximum: 2
1
2 1nt m= ′ +FHG
I
KJλ for ′ =m 0 1 2, , , …

for λ λ1 2> , ′ +FHG
I
KJ <m m

1
2

so ′ = −m m 1 .

Then 2
1
22 1nt m m= = −FHG
I
KJλ λ

2 22 1 1m mλ λ λ= −

so m =
−
λ

λ λ
1

1 22b g .

(b) m =
−

= →
500

2 500 370
1 92 2a f .  (wavelengths measured to ±5 nm )

Minimum: 2 2nt m= λ
2 1 40 2 370.a f a ft =  nm t = 264 nm

Maximum: 2 1
1
2

1 5nt m= − +F
HG

I
KJ =λ λ.

2 1 40 1 5 500. .a f a ft =  nm t = 268 nm

Film thickness = 266 nm .

P37.59 From the sketch, observe that

x h
d h d

= + FHG
I
KJ =

+2
2 2 2

2
4

2
.

Including the phase reversal due to reflection from
the ground, the total shift between the two waves

is δ
λ

= − −2
2

x d .

����������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

  d  

  d/2  

x x h  

FIG. P37.59

(a) For constructive interference, the total shift must be an integral number of wavelengths, or
δ λ= m  where m = 0 1 2 3, , , , … .

Thus, 2
1
2

x d m− = +FHG
I
KJλ or λ =

−
+

4 2
2 1
x d
m

.

For the longest wavelength, m = 0 , giving λ = − = + −4 2 2 4 22 2x d h d d .

(b) For destructive interference, δ λ= −FHG
I
KJm

1
2

 where m = 0 1 2 3, , , , … .

Thus, 2x d m− = λ or λ =
−2x d

m
.

For the longest wavelength, m = 1  giving λ = − = + −2 4 2 2x d h d d .
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P37.60 Bright fringes occur when 2
1
2

t
n

m= +FHG
I
KJ

λ

and dark fringes occur when 2t
n

m= FHG
I
KJ

λ
.

The thickness of the film at x is t
h

x= FHG
I
KJA .

Therefore, x
hn

mbright = +FHG
I
KJ

λA
2

1
2

 and x
m

hndark =
λA
2

.
FIG. P37.60

P37.61 Call t the thickness of the film. The central maximum
corresponds to zero phase difference. Thus, the added
distance ∆r  traveled by the light from the lower slit must
introduce a phase difference equal to that introduced by
the plastic film. The phase difference φ is

φ π
λ

=
F
HG
I
KJ −2 1

t
n

a
a f .

The corresponding difference in path length ∆r  is

∆r
t

n t na

a

a= FHG
I
KJ =
F
HG
I
KJ − FHG

I
KJ = −φ

λ
π

π
λ

λ
π2

2 1
2

1a f a f .

Screen

θ

y' Zero
order
m = 0

L
Thin
film

α

∆r

d

FIG. P37.61

Note that the wavelength of the light does not appear in this equation. In the figure, the two rays
from the slits are essentially parallel.

Thus the angle θ may be expressed as tanθ = =
′∆r

d
y
L

.

Eliminating ∆r  by substitution,
′
=

−y
L

t n
d

1a f
 gives ′ =

−
y

t n L
d

1a f
.

P37.62 The shift between the waves reflecting from the top and bottom
surfaces of the film at the point where the film has thickness t is

δ
λ

= +2
2

tnfilm , with the factor of 
λ
2

 being due to a phase reversal

at one of the surfaces.

For the dark rings (destructive interference), the total shift should

be δ λ= +FHG
I
KJm

1
2

 with m = 0 1 2 3, , , , … . This requires that

t
m
n

=
λ

2 film
.

R
θ

 r 

tnfilm

FIG. P37.62

To find t in terms of r and R, R r R t2 2 2= + −a f so r Rt t2 22= + .

Since t is much smaller than R, t Rt2 2<< and r Rt R
m
n

2 2 2
2

≈ =
F
HG
I
KJ

λ

film
.

Thus, where m is an integer, r
m R
n

≈
λ

film
.
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P37.63 (a) Constructive interference in the reflected light requires 2
1
2

t m= +FHG
I
KJλ . The first bright ring

has m = 0  and the 55th has m = 54 , so at the edge of the lens

t =
×

=
−54 5 650 10

2
17 7

9.
.

 m
 m

e j
µ .

Now from the geometry in Figure 37.18, the distance from the center of curvature down to
the flat side of the lens is

R r R t2 2− = −  or R r R Rt t2 2 2 22− = − +

R
r t

t
=

+
=

× + ×

×
=

− −

−

2 2 2 2 5 2

52

5 00 10 1 77 10

2 1 77 10
70 6

. .

.
.

 m  m

 m
 m

e j e j
e j

(b)
1

1
1 1

0 520
1 1

70 62 2f
n

R R
= − −

F
HG

I
KJ = ∞

−
−

F
HG

I
KJa f .

.  m
 so f = 136 m

*P37.64 Light reflecting from the upper interface of the air layer
suffers no phase change, while light reflecting from the
lower interface is reversed 180°. Then there is indeed a
dark fringe at the outer circumference of the lens, and a
dark fringe wherever the air thickness t satisfies 2t m= λ ,
m = 0 1 2, , , ….

(a) At the central dark spot m = 50 and

t0
9 550

2
25 589 10 1 47 10= = × = ×− −λ

 m  me j . .

(b) In the right triangle,

r

R = 8 m

t0

FIG. P37.64

8 8 1 47 10 8 2 8 1 47 10 2 102 2 5 2 2 2 5 10 m  m  m  m  m  m  m2a f e j a f a fe j= + − × = + − × + ×− − −r r. . . The

last term is negligible. r = × = ×− −2 8 1 47 10 1 53 105 2 m  m  ma fe j. .

(c)
1

1
1 1

1 50 1
1 1

8 001 2f
n

R R
= − −

F
HG

I
KJ = −

∞
−FHG

I
KJa f a f.

.  m

f = −16 0.  m
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P37.65 For bright rings the gap t between surfaces is given by

2
1
2

t m= +FHG
I
KJλ . The first bright ring has m = 0  and the hundredth

has m = 99.

So, t = × =−1
2

99 5 500 10 24 99. .a fe j m  mµ .

Call rb  the ring radius. From the geometry of the figure at the right,

t r r r R R rb b= − − − − −FH IK2 2 2 2

Since r rb << , we can expand in series:

t r r
r
r

R R
r
R

r
r

r
R

r
t

r R

b b b b

b

= − −
F
HG

I
KJ − + −

F
HG

I
KJ = −

=
−

L
NM

O
QP

=
×

−

L

N
MM

O

Q
PP =

−

1
1
2

1
1
2

1
2

1
2

2
1 1

2 24 9 10

1 4 00 1 12 0
1 73

2

2

2

2

2 2

1 2 6 1 2
.

. .
.

 m

 m  m
 cm

e j

FIG. P37.65

P37.66 E E E E i

j

R = + + = + +L
NM

O
QP

+ + +L
NM

O
QP

1 2 3 6
3 00

7
2

6 00
4
3

6
3 00

7
2

6 00
4
3

cos . cos . cos �

sin . sin . sin �

π π π

π π π

E i jR = − −2 13 7 70. � . �

ER = − + −2 13 7 702 2. .a f a f  at tan
.
.

.− −
−
F
HG
I
KJ =

1 7 70
2 13

7 99  at 4.44 rad

Thus, E tP = +7 99 4 44. sin .ω  radb g .

x

y
E1

E2

E3

ER

FIG. P37.66

P37.67 (a) Bright bands are observed when 2
1
2

nt m= +FHG
I
KJλ .

Hence, the first bright band ( m = 0 ) corresponds to nt =
λ
4

.

Since
x
x

t
t

1

2

1

2
=

we have x x
t
t

x2 1
2

1
1

2

1
3 00

680
4 86=

F
HG
I
KJ =
F
HG
I
KJ =

F
HG

I
KJ =

λ
λ

. . cm
 nm

420 nm
 cma f .

(b) t
n1
1

4
420

78 9= = =
λ  nm

4 1.33
 nma f .

t
n2
2

4
680

128= = =
λ  nm

4 1.33
 nma f

(c) θ θ≈ = = = × −tan
.

.
t
x

1

1

678 9
2 63 10

 nm
3.00 cm

 rad
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*P37.68 Depth = one-quarter of the wavelength in plastic.

t
n

= = =
λ
4

780
130

 nm
4 1.50

 nma f

P37.69 2
1
2

h msinθ λ= +FHG
I
KJ bright

2
2

1
2

h
y
L
∆F
HG
I
KJ = λ so h

L
y

= =
×

×
=

−

−

λ
2

2 00 606 10

2 1 2 10
0 505

9

3∆

.

.
.

 m  m

 m
 mm

a fe j
e j

*P37.70 Represent the light radiated from each slit to point P as a phasor. The two have
equal amplitudes E. Since intensity is proportional to amplitude squared, they

add to amplitude 3E . Then cosθ =
3 2E
E

, θ = °30 . Next, the obtuse angle

between the two phasors is 180 30 30 120− − = °, and φ = − °= °180 120 60 . The
phase difference between the two phasors is caused by the path difference

δ = −SS SS2 1 according to 
δ
λ

φ
=

°360
, δ λ

λ
=

°
°
=

60
360 6

. Then

L d L

L d L
L

2 2

2 2 2
2

6
2

6 36

+ − =

+ = + +

λ

λ λ

The last term is negligible

d
L

= FHG
I
KJ =

×
=

−2
6

2 1 2 620 10
0 498

1 2 9λ .
.

 m  m
6

 mm
a f

.

θ
E

E
φ

3E

FIG. P37.70

P37.71 Superposing the two vectors, ER = +E E1 2

E E
E E

E E
E E

E E E

R

R

= + = +FHG
I
KJ + FHG

I
KJ = + + +

= +

E E1 2 0
0

2
0

2

0
2

0
2 0

2
2 0

2
2

0
2

0
2

3 3
2
3 9 9

10
9

2
3

cos sin cos cos sin

cos

φ φ φ φ φ

φ

Since intensity is proportional to the square of the amplitude,

I I I= +
10
9

2
3max max cosφ .

Using the trigonometric identity cos cosφ
φ

= −2
2

12 , this becomes

I I I I I= + −F
HG

I
KJ = +

10
9

2
3

2
2

1
4
9

4
3 2

2 2
max max max maxcos cos

φ φ
,

or I I= +FHG
I
KJ

4
9

1 3
2

2
max cos

φ
.



406     Interference of Light Waves

ANSWERS TO EVEN PROBLEMS

P37.2 515 nm P37.40 1 20.  mm

P37.4 (a) 36 2. ° ; (b) 5 08.  cm; (c) 508 THz P37.42 449 nm; blue

P37.6 maxima at 0 ,  29.1 ,  76.3° ° ° ;
minima at 14.1  and 46.8° °

P37.44 (a) see the solution; (b) 2 74.  m

P37.46 number of antinodes = number of
constructive interference zones
= 1 plus 2 times the greatest positive

integer ≤
d
λ

P37.8 36 2.  cm

P37.10 641

P37.12 6 33.  mm s number of nodes = number of destructive
interference zones = 2 times the greatest

positive integer < +FHG
I
KJ

d
λ

1
2

P37.14 see the solution

P37.16 (a) 1 29.  rad; (b) 99 8.  nm

P37.48
λ

2 1n −a fP37.18 0 968.

P37.20 (a) see the solution; (b) 9 00.
P37.50 5 00.  km2

P37.22 (a) 2 88 0. E  at 0.349 rad;
P37.52 2 50.  mm

(b) 2 00
30. E  at  rad
π

; (c) 0;
P37.54 113

(d) E0
3
2

 at  rad
π

P37.56 115 nm

P37.24 see the solution
P37.58 (a) see the solution; (b) 266 nm

P37.26 x x m1 2
1
48

− = −FHG
I
KJλ  where

m = 0 1 2 3, , , , …
P37.60 see the solution

P37.62 see the solution

P37.28 see the solution
P37.64 (a) 14 7.  mµ ; (b) 1 53.  cm; (c) −16 0.  m

P37.30 612 nm
P37.66 7 99 4 44. sin .ω t +  radb g

P37.32 512 nm
P37.68 130 nm

P37.34 96 2.  nm
P37.70 0 498.  mm

P37.36 (a) 238 nm; (b) λ increase; (c) 328 nm

P37.38 1 31.
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CHAPTER OUTLINE
38.1 Introduction to Diffraction
  Patterns
38.2 Diffraction Patterns from
  Narrow Slits
38.3 Resolution of Single-Slit and
  Circular Apertures
38.4 The Diffraction Grating
38.5 Diffraction of X-Rays by
  Crystals
38.6 Polarization of Light Waves
      
              

          
                                         

     

   
           
           

           
            

Diffraction Patterns and Polarization

ANSWERS TO QUESTIONS

Q38.1 Audible sound has wavelengths on the order of meters or
centimeters, while visible light has a wavelength on the order

of half a micrometer. In this world of breadbox-sized objects, 
λ
a

is large for sound, and sound diffracts around behind walls

with doorways. But 
λ
a

 is a tiny fraction for visible light passing

ordinary-size objects or apertures, so light changes its direction
by only very small angles when it diffracts.

Another way of phrasing the answer: We can see by a
small angle around a small obstacle or around the edge of a
small opening. The side fringes in Figure 38.1 and the Arago
spot in the center of Figure 38.3 show this diffraction. We
cannot always hear around corners. Out-of-doors, away from
reflecting surfaces, have someone a few meters distant face
away from you and whisper. The high-frequency, short-
wavelength, information-carrying components of the sound do
not diffract around his head enough for you to understand his
words.

Q38.2 The wavelength of light is extremely small in comparison to the dimensions of your hand, so the
diffraction of light around an obstacle the size of your hand is totally negligible. However, sound
waves have wavelengths that are comparable to the dimensions of the hand or even larger.
Therefore, significant diffraction of sound waves occurs around hand-sized obstacles.

Q38.3 If you are using an extended light source, the gray
area at the edge of the shadow is the penumbra. A
bug looking up from there would see the light
source partly but not entirely blocked by the book.
If you use a point source of light, hold it and the
book motionless, and look at very small angles out
from the geometrical edge of the shadow, you may
see a series of bright and dark bands produced by
diffraction of light at the straight edge, as shown in
the diagram.

FIG. Q38.3

407
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Q38.4 An AM radio wave has wavelength on the order of 
3 10
1 10

300
8

6 1

×

× −

 m s
 s

 m~ . This is large compared to

the width of the mouth of a tunnel, so the AM radio waves can reflect from the surrounding ground
as if the hole were not there. (In the same way, a metal screen forming the dish of a radio telescope
can reflect radio waves as if it were solid, and a hole-riddled screen in the door of a microwave oven
keeps the microwaves inside.) The wave does not “see” the hole. Very little of the radio wave energy
enters the tunnel, and the AM radio signal fades. An FM radio wave has wavelength a hundred
times smaller, on the order of a few meters. This is smaller than the size of the tunnel opening, so
the wave can readily enter the opening. (On the other hand, the long wavelength of AM radio
waves lets them diffract more around obstacles. Long-wavelength waves can change direction more
in passing hills or large buildings, so in some experiments FM fades more than AM.)

Q38.5 The intensity of the light coming through the slit decreases, as you would expect. The central

maximum increases in width as the width of the slit decreases. In the condition sinθ
λ

=
a

 for

destructive interference on each side of the central maximum, θ increases as a decreases.

Q38.6 It is shown in the correct orientation. If the horizontal width of the opening is equal to or less than
the wavelength of the sound, then the equation a sinθ λ= 1a f  has the solution θ = °90 , or has no
solution. The central diffraction maximum covers the whole seaward side. If the vertical height of
the opening is large compared to the wavelength, then the angle in a sinθ λ= 1a f  will be small, and
the central diffraction maximum will form a thin horizontal sheet.

Q38.7 The speaker is mounted incorrectly—it should be rotated by 90°. The speaker is mounted with its
narrower dimension vertical. That means that the sound will diffract more vertically than it does
horizontally. Mounting the speaker so that its thinner dimension is horizontal will give more
diffraction spreading in the horizontal plane, broadcasting “important” information to the troops,
instead of to the birds in the air and the worms in the ground, as the speaker was mounted in the
movie.

Q38.8 We apply the equation θ
λ

m D
=

1 22.
 for the resolution of a circular aperture, the pupil of your eye.

Suppose your dark-adapted eye has pupil diameter D = 5 mm. An average wavelength for visible
light is λ = 550 nm. Suppose the headlights are 2 m apart and the car is a distance L away. Then

θm L
= = × × −2

1 22 1 1 10 4 m
. .  so L ~10 km. The actual distance is less than this because the variable-

temperature air between you and the car makes the light refract unpredictably. The headlights
twinkle like stars.

Q38.9 Consider incident light nearly parallel to the horizontal ruler.
Suppose it scatters from bumps at distance d apart to produce a
diffraction pattern on a vertical wall a distance L away. At a

point of height y, where θ =
y
L

 gives the scattering angle θ, the

character of the interference is determined by the shift δ
between beams scattered by adjacent bumps, where

δ
θ

= −
d

d
cos

. Bright spots appear for δ λ= m , where

0 1 2 3, , , , …. For small θ, these equations combine and reduce

to m
y d

L
mλ =
2

22
. Measurement of the heights ym  of bright spots

allows calculation of the wavelength of the light.

d L

θ

y

FIG. Q38.9
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Q38.10 Yes, but no diffraction effects are observed because the separation distance between adjacent ribs is
so much greater than the wavelength of x-rays. Diffraction does not limit the resolution of an x-ray
image. Diffraction might sometimes limit the resolution of an ultrasonogram.

Q38.11 Vertical. Glare, as usually encountered when driving or boating, is horizontally polarized. Reflected
light is polarized in the same plane as the reflecting surface. As unpolarized light hits a shiny
horizontal surface, the atoms on the surface absorb and then reemit the light energy as a reflection.
We can model the surface as containing conduction electrons free to vibrate easily along the surface,
but not to move easily out of surface. The light emitted from a vibrating electron is partially or
completely polarized along the plane of vibration, thus horizontally.

Q38.12 The earth has an atmosphere, while the moon does not. The nitrogen and oxygen molecules in the
earth’s atmosphere are of the right size to scatter short-wavelength (blue) light especially well, while
there is nothing surrounding the moon to scatter light.

Q38.13 The little particles of dust diffusely reflect light from the light beam. Note that this is not necessarily
scattering. Scattering is a resonance phenomenon—as when the O2 and N 2  molecules in our
atmosphere scatter blue light more than red. In general, light is visible when it enters your eye. Your
eyes and brain are well prepared to make you think on a subconscious level that you can ‘see’ where
light is coming from or sometimes ‘see’ light going past you, but really you see only light entering
your eye.

Q38.14 Light from the sky is partially polarized. Light from the blue sky that is polarized at 90° to the
polarization axis of the glasses will be blocked, making the sky look darker as compared to the
clouds.

Q38.15 First think about the glass without a coin and about one particular point P on the screen. We can
divide up the area of the glass into ring-shaped zones centered on the line joining P and the light
source, with successive zones contributing alternately in-phase and out-of-phase with the light that
takes the straight-line path to P. These Fresnel zones have nearly equal areas. An outer zone
contributes only slightly less to the total wave disturbance at P than does the central circular zone.
Now insert the coin. If P is in line with its center, the coin will block off the light from some
particular number of zones. The first unblocked zone around its circumference will send light to P
with significant amplitude. Zones farther out will predominantly interfere destructively with each
other, and the Arago spot is bright. Slightly off the axis there is nearly complete destructive
interference, so most of the geometrical shadow is dark. A bug on the screen crawling out past the
edge of the geometrical shadow would in effect see the central few zones coming out of eclipse. As
the light from them interferes alternately constructively and destructively, the bug moves through
bright and dark fringes on the screen. The diffraction pattern is shown in Figure 38.3 in the text.

Q38.16 Since obsidian glass is opaque, a standard method of measuring incidence and refraction angles and
using Snell’s Law is ineffective. Reflect unpolarized light from the horizontal surface of the obsidian
through a vertically polarized filter. Change the angle of incidence until you observe that none of
the reflected light is transmitted through the filter. This means that the reflected light is completely
horizontally polarized, and that the incidence and reflection angles are the polarization angle. The
tangent of the polarization angle is the index of refraction of the obsidian.



410     Diffraction Patterns and Polarization

Q38.17 The fine hair blocks off light that would otherwise go through a fine slit and produce a diffraction
pattern on a distant screen. The width of the central maximum in the pattern is inversely
proportional to the distance across the slit. When the hair is in place, it subtracts the same diffraction
pattern from the projected disk of laser light. The hair produces a diffraction minimum that crosses
the bright circle on the screen. The width of the minimum is inversely proportional to the diameter
of the hair. The central minimum is flanked by narrower maxima and minima. Measure the width 2y

of the central minimum between the maxima bracketing it, and use Equation 38.1 in the form 
y
L a
=
λ

to find the width a of the hair.

Q38.18 The condition for constructive interference is that the three radio signals arrive at the city in phase.
We know the speed of the waves (it is the speed of light c), the angular bearing θ of the city east of
north from the broadcast site, and the distance d between adjacent towers. The wave from the
westernmost tower must travel an extra distance 2d sinθ  to reach the city, compared to the signal
from the eastern tower. For each cycle of the carrier wave, the western antenna would transmit first,

the center antenna after a time delay 
d

c
sinθ

, and the eastern antenna after an additional equal time

delay.

SOLUTIONS TO PROBLEMS

Section 38.1 Introduction to Diffraction Patterns

Section 38.2 Diffraction Patterns from Narrow Slits

P38.1 sin
.
.

.θ
λ

= =
×
×

= ×
−

−
−

a
6 328 10
3 00 10

2 11 10
7

4
3

y
1 00.

tan sin
 m

= ≈ =θ θ θ  (for small θ)

2 4 22y = .  mm

P38.2 The positions of the first-order minima are 
y
L a
≈ = ±sinθ

λ
. Thus, the spacing between these two

minima is ∆y
a

L= FHG
I
KJ2

λ
 and the wavelength is

λ = FHG
I
KJ
F
HG
I
KJ =

×F
HG

I
KJ

×F
HG

I
KJ =

− −∆y a
L2

4 10 10 0 550 10
547

3 3. . m
2

 m
2.06 m

 nm .

P38.3
y
L

m
a

≈ =sinθ
λ

∆y = × −3 00 10 3.  nm

∆m = − =3 1 2 and a
m L

y
=
∆
∆
λ

a =
×

×
= ×

−

−
−

2 690 10 0 500

3 00 10
2 30 10

9

3
4

 m  m

 m
 m

e ja f
e j

.

.
.
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P38.4 For destructive interference,

sin
.

.θ
λ λ

= = = =m
a a

5 00
0 139

 cm
36.0 cm

and θ = °7 98.

d
L
= tanθ

gives d L= = °=tan . tan . .θ 6 50 7 98 0 912 m  ma f
d = 91 2.  cm .

P38.5 If the speed of sound is 340 m/s, λ = = =−
v
f

340
650

0 5231

 m s
 s

 m. .

Diffraction minima occur at angles described by a msinθ λ=

1 10 1 0 5231. sin . m  ma f a fθ = θ 1 28 4= °.

1 10 2 0 5232. sin . m  ma f a fθ = θ 2 72 0= °.

1 10 3 0 5233. sin . m  ma f a fθ = θ 3  nonexistent

Maxima appear straight ahead at 0°  and left and right at an angle given approximately by

1 10 1 5 0 523. sin . . m  ma f a fθ x = θ x ≈ °46 .

There is no solution to asin .θ λ= 2 5 , so our answer is already complete, with three  sound

maxima.

P38.6 (a) sinθ
λ

= =
y
L

m
a

Therefore, for first minimum, m = 1  and

L
ay
m

= =
× ×

×
=

− −

−λ

7 50 10 8 50 10

1 587 5 10
1 09

4 4

9

. .

.
.

 m  m

 m
 m

e je j
a fe j

.

(b) w y= 2 1  yields y1 0 850= .  mm

w = × =−2 0 850 10 1 703. . m  mme j
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*P38.7 The rectangular patch on the wall is wider than it is tall. The aperture will be taller than it is wide.
For horizontal spreading we have

tan
.

.
.

sin

.
.

θ

θ λ

width
width

width width

width

 m 2
 m

 m
0.012 2

 m

= = =

=

=
×

= ×
−

−

y
L

a

a

0 110
4 5

0 012 2

1

632 8 10
5 18 10

9
5

For vertical spreading, similarly

tan
.

.
.

sin
.

.

θ

λ
θ

height

height

 m 2
 m

 m
0.000 667

 m

= =

= =
×

= ×
−

−

0 006
4 5

0 000 667

1 632 8 10
9 49 10

9
4a

h

P38.8 Equation 38.1 states that sinθ
λ

=
m
a

, where m = ± ± ±1 2 3, , , …. The

requirement for m = 1 is from an analysis of the extra path distance
traveled by ray 1 compared to ray 3 in Figure 38.5. This extra

distance must be equal to 
λ
2

 for destructive interference. When the

source rays approach the slit at an angle β, there is a distance added

to the path difference (of ray 1 compared to ray 3) of 
a
2

sinβ  Then,

for destructive interference,

a a
2 2 2

sin sinβ θ
λ

+ =  so sin sinθ
λ

β= −
a

.

FIG. P38.8

Dividing the slit into 4 parts leads to the 2nd order minimum: sin sinθ
λ

β= −
2
a

.

Dividing the slit into 6 parts gives the third order minimum: sin sinθ
λ

β= −
3
a

.

Generalizing, we obtain the condition for the mth order minimum: sin sinθ
λ

β= −
m
a

.

P38.9 sin
.

θ ≈ =
× −y

L
4 10 10 3  m

1.20 m

β π θ
λ

π

β
β

2

4 00 10

546 1 10
4 10 10

7 86

2

2
7 86

7 86
1 62 10

4

9

3

2 2
2

= =
×

×
×F

HG
I
KJ =

=
L
N
MM

O
Q
PP =
L
NM

O
QP = ×

−

−

−

−

a

I
I

sin .

.
.

.

sin sin .
.

.
max

 m

 m
 m

1.20 m
 rad

e j

b g a f
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38.10 (a) Double-slit interference maxima are at angles given by d msinθ λ= .

For m = 0 , θ 0 0= ° .

For m = 1 , 2 80 1 0 501 5. sin . m  mµ θ µb g b g= : θ 1
1 0 179 10 3= = °−sin . .a f .

Similarly, for m = 2 3 4 5, , ,  and 6, θ 2 21 0= °. , θ 3 32 5= °. , θ 4 45 8= °. ,

θ 5 63 6= °. , and θ 6
1 1 07= =−sin .a f  nonexistent.

Thus, there are 5 5 1 11+ + =  directions for interference maxima .

(b) We check for missing orders by looking for single-slit diffraction minima, at a msinθ λ= .

For m = 1 , 0 700 1 0 501 5. sin . m  mµ θ µb g b g= and θ 1 45 8= °. .

Thus, there is no bright fringe at this angle. There are only nine bright fringes , at

θ = ° ± ° ± ° ± ° ± °0 10 3 21 0 32 5 63 6, . , . , . , .and .

(c) I I
a

=
L
N
MM

O
Q
PPmax

sin sin

sin

π θ λ
π θ λ
b g 2

At θ = °0 ,
sinθ
θ

→ 1  and 
I

Imax
.→ 1 00 .

At θ = °10 3. ,
π θ

λ
π µ

µ
asin . sin .

.
. .=

°
= = °

0 700 10 3
0 501 5

0 785 45 0
 m

 m
 rad

b g

I
Imax

sin .
.

.=
°L

NM
O
QP =

45 0
0 785

0 811
2

.

Similarly, at θ = °21 0. ,
π θ

λ
asin

. .= = °1 57 90 0 rad  and 
I

Imax
.= 0 405 .

At θ = °32 5. ,
π θ

λ
a sin

.= = °2 36 135 rad  and 
I

Imax
.= 0 090 1 .

At θ = °63 6. ,
π θ

λ
a sin

.= = °3 93 225 rad  and 
I

Imax
.= 0 032 4 .

Section 38.3 Resolution of Single-Slit and Circular Apertures

P38.11 sin
.

.θ
λ

= =
×
×

= ×
−

−
−

a
5 00 10

1 00 10
7

4
3 m

5.00 10
 rad
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P38.12 θ
λ

min .= =
y
L D

1 22

y =
×

×
=

−

−

1 22 5 00 10 0 030 0

7 00 10
2 61

7

3

. . .

.
.

a fe jb g
 mµ

y = radius of star-image
L = length of eye
λ = 500 nm
D = pupil diameter
θ = half angle

P38.13 Undergoing diffraction from a circular opening, the beam spreads into a cone of half-angle

θ
λ

min . .
.

.= =
×F

HG
I
KJ = ×

−
−1 22 1 22

632 8 10
1 54 10

9
4

D
 m

0.005 00 m
 rad .

The radius of the beam ten kilometers away is, from the definition of radian measure,

rbeam  m  m= × =θmin . .1 00 10 1 5444e j
and its diameter is d rbeam beam  m= =2 3 09. .

*P38.14 When you are at the maximum range, the elves’ eyes will be resolved by Rayleigh’s criterion:

d
L D

L

L

= =

=
×
×

= ×

=
×

=

−

−
−

−

θ
λ

min .

.
. .

.

1 22

0 100
1 22

660 10
1 15 10

0 1
869

9

3
4

4

 m  m
7 10  m

 m
1.15 10

 m

*P38.15 By Rayleigh’s criterion: θ
λ

min .= =
d
L D

1 22 , where θmin  is the smallest angular separation of two

objects for which they are resolved by an aperture of diameter D, d is the separation of the two
objects, and L is the maximum distance of the aperture from the two objects at which they can be
resolved.

Two objects can be resolved if their angular separation is greater than θmin . Thus, θmin  should
be as small as possible. Therefore, the smaller of the two given wavelengths is easier to resolve, i.e.

violet .

L
Dd

= =
× ×

=
×

− − −

1 22

5 20 10 2 80 10

1 22
1 193 10

3 2 4

.

. .

.
.

λ λ λ

 m  m  m2e je j

Thus L = 186 m for λ = 640 nm, and L = 271 m for λ = 440 nm. The viewer can resolve adjacent tubes
of violet in the range 186 m to 271 m , but cannot resolve adjacent tubes of red in this range.

P38.16 θ
λ

min .= =1 22
D

d
L

1 22
5 80 10
4 00 10 1 80

17

3.
.
. .

×
×

F
HG

I
KJ =

F
HG

I
KJ

−

−
 m
 m  mi

 mi
1 609 m

d
d = 0 512.  m

The shortening of the wavelength inside the patriot’s eye does not change the answer.
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P38.17 By Rayleigh’s criterion, two dots separated center-to-center by 2.00 mm would overlap

when θ
λ

min .= =
d
L D

1 22 .

Thus, L
dD

= =
× ×

×
=

− −

−1 22

2 00 10 4 00 10

1 22 500 10
13 1

3 3

9.

. .

.
.

λ

 m  m

 m
 m

e je j
e j

.

P38.18 D = =
×

×
=

−

−1 22
1 22 5 00 10

1 00 10
6 10

7

5.
. .

.
.

min

λ
θ

e j
 m  cm

*P38.19 The concave mirror of the spy satellite is probably about 2 m in diameter, and is surely not more
than 5 m in diameter. That is the size of the largest piece of glass successfully cast to a precise shape,
for the mirror of the Hale telescope on Mount Palomar. If the spy satellite had a larger mirror, its
manufacture could not be kept secret, and it would be visible from the ground. Outer space is
probably closer than your state capitol, but the satellite is surely above 200-km altitude, for
reasonably low air friction. We find the distance between barely resolvable objects at a distance of
200 km, seen in yellow light through a 5-m aperture:

y
L D

y

=

=
×F
HG

I
KJ =

−

1 22

200 000 1 22
6 10

3
7

.

.

λ

 m
 m

5 m
 cmb ga f

(Considering atmospheric seeing caused by variations in air density and temperature, the distance

between barely resolvable objects is more like 200 000 1
1

3 600
97 m  s

 s
 rad

180
 cmb ga f °F

HG
I
KJ °
F
HG
I
KJ =

π
.) Thus the

snooping spy satellite cannot see the difference between III and II or IV on a license plate. It cannot
count coins spilled on a sidewalk, much less read the date on them.

P38.20 1 22.
λ
D

d
L

= λ = =
c
f

0 020 0.  m

D = 2 10.  m L = 9 000 m

d = =1 22
0 020 0 9 000

2 10
105.

.

.

 m  m

 m
 m

b gb g

P38.21 θ
λ

min . .
.
.

. .= = = = °1 22 1 22
2 00
10 0

0 244 14 0
D

 m
 m

 rad
a f
a f

P38.22 L = ×88 6 109.  m , D = 0 300.  m , λ = × −590 10 9  m

(a) 1 22 2 40 10 6. .min
λ

θ
D

= = × −  rad

(b) d L= =θmin 213 km
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Section 38.4 The Diffraction Grating

P38.23 d = =
×

=
−1 00 1 00 10

5 00
2. .

.
 cm

2 000
 m

2 000
 mµ

sin
.

.θ
λ

= =
×

×
=

−

−
m
d

1 640 10

5 00 10
0 128

9

6

 m

 m

e j
θ = °7 35.

P38.24 The principal maxima are defined by

d msinθ λ= m = 0 1 2, , , … .

For m = 1 , λ θ= d sin

where θ is the angle between the central ( m = 0 ) and the first order
( m = 1 ) maxima. The value of θ can be determined from the information
given about the distance between maxima and the grating-to-screen
distance. From the figure,

tan
.

.θ = =
0 488

0 284
 m

1.72 m

so θ = °15 8.

and sin .θ = 0 273 .

θ

1.72 m

0.488 m

FIG. P38.24

The distance between grating “slits” equals the reciprocal of the number of grating lines per
centimeter

d = = × = ×−
−1

5 310
1 88 10 1 88 101

4 3

 cm
 cm  nm. . .

The wavelength is λ θ= = × =d sin . .1 88 10 0 273 5143  nm  nme ja f .

P38.25 The grating spacing is d =
×

= ×
−

−1 00 10
2 22 10

2
6.

.
 m

4 500
 m .

In the 1st-order spectrum, diffraction angles are given by

sinθ
λ

=
d

: sin .θ 1

9

6
656 10

0 295=
×
×

=
−

−
 m

2.22 10  m

so that for red θ 1 17 17= °.

and for violet sin .θ 2

9

6
434 10

10
0 195=

×
×

=
−

−
 m

2.22  m

so that θ 2 11 26= °. .

FIG. P38.25

The angular separation is in first-order, ∆θ = °− °= °17 17 11 26 5 91. . . .

In the second-order spectrum, ∆θ
λ λ

= F
HG
I
KJ −

F
HG
I
KJ = °− −sin sin .1 1 1 22 2

13 2
d d

.

Again, in the third order, ∆θ
λ λ

= F
HG
I
KJ −

F
HG
I
KJ = °− −sin sin .1 1 1 23 3

26 5
d d

.

Since the red does not appear in the fourth-order spectrum, the answer is complete.
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P38.26 sin .θ = 0 350 : d = = = ×
λ
θsin

.
.

632 8
1 81 103 nm

0.350
 nm

Line spacing = 1 81.  mµ

P38.27 (a) d = = × = × =− −1
3 660

2 732 10 2 732 10 2 7324 6

 lines cm
 cm  m  nm. .

λ
θ

=
d

m
sin

: At θ = °10 09. λ = 478 7.  nm

At θ = °13 71. , λ = 647 6.  nm

At θ = °14 77. , λ = 696 6.  nm

(b) d =
λ
θsin 1

and 2 2λ θ= d sin so sin
sin

sinθ
λ λ

λ θ
θ2

1
1

2 2
2= = =

d
.

Therefore, if θ 1 10 09= °.  then sin sin .θ 2 2 10 09= °a f  gives θ 2 20 51= °. .

Similarly, for θ 1 13 71= °. , θ 2 28 30= °.  and for θ 1 14 77= °. , θ 2 30 66= °. .

P38.28 sinθ
λ

=
m
d

Therefore, taking the ends of the visible spectrum to be λ v = 400 nm  and λ r = 750 nm , the ends the
different order spectra are:

End of second order: sinθ
λ

2
2 1 500

r
r

d d
= =

 nm
.

Start of third order: sinθ
λ

3
3 1 200

v
v

d d
= =

 nm
.

Thus, it is seen that θ θ2 3r v>  and these orders must overlap regardless of the value of the grating

spacing d.

P38.29 (a) From Equation 38.12, R Nm=  where N = = ×3 000 4 00 1 20 104 lines cm  cm  linesb ga f. . .

In the 1st order, R = × = ×1 1 20 10 1 20 104 4a fe j. . lines .

In the 2nd order, R = × = ×2 1 20 10 2 40 104 4a fe j. . lines .

In the 3rd order, R = × = ×3 1 20 10 3 60 104 4a fe j. . lines .

(b) From Equation 38.11, R =
λ
λ∆

:

In the 3rd order, ∆λ
λ

= =
×

= =
R

400
0 011 1 11 1

 nm
3.60 10

 nm  pm4 . . .
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*
P38.30 For a side maximum, tan

.
θ

µ
µ

= =
y
L

0 4 m
6.9 m

θ = °3 32.

d msinθ λ= d =
×

°
=

−1 780 10

3 32
13 5

9a fe j m
 m

sin .
. µ .

The number of grooves per millimeter =
×
×

=
−1 10

74 2
3  m

13.5 10  m-6 . .

FIG. P38.30

P38.31 (a) Nm =
λ
λ∆

N 1
531 7

2 800a f = =
.  nm

0.19 nm

(b)
1 32 10

4 72
2.

.
×

=
−  m

2 800
 mµ

P38.32 d = = × =−1
4 200

2 38 10 2 3806

cm
 m  nm. .

d msinθ λ= or θ
λ

= F
HG
I
KJ

−sin 1 m
d

and y L L
m
d

= = F
HG
I
KJ

L
NM

O
QP

−tan tan sinθ
λ1 .

Thus, ∆y L
m

d
m

d
= F

HG
I
KJ

L
NM

O
QP −

F
HG
I
KJ

L
NM

O
QP

RST
UVW

− −tan sin tan sin1 2 1 1λ λ
.

For m = 1 , ∆y =
F
HG
I
KJ

L
N
MM

O
Q
PP −

F
HG
I
KJ

L
N
MM

O
Q
PP

R
S|
T|

U
V|
W|
=− −2 00

589 6
2 380

589
2 380

0 5541 1. tan sin
.

tan sin . m  mma f .

For m = 2 , ∆y =
F
HG

I
KJ

L
N
MM

O
Q
PP −

F
HG

I
KJ

L
N
MM

O
Q
PP

R
S|
T|

U
V|
W|
=− −2 00

2 589 6
2 380

2 589
2 380

1 541 1. tan sin
.

tan sin . m  mma f a f a f
.

For m = 3 , ∆y =
F
HG

I
KJ

L
N
MM

O
Q
PP −

F
HG

I
KJ

L
N
MM

O
Q
PP

R
S|
T|

U
V|
W|
=− −2 00

3 589 6
2 380

3 589
2 380

5 041 1. tan sin
.

tan sin . m  mma f a f a f
.

Thus, the observed order must be m = 2 .
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P38.33 d =
×

= × =
−

−1 00 10
250

4 00 10 4 000
3

6.
.

 m mm
 lines mm

 m  nm d m m
d

sin
sin

θ λ
θ

λ
= ⇒ =

(a) The number of times a complete order is seen is the same as the number of orders in which
the long wavelength limit is visible.

m
d

max
maxsin sin .

.= =
°
=

θ
λ

4 000 90 0

700
5 71

 nm

 nm
b g

or 5 orders is the maximum .

(b) The highest order in which the violet end of the spectrum can be seen is:

m
d

max
maxsin sin .

.= =
°
=

θ
λ

4 000 90 0

400
10 0

 nm

 nm
b g

or 10 orders in the short-wavelength region .

*P38.34 (a) The several narrow parallel slits make a diffraction
grating. The zeroth- and first- order maxima are
separated according to

d sinθ λ= 1a f sin
.

θ
λ

= =
×
×

−

−d
632 8 10 9

3
 m

1.2 10  m

θ = =−sin . .1 0 000 527 0 000 527b g  rad

y L= = =tan . . .θ 1 40 0 000 527 0 738 m  mma fb g .

 

FIG. P38.34

(b) Many equally spaced transparent lines appear on the film. It is itself a diffraction grating.
When the same light is sent through the film, it produces interference maxima separated
according to

d sinθ λ= 1a f sin
.

.θ
λ

= =
×
×

=
−

−d
632 8 10

0 000 857
9

3
 m

0.738 10  m

y L= = =tan . . .θ 1 40 0 000 857 1 20 m  mma fb g
An image of the original set of slits appears on the screen. If the screen is removed, light
diverges from the real images with the same wave fronts reconstructed as the original slits
produced. Reasoning from the mathematics of Fourier transforms, Gabor showed that light
diverging from any object, not just a set of slits, could be used. In the picture, the slits or
maxima on the left are separated by 1.20 mm. The slits or maxima on the right are separated
by 0.738 mm. The length difference between any pair of lines is an integer number of
wavelengths. Light can be sent through equally well toward the right or toward the left.

Section 38.5 Diffraction of X-Rays by Crystals

P38.35 2d msinθ λ= : λ
θ

= =
× °

= × =
−

−2 2 0 353 10 7 60

1
9 34 10 0 093 4

9
11d

m
sin . sin .

. .
 m

 m  nm
e j
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P38.36 2
2

1 0 129
2 8 15

0 455d m d
m

sin
sin

.
sin .

.θ λ
λ
θ

= ⇒ = =
°

=
a fa f
a f

 nm
 nm

P38.37 2d msinθ λ= : sin
.

.
.θ

λ
= =

×

×
=

−

−

m
d2

1 0 140 10

2 0 281 10
0 249

9

9

 m

 m

e j
e j

and θ = °14 4.

P38.38 sinθ
λ

m
m

d
=

2
: sin . .12 6

1
2

0 218°= =
λ
d

sin .θ
λ

2
2
2

2 0 218= =
d
a f  so θ 2 25 9= °.

Three  other orders appear: θ 3
1 3 0 218 40 9= × = °−sin . .a f

θ

θ
4

1

5
1

4 0 218 60 8

5 0 218

= × = °

= × =

−

−

sin . .

sin .

a f
a f nonexistent

P38.39 Figure 38.27 of the text shows the situation.

2d msinθ λ= or λ
θ

=
2d

m
sin

m = 1 : λ1
2 2 80 80 0

1
5 51=

°
=

. sin .
.

 m
 m

a f

m = 2 : λ 2
2 2 80 80 0

2
2 76=

°
=

. sin .
.

 m
 m

a f

m = 3 : λ 3
2 2 80 80 0

3
1 84=

°
=

. sin .
.

 m
 m

a f

Section 38.6 Polarization of Light Waves

P38.40 The average value of the cosine-squared function is one-half, so the first polarizer transmits 
1
2

 the

light. The second transmits cos .2 30 0
3
4

°= .

I I If i i= × =
1
2

3
4

3
8

P38.41 I I= max cos2 θ ⇒ θ = −cos
max

1 I
I

(a)
I

Imax .
=

1
3 00

⇒ θ = = °−cos
.

.1 1
3 00

54 7

(b)
I

Imax .
=

1
5 00

⇒ θ = = °−cos
.

.1 1
5 00

63 4

(c)
I

Imax .
=

1
10 0

⇒ θ = = °−cos
.

.1 1
10 0

71 6



Chapter 38     421

P38.42 (a) θ 1 20 0= °. , θ 2 40 0= °. , θ 3 60 0= °.

I I

I

f i

f

= − ° − −

= ° ° °

=

cos cos cos

. cos . cos . cos .

.

2
1

2
2 1

2
3 2

2 2 2

0

10 0 20 0 20 0 20 0

6 89

θ θ θ θ θb g b g b g
a f a f a f a f units

 units

(b) θ 1 0= ° , θ 2 30 0= °. , θ 3 60 0= °. FIG. P38.42
I f = ° ° ° =10 0 0 30 0 30 0 5 632 2 2. cos cos . cos . . units  unitsa f a f a f a f

P38.43 By Brewster’s law, n p= = ° =tan tan . .θ 48 0 1 11a f .

*P38.44 (a) At incidence, n n1 1 2 2sin sinθ θ=  and ′ =θ θ1 1 . For complete
polarization of the reflected light,

90 90 90

90
1 2

1 2 1 2

− ′ + − = °

′ + = = +

θ θ
θ θ θ θ
b g b g

Then n n n1 1 2 1 2 190sin sin cosθ θ θ= − =b g
sin
cos

tan
θ
θ

θ1

1

2

1
1= =

n
n

At the bottom surface, θ θ3 2=  because the normals to the surfaces
of entry and exit are parallel.

Then n n2 3 1 4sin sinθ θ= and ′ =θ θ3 3

n n2 2 1 4sin sinθ θ= and θ θ4 1=

n1
n2

θ1 θ1
'

n1

θ3θ3
'

θ2

θ4

FIG. P38.44(a)

The condition for complete polarization of the reflected light is

90 90 903 4− ′ + − = °θ θ θ θ2 1 90+ =

This is the same as the condition for θ 1  to be Brewster’s angle at the top surface.

(b) We consider light moving in a plane perpendicular to
the line where the surfaces of the prism meet at the
unknown angle Φ. We require

n n1 1 2 2

1 2 90
sin sinθ θ

θ θ
=

+ = °

So n n1 2 2 290sin sin− =θ θb g n
n

1

2
2= tanθ

And n n2 3 3 4sin sinθ θ= θ θ3 4 90+ = °

n n2 3 3 3sin cosθ θ= tanθ 3
3

2
=

n
n

θ1 θ1

θ2 θ3
θ3

θ4

Φ
n1
n2

n3

FIG. P38.44(b)

In the triangle made by the faces of the prism and the ray in the prism,

Φ + + + − =90 90 1802 3θ θb g .

So one particular apex angle is required, and it is

Φ = − =
F
HG
I
KJ −

F
HG
I
KJ

− −θ θ3 2
1 3

2

1 1

2
tan tan

n
n

n
n

.

Here a negative result is to be interpreted as meaning the same as a positive result.



422     Diffraction Patterns and Polarization

P38.45 sinθ c n
=

1
or n

c
= =

°
=

1 1
34 4

1 77
sin sin .

.
θ

.

Also, tanθ p n= . Thus, θ p n= = = °− −tan tan . .1 1 1 77 60 5a f a f .

P38.46 sinθ c n
=

1
 and tanθ p n=

Thus, sin
tan

θ
θc

p
=

1
 or cot sinθ θp c= .

P38.47 Complete polarization occurs at Brewster’s angle tan .θ p = 1 33 θ p = °53 1. .

Thus, the Moon is 36 9. °  above the horizon.

Additional Problems

P38.48 For incident unpolarized light of intensity Imax :

After transmitting 1st disk: I I=
1
2 max .

After transmitting 2nd disk: I I=
1
2

2
max cos θ .

After transmitting 3rd disk: I I= °−
1
2

902 2
max cos cosθ θa f .

where the angle between the first and second disk is θ ω= t .

FIG. P38.48

Using trigonometric identities cos cos2 1
2

1 2θ θ= +a f

and cos sin cos2 290
1
2

1 2°− = = −θ θ θa f a f

we have I I=
+L
NM

O
QP

−L
NM

O
QP

1
2

1 2
2

1 2
2max

cos cosθ θa f a f

I I I= − = F
HG
I
KJ −

1
8

1 2
1
8

1
2

1 42
max maxcos cosθ θe j a f .

Since θ ω= t , the intensity of the emerging beam is given by I I t= −
1

16
1 4max ωb g .
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P38.49 Let the first sheet have its axis at angle θ to the original plane of polarization, and let each further
sheet have its axis turned by the same angle.

The first sheet passes intensity Imax cos2 θ .

The second sheet passes Imax cos4 θ

and the nth  sheet lets through I In
max maxcos .2 0 90θ ≥ where θ =

°45
n

.

Try different integers to find cos .2 5 45
5

0 885× °F
HG
I
KJ = cos .2 6 45

6
0 902× °F

HG
I
KJ = .

(a) So n = 6

(b) θ = °7 50.

P38.50 Consider vocal sound moving at 340 m/s and of frequency 3 000 Hz. Its wavelength is

λ = = =
v
f

340
3 000

0 113
 m s

 Hz
 m. .

If your mouth, for horizontal dispersion, behaves similarly to a slit 6.00 cm wide, then a msinθ λ=
predicts no diffraction minima. You are a nearly isotropic source of this sound. It spreads out from
you nearly equally in all directions. On the other hand, if you use a megaphone with width 60.0 cm
at its wide end, then a msinθ λ=  predicts the first diffraction minimum at

θ
λ

= F
HG
I
KJ =

F
HG

I
KJ = °− −sin sin

.
.1 1 0 113

10 9
m
a

 m
0.600 m

.

This suggests that the sound is radiated mostly toward the front into a diverging beam of angular
diameter only about 20°. With less sound energy wasted in other directions, more is available for
your intended auditors. We could check that a distant observer to the side or behind you receives
less sound when a megaphone is used.

P38.51 The first minimum is at a sinθ λ= 1a f .

This has no solution if
λ
a
> 1 .

or if a < =λ 632 8.  nm .

P38.52 x
d

D= =
×
×

F
HG

I
KJ × =

−

−1 22 1 22
5 00 10

250 10 30 5
7

3
3. .

.
.

λ  m
5.00 10  m

 m  me j D

d

= ×

= ×

= ×

−

−

250 10

5 00 10

5 00 10

3

7

3

 m

 m

 m

λ .

.
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P38.53 d = = ×−
−1

400
2 50 101

6

 mm
 m.

(a) d msinθ λ= θ a =
× ×

×

F
HG

I
KJ = °−

−

−sin .1
9

6
2 541 10

25 6
 m

2.50 10  m

(b) λ =
×

= ×
−

−541 10
4 07 10

9
7 m

1.33
 m. θ b =

× ×
×

F
HG

I
KJ = °−

−

−sin
.

.1
7

6
2 4 07 10

19 0
 m

2.50 10  m

(c) d asinθ λ= 2 d
nbsinθ
λ

=
2

n b asin sinθ θ= 1a f

P38.54 (a) λ =
v
f

: λ =
×

×
=−

3 00 10
1 40 10

0 214
8

9 1

.
.

.
 m s
 s

 m

θ
λ

min .= 1 22
D

:θ µmin .
.

.=
×

F
HG

I
KJ =1 22

0 214
7 26

 m
3.60 10  m

 rad4

θ µ
πmin . .=

× ×F
HG

I
KJ =7 26

180 60 60
1 50 rad

 s
 arc seconds

(b) θmin =
d
L

: d L= = × =−θmin . .7 26 10 26 000 0 1896  rad  ly  lye jb g

(c) θ
λ

min .= 1 22
D

θ µmin . . .=
×
×

F
HG

I
KJ =

−

−1 22
500 10

50 8 10 5
9

3
 m

12.0 10  m
 rad  seconds of arca f

(d) d L= = × = × =− −θmin . . . .50 8 10 30 0 1 52 10 1 526 3 rad  m  m  mme ja f

P38.55 With a grazing angle of 36.0°, the angle of incidence is 54.0°

tan tan . .θ p n= = °=54 0 1 38 .

In the liquid, λ
λ

n n
= = =

750
545

 nm
1.38

 nm .

*P38.56 (a) Bragg’s law applies to the space lattice of melanin rods. Consider the planes d = 0 25.  mµ
apart. For light at near-normal incidence, strong reflection happens for the wavelength
given by 2d msinθ λ= . The longest wavelength reflected strongly corresponds to m = 1:

2 0 25 10 90 16. sin× °=−  me j λ λ = 500 nm. This is the blue-green color.

(b) For light incident at grazing angle 60°, 2d msinθ λ=  gives
1 2 0 25 10 60 4336λ = × °=−. sin m  nme j . This is violet.

(c) Your two eyes receive light reflected from the feather at different angles, so they receive
light incident at different angles and containing different colors reinforced by constructive
interference.

continued on next page
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(d) The longest wavelength that can be reflected with extra strength by these melanin rods is
the one we computed first, 500 nm blue-green.

(e) If the melanin rods were farther apart (say 0 32.  mµ ) they could reflect red with constructive
interference.

P38.57 (a) d msinθ λ=

or d
m

= =
×

°
=

−
λ
θ

µ
sin sin .

.
3 500 10

32 0
2 83

9  m
 m

e j

Therefore, lines per unit length = =
× −

1 1
2 83 10 6d .  m

or lines per unit length = × = ×− −3 53 10 3 53 105 1 3 1. . m  cm .

(b) sin
.

.θ
λ

= =
×

×
=

−

−
m
d

m
m

500 10

2 83 10
0 177

9

6

 m

 m

e j a f

For sin .θ ≤ 1 00 , we must have m 0 177 1 00. .a f ≤
or m ≤ 5 66. .

Therefore, the highest order observed is m = 5 .

Total number of primary maxima observed is 2 1 11m + = .

P38.58 For the air-to-water interface,

tan
.
.

θ p
n
n

= =water

air

1 33
1 00

θ p = °53 1.

and 1 00 1 33 2. sin . sina f a fθ θp =

θ 2
1 53 1

1 33
36 9=

°F
HG

I
KJ = °−sin

sin .
.

. .

For the water-to-glass interface, tan tan
.
.

θ θp

n

n
= = =3

1 50
1 33

glass

water
 so

θ 3 48 4= °. .

Air
Waterθ3θ2

θp

θ

FIG. P38.58

The angle between surfaces is θ θ θ= − = °3 2 11 5. .

*P38.59 A central maximum and side maxima in seven orders of
interference appear. If the seventh order is just at 90°,

d msinθ λ= d1 7 654 10 9= × −  me j d = 4 58.  mµ .

If the seventh order is at less than 90°, the eighth order
might be nearly ready to appear according to

d1 8 654 10 9= × −  me j d = 5 23.  mµ .

Thus 4 58 5 23. . m  mµ µ< <d . FIG. P38.59
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P38.60 (a) We require θ
λ

min .= = =1 22
2D L
D
L

radius of diffraction disk
.

Then D L2 2 44= . λ .

(b) D = × =−2 44 500 10 0 150 4289. . m  m  me ja f µ

P38.61 The limiting resolution between lines θ
λ

min . .
.

.= =
×

×
= ×

−

−
−1 22 1 22

550 10

5 00 10
1 34 10

9

3
4

D

 m

 m
 rad

e j
e j

.

Assuming a picture screen with vertical dimension A , the minimum viewing distance for no visible

lines is found from θmin =
A 485

L
. The desired ratio is then

L
A
= =

×
=

−

1
485

1

485 1 34 10
15 4

4θmin .
.

 rade j
.

P38.62 (a) Applying Snell’s law gives n n2 1sin sinφ θ= . From the sketch, we also
see that:

θ φ β π+ + = , or φ π θ β= − +b g .
Using the given identity: sin sin cos cos sinφ π θ β π θ β= + − +b g b g ,
which reduces to: sin sinφ θ β= +b g .

FIG. P38.62(a)

Applying the identity again: sin sin cos cos sinφ θ β θ β= + .

Snell’s law then becomes: n n2 1sin cos cos sin sinθ β θ β θ+ =b g
or (after dividing by cosθ ): n n2 1tan cos sin tanθ β β θ+ =b g .

Solving for tanθ  gives: tan
sin

cos
θ

β
β

=
−
n

n n
2

1 2
.

(b) If β = °90 0. , n1 1 00= . , and n n2 = , the above result becomes:

tan
.

.
θ =

−
n 1 00
1 00 0
a f

 , or n = tanθ , which is Brewster’s law.

P38.63 (a) From Equation 38.1, θ
λ

= F
HG
I
KJ

−sin 1 m
a

.

In this case m = 1  and λ = =
×

×
= × −c

f
3 00 10
7 50 10

4 00 10
8

9
2.

.
.

 m s
 Hz

 m .

Thus, θ =
×
×

F
HG

I
KJ = °−

−

−sin
.
.

.1
2

2
4 00 10
6 00 10

41 8
 m
 m

.

continued on next page
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(b) From Equation 38.4,
I

Imax

sin
=
L
N
MM

O
Q
PP

β
β

2

2

2b g
 where β

π θ
λ

=
2 a sin

.

When θ = °15 0. , β
π

=
°
=

2 0 060 0 15 0

0 040 0
2 44

. sin .

.
.

 m

 m
 rad

b g

and
I

Imax

sin .
.

.=
L
NM

O
QP =

1 22
1 22

0 593
2

 rad
 rad
a f

.

(c) sinθ
λ

=
a

 so θ = °41 8. :

This is the minimum angle subtended by the two sources at the slit.
Let α be the half angle between the sources, each a distance
A = 0 100.  m  from the center line and a distance L from the slit
plane. Then,

L = =
°F

HG
I
KJ =Acot . cot

.
.α 0 100

41 8
2

0 262 m  ma f .
FIG. P38.63(c)

P38.64
I

Imax
cos . cos .= ° ° =

1
2

45 0 45 0
1
8

2 2e je j

P38.65 d msinθ λ=

and, differentiating, d d mdcosθ θ λa f =

or d m1 2− ≈sin θ θ λ∆ ∆

d
m

d
m1

2 2

2− ≈
λ

θ λ∆ ∆

so ∆
∆

θ
λ

λ
≈

−d m2 2 2e j
.

*P38.66 (a) The angles of bright beams diffracted from the grating are given by d ma fsinθ λ= . The

angular dispersion is defined as the derivative 
d
d
θ
λ

: d
d
d

ma fcosθ
θ
λ
=

d
d

m
d

θ
λ θ
=

cos

(b) For the average wavelength 578 nm,

d msinθ λ=
0 02

2 578 10 9.
sin

 m
8 000

 mθ = × −e j

θ =
× ×

×
= °−

−

−sin .1
9

6
2 578 10

27 5
 m

2.5 10  m

The separation angle between the lines is

∆ ∆ ∆θ
θ
λ

λ
θ

λ

π

= = =
× °

×

= = =
°F

HG
I
KJ = °

−
−d

d
m

d cos . cos .
.

. . . .

2
2 5 10 27 5

2 11 10

0 001 90 0 001 90 0 001 90
180

0 109

6
9

 m
 m

 rad  rad
 rad
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*P38.67 (a) Constructive interference of light of wavelength λ on the screen is described by d msinθ λ=

where tanθ =
y
L

 so sinθ =
+

y

L y2 2
. Then d y L y ma f e j2 2 1 2

+ =
−

λ . Differentiating with

respect to y gives

d L y d y L y y m
d
dy

d

L y

d y

L y
m

d
dy

d L d y d y

L y

d
dy

d L

m L y

1
1
2

0 22 2 1 2 2 2 3 2

2 2 1 2

2

2 2 3 2

2 2 2

2 2 3 2

2

2 2 3 2

+ + −FHG
I
KJ + + =

+
−

+
= =

+ −

+

=
+

− −e j a f e j b g

e j
a f
e j

a f a f a f
e j

a f
e j

λ

λ

λ

(b) Here d msinθ λ=  gives 
10
8 000

1 550 10
2

9
−

−= ×
 m

 msinθ e j , θ =
×
×

F
HG

I
KJ = °−

−

−sin
.

.1
6

6
0 55 10

10
26 1

 m
1.25  m

y L= = °=tan . tan . .θ 2 40 26 1 1 18 m  m

Now 
d
dy

dL

m L y

λ
=

+
=

×

+
= × =

−
−

2

2 2 3 2

6 2

2 2 3 2
71 25 10

1 2 4 1 18
3 77 10 3 77

e j
a f

a f a fe j
.

. .
. .

 m 2.40 m

 m  m
 nm cm .

P38.68 For a diffraction grating, the locations of the principal maxima for wavelength λ are given by

sinθ
λ

= ≈
m
d

y
L

. The grating spacing may be expressed as d
a
N

=  where a is the width of the grating

and N is the number of slits. Thus, the screen locations of the maxima become y
NLm

a
=

λ
. If two

nearly equal wavelengths are present, the difference in the screen locations of corresponding
maxima is

∆
∆

y
NLm

a
=

λb g
.

For a single slit of width a, the location of the first diffraction minimum is sinθ
λ

= ≈
a

y
L

, or

y
L
a

= FHG
I
KJλ . If the two wavelengths are to be just resolved by Rayleigh’s criterion, y y= ∆  from above.

Therefore,

L
a

NLm
a

F
HG
I
KJ =λ

λ∆b g
or the resolving power of the grating is R Nm≡ =

λ
λ∆

.
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P38.69 (a) The E and O rays, in phase at the surface of the plate, will have a phase difference

θ
π
λ

δ= FHG
I
KJ

2

after traveling distance d through the plate. Here δ is the difference in the optical path lengths
of these rays. The optical path length between two points is the product of the actual path
length d and the index of refraction. Therefore,

δ = −dn dnO E .

The absolute value is used since 
n
n

O

E
 may be more or less than unity. Therefore,

θ
π
λ

π
λ

= FHG
I
KJ − = FHG

I
KJ −

2 2
dn dn d n nO E O E .

(b) d
n nO E

=
−

=
×

−
= × =

−
−λθ

π

π

π
µ

2

550 10 2

2 1 544 1 553
1 53 10 15 3

9
5

 m
 m  m

e jb g
. .

. .

P38.70 (a) From Equation 38.4,
I

Imax

sin
=
L
N
MM

O
Q
PP

β
β

2

2

2b g
.

If we define φ
β

≡
2

this becomes
I

Imax

sin
=
L
NM
O
QP

φ
φ

2

.

Therefore, when
I

Imax
=

1
2

we must have
sinφ
φ

=
1
2

, or sinφ
φ

=
2

.

(b) Let y1 = sinφ  and y2 2
=

φ
.

A plot of y1  and y2  in the range 1 00
2

. ≤ ≤φ
π

 is shown to

the right.

The solution to the transcendental equation is found to be
φ = 1 39.  rad .

FIG. P38.70(b)

(c) β
π θ
λ

φ= =
2

2
a sin

gives sin .θ
φ
π

λ λ
= FHG
I
KJ =

a a
0 443 .

If 
λ
a

 is small, then θ
λ

≈ 0 443.
a

.

This gives the half-width, measured away from the maximum at θ = 0 . The pattern is
symmetric, so the full width is given by

∆θ
λ λ λ

= − −FHG
I
KJ =0 443 0 443

0 886
. .

.
a a a

.
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P38.71 φ 2 sinφ
1 1.19 bigger than φ
2 1.29 smaller than φ
1.5 1.41 smaller
1.4 1.394
1.39 1.391 bigger
1.395 1.392
1.392 1.391 7 smaller
1.391 5 1.391 54 bigger
1.391 52 1.391 55 bigger
1.391 6 1.391 568 smaller
1.391 58 1.391 563
1.391 57 1.391 561
1.391 56 1.391 558
1.391 559 1.391 557 8
1.391 558 1.391 557 5
1.391 557 1.391 557 3
1.391 557 4 1.391 557 4

We get the answer to seven digits after 17 steps. Clever guessing, like using the value of 2 sinφ  as
the next guess for φ, could reduce this to around 13 steps.

P38.72 In I I=
L
N
MM

O
Q
PPmax

sin β
β

2

2

2b g
 find 

dI
d

I
β

β
β

β β β

β
=
F
HG

I
KJ

−L
N
MM

O
Q
PPmax

sin cos sin2 2

2

2 2 1 2 2 1 2

2
2

b g b g b gb g b gb g
b g

and require that it be zero. The possibility sin
β
2

0F
HG
I
KJ =  locates all of the minima and the central

maximum, according to

β
π π

2
0 2= , , , … ; β

π θ
λ

π π= =
2

0 2 4
a sin

, , , …  ; a sin , , ,θ λ λ= 0 2 … .

The side maxima are found from
β β β
2 2 2

0cos sinF
HG
I
KJ −
F
HG
I
KJ = , or tan

β β
2 2
F
HG
I
KJ = .

This has solutions
β
2

4 493 4= . , 
β
2

7 725 3= . , and others, giving

(a) π θ λa sin .= 4 493 4 a sin .θ λ= 1 430 3

(b) π θ λa sin .= 7 725 3 a sin .θ λ= 2 459 0
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P38.73 The first minimum in the single-slit diffraction pattern
occurs at

sin minθ
λ

= ≈
a

y
L

.

Thus, the slit width is given by

a
L

y
=

λ

min
.

For a minimum located at ymin . .= ±6 36 0 08 mm  mm,

the width is

a =
×

×
= ±

−

−

632 8 10 1 00

6 36 10
99 5 1%

9

3

. .

.
.

 m  m

 m
 m

e ja f
µ .

FIG. P38.73

ANSWERS TO EVEN PROBLEMS

P38.2 547 nm P38.34 (a) 0 738.  mm; (b) see the solution

P38.4 91 2.  cm P38.36 0 455.  nm

P38.6 (a) 1 09.  m; (b) 1 70.  mm P38.38 3

P38.8 see the solution P38.40
3
8

P38.10 (a) 0° , 10 3. °, 21 0. ° , 32 5. ° , 45 8. ° , 63 6. ° ;
P38.42 (a) 6 89.  units ; (b) 5 63.  units(b) nine bright fringes  at 0°  and on either

side at 10 3. °, 21 0. ° , 32 5. ° , and 63 6. ° ;
P38.44 (a) see the solution; (b) For light confined

to a plane, yes. tan tan− −F
HG
I
KJ −

F
HG
I
KJ

1 3

2

1 1

2

n
n

n
n

(c) 1 00. , 0 811. , 0 405. , 0 090 1. , 0 032 4.

P38.12 2 61.  mµ

P38.14 869 m P38.46 see the solution

P38.16 0 512.  m P38.48 see the solution

P38.18 6 10.  cm P38.50 see the solution

P38.20 105 m P38.52 30 5.  m

P38.22 (a) 2 40.   radµ ; (b) 213 km P38.54 (a) 1.50 sec; (b) 0.189 ly; (c) 10.5 sec;
(d) 1.52 mm

P38.24 514 nm

P38.56 see the solution
P38.26 1 81.  mµ

P38.58 11 5. °
P38.28 see the solution

P38.60 (a) see the solution; (b) 428 mµ
P38.30 74.2 grooves/mm

P38.62 see the solution
P38.32 2
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P38.64
1
8

P38.70 (a) see the solution; (b) φ = 1 39.  rad;
(c) see the solution

P38.66 (a) see the solution; (b) 0.109° P38.72 (a) a sin .θ λ= 1 430 3 ; (b) a sin .θ λ= 2 459 0

P38.68 see the solution
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CHAPTER OUTLINE
39.1 The Principle of Galilean
  Relativity
39.2 The Michelson-Morley
  Experiment
39.3 Einstein’s Principle of
  Relativity
39.4 Consequences of the
  Special Theory of Relativity
39.5 The Lorentz Transformation
  Equations
39.6 The Lorentz Velocity
  Transformation Equations      

  and the Relativistic Form of
                                         

39.7 Relativistic Linear Momentum

Newton’s Laws  
39.8 Relativistic Energy
39.9 Mass and Energy   

  Relativity
39.10 The General Theory of

Relativity

ANSWERS TO QUESTIONS

Q39.1 The speed of light c and the speed v of their relative motion.

Q39.2 An ellipsoid. The dimension in the direction of motion would
be measured to be scrunched in.

Q39.3 No. The principle of relativity implies that nothing can travel
faster than the speed of light in a vacuum, which is 300 Mm/s.
The electron would emit light in a conical shock wave of
Cerenkov radiation.

Q39.4 The clock in orbit runs slower. No, they are not synchronized.
Although they both tick at the same rate after return, a time
difference has developed between the two clocks.

Q39.5 Suppose a railroad train is moving past you. One way to measure its length is this: You mark the
tracks at the cowcatcher forming the front of the moving engine at 9:00:00 AM, while your assistant
marks the tracks at the back of the caboose at the same time. Then you find the distance between the
marks on the tracks with a tape measure. You and your assistant must make the marks
simultaneously in your frame of reference, for otherwise the motion of the train would make its
length different from the distance between marks.

Q39.6 (a) Yours does.

(b) His does.

(c) If the velocity of relative motion is constant, both observers have equally valid views.

Q39.7 Get a Mr. Tompkins book by George Gamow for a wonderful fictional exploration of this question.
Driving home in a hurry, you push on the gas pedal not to increase your speed by very much, but
rather to make the blocks get shorter. Big Doppler shifts in wave frequencies make red lights look
green as you approach them and make car horns and car radios useless. High-speed transportation
is very expensive, requiring huge fuel purchases. And it is dangerous, as a speeding car can knock
down a building. Having had breakfast at home, you return hungry for lunch, but you find you
have missed dinner. There is a five-day delay in transmission when you watch the Olympics in
Australia on live television. It takes ninety-five years for sunlight to reach Earth. We cannot see the
Milky Way; the fireball of the Big Bang surrounds us at the distance of Rigel or Deneb.

Q39.8 Nothing physically unusual. An observer riding on the clock does not think that you are really
strange, either.

433
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Q39.9 By a curved line. This can be seen in the middle of Speedo’s world-line in Figure 39.12, where he
turns around and begins his trip home.

Q39.10 According to p u= γm , doubling the speed u will make the momentum of an object increase by the

factor 2
4

2 2

2 2

1 2
c u

c u
−
−

L
NM

O
QP

.

Q39.11 As the object approaches the speed of light, its kinetic energy grows without limit. It would take an
infinite investment of work to accelerate the object to the speed of light.

Q39.12 There is no upper limit on the momentum of an electron. As more energy E is fed into the object

without limit, its speed approaches the speed of light and its momentum approaches 
E
c

.

Q39.13 Recall that when a spring of force constant k is compressed or stretched from its relaxed position a

distance x, it stores elastic potential energy U kx=
1
2

2  . According to the special theory of relativity,

any change in the total energy of the system is equivalent to a change in the mass of the system.
Therefore, the mass of a compressed or stretched spring is greater than the mass of a relaxed spring

by an amount 
U
c2 . The fractional change is typically unobservably small for a mechanical spring.

Q39.14 You see no change in your reflection at any speed you can attain. You cannot attain the speed of
light, for that would take an infinite amount of energy.

Q39.15 Quasar light moves at three hundred million meters per second, just like the light from a firefly at rest.

Q39.16 A photon transports energy. The relativistic equivalence of mass and energy means that is enough to
give it momentum.

Q39.17 Any physical theory must agree with experimental measurements within some domain. Newtonian
mechanics agrees with experiment for objects moving slowly compared to the speed of light.
Relativistic mechanics agrees with experiment for objects at all speeds. Thus the two theories must
and do agree with each other for ordinary nonrelativistic objects. Both statements given in the
question are formally correct, but the first is clumsily phrased. It seems to suggest that relativistic
mechanics applies only to fast-moving objects.

Q39.18 The point of intersection moves to the right. To state the problem precisely, let us assume that each
of the two cards moves toward the other parallel to the long dimension of the picture, with velocity

of magnitude v. The point of intersection moves to the right at speed 
2

2
v

v
tan

cot
φ

φ= , where φ is the

small angle between the cards. As φ approaches zero, cotφ  approaches infinity. Thus the point of
intersection can move with a speed faster than c if v is sufficiently large and φ sufficiently small. For
example, take v = 500 m s  and φ = °0 000 19. . If you are worried about holding the cards steady
enough to be sure of the angle, cut the edge of one card along a curve so that the angle will
necessarily be sufficiently small at some place along the edge.

Let us assume the spinning flashlight is at the center of a grain elevator, forming a circular
screen of radius R. The linear speed of the spot on the screen is given by v R=ω , where ω is the
angular speed of rotation of the flashlight. With sufficiently large ω and R, the speed of the spot
moving on the screen can exceed c.

continued on next page
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Neither of these examples violates the principle of relativity. Both cases are describing a point
of intersection: in the first case, the intersection of two cards and in the second case, the intersection
of a light beam with a screen. A point of intersection is not made of matter so it has no mass, and
hence no energy. A bug momentarily at the intersection point could yelp, take a bite out of one card,
or reflect the light. None of these actions would result in communication reaching another bug so
soon as the intersection point reaches him. The second bug would have to wait for sound or light to
travel across the distance between the first bug and himself, to get the message.

As a child, the author used an Erector set to build a superluminal speed generator using the
intersecting-cards method. Can you get a visible dot to run across a computer screen faster than
light? Want’a see it again?

Q39.19 In this case, both the relativistic and Galilean treatments would yield the same result: it is that the
experimentally observed speed of one car with respect to the other is the sum of the speeds of the cars.

Q39.20 The hotter object has more energy per molecule than the cooler one. The equivalence of energy and
mass predicts that each molecule of the hotter object will, on average, have a larger mass than those
in the cooler object. This implies that given the same net applied force, the cooler object would have
a larger acceleration than the hotter object would experience. In a controlled experiment, the
difference will likely be too small to notice.

Q39.21 Special relativity describes inertial reference frames: that is, reference frames that are not
accelerating. General relativity describes all reference frames.

Q39.22 The downstairs clock runs more slowly because it is closer to the Earth and hence in a stronger
gravitational field than the upstairs clock.

Q39.23 The ants notice that they have a stronger sense of being pushed outward when they venture closer
to the rim of the merry-go-round. If they wish, they can call this the effect of a stronger gravitational
field produced by some mass concentration toward the edge of the disk. An ant named Albert
figures out that the strong gravitational field makes measuring rods contract when they are near the
rim of the disk. He shows that this effect precisely accounts for the discrepancy.

SOLUTIONS TO PROBLEMS

Section 39.1 The Principle of Galilean Relativity

P39.1 In the rest frame,
p m v m v

p m m v v
i i i

f f f

= + = + = × ⋅

= + = +
1 1 2 2

4

1 2

2 000 20 0 1 500 0 4 00 10

2 000 1 500

 kg  m s  kg  m s  kg m s

 kg  kg

b gb g b gb g
b g b g

. .

Since p pi f= , v f =
× ⋅

+
=

4 00 10
2 000 1 500

11 429
4.

.
 kg m s

 kg  kg
 m s .

In the moving frame, these velocities are all reduced by +10.0 m/s.

′ = − ′ = − + =

′ = − ′ = − + = −

′ = − + =

v v v

v v v

v

i i

i i

f

1 1

2 2

20 0 10 0 10 0

0 10 0 10 0

11 429 10 0 1 429

. . .

. .

. . .

 m s  m s  m s

 m s  m s  m s

 m s  m s  m s

b g
b g

b g
Our initial momentum is then

′ = ′ + ′ = + − = ⋅p m v m vi i i1 1 2 2 2 000 10 0 1 500 10 0 5 000 kg  m s  kg  m s  kg m sb gb g b gb g. .

and our final momentum is

′ = + ′ = = ⋅p vf f2 000 1 500 3 500 1 429 5 000 kg  kg  kg  m s  kg m sb g b gb g. .
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P39.2 (a) v v vT B= + = 60 0.  m s

(b) v v vT B= − = 20 0.  m s

(c) v v vT B= + = + =2 2 2 220 40 44 7.  m s

P39.3 The first observer watches some object accelerate under applied forces. Call the instantaneous
velocity of the object v1 . The second observer has constant velocity v21  relative to the first, and
measures the object to have velocity v v v2 1 21= − .

The second observer measures an acceleration of a
v v

2
2 1= =

d
dt

d
dt

.

This is the same as that measured by the first observer. In this nonrelativistic case, they measure the
same forces as well. Thus, the second observer also confirms that F a∑ = m .

P39.4 The laboratory observer notes Newton’s second law to hold: F a1 1= m
(where the subscript 1 implies the measurement was made in the laboratory frame of reference). The
observer in the accelerating frame measures the acceleration of the mass as a a a2 1= − ′
(where the subscript 2 implies the measurement was made in the accelerating frame of reference,
and the primed acceleration term is the acceleration of the accelerated frame with respect to the
laboratory frame of reference). If Newton’s second law held for the accelerating frame, that observer
would then find valid the relation

F a2 2= m or F a1 2= m

(since F F1 2=  and the mass is unchanged in each). But, instead, the accelerating frame observer will
find that F a a2 2= − ′m m  which is not Newton’s second law.

Section 39.2 The Michelson-Morley Experiment

Section 39.3 Einstein’s Principle of Relativity

Section 39.4 Consequences of the Special Theory of Relativity

P39.5 L L
v
cp= −1

2

2 v c
L

Lp
= −

F
HG
I
KJ1

2

Taking L
Lp

=
2

 where Lp = 1 00.  m gives v c
L

L
c cp

p
= −

F
HG
I
KJ = − =1

2
1

1
4

0 866

2

. .

P39.6 ∆
∆

t
t

v c

p=
−1 2 1 2b g

so v c
t

t
p= −

F
HG
I
KJ

L
N
MM

O
Q
PP1

2 1 2
∆

∆
.

For ∆ ∆t tp= 2 v c
t

t
c cp

p
= −
F
HG
I
KJ

L

N
MM

O

Q
PP = −LNM

O
QP =1

2
1

1
4

0 866

2 1 2
1 2∆

∆
. .
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P39.7 (a) γ =
−

=
−

=
1

1

1

1 0 500

2
32 2

v cb g a f.

The time interval between pulses as measured by the Earth observer is

∆ ∆t tp= = F
HG
I
KJ =γ

2
3

60 0
0 924

.
.

 s
75.0

 s .

Thus, the Earth observer records a pulse rate of 
60 0

0 924
64 9

.
.

.
 s min

 s
min= .

(b) At a relative speed v c= 0 990. , the relativistic factor γ increases to 7.09 and the pulse rate
recorded by the Earth observer decreases to 10 6. min . That is, the life span of the

astronaut (reckoned by the duration of the total number of his heartbeats) is much longer as
measured by an Earth clock than by a clock aboard the space vehicle.

*P39.8 (a) The 0 8. c  and the 20 ly are measured in the Earth frame,

so in this frame, ∆t
x
v c c

c
= = = =

20
0 8

20
0 8

1
1

25 0
 ly  ly

 ly yr
 yr

. .
. .

(b) We see a clock on the meteoroid moving, so we do not measure proper time; that clock
measures proper time.

∆ ∆t tp= γ : ∆
∆

t
t

v c
p = = = − = =

γ
25 0

25 0 1 0 8 25 0 15 0
2 2

2.
. . . .

 yr

1 1 -
 yr  yr 0.6  yra f

(c) Method one: We measure the 20 ly on a stick stationary in our frame, so it is proper length.
The tourist measures it to be contracted to

L
Lp

= =
−

= =
γ

20 20
12 0

 ly

1 1 0.8

 ly
1.667

 ly
2

. .

Method two: The tourist sees the Earth approaching at 0 8. c
0 8 15 12 0. . ly yr  yr  lyb gb g = .

Not only do distances and times differ between Earth and meteoroid reference frames, but
within the Earth frame apparent distances differ from actual distances. As we have
interpreted it, the 20-lightyear actual distance from the Earth to the meteoroid at the time of
discovery must be a calculated result, different from the distance measured directly. Because
of the finite maximum speed of information transfer, the astronomer sees the meteoroid as it
was years previously, when it was much farther away. Call its apparent distance d. The time

required for light to reach us from the newly-visible meteoroid is the lookback time t
d
c

= .

The astronomer calculates that the meteoroid has approached to be 20 ly away as it moved
with constant velocity throughout the lookback time. We can work backwards to reconstruct
her calculation:

d ct
cd

c
d

d

= + = +

=
=

20 0 8 20
0 8

0 2 20
100

 ly  ly

 ly
 ly

.
.

.

Thus in terms of direct observation, the meteoroid we see covers 100 ly in only 25 years.
Such an apparent superluminal velocity is actually observed for some jets of material
emanating from quasars, because they happen to be pointed nearly toward the Earth. If we
can watch events unfold on the meteoroid, we see them slowed by relativistic time dilation,
but also greatly speeded up by the Doppler effect.
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P39.9 ∆ ∆
∆

t t
t

v c
p

p= =
−

γ
1 2 2

so ∆ ∆ ∆t
v
c

t
v
c

tp = −
F
HGG

I
KJJ

≅ −
F
HG

I
KJ1 1

2

2

2

2

2

and ∆ ∆ ∆t t
v
c

tp− =
F
HG
I
KJ

2

22
.

If v = =
×

=1 000
1 00 10

277 8
6

 km h
 m

3 600 s
 m s

.
.

then
v
c
= × −9 26 10 7.

and ∆ ∆t tp− = × = × =− −e j e jb g4 28 10 3 600 1 54 10 1 5413 9. . . s  s  ns .

P39.10 For 
v
c
= 0 990. , γ = 7 09.

(a) The muon’s lifetime as measured in the Earth’s rest frame is

∆t
c

=
4 60.  km
0.990

and the lifetime measured in the muon’s rest frame is

∆
∆

t
t

p = =
×

×

L

N
MM

O

Q
PP =γ

µ
1

7 09
4 60 10

2 18
3

.
.

.
 m

0.990 3.00 10  m s
 s

8e j
.

(b) L L
v
c

L
p

p
= − FHG

I
KJ = =

×
=1

4 60 10
649

2 3

γ
.  m

7.09
 m

P39.11 The spaceship is measured by the Earth observer to be length-contracted to

L L
v
cp= −1

2

2 or L L
v
cp

2 2
2

21= −
F
HG
I
KJ .

Also, the contracted length is related to the time required to pass overhead by:

L vt=  or L v t
v
c

ct2 2 2
2

2
2= = a f .

Equating these two expressions gives L L
v
c

ct
v
cp p

2 2
2

2
2

2

2− = a f

or L ct
v
c

Lp p
2 2

2

2
2+ =a f .

Using the given values: Lp = 300 m and t = × −7 50 10 7.  s

this becomes 1 41 10 9 00 105
2

2
4. .× = × m  m2 2e j v

c

giving v c= 0 800. .
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P39.12 (a) The spaceship is measured by Earth observers to be of length L, where

L L
v
cp= −1

2

2 and L v t= ∆

v t L
v
cp∆ = −1

2

2 and v t L
v
cp

2 2 2
2

21∆ = −
F
HG
I
KJ .

Solving for v, v t
L

c
Lp

p
2 2

2

2
2∆ +

F
HG

I
KJ
= v

cL

c t L

p

p

=
+2 2 2∆

.

(b) The tanks move nonrelativistically, so we have v = =
300

4 00
 m

75 s
 m s. .

(c) For the data in problem 11,

v
c c

c=
× × +

=
+

=
−

300

3 10 0 75 10 300

300

225 300
0 800

8 2 6 2 2 2 2

 m

 m s  s  m

 m

 m

a f
e j e j a f

a f
.

.

in agreement with problem 11. For the data in part (b),

v
c c

c=
× +

=
× +

= × =−300

3 10 75 300

300

2 25 10 300
1 33 10 4 00

8 2 2 2 10 2 2

8 m

 m s  s  m

 m

 m
 m s

a f
e j a f a f

a f
e j.

. .

in agreement with part (b).

P39.13 We find Cooper’s speed:
GMm

r
mv

r2

2

= .

Solving, v
GM
R h

=
+

L
NM

O
QP

=
× ×

× + ×

L

N
MM

O

Q
PP =

−

a f
e je j
e j

1 2 11 24

6 6

1 2
6 67 10 5 98 10

6 37 10 0 160 10
7 82

. .

. .
.  km s .

Then the time period of one orbit, T
R h
v

=
+

=
×

×
= ×

2 2 6 53 10

7 82 10
5 25 10

6

3
3π πa f e j.

.
.  s .

(a) The time difference for 22 orbits is ∆ ∆ ∆t t t
v
c

Tp p− = − = −
F
HG
I
KJ −

L
N
MM

O
Q
PP

−

γ 1 1 1 22
2

2

1 2

b g a f

∆ ∆t t
v
c

Tp− ≈ + −
F
HG

I
KJ =

×

×

F
HG

I
KJ × =1

1
2

1 22
1
2

7 82 10
3 10

22 5 25 10 39 2
2

2

3

8

2
3a f e j.

. .
 m s

 m s
 s  sµ .

(b) For one orbit, ∆ ∆t tp− = =
39 2

1 78
.

.
 s

22
 s

µ
µ . The press report is accurate to one digit .

P39.14 γ =
−

=
1

1
1 01

2 2v ce j
. so v c= 0 140.
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P39.15 (a) Since your ship is identical to his, and you are at rest with respect to your own ship, its
length is 20 0.  m .

(b) His ship is in motion relative to you, so you measure its length contracted to 19 0.  m .

(c) We have L L
v
cp= −1

2

2

from which
L

L
v
cp

= = = −
19 0

0 950 1
2

2
.

.
 m

20.0 m
 and v c= 0 312. .

*P39.16 In the Earth frame, Speedo’s trip lasts for a time

∆
∆

t
x

v
= = =

20 0
21 05

.
.

 ly
0.950 ly yr

 yr .

Speedo’s age advances only by the proper time interval

∆
∆

t
t

p = = − =
γ

21 05 6 574. . yr 1 0.95  yr2  during his trip.

Similarly for Goslo,

∆
∆

t
x

v
v
cp = − = − =1

20 0
1 0 75 17 64

2

2
2.

. .
 ly

0.750 ly yr
 yr .

While Speedo has landed on Planet X and is waiting for his brother, he ages by

20 0 20 0
5 614

. .
.

 ly
0.750 ly yr

 ly
0.950 ly yr

 yr− = .

Then Goslo  ends up older by 17 64 6 574 5 614 5 45. . . . yr  yr  yr  yr− + =b g .

P39.17 (a) ∆ ∆
∆

t t
t

v c
p

p
= =

−
=

−
=γ

1

15 0
21 0

2 2b g a f
.

.
 yr

1 0.700
 yr

(b) d v t c= = = =∆a f b g a fb g b g0 700 21 0 0 700 1 00 21 0 14 7. . . . . . yr  ly yr  yr  ly

(c) The astronauts see Earth flying out the back window at 0 700. c :

d v t cp= = = =∆e j b g a fb g b g0 700 15 0 0 700 1 00 15 0 10 5. . . . . . yr  ly yr  yr  ly

(d) Mission control gets signals for 21.0 yr while the battery is operating, and then for 14.7 years
after the battery stops powering the transmitter, 14.7 ly away:

21 0 14 7 35 7. . . yr  yr  yr+ =
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P39.18 The orbital speed of the Earth is as described by F ma∑ = : 
Gm m

r
m v

r
S E E
2

2

=

v
Gm

r
S= =

× ⋅ ×

×
= ×

−6 67 10 1 99 10

1 496 10
2 98 10

11 30

11
4

. .

.
.

 N m kg  kg

 m
 m s

2 2e je j
.

The maximum frequency received by the extraterrestrials is

f f
v c
v cobs source  Hz

 m s  m s

 m s  m s
 Hz=

+
−

= ×
+ × ×

− × ×
= ×

1
1

57 0 10
1 2 98 10 3 00 10

1 2 98 10 3 00 10
57 005 66 106

4 8

4 8
6.

. .

. .
.e j e j e j

e j e j
.

The minimum frequency received is

f f
v c
v cobs source  Hz

 m s  m s

 m s  m s
 Hz=

−
+

= ×
− × ×

+ × ×
= ×

1
1

57 0 10
1 2 98 10 3 00 10

1 2 98 10 3 00 10
56 994 34 106

4 8

4 8
6.

. .

. .
.e j e j e j

e j e j
.

The difference, which lets them figure out the speed of our planet, is

57 005 66 56 994 34 10 1 13 106 4. . .− × = ×b g  Hz  Hz .

P39.19 (a) Let fc  be the frequency as seen by the car. Thus, f f
c v
c vc =
+
−source

and, if f is the frequency of the reflected wave, f f
c v
c vc=
+
−

.

Combining gives f f
c v
c v

=
+
−source
a f
a f .

(b) Using the above result, f c v f c v− = +a f a fsource

which gives f f c f f v f v− = + ≈source source sourceb g b g 2 .

The beat frequency is then f f f
f v

c
v

beat source
source= − = =

2 2
λ

.

(c) fbeat

9 m s 10  Hz

 m s

 m s

 m
 Hz= 2.00 kHz=

×

×
= =

2 30 0 10 0

3 00 10

2 30 0

0 030 0
2 0008

a fb ge j a fb g
b g

. .

.

.

.

λ = =
×

×
=

c
fsource

 m s
 Hz

 cm
3 00 10
10 0 10

3 00
8

9

.
.

.

(d) v
f

= beatλ
2

so ∆
∆

v
f

= = = ≈beat  Hz  m
 m s  mi h

λ
2

5 0 030 0

2
0 075 0 0 2

a fb g.
. .
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P39.20 (a) When the source moves away from an observer, the observed frequency is

f f
c v
c v

s

s
obs source=

−
+
F
HG
I
KJ

1 2

 where v vs = source .

When v cs << , the binomial expansion gives

c v
c v

v
c

v
c

v
c

v
c

v
c

s

s

s s s s s−
+
F
HG
I
KJ = − FHG

I
KJ

L
NM

O
QP + FHG

I
KJ

L
NM

O
QP ≈ −FHG

I
KJ −FHG

I
KJ ≈ −FHG

I
KJ

−1 2 1 2 1 2

1 1 1
2

1
2

1 .

So, f f
v
c
s

obs source≈ −FHG
I
KJ1 .

The observed wavelength is found from c f f= =λ λobs obs source :

λ
λ λ λ

λ λ λ λ λ

obs
source

obs

source

source

obs

= ≈
−

=
−

= − =
−

−
F
HG

I
KJ = −

F
HG

I
KJ

f
f

f
f v c v c

v c
v c

v c

s s

s

s

s

1 1

1
1

1
1

b g
∆

Since 1 1− ≈
v
c
s ,

∆λ
λ

≈
v

c
source .

(b) v c c csource
 nm

397 nm
= FHG
I
KJ =
F
HG

I
KJ =

∆λ
λ

20 0
0 050 4

.
.

*P39.21 For the light as observed

f
c v c

v c
f

v c
v c

c

v c
v c

v c
v c

v
c

v
c

v
c

v c

obs
obs

source
source

source

obs

 nm
520 nm

 m s

= =
+
−

=
+
−

+
−

= =
+
−

= =

+ = − = =

= = ×

λ λ

λ
λ

1
1

1
1

1
1

650 1
1

1 25 1 562

1 1 562 1 562
0 562
2 562

0 220

0 220 6 59 10

2

7

. .

. .
.
.

.

. .

Section 39.5 The Lorentz Transformation Equations

*P39.22 Let Suzanne be fixed in reference from S and see the two light-emission events with coordinates
x1 0= , t1 0= , x2 0= , t2 3=  sµ . Let Mark be fixed in reference frame ′S  and give the events
coordinate ′ =x1 0 , ′ =t1 0 , ′ =t2 9 sµ .

(a) Then we have

′ = −FHG
I
KJ

=
−

− − =

= =

t t
v
c

x

v c

v
c

v
c

v c

2 2 2 2

2 2

2

2

2

2

9
1

1
3 0 1

1
3

8
9

0 943

γ

µ µ s  sb g

.

(b) ′ = − = − × ×
×F
HG

I
KJ = ×−x x vt c

c2 2 2
6

8
33 0 0 943 3 10

3 10
2 55 10γ b g e j. . s

 m s
 m
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P39.23 γ =
−

=
−

=
1

1

1

1 0 995
10 0

2 2 2v c .
.

We are also given: L1 2 00= .  m , and θ = °30 0.  (both measured in a
reference frame moving relative to the rod).

Thus, L Lx1 1 1 2 00 0 867 1 73= = =cos . . .θ  m  ma fa f
and L Ly1 1 1 2 00 0 500 1 00= = =sin . . .θ  m  ma fa f
L x2  is a proper length, related to L x1  by L

L
x

x
1

2=
γ

.

Therefore, L Lx x2 110 0 17 3= =. .  m

and L Ly y2 1 1 00= = .  m .

(Lengths perpendicular to the motion are unchanged).

FIG. P39.23

(a) L L Lx y2 2
2

2
2

= +b g e j gives L2 17 4= .  m

(b) θ 2
1 2

2
= −tan

L

L
y

x
gives θ 2 3 30= °.

*P39.24 Einstein’s reasoning about lightning striking the ends of a train shows that the moving observer sees
the event toward which she is moving, event B , as occurring first. The S-frame coordinates of the
events we may take as (x = 0 , y = 0 , z = 0, t = 0) and (x = 100 m, y = 0 , z = 0, t = 0). Then the
coordinates in ′S  are given by the Lorentz transformation. Event A is at ( ′ =x 0 , ′ =y 0 , ′ =z 0 , ′ =t 0).
The time of event B is

′ = −FHG
I
KJ = −

−FHG
I
KJ = −

×

F
HG

I
KJ = − × −t t

v
c

x
c

c
γ 2 2 2

71

1 0 8
0

0 8
100 1 667

80
4 44 10

.

.
. . m

 m
3 10  m s

 s8a f .

The time elapsing before A occurs is 444 ns .

P39.25 (a) From the Lorentz transformation, the separations between the blue-light and red-light
events are described by

∆ ∆ ∆′ = −x x v tγ a f 0 2 00 8 00 10 9= − × −γ . . m  sve j
v =

×
= ×−

2 00
8 00 10

2 50 109
8.

.
.

 m
 s

 m s γ =
− × ×

=
1

1 2 50 10 3 00 10
1 81

8 2 8 2
. .

.
 m s  m se j e j

.

(b) Again from the Lorentz transformation, ′ = −x x vtγ a f :
′ = − × × −x 1 81 3 00 2 50 10 1 00 108 9. . . . m  m s  se je j
′ =x 4 97.  m .

(c) ′ = −FHG
I
KJt t

v
c

xγ 2 : ′ = × −
×

×

L

N
MMM

O

Q
PPP

−t 1 81 1 00 10
2 50 10

3 00 10
3 009

8

8 2. .
.

.
. s

 m s

 m s
 m

e j
e j

a f

′ = − × −t 1 33 10 8.  s
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Section 39.6 The Lorentz Velocity Transformation Equations

P39.26 ux = Enterprise velocity

v = Klingon velocity

From Equation 39.16

′ =
−

−
=

−
−

=u
u v
u v c

c c
cx

x

x1
0 900 0 800

1 0 900 0 800
0 3572

. .
. .

.a fa f .

FIG. P39.26

P39.27 ′ =
−

−
=

− −
− −

= −u
u v
u v c

c c
cx

x

x1
0 750 0 750

1 0 750 0 750
0 9602

. .
. .

.a fa f

FIG. P39.27

*P39.28 Let frame S be the Earth frame of reference. Then v c= −0 7. .
The components of the velocity of the first spacecraft are u c cx = °=0 6 50 0 386. cos .a f
and u c cy = °=0 6 50 0 459. sin .a f .

As measured from the ′S  frame of the second spacecraft,

′ =
−

−
=

− −

− −
= =

′ =
−

=
−

− −
= =

u
u v
u v c

c c

c c c

c
c

u
u

u v c

c c
c

x
x

x

y
y

x

1

0 386 0 7

1 0 386 0 7

1 086
1 27

0 855

1

0 459 1 0 7

1 0 386 0 7
0 459 0 714

1 27
0 258

2 2

2

2

. .

. .

.
.

.

. .

. .
. .

.
.

a f
a fa f

e j
a f

a fa f
a f

γ

The magnitude of ′u  is 0 855 0 285 0 8932 2. . .c c ca f a f+ =

and its direction is at tan
.
.

.− = ° ′1 0 258
0 855

16 8
c
c

x above the -axis .

Section 39.7 Relativistic Linear Momentum and the Relativistic Form of Newton’s Laws

P39.29 (a) p mu= γ ; for an electron moving at 0.010 0c,

γ =
−

=
−

= ≈
1

1

1

1 0 010 0
1 000 05 1 00

2 2u cb g b g.
. . .

Thus, p = × ×−1 00 9 11 10 0 010 0 3 00 1031 8. . . . kg  m se jb ge j
p = × ⋅−2 73 10 24.  kg m s .

(b) Following the same steps as used in part (a),

we find at 0.500c, γ = 1 15.  and p = × ⋅−1 58 10 22.  kg m s .

(c) At 0.900c, γ = 2 29.  and p = × ⋅−5 64 10 22.  kg m s .
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P39.30 Using the relativistic form, p
mu

u c
mu=

−
=

1
2b g

γ

we find the difference ∆p  from the classical momentum, mu: ∆p mu mu mu= − = −γ γ 1b g .

(a) The difference is 1.00% when γ γ− =1 0 010 0b gmu mu. : γ = =
−

1
0 990

1

1
2. u cb g

thus 1 0 990
2

2− FHG
I
KJ =

u
c

.a f , and u c= 0 141. .

(b) The difference is 10.0% when γ γ− =1 0 100b gmu mu. : γ = =
−

1
0 900

1

1
2. u cb g

thus 1 0 900
2

2− FHG
I
KJ =

u
c

.a f  and u c= 0 436. .

P39.31
p mu

mu
mu mu

mu
−

=
−

= −
γ

γ 1 : γ − =
−

− ≈ + FHG
I
KJ − = FHG

I
KJ1

1

1
1 1

1
2

1
1
22

2 2

u c

u
c

u
cb g

p mu
mu
−

=
×

F
HG

I
KJ = × −1

2
90 0

3 00 10
4 50 108

2
14.

.
.

 m s
 m s

P39.32 p
mu

u c
=

−1
2b g

becomes 1
2

2

2 2

2− =
u
c

m u
p

which gives: 1
12

2

2 2= +
F
HG

I
KJu

m
p c

or c u
m c

p
2 2

2 2

2 1= +
F
HG

I
KJ and u

c

m c p
=

+2 2 2 1e j
.

P39.33 Relativistic momentum of the system of fragments must be conserved. For total momentum to be
zero after as it was before, we must have, with subscript 2 referring to the heavier fragment, and
subscript 1 to the lighter, p p2 1=

or γ γ2 2 2 1 1 1

28

2

2 50 10

1 0 893
0 893m u m u c= =

×

−
×

−.

.
.

 kg

a f
a f

or
1 67 10

1
4 960 10

27
2

2
2

28
.

.
×

−
= ×

−
−

 kg
 kg

e j
b g

e j
u

u c
c .

Proceeding to solve, we find
1 67 10

1
27

28
2

2
2
2

2
. ×

×

F
HG

I
KJ = −

−

−4.960 10
u
c

u
c

12 3 12
2

2.
u
c

=  and u c2 0 285= . .
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Section 39.8 Relativistic Energy

P39.34 ∆E mc= −γ γ1 2
2b g

For an electron, mc2 0 511= .  MeV

(a) ∆E mc=
−

−
−

F
HG

I
KJ =

1
1 0 810

1
1 0 250

0 5822

. .
.a f a f  MeV

(b) ∆E mc=
−

−
−

F
HGG

I
KJJ

=
1

1 0 990

1
1 0 810

2 452
2

. .
.a f  MeV

P39.35 W K K
v c

mc
v c

mcf i

f i

∑ = − =
−

−

F

H
GGG

I

K
JJJ

−
−

F

H
GG

I

K
JJ

1

1
1

1

12

2

2

2

d i b g

or W
v c v c

mc

f i

∑ =
−

−
−

F

H
GGG

I

K
JJJ

1

1

1

12 2

2

d i b g

(a) W∑ =
−

−
−

F

H
GG

I

K
JJ × ×−1

1 0 750

1

1 0 500
1 673 10 2 998 10

2 2

27 8 2

. .
. .

a f a f e je j kg  m s

W∑ = × −5 37 10 11.  J

(b) W∑ =
−

−
−

F

H
GG

I

K
JJ × ×−1

1 0 995

1

1 0 500
1 673 10 2 998 10

2 2

27 8 2

. .
. .

a f a f e je j kg  m s

W∑ = × −1 33 10 9.  J

P39.36 The relativistic kinetic energy of an object of mass m and speed u is K
u c

mcr =
−

−
F
H
GG

I
K
JJ

1

1
1

2 2

2 .

For u c= 0 100. , K mc mcr = −
−

F
HG

I
KJ

=
1

1 0 010 0
1 0 005 0382 2

.
. .

The classical equation K muc =
1
2

2  gives K m c mcc = =
1
2

0 100 0 005 0002 2. .a f

different by
0 005 038 0 005 000

0 005 038
0 751%

. .
.

.
−

= .

For still smaller speeds the agreement will be still better.
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P39.37 E mc mc= =γ 2 22  or γ = 2 .

Thus, 
u
c
= −
F
HG
I
KJ =1

1 3
2

2

γ
 or u

c
=

3
2

.

The momentum is then p mu m
c mc

c
= =

F
HG
I
KJ =
F
HG
I
KJγ 2

3
2

3
2

p
c c

= FHG
I
KJ = ×

938 3
3 1 63 103.

.
 MeV

 
MeV

.

P39.38 (a) Using the classical equation, K mv= = × = ×
1
2

1
2

78 0 1 06 10 4 38 102 5 2 11. . . kg  m s  Jb ge j .

(b) Using the relativistic equation, K
v c

mc=
−

−
F

H
GG

I

K
JJ

1

1
1

2

2

b g
.

K =
− × ×

−

L

N

MMMM

O

Q

PPPP
× = ×

1

1 1 06 10 2 998 10
1 78 0 2 998 10 4 38 10

5 8 2

8 2 11

. .
. . .

e j
b ge j kg  m s  J

When 
v
c
<< 1 , the binomial series expansion gives 1 1

1
2

2 1 2 2

− FHG
I
KJ

L
N
MM

O
Q
PP ≈ + FHG

I
KJ

−
v
c

v
c

.

Thus, 1 1
1
2

2 1 2 2

− FHG
I
KJ

L
N
MM

O
Q
PP − ≈ FHG

I
KJ

−
v
c

v
c

.

and the relativistic expression for kinetic energy becomes K
v
c

mc mv≈ FHG
I
KJ =

1
2

1
2

2
2 2 . That is, in

the limit of speeds much smaller than the speed of light, the relativistic and classical
expressions yield the same results.

P39.39 (a) E mcR = = × × = × =− −2 27 8 2 101 67 10 2 998 10 1 50 10 938. . . kg  m s  J  MeVe je j

(b) E mc
c c

= =
×

−
= × = ×

−
−γ 2

10

2 1 2
10 31 50 10

1 0 950
4 81 10 3 00 10

.

.
. .

 J
 J  MeV

b g

(c) K E mc= − = × − × = × = ×− − −2 10 10 10 34 81 10 1 50 10 3 31 10 2 07 10. . . . J  J  J  MeV

P39.40 The relativistic density is

E
c V

mc
c V

m
V

m

L L L u c

R

p p p

2

2

2 2 3 2
1

8 00

1 00 1 0 900
18 4= = =

−L
NM

O
QP
=

−
=

e je j b g a f a f
.

. .
.

 g

 cm
 g cm3 .
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P39.41 We must conserve both energy and relativistic momentum of the
system of fragments. With subscript 1 referring to the 0 868. c
particle and subscript 2 to the 0 987. c  particle,

γ 1 2

1

1 0 868
2 01=

−
=

.
.

a f
 and γ 2 2

1

1 0 987
6 22=

−
=

.
.

a f
.

Conservation of energy gives E E E1 2+ = total

which is γ γ1 1
2

2 2
2 2m c m c m c+ = total

or 2 01 6 22 3 34 101 2
27. . .m m+ = × −  kg .

This reduces to: m m1 2
273 09 1 66 10+ = × −. .  kg . (1)

Since the final momentum of the system must equal zero, p p1 2=

gives γ γ1 1 1 2 2 2m u m u=

or 2 01 0 868 6 22 0 9871 2. . . .a fa f a fa fc m c m=

which becomes m m1 23 52= . . (2)

 

FIG. P39.41

Solving (1) and (2) simultaneously, m1
288 84 10= × −.  kg  and m2

282 51 10= × −.  kg .

*P39.42 Energy conservation: 
1

1 0
1 400

900

1 0 85 12

2
2

2

2

2 2−
+

−
=

−
 kg

 kg
c

c Mc

v c.

3 108 1
2

2 kg − =
v
c

M .

Momentum conservation: 0
900 0 85

1 0 85 12 2 2
+

−
=

−

 kg .

.

c Mv

v c

a f

1 452 1
2

2 kg − =
v
c

Mv
c

.

(a) Dividing gives 
v
c
= =

1 452
3 108

0 467. v c= 0 467. .

(b) Now by substitution 3 108 1 0 467 2 75 102 3 kg  kg− = = ×. .M .

P39.43 E mc= γ 2 p mu= γ

E mc2 2 2
= γe j p mu2 2

= γb g

E p c mc mu c mc mc u mc
u
c

u
c

mc2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2

2

2

1
2 2

1 1− = − = −FH IK = −
F
HG
I
KJ −
F
HG
I
KJ =
−

γ γ γe j b g e j a f e j e j
Q.E.D.

P39.44 (a) q V K m ce∆a f b g= = −γ 1 2

Thus, γ =
−

= +
1

1
1

2 2
u c

q V

m ceb g
a f∆

 from which u c= 0 302. .

(b) K m c q Ve= − = = × × = ×− −γ 1 1 60 10 2 50 10 4 00 102 19 4 15b g a f e je j∆ . . . C  J C  J
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P39.45 (a) E mc= =γ 2 20 0.  GeV  with mc 2 0 511= .  MeV  for electrons. Thus,

γ =
×
×

= ×
20 0 10

3 91 10
9

4.
.

 eV
0.511 10  eV6 .

(b) γ =
−

= ×
1

1
3 91 10

2

4

u cb g
.  from which u c= 0 999 999 999 7.

(c) L L
u
c

L
p

p
= − FHG

I
KJ = =

×
×

= × =−1
3 00 10

7 67 10 7 67
2 3

2

γ
.

. .
 m

3.91 10
 m  cm4

*P39.46 (a) P = =
×

= ×−

energy  J
100 10  s

 W
∆t

2
2 00 1015

13.

(b) The kinetic energy of one electron with v c= 0 999 9.  is

γ − =
−

−
F
H
GG

I
K
JJ × × = ×

= ×

− −

−

1
1

1 0 999 9
1 9 11 10 69 7 8 20 10

5 72 10

2

2

31 2 14

12

b g e j e jmc
.

. . .

.

 kg 3 10  m s  J

 J

8

Then we require 
0 01
100

2 5 72 10 12.
. J  J= × −Ne j

N =
×
×

= ×
−

−
2 10

5 72 10
3 50 10

4

12
7 J

 J.
. .

P39.47 Conserving total momentum of the decaying particle system,    p pbefore decay after decay= = 0

p p m u m uv e= = =µ µγ γ 207b g .

Conservation of mass-energy for the system gives E E Evµ π+ = : γ µ πm c p c m cv
2 2+ =

γ 207 273m
p
c

me
v

eb g+ = .

Substituting from the momentum equation above, γ γ207 207 273m m
u
c

me e eb g b g+ =

or γ 1
273
207

1 32+FHG
I
KJ = =

u
c

. :
1
1

1 74
+
−

=
u c
u c

.
u
c
= 0 270. .

Then, K m c m ceµ µγ γ= − = −1 1 2072 2b g b g e j : Kµ =
−

−
F

H
GG

I

K
JJ

1

1 0 270
1 207 0 511

2.
.

a f
a f MeV

Kµ = 4 08.  MeV .

Also, E E Ev = −π µ : E m c m c m cv e= − = −π µγ γ2 2 2273 207b g

E

E

v

v

= −
−

F

H
GG

I

K
JJ

=

273
207

1 0 270
0 511

29 6

2.
.

.

a f
a f MeV

 MeV
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*P39.48 Let observer A hold the unprimed reference frame, with u
c

1
3
4

=  and u
c

2
3
4

= − . Let observer B be at

rest in the primed frame with ′ = =
−

−
u

u v
u v c1
1

1
20

1
v u

c
= =1

3
4

.

(a) Then ′ =
−

−
=

− −
− − +

=
−
+

u
u v
u v c

c c
c c

c
2

2

2
21

3 4 3 4
1 3 4 3 4

1 5
1 9 16b gb g

.

speed = ′ = = =u
c

c c2
3 2
25 16

24
25

0 960. .

(b) In the unprimed frame the objects, each of mass m, together have energy

γ γmc mc
mc

mc2 2
2

2

22
1 0 75

3 02+ =
−

=
.

. .

In the primed frame the energy is 
mc mc

mc
2

2

2

2

2

1 0 1 0 96
4 57

−
+

−
=

.
. , greater by

4 57
3 02

1 51
2

2
.
.

.
mc
mc

=  times greater as measured by observer B .

Section 39.9 Mass and Energy

P39.49 Let a 0.3-kg flag be run up a flagpole 7 m high.

We put into it energy mgh = ≈0 3 7 20.  kg 9.8 m s  m  J2e j .

So we put into it extra mass ∆m
E
c

= =
×

= × −
2 8 2

1620

3 10
2 10

 J

 m s
 kg

e j

for a fractional increase of
2 10

10
16

15× −
− kg

0.3 kg
~ .

P39.50 E = ×2 86 105.  J . Also, the mass-energy relation says that E mc= 2 .

Therefore, m
E
c

= =
×

×
= × −

2

5

2
122 86 10

3 18 10
.

.
 J

3.00 10  m s
 kg

8e j
.

No, a mass loss of this magnitude (out of a total of 9.00 g) could not be detected .

P39.51 ∆
∆

m
E
c

t
c

= = =
× ×

×
=2 2

9 7

8 2

0 800 1 00 10 3 00 3 16 10

3 00 10
0 842

P . . . .

.
.

 J s  yr  s yr

 m s
 kg

e jb ge j
e j

P39.52 ∆
∆ ∆

m
E
c

mc T

c

Vc T

c
= = = =

× ⋅° °

×
2 2 2

9 3 3

8 2

1 030 1 40 10 10 4 186 10 0

3 00 10

a f a f e je je j b ga f
e j

ρ  kg m  m  J kg C  C

 m s

3 . .

.

∆m = ×6 71 108.  kg
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P39.53 P = = = = ×
dE
dt

d mc

dt
c

dm
dt

2
2 263 77 10

e j
.  W

Thus, 
dm
dt

=
×

×
= ×

3 77 10

3 00 10
4 19 10

26

8 2
9.

.
.

 J s

 m s
 kg s

e j

P39.54 2 1 022m ce = .  MeV Eγ ≥ 1 02.  MeV

Section 39.10 The General Theory of Relativity

*P39.55 (a) For the satellite F ma∑ = : 
GM m

r
mv

r
m
r

r
T

E
2

2 22
= = FHG

I
KJ

π

GM T r

r

r

E
2 2 3

11 24 2

2

1 3

7

4

6 67 10 5 98 10 43 080

4

2 66 10

=

=
× ⋅ ×F

H
GG

I
K
JJ

= ×

−

π

π

. .

.

 N m  kg  s

kg

 m

2

2

e jb g

(b) v
r

T
= =

×
= ×

2 2 2 66 10

43 080
3 87 10

7
3π π .

.
 m

 s
 m s

e j

(c) The small fractional decrease in frequency received is equal in magnitude to the fractional
increase in period of the moving oscillator due to time dilation:

fractional change in f = − − = −
− × ×

−

F

H
GGG

I

K
JJJ

= − − −
×

×

F
HG

I
KJ

L
N
MM

O
Q
PP

F
H
GG

I
K
JJ = − × −

γ 1
1

1 3 87 10 3 10
1

1 1
1
2

3 87 10
3 10

8 34 10

3 8 2

3

8

2
11

b g
e j.

.
.

(d) The orbit altitude is large compared to the radius of the Earth, so we must use

U
GM m

rg
E= − .

∆

∆ ∆

U
m m

m

f
f

U

mc

g

g

= −
× ×

×
+

× ×

×

= ×

= =
×

×
= + ×

− −

−

6 67 10 5 98 10

2 66 10

6 67 10 5 98 10

6 37 10

4 76 10

4 76 10

3 10
5 29 10

11 24

7

11 24

6

7

2

7

8 2
10

. .

.

. .

.

.

.
.

 Nm  kg

kg  m

 Nm  kg

kg  m

 J kg

 m s

 m s

2

2

2 2

e j e j

e j

(e) − × + × = + ×− − −8 34 10 5 29 10 4 46 1011 10 10. . .
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Additional Problems

P39.56 (a) d vt v tearth earth astro= = γ so 2 00 10
1

1
30 06

2 2
. .× =

−
 yr  yre jc v

v c

1 1 50 10
2

2
5− = FHG

I
KJ × −v

c
v
c

.e j 1
2 25 102

2

2 10

2− =
× −

v
c

v

c

.e j

1 1 2 25 10
2

2
10= + × −v

c
.e j so

v
c
= + × = − ×− − −1 2 25 10 1

1
2

2 25 1010 1 2 10. .e j e j
v
c
= − × −1 1 12 10 10.

(b) K
v c

mc=
−

−
F
H
GG

I
K
JJ =

×
−

F
HG

I
KJ × = ×

1

1
1

2 00 10
1 1 000 1 000 3 10 6 00 10

2 2

2
6

8 2 27.
.

 yr
30 yr

 kg  m s  Jb gb ge j

(c) 6 00 10 6 00 10
13¢

3 600
17 1027 27 20. .

h
$2.× = × F

HG
I
KJ
F
HG
I
KJ

⋅F
HG
I
KJ
F
HG

I
KJ = × J  J

kWh
k

10
W s

J  s3

P39.57 (a) 10 113 2 MeV = −γb gm cp so γ = 1010

v cp ≈ ′ = = = −t
t
γ

10
10 10

5
5 2 yr

10
 yr  s10 ~

(b) ′ = ′d ct ~ 108  km

P39.58 (a) When K Ke p= , m c m ce e p p
2 21 1γ γ− = −b g e j .

In this case, m ce
2 0 511= .  MeV , m cp

2 938=  MeV

and γ e = − =
−

1 0 750 1 511 92 1 2
. .a f .

Substituting, γ
γ

p
e e

p

m c

m c
= +

−
= +

−
=1

1
1

0 511 1 511 9 1

938
1 000 279

2

2

b g a fb g. .
.

 MeV

 MeV

but γ p

pu c
=

−LNM
O
QP

1

1
2 1 2

e j
.

Therefore, u c cp p= − =−1 0 023 62γ . .

(b) When p pe p= γ γp p p e e em u m u=
 
or γ

γ
p p

e e e

p
u

m u
m

= .

Thus, γ p pu
c c

c
c= = × −

1 511 9 0 511 0 750

938
6 177 2 10

2

2
4

. . .
.

b ge ja f MeV

 MeV

and
u

c

u

c
p p
= × −

F
HG
I
KJ

−6 177 2 10 14
2

.

which yields u cp = × =−6 18 10 1854.  km s .
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P39.59 (a) Since Mary is in the same reference frame, ′S , as Ted, she measures the ball to have the
same speed Ted observes, namely ′ =u cx 0 800. .

(b) ∆ ′ =
′
=

×

×
= ×t

L

u
p

x

1 80 10
7 50 10

12
3.

.
 m

0.800 3.00 10  m s
 s

8e j

(c) L L
v
c

c

cp= − = × − = ×1 1 80 10 1
0 600

1 44 10
2

2
12

2

2
12.

.
. m  me j a f

Since v c= 0 600.  and ′ = −u cx 0 800. , the velocity Jim measures for the ball is

u
u v
u v c

c c
cx

x

x

=
′ +

+ ′
=

− +
+ −

= −
1

0 800 0 600
1 0 800 0 600

0 3852

. .
. .

.
a f a f
a fa f .

(d) Jim measures the ball and Mary to be initially separated by 1 44 1012. ×  m . Mary’s motion at
0.600c and the ball’s motion at 0.385c nibble into this distance from both ends. The gap closes
at the rate 0 600 0 385 0 985. . .c c c+ = , so the ball and catcher meet after a time

∆t =
×

×
= ×

1 44 10
4 88 10

12
3.

.
 m

0.985 3.00 10  m s
 s

8e j
.

*P39.60 (a) The charged battery stores energy E t= = =P 1 20 50 60 3 600.  J s  min  s min  Jb ga fb g

so its mass excess is ∆m
E
c

= =
×

= × −
2 2

143 600
4 00 10

 J

3 10  m s
 kg

8e j
. .

(b)
∆m
m

=
×

×
= ×

−

−
−4 00 10

10
1 60 10

14

3
12.

.
 kg

25  kg
 too small to measure.

P39.61
∆mc
mc

2

2

4 938 78 3 728 4
100% 0 712%=

−
× =

. .
.

 MeV  MeV
4 938.78 MeV

a f
a f

*P39.62 The energy of the first fragment is given by E p c m c1
2

1
2 2

1
2 2 2 21 75 1 00= + = +e j a f a f. . MeV  MeV

E1 2 02= .  MeV .

For the second, E2
2 2 22 00 1 50= +. . MeV  MeVa f a f E2 2 50= .  MeV .

(a) Energy is conserved, so the unstable object had E = 4 52.  MeV. Each component of
momentum is conserved, so the original object moved with

p p p
c cx y

2 2 2
2 22 00

= + = FHG
I
KJ + FHG

I
KJ

1.75 MeV  MeV.
. Then for it

4 52 1 75 2 002 2 2 2 2
. . . MeV  MeV  MeVa f a f a f e j= + + mc m

c
=

3.65 MeV
2 .

(b) Now E mc= γ 2  gives 4 52
1

1
3 65

2 2
. . MeV  MeV=

− v c
1 0 654

2

2− =
v
c

. , v c= 0 589. .
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P39.63 (a) Take the spaceship as the primed frame, moving toward the right at v c= +0 600. .

Then ′ = +u cx 0 800. , and u
u v
u v c

c c
cx

x

x

=
′ +

+ ′
=

+
+

=
1

0 800 0 600
1 0 800 0 600

0 9462b g a fa f
. .

. .
. .

(b) L
Lp

=
γ

: L = − =0 200 1 0 600 0 1602. . . ly  lyb g a f

(c) The aliens observe the 0.160-ly distance closing because the probe nibbles into it from one
end at 0.800c and the Earth reduces it at the other end at 0.600c.

Thus, time =
+

=
0 160

0 600
0 114

.
.

.
 ly

0.800
 yr

c c
.

(d) K
u c

mc=
−

−
F
H
GG

I
K
JJ

1

1
1

2 2

2 : K =
−

−
F

H
GG

I

K
JJ × ×

1

1 0 946
1 4 00 10 3 00 10

2

5 8 2

.
. .

a f e je j kg  m s

K = ×7 50 1022.  J

P39.64 In this case, the proper time is T0  (the time measured by the students on a clock at rest relative to
them). The dilated time measured by the professor is: ∆t T= γ 0

where ∆t T t= +  Here T is the time she waits before sending a signal and t is the time required for
the signal to reach the students.

Thus, we have: T t T+ = γ 0 . (1)

To determine the travel time t, realize that the distance the students will have moved beyond the
professor before the signal reaches them is: d v T t= +a f .

The time required for the signal to travel this distance is: t
d
c

v
c

T t= = FHG
I
KJ +a f .

Solving for t gives: t
v c T

v c
=

−
b g
b g1

.

Substituting this into equation (1) yields: T
v c T

v c
T+

−
=

b g
b g1 0γ

or
T
v c

T
1 0−

= γ .

Then T T
v c

v c
T

v c

v c v c
T

v c

v c
=

−

−
=

−

+ −
=

−

+0
2 2

0 0
1

1

1

1 1

1

1
b g
e j

b g
b g b g

b g
b g .
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P39.65 Look at the situation from the instructors’ viewpoint since they are at rest relative to the clock, and
hence measure the proper time. The Earth moves with velocity v c= −0 280.  relative to the
instructors while the students move with a velocity ′ = −u c0 600.  relative to Earth. Using the velocity
addition equation, the velocity of the students relative to the instructors (and hence the clock) is:

u
v u
vu c

c c

c c c
c=

+ ′
+ ′

=
− −

+ − −
= −

1

0 280 0 600

1 0 280 0 600
0 7532 2

. .

. .
.

a f a f
a fa f  (students relative to clock).

(a) With a proper time interval of ∆tp = 50 0.  min , the time interval measured by the students is:

∆ ∆t tp= γ with γ =
−

=
1

1 0 753
1 52

2 2.
.

c ca f
.

Thus, the students measure the exam to last T = =1 52 50 0 76 0. . . min  minutesa f .

(b) The duration of the exam as measured by observers on Earth is:

∆ ∆t tp= γ  with γ =
−

1

1 0 280 2 2. c ca f
 so T = =1 04 50 0 52 1. . . min  minutesa f .

P39.66 The energy which arrives in one year is

E t= = × × = ×P ∆ 1 79 10 3 16 10 5 66 1017 7 24. . . J s  s  Je je j .

Thus, m
E
c

= =
×

×
= ×2

24

2
75 66 10

6 28 10
.

.
 J

3.00 10  m s
 kg

8e j
.

P39.67 The observer measures the proper length of the tunnel, 50.0 m, but measures the train contracted to
length

L L
v
cp= − = − =1 100 1 0 950 31 2

2

2
2 m  m. .a f

shorter than the tunnel by 50 0 31 2 18 8. . .− =  m  so it is completely within the tunnel. .

P39.68 If the energy required to remove a mass m from the surface is equal to its rest energy mc 2 ,

then
GM m

R
mcs

g
= 2

and R
GM

cg
s= =

× ⋅ ×

×

−

2

11 30

8 2

6 67 10 1 99 10

3 00 10

. .

.

 N m kg  kg

 m s

2 2e je j
e j

Rg = × =1 47 10 1 473. . m  km .
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P39.69 (a) At any speed, the momentum of the particle is given by

p mu
mu

u c
= =

−
γ

1 2b g
.

Since F qE
dp
dt

= = : qE
d
dt

mu
u
c

= −
F
HG
I
KJ

L
N
MM

O
Q
PP

−

1
2

2

1 2

qE m
u
c

du
dt

mu
u
c

u
c

du
dt

= −
F
HG
I
KJ + −

F
HG
I
KJ
F
HG
I
KJ

− −

1
1
2

1
22

2

1 2 2

2

3 2

2 .

So
qE
m

du
dt

u c u c

u c
=

− +

−

L

N
MMM

O

Q
PPP

1

1

2 2 2 2

2 2 3 2e j

and a
du
dt

qE
m

u
c

= = −
F
HG
I
KJ1

2

2

3 2

.

(b) For u small compared to c, the relativistic expression reduces to the classical a
qE
m

= . As u

approaches c, the acceleration approaches zero, so that the object can never reach the speed
of light.

(c)
du

u c

qE
m

dt
u

t

t

1 2 2 3 2
0 0−

=z z
=e j

u
qEct

m c q E t
=

+2 2 2 2 2

x udt qEc
tdt

m c q E t

t t

= =
+

z z
0

2 2 2 2 2
0

x
c

qE
m c q E t mc= + −FH IK2 2 2 2 2

P39.70 (a) An observer at rest relative to the mirror sees the light travel a distance D d x= −2 , where
x vtS=  is the distance the ship moves toward the mirror in time tS . Since this observer
agrees that the speed of light is c, the time for it to travel distance D is

t
D
c

d vt
cS

S= =
−2

t
d

c vS =
+
2

.

(b) The observer in the rocket measures a length-contracted initial distance to the mirror of

L d
v
c

= −1
2

2

and the mirror moving toward the ship at speed v. Thus, he measures the distance the light

travels as D L y= −2b g  where y
vt

=
2

 is the distance the mirror moves toward the ship before

the light reflects from it. This observer also measures the speed of light to be c, so the time
for it to travel distance D is:

t
D
c c

d
v
c

vt
= = − −

L
N
MM

O
Q
PP

2
1

2

2

2  so c v t
d
c

c v c v+ = + −a f a fa f2
 or t

d
c

c v
c v

=
−
+

2
.
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*P39.71 Take the two colliding protons as the system

E K mc1
2= + E mc2

2=

E p c m c1
2

1
2 2 2 4= + p2 0= .

In the final state, E K Mcf f= + 2 : E p c M cf f
2 2 2 2 4= + .

By energy conservation, E E E f1 2+ = , so

E E E E E f1
2

1 2 2
2 22+ + =

p c m c K mc mc m c

p c M cf

1
2 2 2 4 2 2 2 4

2 2 2 4

2+ + + +

= +

e j

By conservation of momentum, p p f1 = .

Then M c Kmc m c
Km c

mc
m c2 4 2 2 4

2 4

2
2 42 4

4
2

4= + = +

Mc mc
K
mc

2 2
22 1

2
= + .

By contrast, for colliding beams we have

In the original state, E K mc1
2= +

E K mc2
2= + .

In the final state, E Mcf =
2

E E E f1 2+ = : K mc K mc Mc+ + + =2 2 2

Mc mc
K
mc

2 2
22 1

2
= +FHG

I
KJ .

FIG. P39.71

*P39.72 Conservation of momentum γ mu :

mu

u c

m u

u c

Mv

v c

mu

u c

f

f1 3 1 1

2

3 12 2 2 2 2 2 2 2−
+

−

−
=

−
=

−

a f
.

Conservation of energy γ mc 2 :

mc

u c

mc

u c

Mc

v c

mc

u cf

2

2 2

2

2 2

2

2 2

2

2 21 3 1 1

4

3 1−
+

−
=

−
=

−
.

To start solving we can divide: v
u u

f = =
2
4 2

. Then

M

u c

m

u c

M

u c

M
m u c

u c

1 4

4

3 1 1 2 4

2 4

3 1

2 2 2 2 2 2

2 2

2 2

−
=

−
=

−

=
−

−

b g

Note that when v c<< , this reduces to M
m

=
4
3

, in agreement with the classical result.
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P39.73 (a) L L Lx y0
2

0
2

0
2= +  and L L Lx y

2 2 2= + .

The motion is in the x direction: L L Ly y= =0 0 0sinθ

L L
v
c

L
v
cx x= − FHG

I
KJ = − FHG

I
KJ0

2

0 0

2

1 1cosθb g .

Thus, L L
v
c

L L
v
c

2
0
2 2

0

2

0
2 2

0 0
2

2
2

01 1= − FHG
I
KJ

L
N
MM

O
Q
PP + = − FHG

I
KJ

L
N
MM

O
Q
PPcos sin cosθ θ θ

or L L
v
c

= − FHG
I
KJ

L
N
MM

O
Q
PP0

2
2

0

1 2

1 cos θ .

(b) tan tanθ γ θ= =
−

=
L

L

L

L v c

y

x

y

x

0

0
2 0

1 b g

P39.74 (b) Consider a hermit who lives on an asteroid halfway between the Sun and Tau Ceti,
stationary with respect to both. Just as our spaceship is passing him, he also sees the blast
waves from both explosions. Judging both stars to be stationary, this observer concludes that

the two stars blew up simultaneously .

(a) We in the spaceship moving past the hermit do not calculate the explosions to be
simultaneous. We measure the distance we have traveled from the Sun as

L L
v
cp= − FHG
I
KJ = − =1 6 00 1 0 800 3 60

2
2. . . ly  lyb g a f .

We see the Sun flying away from us at 0.800c while the light from the Sun approaches at
1.00c. Thus, the gap between the Sun and its blast wave has opened at 1.80c, and the time
we calculate to have elapsed since the Sun exploded is

3 60
2 00

.
.

 ly
1.80

 yr
c
= .

We see Tau Ceti as moving toward us at 0.800c, while its light approaches at 1.00c, only
0.200c faster. We measure the gap between that star and its blast wave as 3.60 ly and
growing at 0.200c. We calculate that it must have been opening for

3 60
18 0

.
.

 ly
0.200

 yr
c
=

and conclude that Tau Ceti exploded 16.0 years before the Sun .
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P39.75 Since the total momentum is zero before decay, it is necessary that after the decay

p p
E

c cnucleus photon
 keV

= = =γ 14 0.
.

Also, for the recoiling nucleus, E p c mc2 2 2 2 2
= + e j  with mc 2 98 60 10 53 8= × =−. . J  GeV .

Thus, mc K mc2 2 2 2 2
14 0+ = +e j a f e j.  keV  or 1

14 0
12

2

2

2

+FHG
I
KJ = FHG

I
KJ +

K
mc mc

.  keV
.

So 1 1
14 0

1
1
2

14 0
2 2

2

2

2

+ = + FHG
I
KJ ≈ + FHG

I
KJ

K
mc mc mc

. . keV  keV
 (Binomial Theorem)

and K
mc

≈= =
×

×
= × −14 0

2

14 0

2 53 8 10
1 82 10

2

2

2

9
3. .

.
.

 keV 10  eV

 eV
 eV

3a f e j
e j

.

P39.76 Take m = 1 00.  kg .

The classical kinetic energy is K mu mc
u
c

u
cc = = F

HG
I
KJ = × F

HG
I
KJ

1
2

1
2

4 50 102 2
2

16
2

.  Je j

and the actual kinetic energy is K
u c

mc
u c

r =
−

−
F

H
GG
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0.000 0.000 0.000
0.100 0.045 0.0453
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0.300 0.405 0.435
0.400 0.720 0.820
0.500 1.13 1.39
0.600 1.62 2.25
0.700 2.21 3.60
0.800 2.88 6.00
0.900 3.65 11.6
0.990 54.8
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FIG. P39.76

K Kc r= 0 990. , when 
1
2

0 990
1

1
1

2

2

u
c u c

F
HG
I
KJ =

−
−

L

N
MMM

O

Q
PPP

.
b g

, yielding u c= 0 115. .

Similarly, K Kc r= 0 950. when u c= 0 257.

and K Kc r= 0 500. when u c= 0 786. .
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ANSWERS TO EVEN PROBLEMS

P39.2 (a) 60 0.  m s ; (b) 20 0.  m s ; (c) 44 7.  m s P39.44 (a) 0 302. c ; (b) 4 00.  fJ

P39.46 (a) 20.0 TW; (b) 3 50 107. ×  electronsP39.4 see the solution

P39.6 0 866. c P39.48 (a) 0.960c; (b) 1.51 times greater as
measured by B.

P39.8 (a) 25.0 yr; (b) 15.0 yr; (c) 12.0 ly
P39.50 3 18 10 12. × −  kg , not detectable

P39.10 (a) 2 18.  sµ ; (b) The moon sees the planet
surface moving 649 m up toward it. P39.52 6 71 108. ×  kg

P39.12 (a) 
cL

c t L

p

p
2 2 2∆ +

; (b) 4 00.  m s ; P39.54 1 02.  MeV

P39.56 (a) 
v
c
= − × −1 1 12 10 10. ; (b) 6 00 1027. ×  J;(c) see the solution

(c) $2.17 1020×P39.14 v c= 0 140.

P39.58 (a) 0 023 6. c ; (b) 6 18 10 4. × − cP39.16 5.45 yr, Goslo is older

P39.60 (a) 4 00 10 14. × −  kg ; (b) 1 60 10 12. × −P39.18 11 3.  kHz

P39.20 (a) see the solution; (b) 0 050 4. c P39.62 (a) 
3 65

2
.  MeV

c
; (b) v c= 0 589.

P39.22 (a) 0 943. c ; (b) 2.55 km
P39.64 see the solution

P39.24 B occurred 444 ns before A
P39.66 6 28 107. ×  kg

P39.26 0 357. c
P39.68 1 47.  km

P39.28 0 893. c  at 16 8. ° ′ above the -axisx

P39.70 (a) 
2d

c v+
; (b) 

2d
c

c v
c v
−
+P39.30 (a) 0 141. c ; (b) 0 436. c

P39.32 see the solution
P39.72 M

m u c
u c

=
−

−
2
3

4
1

2 2

2 2
P39.34 (a) 0 582.  MeV; (b) 2 45.  MeV

P39.36 see the solution P39.74 (a) Tau Ceti exploded 16.0 yr before the
Sun; (b) they exploded simultaneously

P39.38 (a) 438 GJ ; (b) 438 GJ
P39.76 see the solution, 0 115. c , 0 257. c , 0 786. c

P39.40 18 4.  g cm3

P39.42 (a) 0.467c; (b) 2 75 103. ×  kg
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Introduction to Quantum Physics

ANSWERS TO QUESTIONS

Q40.1 Planck made two new assumptions: (1) molecular energy is
quantized and (2) molecules emit or absorb energy in discrete
irreducible packets. These assumptions contradict the classical
idea of energy as continuously divisible. They also imply that
an atom must have a definite structure—it cannot just be a
soup of electrons orbiting the nucleus.

Q40.2 The first flaw is that the Rayleigh–Jeans law predicts that the
intensity of short wavelength radiation emitted by a blackbody
approaches infinity as the wavelength decreases. This is known
as the ultraviolet catastrophe. The second flaw is the prediction
much more power output from a black-body than is shown
experimentally. The intensity of radiation from the blackbody
is given by the area under the red I Tλ ,b g  vs. λ curve in
Figure 40.5 in the text, not by the area under the blue curve.

Planck’s Law dealt with both of these issues and brought
the theory into agreement with the experimental data by
adding an exponential term to the denominator that depends

on 
1
λ

. This both keeps the predicted intensity from

approaching infinity as the wavelength decreases and keeps
the area under the curve finite.

Q40.3 Our eyes are not able to detect all frequencies of energy. For example, all objects that are above 0 K
in temperature emit electromagnetic radiation in the infrared region. This describes everything in a
dark room. We are only able to see objects that emit or reflect electromagnetic radiation in the visible
portion of the spectrum.

Q40.4 Most stars radiate nearly as blackbodies. Vega has a higher surface temperature than Arcturus. Vega
radiates most intensely at shorter wavelengths.

Q40.5 No. The second metal may have a larger work function than the first, in which case the incident
photons may not have enough energy to eject photoelectrons.

Q40.6 Comparing Equation 40.9 with the slope-intercept form of the equation for a straight line, y mx b= + ,
we see that the slope in Figure 40.11 in the text is Planck’s constant h and that the y intercept is −φ ,
the negative of the work function. If a different metal were used, the slope would remain the same
but the work function would be different, Thus, data for different metals appear as parallel lines on
the graph.

461
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Q40.7 Wave theory predicts that the photoelectric effect should occur at any frequency, provided the light
intensity is high enough. However, as seen in the photoelectric experiments, the light must have a
sufficiently high frequency for the effect to occur.

Q40.8 The stopping voltage measures the kinetic energy of the most energetic photoelectrons. Each of
them has gotten its energy from a single photon. According to Planck’s E hf= , the photon energy
depends on the frequency of the light. The intensity controls only the number of photons reaching a
unit area in a unit time.

Q40.9 Let’s do some quick calculations and see: 1.62 MHz is the highest frequency in the commercial AM
band. From the relationship between the energy and the frequency, E hf= , the energy available
from such a wave would be 1 07 10 27. × −  J , or 6.68 neV. That is 9 orders of magnitude too small to
eject electrons from the metal. The only thing this student could gain from this experiment is a hefty
fine and a long jail term from the FCC. To get on the order of a few eV from this experiment, she
would have to broadcast at a minimum frequency of 250 Thz, which is in the infrared region.

Q40.10 No. If an electron breaks free from an atom absorbing a photon, we say the atom is ionized.
Ionization typically requires energy of several eV. As with the photoelectric effect in a solid metal,
the light must have a sufficiently high frequency for a photon energy that is large enough. The gas
can absorb energy from longer-wavelength light as it gains more internal energy of random motion
of whole molecules.

Q40.11 Ultraviolet light has shorter wavelength and higher photon energy than visible light.

Q40.12 (c) UV light has the highest frequency of the three, and hence each photon delivers more energy to a
skin cell. This explains why you can become sunburned on a cloudy day: clouds block visible light
and infrared, but not much ultraviolet. You usually do not become sunburned through window
glass, even though you can see the visible light from the Sun coming through the window, because
the glass absorbs much of the ultraviolet and reemits it as infrared.

Q40.13 The Compton effect describes the scattering of photons from electrons, while the photoelectric effect
predicts the ejection of electrons due to the absorption of photons by a material.

Q40.14 In developing a theory in accord with experimental evidence, Compton assumed that photons
exhibited clear particle-like behavior, and that both energy and momentum are conserved in
electron-photon interactions. Photons had previously been thought of as bits of waves.

Q40.15 The x-ray photon transfers some of its energy to the electron. Thus, its frequency must decrease.

Q40.16 A few photons would only give a few dots of exposure, apparently randomly scattered.

Q40.17 Light has both classical-wave and classical-particle characteristics. In single- and double-slit
experiments light behaves like a wave. In the photoelectric effect light behaves like a particle. Light
may be characterized as an electromagnetic wave with a particular wavelength or frequency, yet at
the same time light may be characterized as a stream of photons, each carrying a discrete energy, hf.
Since light displays both wave and particle characteristics, perhaps it would be fair to call light a
“wavicle”. It is customary to call a photon a quantum particle, different from a classical particle.
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Q40.18 An electron has both classical-wave and classical-particle characteristics. In single- and double-slit
diffraction and interference experiments, electrons behave like classical waves. An electron has mass
and charge. It carries kinetic energy and momentum in parcels of definite size, as classical particles
do. At the same time it has a particular wavelength and frequency. Since an electron displays
characteristics of both classical waves and classical particles, it is neither a classical wave nor a
classical particle. It is customary to call it a quantum particle, but another invented term, such as
“wavicle”, could serve equally well.

Q40.19 The discovery of electron diffraction by Davisson and Germer was a fundamental advance in our
understanding of the motion of material particles. Newton’s laws fail to properly describe the
motion of an object with small mass. It moves as a wave, not as a classical particle. Proceeding from
this recognition, the development of quantum mechanics made possible describing the motion of
electrons in atoms; understanding molecular structure and the behavior of matter at the atomic
scale, including electronics, photonics, and engineered materials; accounting for the motion of
nucleons in nuclei; and studying elementary particles.

Q40.20 If we set 
p
m

q V
2

2
= ∆ , which is the same for both particles, then we see that the electron has the

smaller momentum and therefore the longer wavelength λ =
F
HG
I
KJ

h
p

.

Q40.21 Any object of macroscopic size—including a grain of dust—has an undetectably small wavelength
and does not exhibit quantum behavior.

Q40.22 A particle is represented by a wave packet of nonzero width. The width necessarily introduces
uncertainty in the position of the particle. The width of the wave packet can be reduced toward zero
only by adding waves of all possible wavelengths together. Doing this, however, results in loss of all
information about the momentum and, therefore, the speed of the particle.

Q40.23 The intensity of electron waves in some small region of space determines the probability that an
electron will be found in that region.

Q40.24 The wavelength of violet light is on the order of 
1
2

 mµ , while the de Broglie wavelength of an

electron can be 4 orders of magnitude smaller. Would your height be measured more precisely with

an unruled meter stick or with one engraved with divisions down to 
1

10
 mm?

Q40.25 The spacing between repeating structures on the surface of the feathers or scales is on the order of
1/2 the wavelength of light. An optical microscope would not have the resolution to see such fine
detail, while an electron microscope can. The electrons can have much shorter wavelength.

Q40.26 (a) The slot is blacker than any black material or pigment. Any radiation going in through the
hole will be absorbed by the walls or the contents of the box, perhaps after several
reflections. Essentially none of that energy will come out through the hole again. Figure 40.1
in the text shows this effect if you imagine the beam getting weaker at each reflection.

continued on next page
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(b) The open slots between the glowing tubes are brightest. When you look into a slot, you
receive direct radiation emitted by the wall on the far side of a cavity enclosed by the fixture;
and you also receive radiation that was emitted by other sections of the cavity wall and has
bounced around a few or many times before escaping through the slot. In Figure 40.1 in the
text, reverse all of the arrowheads and imagine the beam getting stronger at each reflection.
Then the figure shows the extra efficiency of a cavity radiator. Here is the conclusion of
Kirchhoff’s thermodynamic argument: ... energy radiated. A poor reflector—a good
absorber—avoids rising in temperature by being an efficient emitter. Its emissivity is equal
to its absorptivity: e a= . The slot in the box in part (a) of the question is a black body with
reflectivity zero and absorptivity 1, so it must also be the most efficient possible radiator, to
avoid rising in temperature above its surroundings in thermal equilibrium. Its emissivity in
Stefan’s law is 100% 1= , higher than perhaps 0.9 for black paper, 0.1 for light-colored paint,
or 0.04 for shiny metal. Only in this way can the material objects underneath these different
surfaces maintain equal temperatures after they come to thermal equilibrium and continue
to exchange energy by electromagnetic radiation. By considering one blackbody facing
another, Kirchhoff proved logically that the material forming the walls of the cavity made
no difference to the radiation. By thinking about inserting color filters between two cavity
radiators, he proved that the spectral distribution of blackbody radiation must be a universal
function of wavelength, the same for all materials and depending only on the temperature.
Blackbody radiation is a fundamental connection between the matter and the energy that
physicists had previously studied separately.

SOLUTIONS TO PROBLEMS

Section 40.1 Blackbody Radiation and Planck’s Hypothesis

P40.1 T =
× ⋅
×

= ×
−

−
2 898 10

560 10
5 18 10

3

9
3.

.
 m K
 m

 K

P40.2 (a) λmax
.
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~=
× ⋅ × ⋅− −

−2 898 10 2 898 10
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3 3
7 m K  m K

10  K
 m4T

ultraviolet

(b) λmax ~
.

~
2 898 10
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10× ⋅−
− m K

10  K
 m7 γ − ray

P40.3 Planck’s radiation law gives intensity-per-wavelength. Taking E to be the photon energy and n to be
the number of photons emitted each second, we multiply by area and wavelength range to have
energy-per-time leaving the hole:
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P40.4 (a) P = = × × ⋅ = ×− −eA Tσ 4 4 8 4 41 20 0 10 5 67 10 5 000 7 09 10. . . m  W m K  K  W2 2 4e je jb g

(b) λ λ λmax max max.T = = × ⋅ ⇒ =−5 000 2 898 10 5803 K  m K  nmb g
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(d)–(i) The other values are computed similarly:
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(j) We approximate the area under the P λb g  versus λ curve, between 400 nm and 700 nm, as
two trapezoids:
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P40.8 Energy of a single 500-nm photon:
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P40.10 We take θ = 0 030 0.  radians. Then the pendulum’s total energy is

E mgh mg L L

E

= = −

= − = × −

cos

. . . . .

θa f
b ge jb g1 00 9 80 1 00 0 999 5 4 41 10 3 kg  m s  J2

The frequency of oscillation is f
g
L

= = =
ω
π π2

1
2

0 498.  Hz .

The energy is quantized, E nhf= .

Therefore, n
E
hf

= =
×

× ⋅

= ×

−

− −

4 41 10

0 498

1 34 10

3

1

31

.

.

.

 J

6.626 10  J s  s34e je j
FIG. P40.10

P40.11 The radiation wavelength of ′ =λ 500 nm that is observed by observers on Earth is not the true
wavelength, λ, emitted by the star because of the Doppler effect. The true wavelength is related to
the observed wavelength using:
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The temperature of the star is given by λmax .T = × ⋅−2 898 10 3  m K :
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which is the Rayleigh-Jeans law, for very long wavelengths.

Section 40.2 The Photoelectric Effect
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a fe j

λ λ< c  for photo current. Thus,  only lithium will exhibit the photoelectric effect.

(b) For lithium,
hc

K
λ

φ= + max

6 626 10 3 00 10

400 10
2 30 1 60 10

1 29 10 0 808

34 8

9
19

19

. .
. .

. .

max

max

× ⋅ ×

×
= × +

= × =

−

−
−

−

 J s  m s

 m
 eV

 J  eV

e je j a fe j K

K

P40.16 From condition (i), hf e VS= +∆ 1 1b g φ and hf e VS= +∆ 2 2b g φ

∆ ∆V VS S1 2 1 48b g b g= + .  V .

Then φ φ2 1 1 48− = .  eV .

From condition (ii), hf hfc c1 1 2 20 600 0 600= = =φ φ. .

φ φ

φ φ
2 2

2 1

0 600 1 48

3 70 2 22

− =

= =

. .

. . .

 eV

 eV  eV

P40.17 (a) e V
hc

S∆ = − → =
⋅

− =
λ

φ φ
1 240

0 376 1 90
 nm eV

546.1 nm
 eV  eV. .

(b) e V
hc

VS S∆ ∆= − =
⋅

− → =
λ

φ
1 240

1 90 0 216
 nm eV

587.5 nm
 eV  V. .



Chapter 40     469

P40.18 The energy needed is E = = × −1 00 1 60 10 19. . eV  J .

The energy absorbed in time interval ∆t  is E t IA t= =P∆ ∆

so ∆t
E
IA

= =
×

⋅ ×L
NM

O
QP
= × =

−

−

1 60 10

2 82 10
1 28 10 148

19

15 2
7.

.
.

 J

500 J s m  m
 s  days

2e j e jπ
.

The gross failure of the classical theory of the photoelectric effect contrasts with the success of
quantum mechanics.

P40.19 Ultraviolet photons will be absorbed to knock electrons out of the sphere with maximum kinetic
energy K hfmax = −φ ,

or Kmax

. . .
. .=

× ⋅ ×

× ×

F
HG

I
KJ − =

−

− −

6 626 10 3 00 10

200 10
1 00

10
4 70 1 51

34 8

9 19

 J s  m s

 m
 eV

1.60  J
 eV  eV

e je j
.

The sphere is left with positive charge and so with positive potential relative to V = 0  at r = ∞ . As its
potential approaches 1.51 V, no further electrons will be able to escape, but will fall back onto the
sphere. Its charge is then given by

V
k Q

r
e= or Q

rV
ke

= =
× ⋅

× ⋅
= ×

−
−

5 00 10 1 51

8 99 10
8 41 10

2

9
12

. .

.
.

 m  N m C

 N m C
 C2 2

e jb g
.

P40.20 (a) By having the photon source move toward the metal, the incident photons are Doppler
shifted to higher frequencies, and hence, higher energy.

(b) If v c= 0 280. , ′ =
+
−

= × = ×f f
v c
v c

1
1

7 00 10
1 28
0 720

9 33 1014 14.
.
.

.e j  Hz .

Therefore, φ = × ⋅ × = × =− −6 626 10 9 33 10 6 18 10 3 8734 14 19. . . . J s  Hz  J  eVe je j .

(c) At v c= 0 900. , f = ×3 05 1015.  Hz

and K hfmax . .
.

. .= − = × ⋅ ×
×

F
HG

I
KJ − =−

−φ 6 626 10 3 05 10
1 00

10
3 87 8 7834 15

19 J s  Hz
 eV

1.60  J
 eV  eVe je j .

Section 40.3 The Compton Effect

P40.21 E
hc

= =
× ⋅ ×

×
= × =

−

−
−

λ

6 626 10 3 00 10

700 10
2 84 10 1 78

34 8

9
19

. .
. .

 J s  m s

 m
 J  eV

e je j

p
h

= =
× ⋅
×

= × ⋅
−

−
−

λ
6 626 10

10
9 47 10

34

9
28.

.
 J s

700  m
 kg m s
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P40.22 (a) ∆λ θ= −
h

m ce
1 cosa f : ∆λ =

×

× ×
− ° = ×

−

−
−6 626 10

9 11 10 3 00 10
1 37 0 4 88 10

34

31 8
13.

. .
cos . .

e je j
a f  m

(b) E
hc

0
0

=
λ

: 300 10 1 60 10
6 626 10 3 00 10

3 19
34 8

0
× × =

× ×
−

−

 eV  J eV
 m s

e je j e je j
.

. .

λ
λ 0

124 14 10= × −.  m

and ′ = + = × −λ λ λ0
124 63 10∆ .  m

′ =
′
=

× ⋅ ×

×
= × =

−

−
−E

hc
λ

6 626 10 3 00 10

4 63 10
4 30 10 268

34 8

12
14

. .

.
.

 J s  m s

 m
 J  keV

e je j

(c) K E Ee = − ′ = − =0 300 268 5 31 5 keV  keV  keV. .

P40.23 With K Ee = ′ , K E Ee = − ′0  gives ′ = − ′E E E0

′ =E
E0

2
 and ′ =

′
λ

hc
E

′ = = =λ λ
hc

E
hc
E0 0

02
2 2

′ = + −λ λ λ θ0 1C cosa f 2 10 0λ λ λ θ= + −C cosa f
1

0 001 60
0 002 43

0− = =cos
.
.

θ
λ
λC

θ = °70 0.

P40.24 This is Compton scattering through 180°:

E
hc

h
m ce

0
0

34 8

9 19

12 12

6 626 10 3 00 10

0 110 10 1 60 10
11 3

1 2 43 10 1 180 4 86 10

= =
× ⋅ ×

× ×
=

= − = × − ° = ×

−

− −

− −

λ

λ θ

. .

. .
.

cos . cos .

 J s  m s

 m  J eV
 keV

 m  m

e je j
e je j
a f e ja f∆

FIG. P40.24

′ = + =λ λ λ0 0 115∆ .  nm so ′ =
′
=E

hc
λ

10 8.  keV.

By conservation of momentum for the photon-electron system,
h h

peλ λ0

� � �i i i=
′
− +e j

and p he = +
′

F
HG

I
KJ

1 1

0λ λ

p
c

ce = × ⋅
×

×

F
H
GG

I
K
JJ ×

+
×

F
HG

I
KJ =

−
− − −6 626 10

3 00 10

1 60 10
1

0 110 10
1

0 115 10
22 134

8

19 9 9.
.

. . .
.

 J s
 m s

 J eV  m  m
 keVe j e j

.

By conservation of system energy, 11 3 10 8. . keV  keV= +Ke

so that Ke = 478 eV .

Check: E p c m ce
2 2 2 2 4= +  or m c K pc m ce e e

2 2 2 2 2
+ = +e j b g e j

511 0 478 22 1 511

2 62 10 2 62 10

2 2 2

11 11

 keV  keV  keV  keV+ = +

× = ×

. .

. .

a f a f a f



Chapter 40     471

P40.25 (a) Conservation of momentum in the x direction gives: p p peγ γ θ φ= ′ +cos cos

or since θ φ= ,
h

p
h

eλ λ
θ

0
= +

′
F
HG

I
KJ cos . [1]

Conservation of momentum in the y direction gives: 0 = ′ −p peγ θ θsin sin ,

which (neglecting the trivial solution θ = 0) gives: p p
h

e = ′ =
′γ λ
. [2]

Substituting [2] into [1] gives: 
h h
λ λ

θ
0

2
=

′
cos , or ′ =λ λ θ2 0 cos . [3]

Then the Compton equation is ′ − = −λ λ θ0 1
h

m ce
cosa f

giving 2 10 0λ θ λ θcos cos− = −
h

m ce
a f

or 2 1
1

1
0

2cos cosθ
λ

θ− = −
hc

m ce
a f.

Since E
hc

γ λ
=

0
, this may be written as: 2 1 12cos cosθ θγ− =

F
HG
I
KJ −

E

m ce

a f

which reduces to: 2 12 2+
F
HG

I
KJ = +

E

m c

E

m ce e

γ γθcos

or cos
. .

.
.θ γ

γ
=

+

+
=

+
+

=
m c E

m c E
e

e

2

22
0 511 0 880

0 880
0 732

 MeV  MeV
1.02 MeV  MeV

 so that θ φ= = °43 0. .

(b) Using Equation (3): ′ =
′
= = =

°
= =E

hc hc E
γ

γ

λ λ θ θ0 2 2
0 880

43 0
0 602 602

cos cos
.
cos .

.a f
 MeV

2
 MeV  keV .

Then, ′ =
′
= = × ⋅−p

E

c cγ
γ 0 602

3 21 10 22.
.

 MeV
 kg m s .

(c) From Equation (2), p p
ce = ′ = = × ⋅−

γ
0 602

3 21 10 22.
.

 MeV
 kg m s .

From energy conservation: K E Ee = − ′ = − = =γ γ 0 880 0 602 0 278 278. . . MeV  MeV  MeV  keV .
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P40.26 The energy of the incident photon is E p c
hc

0
0

= =γ λ
.

(a) Conserving momentum in the x direction gives

p p peλ γφ θ= + ′cos cos , or since φ θ= , 
E
c

p pe
0 = + ′γ θd icos . [1]

Conserving momentum in the y direction (with φ = 0) yields

0 = ′ −p peγ θ θsin sin , or p p
h

e = ′ =
′γ λ
. [2]

Substituting Equation [2] into Equation [1] gives

E
c

h h0 =
′
+

′
F
HG

I
KJλ λ

θcos , or ′ =λ θ
2

0

hc
E

cos . [3]

By the Compton equation, ′ − = −λ λ θ0 1
h

m ce
cosa f, 2 2

1
0 0

hc
E

hc
E

h
m ce

cos cosθ θ− = −a f

which reduces to 2 2
0

2
0m c E m c Ee e+ = +e jcosθ .

Thus, φ θ= =
+
+

F
HG

I
KJ

−cos 1
2

0
2

02
m c E
m c E

e

e

.

(b) From Equation [3], ′ = =
+
+

F
HG

I
KJλ θ

2 2
20 0

2
0

2
0

hc
E

hc
E

m c E
m c E

e

e

cos .

Therefore, ′ =
′
=

+ +
=

+
+

F
HG

I
KJE

hc hc

hc E m c E m c E

E m c E
m c Ee e

e

e
γ λ 2 2 2

2

0
2

0
2

0

0
2

0
2

0b ge j e j
,

and ′ =
′
=

+
+

F
HG

I
KJp

E

c
E

c
m c E

m c E
e

e
γ

γ 0
2

0
2

02
2

.

(c) From conservation of energy, K E E E
E m c E

m c Ee
e

e

= − ′ = −
+
+

F
HG

I
KJ0 0

0
2

0
2

02
2

γ

or K
E m c E m c E

m c E
E

m c E
e

e e

e e

=
+ − −

+

F
HG

I
KJ = +

0
2

0
2

0
2

0

0
2

2
02

2 2 2

2e j
.

Finally, from Equation (2), p p
E

c
m c E

m c Ee
e

e

= ′ =
+
+

F
HG

I
KJγ

0
2

0
2

02
2

.
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*P40.27 The electron’s kinetic energy is

K mv= = × × = ×− −1
2

1
2

9 11 10 2 16 102 31 2 18. . kg 2.18 10  m s  J6e j .

This is the energy lost by the photon, hf hf0 − ′

hc hc
λ λ0

182 16 10−
′
= × −.  J . We also have

′ − = − =
×

× ×
− °

′ = + ×

−

−

−

λ λ θ

λ λ

0

34

31

0
13

1
6 63 10

1 17 4

1 11 10

h
m ce

cos
.

cos .

.

a f
e j

a f Js  s

9.11 10  kg 3 10  m

 m

8

(a) Combining the equations by substitution,

1 1
0 111

2 16 10
1 09 10

0 111
0 111

1 09 10

0 111 1 09 10 1 21 10

1 09 10 1 21 10 1 11 10 0

1 21 10 10 4 1 09 10 1 11 10

2

0 0

18

34
7

0 0

0
2

0

7

7
0
2 6

0

7
0
2 6 13

0

6 6 2 7 13

λ λ

λ λ
λ λ

λ λ

λ λ

λ

−
+

=
×

× ×
= ×

+ −
+

= ×

= × + ×

× + × − × =

=
− × ± × − × − ×

−

−

−

− −

− − −

.
.

.

.
.

.

. . .

. . .

. . .

 pm
 J  s

6.63 10  Js 3 10  m
m

 pm
 pm

m

 pm m

 m  m

 m 1.21  m  m

8

0
2

2

e j

b g
e j

e j e je j
1 09 107. ×e j

only the positive answer is physical: λ 0
101 01 10= × −.  m .

(b) Then ′ = × + × = ×− − −λ 1 01 10 1 11 10 1 01 1010 13 10. . . m  m  m.
Conservation of momentum in the transverse direction:

0

6 63 10
17 4

9 11 10

1 2 18 10 3 10

1 96 10 1 99 10 81 1

34

10

31

6 8 2

24 24

=
′

−

× ⋅
×

°=
× ×

− × ×

× = × = °

−

−

−

− −

h
m veλ

θ γ φ

φ

φ φ

sin sin

.
sin .

. sin

.

. . sin .

 J s
1.01 10  m

 kg 2.18 10  m s6e j
e j
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P40.28 (a) Thanks to Compton we have four equations in the unknowns φ, v, and ′λ :

hc hc
m c m ce eλ λ

γ
0

2 2=
′
+ − (energy conservation) [1]

h h
m veλ λ

φ γ φ
0

2=
′

+cos cos (momentum in   x  direction) [2]

0 2=
′

−
h

m veλ
φ γ φsin sin (momentum in   y  direction) [3]

′ − = −λ λ φ0 1 2
h

m ce
cosb g (Compton equation). [4]

Using sin sin cos2 2φ φ φ=  in Equation [3] gives γ
λ

φm v
h

e =
′

2
cos .

Substituting this into Equation [2] and using cos cos2 2 12φ φ= −  yields

h h h h
λ λ

φ
λ

φ
λ

φ
0

2 2 22 1
2

4 1=
′

− +
′

=
′

−cos cos cose j e j,

or ′ = −λ λ φ λ4 0
2

0cos . [5]

Substituting the last result into the Compton equation gives

4 2 1 2 1 2 10
2

0
2

2
2λ φ λ φ φcos cos cos− = − − = −

h
m c

hc
m ce e

e j e j.

With the substitution λ 0
0

=
hc
E

, this reduces to

cos2
2

0
2

02
1
2

φ =
+
+

=
+
+

m c E
m c E

x
x

e

e

 where x
E

m ce

≡ 0
2 .

For x = =
0 700

1 37
.

.
 MeV

0.511 MeV
, this gives φ =

+
+

= °−cos .1 1
2

33 0
x
x

.

FIG. P40.28(a)

(b) From Equation [5], ′ = − =
+
+
F
HG
I
KJ −

L
NM

O
QP =

+
+
F
HG
I
KJλ λ φ λ λ0

2
0 04 1 4

1
2

1
2 3
2

cose j x
x

x
x

.

Then, Equation [1] becomes

hc hc x
x

m c m ce eλ λ
γ

0 0

2 22
2 3

=
+
+
F
HG
I
KJ + −  or 

E
m c

E
m c

x
xe e

0
2

0
2

2
2 3

1−
+
+
F
HG
I
KJ + = γ .

Thus, γ = + −
+
+
F
HG
I
KJ1

2
2 3

x x
x
x

, and with x = 1 37.  we get γ = 1 614. .

Therefore, 
v
c
= − = − =−1 1 0 384 0 7852γ . .  or v c= 0 785. .
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P40.29 ′ − = −λ λ θ
h

m ce
1 cosa f

′′ − ′ = − −

′′ − = − − + −

λ λ π θ

λ λ π θ θ

h
m c
h

m c
h

m c
h

m c
h

m c

e

e e e e

1 cos

cos cos

a f

a f

Now cos cosπ θ θ− = −a f , so ′′ − = =λ λ 2 0 004 86
h

m ce
.  nm . FIG. P40.29

P40.30 Maximum energy loss appears as maximum increase in wavelength, which occurs for scattering

angle 180°. Then ∆λ = − ° FHG
I
KJ =1 180

2
cosa f h

mc
h

mc
 where m is the mass of the target particle. The

fractional energy loss is

E E
E

hc hc
hc

h mc
h mc

0

0

0

0

0

0 0

2
2

− ′
=

− ′
=

′ −
′

=
+

=
+

λ λ
λ

λ λ
λ

λ
λ λ λ
∆
∆

.

Further, λ 0
0

=
hc
E

, so 
E E

E
h mc

hc E h mc
E

mc E
0

0 0

0
2

0

2
2

2
2

− ′
=

+
=

+
.

(a) For scattering from a free electron, mc2 0 511= .  MeV , so

E E
E

0

0

2 0 511
0 511 2 0 511

0 667
− ′

=
+

=
.

. .
.

 MeV
 MeV  MeV
a f
a f .

(b) For scattering from a free proton, mc2 938=  MeV, and

E E
E

0

0

2 0 511
938 2 0 511

0 001 09
− ′

=
+

=
.

.
.

 MeV
 MeV  MeV
a f
a f .

Section 40.4 Photons and Electromagnetic Waves

*P40.31 With photon energy 10 0.  eV = hf

f =
×

× ⋅
= ×

−

−

10 0 1 6 10

6 63 10
2 41 10

19

34
15

. .

.
.

 J

 J s
 Hz

e j
.

Any electromagnetic wave with frequency higher than 2 41 1015. ×  Hz counts as ionizing radiation.
This includes far ultraviolet light, x-rays, and gamma rays.
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*P40.32 The photon energy is E
hc

= =
× ⋅ ×

×
= ×

−

−
−

λ

6 63 10

633 10
3 14 10

34

9
19

.
.

 J s 3 10  m s

 m
 J

8e j
. The power carried by the

beam is 2 10 3 14 10 0 62818 19× × =− photons s  J photon  We je j. . . Its intensity is the average Poynting

vector I S
r

= = =
×

= ×
−

av
2 W 4

 m
 W m

P
π π

2 3 2
50 628

1 75 10
2 61 10

.

.
.

a f
e j

.

(a) S E B
E B

av rms rms= °=
1

90
1

2 20 0µ µ
sin max max . Also E B cmax max= . So S

E
cav = max

2

02µ
.

E cS

B

max

max

.

.

.
.

= = × × ×

= ×

=
×

×
= ×

−

−

2 2 4 10 3 10 2 61 10

1 40 10

1 40 10
3 10

4 68 10

0
1 2 7 8 5 1 2

4

4

8
5

µ πav
2 Tm A  m s  W m

 N C

 N C
 m s

 T

b g e je je je j

(b) Each photon carries momentum 
E
c

. The beam transports momentum at the rate 
P
c

. It

imparts momentum to a perfectly reflecting surface at the rate
2 2 0 628

3 10
4 19 108

9P
c

= =
×

= × −force
 W

 m s
 N

.
.

a f
.

(c) The block of ice absorbs energy mL t= P∆  melting

m
t

L
= =

×

×
= × −P∆ 0 628

3 33 10
1 02 105

2.

.
.

 W 1.5 3 600 s

 J kg
 kg

b g
.

Section 40.5 The Wave Properties of Particles

P40.33 λ = = =
× ⋅

× ×
= ×

−

−
−h

p
h

mv
6 626 10

1 67 10 1 00 10
3 97 10

34

27 6
13.

. .
.

 J s

 kg  m s
 m

e je j

P40.34 (a)
p
m

2
19

2
50 0 1 60 10= × −. .a fe j J

p
h
p

= × ⋅

= =

−3 81 10

0 174

24.

.

 kg m s

 nmλ

(b)
p
m

2
3 19

2
50 0 10 1 60 10= × × −. .e je j J

p
h
p

= × ⋅

= = ×

−

−

1 20 10

5 49 10

22

12

.

.

 kg m s

 mλ

The relativistic answer is slightly more precise:

λ = =
+ −L

NM
O
QP

= × −h
p

hc

mc K m c2 2 2 4
1 2

125 37 10

e j
.  m .
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P40.35 (a) Electron: λ =
h
p

and K m v
m v

m
p
me

e

e e
= = =

1
2 2 2

2
2 2 2

so p m Ke= 2

and λ = =
× ⋅

× ×

−

− −

h
m Ke2

6 626 10

2 9 11 10 3 00 1 60 10

34

31 19

.

. . .

 J s

 kg  Je ja fe j
λ = × =−7 09 10 0 70910. . m  nm .

(b) Photon: λ =
c
f

and E hf= so f
E
h

=

and λ = =
× ⋅ ×

×
= × =

−

−
−hc

E

6 626 10 3 00 10

3 1 60 10
4 14 10 414

34 8

19
7

. .

.
.

 J s  m s

 J
 m  nm

e je j
e j

.

P40.36 (a) The wavelength of a non-relativistic particle of mass m is given by λ = =
h
p

h
mK2

 where the

kinetic energy K is in joules. If the neutron kinetic energy Kn  is given in electron volts, its

kinetic energy in joules is K Kn= × −1 60 10 19.  J eVe j  and the equation for the wavelength

becomes

λ = =
× ⋅

× ×
=

×−

− −

−h
mK K K

n n2
6 626 10

2 1 67 10 1 60 10

2 87 1034

27 19

11.

. .

. J s

 kg  J eV
 m

e je j
where Kn  is expressed in electron volts.

(b) If Kn = =1 00 1 000.  keV  eV, then λ =
×

= × =
−

−2 87 10
1 000

9 07 10 907
11

13.
. m  m  fm .

P40.37 (a) λ ~10 14−  m  or less. p
h

=
× ⋅

= ⋅
−

−
−

λ
~

.6 6 10
10

10
34

14
19 J s

 m
 kg m s or more.

The energy of the electron is E p c m ce= + × + × ×− −2 2 2 4 19 2 8 2 31 2 8 4
10 3 10 9 10 3 10~ e j e j e j e j

or E ~ ~10 1011 8−  J  eV or more,

so that K E m ce= − − ×2 8 6 810 0 5 10 10~ . ~ eV  eV  eVe j  or more.

(b) The electric potential energy of the electron-nucleus system would be

U
k q q

r

e
e

e=
× ⋅ −

−
−

−
1 2

9 19

14
5

9 10 10

10
10~ ~

 N m C  C

 m
 eV

2 2e je ja f
.

With its K Ue+ >> 0 , the electron would immediately escape the nucleus .
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P40.38 From the condition for Bragg reflection,

m d dλ θ
φ

= = F
HG
I
KJ2 2

2
sin cos .

But d a= F
HG
I
KJsin

φ
2

where a is the lattice spacing.

Thus, with m = 1, λ
φ φ

φ= F
HG
I
KJ
F
HG
I
KJ =2

2 2
a asin cos sin

FIG. P40.38

λ = =
h
p

h
m Ke2

λ =
× ⋅

× × ×
= ×

−

− −

−6 626 10

10 54 0 1 60 10
1 67 10

34

31 19

10.

. .
.

 J s

2 9.11  kg  J
 m

e je j
.

Therefore, the lattice spacing is a = =
×

°
= × =

−
−λ

φsin
.

sin .
. .

1 67 10
50 0

2 18 10 0 218
10

10 m
 nm .

P40.39 (a) E p c m c2 2 2 2 4= +

with E hf= , p
h

=
λ

and mc
h

=
λC

so h f
h c h c2 2

2 2

2

2 2

= +
λ λC

2 and
f
c
F
HG
I
KJ = +

2

2
1 1
λ λC

2 (Eq. 1).

(b) For a photon
f
c
=

1
λ

.

The third term 
1
λC

 in Equation 1 for electrons and other massive particles shows that

they will always have a different frequency from photons of the same wavelength .

*P40.40 For the massive particle, K mc= −γ 1 2b g  and λ
γm

h
p

h
mv

= = . For the photon (which we represent as γ),

E K=  and λ
γγ = = = =
−

c
f

ch
E

ch
K

ch
mc1 2b g . Then the ratio is 

λ
λ

γ
γ

γ
γ

γ

m

ch mv
mc h

v
c

=
−

=
−1 12b g .

(a)
λ
λ
γ

m
=

− −FH IK −L
NM

O
QP
=

1 0 9

1 0 9 1 1 0 9 1
1 60

2 2

.

. .
.

a f

(b)
λ
λ
γ

m
=

− −F
H

I
K −

L
NM

O
QP
= ×

1 0 001

1 0 001 1 1 0 001 1
2 00 10

2 2

3.

. .
.

a f
a f a f

(c) As 
v
c
→ 1, γ →∞  and γ − 1 becomes nearly equal to γ. Then 

λ
λ

γ
γ

γ

m
→ =1 1 .

(d) As 
v
c
→ 0 , 1 1 1

1
2

1
1
2

2

2

1 2 2

2

2

2−
F
HG
I
KJ − ≈ − −FHG

I
KJ − =

−
v
c

v
c

v
c

 and 
λ
λ
γ

m

v c

v c

c
v

→ = → ∞1
1 2

2
2 2b ge j

.
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P40.41 λ =
h
p

p
h

= =
× ⋅
×

= × ⋅
−

−
−

λ
6 626 10
1 00 10

6 63 10
34

11
23.

.
.

 J s
 m

 kg m s

(a) electrons: K
p
me

e
= =

×

×
=

−

−

2 23 2

312

6 63 10

2 9 11 10
15 1

.

.
.

e j
e j

 J  keV

The relativistic answer is more precisely correct:

K p c m c m ce e e= + − =2 2 2 4 2 14 9.  keV .

(b) photons: E pcγ = = × × =−6 63 10 3 00 10 12423 8. .e je j  keV

P40.42 (a) The wavelength of the student is λ = =
h
p

h
mv

. If w is the width of the diffracting aperture,

then we need w
h

mv
≤ = F

HG
I
KJ10 0 10 0. .λ

so that v
h

mw
≤ =

× ⋅F
HG

I
KJ = ×

−
−10 0 10 0

6 626 10
80 0 0 750

1 10 10
34

34. .
.
. .

.
 J s

 kg  m
 m sb ga f .

(b) Using ∆t
d
v

=  we get: ∆t ≥
×

= ×−
0 150

1 36 1033.
.

 m
1.10 10  m s

 s34 .

(c) No . The minimum time to pass through the door is over 1015  times the age of the

Universe.

Section 40.6 The Quantum Particle

*P40.43 E K mu hf= = =
1
2

2  and λ =
h

mu
.

v f
mu

h
h

mu
u

vphase phase= = = =λ
2

2 2
.

This is different from the speed u at which the particle transports mass, energy, and momentum.

*P40.44 As a bonus, we begin by proving that the phase speed v
kp =
ω

 is not the speed of the particle.

v
k

p c m c

mv
m v c m c

m v
c

c
v

c
c
v

v
c

c
c
v

c
vp = =

+
=

+
= + = + −

F
HG
I
KJ = + − =

ω
γ

γ

γ γ

2 2 2 4 2 2 2 2 2 4

2 2 2

2

2 2

2

2

2

2

2

2

2

1 1 1 1 1
=

=

In fact, the phase speed is larger than the speed of light. A point of constant phase in the wave
function carries no mass, no energy, and no information.

Now for the group speed:

continued on next page
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v
d
dk

d
d k

dE
dp

d
dp

m c p c

v m c p c pc
p c

p c m c

v c
m v

m v m c
c

v v c

v v c c
c

v v c

v c v v c
v

g

g

g

= = = = +

= + + =
+

=
+

=
−

− +
=

−

+ − −
=

−

ω ω

γ
γ

=
=

2 4 2 2

2 4 2 2 1 2 2
2 4

2 2 2 4

2 2 2

2 2 2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2 2 2

1
2

0 2

1

1

1

1

e j e j

e j
e j

e j
e j e j

It is this speed at which mass, energy, and momentum are transported.

Section 40.7 The Double-Slit Experiment Revisited

P40.45 (a) λ = =
× ⋅

×
= ×

−

−
−h

mv
6 626 10

1 67 10 0 400
9 92 10

34

27
7.

. .
.

 J s

 kg  m s
 m

e jb g

(b) For destructive interference in a multiple-slit experiment, d msinθ λ= +FHG
I
KJ

1
2

, with m = 0  for

the first minimum.

Then, θ
λ

= F
HG
I
KJ = °−sin .1

2
0 028 4

d

so 
y
L
= tanθ y L= = ° =tan . tan . .θ 10 0 0 028 4 4 96 m  mma fb g .

(c) We cannot say the neutron passed through one slit. We can only say it passed through the slits.

P40.46 Consider the first bright band away from the center:

d msinθ λ= 6 00 10
0 400
200

1 1 20 108 1 10. sin tan
.

.× L
NM
O
QP

F
HG

I
KJ = = ×− − − m  me j a fλ

λ =
h

m ve
 so m v

h
e =

λ

and K m v
m v

m
h

m
e Ve

e

e e

= = = =
1
2 2 2

2
2 2 2

2λ
∆

∆V
h

eme

=
2

22 λ
∆V =

× ⋅

× × ×
=

−

− − −

6 626 10

2 1 60 10 9 11 10 1 20 10
105

34 2

19 31 10 2

.

. . .

 J s

 C  kg  m
 V

e j
e je je j

.

*P40.47 We find the speed of each electron from energy conservation in the firing process:

0
1
2

2 2 1 6 10

9 11 10
3 98 10

2

19

31
6

= + = −

= =
× ×

×
= ×

−

−

K U mv

v
eV
m

f f eV

 C 45 V

 kg
 m s

.

.
.

a f

The time of flight is ∆
∆

t
x

v
= =

×
= × −0 28

7 04 10 8.
.

 m
3.98 10  m s

 s6 . The current when electrons are 28 cm

apart is I
q
t

e
t

= = =
×
×

= ×
−

−
−

∆
1 6 10

2 27 10
19

8
12.

.
 C

7.04 10  s
 A .
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Section 40.8 The Uncertainty Principle

P40.48 (a) ∆ ∆ ∆ ∆p x m v x= ≥
=
2

so ∆
∆

v
h
m x

≥ =
⋅

=
4

2
4 2 00 1 00

0 250
π

π
π

 J s
 kg  m

 m s
. .

.b ga f .

(b) The duck might move by 0 25 5 1 25. . m s  s  mb ga f = . With original position uncertainty of

1.00 m, we can think of ∆x  growing to 1 00 1 25 2 25. . . m  m  m+ = .

P40.49 For the electron, ∆ ∆p m ve= = × × = × ⋅− − −9 11 10 500 1 00 10 4 56 1031 4 32. . . kg  m s  kg m se jb ge j
∆

∆
x

h
p

= =
× ⋅

× ⋅
=

−

−4
6 626 10

1 16
34

32π π
.

.
 J s

4 4.56 10  kg m s
 mm

e j
.

For the bullet, ∆ ∆p m v= = × = × ⋅− −0 020 0 500 1 00 10 1 00 104 3. . . kg  m s  kg m sb gb ge j
∆

∆
x

h
p

= = × −

4
5 28 10 32

π
.  m .

P40.50
∆ ∆y
x

p

p
y

x
= and d p

h
y∆ ≥

4π
.

Eliminate ∆py  and solve for x.

x p y
d
hx= 4π ∆b g : x = × ×

×

× ⋅
− −

−

−
4 1 00 10 100 1 00 10

2 00 10

6 626 10
3 2

3

34
π . .

.

.
 kg  m s  m

 m

 J s
e jb ge j e j

e j
The answer, x = ×3 79 1028.  m , is 190 times greater than the diameter of the Universe!

P40.51 With ∆x = × −2 10 15  m m, the uncertainty principle requires ∆
∆

p
xx ≥ = × ⋅−=

2
2 6 10 20.  kg m s .

The average momentum of the particle bound in a stationary nucleus is zero. The uncertainty in
momentum measures the root-mean-square momentum, so we take prms ≈ × ⋅−3 10 20  kg m s  . For an
electron, the non-relativistic approximation p m ve=  would predict v ≈ ×3 1010  m s , while v cannot
be greater than c.

Thus, a better solution would be E m c pc m ce e= +L
NM

O
QP ≈ =2 2 2

1 2
256e j b g  MeV γ

γ ≈ =
−

110
1

1 2 2v c
so v c≈ 0 999 96. .

For a proton, v
p
m

=  gives v = ×1 8 107.  m s, less than one-tenth the speed of light.

*P40.52 (a) K mv
mv

m
p
m

= = =
1
2 2 2

2
2 2a f

(b) To find the minimum kinetic energy, think of the minimum momentum uncertainty, and
maximum position uncertainty of 10 15− = m ∆x . We model the proton as moving along a

straight line with ∆ ∆p x =
=
2

, ∆
∆

p
x

=
=

2
. The average momentum is zero. The average squared

momentum is equal to the squared uncertainty:

K
p
m

p

m x m x m
= = = = =

× ⋅

×
= ×

=

−

− −

−
2 2 2

2

2

2 2

34 2

2 15 2 27

13

2 2 4 2 32

6 63 10

32 10 1 67 10
8 33 10

5 21

∆

∆ ∆

b g
a f a f

e j
e j

= =
π π

.

.
.

.

 J s

 m  kg
 J

 MeV
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P40.53 (a) At the top of the ladder, the woman holds a pellet inside a small region ∆xi . Thus, the
uncertainty principle requires her to release it with typical horizontal momentum

∆ ∆
∆

p m v
xx x

i
= =

=
2

. It falls to the floor in a travel time given by H gt= +0
1
2

2  as t
H
g

=
2

, so

the total width of the impact points is

∆ ∆ ∆ ∆
∆

∆
∆

x x v t x
m x

H
g

x
A
xf i x i

i
i

i
= + = +

F
HG

I
KJ = +b g =

2
2

where A
m

H
g

=
=

2
2

.

To minimize ∆x f , we require
d x

d x
f

i

∆

∆

d i
b g = 0 or 1 02− =

A
xi∆

so ∆x Ai = .

The minimum width of the impact points is

∆ ∆
∆

∆

x x
A
x

A
m

H
gf i

i x Ai

d i
min

= +
F
HG

I
KJ = =

F
HG
I
KJ

=

2
2 2

1 4
=

.

(b) ∆x fd i e j a f
min

.

.

.

.
.=

× ⋅

×

L

N
MM

O

Q
PP
L
NMM

O
QPP

= ×
−

−
−

2 1 054 6 10

5 00 10

2 2 00

9 80
5 19 10

34

4

1 2 1 4
16

 J s

 kg

 m

 m s
 m2

Additional Problems

P40.54 ∆V
h
e

f
eS = FHG

I
KJ −

φ

From two points on the graph 0 4 1 1014= FHG
I
KJ × −

h
e e

.  Hze j φ

and 3 3 12 1014.  V  Hz= FHG
I
KJ × −

h
e ee j φ

.

Combining these two expressions we find:

(a) φ = 1 7.  eV

(b)
h
e
= × ⋅−4 2 10 15.  V s

FIG. P40.54

(c) At the cutoff wavelength 
hc h

e
ec

c cλ
φ

λ
= = FHG

I
KJ

λ c = × ⋅ ×
×

×
=− −

−
4 2 10 1 6 10

3 10

1 7 1 6 10
73015 19

8

19
. .

. .
 V s  C

 m s

 eV  J eV
 nme je j e j

a fe j
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P40.55 We want an Einstein plot of Kmax versus f

λ ,  nm ,   Hz ,  eV
588
505
445

5.10
5.94
6.74

0.67
0.98
1.35

f K1014
max

399 7.52 1.63

(a) slope = ±
0 402

8%
.  eV

10  Hz14

(b) e V hfS∆ = −φ

h =
× ⋅F

HG
I
KJ = × ⋅ ±

−
−0 402

1 60 10
6 4 10 8%

19
34.

.
.a f  J s

10
 J s14

(c) Kmax = 0

at f ≈ ×344 1012  Hz

φ = = × =−hf 2 32 10 1 419. . J  eV

f (THz)

FIG. P40.55

P40.56 From the path the electrons follow in the magnetic field, the maximum kinetic energy is seen to be:

K
e B R

me
max =

2 2 2

2
.

From the photoelectric equation, K hf
hc

max = − = −φ
λ

φ .

Thus, the work function is φ
λ λ

= − = −
hc

K
hc e B R

me
max

2 2 2

2
.

P40.57 ∆λ θ= − =
× ⋅

× ×
= ×

−

−
−h

m cp
1

6 626 10

1 67 10 3 00 10
0 234 3 09 10

34

27 8
16cos

.

. .
. .a f e j

e je j
a f J s

 kg  m s
 m

λ

λ λ λ

0
0

34 8

13
15

0
15

6 626 10 3 00 10

200 1 60 10
6 20 10

6 51 10

= =
× ⋅ ×

×
= ×

′ = + = ×

−

−
−

−

hc
E

. .

.
.

.

 J s  m s

 MeV  J MeV
 m

 m

e je j
a fe j

∆

(a) E
hc

γ λ
=

′
= 191 MeV

(b) Kp = 9 20.  MeV
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P40.58 Isolate the terms involving φ in Equations 40.13 and 40.14. Square and add to eliminate φ.

h m ve
2

0
2 2

0

2 2 21 1 2
λ λ

θ
λ λ

γ+
′
−

′

L
NM

O
QP
=

cos

Solve for 
v
c

b

b c

2

2 2
=

+e j
: b

h
me

= +
′
−

′

L
NM

O
QP

2

2
0
2 2

0

1 1 2
λ λ

θ
λ λ
cos

.

Substitute into Eq. 40.12: 1
1 1

1
0

2

1 2 2

2+
F
HG
I
KJ −

′
L
NM

O
QP
= = −

+
F
HG

I
KJ =

+−h
m c

b
b c

c b
ce λ λ

γ .

Square each side: c
hc

m
h
m

c
h
me e e

2

0

2

2
0

2
2

2

2
0
2 2

0

2 1 1 1 1 1 1 2
+ −

′
L
NM

O
QP
+ −

′
L
NM

O
QP

= +
F
HG
I
KJ +

′
−

′

L
NM

O
QPλ λ λ λ λ λ

θ
λ λ
cos

.

From this we get Eq. 40.11: ′ − =
F
HG
I
KJ −λ λ θ0 1

h
m ce

cos .

P40.59 Show that if all of the energy of a photon is transmitted to an electron, momentum will not be
conserved.

Energy:
hc hc

K m ce eλ λ
γ

0

2 1=
′
+ = −b g if hc

′
=

λ
0 (1)

Momentum:
h h

m v m ve eλ λ
γ γ

0
=

′
+ =  if ′ = ∞λ (2)

From (1), γ
λ

= +
h
m ce0

1 (3)

v c
m c

h m c
e

e
= −

+
F
HG

I
KJ1 0

0

2
λ
λ

(4)

Substitute (3) and (4) into (2) and show the inconsistency:

h h
m c

m c
m c

h m c
m c h h h m c

h m c

h h m c
he

e
e

e

e e

e

e

λ λ
λ
λ

λ
λ

λ

λ λ
λ

0 0

0

0

2
0

0

0

0
2

0

01 1
2 2

= +
F
HG

I
KJ −

+
F
HG

I
KJ =

+ +

+
=

+b g
b g

.

This is impossible, so all of the energy of a photon cannot be transmitted to an electron.

P40.60 Begin with momentum expressions: p
h

=
λ

, and p mv mc
v
c

= = F
HG
I
KJγ γ .

Equating these expressions, γ
λ

λ
λ

v
c

h
mc

F
HG
I
KJ =
F
HG
I
KJ =

1 C .

Thus,
v c

v c

b g
b g

2

2

2

1 −
= FHG
I
KJ

λ
λ
C

or
v
c

v
c

F
HG
I
KJ = FHG

I
KJ − FHG

I
KJ
F
HG
I
KJ

2 2 2 2λ
λ

λ
λ

C C

v
c

2

2

2

2 21

1

1
=

+
=

+

λ λ

λ λ λ λ
C

C C

b g
b g b g

giving v
c

=
+1

2λ λCb g
.
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P40.61 (a) Starting with Planck’s law, I T
hc

ehc k T
λ

π

λ λ
,b g =

−

2

1

2

5 B

the total power radiated per unit area I T d
hc

e
d

hc k T
λ λ

π

λ
λ

λ
,b g

0

2

5
0

2

1

∞ ∞z z=
−B

.

Change variables by letting x
hc
k T

=
λ B

and dx
hcd

k T
= −

λ
λB

2 .

Note that as λ varies from 0→∞ , x varies from ∞→ 0 .

Then I T d
k T

h c
x

e
dx

k T
h cx

λ λ
π π π

,b g
e j0

4

3 2

30 4

3 2

42

1

2
15

∞

∞
z z= −

−
=

F
HG
I
KJ

B
4

B
4

.

Therefore, I T d
k

h c
T Tλ λ

π
σ,b g

0

5

3 2
4 42

15

∞

z =
F
HG

I
KJ =B

4

.

(b) From part (a), σ
π π

= =
×

× ⋅ ×

−

−

2
15

2 1 38 10

15 6 626 10 3 00 10

5

3 2

5 23 4

34 3 8 2
k

h c
B
4  J K

 J s  m s

.

. .

e j
e j e j

σ = × ⋅−5 67 10 8.  W m K2 4 .

P40.62 Planck’s law states I T
hc

e
hc e

hc k T
hc k Tλ

π

λ
π λ

λ
λ,b g =

−
= −− −2

1
2 1

2

5
2 5 1

B

B .

To find the wavelength at which this distribution has a maximum, compute

dI
d

hc e e e
hc
k T

dI
d

hc

e

hc
k T

e

e

hc k T hc k T hc k T

hc k T

hc k T

hc k T

λ
π λ λ

λ

λ
π

λ λ

λ λ λ

λ

λ

λ

= − − − − −
F
HG

I
KJ

R
S|
T|

U
V|
W|
=

=
−

− +
−

R
S|
T|

U
V|
W|
=

− − − −
2 5 1 1 0

2

1
5

1
0

2 6 1 5 2

2

2

6

B B B

B

B

B

B

B

Letting x
hc
k T

=
λ B

, the condition for a maximum becomes 
xe

e

x

x −
=

1
5 .

We zero in on the solution to this transcendental equation by iterations as shown in the table below.
The solution is found to be

x xe ex x − 1e j x xe ex x − 1e j
4.000 00 4.074 629 4 4.964 50 4.999 403 0
4.500 00 4.550 552 1 4.965 50 5.000 374 9
5.000 00 5.033 918 3 4.965 00 4.999 889 0
4.900 00 4.936 762 0 4.965 25 5.000 132 0
4.950 00 4.985 313 0 4.965 13 5.000 015 3
4.975 00 5.009 609 0 4.965 07 4.999 957 0
4.963 00 4.997 945 2 4.965 10 4.999 986 2
4.969 00 5.003 776 7 4.965 115 5.000 000 8
4.966 00 5.000 860 9

x
hc

k T
= =
λmax

.
B

4 965 115 and λmax .
T

hc
k

=
4 965 115 B

.

continued on next page



486     Introduction to Quantum Physics

Thus, λmax

. .

. .
.T =

× ⋅ ×

×
= × ⋅

−

−
−

6 626 075 10 2 997 925 10

4 965 115 1 380 658 10
2 897 755 10

34 8

23
3

 J s  m s

 J K
 m K

e je j
e j

.

This result is very close to Wien’s experimental value of λmax .T = × ⋅−2 898 10 3  m K  for this constant.

P40.63 (a) Planck’s radiation law predicts maximum intensity at a wavelength λmax  we find from
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λ λ λk T
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e ehc k T hc k TB B BF

HG
I
KJ − =b g b g .

Define x
hc
k T

=
λ B

. Then we require 5 5e xex x− = .

Numerical solution of this transcendental equation gives x = 4 965.  to four digits. So

λmax .
=

hc
k T4 965 B

, in agreement with Wien’s law.

The intensity radiated over all wavelengths is I T d A B
hc d
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λ λ
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λ λ
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The integral is tabulated as 
π 4
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, so (in agreement with Stefan’s law) A B
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The intensity radiated over wavelengths shorter than λmax  is

I T d A
hc d
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h c
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So the fraction of power or of intensity radiated at wavelengths shorter than λmax  is
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(b) Here are some sample values of the integrand, along with a sketch of the curve:

x x ex3 1

3

2

1
0 000 0 00
0 100 9 51 10
0 200 3 61 10
1 00 0 582
2 00 1 25
3 00 1 42
4 00 1 19
4 90 0 883

4 965 0 860

−

×
×

−

−

−

e j
. .
. .
. .
. .
. .
. .
. .
. .
. .

FIG. P40.63(b)

Approximating the integral by trapezoids gives 
A

A B+
≈ − =1

15
4 870 0 250 14π
. .a f .

P40.64 p mv mE= = = × ×− −2 2 1 67 10 0 040 0 1 60 1027 19. . . kg  eV  J eVe jb ge j
λ = = × =−h

mv
1 43 10 0 14310. . m  nm

This is of the same order of magnitude as the spacing between atoms in a crystal so diffraction
should appear.
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P40.67 From the uncertainty principle ∆ ∆E t ≥
=
2

or ∆ ∆mc t2

2e j =
=

.

Therefore,
∆

∆ ∆
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m
h

c t m
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t ER
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17 13
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P40.69 (a) The light is unpolarized. It contains both horizontal and vertical field oscillations.

(b) The interference pattern appears, but with diminished overall intensity.

(c) The results are the same in each case.

(d) The interference pattern appears and disappears as the polarizer turns, with alternately
increasing and decreasing contrast between the bright and dark fringes. The intensity on the
screen is precisely zero at the center of a dark fringe four times in each revolution, when the
filter axis has turned by 45°, 135°, 225°, and 315° from the vertical.

(e) Looking at the overall light energy arriving at the screen, we see a low-contrast interference
pattern. After we sort out the individual photon runs into those for trial 1, those for trial 2,
and those for trial 3, we have the original results replicated: The runs for trials 1 and 2 form
the two blue graphs in Figure 40.24 in the text, and the runs for trial 3 build up the red
graph.
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P40.70 Let ′u  represent the final speed of the electron and let

′ = −
′F

HG
I
KJ
−

γ 1
2

2

1 2
u
c

. We must eliminate β and ′u  from the

three conservation equations:
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m c
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m ce eλ
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m ue eλ

γ
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0
+ −
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m ue′
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θ γ βsin sin [3]

Square Equations [2] and [3] and add:

FIG. P40.70
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Now square Equation [1] and substitute to eliminate ′γ :
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The first term is zero. Then ′ =
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Since γ − = − FHG
I
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I
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this result may be written as ′ =
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It shows a specific combination of what looks like a Doppler shift and a Compton shift. This problem
is about the same as the first problem in Albert Messiah’s graduate text on quantum mechanics.
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ANSWERS TO EVEN PROBLEMS

P40.2 (a) ~10 7−  m ultraviolet ; P40.30 (a) 0 667. ; (b) 0 001 09.
(b) ~10 10−  m  gamma ray

P40.32 (a) 14.0 kV/m, 46 8.  Tµ ; (b) 4.19 nN;
(c) 10.2 gP40.4 (a) 70 9.  kW; (b) 580 nm;

(c) 7 99 1010. ×  W m;
P40.34 (a) 0.174 nm; (b) 5.37 pm or 5.49 pm

ignoring relativistic correction
(d) 9 42 10 1226.  W m× − ;
(e) 1 00 10 227.  W m× − ; (f) 5 44 1010.  W m× ;
(g) 7 38 1010.  W m× ; (h) 0 260.  W m; P40.36 (a) see the solution; (b) 907 fm
(i) 2 60 10 9.  W m× − ; (j) 20 kW

P40.38 0 218.  nm

P40.6 2 96 1019. ×  photons s
P40.40 (a) 1.60; (b) 2 00 103. × ; (c) 1; (d) ∞

P40.8 5 71 103. ×  photons
P40.42 (a) 1 10 10 34. × −  m s ; (b) 1 36 1033. ×  s ; (c) no

P40.10 1 34 1031. × P40.44 see the solution

P40.12 see the solution P40.46 105 V

P40.14 (a) 1 38.  eV ; (b) 334 THz P40.48 (a) 0 250.  m s ; (b) 2 25.  m

P40.16 Metal one: 2 22.  eV , Metal two: 3 70.  eV
P40.50 3 79 1028. ×  m, much larger than the

diameter of the observable UniverseP40.18 148 d, the classical theory is a gross failure

P40.52 (a) see the solution; (b) 5.21 MeVP40.20 (a) The incident photons are Doppler
shifted to higher frequencies, and hence,
higher energy; (b) 3 87.  eV ; (c) 8 78.  eV P40.54 (a) 1 7.  eV ; (b) 4 2 10 15. × ⋅−  V s ; (c) 730 nm

P40.56
hc e B R

meλ
−

2 2 2

2
P40.22 (a) 488 fm ; (b) 268 keV ; (c) 31 5.  keV

P40.24 p
ce =

22 1.  keV
; Ke = 478 eV

P40.58 see the solution

P40.26 (a) cos−
+
+

F
HG

I
KJ

1
2

0
2

02
m c E
m c E

e

e

;
P40.60 see the solution

P40.62 see the solution

(b) ′ =
+
+

F
HG

I
KJE

E m c E
m c E

e

e
γ

0
2

0
2

02
2

,

′ =
+
+

F
HG

I
KJp

E
c

m c E
m c E

e

e
γ

0
2

0
2

02
2

;

P40.64 0 143.  nm, comparable to the distance
between atoms in a crystal, so diffraction
can be observed

(c) K
E

m c E
e

e

=
+

0
2

2
02e j

,

p
E

c
m c E

m c Ee
e

e

=
+
+

F
HG

I
KJ

0
2

0
2

02
2

P40.66 (a) 2 82 10 37. × −  m; (b) 1 06 10 32. × −  J ;
(c) 2 87 10 35. %× −

P40.68 see the solution

P40.70 see the solution
P40.28 (a) 33 0. ° ; (b) 0 785. c
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Quantum Mechanics

ANSWERS TO QUESTIONS

Q41.1 A particle’s wave function represents its state, containing all the
information there is about its location and motion. The squared
absolute value of its wave function tells where we would
classically think of the particle as a spending most its time. Ψ 2

is the probability distribution function for the position of the
particle.

Q41.2 The motion of the quantum particle does not consist of moving
through successive points. The particle has no definite position.
It can sometimes be found on one side of a node and
sometimes on the other side, but never at the node itself. There
is no contradiction here, for the quantum particle is moving as
a wave. It is not a classical particle. In particular, the particle
does not speed up to infinite speed to cross the node.

Q41.3 Consider a particle bound to a restricted region of space. If its minimum energy were zero, then the
particle could have zero momentum and zero uncertainty in its momentum. At the same time, the
uncertainty in its position would not be infinite, but equal to the width of the region. In such a case,
the uncertainty product ∆ ∆x px  would be zero, violating the uncertainty principle. This contradiction
proves that the minimum energy of the particle is not zero.

Q41.4 The reflected amplitude decreases as U decreases. The amplitude of the reflected wave is
proportional to the reflection coefficient, R, which is 1−T , where T is the transmission coefficient as
given in equation 41.20. As U decreases, C decreases as predicted by equation 41.21, T increases, and
R decreases.

Q41.5 Consider the Heisenberg uncertainty principle. It implies that electrons initially moving at the same
speed and accelerated by an electric field through the same distance need not all have the same
measured speed after being accelerated. Perhaps the philosopher could have said “it is necessary for
the very existence of science that the same conditions always produce the same results within the
uncertainty of the measurements.”

Q41.6 In quantum mechanics, particles are treated as wave functions, not classical particles. In classical
mechanics, the kinetic energy is never negative. That implies that E U≥ . Treating the particle as a
wave, the Schrödinger equation predicts that there is a nonzero probability that a particle can tunnel
through a barrier—a region in which E U< .
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Q41.7 Consider Figure 41.8, (a) and (b) in the text. In the square well with infinitely high walls, the
particle’s simplest wave function has strict nodes separated by the length L of the well. The particle’s

wavelength is 2L, its momentum 
h
L2

, and its energy 
p
m

h
mL

2 2

22 8
= . Now in the well with walls of only

finite height, the wave function has nonzero amplitude at the walls. The wavelength is longer. The
particle’s momentum in its ground state is smaller, and its energy is less.

Q41.8 Quantum mechanically, the lowest kinetic energy possible for any bound particle is greater than
zero. The following is a proof: If its minimum energy were zero, then the particle could have zero
momentum and zero uncertainty in its momentum. At the same time, the uncertainty in its position
would not be infinite, but equal to the width of the region in which it is restricted to stay. In such a
case, the uncertainty product ∆ ∆x px  would be zero, violating the uncertainty principle. This
contradiction proves that the minimum energy of the particle is not zero. Any harmonic oscillator
can be modeled as a particle or collection of particles in motion; thus it cannot have zero energy.

Q41.9 As Newton’s laws are the rules which a particle of large mass follows in its motion, so the
Schrödinger equation describes the motion of a quantum particle, a particle of small or large mass. In
particular, the states of atomic electrons are confined-wave states with wave functions that are
solutions to the Schrödinger equation.

SOLUTIONS TO PROBLEMS

Section 41.1 An Interpretation of Quantum Mechanics

P41.1 (a) ψ x Ae A x Ai x A kx Ai kx
i xa f e j e j a f a fe j= = × + × = +

×5 00 10 10 10
10

5 10 5 10
.

cos sin cos sin  goes through

a full cycle when x changes by λ and when kx changes by 2π . Then kλ π= 2  where

k = × =−5 00 10
210 1.  m
π
λ
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=
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= × −2
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.

.
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.
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× ⋅
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Section 41.2 A Particle in a Box

P41.3 E1
192 00 3 20 10= = × −. . eV  J

For the ground-state, E
h

m Le
1

2

28
= .

(a) L
h

m Ee

= = × =−

8
4 34 10 0 434

1

10. . m  nm

(b) ∆E E E
h

m L
h

m Le e

= − =
F
HG

I
KJ −
F
HG

I
KJ =2 1

2

2

2

24
8 8

6 00.  eV

P41.4 For an electron wave to “fit” into an infinitely deep potential well, an integral
number of half-wavelengths must equal the width of the well.

nλ
2

1 00 10 9= × −.  m so λ =
×

=
−2 00 10 9.

n
h
p

(a) Since K
p
m

h

m
h
m

n
n

e e e
= = =

×
=

−

2 2 2 2 2

9 2
2

2 2 2 2 10
0 377

λe j
e j

e j.  eV

For K ≈ 6 eV n = 4

(b) With n = 4, K = 6 03.  eV

FIG. P41.4

P41.5 (a) We can draw a diagram that parallels our treatment of standing
mechanical waves. In each state, we measure the distance d
from one node to another (N to N), and base our solution upon
that:

Since dN to N =
λ
2

 and λ =
h
p

p
h h

d
= =
λ 2

.

Next, K
p
m

h
m d de e

= = =
× ⋅

×

L

N
MMM

O

Q
PPP

−

−

2 2

2 2

34 2

312 8
1 6 626 10

8 9 11 10

.

.

 J s

 kg

e j
e j

.

Evaluating, K
d

=
× ⋅−6 02 10 38

2
.  J m2

K
d

=
× ⋅−3 77 10 19

2
.  eV m2

.

In state 1, d = × −1 00 10 10.  m K1 37 7= .  eV .

In state 2, d = × −5 00 10 11.  m K 2 151=  eV.

In state 3, d = × −3 33 10 11.  m K3 339=  eV .

In state 4, d = × −2 50 10 11.  m K4 603=  eV .
FIG. P41.5

continued on next page
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(b) When the electron falls from state 2 to state 1, it puts out energy

E hf
hc

= − = = =151 37 7 113 eV  eV  eV.
λ

into emitting a photon of wavelength

λ = =
× ⋅ ×

×
=

−

−

hc
E

6 626 10 10

113 1 60 10
11 0

34 8

19

.

.
.

 J s 3.00  m s

 eV  J eV
 nm

e je j
a fe j

.

The wavelengths of the other spectral lines we find similarly:

 Transition  4 3→   4 2→   4 1→   3 2→   3 1→   2 1→  
 E eVa f 264 452 565 188 302 113
 λ nma f 4.71 2.75 2.20 6.60 4.12 11.0

P41.6 λ = 2D for the lowest energy state
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2 2 8

6 626 10

8 4 1 66 10 1 00 10
8 27 10 0 517

2
6 626 10

3 31 10

λ

λ

.

. .
. .

.
.

 J s

 kg  m
 J  MeV

 J s

2 1.00 10  m
 kg m s

e j
e j e j

e j

P41.7 ∆E
hc h

m L
h

m Le e

= =
F
HG

I
KJ − =

λ

2

2
2 2

2

28
2 1

3
8

L
h

m ce
= = × =−3

8
7 93 10 0 79310λ

. . m  nm

P41.8 ∆E
hc h

m L
h

m Le e

= =
F
HG

I
KJ − =

λ

2

2
2 2

2

28
2 1

3
8

so L
h

m ce
=

3
8

λ

P41.9 The confined proton can be described in the same way as a standing
wave on a string. At level 1, the node-to-node distance of the standing
wave is 1 00 10 14. × −  m , so the wavelength is twice this distance:
h
p
= × −2 00 10 14.  m.

The proton’s kinetic energy is

K mv
p
m

h
m

= = = =
× ⋅

× ×

=
×

×
=

−

− −

−

−

1
2 2 2

6 626 10

2 1 67 10 2 00 10

3 29 10
2 05

2
2 2

2

34 2

27 14 2

13

19

λ

.

. .

.
.

 J s

 kg  m

 J
1.60 10  J eV

 MeV

e j
e je j

FIG. P41.9

continued on next page
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In the first excited state, level 2, the node-to-node distance is half as long as in state 1. The
momentum is two times larger and the energy is four times larger: K = 8 22.  MeV .

The proton has mass, has charge, moves slowly compared to light in a standing wave state, and
stays inside the nucleus. When it falls from level 2 to level 1, its energy change is

2 05 8 22 6 16. . . MeV  MeV  MeV− = − .

Therefore, we know that a photon (a traveling wave with no mass and no charge) is emitted at the
speed of light, and that it has an energy of +6 16.  MeV .

Its frequency is f
E
h

= =
× ×

× ⋅
= ×

−

−

6 16 10 1 60 10

6 626 10
1 49 10

6 19

34
21

. .

.
.

 eV  J eV

 J s
 Hz

e je j
.

And its wavelength is λ = =
×

×
= ×−

−c
f

3 00 10
1 49 10

2 02 10
8

21 1
13.

.
.

 m s
 s

 m .

This is a gamma ray, according to the electromagnetic spectrum chart in Chapter 34.

P41.10 The ground state energy of a particle (mass m) in a 1-dimensional box of width L is E
h
mL1

2

28
= .

(a) For a proton m = × −1 67 10 27.  kge j  in a 0.200-nm wide box:

E1

34 2

27 10 2
22 3

6 626 10

8 1 67 10 2 00 10
8 22 10 5 13 10=

× ⋅

× ×
= × = ×

−

− −

− −
.

. .
. .

 J s

 kg  m
 J  eV

e j
e je j

.

(b) For an electron m = × −9 11 10 31.  kge j  in the same size box:

E1

34 2

31 10 2
18

6 626 10

8 9 11 10 2 00 10
1 51 10 9 41=

× ⋅

× ×
= × =

−

− −

−
.

. .
. .

 J s

 kg  m
 J  eV

e j
e je j

.

(c) The electron has a much higher energy because it is much less massive.

P41.11 E
h
mL

nn =
F
HG
I
KJ

2

2
2

8

E1

34 2

27 14 2
14

6 626 10

8 1 67 10 2 00 10
8 21 10=

× ⋅

× ×
= ×

−

− −

−
.

. .
.

 J s

 kg  m
 J

e j
e je j

E1 0 513= .  MeV E E2 14 2 05= = .  MeV E E3 19 4 62= = .  MeV

Yes , the energy differences are ~1 MeV , which is a typical energy for a γ-ray photon.
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*P41.12 (a) The energies of the confined electron are E
h

m L
nn

e

=
2

2
2

8
. Its energy gain in the quantum

jump from state 1 to state 4 is 
h

m Le

2

2
2 2

8
4 1−e j  and this is the photon energy:

h
m L

hf
hc

e

2

2
15

8
= =

λ
. Then 8 152m cL he = λ  and L

h
m ce

=
F
HG
I
KJ

15
8

1 2
λ

.

(b) Let ′λ  represent the wavelength of the photon emitted: 
hc h

m L
h

m L
h

m Le e e′
= − =

λ

2

2
2

2

2
2

2

28
4

8
2

12
8

.

Then 
hc

hc

h m L

m L h
e

eλ
λ′

= =
2 2

2 2

15 8

8 12
5
4

e j
 and ′ =λ λ1 25. .

Section 41.3 The Particle Under Boundary Conditions

Section 41.4 The Schrödinger Equation

P41.13 We have ψ ω= −Aei kx tb g and
∂
∂

= −
2

2
2ψ
ψ

x
k .

Schrödinger’s equation:
∂
∂

= − = − −
2

2
2

2
2ψ

ψ ψ
x

k
m

E Ua f .

Since k
p

h
p2

2

2

2

2

2

2

2 2
= = =

π
λ

πa f b g
and E U

p
m

− =
2

2
.

Thus this equation balances.

P41.14 ψ x A kx B kxa f = +cos sin
∂
∂

= − +
ψ
x

kA kx kB kxsin cos

∂
∂

= − −
2

2
2 2ψ

x
k A kx k B kxcos sin − − = − +

2 2
2

m
E U

mE
A kx B kxa f a fψ cos sin

Therefore the Schrödinger equation is satisfied if

∂
∂

= −FHG
I
KJ −

2

2 2
2ψ

ψ
x

m
E Ua f  or − + = −FHG

I
KJ +k A kx B kx

mE
A kx B kx2

2
2

cos sin cos sina f a f.

This is true as an identity (functional equality) for all x if E
k
m

=
2 2

2
.

*P41.15 (a) With ψ x A kxa f a f= sin

d
dx

A kx Ak kxsin cos= and
d
dx

Ak kx
2

2
2ψ = − sin .

Then − = + = = = = =
2 2

2

2 2 2 2

2 2

2 2 2
2

2 2

4

4 2 2 2
1
2m

d
dx

k
m

A kx
h

m

p
m

m v
m

mv K
ψ π

π λ
ψ ψ ψ ψ ψsin

e j
e ja f

.

(b) With ψ
π
λ

x A
x

A kxa f = F
HG
I
KJ =sin sin

2
, the proof given in part (a) applies again.
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P41.16 (a) x x
L

x
L

dx
L

x
x

L
dx

L L

= F
HG
I
KJ = −FHG

I
KJz z2 2 2 1

2
1
2

42

0 0

sin cos
π π

x
L

x
L

L x
L

x
L

x
L

L
L L

= − +L
NM

O
QP =

1
2

1
16

4 4 4
2

2

0

2

2
0π

π π π
sin cos

(b) Probability= F
HG
I
KJ = −LNM

O
QPz 2 2 1 1

4
42

0 490

0 510

0 490

0 510

L
x

L
dx

L
x

L
L x

LL

L

L

L

sin sin
.

.

.

.π
π

π

Probability= − − = × −0 020
1

4
2 04 1 96 5 26 10 5. sin . sin . .

π
π πa f

(c) Probability
x
L

x
L L

L

−LNM
O
QP = × −1

4
4

3 99 10
0 240

0 260
2

π
π

sin .
.

.

(d) In the n = 2 graph in Figure 41.4 (b), it is more probable to find the particle either near x
L

=
4

or x
L

=
3
4

 than at the center, where the probability density is zero.

Nevertheless, the symmetry of the distribution means that the average position is 
L
2

.

P41.17 Normalization requires

ψ 2 1dx
all space
z = or A

n x
L

dx
L

2 2

0

1sin
πF
HG
I
KJ =z

A
n x

L
dx A

LL
2 2

0

2

2
1sin

πF
HG
I
KJ = FHG

I
KJ =z or A

L
=

2
.

P41.18 The desired probability is P dx
L

x
L

dx
L L

= = F
HG
I
KJz zψ

π2

0

4
2

0

42 2
sin

where sin
cos2 1 2
2

θ
θ

=
−

.

Thus, P
x
L

x
L

L

= −FHG
I
KJ = − − +F
HG

I
KJ =

1
4

4 1
4

0 0 0 0 250
0

4

π
π

sin . .

P41.19 In 0 ≤ ≤x L , the argument 
2π x

L
 of the sine function ranges from 0 to 2π . The probability density

2 22

L
x

L
F
HG
I
KJ
F
HG
I
KJsin

π
 reaches maxima at sinθ = 1 and sinθ = −1 at

2
2

π πx
L

=  and 
2 3

2
π πx
L

= .

∴ The most probable positions of the particle are at at  and x
L

x
L

= =
4

3
4

.
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*P41.20 (a) Probability = = F
HG
I
KJ = − FHG

I
KJ

L
NM

O
QPz z zψ

π π
1

2

0

2

0 0

2 1
1

2
dx

L
x

L
dx

L
x

L
dxsin cos

= − F
HG
I
KJ

L
NM

O
QP = − F

HG
I
KJ

1
2

2 1
2

2

0L
x

L x
L L Lπ
π

π
π

sin sin

(b)

1.2

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5

Probability Curve for an Infinite
Potential Well

L

FIG. P41.20(b)

(c) The probability of finding the particle between x = 0  and x =  is 
2
3

, and between x =  and

x L=  is 
1
3

.

Thus, ψ 1
2

0

2
3

dxz =

∴ − F
HG
I
KJ =L L

1
2

2 2
3π

π
sin , or u u− =

1
2

2
2
3π

πsin .

This equation for 
L

 can be solved by homing in on the solution with a calculator, the result

being 
L
= 0 585. , or = 0 585. L  to three digits.



Chapter 41    499

P41.21 (a) The probability is P dx
L

x
L

dx
L

x
L

dx
L L L

= = F
HG
I
KJ = −FHG

I
KJz z zψ

π π2

0

3
2

0

3

0

32 2 1
2

1
2

2
sin cos

P
x
L

x
L

L

= −FHG
I
KJ = −FHG

I
KJ = −
F
HG

I
KJ =

1
2

2 1
3

1
2

2
3

1
3

3
4

0 196
0

3

π
π

π
π

π
sin sin . .

(b) The probability density is symmetric about x
L

=
2

.

Thus, the probability of finding the particle between

x
L

=
2
3

 and x L=  is the same 0.196. Therefore, the

probability of finding it in the range 
L

x
L

3
2
3

≤ ≤  is

P = − =1 00 2 0 196 0 609. . .a f .

 

FIG. P41.21(b)

(c) Classically, the electron moves back and forth with constant speed between the walls, and
the probability of finding the electron is the same for all points between the walls. Thus, the
classical probability of finding the electron in any range equal to one-third of the available

space is Pclassical =
1
3

.

P41.22 (a) ψ
π

1
2

x
L

x
L

a f = F
HG
I
KJcos ; P x x

L
x

L1 1
2 22a f a f= = F

HG
I
KJψ

π
cos

ψ
π

2
2 2

x
L

x
L

a f = F
HG
I
KJsin ; P x x

L
x

L2 2
2 22 2a f a f= = F

HG
I
KJψ

π
sin

ψ
π

3
2 3

x
L

x
L

a f = F
HG
I
KJcos ; P x x

L
x

L3 3
2 22 3a f a f= = F

HG
I
KJψ

π
cos

(b)

x x

0 0

n = 1

n = 2

n = 3

ψ 2ψ

− L
2

− L
2

L
2

L
2

∞ ∞ ∞ ∞

FIG. P41.22(b)
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P41.23 Problem 43 in Chapter 16 helps students to understand how to draw conclusions from an identity

(a) ψ x A
x
L

a f = −
F
HG
I
KJ1

2

2
d
dx

Ax
L

ψ
= −

2
2

d
dx

A
L

2

2
2ψ

= −

Schrödinger’s equation
d
dx

m
E U

2

2 2
2ψ

ψ= − −a f

becomes − = − −
F
HG
I
KJ +

− −

−

2 2
1

2 1
2 2

2

2 2

2 2 2 2

2 2 2

A
L

m
EA

x
L

m x A x L

mL L x

e j e j
e j

− = − + −
1
2 2

2

2 2

2

4L
mE mEx

L
x
L

.

This will be true for all x if both
1
2 2L

mE
=

and
mE

L L2 2 4
1

0− =

both these conditions are satisfied for a particle of energy E
L m

=
2

2 .

(b) For normalization, 1 1 1
22

2

2

2
2

2

2

4

4= −
F
HG
I
KJ = − +

F
HG

I
KJ− −

z zA
x
L

dx A
x

L
x
L

dx
L

L

L

L

1
2
3 5

2
3 5

2
3 5

16
15

15
16

2
3

2

5

4
2 2= − +

L
NM

O
QP

= − + + − +L
NM

O
QP =
F
HG
I
KJ =

−

A x
x
L

x
L

A L L
L

L L
L

A
L

A
L

L

L

.

(c) P dx
L

x
L

x
L

dx
L

x
x
L

x
L L

L L L

L

L

L

L

L

L

= = − +
F
HG

I
KJ = − +

L
NM

O
QP

= − +
L
NM

O
QP− − −

z zψ 2

3

3 2

2

4

4
3

3 3

2

5

5
3

3
15

16
1

2 15
16

2
3 5

30
16 3

2
81 1 215

P = =
47
81

0 580.

P41.24 (a) Setting the total energy E equal to zero and rearranging the Schrödinger equation to isolate
the potential energy function gives

U x
m

d
dx

a f = FHG
I
KJ

2 2

22
1
ψ

ψ
.

If ψ x Axe x La f = − 2 2
.

Then
d
dx

Ax AxL
e

L

x L2

2
3 2

44 6
2 2

ψ
= −

−

e j

or
d
dx

x L

L
x

2

2

2 2

4

4 6ψ
ψ=

−e j a f

and U x
mL

x
L

a f = −
F
HG

I
KJ

2

2

2

22
4

6 .

(b) See the figure to the right.

 

FIG. P41.24(b)
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Section 41.5 A Particle in a Well of Finite Height

P41.25 (a) See figure to the right.

(b) The wavelength of the transmitted wave
traveling to the left is the same as the original
wavelength, which equals 2L .

 

FIG. P41.25(a)

P41.26

FIG. P41.26

Section 41.6 Tunneling Through a Potential Energy Barrier

P41.27 T e CL= −2  where C
m U E

=
−2 a f

2
2 2 9 11 10 8 00 10

1 055 10
2 00 10 4 58

31 19

34
10CL =

× ×

×
× =

− −

−
−

. .

.
. .

e je j
e j

(a) T e= =−4.58 0 010 3. , a 1% chance of transmission.

(b) R T= − =1 0 990. , a 99% chance of reflection.
FIG. P41.27

P41.28 C =
× − × ⋅

× ⋅
= ×

− −

−
−

2 9 11 10 5 00 4 50 1 60 10

1 055 10
3 62 10

31 19

34
9 1

. . . .

.
.

e ja fe j kg m s

 J s
 m

T e

T

CL= = − × × = −

= ×

− − −

−

2 9 1 12

3

2 3 62 10 950 10 6 88

1 03 10

exp . exp .

.

 m  me je j a f

FIG. P41.28

P41.29 From problem 28, C = × −3 62 109 1.  m

10 2 3 62 106 9 1− −= − ×exp .  me jL .

Taking logarithms, − = − × −13 816 2 3 62 109 1. .  me jL .

New L = 1 91.  nm

∆L = − =1 91 0 950 0 959. . . nm  nm  nm .
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*P41.30 The original tunneling probability is T e CL= −2  where

C
m U E

=
−

=
× × − ×

× ⋅
= ×

− −

−
−2 2 2 9 11 10 12 1 6 10

6 626 10
1 448 1 10

1 2 31 19 1 2

34
10 1a fc h a fe jπ . .

.
.

 kg 20  J

 J s
 m .

The photon energy is hf
hc

= =
⋅

=
λ

1 240
2 27

 eV nm
546 nm

 eV. , to make the electron’s new kinetic energy

12 2 27 14 27+ =. .  eV  and its decay coefficient inside the barrier

′ =
× × − ×

× ⋅
= ×

− −

−
−C

2 2 9 11 10 20 14 27 1 6 10

6 626 10
1 225 5 10

31 19 1 2

34
10 1

π . . .

.
.

 kg  J

 J s
 m

a fe j
.

Now the factor of increase in transmission probability is
e
e

e e e
C L

CL
L C C

− ′

−
− ′ × × ×= = = =

− −
2

2
2 2 10 0 223 10 4.459 10 1

85 9a f  m  m. . .

Section 41.7 The Scanning Tunneling Microscope

P41.31 With the wave function proportional to e CL− , the transmission coefficient and the tunneling current
are proportional to ψ 2 , to e CL−2 .

Then,
I
I

e

e
e

0 500
0 515

1 35
2 10 0 0 500

2 10 0 0 515
20 0 0 015.

.
.

. .

. .
. . nm

 nm

nm  nm

nm  nm

a f
a f

b ga f
b ga f

a f= = =
−

−
.

P41.32 With transmission coefficient e CL−2 , the fractional change in transmission is

e e

e
e

L L

L

− − +

−
−−

= − = =
2 10 0 2 10 0 0 002 00

2 10 0
20 0 0 002 001 0 0392 3 92%

. . .

.
. . . .

nm nm  nm

nm

b g b gb g
b g

b g .

Section 41.8 The Simple Harmonic Oscillator

P41.33 ψ ω= −Be m x2 2b g  so 
d
dx

m
x

ψ ω
ψ= −FHG
I
KJ  and 

d
dx

m
x

m2

2

2
2ψ ω
ψ

ω
ψ= FHG

I
KJ + −FHG

I
KJ .

Substituting into Equation 41.13 gives 
m

x
m mE m

x
ω

ψ
ω

ψ ψ
ω

ψF
HG
I
KJ + −FHG

I
KJ = −FHG

I
KJ + FHG

I
KJ

2
2

2

2
22

which is satisfied provided that E =
ω
2

.
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P41.34 Problem 43 in Chapter 16 helps students to understand how to draw conclusions from an identity.

ψ = −Axe bx2
 so

d
dx

Ae bx Aebx bxψ
= −− −2 2

2 2

and
d
dx

bxAe bxAe b x e b b xbx bx bx
2

2
2 3 2 22 4 4 6 4

2 2 2ψ
ψ ψ= − − + = − +− − − .

Substituting into Equation 41.13, − + = −FHG
I
KJ + FHG

I
KJ6 4

22 2
2

2b b x
mE m

xψ ψ ψ
ω

ψ .

For this to be true as an identity, it must be true for all values of x.

So we must have both − = −6
2

2b
mE

 and 4 2
2

b
m

= FHG
I
KJ

ω
.

(a) Therefore b
m

=
ω

2

(b) and E
b
m

= =
3 3

2

2

ω .

(c) The wave function is that of the first excited state .

P41.35 The longest wavelength corresponds to minimum photon energy, which must be equal to the
spacing between energy levels of the oscillator:

hc k
mλ

ω= =  so λ π π= = ×
×F

HG
I
KJ =

−

2 2 3 00 10
9 11 10

6008
31 1 2

c
m
k

.
.

 m s
 kg

8.99 N m
 nme j .

P41.36 (a) With ψ ω= −Be m x2 2b g , the normalization condition ψ 2 1dx
xall 
z =

becomes 1 2 2
1
2

2 2 2 2

0

22 2

= = =−

−∞

∞
−

∞z zB e dx B e dx B
m

m x m xω ω π
ω

b g b g

where Table B.6 in Appendix B was used to evaluate the integral.

Thus, 1 2= B
m
π
ω

 and B
m

=
F
HG
I
KJ

ω
π

1 4

.

(b) For small δ, the probability of finding the particle in the range − < <
δ δ
2 2

x  is

ψ δ ψ δ δ
ω

πδ

δ
2

2

2
2 2 0

1 2

0dx B e
m

−

−z = = =
F
HG
I
KJa f .
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*P41.37 (a) For the center of mass to be fixed, m v m v1 1 2 2 0+ = . Then

v v v v
m
m

v
m m

m
v= + = + =

+
1 2 1

1

2
1

2 1

2
1  and v

m v
m m1

2

1 2
=

+
. Similarly, v

m
m

v v= +2

1
2 2  and

v
m v

m m2
1

1 2
=

+
. Then

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1
2

2 2
2 2 1 2

2 2

1 2
2

2 1
2 2

1 2
2

2

1 2 1 2

1 2
2

2 2 2 2

m v m v kx
m m v

m m

m m v

m m
kx

m m m m

m m
v kx v kx

+ + =
+

+
+

+

=
+

+
+ = +

b g b g
b g
b g

µ

(b)
d
dx

v kx
1
2

1
2

02 2µ +F
HG

I
KJ =  because energy is constant

0
1
2

2
1
2

2= + = + = +µ µ µv
dv
dx

k x
dx
dt

dv
dx

kx
dv
dt

kx .

Then µ a kx= − , a
kx

= −
µ

. This is the condition for simple harmonic motion, that the

acceleration of the equivalent particle be a negative constant times the excursion from

equilibrium. By identification with a x= −ω 2 , ω
µ

π= =
k

f2  and f
k

=
1

2π µ
.

P41.38 (a) With x = 0  and px = 0, the average value of x2  is ∆xa f2  and the average value of px
2  is

∆pxb g2 . Then ∆
∆

x
px

≥
2

 requires

E
p
m

k
p

p
m

k
p

x

x

x

x

≥ + = +
2 2

2

2 2

22 2 4 2 8
.

(b) To minimize this as a function of px
2 , we require

dE
dp m

k
px x

2

2

40
1

2 8
1

1
= = + −a f .

Then
k
p mx

2

48
1

2
= so p

mk mk
x
2

2 1 2
2

8 2
=
F
HG

I
KJ =

and E
mk
m

k
mk

k
m

k
m

≥ + = +
2 2

2
8 4 4

2

a f

E
k
mmin = =

2 2
ω

.
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Additional Problems

P41.39 Suppose the marble has mass 20 g. Suppose the wall of the box is 12 cm high and 2 mm thick. While
it is inside the wall,

U mgy= = =0 02 9 8 0 12 0 023 5. . . . kg  m s  m  J2b ge ja f

and E K mv= = = =
1
2

1
2

0 02 0 8 0 006 42 2
. . . kg  m s  Jb gb g .

Then C
m U E

=
−

=
× ⋅

= ×−
−2 2 0 02 0 017 1

1 055 10
2 5 1034

32 1a f b gb g. .

.
.

 kg  J

 J s
 m

and the transmission coefficient is

e e e eCL− − × × − × − × − × −= = = = =
−

2 2 2 5 10 2 10 10 10 2 30 4.3 10 4.3 10 10
32 3 29 29 29 30

10 10
. .

~e je j e j .

P41.40 (a) λ = = × −2 2 00 10 10L .  m

(b) p
h

= =
× ⋅
×

= × ⋅
−

−
−

λ
6 626 10

3 31 10
34

10
24.

.
 J s

2.00 10  m
 kg m s

(c) E
p
m

= =
2

2
0 172.  eV

P41.41 (a) See the figure.

 

FIG. P41.41(a)

(b) See the figure.

 

FIG. P41.41(b)

(c) ψ is continuous and ψ → 0  as x→±∞ . The function can be normalized. It describes a
particle bound near x = 0 .

(d) Since ψ is symmetric,

ψ ψ2 2

0

2 1dx dx
−∞

∞ ∞z z= =

or 2
2

2
12 2

0

2
0A e dx

A
e ex−

∞
−∞z =

−

F
HG
I
KJ − =α

α e j .

This gives A = α .

(e) P a e dx e ex

x
− →

−

=

− −= =
−
F
HG
I
KJ − = − =z1 2

2 2

0

1 2
2 2 12

2
2

1 1 0 632α α
α

α
α αα

αb g b g e j e j e j1 2 .
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P41.42 (a) Use Schrödinger’s equation

∂
∂

= − −
2

2 2
2ψ

ψ
x

m
E Ua f

with solutions

ψ 1
1 1= + −Ae Beik x ik x [region I]

ψ 2
2= Ceik x [region II]. FIG. P41.42(a)

Where k
mE

1
2

=

and k
m E U

2
2

=
−a f

.

Then, matching functions and derivatives at x = 0

ψ ψ1 0 2 0b g b g= gives A B C+ =

and 
d
dx

d
dx

ψ ψ1

0

2

0

F
HG
I
KJ = FHG

I
KJ gives k A B k C1 2− =a f .

Then B
k k
k k

A=
−
+

1
1

2 1

2 1

and C
k k

A=
+

2
1 2 1

.

Incident wave Aeikx  reflects Be ikx− , with probability R
B
A

k k

k k

k k

k k
= =

−

+
=

−

+

2

2
2 1

2

2 1
2

1 2
2

1 2
2

1

1

b g
b g

b g
b g

.

(b) With E = 7 00.  eV

and U = 5 00.  eV

k
k

E U
E

2

1

2 00
7 00

0 535=
−

= =
.
.

. .

The reflection probability is R =
−

+
=

1 0 535

1 0 535
0 092 0

2

2

.

.
.

a f
a f .

The probability of transmission is T R= − =1 0 908. .
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P41.43 R
k k

k k

k k

k k
=

−

+
=

−

+
1 2

2

1 2
2

2 1
2

2 1
2

1

1

b g
b g

b g
b g

2 2

2
k
m

E U= −  for constant U

2
1
2

2
k
m

E=  since U = 0 (1)

2
2
2

2
k
m

E U= − (2)

Dividing (2) by (1),
k
k

U
E

2
2

1
2 1 1

1
2

1
2

= − = − =  so 
k
k

2

1

1
2

=

and therefore, R =
−

+
=

−

+
=

1 1 2

1 1 2

2 1

2 1
0 029 4

2

2

2

2

e j
e j

e j
e j

. .

 

FIG. P41.43

P41.44 (a) The wave functions and probability densities are the same as those shown in the two lower
curves in Figure 41.4 of the textbook.

(b) P dx
x

dx

x x

1 1
2

0 150

2

0 150

0 350

0 150

2
1 00 1 00

2 00
2

1 00 2
1 00

= = FHG
I
KJ

F
HG

I
KJ

= − F
HG

I
KJ

L
NM

O
QP

z zψ
π

π
π

. .

.

.

.
sin

.

.
.

sin
.

 nm

0.350 nm

 nm

0.350 nm

 nm  nm

nm
 nm

4  nm
b g

In the above result we used sin sin2

2
1
4

2axdx
x

a
axz = FHG

I
KJ −
F
HG
I
KJ a f .

Therefore, P x
x

1
0 150

1 00
1 00 2

1 00
= − F

HG
I
KJ

L
NM

O
QP.

.
sin

. .

nm
 nm

2  nm  nm

0.350 nm

b g
π

π

P1 1 00 0 350 0 150
1 00

0 700 0 300 0 200= − − −RST
UVW =. . .

.
sin . sin . .nm  nm  nm

 nm
2

b g a f a f
π

π π .

(c) P
x

dx
x x

2
2

0 150

0 350

0 150

0 350
2

1 00
2
1 00

2 00
2

1 00
8

4
1 00

= F
HG
I
KJ = − F

HG
I
KJ

L
NM

O
QPz.

sin
.

.
.

sin
..

.

.

.π
π

π

P x
x

2
0 150

0 350

1 00
1 00
4

4
1 00

1 00 0 350 0 150
1 00
4

1 40 0 600

0 351

= − F
HG
I
KJ

L
NM

O
QP = − − −RST

UVW
=

.
.

sin
.

. . .
.

sin . sin .

.
.

.

π
π

π
π πa f a f a f

(d) Using E
n h
mLn =
2 2

28
, we find that E1 0 377= .  eV  and E2 1 51= .  eV .
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P41.45 (a) f
E
h

= =
× ⋅

×F
HG

I
KJ = ×

−

−1 80

6 626 10

1 60 10
4 34 10

34

19
14.

.

.
.

 eV

 J s

 J
1.00 eV

 Hz
a f

e j

(b) λ = =
×

×
= × =−c

f
3 00 10
4 34 10

6 91 10 691
8

14
7.

.
.

 m s
 Hz

 m  nm

(c) ∆ ∆E t ≥
2

 so ∆
∆ ∆

E
t

h
t

≥ = =
× ⋅

×
= × = ×

−

−
− −

2 4
6 626 10

4 2 00 10
2 64 10 1 65 10

34

6
29 10

π πa f e j
.

.
. .

 J s

 s
 J  eV

*P41.46 (a) Taking L L Lx y= = , we see that the expression for E becomes

E
h

m L
n n

e
x y= +

2

2
2 2

8
e j .

For a normalizable wave function describing a particle, neither nx  nor ny  can be zero. The

ground state, corresponding to n nx y= = 1, has an energy of

E
h

m L
h

m Le e
1 1

2

2
2 2

2

28
1 1

4, = + =e j .

The first excited state, corresponding to either nx = 2 , ny = 1  or nx = 1 , ny = 2 , has an energy

E E
h

m L
h

m Le e
2 1 1 2

2

2
2 2

2

28
2 1

5
8, ,= = + =e j .

The second excited state, corresponding to nx = 2 , ny = 2  has an energy of

E
h

m L
h

m Le e
2 2

2

2
2 2

2

28
2 2, = + =e j .

Finally, the third excited state, corresponding to either nx = 1 , ny = 3 or nx = 3, nx = 1 , has an

energy

E E
h

m L
h

m Le e
1 3 3 1

2

2
2 2

2

28
1 3

5
4, ,= = + =e j .

(b) The energy difference between the second
excited state and the ground state is given
by

∆E E E
h

m L
h

m L

h
m L

e e

e

= − = −

=

2 2 1 1

2

2

2

2

2

2

4

3
4

, ,

.

E1, 3 , E 3, 1

E2, 2

E1, 2 , E 2, 1

E1, 1

energy

h
m Le

2

2

0Energy level diagram

FIG. P41.46(b)
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P41.47 x x dx2 2 2=
−∞

∞z ψ

For a one-dimensional box of width L, ψ
π

n L
n x

L
= F

HG
I
KJ

2
sin .

Thus, x
L

x
n x

L
dx

L L
n

L
2 2 2

0

2 2

2 2
2

3 2
= F

HG
I
KJ = −z sin

π
π

 (from integral tables).

P41.48 (a) ψ 2 1dx
−∞

∞z =  becomes

A
x

L
dx A

L x
L

x
L

A
L

L

L

L

L
2 2

4

4
2

4

4
22

2
1
4

4
2 2

1cos sin
π

π
π π

π
πF

HG
I
KJ = FHG

I
KJ + F

HG
I
KJ

L
NM

O
QP = FHG

I
KJ
L
NM
O
QP =− −

z
or A

L
2 4
=  and A

L
=

2
.

(b) The probability of finding the particle between 0 and 
L
8

 is

ψ
π

π
2

0

8
2 2

0

8 2 1
4

1
2

0 409dx A
x

L
dx

L L

z z= F
HG
I
KJ = + =cos . .

P41.49 For a particle with wave function

ψ x
a

e x aa f = −2
for x > 0

and 0 for x < 0 .

(a) ψ xa f 2 0= , x < 0 and ψ 2 22
x

a
e x aa f = − , x > 0

(b) Prob x x dx dx< = = =
−∞ −∞
z z0 0 0

2
0 0

a f a f a fψ

FIG. P41.49

(c) Normalization ψ ψ ψx dx dx dxa f 2 2
0

2

0

1
−∞

∞

−∞

∞z z z= + =

0
2

0 1 1

0
2

1 0 865

0
2

0

2
0

2

0

2

0

2
0

2

dx
a

e dx e e

x a dx
a

e dx e e

x a x a

a
x a

a
x a a

−∞

−
∞

− ∞ −∞

− − −

z z
z z

+ FHG
I
KJ = − = − − =

< < = = FHG
I
KJ = − = − =

e j

a fProb ψ .
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P41.50 (a) The requirement that 
n

L
λ
2

=  so p
h nh

L
= =
λ 2

 is still valid.

E pc mc E
nhc

L
mc

K E mc
nhc

L
mc mc

n

n n

= + ⇒ = FHG
I
KJ +

= − = FHG
I
KJ + −

b g e j e j

e j

2 2 2 2
2 2

2
2

2 2 2

2

2

(b) Taking L = × −1 00 10 12.  m, m = × −9 11 10 31.  kg , and n = 1, we find K1
144 69 10= × −.  J .

Nonrelativistic, E
h
mL1

2

2

34 2

31 12 2
14

8

6 626 10

8 9 11 10 1 00 10
6 02 10= =

× ⋅

× ×
= ×

−

− −

−
.

. .
.

 J s

 kg  m
 J

e j
e je j

.

Comparing this to K1, we see that this value is too large by 28 6%. .

P41.51 (a) U
e

d

e

d
k e

d
e=

∈
− + − + − +FHG

I
KJ + −

L
NM

O
QP =

−

∈
= −

2

0

2

0

2

4
1

1
2

1
3

1
1
2

1
7 3

4
7

3π π
a f b g

(b) From Equation 41.12, K E
h

m d

h
m de e

= = =2
2

8 9 361

2

2

2

2e j
.

(c) E U K= +  and 
dE
dd

= 0  for a minimum:
7
3 18

0
2

2

2

3
k e
d

h
m d

e

e

− =

d
h

k e m

h
m k ee e e e

= = =
×

× × ×
=

−

− −

3

7 18 42

6 626 10

42 9 11 10 8 99 10 1 60 10
0 049 9

2

2

2

2

34 2

31 9 19 2a fe j
e j

a fe je je j
.

. . .
.

 C
 nm .

(d) Since the lithium spacing is a, where Na V3 = , and the density is 
Nm
V

, where m is the mass

of one atom, we get:

a
Vm
Nm

m
= FHG
I
KJ =
F
HG

I
KJ =

× ×F
HG

I
KJ = × =

−
−

1 3 1 3 27 1 3
101 66 10 7

530
2 80 10 0 280

density
 kg

 kg
 m  m  nm

.
. .

(5.62 times larger than c).
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P41.52 (a) ψ ω= −Bxe m x2 2b g

d
dx

Be Bx
m

xe Be B
m

x e

d
dx

Bx
m

xe B
m

xe B
m

x
m

xe

d
dx

B
m

xe

m x m x m x m x

m x m x m x

m

ψ ω ω

ψ ω ω ω ω

ψ ω

ω ω ω ω

ω ω ω

ω

= + −FHG
I
KJ = − FHG

I
KJ

= −FHG
I
KJ − FHG

I
KJ − FHG

I
KJ −FHG

I
KJ

= − FHG
I
KJ

− − − −

− − −

−

2 2 2 2 2

2

2
2 2 2 2

2

2
2

2 2 2 2

2 2 2

2
2

2

3

b g b g b g b g

b g b g b g

b gx m xB
m

x e
2 2

2
3 2+ FHG

I
KJ

−ω ωb g

Substituting into the Schrödinger Equation (41.13), we have

− FHG
I
KJ + FHG

I
KJ = − + FHG

I
KJ

− − − −3
22

2
3 2

2
2

2
2 22 2 2 2

B
m

xe B
m

x e
mE

Bxe
m

x Bxem x m x m x m xω ω ωω ω ω ωb g b g b g b g .

This is true if − = −3
2

ω
E

; it is true if E =
3

2
ω

.

(b) We never find the particle at x = 0  because ψ = 0 there.

(c) ψ is maximized if 
d
dx

x
mψ ω

= = − FHG
I
KJ0 1 2 , which is true at x

m
= ±

ω
.

(d) We require ψ 2 1dx
−∞

∞z = :

1 2 2
1
4 2

2 2 2 2 2
3

2 1 2 3 2

3 2

2 2

= = = =−

−∞

∞
−z zB x e dx B x e dx B

m

B

m
m x m xω ω π

ω

π
ω

b g b g
b g a f .

Then B
m m

= F
HG
I
KJ =
F
HG

I
KJ

2 41 2

1 4

3 4 3 3

3

1 4

π
ω ω

π
.

(e) At x
m

= 2
ω

, the potential energy is 
1
2

1
2

4
22 2 2m x m

m
ω ω

ω
ω= F

HG
I
KJ = . This is larger than the

total energy 
3

2
ω

, so there is zero  classical probability of finding the particle here.

(f) Probability = = FH IK =− −ψ δ δω ω2 2
2

2 22 2

dx Bxe B x em x m xb g b g

Probability = F
HG
I
KJ
F
HG
I
KJ = F

HG
I
KJ

− −δ
π

ω
ω

δ
ω
π

ω ω2 4
81 2

3 2
4

1 2
4m

m
e

m
em mb g b g
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P41.53 (a) ψ 2

0

1dx
Lz = : A

x
L

x
L

x
L

x
L

dx
L

2 2 2

0

16
2

8
2

1sin sin sin sin
π π π πF
HG
I
KJ +

F
HG
I
KJ +

F
HG
I
KJ
F
HG
I
KJ

L
NM

O
QP =z

A
L L x

L
x

L
dx

A
L x

L
x

L
dx A

L L x
L

L

L

x

x L

2

0

2 2

0

2 3

0

2
16

2
8

2
1

17
2

16
17

2
16
3

1

F
HG
I
KJ +
F
HG
I
KJ +

F
HG
I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PP =

+ F
HG
I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PP = + F

HG
I
KJ

L
N
MM

O
Q
PP =

z

z
=

=

sin sin

sin cos sin

π π

π π
π

π

A
L

2 2
17

= , so the normalization constant is A
L

=
2

17
.

(b) ψ 2 1dx
a

a

−
z = : A

x
a

B
x

a
A B

x
a

x
a

dx
a

a
2 2 2 2

2
2

2
1cos sin cos sin

π π π πF
HG
I
KJ +

F
HG
I
KJ +

F
HG
I
KJ
F
HG
I
KJ

L
NM

O
QP =

−
z

The first two terms are A a2  and B a2 . The third term is:

2
2

2
2 2

4
2 2

8
3 2

0

2

3

A B
x
a

x
a

x
a

dx A B
x
a

x
a

dx

a A B x
a

a

a

a

a

a

a

cos sin cos cos sin

cos

π π π π π

π
π

F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

L
NM

O
QP = F

HG
I
KJ
F
HG
I
KJ

= F
HG
I
KJ =

− −

−

z z

so that a A B2 2 1+ =e j , giving A B
a

2 2 1
+ = .

*P41.54 (a) x x
a

e dxax
0

1 2
2

0= F
HG
I
KJ =−

−∞

∞z π
, since the integrand is an odd function of x.

(b) x x
a

x e dxax
1

3 1 2
24

0
2

=
F
HG
I
KJ =−

−∞

∞

z π
, since the integrand is an odd function of x.

(c) x x dx x x x x x dx01 0 1
2

0 1 0 1
1
2

1
2

1
2

= + = + +
−∞

∞

−∞

∞z zψ ψ ψ ψb g a f a f

The first two terms are zero, from (a) and (b). Thus:

x x
a

e
a

xe dx
a

x e dx

a
a

a

ax ax ax
01

1 4
2

3 1 4
2

2 1 2
2

0

2 1 2

3

1 2

2 2 24
2

2

2
2 1

4

1
2

= F
HG
I
KJ

F
HG
I
KJ =

F
HG
I
KJ

=
F
HG
I
KJ
F
HG
I
KJ

=

− −

−∞

∞
−

∞

z zπ π π

π
π

,  from Table B.6
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P41.55 With one slit open P1 1
2= ψ  or P2 2

2= ψ .

With both slits open, P = +ψ ψ1 2
2 .

At a maximum, the wave functions are in phase Pmax = +ψ ψ1 2
2c h .

At a minimum, the wave functions are out of phase Pmin = −ψ ψ1 2
2c h .

Now 
P
P

1

2

1
2

2
2 25 0= =

ψ

ψ
. , so

ψ
ψ

1

2
5 00= .

and 
P
P

max

min

.

.

.

.

.

.
.=

+

−
=

+

−
= = =

ψ ψ

ψ ψ

ψ ψ

ψ ψ

1 2
2

1 2
2

2 2
2

2 2
2

2

2

5 00

5 00

6 00

4 00

36 0
16 0

2 25
c h
c h

c h
c h

a f
a f .

ANSWERS TO EVEN PROBLEMS

P41.2
1
2 P41.22 (a) ψ

π
1

2
x

L
x

L
a f = F

HG
I
KJcos ;

P x
L

x
L1

22a f = F
HG
I
KJcos

π
;

ψ
π

2
2 2

x
L

x
L

a f = F
HG
I
KJsin ;

P x
L

x
L2

22 2a f = F
HG
I
KJsin

π
;

ψ
π

3
2 3

x
L

x
L

a f = F
HG
I
KJcos ;

P x
L

x
L3

22 3a f = F
HG
I
KJcos

π
;

P41.4 (a) 4; (b) 6 03.  eV

P41.6 0 517.  MeV, 3 31 10 20. × ⋅−  kg m s

P41.8
3
8

1 2
h

m ce

λF
HG
I
KJ

P41.10 (a) 5 13.  meV ; (b) 9 41.  eV ; (c) The much
smaller mass of the electron requires it to
have much more energy to have the same
momentum. (b) see the solution

P41.12 (a) 
15
8

1 2
h

m ce

λF
HG
I
KJ ; (b) 1 25. λ P41.24 (a) 

2

2

2

22
4

6
mL

x
L

−
F
HG

I
KJ ; (b) see the solution

P41.26 see the solution
P41.14 see the solution; 

2 2

2
k
m

P41.28 1 03 10 3. × −

P41.16 (a) 
L
2

; (b) 5 26 10 5. × − ; (c) 3 99 10 2. × − ; P41.30 85.9
(d) see the solution

P41.32 3 92%.
P41.18 0 250.

P41.34 (a) see the solution; b
m

=
ω

2
; (b) E =

3
2

ω ;

P41.20 (a) 
L L
− F

HG
I
KJ

1
2

2
π

π
sin ; (b) see the solution; (c) first excited state

(c) 0 585. L
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P41.36 (a) B
m

=
F
HG
I
KJ

ω
π

1 4

; (b) δ
ω

π
mF
HG
I
KJ

1 2
P41.48 (a) 

2
L

; (b) 0 409.

P41.50 (a) 
nhc

L
m c mc

2

2
2 4 2F

HG
I
KJ + − ;P41.38 see the solution

P41.40 (a) 2 00 10 10. × −  m; (b) 3 31 10 24. × ⋅−  kg m s ; (b) 46 9.  fJ ; 28 6%.
(c) 0 172.  eV

P41.52 (a) 
3

2
ω

; (b) x = 0 ; (c) ±
mω

;P41.42 (a) see the solution; (b) 0 092 0. , 0 908.

(d) 
4 3 3

3

1 4
m ω
π

F
HG

I
KJ ; (e) 0; (f) 8

1 2
4δ

ω
π

m
eF

HG
I
KJ

−P41.44 (a) see the solution; (b) 0 200. ; (c) 0 351. ;
(d) 0 377.  eV , 1 51.  eV

P41.54 (a) 0; (b) 0; (c) 2 1 2aa f−P41.46 (a) 
h

m Le

2

24
, 

5
8

2

2
h

m Le

, 
h

m Le

2

2 , 
5

4

2

2
h

m Le

;

(b) see the solution, 
3

4

2

2
h

m Le
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ANSWERS TO QUESTIONS

Q42.1 Neon signs emit light in a bright-line spectrum, rather than in a
continuous spectrum. There are many discrete wavelengths
which correspond to transitions among the various energy
levels of the neon atom. This also accounts for the particular
color of the light emitted from a neon sign. You can see the
separate colors if you look at a section of the sign through a
diffraction grating, or at its reflection in a compact disk. A
spectroscope lets you read their wavelengths.

Q42.2 One assumption is natural from the standpoint of classical
physics: The electron feels an electric force of attraction to the
nucleus, causing the centripetal acceleration to hold it in orbit.
The other assumptions are in sharp contrast to the behavior of
ordinary-size objects: The electron’s angular momentum must
be one of a set of certain special allowed values. During the
time when it is in one of these quantized orbits, the electron
emits no electromagnetic radiation. The atom radiates a photon
when the electron makes a quantum jump from one orbit to a
lower one.

Q42.3 If an electron moved like a hockey puck, it could have any arbitrary frequency of revolution around
an atomic nucleus. If it behaved like a charge in a radio antenna, it would radiate light with
frequency equal to its own frequency of oscillation. Thus, the electron in hydrogen atoms would
emit a continuous spectrum, electromagnetic waves of all frequencies smeared together.

Q42.4 (a) Yes—provided that the energy of the photon is precisely enough to put the electron into one
of the allowed energy states. Strangely—more precisely non-classically—enough, if the
energy of the photon is not sufficient to put the electron into a particular excited energy
level, the photon will not interact with the atom at all!

(b) Yes—a photon of any energy greater than 13.6 eV will ionize the atom. Any “extra” energy
will go into kinetic energy of the newly liberated electron.

Q42.5 An atomic electron does not possess enough kinetic energy to escape from its electrical attraction to
the nucleus. Positive ionization energy must be injected to pull the electron out to a very large
separation from the nucleus, a condition for which we define the energy of the atom to be zero. The
atom is a bound system. All this is summarized by saying that the total energy of an atom is
negative.

515
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Q42.6 From Equations 42.7, 42.8 and 42.9, we have − = − = + − = +E
k e

r
k e

r
k e

r
K Ue e e

e

2 2 2

2 2
. Then K E=  and

U Ee = −2 .

Q42.7 Bohr modeled the electron as moving in a perfect circle, with zero uncertainity in its radial
coordinate. Then its radial velocity is always zero with zero uncertainty. Bohr’s theory violates the
uncertainty principle by making the uncertainty product ∆ ∆r pr  be zero, less than the minimum

allowable 
=
2

.

Q42.8 Fundamentally, three quantum numbers describe an orbital wave function because we live in three-
dimensional space. They arise mathematically from boundary conditions on the wave function,
expressed as a product of a function of r, a function of θ, and a function of φ.

Q42.9 Bohr’s theory pictures the electron as moving in a flat circle like a classical particle described by
F ma∑ = . Schrödinger’s theory pictures the electron as a cloud of probability amplitude in the

three-dimensional space around the hydrogen nucleus, with its motion described by a wave
equation. In the Bohr model, the ground-state angular momentum is 1= ; in the Schrödinger model
the ground-state angular momentum is zero. Both models predict that the electron’s energy is

limited to discrete energy levels, given by 
−13 606

2
.  eV
n

 with n = 1 2 3, , .

Q42.10 The term electron cloud refers to the unpredictable location of an electron around an atomic nucleus.
It is a cloud of probability amplitude. An electron in an s subshell has a spherically symmetric
probability distribution. Electrons in p, d, and f subshells have directionality to their distribution. The
shape of these electron clouds influences how atoms form molecules and chemical compounds.

Q42.11 The direction of the magnetic moment due to an orbiting charge is given by the right hand rule, but
assumes a positive charge. Since the electron is negatively charged, its magnetic moment is in the
opposite direction to its angular momentum.

Q42.12 Practically speaking, no. Ions have a net charge and the magnetic force q v B×a f  would deflect the
beam, making it difficult to separate the atoms with different orientations of magnetic moments.

Q42.13 The deflecting force on an atom with a magnetic moment is proportional to the gradient of the
magnetic field. Thus, atoms with oppositely directed magnetic moments would be deflected in
opposite directions in an inhomogeneous magnetic field.

Q42.14 If the exclusion principle were not valid, the elements and their chemical behavior would be grossly
different because every electron would end up in the lowest energy level of the atom. All matter
would be nearly alike in its chemistry and composition, since the shell structures of all elements
would be identical. Most materials would have a much higher density. The spectra of atoms and
molecules would be very simple, and there would be very little color in the world.

Q42.15 The Stern-Gerlach experiment with hydrogen atoms shows that the component of an electron’s spin
angular momentum along an applied magnetic field can have only one of two allowed values. So
does electron spin resonance on atoms with one unpaired electron.
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Q42.16 The three elements have similar electronic configurations. Each has filled inner shells plus one
electron in an s orbital. Their single outer electrons largely determine their chemical interactions
with other atoms.

Q42.17 When a photon interacts with an atom, the atom’s orbital angular momentum changes, thus the
photon must carry orbital angular momentum. Since the allowed transitions of an atom are
restricted to a change in angular momentum of ∆A = ±1 , the photon must have spin 1.

Q42.18 In a neutral helium atom, one electron can be modeled as moving in an electric field created by the
nucleus and the other electron. According to Gauss’s law, if the electron is above the ground state it
moves in the electric field of a net charge of + − = +2 1 1e e e  We say the nuclear charge is screened by
the inner electron. The electron in a He+  ion moves in the field of the unscreened nuclear charge of
2 protons. Then the potential energy function for the electron is about double that of one electron in
the neutral atom.

Q42.19 At low density, the gas consists of essentially separate atoms. As the density increases, the atoms
interact with each other. This has the effect of giving different atoms levels at slightly different
energies, at any one instant. The collection of atoms can then emit photons in lines or bands,
narrower or wider, depending on the density.

Q42.20 An atom is a quantum system described by a wave function. The electric force of attraction to the
nucleus imposes a constraint on the electrons. The physical constraint implies mathematical
boundary conditions on the wave functions, with consequent quantization so that only certain wave
functions are allowed to exist. The Schrödinger equation assigns a definite energy to each allowed
wave function. Each wave function is spread out in space, describing an electron with no definite
position. If you like analogies, think of a classical standing wave on a string fixed at both ends. Its
position is spread out to fill the whole string, but its frequency is one of a certain set of quantized
values.

Q42.21 Each of the electrons must have at least one quantum number different
from the quantum numbers of each of the other electrons. They can differ
(in ms ) by being spin-up or spin-down. They can also differ (in A ) in
angular momentum and in the general shape of the wave function. Those
electrons with A = 1  can differ (in mA ) in orientation of angular
momentum—look at Figure Q42.21.

FIG. Q42.21

Q42.22 The Mosely graph shows that the reciprocal square root of the wavelength of Kα  characteristic x-
rays is a linear function of atomic number. Then measuring this wavelength for a new chemical
element reveals its location on the graph, including its atomic number.

Q42.23 No. Laser light is collimated. The energy generally travels in the same direction. The intensity of a
laser beam stays remarkably constant, independent of the distance it has traveled.

Q42.24 Stimulated emission coerces atoms to emit photons along a specific axis, rather than in the random
directions of spontaneously emitted photons. The photons that are emitted through stimulation can
be made to accumulate over time. The fraction allowed to escape constitutes the intense, collimated,
and coherent laser beam. If this process relied solely on spontaneous emission, the emitted photons
would not exit the laser tube or crystal in the same direction. Neither would they be coherent with
one another.
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Q42.25 (a) The terms “I define” and “this part of the universe” seem vague, in contrast to the precision
of the rest of the statement. But the statement is true in the sense of being experimentally
verifiable. The way to test the orientation of the magnetic moment of an electron is to apply
a magnetic field to it. When that is done for any electron, it has precisely a 50% chance of
being either spin-up or spin-down. Its spin magnetic moment vector must make one of two

allowed angles with the applied magnetic field. They are given by cosθ = =
S
S

z 1 2

3 2
 and

cosθ =
−1 2

3 2
. You can calculate as many digits of the two angles allowed by “space

quantization” as you wish.

(b) This statement may be true. There is no reason to suppose that an ant can comprehend the
cosmos, and no reason to suppose that a human can comprehend all of it. Our experience
with macroscopic objects does not prepare us to understand quantum particles. On the
other hand, what seems strange to us now may be the common knowledge of tomorrow.
Looking back at the past 150 years of physics, great strides in understanding the Universe—
from the quantum to the galactic scale—have been made. Think of trying to explain the
photoelectric effect using Newtonian mechanics. What seems strange sometimes just has an
underlying structure that has not yet been described fully. On the other hand still, it has
been demonstrated that a “hidden-variable” theory, that would model quantum uncertainty
as caused by some determinate but fluctuating quantity, cannot agree with experiment.

SOLUTIONS TO PROBLEMS

Section 42.1 Atomic Spectra of Gases

P42.1 (a) Lyman series
1

1
1
2λ

= −
F
HG
I
KJR

ni

ni = 2 3 4, , , …

1 1
94 96 10

1 097 10 1
1

9
7

2λ
=

×
= × −

F
HG
I
KJ−.

.e j
ni

ni = 5

(b) Paschen series:
1 1

3
1

2 2λ
= −
F
HG

I
KJR

ni

ni = 4 5 6, , , …

The shortest wavelength for this series corresponds to ni = ∞  for ionization

1
1 097 10

1
9

17
2λ

= × −
F
HG

I
KJ.

ni

For ni = ∞ , this gives λ = 820 nm

This is larger than 94.96 nm, so this wave length
cannot be associated with the Paschen series .

Balmer series:
1 1

2
1

2 2λ
= −
F
HG

I
KJR

ni

ni = 3 4 5, , , …

1
1 097 10

1
4

17
2λ

= × −
F
HG

I
KJ.

ni

with ni = ∞  for ionization, λmin = 365 nm

Once again the shorter given wavelength cannot be associated with the Balmer series .
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P42.2 (a) λmin
max

=
hc

E

Lyman (n f = 1): λmin .= =
⋅

=
hc
E1

1 240
91 2

 eV nm
13.6 eV

 nm (Ultraviolet)

Balmer (n f = 2 ): λmin .
= =

⋅
=

hc
E2

1 240
13 6

365
 eV nm

1 4  eV
 nmb g (UV)

Paschen (n f = 3 ): λmin .= = =… 3 91 2 8212  nm  nma f (Infrared)

Bracket (n f = 4 ): λmin .= = =… 4 91 2 1 4602  nm  nma f (IR)

(b) E
hc

max
min

=
λ

Lyman: E Emax .= =13 6 1 eV c h
Balmer: E Emax .= =3 40 2 eV c h
Paschen: E Emax .= =1 51 3 eV c h
Brackett: E Emax .= =0 850 4 eV c h

Section 42.2 Early Models of the Atom

P42.3 (a) For a classical atom, the centripetal acceleration is

a
v
r

e
r m

E
e

r
m v e
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e

e

= =
∈

= −
∈

+ = −
∈
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0

2

2

2

0
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e
r
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e
c

e
r me

=
∈

=
−
∈

=
−
∈ ∈

F
HG
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KJ

2

0
2

0

2 2

3

2

0
3

2

0
2

2

8
1

6 6 4π π π π
.

Therefore,
dr
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e
r m ce

= −
∈

4

2
0
2 2 2 312π

.
FIG. P42.3

(b) − ∈ =
× −
z z12 2

0
2 2 2 3

2 00 10

4

010

π r m c dr e dte

T

.  m

0 12
3

8 46 10
2

0
2 2 3

4

3

0

2 00 10
10

10

π ∈
= = ×

×
−

−

m c
e

r
Te

.

.  s

Since atoms last a lot longer than 0.8 ns, the classical laws (fortunately!) do not hold for
systems of atomic size.



520     Atomic Physics

P42.4 (a) The point of closest approach is found when

E K U
k q q

r
e= + = +0 α Au

or r
k e e

E
e

min =
2 79a fa f

rmin

. .

. .
.=

× ⋅ ×

×
= ×

−

−
−

8 99 10 158 1 60 10

4 00 1 60 10
5 68 10

9 19 2

13
14

 N m C  C

 MeV  J MeV
 m

2 2e ja fe j
a fe j

.

(b) The maximum force exerted on the alpha particle is

F
k q q

r
e

max
min

. .

.
.= =

× ⋅ ×

×
=

−

−

α Au
2 2 N m C  C

 m
 N2

9 19 2

14 2

8 99 10 158 1 60 10

5 68 10
11 3

e ja fe j
e j

 away from the

nucleus.

Section 42.3 Bohr’s Model of the Hydrogen Atom

P42.5 (a) v
k e
m r

e

e
1

2

1
=

where r a1
2

0
111 0 005 29 5 29 10= = = × −a f . . nm  m

v1

9 19 2

31 11
6

8 99 10 1 60 10

9 11 10 5 29 10
2 19 10=

× ⋅ ×

× ×
= ×

−

− −

. .

. .
.

 N m C  C

 kg  m
 m s

2 2e je j
e je j

(b) K m ve1 1
2 31 6 2 181

2
1
2

9 11 10 2 19 10 2 18 10 13 6= = × × = × =− −. . . . kg  m s  J  eVe je j

(c) U
k e
r
e

1

2

1

9 19 2

11
18

8 99 10 1 60 10

5 29 10
4 35 10 27 2= − = −

× ⋅ ×

×
= − × = −

−

−
−

. .

.
. .

 N m C  C

 m
 J  eV

2 2e je j

P42.6 ∆E
n ni f

= −
F
HG

I
KJ

13 6
1 1
2 2.  eVa f

Where for ∆E > 0  we have absorption and for ∆E < 0  we have emission.

(i) for ni = 2  and n f = 5 , ∆E = 2 86.  eV  (absorption)

(ii) for ni = 5 and n f = 3 , ∆E = −0 967.  eV  (emission)

(iii) for ni = 7 and n f = 4 , ∆E = −0 572.  eV  (emission)

(iv) for ni = 4 and n f = 7 , ∆E = 0 572.  eV  (absorption)

(a) E
hc

=
λ

 so the shortest wavelength is emitted in transition ii .

(b) The atom gains most energy in transition i .

(c) The atom loses energy in transitions ii and iii .
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P42.7 (a) r2
2 20 052 9 2 0 212= =. . nm  nmb ga f

(b) m v
m k e

re
e e

2

2
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31 9 19 2
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(f) E K U2 2 2 3 40 6 80 3 40= + = − = −. . . eV  eV  eV

P42.8 We use E
nn =

−13 6
2

.  eV
.

To ionize the atom when the electron is in the n th  level,

it is necessary to add an amount of energy given by E E
nn= − =

13 6
2

.  eV
.

(a) Thus, in the ground state where n = 1, we have E = 13 6.  eV .

(b) In the n = 3  level, E = =
13 6

1 51
.

.
 eV

9
 eV .

P42.9 (b)
1 1 1

1 097 10
1

2
1

62 2
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P42.10 Starting with
1
2 2

2
2

m v
k e

re
e=

we have v
k e
m r

e

e

2
2

=

and using r
n
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e e
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k e

m n m k e
n

e

e e e
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P42.11 Each atom gives up its kinetic energy in emitting a photon,

so
1
2

6 626 10 3 00 10

1 216 10
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×
= ×
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 J

e je j
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v = ×4 42 104.  m s .

P42.12 The batch of excited atoms must make these six transitions to get back to state one: 2 1→ , and also
3 2→  and 3 1→ , and also 4 3→  and 4 2→  and 4 1→ . Thus, the incoming light must have just
enough energy to produce the 1 4→  transition. It must be the third line of the Lyman series in the
absorption spectrum of hydrogen. The absorbing atom changes from energy

Ei = − = −
13 6

13 6
.

.
 eV

1
 eV2  to E f = − = −

13 6
0 850

.
.

 eV
4

 eV2 ,

so the incoming photons have wavelength
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P42.13 (a) The energy levels of a hydrogen-like ion whose charge number
is Z are given by

E
Z
nn = −13 6

2

2.  eVa f .

Thus for Helium Z = 2a f, the energy levels are

E
n

nn = − =
54 4

1 2 32
.

, , ,
 eV … .

(b) For He+ , Z = 2 , so we see that the ionization energy (the
energy required to take the electron from the n = 1 to the n = ∞
state) is

E E E= − = −
−

=∞ 1

2

20
13 6 2

1
54 4

.
.

 eV
 eV

a fa f
a f .

FIG. P42.13
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*P42.14 (a)
1 1 12
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Hence the ion is O7+ .
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Setting k = 2 3 4, ,  gives λ = 41 0.  nm,  33.8 nm,  30.4 nm .

P42.15 (a) The speed of the moon in its orbit is v
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2 89 10
1 055 10

2 74 10
34

34
68.

.
.

 kg m s
 J s

2

.

(c) We have n L mvr m
GM

r
re= = = = FHG

I
KJ

1 2

,

so r
m GM

n Rn
e

= =
=2

2
2 2  and 

∆r
r

n R n R

n R
n
n

=
+ −

=
+1 2 12 2

2 2

a f

which is approximately equal to 
2

7 30 10 69

n
= × −. .
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Section 42.4 The Quantum Model of the Hydrogen Atom

P42.16 The reduced mass of positronium is less than hydrogen, so the photon energy will be less for
positronium than for hydrogen. This means that the wavelength of the emitted photon will be
longer than 656.3 nm. On the other hand, helium has about the same reduced mass but more charge
than hydrogen, so its transition energy will be larger, corresponding to a wavelength shorter than
656.3 nm.

All the factors in the given equation are constant for this problem except for the reduced mass
and the nuclear charge. Therefore, the wavelength corresponding to the energy difference for the
transition can be found simply from the ratio of mass and charge variables.

For hydrogen, µ =
+

≈
m m

m m
mp e

p e
e . The photon energy is ∆E E E= −3 2 .

Its wavelength is λ = 656 3.  nm, where λ = =
c
f

hc
E∆

.

(a) For positronium, µ =
+

=
m m

m m
me e

e e

e

2

so the energy of each level is one half as large as in hydrogen, which we could call
“protonium”. The photon energy is inversely proportional to its wavelength , so for
positronium,

λ µ32 2 656 3 1 31= =. . nm  ma f  (in the infrared region).

(b) For He+ , µ ≈ me , q e1 = , and q e2 2= ,

so the transition energy is 2 42 =  times larger than hydrogen.

Then, λ 32
656

4
164= FHG

I
KJ = nm  nm  (in the ultraviolet region).

P42.17 (a) ∆ ∆x p ≥
=
2

 so if ∆x r= , ∆p
r

≥
=
2

.

(b) Choosing ∆p
r

≈
=

, K
p
m

p

m m re e e

= ≈ =
2 2 2

22 2 2

∆b g =

U
k e
r
e=

− 2

, so E K U
m r

k e
re

e= + ≈ −
=2

2

2

2
.

(c) To minimize E,

dE
dr m r

k e
r

r
m k e

a
e

e

e e

= − + = → = =
= =2

3

2

2

2

2 00  (the Bohr radius).

Then, E
m

m k e
k e

m k e m k e

e

e e
e

e e e e=
F
HG

I
KJ −

F
HG

I
KJ = − = −

=
= = =

2 2

2

2
2

2

2

2 4

22 2
13 6.  eV .
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Section 42.5 The Wave Functions of Hydrogen

P42.18 ψ
π

1

0
3

1
0

s
r ar

a
ea f = − (Eq. 42.22)

P r
r
a

es
r a

1

2

0
3

24
0a f = − (Eq. 42.25)

FIG. P42.18

P42.19 (a) ψ π ψ π
π

2 2 2

0 0
3

2 2

0

4 4
1

0dV r dr
a

r e drr az z z= =
F
HG
I
KJ

∞
−

∞

Using integral tables, ψ 2

0
2

2 2
0

0
2

0 0
2

0
22

2
2

2
10dV

a
e r a r

a
a

ar az = − + +
F
HG

I
KJ

L
N
MM

O
Q
PP = −
F
HG
I
KJ −
F
HG
I
KJ =

−

∞

so the wave function as given is normalized.

(b) P r dr
a

r e dra a
a

a
r a

a

a

0 0

0

0

0

0

0

2 3
2 2

2

3 2

0
3

2 2

2

3 2

4 4
1

  2→
−= =

F
HG
I
KJz zπ ψ π

π

Again, using integral tables,

P
a

e r a r
a

a
e

a
e

a
a a

r a

a

a

0 0
0

0

0
2

2
2 17

4
5

4
0 497

0
2

2 2
0

0
2

2

3 2

0
2

3 0
2

1 0
2

 2 3  2→
− − −= − + +
F
HG

I
KJ

L
N
MM

O
Q
PP = −

F
HG
I
KJ −
F
HG
I
KJ

L
N
MM

O
Q
PP = . .

P42.20 ψ = −1
3

1

2 0
3 2

0

2 0

a

r
a

e r a

b g
so P r r

r
a

er
r a= = −4 4

24
2 2 2

2

0
5

0π ψ π .

Set
dP
dr a

r e r
a

er a r a= + −
F
HG
I
KJ

L
NMM

O
QPP
=− −4

24
4

1
0

0
5

3 4

0

0 0
π

.

Solving for r, this is a maximum at r a= 4 0 .

P42.21 ψ
π

= −1

0
3

0

a
e r a 2 2 2

0
5 0

0

r
d
dr r a

e
ra

r aψ

π
ψ=

−
= −−

d
dr a

e
a

r a
2

2
0
7

0
2

1 1
0

ψ

π
ψ= =− − −

F
HG

I
KJ −

∈
=

=2

0
2

0

2

02
1 2

4m a ra
e

r
E

e
ψ

π
ψ ψ

But a
m ee

0

2
0

2

4
=

∈= πb g

so −
∈

=
e

a
E

2

0 08π

or E
k e

a
e= −

2

02
.

This is true, so the Schrödinger equation is satisfied.
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P42.22 The hydrogen ground-state radial probability density is

P r r
r
a

r
asa f = = −
F
HG
I
KJ4

4 22
1

2
2

0
3

0
π ψ exp .

The number of observations at 2 0a  is, by proportion

N
P a

P a

a

a

e
e

e
a a

a a= = = =
−

−
−1 000

2

2
1 000

2

2
1 000 16 7970

0

0
2

0
2

4
3

0 0

0 0

b g
b g

b g
b g

a f  times .

Section 42.6 Physical Interpretation of the Quantum Numbers

Note: Problems 17 and 25 in Chapter 29 and Problem 68 in Chapter 30 can be assigned with this section.

P42.23 (a) In the 3d subshell, n = 3  and A = 2 ,

we have n 3 3 3 3 3 3 3 3 3 3
A 2 2 2 2 2 2 2 2 2 2
mA +2 +2 +1 +1 0 0 –1 –1 –2 –2
ms +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 +1/2 –1/2

(A total of 10 states)

(b) In the 3p subshell, n = 3  and A = 1 ,

we have n 3 3 3 3 3 3
A 1 1 1 1 1 1
mA +1 +1 +0 +0 –1 –1
ms +1/2 –1/2 +1/2 –1/2 +1/2 –1/2

(A total of 6 states)

P42.24 (a) For the d state, A = 2 , L = = × ⋅−6 2 58 10 34= .  J s .

(b) For the f state, A = 3 , L = + = = × ⋅−A A = =1 12 3 65 10 34a f .  J s .

P42.25 L = +A A =1a f : 4 714 10 1
6 626 10

2
34

34

.
.

× = +
×F

HG
I
KJ

−
−

A Aa f
π

A A + =
×

×
= × ≈ = +

−

−
1

4 714 10 2

6 626 10
1 998 10 20 4 4 1

4 2 2

34 2
1a f e j a f

e j
a f.

.
.

π

so A = 4 .
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P42.26 The 5th excited state has n = 6 , energy
−

= −
13 6

0 378
.

.
 eV

36
 eV .

The atom loses this much energy:
hc
λ
=

× ⋅ ×

× ×
=

−

− −

6 626 10 3 00 10

1 090 10 1 60 10
1 14

34 8

9 19

. .

.
.

 J s  m s

 m  J eV
 eV

e je j
e je j

to end up with energy − − = −0 378 1 14 1 52. . . eV  eV  eV

which is the energy in state 3: − = −
13 6

1 51
.

.
 eV

3
 eV3 .

While n = 3 , A  can be as large as 2, giving angular momentum A A = =+ =1 6a f .

P42.27 (a) n = 1 : For n = 1 , A = 0 , mA = 0 , ms = ±
1
2

n A mA ms

1 0 0 –1/2
1 0 0 +1/2

Yields 2 sets; 2 2 1 22 2n = =a f
(b) n = 2 : For n = 2 ,

we have

n A mA ms

2 0 0 ±1/2
2 1 –1 ±1/2
2 1 0 ±1/2
2 1 1 ±1/2

yields 8 sets; 2 2 2 82 2n = =a f
Note that the number is twice the number of mA  values. Also, for each A  there are 2 1A +a f
different mA  values. Finally, A  can take on values ranging from 0 to n −1 .

So the general expression is number = +
−

∑ 2 2 1
0

1
Aa f

n
.

The series is an arithmetic progression: 2 6 10 14+ + + …

the sum of which is number = + −
n

a n d
2

2 1a f

where a = 2 , d = 4 : number = + − =
n

n n
2

4 1 4 2 2a f .

(c) n = 3 : 2 1 2 3 2 5 2 6 10 18a f a f a f+ + = + + = 2 2 3 182 2n = =a f

(d) n = 4 : 2 1 2 3 2 5 2 7 32a f a f a f a f+ + + = 2 2 4 322 2n = =a f

(e) n = 5 : 32 2 9 32 18 50+ = + =a f 2 2 5 502 2n = =a f
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P42.28 For a 3d state, n = 3  and A = 2 .

Therefore, L = + = = × ⋅−A A = =1 6 2 58 10 34a f .  J s

mA  can have the values –2, –1, 0, 1, and 2

so Lz  can have the values  and − −2 0 2= = = =, , , .

Using the relation cosθ =
L
L

z

we find the possible values of θ 145 114 90 0 65 9 35 3° ° ° ° °, , . , . , . and .

P42.29 (a) Density of a proton: ρ
π

= =
×

×
= ×

−

−

m
V

1 67 10

1 00 10
3 99 10

27

15 3
17.

.
.

 kg

4 3  m
 kg m3

b g e j
.

(b) Size of model electron: r
m

=
F
HG
I
KJ =

×

×

F
H
GG

I
K
JJ = ×

−
−3

4

3 9 11 10

4 3 99 10
8 17 10

1 3 31

17

1 3

17

π ρ π

.

.
.

 kg

 kg m
 m

3

e j
e j

.

(c) Moment of inertia: I mr= = × × = × ⋅− − −2
5

2
5

9 11 10 8 17 10 2 43 102 31 17 2 63. . . kg  m  kg m2e je j

L I
Iv
rz = = =ω

=
2

.

Therefore, v
r
I

= =
× ⋅ ×

× × ⋅
= ×

− −

−

=
2

6 626 10 8 17 10

2 2 2 43 10
1 77 10

34 17

63
12

. .

.
.

 J s  m

 kg m
 m s

2

e je j
e jπ

.

(d) This is 5 91 103. ×  times larger  than the speed of light.

P42.30 In the N shell, n = 4 . For n = 4 , A  can take on values of 0, 1, 2, and 3. For each value of A , mA  can be
−A  to A  in integral steps. Thus, the maximum value for mA  is 3. Since L mz = A= , the maximum

value for Lz  is Lz = 3= .

P42.31 The 3d subshell has A = 2 , and n = 3 . Also, we have s = 1 .

Therefore, we can have n m s ms= = = − − = = −3 2 2 1 0 1 2 1 1 0 1, ; , , , , ; ; , ,A A and 

leading to the following table:

n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
mA –2 –2 –2 –1 –1 –1 0 0 0 1 1 1 2 2 2
s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ms –1 0 1 –1 0 1 –1 0 1 –1 0 1 –1 0 1
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Section 42.7 The Exclusion Principle and the Periodic Table

P42.32 (a) 1 2 22 2 4s s p

(b) For the 1s electrons, n = 1 , A = 0 , mA = 0 , ms = +
1
2

and −
1
2

.

For the two 2s electrons, n = 2 , A = 0 , mA = 0 , ms = +
1
2

and −
1
2

.

For the four 2p electrons, n = 2 ; A = 1 ; mA = −1 , 0, or 1; and ms = +
1
2

or −
1
2

.

P42.33 The 4s subshell fills first , for potassium and calcium, before the 3d subshell starts to fill for

scandium through zinc. Thus, we would first suppose that Ar 3 44 2d s  would have lower energy

than Ar 3 45 1d s . But the latter has more unpaired spins, six instead of four, and Hund’s rule

suggests that this could give the latter configuration lower energy. In fact it must, for Ar 3 45 1d s  is
the ground state for chromium.

P42.34 Electronic configuration: Sodium to Argon

1 2 22 2 6s s p +3 1s → Na11

+3 2s → Mg12

+3 32 1s p → Al13

+3 32 2s p → Si14

+3 32 3s p → P15

+3 32 4s p → S16

+3 32 5s p → Cl17

+3 32 6s p → Ar18

1 2 2 3 3 42 2 6 2 6 1s s p s p s → K19

*P42.35 In the table of electronic configurations in the text, or on a periodic table, we look for the element
whose last electron is in a 3p state and which has three electrons outside a closed shell. Its electron
configuration then ends in 3 32 1s p . The element is aluminum .
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P42.36 (a) For electron one and also for electron two, n = 3  and A = 1 . The possible states are listed
here in columns giving the other quantum numbers:

electron mA 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

one ms

1
2

1
2

1
2

1
2

1
2

−
1
2

−
1
2

−
1
2

−
1
2

−
1
2

1
2

1
2

1
2

1
2

1
2

electron mA 1 0 0 –1 –1 1 0 0 –1 –1 1 1 0 –1 –1

two ms
−

1
2

1
2

−
1
2

1
2

−
1
2

1
2

1
2

−
1
2

1
2

−
1
2

1
2

−
1
2

−
1
2

1
2

−
1
2

electron mA 0 0 0 0 0 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

one ms
−

1
2

−
1
2

−
1
2

−
1
2

−
1
2

1
2

1
2

1
2

1
2

1
2

−
1
2

−
1
2

−
1
2

−
1
2

−
1
2

electron mA 1 1 0 –1 –1 1 1 0 0 –1 1 1 0 0 –1

two ms

1
2

−
1
2

1
2

1
2

−
1
2

1
2

−
1
2

1
2

−
1
2

−
1
2

1
2

−
1
2

1
2

−
1
2

1
2

There are thirty allowed states, since electron one can have any of three possible values for
mA  for both spin up and spin down, amounting to six states, and the second electron can
have any of the other five states.

(b) Were it not for the exclusion principle, there would be 36  possible states, six for each

electron independently.

P42.37 (a) n + A 1 2 3 4 5 6 7
subshell 1s 2s 2p , 3s 3p , 4s 3d , 4p , 5s 4d , 5p , 6s 4f , 5d , 6p , 7s

(b) Z = 15 : Filled subshells: 1 2 2 3s s p s, , ,
(12 electrons)

Valence subshell: 3 electrons in 3p subshell
Prediction: Valence = +3  or –5
Element is phosphorus, Valence = +3  or –5 (Prediction correct)

Z = 47 : Filled subshells: 1 2 2 3 3 4 3 4 5s s p s p s d p s, , , , , , , ,

(38 electrons)
Outer subshell: 9 electrons in 4d subshell
Prediction: Valence = −1
Element is silver, (Prediction fails) Valence is +1

Z = 86 : Filled subshells: 1 2 2 3 3 4 3 4 5 4 5 6s s p s p s d p s d p s, , , , , , , , , , , ,
4 5 6f d p, ,
(86 electrons)

Prediction Outer subshell is full: inert gas
Element is radon, inert (Prediction correct)

P42.38 Listing subshells in the order of filling, we have for element 110,

1 2 2 3 3 4 3 4 5 4 5 6 4 5 6 7 5 62 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 14 8s s p s p s d p s d p s f d p s f d .

In order of increasing principal quantum number, this is

1 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 72 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 8 2s s p s p d s p d f s p d f s p d s .
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*P42.39 In the ground state of sodium, the outermost electron is in an s state. This state is spherically
symmetric, so it generates no magnetic field by orbital motion, and has the same energy no matter
whether the electron is spin-up or spin-down. The energies of the states 3pA  and 3pB  above 3s are

hf
hc

1 = λ
 and hf

hc
2

2
=
λ

.

The energy difference is

2
1 1

1 2
µ

λ λBB hc= −
F
HG

I
KJ

so B
hc

B
= −
F
HG

I
KJ =

× ⋅ ×

× ×
−

×
F
HG

I
KJ

−

− − −2
1 1 6 63 10 3 10

2 9 27 10

1
588 995 10

1
589 592 101 2

34 8

24 9 9µ λ λ

.

. . .

 J s  m s

 J T  m  m

e je j
e j

B = 18 4.  T .

Section 42.8 More on Atomic Spectra: Visible and X-ray

P42.40 (a) n m= = =3 0 0, ,A A

n m= = = −3 1 1 0 1, , , ,A A

For n m= = = − −3 2 2 1 0 1 2, , , , , ,A A

(b) ψ 300  corresponds to E
Z E

n300

2
0

2

2

2

2 13 6

3
6 05= − = − = −

.
.

a f
 eV .

ψ ψ ψ31 1 310 311− , ,  have the same energy since n is the same.

ψ ψ ψ ψ ψ32 2 32 1 320 321 322− −, , , ,  have the same energy since n is the same.

All states are degenerate.

P42.41 E
hc

e V= =
λ

∆ :
6 626 10 3 00 10

10 0 10
1 60 10

34 8

9
19

. .

.
.

× ⋅ ×

×
= ×

−

−
−

 J s  m s

 m

e je j
e j e j∆V

∆V = 124 V

P42.42 Some electrons can give all their kinetic energy K e Ve = ∆  to the creation of a single photon of x-
radiation, with

hf
hc

e V

hc
e V V V

= =

= =
× ⋅ ×

×
=

⋅
−

−

λ

λ

∆

∆ ∆ ∆

6 626 1 10 2 997 9 10

1 602 2 10

1 240
34 8

19

. .

.

 J s  m s

 C

 nm Ve je j
e j
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P42.43 Following Example 42.9 Eγ = − = × = × −3
4

42 1 13 6 1 71 10 2 74 102 4 15a f a f. . . eV  eV  J

f = ×4 14 1018.  Hz

and λ = 0 072 5.  nm .

P42.44 E
hc

= =
⋅

=
⋅

λ λ λ
1 240 1 240 eV nm  keV nm.

For λ1 0 018 5= .  nm , E = 67 11.  keV

λ 2 0 020 9= .  nm , E = 59 4.  keV

λ 3 0 021 5= .  nm , E = 57 7.  keV

The ionization energy for the K shell is 69.5 keV, so the ionization
energies for the other shells are:

FIG. P42.44

L shell  keV= 11 8. M shell  keV= 10 1. N shell  keV= 2 39. .

P42.45 The Kβ  x-rays are emitted when there is a vacancy in the ( n = 1 ) K shell and an electron from the

( n = 3 ) M shell falls down to fill it. Then this electron is shielded by nine electrons originally and by
one in its final state.

hc Z Z

Z Z
Z Z

Z

λ
= −

−
+

−

× ⋅ ×

× ×
= − + − + − +

F
HG

I
KJ

× = −
F
HG

I
KJ

−

− −

13 6 9

3

13 6 1

1

6 626 10 3 00 10

0 152 10 1 60 10
13 6

9
18

9
81
9

2 1

8 17 10 13 6
8

9
8

2

2

2

2

34 8

9 19

2
2

3
2

. .

. .

. .
.

. .

a f a f

e je j
e je j

a f

a f

 eV  eV

 J s  m s

 m  J eV
 eV

 eV  eV

so 601
8

9
8

2

= −
Z

and Z = 26 Iron .

Section 42.9 Spontaneous and Stimulated Transitions

Section 42.10 Lasers

P42.46 The photon energy is E E
hc

4 3 20 66 18 70 1 96− = − = =. . .a f eV  eV
λ

λ =
× ⋅ ×

×
=

−

−

6 626 10 3 00 10

1 96 1 60 10
633

34 8

19

. .

. .

 J s  m s

 J
 nm

e je j
e j

.

P42.47 f
E
h e

= =
× ⋅

×F
HG

I
KJ ⋅
F
HG

I
KJ = ×−

−
−0 117

6 630 10
1 60 10

2 82 1034

19
13 1.

.
.

.
 eV

 J s
 C 1 J

1 V C
 s

λ µ= =
×

×
=−

c
f

3 00 10
2 82 10

10 6
8

13 1

.
.

.
 m s
 s

 m , infrared
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P42.48 (a) I =
×

× ×L
NM

O
QP
= ×

−

− −

3 00 10

1 00 10 15 0 10
4 24 10

3

9 6 2
15

.

. .
.

 J

 s  m
 W m2e j

e j e jπ

(b) 3 00 10
0 600 10

30 0 10
1 20 10 7 503

9 2

6 2
12.

.

.
. .×

×

×
= × =−

−

−

− J
 m

 m
 J  MeVe j e j

e j

P42.49 E t= = × × =−P ∆ 1 00 10 1 00 10 0 010 06 8. . . W  s  Je je j

E hf
hc

γ λ
= = =

× ×

×
= ×

−

−
−

6 626 10 3 00 10

694 3 10
2 86 10

34 8

9
19

. .

.
.

e je j
 J  J

N
E

E
= =

×
= ×−

γ

0 010 0
2 86 10

3 49 1019
16.

.
.  photons

*P42.50 (a)
N
N

N e

N e
e eg

E k

g
E k

E E k hc k
B

B

B B3

2

300

300
300 300

3

2

3 2= = =
− ⋅

− ⋅
− − ⋅ − ⋅

 K

 K
 K  K

b g

b g
b g b g b gλ

where λ is the wavelength of light radiated in the 3 2→  transition.

N
N

e

N
N

e

3

2

6 63 10 3 10 632 8 10 1.38 10 300

3

2

75 9 33

34 8 9 23

1 07 10

=

= = ×

− × ⋅ × × ×

− −

− − −. .

. .

 J s  m s  m  J K  Ke je j e je ja f

(b)
N
N

eu E E k Tu B

A

A= − −b g

where the subscript u refers to an upper energy state and the subscript A  to a lower energy
state.

Since E E E
hc

u − = =A photon λ
N
N

eu hc k TB

A
= − λ .

Thus, we require 1 02. = −e hc k TBλ

or ln .
.

. .
1 02

6 63 10 3 10

632 8 10 1 38 10

34 8

9 23
a f e je j

e je j
= −

× ⋅ ×

× ×

−

−

 J s  m s

 m  J K T

T = −
×

= − ×
2 28 10

1 02
1 15 10

4
6.

ln .
.a f  K .

A negative-temperature state is not achieved by cooling the system below 0 K, but by
heating it above T = ∞ , for as T →∞  the populations of upper and lower states approach
equality.

(c) Because E Eu − >A 0 , and in any real equilibrium state T > 0 ,

e E E k Tu B− − <Ab g 1 and N Nu < A .

Thus, a population inversion cannot happen in thermal equilibrium.
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*P42.51 (a) The light in the cavity is incident perpendicularly on the
mirrors, although the diagram shows a large angle of
incidence for clarity. We ignore the variation of the index
of refraction with wavelength. To minimize reflection at
a vacuum wavelength of 632.8 nm, the net phase
difference between rays (1) and (2) should be 180°. There
is automatically a 180° shift in one of the two rays upon
reflection, so the extra distance traveled by ray (2) should
be one whole wavelength:

1 2

SiO2

FIG. P42.51

2

2
632 8

217

t
n

t
n

=

= = =

λ

λ .  nm
2 1.458

 nma f

(b) The total phase difference should be 360°, including contributions of 180° by reflection and
180° by extra distance traveled

2
2

4
543

93 1

t
n

t
n

=

= = =

λ

λ  nm
4 1.458

 nma f .

Additional Problems

*P42.52 (a) Using the same procedure that was used in the Bohr model of the hydrogen atom, we apply
Newton’s second law to the Earth. We simply replace the Coulomb force by the
gravitational force exerted by the Sun on the Earth and find

G
M M

r
M

v
r

S E
E2

2

= (1)

where v is the orbital speed of the Earth. Next, we apply the postulate that angular
momentum of the Earth is quantized in multiples of = :

M vr n nE = == …1 2 3, , ,b g .
Solving for v gives

v
n

M rE
=

=
. (2)

Substituting (2) into (1), we find

r
n

GM MS E

=
2 2

2
=

. (3)

continued on next page
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(b) Solving (3) for n gives

n GM r
M

S
E=
=

. (4)

Taking MS = ×1 99 1030.  kg , and ME = ×5 98 1024.  kg , r = ×1 496 1011.  m ,

G = × −6 67 10 11.  Nm kg2 2 , and = = × −1 055 10 34.  Js , we find

n = ×2 53 1074. .

(c) We can use (3) to determine the radii for the orbits corresponding to the quantum numbers
n and n +1 :

r
n

GM Mn
S E

=
2 2

2
=

and r
n

GM Mn
S E

+ =
+

1

2 2

2

1a f =
.

Hence, the separation between these two orbits is

∆r
GM M

n n
GM M

n
S E S E

= + − = +
= =2

2
2 2

2

21 2 1a f a f .
Since n is very large, we can neglect the number 1 in the parentheses and express the
separation as

∆r
GM M

n
S E

≈ = × −=2

2
632 1 18 10a f .  m .

This number is much smaller than the radius of an atomic nucleus ~10 15−  me j , so the

distance between quantized orbits of the Earth is too small to observe.

*P42.53 (a) ∆E
e B
me

= =
× × ⋅

×

⋅
⋅ ⋅
F
HG

I
KJ

⋅

⋅
F
HG
I
KJ = ×

=

− −

−
−= 1 60 10 5 26

2 9 11 10
9 75 10

609

19 34

31
23

. .

.
.

 C 6.63 10  J s  T

 kg

N s
T C m

kg m
N s

 J

 eV

2

e ja f
e jπ

µ

(b) k TB = × × = × =− − −1 38 10 80 10 1 10 10 6 9023 3 24. . . J K  K  J  eVe je j µ

(c) f
E
h

= =
×
× ⋅

= ×
−∆ 9 75 10

1 47 10
23

11.
.

 J
6.63 10  J s

 Hz-34

λ = =
×

×
= × −c

f
3 10

1 47 10
2 04 10

8

11
3 m s

 Hz
 m

.
.

*P42.54 (a) Probability = ′ ′ = ′ ′
∞

− ′
∞z zP r dr

a
r e drs

r

r a

r
1

0
3

2 24
0a f = −

′
+

′
+

F
HG

I
KJ

L
N
MM

O
Q
PP

− ′

∞
2 2

1
2

0
2

0

2 0
r
a

r
a

e r a

r

,

using integration by parts, or Example 42.5

= + +
F
HG

I
KJ

−2 2
1

2

0
2

0

2 0
r

a
r

a
e r a

continued on next page
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(b)
1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

Probability Curve for Hydrogen

r /a0

FIG. P42.66

(c) The probability of finding the electron inside or outside the sphere of radius r is 
1
2

.

∴ + +
F
HG

I
KJ =−2 2

1
1
2

2

0
2

0

2 0
r

a
r

a
e r a  or z z ez2 2 2+ + =  where z

r
a

=
2

0

One can home in on a solution to this transcendental equation for r on a calculator, the
result being r a= 1 34 0.  to three digits.

P42.55 Let r represent the distance between the electron and the positron. The two move in a circle of

radius 
r
2

 around their center of mass with opposite velocities. The total angular momentum of the

electron-positron system is quantized to according to

L
mvr mvr

nn = + =
2 2

=

where n = 1 2 3, , , … .

For each particle, F ma∑ =  expands to
k e
r

mv
r

e
2

2

2

2
= .

We can eliminate v
n
mr

=
=

 to find
k e

r
mn
m r

e
2 2 2

2 2
2

=
=

.

So the separation distances are r
n

mk e
a n n

e

= = = × −2
2 1 06 10

2 2

2 0
2 10 2=

.  me j .

The orbital radii are 
r

a n
2 0

2= , the same as for the electron in hydrogen.

The energy can be calculated from E K U mv mv
k e

r
e= + = + −

1
2

1
2

2 2
2

.

Since mv
k e

r
e2

2

2
= , E

k e
r

k e
r

k e
r

k e
a n n

e e e e= − = − =
−

= −
2 2 2 2

0
2 22 2 4

6 80.  eV
.

P42.56 (a) The energy difference between these two states is equal to the energy that is absorbed.

Thus, E E E= − =
−

−
−

= = × −
2 1

1813 6
4

13 6
1

10 2 1 63 10
. .

. .
 eV  eV

 eV  J
a f a f

.

(b) E k TB=
3
2

 or T
E
kB

= =
×

×
= ×

−

−

2
3

2 1 63 10

3 1 38 10
7 88 10

18

23
4

.

.
.

 J

 J K
 K

e j
e j

.
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P42.57 hf E
mk e
h n n

e= =
−

−
F
HG

I
KJ

∆
4

2
1

1

12 2 4

2 2 2
π

a f

f
mk e
h

n

n n
e=

−

−

F
HG

I
KJ

2 2 1

1

2 2 4

3 2 2

π

a f

As n approaches infinity, we have f approaching
2 22 2 4

3 3
π mk e

h n
e

The classical frequency is f
v

r
k e
m r
e= =

2
1

2
12

3 2π π

where r
n h
mk ee

=
2 2

24π

Using this equation to eliminate r from the expression for f, f
mk e
h n

e=
2 22 2 4

3 3
π

P42.58 (a) The energy of the ground state is: E
hc

1
1 240

8 16= − = −
⋅

= −
λ series limit

eV nm
152.0 nm

 eV. .

From the wavelength of the Lyman α line: E E
hc

2 1
1 240

6 12− = =
⋅

=
λ

 nm eV
202.6 nm

 eV.

E E2 1 6 12 2 04= + = −. . eV  eV .

The wavelength of the Lyman β line gives: E E3 1
1 240

7 26− =
⋅

=
 nm eV

170.9 nm
 eV.

so E3 0 902= − .  eV .

Next, using the Lyman γ line gives: E E4 1
1 240

7 65− =
⋅

=
 nm eV

162.1 nm
 eV.

and E4 0 508= − .  eV .

From the Lyman δ line, E E5 1
1 240

7 83− =
⋅

=
 nm eV

158.3 nm
 eV.

so E5 0 325= − .  eV .

(b) For the Balmer series,
hc

E Eiλ
= − 2 , or λ =

⋅
−

1 240

2

 nm eV
E Ei

.

For the α line, E Ei = 3  and so λ a =
⋅

− − −
=

1 240
0 902 2 04

1 090
 nm eV

 eV  eV
 nm

. .a f a f .

Similarly, the wavelengths of the β line, γ line, and the short wavelength limit are found to
be: 811 nm , 724 nm , and 609 nm .

continued
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(c) Computing 60.0% of the wavelengths of the spectral lines shown on the energy-level
diagram gives:

0 600 202 6 122. .  nm  nma f = , 0 600 170 9 103. .  nm  nma f = , 0 600 162 1 97 3. . . nm  nma f = ,

0 600 158 3 95 0. . . nm  nma f = , and 0 600 152 0 91 2. . . nm  nma f =

These are seen to be the wavelengths of the α, β, γ, and δ lines as well as the short
wavelength limit for the Lyman series in Hydrogen.

(d) The observed wavelengths could be the result of Doppler shift when the source moves away
from the Earth. The required speed of the source is found from

′
=

′
=

−

+
=

f
f

v c

v c
λ
λ

1

1
0 600

b g
b g . yielding v c= 0 471. .

P42.59 The wave function for the 2s state is given by Eq. 42.26: ψ
π2

0

3 2

0

21
4 2

1
2 0

s
r ar

a
r
a

ea f = F
HG
I
KJ −
L
NM
O
QP

− .

(a) Taking r a= = × −
0

100 529 10.  m

we find ψ
π2 0 10

3 2
1 2 14 3 21

4 2
1

0 529 10
2 1 1 57 10s a eb g =

×
F
HG

I
KJ − = ×−

− −

.
.

 m
 m .

(b) ψ 2 0
2 14 3 2 2 28 31 57 10 2 47 10s ab g e j= × = ×− −. . m  m

(c) Using Equation 42.24 and the results to (b) gives P a a as s2 0 0
2

2 0
2 8 14 8 69 10b g b g= = × −π ψ .  m .

*P42.60 From Figure 42.20, a typical ionization energy is 8 eV. For internal energy to ionize most of the
atoms we require

3
2

8k TB =  eV : T =
× ×

×

−

−

2 8 1 60 10

3 1 38 10

19

23

.

.
~

 J

 J K
 between 10  K and 10  K4 5e j

e j
.

P42.61 (a) 3 00 10 14 0 10 4 208 12. . .× × =− m s  s  mme je j

(b) E
hc

= = × −

λ
2 86 10 19.  J

N =
×

= ×−
3 00

1 05 1019
19.

.
 J

2.86 10  J
 photons

(c) V = =4 20 3 00 1192. . mm  mm  mm3a f a fπ

n =
×

= × −1 05 10
119

8 82 10
19

16 3.
.  mm
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P42.62 (a) The length of the pulse is ∆ ∆L c t= .

(b) The energy of each photon is E
hc

γ λ
=  so N

E
E

E
hc

= =
γ

λ
.

(c) V L
d

= ∆ π
2

4
n

N
V c t d

E
hc

= =
F
HG

I
KJ
F
HG
I
KJ

4
2∆ π

λ

*P42.63 The fermions are described by the exclusion principle. Two of them, one spin-up and one spin-
down, will be in the ground energy level, with

d LNN = =
1
2
λ , λ = =2L

h
p

, and p
h
L

=
2

K mv
p
m

h
mL

= = =
1
2 2 8

2
2 2

2 .

The third must be in the next higher level, with

d
L

NN = =
2 2

λ
, λ = L , and p

h
L

= K
p
m

h
mL

= =
2 2

22 2
.

The total energy is then
h
mL

h
mL

h
mL

h
mL

2

2

2

2

2

2

2

28 8 2
3

4
+ + = .

P42.64 ∆
∆

z
at F

m
t

dB dz

m
x

v
z z z= =
F
HG
I
KJ = F

HG
I
KJ

2

0

2

0

2

2
1
2 2

µ b g
and µ z

e

e
m

=
=

2

dB
dz

m z v m

x e

dB
dz

z e

z

= =
× × ×

× × ⋅

=

− − −

− −

2 2 2 108 1 66 10 10 10 2 9 11 10

1 00 1 60 10 1 05 10

0 389

0
2

2

27 3 4 31

19 34

∆

∆

a f b g a fe je je je j
e je je j=

. .

. . .

.

 kg  m  m s  kg

 m  C  J s

 T m

2 2

2

P42.65 We use ψ π2 0
3 1 2

0

21
4

2 2 0
s

r ar a
r
a

ea f e j= −
F
HG
I
KJ

− − .

By Equation 42.24, P r r
r
a

r
a

e r aa f = =
F
HG
I
KJ −
F
HG
I
KJ

−4
1
8

22 2
2

0
3

0

2

0π ψ .

(a)
dP r

dr
r

a
r
a

r
a a

r
a

r
a

r
a a

e r aa f
= −

F
HG
I
KJ −

F
HG
I
KJ −
F
HG
I
KJ − −
F
HG
I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PP =−1

8
2

2
2 1

2 2
1

0
0
3

0

2 2

0
3

0 0

2

0
3

0

2

0

0

or 
1
8

2 2 2
2

2 0
0
3

0 0 0 0 0

0
r

a
r
a

r
a

r
a

r
a

r
a

e r aF
HG
I
KJ −
F
HG
I
KJ −
F
HG
I
KJ − − −

F
HG
I
KJ

L
NMM

O
QPP

=− .

The roots of 
dP
dr

= 0  at r = 0 , r a= 2 0  and r = ∞  are minima with P ra f = 0 .

continued
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Therefore we require ..... = −
F
HG
I
KJ +
F
HG
I
KJ =4

6
0

0 0

2
r

a
r
a

with solutions r a= ±3 5 0e j .

We substitute the last two roots into P ra f to determine the most probable value:

When r a a= − =3 5 0 763 90 0e j . , P r
a

a f = 0 051 9

0

.
.

When r a a= + =3 5 5 2360 0e j . , P r
a

a f = 0 191

0

.
.

Therefore, the most probable value of r is 3 5 5 2360 0+ =e ja a. .

(b) P r dr
r
a

r
a

e drr aa f
0

2

0
3

0

2

0

1
8

2 0

∞
−

∞z z= F
HG
I
KJ −
F
HG
I
KJ

Let u
r
a

=
0

, dr a du= 0 ,

P r dr u u u e dr u u u e du u u u eu u ua f e j e j e j
0

2 2

0

4 3 2

0

4 2

0

1
8

4 4
1
8

4 4
1
8

4 8 8 1
∞

−
∞

−
∞

−
∞

z z z= − + = − + = − + + + =

This is as required for normalization.

P42.66 E
hc

E= =
⋅

=
λ λ

1 240 eV nm
∆

λ1 310=  nm, so ∆E1 4 00= .  eV

λ 2 400=  nm, ∆E2 3 10= .  eV

λ 3 1 378=  nm, ∆E3 0 900= .  eV

and the ionization energy = 4 10.  eV .
FIG. P42.66

The energy level diagram having the fewest levels and consistent with these energies is shown at
the right.

P42.67 With one vacancy in the K shell, excess energy

∆E Z≈ − − −FHG
I
KJ =1 13 6

1
2

1
1

5 402
2 2a f a f. . eV  keV .

We suppose the outermost 4s electron is shielded by 22 electrons inside its orbit:

Eionization
 eV

 eV≈ =
2 13 6

4
3 40

2

2

.
.

a f
.

Note the experimental ionization energy is 6.76 eV.

K E E= − ≈∆ ionization  keV5 39. .
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P42.68 (a) The configuration we may model as SN  NS  has higher energy than SN  SN . The

higher energy state has antiparallel magnetic moments, so it has parallel spins  of the

oppositely charged particles.

(b) E
hc

= = × =−

λ
µ9 42 10 5 8925. . J  eV

(c) ∆ ∆E t ≈
=
2

 so ∆E ≈
× ⋅

× ×

F
HG

I
KJ = ×

−

−
−1 055 10

3 16 10

1 00
1 04 10

34

7 19
30.

.

.
.

 J s

2 10  yr  s yr

 eV
1.60 10  J

 eV
7e je j

P42.69 P
r
a

e dr z e dzr a

a

z= =−
∞

−
∞

z z4 1
2

2

0
3

2

2 50

2

5 00

0

0. .

 where z
r

a
≡

2

0

P z z e ez= − + + = − + + + = FHG
I
KJ =−

∞
−1

2
2 2

1
2

0
1
2

25 0 10 0 2 00
37
2

0 006 74 0 1252

5 00

5e j a f b g
.

. . . . .

P42.70 (a) One molecule’s share of volume

Al: V = =
×

F
HG

I
KJ

×F
HG

I
KJ = ×

−
−mass per molecule

density
 g mol

 molecules mol
 m

 g
 m

3
327 0

6 02 10
1 00 10

2 70
1 66 1023

6
29.

.
.

.
.

V3 10 12 55 10= × − −.  m~10  nm .

U: V =
×

F
HG

I
KJ

×F
HG

I
KJ = ×

−
−238 1 00 10

18 9
2 09 10

6
29 g

6.02 10  molecules
 m

 g
 m23

3
3.

.
.

V3 10 12 76 10 10= × − −. ~ m  nm .

(b) The outermost electron in any atom sees the nuclear charge screened by all the electrons
below it. If we can visualize a single outermost electron, it moves in the electric field of net
charge, + − − = +Ze Z e e1a f , the charge of a single proton, as felt by the electron in hydrogen.
So the Bohr radius sets the scale for the outside diameter of every atom. An innermost
electron, on the other hand, sees the nuclear charge unscreened, and the scale size of its (K-

shell) orbit is 
a
Z

0 .

P42.71 ∆E B hf= =2µB

so 2 9 27 10 0 350 6 626 1024 34. . .× = × ⋅− − J T  T  J se ja f e j f

and f = ×9 79 109.  Hz .
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P42.72 ψ π25
1 2

0

3 2

0

2

0

21
4

2
1

2 20 0=
F
HG
I
KJ −
F
HG
I
KJ = −

F
HG
I
KJ

− − −a f
a

r
a

e A
r
a

er a r a d
dr

Ae
a

r
a

r aψ
= − +

F
HG

I
KJ

− 2

0 0
2

0
2

2

d
dr

Ae
a

r
a

r a2

2

2

0
2

0

0 3
2 4

ψ
=
F
HG

I
KJ −
F
HG

I
KJ

−

Substituting into Schrödinger’s equation and dividing by Ae r a− 2 0 , we will have a solution if

− + + + − = −
5
4 8

2 2
2

2

0
2

2

0

2

0
3

2

0

2

0

= = =
m a

k e
a

r
m a m a r

k e
r

E
Er
ae

e

e e

e .

Now with a
m e ke e

0

2

2=
=

, this reduces to

− −
F
HG
I
KJ = −
F
HG
I
KJ

m e k r
a

E
r
a

e e
4 2

2
0 08

2 2
=

.

This is true, so ψ 25  is a solution to the Schrödinger equation, provided E E= = −
1
4

3 401 .  eV.

P42.73 (a) Suppose the atoms move in the +x direction. The absorption of a photon by an atom is a
completely inelastic collision, described by

mv
h

mvi f
� � �i i i+ − =

λ e j so v v
h

mf i− = −
λ

.

This happens promptly every time an atom has fallen back into the ground state, so it
happens every 10 8− = s ∆t . Then,

a
v v

t
h

m t
f i=
−

= − −
× ⋅

×
−

−

− − −∆ ∆λ
~

.
~

6 626 10

500 10 10
10

34

25 9 8
6 J s

10  kg  m  s
 m s2

e je je j
.

(b) With constant average acceleration,

v v a xf i
2 2 2= + ∆ 0 10 2 103 2 6~  m s  m s2e j e j+ − ∆x

so ∆x ~ ~
10

10
1

3 2

6

 m s

 m s
 m2

e j
.

P42.74
1 4 1 4 4 1

2

12

0
3

2

0 0
3

2

0 0
3

0
2

0

0 0

r
r
a

e
r

dr
a

re dr
a a a

r a a r= = = =−
∞

−
∞

z z b g b g

We compare this to 
1 1

3 2
2

30 0r a a
= = , and find that the average reciprocal value is NOT  the

reciprocal of the average value.
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ANSWERS TO EVEN PROBLEMS

P42.2 (a) 91.2 nm, 365 nm, 821 nm, 1 46.  mµ ; P42.38 1 2 2 3 3 3 4 4 42 2 6 2 6 10 2 6 10s s p s p d s p d
4 5 5 5 5 6 6 6 714 2 6 10 14 2 6 8 2f s p d f s p d s(b) 13.6 eV, 3.40 eV, 1.51 eV, 0.850 eV

P42.4 (a) 56.8 fm; (b) 11.3 N away from the
nucleus

P42.40 (a) A = 0  with mA = 0 ; A = 1 with mA = 1, 0,
or 1; and A = 2 with mA = −2 , –1, 0, 1, 2;
(b) –6.05 eV

P42.6 (a) ii; (b) i; (c) ii and iii

P42.42 see the solution
P42.8 (a) 13.6 eV; (b)1.51 eV

P42.44 L shell 11.8 keV, M shell 10.1 keV, N shell
2.39 keV, see the solutionP42.10 see the solution

P42.12 97.5 nm P42.46 see the solution

P42.14 (a) O7+ ; (b) 41.0 nm, 33.8 nm, 30.4 nm P42.48 (a) 4 24.  PW m2 ; (b) 1 20 7 50. . pJ  MeV=

P42.16 (a) 1 31.  mµ ; (b) 164 nm P42.50 (a) 1 07 10 33. × − ; (b) − ×1 15 106.  K ;
(c) negative temperatures do not describe
systems in thermal equilibriumP42.18 see the solution

P42.52 (a) see the solution; (b) 2 53 1074. × ;P42.20 4 0a
(c) 1 18 10 63. × −  m , unobservably small

P42.22 797 times

P42.54 (a) Probability = + +
F
HG

I
KJ

−2 2
1

2

0
2

0

2 0
r

a
r

a
e r a ;P42.24 (a) 6 2 58 10 34= = × ⋅−.  J s;

(b) 12 3 65 10 34= = × ⋅−.  J s (b) see the solution; (c) 1 34 0. a

P42.26 6= P42.56 (a) 10 2 1 63. . eV  aJ= ; (b) 7 88 104. ×  K

P42.28 6= ; −2= , −= , 0, = , 2=; 145°, 114°, 90.0°,
65.9°, 35.3°

P42.58 (a) –8.16 eV, –2.04 eV, –0.902 eV, –0.508 eV,
–0.325 eV;
(b) 1 090 nm, 811 nm, 724 nm, 609 nm;

P42.30 3= (c) see the solution; (d) The spectrum
could be that of hydrogen, Doppler shifted
by motion away from us at speed 0 471. c .P42.32 (a) 1 2 22 2 4s s p ;

(b) n

m

ms

1 1 2 2 2 2 2 2
0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

A

A −

− − −

P42.60 between 104  K  and 105  K

P42.62 (a) c t∆ ; (b) 
E
hc
λ

; (c) 
4

2 2
E

t d hc
λ

π∆

P42.64 0.389 T/m
P42.34 see the solution

P42.66 Energy levels at 0, –0.100 eV, –1.00 eV, and
–4.10 eVP42.36 (a) see the solution;

(b) 36 states instead of 30
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P42.68 (a) parallel spins; (b) 5 89.  eVµ ; P42.72 see the solution
(c) 1 04 10 30. × −  eV

P42.74
1

0a
, no

P42.70 (a) diameter ~10 1−  nm for both;
(b) A K-shell electron moves in an orbit

with size on the order of 
a
Z

0
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Molecules and Solids

ANSWERS TO QUESTIONS

Q43.1 Rotational, vibrational and electronic (as discussed in
Chapter 42) are the three major forms of excitation. Rotational

energy for a diatomic molecule is on the order of 
=2

2I
, where I is

the moment of inertia of the molecule. A typical value for a
small molecule is on the order of 1 10 3 meV  eV= − . Vibrational
energy is on the order of hf, where f is the vibration frequency
of the molecule. A typical value is on the order of 0.1 eV.
Electronic energy depends on the state of an electron in the
molecule and is on the order of a few eV. The rotational energy
can be zero, but neither the vibrational nor the electronic
energy can be zero.

Q43.2 The Pauli exclusion principle limits the number of electrons in
the valence band of a metal, as no two electrons can occupy the
same state. If the valence band is full, additional electrons must
be in the conduction band, and the material can be a good
conductor. For further discussion, see Q43.3.

Q43.3 The conductive properties of a material depend on the electron population of the conduction band
of the material. If the conduction band is empty and a full valence band lies below the conduction
band by an energy gap of a few eV, then the material will be an insulator. Electrons will be unable to
move easily through the material in response to an applied electric field. If the conduction band is
partly full, states are accessible to electrons accelerated by an electric field, and the material is a good
conductor. If the energy gap between a full valence band and an empty conduction band is
comparable to the thermal energy k TB , the material is a semiconductor.

Q43.4 Thermal excitation increases the vibrational energy of the molecules. It makes the crystal lattice less
orderly. We can expect it to increase the width of both the valence band and the conduction band, to
decrease the gap between them.

545
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Q43.5 First consider electric conduction in a metal. The number of conduction electrons is essentially fixed.
They conduct electricity by having drift motion in an applied electric field superposed on their
random thermal motion. At higher temperature, the ion cores vibrate more and scatter more
efficiently the conduction electrons flying among them. The mean time between collisions is
reduced. The electrons have time to develop only a lower drift speed. The electric current is
reduced, so we see the resistivity increasing with temperature.

Now consider an intrinsic semiconductor. At absolute zero its valence band is full and its
conduction band is empty. It is an insulator, with very high resistivity. As the temperature increases,
more electrons are promoted to the conduction band, leaving holes in the valence band. Then both
electrons and holes move in response to an applied electric field. Thus we see the resistivity
decreasing as temperature goes up.

Q43.6 In a metal, there is no energy gap between the valence and conduction bands, or the conduction
band is partly full even at absolute zero in temperature. Thus an applied electric field is able to inject
a tiny bit of energy into an electron to promote it to a state in which it is moving through the metal
as part of an electric current. In an insulator, there is a large energy gap between a full valence band
and an empty conduction band. An applied electric field is unable to give electrons in the valence
band enough energy to jump across the gap into the higher energy conduction band. In a
semiconductor, the energy gap between valence and conduction bands is smaller than in an
insulator. At absolute zero the valence band is full and the conduction band is empty, but at room
temperature thermal energy has promoted some electrons across the gap. Then there are some
mobile holes in the valence band as well as some mobile electrons in the conduction band.

Q43.7 Ionic bonds are ones between oppositely charged ions. A simple model of an ionic bond is the
electrostatic attraction of a negatively charged latex balloon to a positively charged Mylar balloon.

Covalent bonds are ones in which atoms share electrons. Classically, two children playing a
short-range game of catch with a ball models a covalent bond. On a quantum scale, the two atoms are
sharing a wave function, so perhaps a better model would be two children using a single hula hoop.

Van der Waals bonds are weak electrostatic forces: the dipole-dipole force is analogous to the
attraction between the opposite poles of two bar magnets, the dipole—induced dipole force is
similar to a bar magnet attracting an iron nail or paper clip, and the dispersion force is analogous to
an alternating-current electromagnet attracting a paper clip.

A hydrogen atom in a molecule is not ionized, but its electron can spend more time elsewhere
than it does in the hydrogen atom. The hydrogen atom can be a location of net positive charge, and
can weakly attract a zone of negative charge in another molecule.

Q43.8 Ionically bonded solids are generally poor electric conductors, as they have no free electrons. While
they are transparent in the visible spectrum, they absorb infrared radiation. Physically, they form
stable, hard crystals with high melting temperatures.

Q43.9 Covalently bonded solids are generally poor conductors, as they form structures in which the atoms
share several electrons in the outer shell, leaving no room for conducting electrons. Depending on
the structure of the solid, they are usually very hard and have high melting points.

Q43.10 Metals are good conductors, as the atoms have many free electrons in the conduction band. Metallic
bonds allow the mixing of different metals to form alloys. Metals are opaque to visible light, and can
be highly reflective. A metal can bend under stress instead of fracturing like ionically and covalently
bonded crystals. The physical properties vary greatly depending on the composition.
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Q43.11 The energy of the photon is given to the electron. The energy of a photon of visible light is sufficient
to promote the electron from the lower-energy valence band to the higher-energy conduction band.
This results in the additional electron in the conduction band and an additional hole—the energy
state that the electron used to occupy—in the valence band.

Q43.12 Along with arsenic (As), any other element in group V, such as phosphorus (P), antimony (Sb), and
bismuth (Bi), would make good donor atoms. Each has 5 valence electrons. Any element in group III
would make good acceptor atoms, such as boron (B), aluminum, (Al), gallium (Ga), and indium (In).
They all have only 3 valence electrons.

Q43.13 The two assumptions in the free-electron theory are that the conduction electrons are not bound to
any particular atom, and that the nuclei of the atoms are fixed in a lattice structure. In this model, it
is the “soup” of free electrons that are conducted through metals. The energy band model is more
comprehensive than the free-electron theory. The energy band model includes an account of the
more tightly bound electrons as well as the conduction electrons. It can be developed into a theory
of the structure of the crystal and its mechanical and thermal properties.

Q43.14 A molecule containing two atoms of 2 H, deuterium, has twice the mass of a molecule containing
two atoms of ordinary hydrogen 1 H . The atoms have the same electronic structure, so the molecules
have the same interatomic spacing, and the same spring constant. Then the moment of inertia of the
double-deuteron is twice as large and the rotational energies one-half as large as for ordinary

hydrogen. Each vibrational energy level for D2  is
1
2

 times that of H 2 .

Q43.15 Rotation of a diatomic molecule involves less energy than vibration. Absorption of microwave
photons, of frequency ~  Hz1011 , excites rotational motion, while absorption of infrared photons, of
frequency ~  Hz1013 , excites vibration in typical simple molecules.

Q43.16 Yes. A material can absorb a photon of energy greater than the energy gap, as an electron jumps into
a higher energy state. If the photon does not have enough energy to raise the energy of the electron
by the energy gap, then the photon will not be absorbed.

Q43.17 From the rotational spectrum of a molecule, one can easily calculate the moment of inertia of the
molecule using Equation 43.7 in the text. Note that with this method, only the spacing between
adjacent energy levels needs to be measured. From the moment of inertia, the size of the molecule
can be calculated, provided that the structure of the molecule is known.

SOLUTIONS TO PROBLEMS

Section 43.1 Molecular Bonds

P43.1 (a) F
q

r
=

∈
=

× ×

×
= ×
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−
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P43.2 We are told K Cl  eV K Cl+ + → ++ −0 7.

and Cl e Cl  eV+ → +− − 3 6.

or Cl Cl e  eV− −→ + − 3 6. .

By substitution, K Cl  eV K Cl+e  eV+ + → + −+ −0 7 3 6. .

K  eV K +e+ → + −4 3.

or the ionization energy of potassium is 4 3.  eV .

P43.3 (a) Minimum energy of the molecule is found from

dU
dr

Ar Br= − + =− −12 6 013 7  yielding r
A

B0

1 62
= LNM
O
QP .

(b) E U U
A

A B
B
A B

B
A

B
Ar r r= − = − −

L
NMM

O
QPP
= − −LNM

O
QP ==∞ = 0

0
4 2

1
4

1
2 42 2

2 2

This is also the equal to the binding energy, the amount of energy given up by the two
atoms as they come together to form a molecule.

(c) r0

120

60

1 6

11
2 0 124 10

1 488 10
7 42 10 74 2=

× ⋅

× ⋅

L

N
MM

O

Q
PP = × =
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.

.
. .

 eV m

 eV m
 m  pm

12

6

e j

E =
× ⋅
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=

−

−

1 488 10

4 0 124 10
4 46

60 2

120

.

.
.

 eV m

 eV m
 eV

6

12

e j
e j

*P43.4 (a) We add the reactions K  eV K e+ → ++ −4 34.

and I e I  eV+ → +− − 3 06.

to obtain K I K I  eV+ → + + −+ − 4 34 3 06. .a f .

The activation energy is 1 28.  eV .

(b)
dU
dr r r

=
∈

− FHG
I
KJ + FHG

I
KJ

L
N
MM

O
Q
PP

4
12 6

13 7

σ
σ σ

At r r= 0  we have 
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dr
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σ σ
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continued on next page
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(c) F r
dU
dr r r

a f = − =
∈ F
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I
KJ − FHG

I
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L
N
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O
Q
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4
12 6

13 7
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To find the maximum force we calculate 
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Therefore the applied force required to rupture the molecule is +6 55.  nN  away from the

center.
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P43.5 At the boiling or condensation temperature, k TB ≈ = ×− − −10 10 1 6 103 3 19 eV  J.e j
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Section 43.2 Energy States and Spectra of Molecules

P43.6 µ =
+

=
+

× = ×− −m m
m m

1 2

1 2

27 25132 9 126 9
132 9 126 9

1 66 10 1 08 10
. .
. .

. .
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I r= = × × = × ⋅− − −µ 2 25 9 2 451 08 10 0 127 10 1 74 10. . . kg  m  kg m2e je j
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J J
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P43.7 For the HCl molecule in the J = 1  rotational energy level, we are given
r0 0 127 5= .  nm.

E
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J Jrot = +
=2

2
1a f

Taking J = 1 , we have E
I

Irot = =
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21
2
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2
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2

2
= =
I I

.

The moment of inertia of the molecule is given by Equation 43.3.
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P43.9 I m r m r= +1 1
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P43.11 The energy of a rotational transition is ∆E
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 where J is the rotational quantum number of the

higher energy state (see Equation 43.7). We do not know J from the data. However,
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P43.12 (a) Minimum amplitude of vibration of HI is
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Since HI has the smaller k, it is more weakly bound.
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P43.15 In Benzene, the carbon atoms are each 0.110 nm from the axis and each hydrogen atom is
0 110 0 100 0 210. . .+ = nm  nma f  from the axis. Thus, I mr= ∑ 2 :

I = × × + × × = × ⋅− − − − −6 1 99 10 0 110 10 6 1 67 10 0 210 10 1 89 1026 9 2 27 9 2 45. . . . . kg  m  kg  m  kg m2e je j e je j .

The allowed rotational energies are then

E
I

J J J J J J J J

E J J J

rot 2

rot

 J s

 kg m
 J  eV

 eV  where 

= + =
× ⋅

× ⋅
+ = × + = × +

= + =

−

−
− −=

…

2 34 2

45
24 6

2
1

1 055 10

2 1 89 10
1 2 95 10 1 18 4 10 1

18 4 1 0 1 2 3

a f e j
e j

a f e j a f e j a f

b g a f

.

.
. .

. , , , ,µ

The first five of these allowed energies are: Erot  eV,  111 eV,  221 eV,  and 369 eV= 0 36 9, . µ µ µ µ .

*P43.16 We carry extra digits through the solution because part (c) involves the subtraction of two close
numbers. The longest wavelength corresponds to the smallest energy difference between the

rotational energy levels. It is between J = 0  and J = 1 , namely 
=2

I

λ
π

= = =
hc
E

hc
I

Ic
h∆ min =2

24
. If µ is the reduced mass, then

I r= = × = ×

∴ =
× ×

× ⋅
= ×

− −

−

−

µ µ µ

λ
π µ

µ

2 9 2 20

2 20 8

34
23

0 127 46 10 1 624 605 10

4 1 624 605 10 2 997 925 10

6 626 075 10
2 901 830 10

. .

. .

.
.

 m  m

 m  m s

 J s
 m kg

2

2

e j e j
e j e j e j

(1)

(a) µ35
271 007 825 34 968 853

1 007 825 34 968 853
0 979 593 1 626 653 10=

+
= = × −. .

. .
. .

u u

u u
u  kg

b gb g

From (1): λ µ35
23 272 901 830 10 1 626 653 10 472= × × =−. . m kg  kg  me je j

(b) µ37
271 007 825 36 965 903

1 007 825 36 965 903
0 981 077 1 629 118 10=

+
= = × −. .

. .
. .

u u

u u
u  kg

b gb g

From (1): λ µ37
23 272 901 830 10 1 629 118 10 473= × × =−. . m kg  kg  me je j

(c) λ λ µ µ µ37 35 472 742 4 472 027 0 0− = − =. . m  m .715 m

P43.17 hf
h

I
J=

2

24π
 where the rotational transition is from J −1 to J,

where f = ×6 42 1013.  Hz  and I = × ⋅−1 46 10 46.  kg m2  from Example 43.1.

J
If

h
= =

× ⋅ ×

× ⋅
=

−

−
4 4 1 46 10 6 42 10

6 626 10
558

2 2 46 13

34
π π . .

.

 kg m s

 J s

2e je j
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*P43.18 We find an average spacing between peaks by counting 22 gaps between 7 96 1013. ×  Hz  and
9 24 1013. ×  Hz :

∆

∆

f
h

h
I

I
h

f

=
−

= × =
F
HG
I
KJ

= =
× ⋅

×
= × ⋅

−
−

9 24 7 96 10
0 058 2 10

1
4

4
6 63 10
4 5 82 10

2 9 10

13
13

2

2

2

34

2 11
47

. .
.

.
.

.

a f  Hz
22

 Hz

 J s
s

 kg m2

π

π π

*P43.19 We carry extra digits through the solution because the given wavelengths are close together.

(a) E v hf
I

J JvJ = +FHG
I
KJ + +

1
2 2

1
2= a f

∴ = = + = +

∴ − = + = =
× ⋅ ×

×

−

−

E hf E hf
I

E hf
I

E E hf
I

hc

00 11

2

02

2

11 00

2 34 8

6

1
2

3
2

1
2

3

6 626 075 10 2 997 925 10

2 211 2 10

, ,

. .

.

= =

=
λ

 J s  m s

 m

e je j

∴ + = × −hf
I
=2

208 983 573 10.  J (1)

E E hf
I

hc
11 02

2 34 8

6
2 6 626 075 10 2 997 925 10

2 405 4 10
− = − = =

× ⋅ ×

×

−

−
=

λ

. .

.

 J s  m s

 m

e je j

∴ − = × −hf
I

2
8 258 284 10

2
20=

.  J (2)

Subtract (2) from (1): 
3

7 252 89 10
2

21=
I

= × −.  J

∴ =
× ⋅

×
= × ⋅

−

−
−I

3 1 054 573 10

7 252 89 10
4 60 10

34 2

21
48

.

.
.

 J s

 J
 kg m2e j

(b) From (1):

f =
×

× ⋅
−

× ⋅

× ⋅ × ⋅

= ×

−

−

−

− −

8 983 573 10
10

1 054 573 10

4 600 060 10 6 626 075 10

1 32 10

20

34

34 2

48 34

14

. .

. .

.

 J
6.626 075  J s

 J s

 kg m  J s

 Hz

2

e j
e je j

(c) I r= µ 2 , where µ is the reduced mass:

µ = = = × −1
2

1
2

1 007 825 8 367 669 10 28mH . .u  kgb g .

So r
I

= =
× ⋅

×
=

−

−µ
4 600 060 10

8 367 669 10
0

48 2

28

.
.

 kg m
 kg

.074 1 nm .
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P43.20 The emission energies are the same as the absorption energies, but the final state must be below
v J= =1 0,b g . The transition must satisfy ∆J = ±1, so it must end with J = 1 . To be lower in energy, it

must be v J= =0 1,b g . The emitted photon energy is therefore

hf E E E E E E E E

hf hf hf
v J v J v v J Jphoton vib rot vib rot vib vib rot rot

photon vib rot

= + − + = − − −

= −
= = = = = = = =1 0 0 1 1 0 1 0e j e j e j e j

Thus, f f fphoton vib rot  Hz  Hz  Hz= − = × − × = ×6 42 10 1 15 10 6 41 1013 11 13. . . .

P43.21 The moment of inertia about the molecular axis is I mr mr mx = + = × −2
5

2
5

4
5

2 00 102 2 15 2
.  me j .

The moment of inertia about a perpendicular axis is I m
R

m
R m

y =
F
HG
I
KJ + FHG

I
KJ = × −

2 2 2
2 00 10

2 2
10 2

.  me j .

The allowed rotational energies are E
I

J Jrot =
F
HG
I
KJ +

=2

2
1a f , so the energy of the first excited state is

E
I1

2

=
=

. The ratio is therefore

E

E

I

I

I

I

m

m

x

y

x

y

y

x

1

1

2

2

10 2

15 2
5 2 9

1 2 2 00 10

4 5 2 00 10

5
8

10 6 25 10,

,

.

.
.= = =

×

×
= = ×

−

−

=

=

e j
e j

b g e j
b g e j

e j
 m

 m
.

Section 43.3 Bonding in Solids

P43.22 Consider a cubical salt crystal of edge length 0.1 mm.

The number of atoms is
10

10
4

9

3
17

−

−×

F
HG

I
KJ

 m
0.261 10  m

~ .

This number of salt crystals would have volume 10
10

10
104 3 4

9

3
5−

−

−×

F
HG

I
KJ m

 m
0.261  m

 m3e j ~ .

If it is cubic, it has edge length 40 m.

P43.23 U
k e
r m

e= − −FHG
I
KJ = − ×

×

×
−FHG
I
KJ = − × = −

−

−
−α 2

0

9
19 2

9
181

1
1 747 6 8 99 10

1 60 10

0 281 10
1

1
8

1 25 10 7 84. .
.

.
. .b ge j e j

e j
 J  eV

P43.24 Visualize a K +  ion at the center of each shaded cube, a Cl−  ion at the center
of each white one.

The distance ab is 2 0 314 0 444. . nm  nma f = .

Distance ac is 2 0 314 0 628. . nm  nma f = .

Distance ad is 2 2 0 314 0 7692 2
+ =e j a f. . nm  nm . FIG. P43.24
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P43.25 U
k e

r
k e

r
k e

r
k e

r
k e

r
k e

r
k e

r
k e

r
k e
r

e e e e e e e e

e

= − − + + − − + + −

= − − + − +F
HG

I
KJ

2 2 2 2 2 2 2 2

2
2 2 3 3 4 4

2
1

1
2

1
3

1
4

…

…

But, ln 1 1
2 3 4

2 3 4

+ = − + − +x
x x xa f …

so, U
k e
r
e= −

2
2

2

ln , or U k
e
re= − =α α
2

2 2 where ln .

– ++ – + –

3r
2r

r

–e –e –ee e e

FIG. P43.25

Section 43.4 Free-Electron Theory of Metals

Section 43.5 Band Theory of Solids

P43.26 E
h
m

n
ne

eF

 J s

 kg  J eV
= F
HG
I
KJ =

× ⋅

× ×

L

N
MMM

O

Q
PPP
F
HG
I
KJ

−

− −

2 2 3 34 2

31 19

2 3
2 3

2
3
8

6 626 10

2 9 11 10 1 60 10

3
8π π

.

. .

e j
e je j

E neF  eV= × −3 65 10 19 2 3.e j  with n measured in electrons m3 .

P43.27 The density of conduction electrons n is given by E
h
m

ne
F = F
HG
I
KJ

2 2 3

2
3
8π

or n
mE
he =
F
HG
I
KJ =

× ×

× ⋅
= ×

− −

−

−8
3

2 8
3

2 9 11 10 5 48 1 60 10

6 626 10
5 80 102

3 2 31 19 3 2

34 3
28 3π πF

 kg  J

 J s
 m

. . .

.
.

e ja fe j
e j

.

The number-density of silver atoms is

nAg
3 kg m

 atom
108 u

 u
1.66 10  kg

 m= × F
HG

I
KJ ×

F
HG

I
KJ = ×−

−10 6 10
1 1

5 91 103
27

28 3. .e j .

So an average atom contributes 
5 80
5 91

0 981
.
.

.=  electron to the conduction band .

P43.28 (a)
1
2

7 052mv = .  eV

v =
×

×
= ×

−

−

2 7 05 1 60 10

9 11 10
1 57 10

19

31
6

. .

.
.

 eV  J eV

 kg
 m s

a fe j

(b) Larger than  m s  by ten orders of magnitude.10 4−  However, the energy of an electron at

room temperature is typically k TB =
1
40

 eV.
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P43.29 For sodium, M = 23 0.  g mol and ρ = 0 971.  g cm3 .

(a) n
N

Me = =
×

A
3 electrons mol  g cm

 g mol
ρ 6 02 10 0 971

23 0

23. .

.
e je j

ne = × = ×2 54 10 2 54 1022 28. . electrons cm  electrons m3 3

(b) E
h
m

ne
F

 J s

 kg

 m
 J  eV=

F
HG
I
KJ
F
HG
I
KJ =

× ⋅

×

×L

N
MM

O

Q
PP = × =

−

−

−
−

2 2 3 34 2

31

28 3 2 3

19

2
3
8

6 626 10

2 9 11 10

3 2 54 10

8
5 05 10 3 15

π π

.

.

.
. .

e j
e j

e j

P43.30 The melting point of silver is 1 234 K. Its Fermi energy at 300 K is 5.48 eV. The approximate fraction
of electrons excited is

k T
E
B

F

 J K  K

 eV  J eV
=

×

×
≈

−

−

1 38 10 1 234

5 48 1 60 10
2%

23

19

.

. .

e jb g
a fe j

.

P43.31 Taking EF  eV= 5 48.  for sodium at 800 K,

f e

e

E E
k T

E E k T

E E k T

B

B

B

= + =

= − =

−
= = −

−
−

−

F

F

F

b g

b g

b g

1 0 950

1
0 950

1 0 052 6

0 052 6 2 94

1
.

.
.

ln . .

E E− = −
×

×
= −

−

−F

 J

1.60 10  J eV
 eV2 94

1 38 10 800
0 203

23

19.
.

.
e ja f

 or E = 5 28.  eV .

P43.32 d = 1 00.  mm , so V = × = ×− −1 00 10 1 00 103 3 9. . m  m3e j .

The density of states is g E CE
m

h
Ea f = =1 2

3 2

3
1 28 2π

or g Ea f e j
e j

a fe j=
×

× ⋅
×

−

−

−
8 2 9 11 10

6 626 10
4 00 1 60 10

31 3 2

34 3
19

π .

.
. .

 kg

 J s
 eV  J eV

g Ea f = × ⋅ = × ⋅− − − −8 50 10 1 36 1046 3 1 28 3 1. . m J  m eV .

So, the total number of electrons is

N g E E V= = × ⋅ × = ×− − −a f a f e jb ge j∆ 1 36 10 0 025 0 1 00 10 3 40 1028 3 1 9 17. . . . m eV  eV  m  electrons3 .
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P43.33 E
n

EN E dE
e

av =
∞z1

0

a f
At T = 0 , N Ea f = 0  for E E> F;.

Since f Ea f = 1 for E EEF<  and f Ea f = 0  for E E> F, we can take N E CE
m

h
Eea f = =1 2

3 2

3
1 28 2π

E
n

CE dE
C
n

E dE
C
n

E
e

E

e

E

e
av F

5 2
F F

= = =z z1 2
5

3 2

0

3 2

0

.

But from Equation 43.24, 
C
n

E
e
= −3

2
3 2

F , so that E E E Eav F F
5 2

F= FHG
I
KJ
F
HG

I
KJ =−2

5
3
2

3
5

3 2 .

P43.34 Consider first the wave function in x. At x = 0  and x L= , ψ = 0.

Therefore, sin k Lx = 0 and k Lx = π π π, , ,2 3 ….

Similarly, sin k Ly = 0 and k Ly = π π π, , ,2 3 …

sin k Lz = 0 and k Lz = π π π, , ,2 3 …

ψ
π π π

= F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJA

n x
L

n y

L
n z

L
x y zsin sin sin .

From 
∂
∂

+
∂
∂

+
∂
∂

= −
2

2

2

2

2

2 2
2ψ ψ ψ

ψ
x y z

m
U Ee

=
a f , we have inside the box, where U = 0,

− − −
F
HG

I
KJ

= −
n

L

n

L
n

L
m

Ex y z e
2 2

2

2 2

2

2 2

2 2
2π π π

ψ ψ
=
a f E

m L
n n n n n n

e
x y z x y z= + + =

= …
2 2

2
2 2 2

2
1 2 3

π e j , , , , , .

Outside the box we require ψ = 0.

The minimum energy state inside the box is n n nx y z= = = 1, with E
m Le

=
3
2

2 2

2
= π

P43.35 (a) The density of states at energy E is g E CEa f = 1 2 .

Hence, the required ratio is
g
g

C

C

8 50
7 00

8 50

7 00
1 10

1 2

1 2

.

.
.

.
.

 eV
 eV

a f
a f

a f
a f= = .

(b) From Eq. 43.22, the number of occupied states having energy E is

N E
CE

e E E k TB
a f b g=

+−

1 2

1F
.

Hence, the required ratio is
N
N

e

e

k T

k T

B

B

8 50
7 00

8 50

7 00

1

1

1 2

1 2

7 00 7 00

8 50 7 00

.

.
.

.

. .

. .

 eV
 eV

a f
a f

a f
a f

a f
a f=

+

+

L
N
MM

O
Q
PP

−

−
.

At T = 300 K , k TB = × =−4 14 10 0 025 921. . J  eV ,
N
N e

8 50
7 00

8 50

7 00

2 00

1

1 2

1 2 1.50 0 025 9

.

.
.

.

.
.

 eV
 eV

a f
a f

a f
a f a f=

+

L
NM

O
QP .

And
N
N

8 50
7 00

1 55 10 25.
.

.
 eV
 eV

a f
a f = × − .

Comparing this result with that from part (a), we conclude that very few states with E E> F

are occupied.
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Section 43.6 Electrical Conduction in Metals, Insulators, and Semiconductors

P43.36 (a) Eg = 1 14.  eV  for Si

hf = = × = ×− −1 14 1 14 1 60 10 1 82 1019 19. . . . eV  eV  J eV  Ja fe j  so f ≥ ×2 75 1014.  Hz

(b) c f= λ ; λ µ= =
×

×
= × =−c

f
3 00 10
2 75 10

1 09 10 1 09
8

14
6.

.
. .

 m s
 Hz

 m  m  (in the infrared region)

P43.37 Photons of energy greater than 2.42 eV will be absorbed. This means wavelength shorter than

λ = =
× ⋅ ×

× ×
=

−

−
hc
E

6 626 10 3 00 10

2 42 1 60 10
514

34 8

19

. .

. .

 J s  m s

 J
 nm

e je j
.

All the hydrogen Balmer lines except for the red line at 656 nm will be absorbed.

P43.38 E
hc

g = =
× ⋅ ×

×
≈

−

−λ

6 626 10 3 00 10

650 10
1 91

34 8

9

. .
.

 J s  m s

 m
 J  eV

e je j

P43.39 If λ ≤ × −1 00 10 6.  m, then photons of sunlight have energy

E
hc

≥ =
× ⋅ ×

× ×

F
HG

I
KJ =

−

− −λmax

. .

.
.

6 626 10 3 00 10

1 00 10
1

1 24
34 8

6 19

 J s  m s

 m
 eV

1.60 10  J
 eV

e je j
.

Thus, the energy gap for the collector material should be Eg ≤ 1 24.  eV . Since Si has an energy gap

Eg ≈ 1 14.  eV , it will absorb radiation of this energy and greater. Therefore, Si is acceptable  as a

material for a solar collector.

P43.40 If the photon energy is 5.5 eV or higher, the diamond window will absorb. Here,

hf
hcb gmax
min

.= =
λ

5 5 eV : λmin .

. .

. .
= =

× ⋅ ×

×

−

−

hc
5 5

6 626 10 3 00 10

5 5 1 60 10

34 8

19 eV

 J s  m s

 eV  J eV

e je j
a fe j

λmin .= × =−2 26 10 2267  m  nm .

*P43.41 In the Bohr model we replace ke  by 
ke

κ
 and me  by m* . Then the radius of the first Bohr orbit,

a
m k ee e

0

2

2=
=

 in hydrogen, changes to

′ = = FHG
I
KJ = FHG

I
KJ =
F
HG

I
KJ =∗ ∗ ∗a

m k e
m
m m k e

m
m

a
m

me

e

e e

e e

e

= =2

2

2

2 0 0 220
11 7 0 052 9 2 81

κ
κ κ

.
. . . nm  nmb g .

The energy levels are in hydrogen E
k e

a nn
e= −

2

0
22

1
 and here

′ = −
′

= − = −
F
HG
I
KJ∗

∗

E
k e

a n
k e

m m a

m
m

E
n

e e

e e

n
2

2

2

0
22

1

2κ κ κ κe j
For n = 1 , ′ = − = −E1 0 220

13 6
0 021 9.

.
.

 eV
11.7

 eV2 .
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Section 43.7 Semiconductor Devices

P43.42 I I ee V k TB= −0 1∆a fe j. Thus, e
I

I
e V k TB∆a f = +1

0

and ∆V
k T

e
I
I

B= +
F
HG
I
KJln 1

0
.

At T = 300 K , ∆V
I
I

I
I

=
×

×
+
F
HG
I
KJ = +

F
HG
I
KJ

−

−

1 38 10 300

1 60 10
1 25 9 1

23

19
0 0

.

.
ln . ln

 J K  K

 C
 mV

e ja f a f .

(a) If I I= 9 00 0. , ∆V = =25 9 10 0 59 5. ln . . mV  mVa f a f .

(b) If I I= −0 900 0. , ∆V = = −25 9 0 100 59 5. ln . . mV  mVa f a f .

The basic idea behind a semiconductor device is that a large current or charge can be
controlled by a small control voltage.

P43.43 The voltage across the diode is about 0.6 V. The voltage drop across the resistor is
0 025 150 3 75. . A   Va fa fΩ = . Thus, ε − − =0 6 3 8 0. . V  V  and ε = 4 4.  V .

P43.44 First, we evaluate I0  in I I ee V k TB= −0 1∆a fe j , given that I = 200 mA  when ∆V = 100 mV  and T = 300 K .

e V
k TB

∆a f e ja f
e ja f=

×

×
=

−

−

1 60 10 0 100

1 38 10 300
3 86

19

23

. .

.
.

 C  V

 J K  K
 so I

I

e ee V k TB
0 3 861

200
1

4 28=
−

=
−

=
∆a f

 mA
 mA. .

If ∆V = −100 mV , 
e V
k TB

∆a f
= −3 86. ; and the current will be

I I e ee V k TB= − = − = −−
0

3 861 4 28 1 4 19∆a fe j a fe j. .. mA  mA .

*P43.45 (a) The currents to be plotted are

I eD
V= −−10 16 0 025 A  Ve je j∆ . ,

I
V

W =
−2 42

745
.  V

 
∆

Ω

The two graphs intersect at
∆V = 0 200.  V . The currents
are then

I eD = −

=

−10 1

2 98

6 0 200 A

 mA

 V 0.025 Ve je j.

.

0

10

20

0 0.1 0.2 0.3

Diode and Wire Currents

∆V(volts)

Diode
Wire

FIG. P43.45

IW =
−

=
2 42 0 200

2 98
. .

.
 V  V
745 

 mA
Ω

. They agree to three digits.

∴ = =I ID W 2 98.  mA

(b)
∆

Ω
V

ID
=

×
=−

0 200
2 98 10
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Section 43.8 Superconductivity

P43.46 (a) See the figure at right.

(b) For a surface current around the outside of the cylinder as shown,

B
N I

=
µ 0

A
 or NI

B
= =

×

× ⋅
=

−

−

A
µ π0

2

7

0 540 2 50 10

4 10
10 7

. .
.

 T  m

 T m A
 kA

a fe j
e j

.

FIG. P43.46

P43.47 By Faraday’s law (Equation 32.1),
∆Φ
∆

∆
∆

∆
∆

B

t
L

I
t

A
B
t

= = .

Thus, ∆
∆

I
A B

L
= =

×
=−

a f b g b gπ 0 010 0 0 020 0

3 10 10
203

2

8

. .

.

 m  T

 H
 A .

The direction of the induced current is such as to maintain the B– field through the ring.

P43.48 (a) ∆V IR=

If R = 0 , then ∆V = 0 , even when I ≠ 0 .

(b) The graph shows a direct proportionality.

Slope
 mA
 mV

 

 

= = =
−
−

=

=

−1 155 57 8
3 61 1 356

43 1

0 023 2

1

R
I
V

R

∆
∆

Ω

Ω

.
. .

.

.

a f
a f

(c) Expulsion of magnetic flux and therefore fewer
current-carrying paths could explain the
decrease in current.

FIG. P43.48

Additional Problems

P43.49 (a) Since the interatomic potential is the same for both molecules, the spring constant is the
same.

Then f
k

=
1

2π µ
 where µ12

12 16
12 16

6 86=
+

=
 u  u
 u  u

 u
a fa f

.  and µ14
14 16
14 16

7 47=
+

=
 u  u
 u  u

 u
a fa f

. .

Therefore,

f
k k

f14
14 12

12

14
12

12

14

13 131
2

1
2

6 42 10
6 86

6 15 10= =
F
HG
I
KJ = = × = ×

π µ π µ
µ
µ

µ
µ

.
.

. Hz
 u

7.47 u
 Hze j .

continued on next page
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(b) The equilibrium distance is the same for both molecules.

I r r I

I

14 14
2 14

12
12

2 14

12
12

14
46 467 47

1 46 10 1 59 10

= =
F
HG
I
KJ =

F
HG
I
KJ

= FHG
I
KJ × ⋅ = × ⋅− −

µ
µ
µ

µ
µ
µ

.
. .

 u
6.86 u

 kg m  kg m2 2e j

(c) The molecule can move to the v J= =1 9,b g  state or to the v J= =1 11,b g state. The energy it
can absorb is either

∆E
hc

hf
I

hf
I

= = +FHG
I
KJ + +

L
NM

O
QP
− −FHG

I
KJ + +

L
NM

O
QPλ

1
1
2

9 9 1
2

0
1
2

10 10 1
214

2

14
14

2

14
a f a f= =

,

or ∆E
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hf
I

hf
I

= = +FHG
I
KJ + +

L
NM

O
QP
− +FHG

I
KJ + +

L
NM

O
QPλ

1
1
2

11 11 1
2

0
1
2

10 10 1
214

2

14
14

2

14
a f a f= =

.

The wavelengths it can absorb are then

λ
π

=
−

c
f I14 1410 2= b g  or λ

π
=

+
c

f I14 1411 2= b g .

These are: λ
π

µ=
×

× − × ⋅ × ⋅
=

− −

3 00 10

6 15 10 10 1 055 10 2 1 59 10
4 96

8

13 34 46

.

. . .
.

 m s

 Hz  J s  kg m
 m

2e j e j

and λ
π
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×
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=

− −

3 00 10

6 15 10 11 1 055 10 2 1 59 10
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8

13 34 46

.

. . .
.

 m s

 Hz  J s  kg m
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2e j e j
.

P43.50 For the N 2  molecule, k = 2 297 N m, m = × −2 32 10 26.  kg , r = × −1 20 10 10.  m , µ =
m
2

ω
µ

= = ×
k

4 45 1014.  rad s, I r= = × × = × ⋅− − −µ 2 26 10 2 461 16 10 1 20 10 1 67 10. . . kg  m  kg m2e je j .

For a rotational state sufficient to allow a transition to the first exited vibrational state,

= =
2

2
1

I
J J + =a f ω  so J J

I
+ = =

× ×

×
=

−

−1
2 2 1 67 10 4 45 10

1 055 10
1 410

46 14

34a f e je jω
=

. .

.
.

Thus J = 37 .

P43.51 ∆E vmax .= = +FHG
I
KJ4 5

1
2

 eV =ω so
4 5 1 6 10

1 055 10 8 28 10

1
2
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34 14 1

. .

. .

 eV  J eV

 J s  s

a fe j
e je j

×

× ⋅ ×
≥ +FHG

I
KJ

−

− −
v

8 25 7 5. .> v = 7

P43.52 With 4 van der Waal bonds per atom pair or 2 electrons per atom, the total energy of the solid is

E = ×
×F

HG
I
KJ =

−2 1 74 10
6 02 10

5 2323
23

.
.

. J atom
 atoms

4.00 g
 J ge j .
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P43.53 The total potential energy is given by Equation 43.17: U
k e

r
B

r
e

mtotal = − +α
2

.

The total potential energy has its minimum value U0  at the equilibrium spacing, r r= 0 . At this point,
dU
dr r r=

=
0

0 ,

or
dU
dr

d
dr

k e
r

B
r

k e
r

mB
rr r

e
m

r r

e
m

= =
+= − +

F
HG

I
KJ = − =

0
0

2 2

0
2

0
1 0α α .

Thus, B
k e
m

re m= −α
2

0
1.

Substituting this value of B into Utotal , U
k e
r

k e
m

r
r

k e
r m

e e m
m

e
0

2

0

2

0
1

0

2

0

1
1

1
= − +

F
HG
I
KJ = − −FHG

I
KJ

−α α α .

P43.54 Suppose it is a harmonic-oscillator potential well. Then, 
1
2

4 48
3
2

3 96hf hf+ = +. . eV  eV  is the depth

of the well below the dissociation point. We see hf = 0 520.  eV , so the depth of the well is

1
2

4 48
1
2

0 520 4 48 4 74hf + = + =. . . . eV  eV  eV  eVa f .

P43.55 (a) For equilibrium, 
dU
dx

= 0 :
d
dx

Ax Bx Ax Bx− − − −− = − + =3 1 4 23 0e j
x→∞  describes one equilibrium position, but the stable equilibrium position is at
3 0

2Ax B− = .

x
A
B0

3 3 0 150

3 68
0 350= =

⋅

⋅
=

.

.
.

 eV nm

 eV nm
 nm

3e j

(b) The depth of the well is given by U U
A
x

B
x
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A
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Ax x0

0
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1 2
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(c) F
dU
dx

Ax Bxx = − = −− −3 4 2

To find the maximum force, we determine finite xm  such that 
dF
dx x xm=

= 0 .

Thus, − + =− −

=
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P43.56 (a) For equilibrium, 
dU
dx

= 0 :
d
dx

Ax Bx Ax Bx− − − −− = − + =3 1 4 23 0e j
x→∞  describes one equilibrium position, but the stable equilibrium position is at

3 0
2Ax B− =  or x

A
B0

3
= .

(b) The depth of the well is given by U U
A
x

B
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BB
A

B
Ax x0
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3 2 3 2

1 2

1 2 1 2
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= = − = − = −= .

(c) F
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Ax Bxx = − = −− −3 4 2

To find the maximum force, we determine finite xm  such that
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P43.57 (a) At equilibrium separation, r re= ,
dU
dr

aB e e
r r

a r r a r r

e

e e

=

− − − −= − − =2 1 00 0b g b g .

We have neutral equilibrium as re →∞  and stable equilibrium at e a r re− − =0 1b g ,

or r re = 0 .

(b) At r r= 0 , U = 0. As r →∞ , U B→ . The depth of the well is B .

(c) We expand the potential in a Taylor series about the equilibrium point:

U r U r
dU
dr

r r
d U
dr

r r

U r Ba ae ae e r r Ba r r

r r r r

r r r r r r

r r

a f b g b g b g

a f a f e j b g b gb g b g b g
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=

0 0
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0 0 0
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2 1

This is of the form
1
2

1
2

2
0

2kx k r r= −b g
for a simple harmonic oscillator with k Ba= 2 2 .

Then the molecule vibrates with frequency f
k a B a B

= = =
1

2 2
2

2π µ π µ π µ
.

(d) The zero-point energy is
1
2

1
2 8

=ω
π µ

= =hf
ha B

.

Therefore, to dissociate the molecule in its ground state requires energy B
ha B

−
π µ8

.
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P43.58 T = 0 T TF= 0 1. T TF= 0 2. T TF= 0 5.
E

EF e E E T TF Fb g b g−1 f Ea f e E E T TF Fb g b g−1 f Ea f e E E T TF Fb g b g−1 f Ea f e E E T TF Fb g b g−1 f Ea f
0 e−∞ 1.00 e−10 0. 1.000 e−5 00. 0.993 e−2 00. 0.881
0.500 e−∞ 1.00 e−5 00. 0.993 e−2 50. 0.924 e−1.00 0.731
0.600 e−∞ 1.00 e−4.00 0.982 e−2 00. 0.881 e−0 800. 0.690
0.700 e−∞ 1.00 e−3 00. 0.953 e−1.50 0.818 e−0 600. 0.646
0.800 e−∞ 1.00 e−2 00. 0.881 e−1.00 0.731 e−0 400. 0.599
0.900 e−∞ 1.00 e−1.00 0.731 e−0 500. 0.622 e−0 200. 0.550
1.00 e0 0.500 e0 0.500 e0 0.500 e0 0.500
1.10 e+∞ 0.00 e1.00 0.269 e0 500. 0.378 e0 200. 0.450
1.20 e+∞ 0.00 e2 00. 0.119 e1.00 0.269 e0 400. 0.401
1.30 e+∞ 0.00 e3 00. 0.047 4 e1.50 0.182 e0 600. 0.354
1.40 e+∞ 0.00 e4.00 0.018 0 e2 00. 0.119 e0 800. 0.310
1.50 e+∞ 0.00 e5 00. 0.006 69 e2 50. 0.075 9 e1.00 0.269

FIG. P43.58

P43.59 (a) There are 6 Cl−  ions at distance r r= 0 . The
contribution of these ions to the electrostatic

potential energy is 
−6 2

0

k e
r

e .

There are 12 Na+  ions at distance r r= 2 0 .
Their contribution to the electrostatic potential

energy is 
+12

2

2

0

k e
r
e . Next, there are 8 Cl−  ions

at distance r r= 3 0 . These contribute a term of
−8

3

2

0

k e
r
e  to the electrostatic potential energy.

FIG. P43.59

To three terms, the electrostatic potential energy is:

U
k e
r

k e
r

e e= − + −
F
HG

I
KJ = −6

12
2

8
3

2 13
2

0

2

0
.  or U

k e
r
e= − =α α

2

0
2 13 with . .

continued on next page
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(b) The fourth term consists of 6 Na+  at distance r r= 2 0 . Thus, to four terms,

U
k e
r

k e
r

e e= − + =2 13 3 0 866
2

0

2

0
. .a f .

So we see that the electrostatic potential energy is not even attractive to 4 terms, and that the
infinite series does not converge rapidly  when groups of atoms corresponding to nearest

neighbors, next-nearest neighbors, etc. are added together.

ANSWERS TO EVEN PROBLEMS

P43.2 4.3 eV P43.30 2%

P43.4 (a) 1.28 eV; (b) σ = 0 272.  nm, ∈= 4 65.  eV ; P43.32 3 40 1017. ×  electrons
(c) 6.55 nN; (d) 576 N m

P43.34 see the solution
P43.6 (a) 40 0.  eVµ , 9.66 GHz;

P43.36 (a) 275 THz; (b) 1 09.  mµ(b) If r is 10% too small, f is 20% too large.

P43.8 1 46 10 46. × ⋅−  kg m2 P43.38 1.91 eV

P43.40 226 nmP43.10 (a) 1 81 10 45. × ⋅−  kg m2; (b) 1.62 cm

P43.42 (a) 59.5 mV; (b) –59.5 mVP43.12 (a) 11.8 pm; (b) 7.72 pm; HI is more loosely
bound

P43.44 4.19 mA

P43.14 (a) 0, 364 eVµ , 1.09 meV;
P43.46 (a) see the solution; (b) 10.7 kA

(b) 98.2 meV, 295 meV, 491 meV

P43.48 see the solution
P43.16 (a) 472 mµ ; (b) 473 mµ ; (c) 0 715.  mµ

P43.50 37
P43.18 2 9 10 47. × ⋅−  kg m2

P43.52 5 23.  J g
P43.20 only 64.1 THz

P43.54 4.74 eV
P43.22 (a) ~1017 ; (b) ~105  m3

P43.56 (a) x
A
B0

3
= ; (b) −2

27

3B
A

; (c) −
B

A

2

12
P43.24 (a) 0.444 nm, 0.628 nm, 0.769 nm

P43.26 see the solution
P43.58 see the solution

P43.28 (a) 1 57.  Mm s;
(b) larger by 10 orders of magnitude
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Nuclear Structure

ANSWERS TO QUESTIONS
Q44.1 Because of electrostatic repulsion between the positively-

charged nucleus and the +2e alpha particle. To drive the α-
particle into the nucleus would require extremely high kinetic
energy.

Q44.2 There are 86 protons and 136 neutrons in the nucleus 86
222 Rn.

For the atom to be neutral, there must be 86 electrons orbiting
the nucleus—the same as the number of protons.

Q44.3 All of these isotopes have the same number of protons in the
nucleus. Neutral atoms have the same number of electrons.
Isotopes only differ in the number of neutrons in the nucleus.

Q44.4 Nuclei with more nucleons than bismuth-209 are unstable
because the electrical repulsion forces among all of the protons
is stronger than the nuclear attractive force between nucleons.

Q44.5 The nuclear force favors the formation of neutron-proton pairs, so a stable nucleus cannot be too far
away from having equal numbers of protons and neutrons. This effect sets the upper boundary of
the zone of stability on the neutron-proton diagram. All of the protons repel one another electrically,
so a stable nucleus cannot have too many protons. This effect sets the lower boundary of the zone of
stability.

Q44.6 Nucleus Y will be more unstable. The nucleus with the higher binding energy requires more energy
to be disassembled into its constituent parts.

Q44.7 Extra neutrons are required to overcome the increasing electrostatic repulsion of the protons. The
neutrons participate in the net attractive effect of the nuclear force, but feel no Coulomb repulsion.

Q44.8 In the liquid-drop model the nucleus is modeled as a drop of liquid. The nucleus is treated as a
whole to determine its binding energy and behavior. The shell model differs completely from the
liquid-drop model, as it utilizes quantum states of the individual nucleons to describe the structure
and behavior of the nucleus. Like the electrons that orbit the nucleus, each nucleon has a spin state
to which the Pauli exclusion principle applies. Unlike the electrons, for protons and neutrons the
spin and orbital motions are strongly coupled.

Q44.9 The liquid drop model gives a simpler account of a nuclear fission reaction, including the energy
released and the probable fission product nuclei. The shell model predicts magnetic moments by
necessarily describing the spin and orbital angular momentum states of the nucleons. Again, the
shell model wins when it comes to predicting the spectrum of an excited nucleus, as the quantum
model allows only quantized energy states, and thus only specific transitions.

567
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Q44.10 4 He , 16 O , 40 Ca , and 208 Pb.

Q44.11 If one half the number of radioactive nuclei decay in one year, then one half the remaining number
will decay in the second year. Three quarters of the original nuclei will be gone, and one quarter will
remain.

Q44.12 The statement is false. Both patterns show monotonic decrease over time, but with very different
shapes. For radioactive decay, maximum activity occurs at time zero. Cohorts of people now living
will be dying most rapidly perhaps forty years from now. Everyone now living will be dead within
less than two centuries, while the mathematical model of radioactive decay tails off exponentially
forever. A radioactive nucleus never gets old. It has constant probability of decay however long it
has existed.

Q44.13 Since the samples are of the same radioactive isotope, their half-lives are the same. When prepared,
sample A has twice the activity (number of radioactive decays per second) of sample B. After 5 half-
lives, the activity of sample A is decreased by a factor of 25 , and after 5 half-lives the activity of
sample B is decreased by a factor of 25 . So after 5 half-lives, the ratio of activities is still 2:1.

Q44.14 After one half-life, one half the radioactive atoms have decayed. After the second half-life, one half

of the remaining atoms have decayed. Therefore 
1
2

1
4

3
4

+ =  of the original radioactive atoms have

decayed after two half-lives.

Q44.15 The motion of a molecule through space does not affect anything inside the nucleus of an atom of
the molecule. The half-life of a nucleus is based on nuclear stability which, as discussed in Questions
44.4 and Q44.5, is predominantly determined by Coulomb repulsion and nuclear forces, not
molecular motion.

Q44.16 Long-lived progenitors at the top of each of the three natural radioactive series are the sources of our
radium. As an example, thorium-232 with a half-life of 14 Gyr produces radium-228 and radium-224
at stages in its series of decays, shown in Figure 44.17.

Q44.17 A free neutron decays into a proton plus an electron and an antineutrino. This implies that a proton
is more stable than a neutron, and in particular the proton has lower mass. Therefore a proton
cannot decay into a neutron plus a positron and a neutrino. This reaction satisfies every
conservation law except for energy conservation.

Q44.18 A neutrino has spin 
1
2

 while a photon has spin 1. A neutrino interacts by the weak interaction while

a photon is a quantum of the electromagnetic interaction.

Q44.19 Let us consider the carbon-14 decay used in carbon dating. 6
14C N e7

14→ + +− ν . The carbon-14 atom
has 6 protons in the nucleus. The nitrogen-14 atom has 7 protons in the nucleus, but the additional
+ charge from the extra proton is canceled by the – charge of the ejected electron. Since charge is
conserved in this (and every) reaction, the antineutrino must have zero charge.

Similarly, when nitrogen-12 decays into carbon-12, the nucleus of the carbon atom has one
fewer protons, but the change in charge of the nucleus is balanced by the positive charge of the
ejected positron. Again according to charge conservation, the neutrino must have no charge.
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Q44.20 An electron has spin quantum number 
1
2

. When a nucleus undergoes beta decay, an electron and

antineutrino are ejected. With all nucleons paired, in their ground states the carbon-14, nitrogen-14,
nitrogen-12, and carbon-12 nuclei have zero net angular momentum. Angular momentum is
conserved in any process in an isolated system and in particular in the beta-decays of carbon-14 and

nitrogen-12. Conclusion: the neutrino must have spin quantum number 
1
2

, so that its z-component

of angular momentum can be just 
2

 or −
2

. A proton and a neutron have spin quantum number 1.

For conservation of angular momentum in the beta-decay of a free neutron, an antineutrino must

have spin quantum number 
1
2

.

Q44.21 The alpha particle and the daughter nucleus carry equal amounts of momentum in opposite

directions. Since kinetic energy can be written as 
p
m

2

2
, the small-mass alpha particle has much more

of the decay energy than the recoiling nucleus.

Q44.22 Bullet and rifle carry equal amounts of momentum p. With a much smaller mass m, the bullet has

much more kinetic energy K
p
m

=
2

2
. The daughter nucleus and alpha particle have equal momenta

and the massive daughter nucleus, like the rifle, has a very small share of the energy released.

Q44.23 Yes. The daughter nucleus can be left in its ground state or sometimes in one of a set of excited
states. If the energy carried by the alpha particle is mysteriously low, the daughter nucleus can
quickly emit the missing energy in a gamma ray.

Q44.24 In a heavy nucleus each nucleon is strongly bound to its momentary neighbors. Even if the nucleus
could step down in energy by shedding an individual proton or neutron, one individual nucleon is
never free to escape. Instead, the nucleus can decay when two protons and two neutrons, strongly
bound to one another but not to their neighbors, happen momentarily to have a lot of kinetic
energy, to lie at the surface of the nucleus, to be headed outward, and to tunnel successfully through
the potential energy barrier they encounter.

Q44.25 From F ma∑ = , or qvB
mv

r
=

2

, or qBr mv= , a charged particle fired into a magnetic field is deflected

into a path with radius proportional to its momentum. If they have equal kinetic energies K, the
much greater mass m of the alpha particle gives it more momentum mv mK= 2  than an electron.
Thus the electron undergoes greater deflection. This conclusion remains true if one or both particles
are moving relativistically.

Q44.26 The alpha particle stops in the wood, while many beta particles can make it through to deposit some
or all of their energy in the film emulsion.

Q44.27 The reaction energy is the amount of energy released as a result of a nuclear reaction. Equation 44.28
in the text implies that the reaction energy is (initial mass – final mass)c 2 . The Q-value is taken as
positive for an exothermic reaction.
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Q44.28 Carbon-14 is produced when carbon-12 is bombarded by cosmic rays. Both carbon-12 and carbon-14
combine with oxygen to form the atmospheric CO2 that plants absorb in respiration. When the
plant dies, the carbon-14 is no longer replenished and decays at a known rate. Since carbon-14 is a
beta-emitter, one only needs to compare the activity of a living plant to the activity of the sample to
determine its age, since the activity of a radioactive sample exponentially decreases in time.

Q44.29 The samples would have started with more carbon-14 than we first thought. We would increase our
estimates of their ages.

Q44.30 There are two factors that determine the uncertainty on dating an old sample. The first is the fact
that the activity level decreases exponentially in time. After a long enough period of time, the
activity will approach background radiation levels, making precise dating difficult. Secondly, the
ratio of carbon-12 to carbon-14 in the atomsphere can vary over long periods of time, and this effect
contributes additional uncertainty.

Q44.31 An α-particle is a helium nucleus: 2
4 He

A β-particle is an electron or a positron: either e−  or e+ .
A γ-ray is a high-energy photon emitted when a nucleus makes a downward transition

between two states.

Q44.32 Iz  may have 6 values for I =
5
2

, namely 
5
2

, 
3
2

, 
1
2

, −
1
2

, −
3
2

, and −
5
2

. Seven Iz  values are possible for

I = 3 .

Q44.33 The frequency increases linearly with the magnetic field strength.

Q44.34 The decay of a radioactive nucleus at one particular moment instead of at another instant cannot be
predicted and has no cause. Natural events are not just like a perfect clockworks. In history, the idea
of a determinate mechanical Universe arose temporarily from an unwarranted wild extrapolation of
Isaac Newton’s account of planetary motion. Before Newton’s time [really you can blame Pierre
Simon de Laplace] and again now, no one thought of natural events as just like a perfect row of
falling dominos. We can and do use the word “cause” more loosely to describe antecedent enabling
events. One gear turning another is intelligible. So is the process of a hot dog getting toasted over a
campfire, even though random molecular motion is at the essence of that process. In summary, we
say that the future is not determinate. All natural events have causes in the ordinary sense of the
word, but not necessarily in the contrived sense of a cause operating infallibly and predictably in a
way that can be calculated. We have better reason now than ever before to think of the Universe as
intelligible. First describing natural events, and second determining their causes form the basis of
science, including physics but also scientific medicine and scientific bread-baking. The evidence
alone of the past hundred years of discoveries in physics, finding causes of natural events from the
photoelectric effect to x-rays and jets emitted by black holes, suggests that human intelligence is a
good tool for figuring out how things go. Even without organized science, humans have always
been searching for the causes of natural events, with explanations ranging from “the will of the
gods” to Schrödinger’s equation. We depend on the principle that things are intelligible as we make
significant strides towards understanding the Universe. To hope that our search is not futile is the
best part of human nature.



Chapter 44     571

SOLUTIONS TO PROBLEMS

Section 44.1 Some Properties of Nuclei

P44.1 An iron nucleus (in hemoglobin) has a few more neutrons than protons, but in a typical water
molecule there are eight neutrons and ten protons.

So protons and neutrons are nearly equally numerous in your body, each contributing mass
(say) 35 kg:

35
1

1 67 10
1027

28 kg
 nucleon

 kg
 protons

.
~

×

F
HG

I
KJ−

and ~1028  neutrons .

The electron number is precisely equal to the proton number, ~1028  electrons .

P44.2
1
2

2mv q V= ∆ and
mv

r
qvB

2

=

2 2 2m V qr B∆ = : r
m V
qB

m= =
× −

2 2 1 000

1 60 10 0 2002 19 2
∆  V

 C  T

b g
e ja f. .

r m= ×5 59 1011.  m kge j

(a) For 12 C , m = 12 u  and r = × × −5 59 10 12 1 66 1011 27. . m kg  kge j e j
r = =0 078 9 7 89. . m  cm .

For 13 C : r = × × −5 59 10 13 1 66 1011 27. . m kg  kge j e j
r = =0 082 1 8 21. . m  cm .

(b) With r
m V
qB1

1
2

2
=

∆
 and r

m V
qB2

2
2

2
=

∆

the ratio gives
r
r

m
m

1

2

1

2
=

r
r

1

2

7 89
0 961= =

.
.

 cm
8.21 cm

and
m
m

1

2

12
0 961= =

 u
13 u

.

so they do agree.



572     Nuclear Structure

P44.3 (a) F k
Q Q

re= = × ⋅
×

×
=

−

−

1 2
2

9
19 2

14 28 99 10
2 6 1 60 10

1 00 10
27 6.

.

.
. N m C

 C

 m
 N2 2e j

a fa fe j
e j

(b) a
F
m

= =
×

= ×−
27 6

10
4 17 1027

27.
.

 N
6.64  kg

 m s2  away from the nucleus.

(c) U k
Q Q

re= = × ⋅
×

×
= × =

−

−
−1 2 9

19 2

14
138 99 10

2 6 1 60 10

1 00 10
2 76 10 1 73.

.

.
. . N m C

 C

 m
 J  MeV2 2e j

a fa fe j
e j

P44.4 Eα = 7 70.  MeV

(a) d
k Ze
mv

k Ze
E

e e
min

. .

. .
. .= = =

× ×

×
= × =

−

−
−4 2 2 8 99 10 79 1 60 10

7 70 1 60 10
29 5 10 29 5

2

2

2 9 19 2

13
15

α

e ja fe j
e j

 m  fm

(b) The de Broglie wavelength of the α is

λ
α α α α

= = =
×

× ×
= × =

−

− −

−h
m v

h
m E2

6 626 10

2 6 64 10 7 70 1 60 10
5 18 10 5 18

34

27 13

15.

. . .
. .

e j e j
 m  fm .

(c) Since λ is much less than the distance of closest approach , the α may be considered a

particle.

P44.5 (a) The initial kinetic energy of the alpha particle must equal the electrostatic potential energy
at the distance of closest approach.

K U
k qQ
r

r
k qQ

K

i f
e

e

i

= =

= =
× ⋅ ×

×
= ×

−

−
−

min

min

. .

. .
.

8 99 10 2 79 1 60 10

0 500 1 60 10
4 55 10

9 19 2

13
13

 N m C  C

 MeV  J MeV
 m

2 2e ja fa fe j
a fe j

(b) Since K m v
k qQ
ri i
e= =

1
2

2
α

min
,

v
k qQ

m ri
e= =

× ⋅ ×

× ×
= ×

−

− −

2 2 8 99 10 2 79 1 60 10

4 00 1 66 10 3 00 10
6 04 10

9 19 2

27 13
6

α min

. .

. . .
.

 N m C  C

 u  kg u  m
 m s

2 2e ja fa fe j
a fe je j

.
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P44.6 It must start with kinetic energy equal to K U
k qQ

ri f
e

f
= = . Here rf  stands for the sum of the radii of

the 2
4 He and 79

197 Au  nuclei, computed as

r r A r Af = + = × + = ×− −
0 1

1 3
0 2

1 3 15 1 3 1 3 151 20 10 4 197 8 89 10. . m  me je j .

Thus, K Ui f= =
× ⋅ ×

×
= × =

−

−
−

8 99 10 2 79 1 60 10

8 89 10
4 09 10 25 6

9 19 2

15
12

. .

.
. .

 N m C  C

 m
 J  MeV

2 2e ja fa fe j
.

P44.7 (a) r r A= = × = ×− −
0

1 3 15 1 3 151 20 10 4 1 90 10. . m  me ja f

(b) r r A= = × = ×− −
0

1 3 15 1 3 151 20 10 238 7 44 10. . m  me ja f

P44.8 From r r A= 0
1 3 , the radius of uranium is r rU = 0

1 3238a f .

Thus, if r r=
1
2 U  then r A r0

1 3
0

1 31
2

238= a f
from which A = 30 .

P44.9 The number of nucleons in a star of two solar masses is

A =
×

×
= ×−

2 1 99 10

1 67 10
2 38 10

30

27
57

.

.
.

 kg

 kg nucleon
 nucleons

e j
.

Therefore r r A= = × × =−
0

1 3 15 57 1 3
1 20 10 2 38 10 16 0. . . m  kme je j .

P44.10 V r= = = × −4
3

4
3

0 021 5 4 16 104 3 5π π . . m  m3b g
We take the nuclear density from Example 44.2

m V= = × × = ×−ρ 2 3 10 4 16 10 9 57 1017 5 12. . . kg m  m  kg3 3e je j

and F G
m m

r
= = × ⋅

×
−1 2

2
11

12 2

26 67 10
9 57 10

1 00
.

.

.
 N m kg

 kg

 m
2 2e j e j

a f
F = ×6 11 1015.  N  toward the other ball.

P44.11 The stable nuclei that correspond to magic numbers are:

Z magic: 2 He 8 O 20 Ca 28 Ni 50 Sn 82 Pb

An artificially produced nucleus with Z = 126  might be more stable than other nuclei with lower
values for Z, since this number of protons is magic.

N magic: 1
3 T , 2

4 He, 7
15 N, 8

16 O, 17
37 Cl , 19

39 K , 20
40 Ca, 23

51 V , 24
52 Cr , 38

88 Sr ,

39
89 Y , 40

90 Zr , 54
136 Xe , 56

138 Ba , 57
139 La, 58

140Ce , 59
141 Pr , 60

142 Nd , 82
208 Pb, 83

209 Bi ,

84
210 Po
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*P44.12 (a) For even Z, even N, even A, the list begins 2
4 He, 6

12 C , and ends 78
194 Pt , 78

196 Pt , 80
202 Hg , 82

208 Pb,
containing 48  isotopes.

(b) The whole even Z, odd N, odd A list is 4
9 Be , 54

129 Xe , 78
195 Pt , with 3  entries.

(c) The odd Z, even N, odd A list has 46  entries, represented as 1
1 H , 3

7 Li , …, 81
203 Tl , 81

205 Tl ,

83
209 Bi .

(d) The odd Z, odd N, even A list has 1  entry, 7
14 N. Do not be misled into thinking that nature

favors nuclei with even numbers of neutrons. The form of the question here forces a count
with essentially equal numbers of odd-Z and even-Z nuclei. If we counted all of the stable
nuclei we would find many even-even isotopes but also lots of even-Z odd-N nuclei and
odd-Z even-N nuclei; we would find roughly equal numbers of these two kinds of odd-A
nuclei. A nucleus with one odd neutron is no more likely to be unstable than a nucleus with
one odd proton.

With the arbitrary 25% abundance standard, we can note that most elements have a
single predominant isotope. Ni, Cu, Zn, Ga, Ge, Pd, Ag, Os, Ir, and Pt form a compact patch
on the periodic table and have two common isotopes, as do some others. Tungsten is the
only element with three isotopes over 25% abundance.

*P44.13 (a) Z Z1 28= N N1 25=

N Z N Z1 1 1 26+ = +b g  and N Z1 1 4= +

Thus: N Z N Z1 1 1 16
1
5

1
8

+ = +F
HG

I
KJ

∴ =

∴ + =

∴ =
= + = = + =

= = = = = + =

N Z

Z Z

Z
N Z A Z N

N N Z Z A Z N

1 1

1 1

1

1 1 1 1 1

2 1 2 1 2 2 2

5
4

4
5
4

16
4 20 36

1
5

4
1
8

2 6

,

, ,

Hence: 16
36 S and 2

6 He.

(b) 2
6 He is unstable. Two neutrons must be removed to make it stable 2

4 Hee j .
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Section 44.2 Nuclear Binding Energy

P44.14 Using atomic masses as given in Table A.3,

(a) For 1
2 H:

− + +2 014 102 1 1 008 665 1 1 007 825

2

. . .b g b g

E
A

b = F
HG

I
KJ =0 001 194

931 5
1 11.

.
. u

 MeV
u

 MeV nucleonb g .

(b) For 2
4 He:

2 1 008 665 2 1 007 825 4 002 603

4

. . .b g b g+ −

E
A

cb = =0 007 59 7 072. . u  MeV nucleon .

(c) For 26
56 Fe : 30 1 008 665 26 1 007 825 55 934 942 0 528. . . .b g b g+ − =  u

E
A

cb = = =
0 528

56
0 009 44 8 792.

. . u  MeV nucleon .

(d) For 92
238 U : 146 1 008 665 92 1 007 825 238 050 783 1 934 2. . . .b g b g+ − =  u

E
A

cb = = =
1 934 2

238
0 008 13 7 572.
. . u  MeV nucleon .

P44.15 ∆M Zm Nm M= + −H n
BE
A

M
A

=
∆ 931 5.a f

Nuclei Z N M in u ∆M  in u
BE
A

 in MeV

55 Mn 25 30 54.938 050 0.517 5 8.765
56 Fe 26 30 55.934 942 0.528 46 8.790
59 Co 27 32 58.933 200 0.555 35 8.768

∴56 Fe has a greater 
BE
A

 than its neighbors. This tells us finer detail than is shown in Figure 44.5.

P44.16 Use Equation 44.2.

The 11
23 Na ,

E
A

b = 8 11.  MeV nucleon

and for 12
23 Mg ,

E
A

b = 7 90.  MeV nucleon.

The binding energy per nucleon is greater for 11
23 Na  by 0 210.  MeV . (There is less proton repulsion

in Na23 .)

P44.17 (a) The neutron-to-proton ratio 
A Z

Z
−

 is greatest for 55
139 Cs  and is equal to 1.53.

(b) 139 La  has the largest binding energy per nucleon of 8.378 MeV.

(c) 139Cs  with a mass of 138.913 u. We locate the nuclei carefully on Figure 44.4, the
neutron–proton plot of stable nuclei. Cesium  appears to be farther from the center of the

zone of stability. Its instability means extra energy and extra mass.
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P44.18 (a) The radius of the 40 Ca nucleus is: R r A= = × = ×− −
0

1 3 15 1 3 151 20 10 40 4 10 10. . m  me ja f .

The energy required to overcome electrostatic repulsion is

U
k Q

R
e= =

× ⋅ ×

×
= × =

−

−
−3

5

3 8 99 10 20 1 60 10

5 4 10 10
1 35 10 84 1

2 9 19 2

15
11

. .

.
. .

 N m C  C

 m
 J  MeV

2 2e j e j
e j

.

(b) The binding energy of 20
40 Ca is

Eb = + − =20 1 007 825 20 1 008 665 39 962 591 931 5 342. . . . u  u  u  MeV u  MeVb g b g b g .

(c) The nuclear force is so strong that the binding energy greatly exceeds the minimum energy
needed to overcome electrostatic repulsion.

P44.19 The binding energy of a nucleus is E ZM Nm Mb n Z
AMeV H X  MeV ua f a f e j b g= + − 931 494. .

For 8
15 O: Eb = + − =8 1 007 825 7 1 008 665 15 003 065 931 494 111 96. . . . . u  u  u  MeV u  MeVb g b g b g .

For 7
15 N: Eb = + − =7 1 007 825 8 1 008 665 15 000 109 931 494 115 49. . . . . u  u  u  MeV u  MeVb g b g b g .

Therefore, the binding energy of N is larger by 3.54 MeV7
15 .

P44.20 Removal of a neutron from 20
43 Ca would result in the residual nucleus, 20

42 Ca. If the required
separation energy is Sn , the overall process can be described by

mass 20
43

20
42Ca mass Ca mass ne j e j a f+ = +Sn

Sn = + − = =41 958 618 1 008 665 42 958 767 0 008 516 931 5 7 93. . . . . .b g b gb g u  u  MeV u  MeV .

Section 44.3 Nuclear Models

P44.21 ∆E E Eb bf bi= −

For A = 200, 
E
A

b = 7 4.  MeV

so Ebi = =200 7 4 1 480.  MeV  MeVa f .

For A ≈ 100 , 
E
A

b = 8 4.  MeV

so Ebf = =2 100 8 4 1 680a fa f.  MeV  MeV.

∆E E Eb bf bi= − : Eb = − =1 680 1 480 200 MeV  MeV  MeV

FIG. P44.21
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P44.22 (a) The first term overstates the importance of volume and the second term subtracts this
overstatement.

(b) For spherical volume 
4 3

4 3

3

2

b gπ
π

R

R
R

= . For cubical volume 
R
R

R3

26 6
= .

The maximum binding energy or lowest state of energy is achieved by building “nearly”
spherical nuclei.

P44.23 (a) “Volume” term: E C A1 1 15 7 56 879= = =.  MeV  MeVa fa f .

“Surface” term: E C A2 2
2 3 2 317 8 56 260= − = − = −.  MeV  MeVa fa f .

“Coulomb” term: E C
Z Z

A3 3 1 3 1 3

1
0 71

26 25

56
121= −

−
= − = −

a f a f a fa fa f.  MeV  MeV .

“Asymmetry” term: E C
A Z

A4 4

2 22
23 6

56 52
56

6 74=
−

= −
−

= −
a f a f a f

. . MeV  MeV.

Eb = 491 MeV

(b)
E
Eb

1 179%= ; 
E
Eb

2 53 0%= − . , 
E
Eb

3 24 6%= − . ; 
E
Eb

4 1 37%= − .

Section 44.4 Radioactivity

P44.24 R R e e et= = = = F
HG
I
KJ =

− − −
0

2 8 04 40 2 2 5

56 40 6 40 6 40
1

2
0 200λ . . . .ln . . ln mCi  mCi  mCi  mCi d  da f a fe j a fb ga f

P44.25
dN
dt

N= −λ

so λ = −FHG
I
KJ = × × = ×− − −1

1 00 10 6 00 10 6 00 1015 11 4 1

N
dN
dt

. . .e je j  s

T1 2
32

1 16 10 19 3= = × =
ln

. .
λ

 s  mina f

P44.26 R N= =
F
HG

I
KJ
F
HG

I
KJ ×λ

ln
.

.
.

2
5 27

1 00
6 02 1023

 yr
 g

59.93 g mol e j

R = ×
×

F
HG

I
KJ = ×1 32 10

1
4 18 1021 13. . decays yr

 yr
3.16 10  s

 Bq7e j

P44.27 (a) From R R e t= −
0

λ ,

λ

λ

= F
HG
I
KJ =
F
HG

I
KJ
F
HG
I
KJ = × = ×

= =

− − − −1 1
4 00

10 0
8 00

5 58 10 1 55 10

2
12 4

0 2 1 5 1

1 2

t
R
R

T

ln
.

ln
.

.
. .

ln
.

 h
 h  s

 h

(b) N
R

0
0

3

5

10
1310 0 10

1 55 10
3 70 10

1
2 39 10= =

×
×

×F
HG

I
KJ = ×

−

−λ
.
.

.
.

 Ci
s

s
 Ci

 atoms

(c) R R e t= = − × × =− −
0

210 0 5 58 10 30 0 1 88λ . exp . . . mCi  mCia f e j
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P44.28 R R e t= −
0

λ where λ = = −ln
.

.
2

26 0
0 026 6 1

 h
 h

R
R

e t

0
0 100= = −. λ so ln .0 100a f = −λ t

2 30
0 026 6

.
.

= FHG
I
KJh

t t = 86 4.  h

P44.29 The number of nuclei which decay during the interval will be N N N e et t
1 2 0

1 2− = −− −λ λe j.

First we find l : λ = = = = ×− − −ln .
.

. .
2 0 693

64 8
0 010 7 2 97 10

1 2

1 6 1

T  h
 h  s

and N
R

0
0

4 1

6 1
11

40 0 3 70 10

2 97 10
4 98 10= =

×

×
= ×

−

− −λ

µ µ. .

.
.

 Ci  s Ci

 s
 nuclei

b ge j
.

Substituting these values, N N e e1 2
11 0 010 7 10 0 0 010 7 12 0

4 98 10
1 1

− = × −L
NM

O
QP

− −− −

.
. . . .e j e ja f e ja f h  h  h  h

.

Hence, the number of nuclei decaying during the interval is N N1 2
99 47 10− = ×.  nuclei .

P44.30 The number of nuclei which decay during the interval will be N N N e et t
1 2 0

1 2− = −− −λ λe j.

First we find λ: λ =
ln 2

1 2T

so e et t T t T− − −= =λ ln2 1 2 1 22e j

and N
R R T

0
0 0 1 2

2
= =

λ ln
.

Substituting in these values N N
R T

e e
R Tt t t T t T

1 2
0 1 2 0 1 2

2 2
2 21 2 1 1 2 2 1 2− = − = −− − − −

ln ln
λ λe j e j .

*P44.31 We have all this information: N Nx y0 2 50 0a f a f= .

N N

N e N e
N

e

e e

T

T

x y

x y
x

x y

x

x

x y y

x y

3 4 20 3

0 4 20 0 4 20
0

2 50
2 5
4 2

3
2 5
4 2

3

3
0 693 2 5

4 2
3

0 693
1 60

0 781

2 66

3 3 3

3 3

1 2

1 2

d d

d d

d d
 d

 d

d d d

d d

 

a f a f
a f a f a f

=

= =

=

= FHG
I
KJ +

= FHG
I
KJ + =

=

− − −

.

. .
.

.

.

ln
.
.

.
ln

.

.
.
.

.

.

λ λ λ

λ λ

λ λ
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*P44.32 (a)
dN
dt

2 =  rate of change of N2

= rate of production of N2  – rate of decay of N2

= rate of decay of N1  – rate of decay of N2

= −λ λ1 1 2 2N N

(b) From the trial solution

N t
N

e et t
2

10 1

1 2

2 1a f e j=
−

−− −λ
λ λ

λ λ

∴ =
−

− +− −dN
dt

N
e et t2 10 1

1 2
2 1

2 1
λ

λ λ
λ λλ λe j (1)

∴ + =
−

− + + −

=
−

−

=

− − − −

−

dN
dt

N
N

e e e e

N
e

N

t t t t

t

2
2 2

10 1

1 2
2 1 2 2

10 1

1 2
1 2

1 1

2 1 2 1

1

λ
λ

λ λ
λ λ λ λ

λ
λ λ

λ λ

λ

λ λ λ λ

λ

e j

b g

So 
dN
dt

N N2
1 1 2 2= −λ λ  as required.

(c) The functions to be plotted are

N t e

N t e e

t

t t

1
0 223 6

2
0 223 6 0 025 9

1 000

1 130 8

1

1 1

a f
a f

e j

e j e j
=

= −L
NM

O
QP

−

− −

−

− −

.

. .
.

 min

 min  min

From the graph: tm ≈ 10 9.  min

1 200

1 000

800

600

400

200

0
0 10 20 30 40

Po
Pb

time (min)

Decay of            andPo218 Pb214

FIG. P44.32(c)

(d) From (1), 
dN
dt

2 0=  if λ λλ λ
2 1

2 1e et t− −= . ∴ =−e tλ λ λ
λ

1 2 1

2

b g . Thus, t tm= =
−

ln λ λ
λ λ

1 2

1 2

b g
.

With λ1
10 223 6= −.  min , λ 2

10 025 9= −.  min , this formula gives tm = 10 9.  min , in

agreement with the result of part (c).

Section 44.5 The Decay Processes

P44.33 Q M M M= − −U-238 Th-234 He-4  MeV ub gb g931 5.

Q = − − =238 050 783 234 043 596 4 002 603 4 27. . . .b g b g u 931.5 MeV u  MeV
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P44.34 (a) A gamma ray has zero charge and it contains no protons or neutrons. So for a gamma ray
Z = 0 and A = 0. Keeping the total values of Z and A for the system conserved then requires
Z = 28 and A = 65  for X. With this atomic number it must be nickel, and the nucleus must be
in an exited state, so it is 28

65 Ni* .

(b) α=2
4He has Z = 2 and A = 4

so for X we require Z = − =84 2 82

for Pb and A = − =215 4 211, X= 82
211Pb.

(c) A positron e e+ =1
0  has charge the same as a nucleus with Z = 1 . A neutrino 0

0ν  has no charge.
Neither contains any protons or neutrons. So X must have by conservation Z = + =26 1 27 . It
is Co. And A = + =55 0 55 . It is 27

55 Co.
Similar reasoning about balancing the sums of Z and A across the reaction reveals:

(d) −1
0 e

(e) 1
1 H  (or p). Note that this process is a nuclear reaction, rather than radioactive decay. We can
solve it from the same principles, which are fundamentally conservation of charge and
conservation of baryon number.

P44.35 NC =
F
HG

I
KJ ×

0 021 0
6 02 1023.

.
 g

12.0 g mol
 molecules mole j

NC = ×1 05 1021.  carbon atomse j  of which 1 in 7 70 1011. ×  is a 14C  atom

N0
91 37 10b gC-14

= ×. , λC-14  yr
 yr  s= = × = ×− − − −ln

. .
2

5 730
1 21 10 3 83 104 1 12 1

R N N e t= = −λ λ λ
0

At t = 0 , R N0 0
12 1 9 33 83 10 1 37 10

7 86 400

1
3 17 10= = × ×

L
N
MM

O
Q
PP = ×− −λ . . . s

 s

 week
 decays weeke je j b g

.

At time t , R = =
837
0 88

951
.

 decays week .

Taking logarithms, ln
R
R

t
0
= −λ so t

R
R

=
− F
HG
I
KJ

1

0λ
ln

t =
−

× ×
F
HG

I
KJ = ×− −

1
1 21 10

951
3 17 10

9 96 104 1 3
3

.
ln

.
.

 yr
 yr .

*P44.36 N N e t= −
0

λ dN
dt

R N e R et t= = − =− −λ λ λ
0 0

e
R
R

t− =λ

0
e

R
R

tλ = 0 λ t
R
R T

t= FHG
I
KJ =ln

ln0

1 2

2
t T

R R
= 1 2

0

2

ln

ln
b g

If R = 0 13.  Bq , t = =5 730
0 25 0 13

0 693
5 406 yr  yr

ln . .

.
b g

.

If R = 0 11.  Bq , t = =5 730
0 25 0 11

0 693
6 787 yr  yr

ln . .

.
b g

.

The range is most clearly written as between 5 400 yr and 6 800 yr , without understatement.
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P44.37 1
3 H nucleus He nucleus e2

3→ + +− ν

becomes 1
3

2
3 2H nucleus e He nucleus e+ → + +− − ν .

Ignoring the slight difference in ionization energies,

we have 1
3 H atom He atom2

3→ +ν

3 016 049 3 016 029 0

3 016 049 3 016 029 931 5 0 018 6 18 6

2. .

. . . . .

 u  u

 u  u  MeV u  MeV  keV

= + +

= − = =

Q
c

Q b gb g

P44.38 (a) For e+  decay,

Q M M m c

Q
X Y e= − − = − −

= −

2 39 962 591 39 963 999 2 0 000 549 931 5

2 33

2b g b g b g. . . .

.

 u  u  u  MeV u

 MeV

Since Q < 0 , the decay cannot occur  spontaneously.

(b) For alpha decay,

Q M M M c

Q
X Y= − − = − −

= −
αb g b g2 91 905 287 4 002 603 93 905 088 931 5

2 24

. . . .

.

 u  u  u  MeV u

 MeV

Since Q < 0 , the decay cannot occur  spontaneously.

(c) For alpha decay,

Q M M M c

Q
X Y= − − = − −

=
αb g b g2 143 910 083 4 002 603 139 905 434 931 5

1 91

. . . .

.

 u  u  u  MeV u

 MeV

Since Q > 0 , the decay can occur  spontaneously.

P44.39 (a) e p n− + → +ν

(b) For nuclei, 15 15O e N+ → +− ν .

Add seven electrons to both sides to obtain 8
15 O atom N atom7

15→ +ν .

(c) From Table A.3, m m
Q
c

15 15
2O Ne j e j= +

∆m

Q

= − =

= =

15 003 065 15 000 109 0 002 956

931 5 0 002 956 2 75

. . .

. . .

 u  u  u

 MeV u  u  MeVb gb g
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Section 44.6 Natural Radioactivity

P44.40 (a) Let N be the number of 238 U  nuclei and ′N  be 206 Pb nuclei.

Then N N e t= −
0

λ  and N N N0 = + ′  so N N N e t= + ′ −a f λ  or e
N
N

tλ = +
′

1 .

Taking logarithms, λ t
N
N

= +
′F

HG
I
KJln 1 where λ =

ln 2

1 2T
.

Thus, t
T N

N
=
F
HG
I
KJ +

′F
HG
I
KJ

1 2

2
1

ln
ln .

If 
N
N ′

= 1 164.  for the 238 U Pb206→  chain with T1 2
94 47 10= ×.  yr , the age is:

t =
×F

HG
I
KJ +FHG

I
KJ = ×

4 47 10
2

1
1

1 164
4 00 10

9
9.

ln
ln

.
.

 yr
 yr .

(b) From above, e
N
N

tλ = +
′

1 . Solving for 
N
N ′

 gives 
N
N

e
e

t

t′
=

−

−

−

λ

λ1
.

With t = ×4 00 109.  yr  and T1 2
87 04 10= ×.  yr for the 235 207U Pb→  chain,

λ t
T

t=
F
HG
I
KJ =

×

×
=

ln ln .

.
.

2 2 4 00 10

7 04 10
3 938

1 2

9

8

a fe j yr

 yr
 and 

N
N ′

= 0 019 9. .

With t = ×4 00 109.  yr  and T1 2
101 41 10= ×.  yr  for the 232 208Th Pb→  chain,

λ t =
×

×
=

ln .

.
.

2 4 00 10

1 41 10
0 196 6

9

10

a fe j yr

 yr
 and 

N
N ′

= 4 60. .

P44.41

FIG. P44.41
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P44.42 (a) 4 00
4 00 10 3 70 10 1 00 10

148
12 10 3

.
. . .

 pCi L
 Ci

1 L
 Bq

1 Ci
 L

1 m
 Bq m3

3=
×F

HG
I
KJ

×F
HG

I
KJ

×F
HG

I
KJ =

−

(b) N
R

R
T

= =
F
HG
I
KJ =

F
HG

I
KJ
F
HG

I
KJ = ×

λ
1 2 7

2
148

3 82 86 400
7 05 10

ln
.

. Bq m
 d

ln2
 s

1 d
 atoms m3 3e j

(c) mass = ×
×

F
HG

I
KJ
F
HG
I
KJ = × −7 05 10

1 222
2 60 107 14. . atoms m

 mol
6.02 10  atoms

 g
1 mol

 g m3
23

3e j
Since air has a density of 1 20.  kg m3 , the fraction consisting of radon is

fraction =
×

= ×
−

−2 60 10
1 200

2 17 10
14

17.
.

 g m
 g m

3

3

.

*P44.43 (a) Let x, y denote the half-lives of the nuclei X, Y.

R
R

R e
R e

eX

Y

t

t
x yX

Y
= = =

−

−
− −0

0

0 685 2 1 1 1 04
λ

λ
. ln . ha fa fb g , which gives

1 1
0 082 603 69 1

x y
− = − −.  h . (1)

From the data: x y− = 77 2.  h . (2)

Substitute (2) into (1):
1 1

77 2
0 082 603 69 1

x x
−

−
= − −

.
.

 h
 h .

This reduces to the quadratic equation

x x2 77 2 934 6 0− − =. .

which has solutions: x = 87 84.  h  or −10 64.  h .

Thus: x T= = =1 2 87 84 3 66, . . X  h  days  is the only physical root.

From (2): y T= = − =1 2 87 84 77 2 10 6, . . .Y  h  h  h .

(b) From Table A.3, X is 224 Ra  and Y is 212 Pb .

(c) From Figure 44.18, 224 Ra decays to 212 Pb by three  successive alpha-decays.

P44.44 Number remaining: N N e t T= −
0

2 1 2lna f .

Fraction remaining:
N
N

e et t T

0

2 1 2= =− −λ lna f .

(a) With T1 2 3 82= .  d and t = 7 00.  d,
N
N

e
0

2 7 00 3 82 0 281= =− ln . . .a fa f a f .

(b) When t = =1 00 365 25. . yr  d ,
N
N

e
0

2 365 25 3 82 291 65 10= = ×− −ln . . .a fa f a f .

(c) Radon is continuously created  as one daughter in the series of decays starting from the

long-lived isotope 238 U .
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Section 44.7 Nuclear Reactions

P44.45 Q M M M m cn= + − −27 30
2

Al Pα

Q = + − − = −26 981 539 4 002 603 29 978 314 1 008 665 2 64. . . . . u 931.5 MeV u  MeVb g

P44.46 (a) For X, A = + − =24 1 4 21

and Z = + − =12 0 2 10 , so X is 10
21 Ne .

(b) A = + − − =235 1 90 2 144

and Z = + − − =92 0 38 0 54, so X is 54
144 Xe .

(c) A = − =2 2 0

and Z = − = +2 1 1, so X must be a positron.

As it is ejected, so is a neutrino: X e= +
1
0  and ′=X 0

0ν .

P44.47 (a) 79
197

0
1

79
198

80
198

1
0Au n Au Hg e*+ → → + +− ν

(b) Consider adding 79 electrons:

79
197

0
1

2
197 198

196 966 552 1 008 665 197 966 752 7 89

Au atom n Hg atom

 u 931.5 MeV u  MeV

80
198

Au Hg

+ → + +

= + −

= + − =

ν Q

Q M m M c

Q

n

. . . .b g

P44.48 Neglect recoil of product nucleus, (i.e., do not require momentum conservation for the system of
colliding particles). The energy balance gives K K Qemerging incident= + . To find Q:

Q M M M m c

Q

n= + − +

= + − + = −

H Al Si

 u 931.5 MeV u  MeV

b g b g
b g b g b g

2

1 007 825 26 981 539 26 986 705 1 008 665 5 59. . . . .

Thus, Kemerging  MeV  MeV  MeV= − =6 61 5 59 1 02. . . .

P44.49 4
9

0
11 665Be  MeV Be n4

8+ → +. , so M M
Q
c

mn
4
8

4
9 2Be Be= − −

M
4
8 9 012 182

1 665
931 5

1 008 665 8 005 3Be  u
 MeV

 MeV u
 u  u= −

−
− =.

.
.

. .
a f

4
9

0
1 6 812Be n Be  MeV4

10+ → + . , so M M m
Q
cn

4
10

4
9 2Be Be= + −

M
4

10 9 012 182 1 008 665
6 812

10 013 5Be  u  u
 MeV

931.5 MeV u
 u= + − =. .

.
.
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P44.50 (a) 5
10

2
4

1
1B He C H6

13+ → +

The product nucleus is 6
13 C .

(b) 6
13

1
1

2
4C H B He5

10+ → +

The product nucleus is 5
10 B .

P44.51 92
236

55
143

0
13U Rb Cs n37

90→ + + ,

so Q M M M m cn= − − −
92

236
37
90

55
143 3 2

U Rb Cs

From Table A.3,

Q = − − − =236 045 562 89 914 809 142 927 330 3 1 008 665 165. . . .b g b gu 931.5 MeV u  MeV .

Section 44.8 Nuclear Magnetic Resonance and Magnetic Resonance Imagining

P44.52

FIG. P44.52

P44.53 (a) f
B

hn = =
×

× ⋅
=

−

−

2 2 1 913 5 5 05 10 1 00

6 626 10
29 2

27

34

µ . . .

.
.

b ge ja f J T  T

 J s
 MHz

(b) fp =
×

× ⋅
=

−

−

2 2 792 8 5 05 10 1 00

6 626 10
42 6

27

34

. . .

.
.

b ge ja f J T  T

 J s
 MHz

(c) In the Earth’s magnetic field,

fp =
× ×

×
=

− −

−

2 2 792 8 5 05 10 50 0 10

6 626 10
2 13

27 6

34

. . .

.
.

b ge je j
 kHz .
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Additional Problems

*P44.54 (a) With mn  and vn  as the mass and speed of the neutrons, Eq. 9.23 of the text becomes, after

making appropriate notational changes, for the two collisions v
m

m m
vn

n
n1

1

2
=

+
F
HG

I
KJ ,

v
m

m m
vn

n
n2

2

2
=

+
F
HG

I
KJ

∴ + = + =

∴ − = −

∴ =
−
−

m m v m m v m v

m v v m v m v

m
m v m v

v v

n n n n

n

n

2 2 1 1

2 1 1 1 2 2

1 1 2 2

2 1

2b g b g
b g

(b) mn =
× − ×

× − ×
=

1 3 30 10 14 4 70 10

4 70 10 3 30 10
1 16

7 6

6 7

 u  m s  u  m s

 m s  m s
 u

a fe j a fe j. .

. .
.

P44.55 (a) Q M M M m cn= + − −9 4 12
2

Be He C

Q = + − − =9 012 182 4 002 603 12 000 000 1 008 665 931 5 5 70. . . . . . u  u  u  u  MeV u  MeVb g

(b) Q M M mn= − −2 2 3H He

Q = − − =2 2 014 3 016 029 1 008 665 3 27. . . .102  u 931.5 MeV u  MeV exothermicb g b g a f

P44.56 (a) At threshold, the particles have no kinetic energy relative to each other. That is, they move
like two particles that have suffered a perfectly inelastic collision. Therefore, in order to
calculate the reaction threshold energy, we can use the results of a perfectly inelastic
collision. Initially, the projectile Ma  moves with velocity va  while the target MX  is at rest.
We have from momentum conservation for the projectile-target system:

M v M M va a a X c= +b g .

The initial energy is: E M vi a a=
1
2

2 .

The final kinetic energy is:

E M M v M M
M v

M M
M

M M
Ef a X c a X

a a

a X

a

a X
i= + = +

+
L
NM

O
QP

=
+

L
NM

O
QP

1
2

1
2

2
2

b g b g .

From this, we see that E f  is always less than Ei  and the change in energy, E Ef i− , is given by

E E
M

M M
E

M
M M

Ef i
a

a X
i

X

a X
i− =

+
−

L
NM

O
QP

= −
+

L
NM

O
QP

1 .

This loss of kinetic energy in the isolated system corresponds to an increase in mass-energy
during the reaction. Thus, the absolute value of this kinetic energy change is equal to –Q
(remember that Q is negative in an endothermic reaction). The initial kinetic energy Ei  is the
threshold energy Eth .

Therefore, − =
+

L
NM

O
QP

Q
M

M M
EX

a X
th

or E Q
M M

M
Q

M
Mth

X a

X

a

X
= −

+L
NM

O
QP
= − +
L
NM

O
QP

1 .

continued on next page
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(b) First, calculate the Q-value for the reaction: Q M M M M c= + − −N-14 He-4 O-17 H-1
2

Q = + − − = −14 003 074 4 002 603 16 999 132 1 007 825 1 19. . . . .u 931.5 MeV u  MeVb g .

Then, E Q
M M

Mth
X a

X
= −

+L
NM

O
QP
= − − +

L
NM

O
QP
=1 19 1

4 002 603
14 003 074

1 53.
.
.

. MeV  MeVa f .

P44.57 1
1

3
7

0
1H Li Be n4

7+ → +

Q M M M M

Q

Q

= + − +

= + − +

= − × = −−

H Li Be n  MeV u

 u  u  u  u  MeV u

 u  MeV u  MeV

b g b g b g
b g b g b g
e jb g

931 5

1 007 825 7 016 004 7 016 929 1 008 665 931 5

1 765 10 931 5 1 6443

.

. . . . .

. . .

Thus, KE
m

m
Qmin

.

.
. .= +

F
HG

I
KJ = +
F
HG

I
KJ =1 1

1 007 825
7 016 004

1 644 1 88incident projectile

target nucleus
 MeV  MeVa f .

P44.58 (a) N0 27
241 00

1 66 10
2 52 10= =

×
= ×

−

mass
mass per atom

 kg

239.05 u  kg u

.

.
.a fe j

(b) λ = =
× ×

= × − −ln ln

. .
.

2 2

2 412 10 3 156 10
9 106 10

1 2
4 7

13 1

T  yr  s yr
 s

e je j
R N0 0

13 1 24 129 106 10 2 52 10 2 29 10= = × × = ×− −λ . . . s  Bqe je j

(c) R R e t= −
0

λ , so t
R
R

R
R

=
− F
HG
I
KJ =

F
HG
I
KJ

1 1

0

0

λ λ
ln ln

t =
×

×F
HG

I
KJ = ×

×
F
HG

I
KJ = ×− −

1
9 106 10

2 29 10
3 38 10 1 07 1013 1

12
13 6

.
ln

.
. .

 s
 Bq

0.100 Bq
 s

1 yr
3.156 10  s

 yr7

P44.59 (a) 27
57

1
0

0
0Co Fe e26

57→ + ++ ν

The Q-value for this positron emission is Q M M m ce= − −57 57 2 2
Co Fe .

Q = − − = −56 936 296 56 935 399 2 0 000 549 0 187. . . .b g b gu 931.5 MeV u  MeV

Since Q < 0 , this reaction cannot spontaneously occur .

(b) 6
14

1
0

0
0C N e7

14→ + +− ν

The Q-value for this e−  decay is Q M M c= −14 14
2

C N .

Q = − = =14 003 242 14 003 074 0 156 156. . .u 931.5 MeV u  MeV  keVb g
Since Q > 0 , the decay can spontaneously occur .

(c) The energy released in the reaction of (b) is shared by the electron and neutrino. Thus,
Ke  can range from zero to 156 keV .
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P44.60 (a) r r A A= = × −
0

1 3 15 1 31 20 10.  m.

When A = 12 , r = × −2 75 10 15.  m .

(b) F
k Z e

r

Z

r
e=

−
=

× ⋅ − × −
1 8 99 10 1 1 60 102

2

9 19 2

2

a f e ja fe j. . N m C  C2 2

When Z = 6 and r = × −2 75 10 15.  m, F = 152 N .

(c) U
k q q

r
k Z e

r

Z

r
e e= =

−
=

× − × −
1 2

2 9 19 2
1 8 99 10 1 1 6 10a f e ja fe j. .

When Z = 6 and r = × −2 75 10 15.  m, U = × =−4 19 10 2 6213. . J  MeV .

(d) A = 238; Z = 92, r = × −7 44 10 15.  m F = 379 N

and U = × =−2 82 10 17 612. . J  MeV .

P44.61 (a) Because the reaction p n e→ + ++ ν  would violate the law of conservation of energy

mp = 1 007 276.  u mn = 1 008 665.  u me  u+ = × −5 49 10 4. .

Note that m m mn p+ >+e .

(b) The required energy can come from the electrostatic repulsion  of protons in the nucleus.

(c) Add seven electrons to both sides of the reaction for nuclei 7
13 N C e6

13→ + ++ ν

to obtain the reaction for neutral atoms 7
13 N atom C atom e e6

13→ + + ++ − ν

Q c m m m m m

Q

Q

= − − − −

= − − × −

= × =

+ −

−

−

2 13 13

4

3

931 5 13 005 739 13 003 355 2 5 49 10 0

931 5 1 286 10 1 20

N C

 MeV u u

 MeV u  u  MeV

e ee j e j
b g e j
b ge j

ν

. . . .

. . .

P44.62 (a) A least-square fit to the graph yields:

λ = − = − − =− −slope  h  h0 250 0 2501 1. .e j
and

ln .cpm interceptb g
t=

= =
0

8 30 .

(b) λ = F
HG

I
KJ = ×− − −0 250 4 17 101 3 1. . h

1 h
60.0 min

 min

T1 2 3 1
2 2

4 17 10
166 2 77

= =
×

= =

− −
ln ln

.
.

λ  min
 min  h

FIG. P44.62

continued on next page
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(c) From (a), intercept = =ln .cpmb g0 8 30 .

Thus, cpm  counts min  counts minb g0 8 30 34 02 10= = ×e . . .

(d) N
R

0
0 0

3

3 1
61 4 02 10

4 17 10 0 100
9 65 10= = =

×

×
= ×

− −λ λ

cpm

Eff
 counts min

 min
 atoms

b g
e ja f

.

. .
.

P44.63 (a) The reaction is 61
145 Pm Pr59

141→ +α

(b) Q M M M= − − = − − =Pm Pr  MeVαb g b g931 5 144 912 744 4 002 603 140 907 648 931 5 2 32. . . . . .

(c) The alpha and daughter have equal and opposite momenta p pdα =

E
p
mα
α

α
=

2

2
E

p
md

d

d
=

2

2

E
E

E
E E

p m

p m p m

m
m m

m
m md d d

d

d

α α

α

α α

α α α

α

α αtot
=

+
=

+
=

+
=

+
=

+
=

2

2 2

2

2 2

1 2
1 2 1 2

141
141 4

97 2%
e j e j b g b g .  or

2.26 MeV.

This is carried away by the alpha.

P44.64 (a) If ∆E  is the energy difference between the excited and ground states of the nucleus of mass
M, and hf is the energy of the emitted photon, conservation of energy for the nucleus-
photon system gives

∆E hf Er= + . (1)

Where Er  is the recoil energy of the nucleus, which can be expressed as

E
Mv Mv

Mr = =
2 2

2 2
a f

. (2)

Since system momentum must also be conserved, we have

Mv
hf
c

= . (3)

Hence, Er  can be expresses as E
hf

Mcr =
b g2

22
.

When hf Mc<< 2

we can make the approximation that hf E≈ ∆

so E
E

Mcr ≈
∆a f2

22
.

(b) E
E

Mcr =
∆a f2

22
where ∆E = 0 014 4.  MeV

and Mc 2 457 931 5 5 31 10= = × u  MeV u  MeVa fb g. . .

Therefore, Er =
×

×
= ×

−
−

1 44 10

2 5 10
1 94 10

2 2

4
3

.
.

 MeV

.31  MeV
 eV

e j
e j

.
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P44.65 (a) One liter of milk contains this many 40 K  nuclei:

N

T

R N

=
×F

HG
I
KJ
F
HG

I
KJ = ×

= =
× ×

F
HG

I
KJ = ×

= = × × =

− −

− −

2 00 g
6 02 10

39 1
0 011 7

100
3 60 10

2 2
1 28 10

1
1 72 10

1 72 10 3 60 10 61 8

23
18

1 2
9

17 1

17 1 18

.
.

.
.

.

ln ln
.

.

. . .

b g

e je j

 nuclei mol
 g mol

 nuclei

 yr
 yr

3.156 10  s
 s

 s  Bq

7λ

λ

(b) For the iodine, R R e t= −
0

λ with λ =
ln
.

2
8 04 d

t
R
R

= F
HG
I
KJ =

F
HG
I
KJ =

1 8 04
2

2 000
61 8

40 30

λ
ln

.
ln

ln
.

.
 d

 d

P44.66 (a) For cobalt–56,

λ = =
F
HG

I
KJ =

−ln ln
.

.
.

2 2
77 1

365 25
3 28

1 2

1

T  d
 d

1 yr
 yr .

The elapsed time from July 1054 to July 2003 is 949 yr.

R R e t= −
0

λ

implies
R
R

e e e et

0

3 28 949 3 116 10 1 353 1 353
1
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P44.68 (a) Add two electrons to both sides of the reaction to have it in energy terms:

41
1 H atom He atom2

4→ +Q Q mc M M c= = −∆ 2 24
1
1

2
4H He

Q = −
×F

HG
I
KJ = ×

−
−4 1 007 825 4 002 603 931 5

1 60 10
4 28 10

13
12. . .

.
. u  u  MeV u

 J
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 Jb g b g

(b) N =
×

×
= × = ×−

1 99 10
1 19 10 1 19 10

30

27
57 57.

. .
 kg

1.67 10  kg atom
 atoms  protons

(c) The energy that could be created by this many protons in this reaction is:
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18.
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P44.69 E = − ⋅µ B so the energies are E B1 = +µ  and E B2 = −µ

µ µ= 2 792 8. n  and µn = × −5 05 10 27.  J T

∆E B= = × = × = ×− − −2 2 2 792 8 5 05 10 12 5 3 53 10 2 20 1027 25 6µ . . . . .b ge ja f J T  T  J  eV .
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P44.71 For an electric charge density ρ
π

=
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R4 3 3b g .

Using Gauss’s Law inside the sphere,
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∈
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=
∈
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We now find the electrostatic energy: U E r dr
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P44.72 (a) For the electron capture, 43
93

1
0Tc e Mo42

93+ → +− γ .

The disintegration energy is Q M M c= −93 93
2

Tc Mo .

Q = − = >92 910 2 92 906 8 3 17 2 44. . . .u 931.5 MeV u  MeV  MeVb g
Electron capture is allowed to all specified excited states  in 42

93 Mo.

For positron emission, 43
93

1
0Tc Mo e42

93→ + ++ γ .

The disintegration energy is ′ = − −Q M M m ce93 93 2 2
Tc Mo .

′ = − − =Q 92 910 2 92 906 8 2 0 000 549 931 5 2 14. . . . .b g b gu  MeV u  MeV

Positron emission can reach

the 1.35,  1.48,  and 2.03 MeV states

but there is insufficient energy to
reach the 2.44 MeV state.

(b) The daughter nucleus in both forms of

decay is 42
93 Mo .

FIG. P44.72
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P44.73 K mv=
1
2

2 ,

so v
K

m
= =

×

×
= ×

−

−
2 2 0 040 0 1 60 10

1 67 10
2 77 10
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27
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. .

.
.

 eV  J eV

 kg
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b ge j
.

The time for the trip is t
x
v

= =
×
×

=
1 00 10

3 61
4.

.
 m

2.77 10  m s
 s3 .

The number of neutrons finishing the trip is given by N N e t= −
0

λ .

The fraction decaying is 1 1 1 0 004 00 0 400%
0

2 2 3 611 2− = − = − = =− −N
N

e et Tln ln . . .a f a fb g s 624 s .

P44.74 (a) If we assume all the 87 Sr  came from 87 Rb,

then N N e t= −
0

λ

yields t
N
N

T N
N

=
− F
HG
I
KJ =

F
HG
I
KJ

1
20

1 2 0

λ
ln

ln
ln

where N N= Rb-87

and N N N0 = +Sr-87 Rb-87

t =
× × + ×

×

F
HG

I
KJ = ×

4 75 10

2
1 82 10 1 07 10

3 91 10
10 10 9

9
.

ln
ln

. .
.

 yr

1.82 10
 yr10

e j
.

(b) It could be no older . The rock could be younger if some 87 Sr  were originally present.

P44.75 R R t= −0 exp λb g  lets us write ln lnR R t= −0 λ

which is the equation of a straight line with slope = λ .

The logarithmic plot shown in Figure P44.75 is fitted by

ln . .R t= −8 44 0 262 .

If t is measured in minutes, then decay constant λ is 0.262 per
minute. The half–life is

T1 2
2 2

0 262
2 64= = =

ln ln
. min

.
λ

 min .

The reported half–life of 137 Ba  is 2.55 min. The difference
reflects experimental uncertainties.

FIG. P44.75

ANSWERS TO EVEN PROBLEMS

P44.2 (a) 7 89.  cm and 8 21.  cm; P44.8 a nucleus such as 30 Si  with A = 30
(b) see the solution

P44.10 6 11.  PN  toward the other ball
P44.4 (a) 29 5.  fm; (b) 5 18.  fm; (c) see the solution

P44.12 (a) 48; (b) 3; (c) 46; (d) 1
P44.6 25 6.  MeV
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P44.14 (a) 1 11.  MeV nucleon; P44.44 (a) 0 281. ; (b) 1 65 10 29. × − ;
(b) 7 07.  MeV nucleon ; (c) see the solution
(c) 8 79.  MeV nucleon ;

P44.46 (a) 10
21 Ne; (b) 54

144 Xe; (c) 1
0 e+  and 0

0ν(d) 7 57.  MeV nucleon

P44.48 1 02.  MeVP44.16 0 210.  MeV  greater for 23 Na  because it has
less proton repulsion

P44.50 (a) 6
13 C ; (b) 5

10 B
P44.18 (a) 84 1.  MeV ; (b) 342 MeV ; (c) The nuclear

force of attraction dominates over
electrical repulsion

P44.52 see the solution

P44.54 (a) see the solution; (b) 1 16.  u
P44.20 7 93.  MeV

P44.56 (a) see the solution; (b) 1 53.  MeV
P44.22 (a) see the solution;

(b) 
R
3

 and 
R
6

; see the solution P44.58 (a) 2 52 1024. × ; (b) 2 29.  TBq; (c) 1 07.  Myr

P44.60 (a) 2 75.  fm; (b) 152 N ; (c) 2 62.  MeV ;
P44.24 0 200.  mCi (d) 7 44.  fm, 379 N , 17 6.  MeV

P44.26 41 8.  TBq P44.62 (a) see the solution;
(b) 4 17 10 3 1. × − − min ; 2 77.  h;

P44.28 86 4.  h (c) 4 02 103. ×  counts min ;
(d) 9 65 106. ×  atoms

P44.30
R T t T t T0 1 2

2
2 21 1 2 2 1 2

ln
− −−e j

P44.64 (a) see the solution; (b) 1 94.  meV

P44.32 (a) see the solution; (b) see the solution;
P44.66 (a) ~10 1 353− ; (b) 0 892.(c) see the solution; 10 9.  min ;

(d) tm =
−

ln λ λ
λ λ

1 2

1 2

b g
; yes P44.68 (a) 4 28.  pJ; (b) 1 19 1057. ×  atoms ;

(c) 107 Gyr

P44.34 (a) 28
65 Ni* ; (b) 82

211 Pb; (c) 27
55 Co; (d) −1

0 e; P44.70 (a) 12 3.  mg ; (b) 0 166.  W
(e) 1

1 H

P44.72 (a) electron capture to all; positron
emission to the 1.35 MeV , 1.48 MeV , and
2.03 MeV states ; (b) 42

93 Mo; see the solution

P44.36 between 5 400 yr and 6 800 yr

P44.38 (a) cannot occur ; (b) cannot occur ;
(c) can occur P44.74 (a) 3 91.  Gyr ; (b) No older; it could be

younger if some 87 Sr  were originally
present, contrary to our assumption.P44.40 (a) 4 00.  Gyr ; (b) 0 019 9.  and 4 60.

P44.42 (a) 148 Bq m3 ; (b) 7 05 107. ×  atoms m3 ;
(c) 2 17 10 17. × −



45

CHAPTER OUTLINE

45.1 Interactions Involving
  Neutrons
45.2 Nuclear Fission
45.3 Nuclear Reactors
45.4 Nuclear Fusion
45.5 Radiation Damage
45.6 Radiation Detectors
45.7 Uses of Radiation
           
              
     
             

                  
                                         

            

                
                
             

                 
            

Applications of Nuclear Physics

ANSWERS TO QUESTIONS

Q45.1 A moderator is used to slow down neutrons released in the
fission of one nucleus, so that they are likely to be absorbed by
another nucleus to make it fission.

Q45.2 The hydrogen nuclei in water molecules have mass similar to
that of a neutron, so that they can efficiently rob a fast-moving
neutron of kinetic energy as they scatter it. Once the neutron is
slowed down, a hydrogen nucleus can absorb it in the reaction
n H H1

2+ →1
1 .

Q45.3 The excitation energy comes from the binding energy of the
extra nucleon.

Q45.4 The advantage of a fission reaction is that it can generate much more electrical energy per gram of
fuel compared to fossil fuels. Also, fission reactors do not emit greenhouse gasses as combustion
byproducts like fossil fuels—the only necessary environmental discharge is heat. The cost involved
in producing fissile material is comparable to the cost of pumping, transporting and refining fossil
fuel.

The disadvantage is that some of the products of a fission reaction are radioactive—and some
of those have long half-lives. The other problem is that there will be a point at which enough fuel is
spent that the fuel rods do not supply power economically and need to be replaced. The fuel rods
are still radioactive after removal. Both the waste and the “spent” fuel rods present serious health
and environmental hazards that can last for tens of thousands of years. Accidents and sabotage
involving nuclear reactors can be very serious, as can accidents and sabotage involving fossil fuels.

Q45.5 The products of fusion reactors are generally not themselves unstable, while fission reactions result
in a chain of reactions which almost all have some unstable products.

Q45.6 For the deuterium nuclei to fuse, they must be close enough to each other for the nuclear forces to
overcome the Coulomb repulsion of the protons—this is why the ion density is a factor. The more
time that the nuclei in a sample spend in close proximity, the more nuclei will fuse—hence the
confinement time is a factor.

595
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Q45.7 In a fusion reaction, the main idea is to get the nuclear forces, which act over very short distances, to
overcome the Coulomb repulsion of the protons. Tritium has one more neutron in the nucleus, and
thus increases the nuclear force, decreasing the necessary kinetic energy to obtain D–T fusion as
compared to D–D fusion.

Q45.8 The biggest obstacle is power loss due to radiation. Remember that a high temperature must be
maintained to keep the fuel in a reactive plasma state. If this kinetic energy is lost due to
bremsstrahlung radiation, then the probability of nuclear fusion will decrease significantly.
Additionally, each of the confinement techniques requires power input, thus raising the bar for
sustaining a reaction in which the power output is greater than the power input.

Q45.9 Fusion of light nuclei to a heavier nucleus releases energy. Fission of a heavy nucleus to lighter
nuclei releases energy. Both processes are steps towards greater stability on the curve of binding
energy, Figure 44.5. The energy release per nucleon is typically greater for fusion, and this process is
harder to control.

Q45.10 Advantages of fusion: high energy yield, no emission of greenhouse gases, fuel very easy to obtain,
reactor can not go supercritical like a fission reactor, low amounts of radioactive waste.

Disadvantages: requires high energy input to sustain reaction, lithium and helium are scarce,
neutrons released by reaction cause structural damage to reactor housing.

Q45.11 The fusion fuel must be heated to a very high temperature. It must be contained at a sufficiently
high density for a sufficiently long time to achieve a reasonable energy output.

Q45.12 The first method uses magnetic fields to contain the plasma, reducing its contact with the walls of
the container. This way, there is a reduction in heat loss to the environment, so that the reaction may
be sustained over seconds.

The second method involves striking the fuel with high intensity, focused lasers from multiple
directions, effectively imploding the fuel. This increases the internal pressure and temperature of
the fuel to the point of ignition.

Q45.13 No. What is critical in radiation safety is the type of radiation encountered. The curie is a measure of
the rate of decay, not the products of the decay or of their energies.

Q45.14 X-ray radiation can cause genetic damage in the developing fetus. If the damaged cells survive the
radiation and reproduce, then the genetic errors will be replicated, potentially causing severe birth
defects or death of the child.

Q45.15 For each additional dynode, a larger applied voltage is needed, and hence a larger output from a
power supply—“infinite” amplification would not be practical. Nor would it be desirable: the goal is
to connect the tube output to a simple counter, so a massive pulse amplitude is not needed. If you
made the detector sensitive to weaker and weaker signals, you would make it more and more
sensitive to background noise.
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Q45.16 Sometimes the references are oblique indeed. Some must serve for more than one form of energy or
mode of transfer. Here is one list:

kinetic: ocean currents
rotational kinetic: Earth turning
gravitational: water lifted up
elastic: Elastic energy is necessary for sound, listed below.
internal: by contrast to a chilly night; or in forging a chain
chemical: flames
sound: thunder
electrical transmission: lightning
electromagnetic radiation: heavens blazing; lightning
atomic electronic: In the blazing heavens, stars have different colors because of different

predominant energy losses by atoms at their surfaces.
nuclear: The blaze of the heavens is produced by nuclear reactions in the cores of stars.

Remarkably, the word “energy” in this translation is an anachronism. Goethe wrote the song a few
years before Thomas Young coined the term.

SOLUTIONS TO PROBLEMS

Section 45.1 Interactions Involving Neutrons

Section 45.2 Nuclear Fission

*P45.1 The energy is

3 30 10
1 235

0 38710
19. .×

×

F
HG

I
KJ
F
HG

I
KJ ×
F
HG

I
KJ
F
HG
I
KJ =− J
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1.60 10  J

 U - 235 nucleus
208 MeV

 g
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M
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 g  of U - 23523 6 .

P45.2 ∆m m M M M mn n= + − + +U Zr Teb g b g3

∆m = + − + +1 008 665 235 043 923 97 912 7 134 916 5 3 1 008 665. . . . . u  u  u  u  ub g b gd i
∆m = = × −0 197 39 3 28 10 28. . u  kg so Q mc= = × =−∆ 2 112 95 10 184.  J  MeV

P45.3 Three different fission reactions are possible: 0
1
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144

0
1

54
1442n U Sr Xe n Xe38
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0
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90+ → + + 0
1

92
235
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0
1
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1424n U Sr Xe n Xe38

90+ → + +

P45.4 0
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239+ → → + +− ν 93
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239Np Pu e→ + +− ν

P45.5 0
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90
232n Th Th Pa e90
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233+ → → + +− ν 91
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233Pa U e→ + +− ν

P45.6 (a) Q m c m M M M m cn n= = + − − −∆a f 2 23U235 Ba141 Kr92
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= =
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. . . . . .
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*P45.7 (a) The initial mass is 1 007 825 11 009 306 12 017 131. . . u  u  u+ = . The final mass is
3 4 002 603 12 007 809. . u  ub g = . The rest mass annihilated is ∆m = 0 009 322.  u. The energy

created is Q mc= = F
HG

I
KJ =∆ 2 0 009 322 8 68. . u

931.5 MeV
1 u

 MeV .

(b) The proton and the boron nucleus have positive charges. The colliding particles must have
enough kinetic energy to approach very closely in spite of their electric repulsion.

P45.8 If the electrical power output of 1 000 MW is 40.0% of the power derived from fission reactions, the
power output of the fission process is

1 000
2 50 10 8 64 10 2 16 109 4 14 MW

0.400
 J s s d  J d= × × = ×. . .e je j .

The number of fissions per day is 2 16 10
1 1

10
6 74 1014

19
24 1. .×

×
F
HG

I
KJ ×

F
HG

I
KJ = ×−

− J d
 fission

200 10  eV
 eV

1.60  J
 d6e j .

This also is the number of 235 U  nuclei used, so the mass of 235 U  used per day is

6 74 10
235

6 02 10
2 63 10 2 6324

23
3.

.
. .×

×

F
HG

I
KJ = × = nuclei d

 g mol
 nuclei mol

 g d  kg de j .

In contrast, a coal-burning steam plant producing the same electrical power uses more than
6 106×  kg d  of coal.

P45.9 The available energy to do work is 0.200 times the energy content of the fuel.
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. .

 kg fuel  U fuel
 g

1 kg
1 mol
235 g

mol
 J
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Section 45.3 Nuclear Reactors

P45.10 (a) For a sphere: V r=
4
3

3π and r
V

= FHG
I
KJ

3
4

1 3

π
so

A
V

r
r

V= = −4
4 3

4 84
2

3
1 3π

πb g . .

(b) For a cube: V = A3 and A =V 1 3 so
A
V

V= = −6
6

2

3
1 3A

A
.

(c) For a parallelepiped: V a= 2 3 and a
V

= FHG
I
KJ2

1 3

so
A
V

a a

a
V=

+
= −

2 8

2
6 30

2 2

3
1 3e j

. .

(d) Therefore, the sphere has the least leakage  and the

parallelepiped has the greatest leakage  for a given volume.
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P45.11 mass of U available  metric tons
 g

1 metric ton
 g235 ≈

F
HG

I
KJ = ×0 007 10

10
7 109

6
12.a fe j

number of nuclei
 g

235 g mol
 nuclei mol  nuclei≈

×F
HG

I
KJ × = ×

7 10
6 02 10 1 8 10

12
23 34. .e j

The energy available from fission (at 208 MeV/event) is

E ≈ × × = ×−1 8 10 208 1 60 10 6 0 1034 13 23. . . events  MeV event  J MeV  Je jb ge j .

This would last for a time interval of

∆t
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 s
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P45.12 In one minute there are 
60 0

5 00 104.
.

 s
1.20 ms

 fissions= × .

So the rate increases by a factor of 1 000 25 2 68 1050 000 5. .b g = × .

P45.13 P = = ×10 0 1 00 107. . MW  J s

If each decay delivers 1 00 1 60 10 13. . MeV  J= × − , then the number of decays/s = ×6 25 1019.  Bq .

Section 45.4 Nuclear Fusion

P45.14 (a) The Q value for the D-T reaction is 17.59 MeV.

Specific energy content in fuel for D-T reaction:
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(b) Specific energy content in fuel for D-D reaction: Q = + =
1
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two Q values
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P45.15 (a) At closest approach, the electrostatic potential energy equals the total energy E.

U
k Z e Z e

r
Ef

e= =1 2b gb g
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Z Z
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14
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.
.

 N m C  C

 m
 J

2 2e je j e j .

(b) For both the D-D and the D-T reactions, Z Z1 2 1= = . Thus, the minimum energy required in
both cases is

E = ×
×

F
HG

I
KJ =

−
−2 30 10

1
14414.  J

 MeV
1.60 10  J

 keV13e j .

Section 45.4 in the text gives more accurate values for the critical ignition temperatures, of
about 52 keV for D-D fusion and 6 keV for D-T fusion. The nuclei can fuse by tunneling. A
triton moves more slowly than a deuteron at a given temperature. Then D-T collisions last
longer than D-D collisions and have much greater tunneling probabilities.

P45.16 (a) r r rf = + = × + = ×− −
D T  m  m1 20 10 2 3 3 24 1015 1 3 1 3 15. .e j a f a f

(b) U
k e
rf
e

f
= =

× ⋅ ×

×
= × =

−

−
−

2 9 19 2

15
14

8 99 10 1 60 10

3 24 10
7 10 10 444

. .

.
.

 N m C  C

 m
 J  keV

2 2e je j

(c) Conserving momentum, m v m m vi fD D T= +b g , or v
m

m m
v vf i i=

+
F
HG

I
KJ =D

D T

2
5

(d) K U K Ui i f f+ = + : K m m v U m m
m

m m
v Ui f f i f+ = + + = +

+
F
HG

I
KJ +0

1
2

1
2

2
2

2
D T D T

D

D T
b g b g

K
m

m m
m v U

m
m m

K Ui i f i f+ =
+

F
HG

I
KJ
F
HG

I
KJ + =

+
F
HG

I
KJ +0

1
2

2D

D T
D

D

D T

1−
+

F
HG

I
KJ =

m
m m

K Ui f
D

D T
: K U

m m
mi f=
+F

HG
I
KJ = =D T

T
 keV  keV

5
3

444 740a f

(e) Possibly by tunneling.

P45.17 (a) Average KE per particle is 
3
2

1
2

2k T mvB = .

Therefore, v
k T
mrms

B
 J K  K

 kg
 m s= =

× ×

×
= ×

−

−

3 3 1 38 10 4 00 10

2 1 67 10
2 23 10

23 8

27
6

. .

.
.

e je j
e j

.

(b) t
x
v

= = −~
.

~
0 1

10 7 m
10  m s

 s6



Chapter 45    601

P45.18 (a) V = × F
HG

I
KJ = ×317 10

1 609
1 32 106

3
18 mi

 m
1 mi

 m3 3e j .

m V

m
M

M
m

m m

water
3 3

H
H

H O
H O

Deuterium H

 kg m  m  kg

 kg  kg

 kg  kg

2

2

2
2

2

= = × = ×

=
F
HG

I
KJ = FHG

I
KJ × = ×

= = × × = ×−

ρ 10 1 32 10 1 32 10

2 016
18 015

1 32 10 1 48 10

0 030 0% 0 030 0 10 1 48 10 4 43 10

3 18 21

21 20

2 20 16

e je j

e j

b g e je j

. .

.
.

. .

. . . .

The number of deuterium nuclei in this mass is

N
m
m

= =
×

×
= ×

−
Deuterium

Deuteron

 kg

2.014 u  kg u

4 43 10

1 66 10
1 33 10

16

27
43.

.
.a fe j

.

Since two deuterium nuclei are used per fusion, 1
2

1
2H H He2

4+ → +Q , the number of events

is 
N
2

6 63 1042= ×. .

The energy released per event is

Q M M M c= + − = − =2 H H He u 931.5 MeV u  MeV2 4
2 2 2 014 102 4 002 603 23 8. . .b g b g .

The total energy available is then

E
N

Q= FHG
I
KJ = ×

×F
HG

I
KJ = ×

−

2
6 63 10 23 8

1 60 10
2 53 1042

13
31. .

.
.e ja f MeV

 J
1 MeV

 J .

(b) The time this energy could possibly meet world requirements is

∆ t
E

= =
×

×
= ×

×
F
HG

I
KJ = ×

P
2 53 10

3 61 10
1

1 14 10 1
31

16 9.
. . ~

 J

100 7.00 10  J s
 s

 yr
3.16 10  s

 yr  billion years
12 7e j e j .

P45.19 (a) Including both ions and electrons, the number of particles in the plasma is N nV= 2  where n
is the ion density and V is the volume of the container. Application of Equation 21.6 gives
the total energy as

E Nk T nVk T

E

= = = ×
F
HG

I
KJ

L
N
MM

O
Q
PP × ×

= ×

− −3
2

3 3 2 0 10 50
10

1
1 38 10 4 0 10

1 7 10

13 3
6

23 8

7

B B
3

3

3 cm  m
 cm

 m
 J K  K

 J

. . .

.

e j e j e je j

(b) From Table 20.2, the heat of vaporization of water is Lv = ×2 26 106.  J kg . The mass of water
that could be boiled away is

m
E
Lv

= =
×

×
=

1 7 10
7 3

7.
.

 J
2.26 10  J kg

 kg6 .
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P45.20 (a) Lawson’s criterion for the D-T reaction is nτ ≥ 1014  s cm3 . For a confinement time of

τ = 1 00.  s , this requires a minimum ion density of n = −1014 3 cm .

(b) At the ignition temperature of T = ×4 5 107.  K  and the ion density found above, the plasma
pressure is

P nk T= =
F
HG

I
KJ

L
N
MM

O
Q
PP × × = ×− −2 2 10

10
1

1 38 10 4 5 10 1 24 1014 3
6

23 7 5
B

3

3
3 cm

 cm
 m

 J K  K  J me j e je j. . . .

(c) The required magnetic energy density is then

u
B

PB = ≥ = × = ×
2

0

5 6

2
10 10 1 24 10 1 24 10

µ
. . J m  J m3 3e j ,

B ≥ × × =−2 4 10 1 24 10 1 777 6π  N A  J m  T2 3e je j. . .

P45.21 Let the number of 6 Li  atoms, each having mass 6.015 u, be N6  while the number of 7 Li  atoms, each
with mass 7.016 u, is N7 .

Then, N N N N6 6 77 50% 0 075 0= = +. . of total b g, or N N7 6
0 925

0 075 0
=
F
HG

I
KJ

.
.

.

Also, total mass = + × =−N N6 7
276 015 7 016 1 66 10 2 00. . . . u  u  kg u  kga f a f e j ,

or N6
276 015

0 925
0 075 0

7 016 1 66 10 2 00.
.

.
. . . u  u  kg u  kga f a f e j+

F
HG

I
KJ

L
N
MM

O
Q
PP × =− .

This yields N6
251 30 10= ×.  as the number of 6 Li  atoms and

N7
25 260 925

0 075 0
1 30 10 1 61 10=

F
HG

I
KJ × = ×

.
.

. .e j  as the number of 7 Li  atoms.

P45.22 The number of nuclei in 1.00 metric ton of trash is

N =
×

= ×1 000
6 02 10

56 0
1 08 10

23
28 kg 1 000 g kg

 nuclei mol
 g mol

 nucleib g .
.

. .

At an average charge of 26.0 e/nucleus, q = × × = ×−1 08 10 26 0 1 60 10 4 47 1028 19 10. . . .e ja fe j  C .

Therefore t
q
I

= =
×
×

= × =
4 47 10
1 00 10

4 47 10 12 4
10

6
4.

.
. . s  h .
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Section 45.5 Radiation Damage

P45.23 N0 27
255 00

1 66 10
3 35 10= =

×
= ×

−

mass present
mass of nucleus

 kg

89.907 7 u  kg u
 nuclei

.

.
.b ge j

λ

λ

λ

= = = × = ×

= = × × = ×

= =
×

= ×

− − − −

− −

− −

ln ln
.

. .

. . .

.
.

.

2 2
29 1

2 38 10 4 52 10

4 52 10 3 35 10 1 52 10

10 0
1 52 10

6 60 10

1 2

2 1 8 1

0 0
8 1 25 18

0
18

18

T

R N

R
R

e t

 yr
 yr  min

 min  counts min

 counts min
 counts min

e je j

and λ t = − × =−ln . .6 60 10 39 618e j
giving t = =

×
= ×− −

39 6 39 6
2 38 10

1 66 102 1
3. .

.
.

λ  yr
 yr .

P45.24 Source: 100 mrad of 2-MeV γ-rays/h at a 1.00-m distance.

(a) For γ-rays, dose in rem = dose in rad.

Thus a person would have to stand 10 0.  hours  to receive 1.00 rem from a 100-mrad/h

source.

(b) If the γ-radiation is emitted isotropically, the dosage rate falls off as 
1
2r

.

Thus a dosage 10.0 mrad/h would be received at a distance r = =10 0 3 16. . m  m .

P45.25 (a) The number of x-rays taken per year is

n = = ×8 5 50 2 0 103 x - ray d  d wk  wk yr  x - ray yrb gb gb g . .

The average dose per photograph is
5 0

2 0 10
2 5 103

3.
.

.
 rem yr

 x - ray yr
 rem x - ray

×
= × − .

(b) The technician receives low-level background radiation at a rate of 0 13.  rem yr . The dose of
5 0.  rem yr received as a result of the job is

5 0
0 13

38
.
.

 rem yr
 rem yr

 times background levels= .

P45.26 (a) I I e x= −
0

µ , so x
I
I

= F
HG
I
KJ

1 0

µ
ln

With µ = −1 59.  cm 1, the thickness when I
I

= 0

2
 is x = =−

1
1 59

2 0 4361.
ln .

 cm
 cma f .

(b) When 
I
I
0 41 00 10= ×. , x = × =−

1
1 59

1 00 10 5 791
4

.
ln . .

 cm
 cme j .
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P45.27 1 10 2 rad  J kg= − Q mc T= ∆ P ∆ ∆t mc T=

∆
∆

t
mc T m

m
= =

⋅° °

⋅
= × ≈

−P

4 186 50 0

10 10
2 09 10 24

2
6 J kg C C

 J kg s
 s  days!

b ga f
a fe ja f

.
.

Note that power is the product of dose rate and mass.

P45.28
Q
m

= = =
−absorbed energy

unit mass
 rad

 J kg
 rad

 J kg1 000
10

1
10 0

2

b g .

The rise in body temperature is calculated from Q mc T= ∆  where c = 4 186 J kg  for water and the
human body

∆T
Q
mc

= =
⋅°

= × °−10 0
1

4 186
2 39 10 3. . J kg

 J kg C
Cb g  (Negligible).

P45.29 If half of the 0.140-MeV gamma rays are absorbed by the patient, the total energy absorbed is

E

E

=
×F

HG
I
KJ

×F
HG

I
KJ

L
N
MM

O
Q
PP = ×

= × × =

−

−

0 140
2

1 00 10 6 02 10
4 26 10

4 26 10 1 60 10 0 682

8 23
12

12 13

. . .
.

. . .

 MeV  g
98.9 g mol

 nuclei
1 mol

 MeV

 MeV  J MeV  J

a f

e je j

Thus, the dose received is Dose =
F
HG

I
KJ =−

0 682 1
10

1 142
.

.
 J

60.0 kg
 rad
 J kg

 rad .

P45.30 The nuclei initially absorbed are N0
9

23
121 00 10

6 02 10
89 9

6 70 10= ×
×F

HG
I
KJ = ×−.

.
.

. g
 nuclei mol

 g mole j .

The number of decays in time t is ∆N N N N e N et t T= − = − = −− −
0 0 0

21 1 1 2λe j e ja fln .

At the end of 1 year,
t

T1 2

1 00
0 034 4= =

.
.

 yr
29.1 yr

and ∆N N N e= − = × − = ×−
0

12 0 023 8 116 70 10 1 1 58 10. ..e je j .

The energy deposited is E = × × =−1 58 10 1 10 1 60 10 0 027 711 13. . . .e ja fe j MeV  J MeV  J .

Thus, the dose received is Dose =
F
HG

I
KJ = × =−0 027 7

3 96 10 0 039 64.
. .

 J
70.0 kg

 J kg  rad.

Section 45.6 Radiation Detectors

P45.31 (a)
E

E

C V

β
= =

× ×

×
= ×

−

−

1 2

0 500

1 2 5 00 10 1 00 10

0 500 MeV 1 60 10
3 12 10

2 12 3 2

13
7b g a f b ge je j

a fe j
∆

.

. .

. .
.

 MeV

 F  V

 J MeV

(b) N
Q
e

C V
e

= = =
× ×

×
= ×

−

−

∆a f e je j5 00 10 1 00 10

1 60 10
3 12 10

12 3

19
10

. .

.
.

 F  V

 C
 electrons
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P45.32 (a) EI = 10 0.  eV  is the energy required to liberate an electron from a dynode. Let ni  be the
number of electrons incident upon a dynode, each having gained energy e V∆a f as it was
accelerated to this dynode. The number of electrons that will be freed from this dynode is

N n e
V

Ei i
I

=
∆

:

At the first dynode, ni = 1 and N
e

1
11 100

10 0
10= =

a f a f V
 eV

 electrons
.

.

(b) For the second dynode, n Ni = =1
110 , so N

e
2

1
210 100

10 0
10= =

( )
.

 V
 eV
a f .

At the third dynode, n Ni = =2
210 and N

e
3

2
310 100

10 0
10= =

( )
.

 V
 eV
a f .

Observing the developing pattern, we see that the number of electrons incident on the

seventh and last dynode is n N7 6
610= = .

(c) The number of electrons incident on the last dynode is n7
610= . The total energy these

electrons deliver to that dynode is given by

E n e V ei= = − =∆a f a f10 700 600 106 8 V  V  eV .

P45.33 (a) The average time between slams is 60 38 1 6 min  min= . . Sometimes, the actual interval is
nearly zero. Perhaps about equally as often, it is 2 1 6× .  min. Perhaps about half as often, it is
4 1 6× .  min . Somewhere around 5 1 6 8 0× =. . min  min , the chances of randomness

producing so long a wait get slim, so such a long wait might likely be due to mischief.

(b) The midpoints of the time intervals are separated by 5.00 minutes. We use R R e t= −
0

λ .
Subtracting the background counts,

337 5 15 372 5 15
2 5 001 2− = −

−a f a f e ja f
e

Tln .  min

or ln ln . .
262
297

0 882 3 47 1 2
F
HG
I
KJ = = −a f  min T  which yields T1 2 27 6= .  min .

(c) As in the random events in part (a), we imagine a ±5  count counting uncertainty. The
smallest likely value for the half-life is then given by

ln .
262 5
297 5

3 47 1 2
−
+

F
HG

I
KJ = −  min T , or T1 2 21 1e j

min
.=  min.

The largest credible value is found from

ln .
262 5
297 5

3 47 1 2
+
−

F
HG

I
KJ = −  min T , yielding T1 2 38 8e j

max
.=  min.

Thus, T1 2
38 8 21 1

2
38 8 21 1

2
30 9 30 30%=

+F
HG

I
KJ ±

−F
HG

I
KJ = ± = ±

. . . .
 min  min  mina f .
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Section 45.7 Uses of Radiation

P45.34 The initial specific activity of 59 Fe in the steel,

R mb g0
4

620 0
0 200 kg

100 3 70 10
1

3 70 10= =
×F

HG
I
KJ = ×

.
.

.
.

µ µ
µ

Ci Ci
kg

Bq
Ci

Bq kg
 

 .

After 1 000 h,
R
m

R
m

e et= FHG
I
KJ = × = ×− − × − −

0

6 6 40 10 1 000 63 70 10 1 95 10
4 1

λ . .
.

 Bq kg  Bq kg
 h  he j e jb g .

The activity of the oil, Roil Bq liter 50 liters  Bq= FHG
I
KJ =

800
60 0

6 86 7
.

( . ) . .

Therefore, m
R
R min oil

oil

 
 

7 Bq
Bq kg

kg= =
×

= × −

b g
86

1 95 10
4 45 106

5.
.

. .

So that wear rate is
4 45 10 5. ×

= ×
−

− kg
1 000 h

4.45 10  kg h8 .

P45.35 The half-life of 14O  is 70.6 s, so the decay constant is λ = = = −ln ln
.

.
2 2

70 6
0 009 82

1 2T  s
 s 1 .

The 14O  nuclei remaining after five min is N N e et= = = ×− − −

0
10 0 009 82 300 810 5 26 10λ e j e ja f.

.
 s  s1

.

The number of these in one cubic centimeter of blood is

′ =
F
HG

I
KJ = ×

F
HG

I
KJ = ×N N

1 00
5 26 10

1 00
2000

2 63 108 5.
.

.
.

 cm
total vol.  of blood

 cm
 cm

3 3

3e j

and their activity is R N= ′ = × = ×−λ 0 009 82 2 63 10 2 58 10 105 3 3. . . s  Bq ~  Bq1e je j .

P45.36 (a) The number of photons is 
10
1 04

9 62 10
4

3 MeV
 MeV.

.= × . Since only 50% of the photons are

detected, the number of 65 Cu  nuclei decaying is twice this value, or 1 92 104. × . In two half-

lives, three-fourths of the original nuclei decay, so 
3
4

1 92 100
4N = ×.  and N0

42 56 10= ×. . This

is 1% of the 65 Cu , so the number of 65 Cu  is 2 56 10 106 6. ~× .

(b) Natural copper is 69.17% 63 Cu  and 30.83% 65 Cu . Thus, if the sample contains NCu copper
atoms, the number of atoms of each isotope is

N N63 Cu= 0 691 7.  and N N65 Cu= 0 308 3. .

Therefore, 
N
N

63

65
=

0 691 7
0 308 3

.

.
 or N N63 65= FHG

I
KJ = FHG

I
KJ × = ×

0 6917
0 3083

0 6917
0 3083

2 56 10 5 75 106 6.
.

.

.
. .e j .

The total mass of copper present is then m N NCu 63 65 u  u= +62 93 64 93. .b g a f :

mCu
24u 1.66 10  g u

 g  g

= × + × ×

= ×

−

− −

62 93 5 75 10 64 93 2 56 10

8 77 10 10

6 6

16 15

. . . .

. ~

b ge j a fe j e j
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P45.37 (a) Starting with N = 0  radioactive atoms at t = 0 , the rate of increase is (production – decay)
dN
d t

R N= − λ so dN R N dt= − λb g .

The variables are separable.

dN
R N

dt
N t

−
=z zλ0 0

: −
−F
HG

I
KJ =

1
λ

λ
ln

R N
R

t

so ln
R N

R
t

−F
HG

I
KJ = −

λ
λ and

R N
R

e t−F
HG

I
KJ =

−λ λ .

Therefore, 1 − = −λ λ

R
N e t N

R
e t= − −

λ
λ1e j .

(b) The maximum number of radioactive nuclei would be 
R
λ

.

Additional Problems

P45.38 (a) Suppose each 235 U  fission releases 208 MeV of energy. Then, the number of nuclei that
must have undergone fission is

N = =
×

×
= ×

−

total release
energy per nuclei

 J

208 MeV  J MeV
 nuclei

5 10

1 60 10
1 5 10

13

13
24

a fe j.
. .

(b) mass
 nuclei

6.02 10  nuclei mol
 g mol  kg23=

×
×

F
HG

I
KJ ≈

1 5 10
235 0 6

24.
.b g

P45.39 (a) At 6 108×  K , the average kinetic energy of a carbon atom is
3
2

1 5 8 62 10 6 10 8 105 8 4k TB  eV K  K  eV= × × = ×−. .a fe je j
Note that 6 108×  K  is about 6 362 =  times larger than 1 5 107. ×  K , the core temperature of
the Sun. This factor corresponds to the higher potential-energy barrier to carbon fusion
compared to hydrogen fusion. It could be misleading to compare it to the temperature
~108  K  required for fusion in a low-density plasma in a fusion reactor.

(b) The energy released is

E m m m c

E

= − −

= − − =

2

24 000 000 19 992 440 4 002 603 931 5 4 62

2C Ne He

 MeV  MeV

12 20 4e j e j e j
b ga f. . . . .

In the second reaction,

E m m

E

= −

= − =

2 931 5

24 000 000 23 985 042 931 5 13 9

12C Mg  MeV u

 MeV  MeV

24e j e j a f
b ga f

.

. . . .

continued on next page
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(c) The energy released is the energy of reaction of the number of carbon nuclei in a 2.00-kg
sample, which corresponds to

∆

∆

E

E

= ×
×F

HG
I
KJ
F
HG

I
KJ ×
F
HG

I
KJ

=
×

×
= ×

2 00 10
6 02 10

12 0
4 62
2

1

1 00 10 4 62

2 2 25 10
1 03 10

3
23

26

19
7

.
.

.
.

. .

.
.

 g
 atoms mol

 g mol
 MeV fusion event

 nuclei fusion event
 kWh

2.25 10  MeV

kWh  kWh

19e j

e ja f
e j

P45.40 To conserve momentum, the two fragments must move in opposite directions with speeds v1  and
v2  such that

m v m v1 1 2 2= or v
m
m

v2
1

2
1=

F
HG
I
KJ .

The kinetic energies after the break-up are then

K m v1 1 1
21

2= and K m v m
m
m

v
m
m

K2 2 2
2

2
1

2

2

1
2 1

2
1

1
2

1
2= =
F
HG
I
KJ =
F
HG
I
KJ .

The fraction of the total kinetic energy carried off by m1  is
K

K K
K

K m m K
m

m m
1

1 2

1

1 1 2 1

2

1 2+
=

+
=

+b g

and the fraction carried off by m2  is 1 2

1 2

1

1 2
−

+
=

+
m

m m
m

m m
.

*P45.41 (a) Q c c c c= − − = =236 045 562 86 920 711 148 934 370 0 190 481 1772 2 2 2. . . .u u u u  MeV

Immediately after fission, this Q-value is the total kinetic energy of the fission products.

(b) K
m

m m
QBr

La

Br La
=

+
F
HG

I
KJ , from Problem 45.40.

=
+

F
HG

I
KJ =

149
149

177 4 112
 u

87 u  u
 MeV  MeV.a f

K Q KLa Br  MeV  MeV  MeV= − = − =177 4 112 0 65 4. . .

(c) v
K

mBr
Br

Br

 eV  J eV

 u  kg u
 m s= =

× ×

×
= ×

−

−

2 2 112 10 1 6 10

87 1 66 10
1 58 10

6 19

27
7e je j

a fe j
.

.
.

v
K

mLa
La

La

 eV  J eV

 kg u
 m s= =

× ×

×
= ×

−

−

2 2 65 4 10 1 6 10

149 u 1 66 10
9 20 10

6 19

27
6

. .

.
.

e je j
a fe j
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P45.42 For a typical 235 U , Q = 208 MeV ; and the initial mass is 235 u. Thus, the fractional energy loss is

Q
mc 2

4208
235 931 5

9 50 10 0 095 0%= = × =− MeV
 u  MeV ua fb g.

. . .

For the D-T fusion reaction, Q = 17 6.  MeV .

The initial mass is m = + =2 014 3 016 5 03. . . u  u  ua f a f .

The fractional loss in this reaction is
Q

mc 2
317 6

5 931 5
3 75 10 0 375%= = × =−.

.
. .

 MeV
.03 u  MeV ua fb g

0 375%
0 0950%

3 95
.

.
.=  or the fractional loss in D - T is about 4 times that in U fission235 .

P45.43 The decay constant is λ = =
×

= × − −ln ln

. .
.

2 2

12 3 3 16 10
1 78 10

1 2
7

9

T  yr  s yr
 s 1

b ge j
.

The tritium in the plasma decays at a rate of

R N= = ×
×F

HG
I
KJ
F
HG

I
KJ

L
N
MM

O
Q
PP

− −λ 1 78 10
2 00 10 10

1
50 09

14 6

.
.

. s
cm

 cm
 m

 m1
3

3

3
3e j e j

R = × = ×
×

F
HG

I
KJ =1 78 10 1 78 10

1
48213 13. . Bq  Bq

 Ci
3.70 10  Bq

 Ci10e j .

The fission inventory is 
4 10  Ci

482 Ci
 times greater

10×
~108  than this amount.

P45.44 Momentum conservation: 0 = +m mLi Liv vα α , or, m v m vLi Li = α α .

Thus, K m v
m v

m

m v

m
m
m

vLi Li Li
2 Li Li

Li Li Li
= = = =

F
HG
I
KJ

1
2

1
2 2 2

2 2 2
2b g b gα α α
α

KLi
 u

2 7.016 0 u
 m s  u  m s=

F
H
GG

I
K
JJ × = ×F
H

I
K

F
H

I
K

4 002 6
9 25 10 1 14 9 25 10

2
6 2 6 2.

. . .
b g
b g a f

KLi  kg  m s  J  MeV= × × = × =− F
H

I
K

−1 14 1 66 10 9 25 10 1 62 10 1 0127 6 2 13. . . . .e j .

P45.45 The complete fissioning of 1.00 gram of U 235  releases

Q = × × = ×−1 00
6 02 10 200 1 60 10 8 20 1023 13 10.
. . .

 g

235 grams mol
atoms mol  MeV fission J MeV  J

b g e jb ge j .

If all this energy could be utilized to convert m kilograms of 20.0°C water to 400°C steam (see
Chapter 20 of text for values),

then Q mc T mL mc Tw v s= + +∆ ∆

Q m= ° ° + × + ° °4186 80 0 2 26 10 2010 3006 J kg  C C  J kg  J kg  C  Cb ga f b ga f.  . .

Therefore m =
×

×
= ×

8 20 10
3 20 10

2 56 10
10

6
4.

.
.

 J
 J kg

 kg .
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P45.46 When mass m of 235 U  undergoes complete fission, releasing 200 MeV per fission event, the total
energy released is:

Q
m

N=
F
HG

I
KJ235

200
 g mol

 MeVA a f where NA  is Avogadro’s number.

If all this energy could be utilized to convert a mass mw  of liquid water at Tc  into steam at Th , then,

Q m c T L c Tw w c v s h= ° − + + − °100 100C Cb g b g
where c w  is the specific heat of liquid water, Lv  is the latent heat of vaporization, and c s  is the

specific heat of steam. Solving for the mass of water converted gives

m
Q

c T L c T

mN

c T L c Tw
w c v s h w c v s h

=
° − + + − °

=
° − + + − °100 100

200

235 100 100C C

 MeV

 g mol C C
A

b g b g
a f

b g b g b g .

P45.47 (a) The number of molecules in 1.00 liter of water (mass = 1 000 g) is

N =
×F

HG
I
KJ × = ×

1 00 10
6 02 10 3 34 10

3
23 25.

. .
 g

18.0 g mol
 molecules mol  moleculese j .

The number of deuterium nuclei contained in these molecules is

′ = × F
HG

I
KJ = ×N 3 34 10

1
1 01 1025 22. . molecules

 deuteron
3300 molecules

 deuteronse j .

Since 2 deuterons are consumed per fusion event, the number of events possible is
′
= ×

N
2

5 07 1021.  reactions, and the energy released is

Efusion  reactions  MeV reaction  MeV= × = ×5 07 10 3 27 1 66 1021 22. . .e jb g
Efusion  MeV  J MeV  J= × × = ×−1 66 10 1 60 10 2 65 1022 13 9. . .e je j .

(b) In comparison to burning 1.00 liter of gasoline, the energy from the fusion of deuterium is

E
E

fusion

gasoline

910  J
 J

 times larger=
×
×

==
2 65
3 40 10

78 07
.
.

. .

P45.48 (a) ∆V r r= ∆ = × = ×4 4 14 0 10 0 05 1 23 10 102 3 2 8 8π π . . . ~ m  m  m  m3 3e j a f

(b) The force on the next layer is determined by atmospheric pressure.

W P V= ∆ = × × = ×1 013 10 1 23 10 1 25 105 8 13. . . N / m  m  J ~10  J2 3 13e je j

(c) 1 25 10
1

10
13. × = J yieldb g , so yield  J ~  J= ×1 25 10 1014 14.

(d)
1 25 10

2 97 10 10
14

4 4.
. ~

×
×

= ×
 J

4.2 10  J ton TNT
 ton TNT  ton TNT9

or ~10 kilotons
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P45.49 (a) The thermal power transferred to the water is Pw = 0.970 waste heata f
Pw = − = ×0 970 3 065 1 000 2 00 109. .b gMW  J s

rw  is the mass of water heated per hour:

r
c Tw

w= =
×

⋅° °
= ×

P
∆a f
e jb g
b ga f
2 00 10 3600

4186 3 50
4 91 10

9
8

.

.
.

 J s  s h

 J kg C  C
 kg h .

The volume used per hour is
4 91 10

1 00 10
4 91 10

8

3
5.

.
.

×

×
= ×

 kg h
 kg m

 m h3
3 .

(b) The 235 U  fuel is consumed at a rate rf =
×

×

F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ =

3 065 10 1
1 000

3 600
0 141

6  J s
7.80 10  J g

 kg
 g

 s
1 h

 kg h10 . .

P45.50 The number of nuclei in 0.155 kg of 210 Po is

N0
23 23155

6 02 10 4 44 10=
F
HG

I
KJ × = ×

 g
209.98 g mol

 nuclei mol  nuclei. .e j .

The half-life of 210 Po is 138.38 days, so the decay constant is given by

λ = =
×

= × − −ln ln

. .
.

2 2

138 38 8 64 10
5 80 10

1 2
4

8 1

T  d  s d
 sa fe j

.

The initial activity is

R N0 0
8 1 23 165 80 10 4 44 10 2 58 10= = × × = ×− −λ . . . s  nuclei  Bqe je j .

The energy released in each 84
210

82
206

2
4Po Pb He→ +  reaction is

Q M M M c= − −
84

210
82

206
2
4

2
Po Pb He :

Q = − − =209 982 857 205 974 449 4 002 603 5 41. . . .u 931.5 MeV u  MeVb g .

Thus, assuming a conversion efficiency of 1.00%, the initial power output of the battery is

P = = × × =−0 010 0 0 010 0 2 58 5 41 1 60 10 2230
13. . . . .b g b ge jb ge jR Q 10  decays s  MeV decay  J MeV  W16 .

P45.51 (a) V
m

= =A3

ρ
, so A =
F
HG
I
KJ =

×

F
HG

I
KJ =

m
ρ

1 3 1 3
70 0

0 155
.

.
 kg

18.7 10  kg m
 m3 3

(b) Add 92 electrons to both sides of the given nuclear reaction. Then it becomes

92
238

netU atom He atom Pb atom→ + +8 2
4

82
206 Q .

Q M M M cnet U He Pb92
238

2
4

82
206 u 931.5 MeV u= − − = − −8 238 050 783 8 4 002 603 205 974 4492 . . .b g b g

Qnet  MeV= 51 7.

(c) If there is a single step of decay, the number of decays per time is the decay rate R and the
energy released in each decay is Q. Then the energy released per time is P =QR . If there

is a series of decays in steady state, the equation is still true, with Q representing the net
decay energy.

continued on next page
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(d) The decay rate for all steps in the radioactive series in steady state is set by the parent
uranium:

N =
×F

HG
I
KJ × = ×

7 00 10
238

6 02 10 1 77 10
4

23 26.
. .

 g
 g mol

 nuclei mol  nucleie j

λ = =
×

= × −ln ln
.

.
2 2

4 47 10
1 55 10

1 2
9

10

T  yr
 

1
yr

R N= = ×
F
HG

I
KJ × = ×−λ 1 55 10 1 77 10 2 75 1010 26 16. . . 

1
yr

 nuclei  decays yre j ,

so P = = ×
F
HG

I
KJ × = ×−QR 51 7 2 75 10 1 60 10 2 27 1016 13 5. . . . MeV  

1
yr

 J MeV  J yra f e j .

(e) dose in rem = dose in rad × RBE

5 00 1 10. . rem yr dose in rad yr= b g , giving dose in rad yr  rad yrb g = 4 55.

The allowed whole-body dose is then 70 0 4 55
10

1
3 18

2

. . . kg  rad yr
 J kg

 rad
 J yrb gb g

−F
HG

I
KJ = .

P45.52 E E k TT B≡ = =thermal  eVa f 3
2

0 039.

E ET

n

= FHG
I
KJ

1
2

 where n ≡ number  of collisions, and 0 039
1
2

2 0 106. .= FHG
I
KJ ×

n

e j.

Therefore, n = =25 6 26.  collisions .

P45.53 Conservation of linear momentum and energy can be applied to find the kinetic energy of the
neutron. We first suppose the particles are moving nonrelativistically.

The momentum of the alpha particle and that of the neutron must add to zero, so their
velocities must be in opposite directions with magnitudes related by

m mn nv v+ =α α 0 or 1 008 7 4 002 6. . u  ub g b gv vn = α .

At the same time, their kinetic energies must add to 17.6 MeV

E m v m v v vn n n= + = + =
1
2

1
2

1
2

1 008 7
1
2

4 002 6 17 62 2 2 2
α α α. . . u  MeVb g b g .

Substitute v vnα = 0 252 0. : E v v
cn n= + =

F
HG

I
KJ0 504 35 0 127 10 17 6

12 2
2. . . u  u  MeV

 u
931.494 MeV

b g b g

v
c

cn = = = ×
0 018 9
0 631 45

0 173 5 19 10
2

7.
.

. .  m s.

Since this speed is not too much greater than 0.1c, we can get a reasonable estimate of the kinetic
energy of the neutron from the classical equation,

K mv c
c

= =
F
HG

I
KJ =

1
2

1
2

1 008 7 0 173
931 494

14 12 2
2

. .
.

. u
 MeV
u

 MeVb ga f .

continued on next page
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For a more accurate calculation of the kinetic energy, we should use relativistic expressions.
Conservation of momentum gives

γ γ α α αn n nm mv v+ = 0 1 008 7
1

4 002 6
12 2 2 2

. .
v

v c

v

v c
n

n−
=

−
α

α

yielding
v
c

v
c v

n

n

α
2

2

2

2 215 746 14 746
=

−. .
.

Then γ γ α αn nm c m c− + − =1 1 17 62 2b g b g .  MeV

and v cn = 0 171. , implying that γ n nm c− =1 14 02b g .  MeV .

P45.54 From Table A.3, the half-life of 32 P is 14.26 d. Thus, the decay constant is

λ = = = = ×− − −ln ln
.

. .
2 2

14 26
0 048 6 5 63 10

1 2

7

T  d
 d  s1 1 .

N
R

0
0

6

7
125 22 10

5 63 10
9 28 10= =

×

×
= ×− −λ

.
.

.
 decay s

 s
 nuclei1

At t = 10.0 days , the number remaining is

N N e et= = × = ×− − −

0
12 0 048 6 10 0 129 28 10 5 71 10λ . .

. .
 nuclei  nuclei

 d  d1

e j e jb g

so the number of decays has been N N0
123 57 10− = ×.  and the energy released is

E = × × =−3 57 10 700 1 60 10 0 40012 16. . .e ja fe j keV  J keV  J .

If this energy is absorbed by 100 g of tissue, the absorbed dose is

Dose
 J

.100 kg
 rad
 J kg

 rad=
F
HG

I
KJ
F
HG

I
KJ =−

0 400
0

1
10

4002
.

.

P45.55 (a) The number of Pu nuclei in 1 00
6 02 10

239 05
1 000

23

.
.

.
 kg

 nuclei mol
 g mol

 g=
× b g .

The total energy = × = ×25 2 10 200 5 04 1023 26. . nuclei  MeV  MeVe ja f
E = × × = ×−5 04 10 4 44 10 2 24 1026 20 7. . . MeV  kWh MeV  kWhe je j

or 22 million kWh.

(b) E m c= ∆ = + − −2 3 016 049 2 014 102 4 002 603 1 008 665 931 5. . . . . u  u  u  u  MeV ub gb g
E = 17 6.  MeV for each D - T fusion

(c) En = × −Total number of D nucleia fa fe j17 6 4 44 10 20. .

En = × F
HG
I
KJ × = ×−6 02 10

1 000
2 014

17 6 4 44 10 2 34 1023 20 8.
.

. . .e j a fe j  kWh

continued on next page
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(d) En = ×the number of C atoms in 1.00 kg 4.20 eV

En =
×F

HG
I
KJ × × =− −6 02 10

12
4 20 10 4 44 10 9 36

26
6 20.

. . . MeV  kWhe je j

(e) Coal is cheap at this moment in human history. We hope that safety and waste disposal
problems can be solved so that nuclear energy can be affordable before scarcity drives up
the price of fossil fuels.

P45.56 Add two electrons to both sides of the given reaction.

Then 4 1
1H atom He atom2

4→ +Q

where Q m c= = − =∆a f b g b g2 4 1 007 825 4 002603 26 7. . .u 931.5 MeV u  MeV

or Q = × = ×− −26 7 1 60 10 4 28 1013 12. . . MeV  J MeV  Ja fe j .

The proton fusion rate is then

rate
power output

energy per proton
 J s

 J 4 protons
 protons s= =

×

×
= ×

−

3 77 10

4 28 10
3 53 10

26

12
38.

.
.

e j b g .

P45.57 (a) Q M M M M cI A B C E= + − − 2 , and Q M M M M cII C D F G= + − − 2

Q Q Q M M M M M M M M cnet I II A B C E C D F G= + = + − − + + − − 2

Q Q Q M M M M M M cnet I II A B D E F G= + = + + − − − 2

Thus, reactions may be added. Any product like C used in a subsequent reaction does not
contribute to the energy balance.

(b) Adding all five reactions gives

1
1

1
1

1
0

1
1

1
1

1
0

2
4 2H H+ e+ H+ H+ e He net+ → + +− − ν Q

or 4 2 21
1

1
0

2
4H e He net+ → + +− ν Q .

Adding two electrons to each side 4 1
1

2
4H atom He atom net→ +Q .

Thus, Q M M cnet H He u 931.5 MeV u  MeV= − = − =4 4 1 007 825 4 002 603 26 7
1
1

2
4

2 . . .b g b g .
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P45.58 (a) The mass of the pellet is m V= =
×F

HG
I
KJ

L
N
MM

O
Q
PP = ×

−
−ρ

π
0 200

4
3

1 50 10
3 53 10

2 3
7.

.
. g cm

 cm
2

 g3e j .

The pellet consists of equal numbers of 2 H and 3 H atoms, so the average molar mass is 2.50
and the total number of atoms is

N =
×F

HG
I
KJ × = ×

−3 53 10
2 50

6 02 10 8 51 10
7

23 16.
.

. .
 g

 g mol
 atoms mol  atomse j .

When the pellet is vaporized, the plasma will consist of 2Nparticles (N nuclei and N
electrons). The total energy delivered to the plasma is 1.00% of 200 kJ or 2.00 kJ. The

temperature of the plasma is found from E N k T= 2 3
2a fe jB  as

T
E

Nk
= =

×

× ×
= ×

−3
2 00 10

8 51 10 1 38 10
5 68 10

3

16 23
8

B

 J

3  J K
 K

.

. .
.

e je j
.

(b) Each fusion event uses 2 nuclei, so 
N
2

 events will occur. The energy released will be

E
N

Q= FHG
I
KJ =

×F
HG

I
KJ × = × =−

2
8 51 10

2
17 59 1 60 10 1 20 10 120

16
13 5.

. . . MeV  J MeV  J  kJa fe j .

P45.59 (a) The solar-core temperature of 15 MK gives particles enough kinetic energy to overcome the

Coulomb-repulsion barrier to 1
1

2
3H He He e2

4+ → + ++ ν , estimated as 
k e e

r
e a fa f2

. The

Coulomb barrier to Bethe’s fifth and eight reactions is like 
k e e

r
e a fa f7

, larger by 
7
2

 times, so

the required temperature can be estimated as 
7
2

15 10 5 106 7× ≈ × K  Ke j .

(b) For 12 1 13C H N+ → +Q ,

Q1 12 000 000 1 007 825 13 005 739 931 5 1 94= + − =. . . . .b ga f MeV  MeV

For the second step, add seven electrons to both sides to
have:13 N atom C atom e e13→ + + ++ − Q

Q

Q Q

Q

Q

Q

Q

2

3 7

4

5

6

8

13 005 739 13 003 355 2 0 000 549 931 5 1 20

2 0 000 549 931 5 1 02

13 003 355 1 007 825 14 003 074 931 5 7 55

14 003 074 1 007 825 15 003 065 931 5 7 30

15 003 065 15 000 109 2 0 000 549 931 5 1 73

15 000 109 1 007 825 12 4 002 603 931 5 4

= − − =

= = =

= + − =

= + − =

= − − =

= + − − =

. . . . .

. . .

. . . . .

. . . . .

. . . . .

. . . . .

b g a f
b ga f

a f
a f

b g a f
a f

 MeV  MeV

 MeV  MeV

 MeV  MeV

 MeV  MeV

 MeV  MeV

 MeV 97 MeV

The sum is 26 7.  MeV , the same as for the proton-proton cycle.

(c) Not all of the energy released appears as internal energy in the star. When a neutrino is
created, it will likely fly directly out of the star without interacting with any other particle.
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P45.60 (a)
I
I

I e
I e

e
x

x
x2

1

0

0

2

1

2 1= =
−

−
− −

µ

µ
µ µb g

(b)
I
I

e e50

100

5 40 41.0 0 100 3 56 35 2= = =− −. . . .a fa f

(c)
I
I

e e50

100

5 40 41.0 1.00 35 6 152 89 10= = = ×− −. . .a fa f

Thus, a 1.00-cm aluminum plate has essentially removed the long-wavelength x-rays from
the beam.

*P45.61 (a) The number of fissions ocurring in the zeroth, first, second, … nth generation is

N N K N K N Kn
0 0 0

2
0, , , ,… .

The total number of fissions that have ocurred up to and including the nth generation is

N N N K N K N K N K K Kn n= + + + + = + + + +0 0 0
2

0 0
21… …e j.

Note that the factoring of the difference of two squares, a a a2 1 1 1− = + −a fa f , can be
generalized to a difference of two quantities to any power,

a a a a

a a a a a an n n

3 2

1 1 2

1 1 1

1 1 1

− = + + −

− = + + + + + −+ −

e ja f
e ja f… .

Thus K K K K
K

K
n n

n

+ + + + + =
−

−
−

+
1 2

1

1
1

1
…

and N N
K

K

n

=
−

−

+

0

1 1
1

.

(b) The number of U-235 nuclei is

N = F
HG

I
KJ ×

F
HG

I
KJ = ×−5 50

1
1 41 1027

25. . kg
1 atom
235 u

 u
1.66 10  kg

 nuclei .

We solve the equation from part (a) for n, the number of generations:

N
N

K Kn

0

11 1− = −+a f
N
N

K K Kn

0
1 1− + =a f a f

n K
N K N

K
N K

N
K

n
N K N

K

ln ln ln ln

ln

ln

ln . .

ln .
.

=
− +F

HG
I
KJ =

−
+

F
HG

I
KJ −

=
− +

− =
× +

− =

1 1 1
1

1 1
1

1 41 10 0 1 10 1

1 1
1 99 2

0

0

0
25 20

a f a f

a fc h a fe j

Therefore time must be alotted for 100 generations:

∆tb = × = ×− −100 10 10 1 00 109 6 s  se j . .

continued on next page



Chapter 45    617

(c) v
B

= =
×

×
= ×

ρ
150 10

18 7 10
2 83 10

9

3
3 N m

 kg m
 m s

2

3.
.

(d) V r
m

= =
4
3

3π
ρ

r
m

t
r
vd

=
F
HG
I
KJ =

×

F
H
GG

I
K
JJ = ×

= =
×
×

= ×

−

−
−

3
4

3 5 5

4 18 7 10
4 13 10

4 13 10
1 46 10

1 3

3

1 3

2

2
5

πρ π

.

.
.

.
.

 kg

 kg m
 m

 m
2.83 10  m s

 s

3

3

b g
e j

∆

(e) 14 6.  sµ  is greater than 1 sµ , so the entire bomb can fission. The destructive energy released
is

1 41 10
1 6 10

4 51 10 4 51 10

1 07 10

107

25
19

14 14

5

.
.

. .

.

×
×F

HG
I
KJ

×F
HG

I
KJ = × = ×

×

F
HG

I
KJ

= ×

=

−

 nuclei
200 10  eV

fissioning nucleus
 J

1 eV
 J  J

1 ton TNT
4.2 10  J

 ton TNT

 kilotons of TNT

6

9

What if? If the bomb did not have an “initiator” to inject 1020  neutrons at the moment when
the critical mass is assembled, the number of generations would be

n =
× +

− =
ln . .

ln .

1 41 10 0 1 1 1

1 1
1 582

25 a fe j
 requiring 583 10 10 5 839× =−  s  se j . µ .

This time is not very short compared with 14 6.  sµ , so this bomb would likely release much
less energy.

ANSWERS TO EVEN PROBLEMS

P45.2 184 MeV P45.18 (a) 2 53 1031. ×  J; (b) 1 14 109. ×  yr

P45.4 see the solution P45.20 (a) 1014 3 cm− ; (b) 1 24 105. ×  J m3 ;
(c) 1 77.  T

P45.6 (a) 173 MeV ; (b) 0 078 8%.

P45.22 12 4.  h
P45.8 2 63.  kg d

P45.24 (a) 10.0 h; (b) 3 16.  m
P45.10 (a) 4 84 1 3. V − ; (b) 6 1 3V − ; (c) 6 30 1 3. V − ;

(d) the sphere has minimum loss and the
parallelepiped maximum

P45.26 (a) 0 436.  cm; (b) 5 79.  cm

P45.28 2 39 10 3. × °− C
P45.12 2 68 105. ×

P45.30 3 96 10 4. × −  J kg
P45.14 (a) 31 9.  g h ; (b) 122 g h

P45.32 (a) 10; (b) 106 ; (c) 108  eV
P45.16 (a) 3 24.  fm; (b) 444 keV ; (c) 

2
5

vi ;
P45.34 4.45 10  kg h8× −

(d) 740 keV ; (e) possibly by tunneling
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P45.36 (a) ~106 ; (b) ~10 15−  g P45.48 (a) ~108  m3; (b) ~10  J13 ; (c) ~  J1014 ;
(d) ~10 kilotons

P45.38 (a) 1 5 1024. × ; (b) 0 6.  kg
P45.50 223 W

P45.40 see the solution
P45.52 26 collisions

P45.42 The fractional loss in D - T is about 4 times
P45.54 400 rad

that in U fission235

P45.56 3 53 1038. ×  protons sP45.44 1 01.  MeV

P45.58 (a) 5 68 108. ×  K ; (b) 120 kJ
P45.46

mN

c T L

c T
w c v

s h

A  MeV

 g mol
C

C

200

235
100

100

a f
b g b g

b g
° − +

+ − °

L
N
MM

O
Q
PP P45.60 (a) see the solution; (b) 35 2. ; (c) 2 89 1015. ×
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ANSWERS TO QUESTIONS

Q46.1 Strong Force—Mediated by gluons.

Electromagnetic Force—Mediated by photons.

Weak Force—Mediated by W+ , W− , and Z0  bosons.

Gravitational Force—Mediated by gravitons.

Q46.2 The production of a single gamma ray could not satisfy the law
of conservation of momentum, which must hold true in
this—and every—interaction.

Q46.3 In the quark model, all hadrons are composed of smaller units
called quarks. Quarks have a fractional electric charge and a

baryon number of 
1
3

. There are 6 types of quarks: up, down,

strange, charmed, top, and bottom. Further, all baryons contain
3 quarks, and all mesons contain one quark and one anti-quark.
Leptons are thought to be fundamental particles.

Q46.4 Hadrons are massive particles with structure and size. There are two classes of hadron: mesons and
baryons. Hadrons are composed of quarks. Hadrons interact via the strong force.

Leptons are light particles with no structure or size. It is believed that leptons are fundamental
particles. Leptons interact via the weak force.

Q46.5 Baryons are heavy hadrons with spin 
1
2

 or 
3
2

, are composed of three quarks, and have long

lifetimes. Mesons are light hadrons with spin 0 or 1, are composed of a quark and an antiquark, and
have short lifetimes.

Q46.6 Resonances are hadrons. They decay into strongly interacting particles such as protons, neutrons,
and pions, all of which are hadrons.

Q46.7 The baryon number of a proton or neutron is one. Since baryon number is conserved, the baryon
number of the kaon must be zero.

Q46.8 Decays by the weak interaction typically take 10 10−  s or longer to occur. This is slow in particle
physics.

619
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Q46.9 The decays of the muon, tau, charged pion, kaons, neutron, lambda, charged sigmas, xis, and omega
occur by the weak interaction. All have lifetimes longer than 10 13−  s. Several produce neutrinos;
none produce photons. Several violate strangeness conservation.

Q46.10 The decays of the neutral pion, eta, and neutral sigma occur by the electromagnetic interaction.
These are three of the shortest lifetimes in Table 46.2. All produce photons, which are the quanta of
the electromagnetic force. All conserve strangeness.

Q46.11 Yes, protons interact via the weak interaction; but the strong interaction predominates.

Q46.12 You can think of a conservation law as a superficial regularity which we happen to notice, as a
person who does not know the rules of chess might observe that one player’s two bishops are
always on squares of opposite colors. Alternatively, you can think of a conservation law as
identifying some stuff of which the universe is made. In classical physics one can think of both
matter and energy as fundamental constituents of the world. We buy and sell both of them. In
classical physics you can also think of linear momentum, angular momentum, and electric charge as
basic stuffs of which the universe is made. In relativity we learn that matter and energy are not
conserved separately, but are both aspects of the conserved quantity relativistic total energy.
Discovered more recently, four conservation laws appear equally general and thus equally
fundamental: Conservation of baryon number, conservation of electron-lepton number,
conservation of tau-lepton number, and conservation of muon-lepton number. Processes involving
the strong force and the electromagnetic force follow conservation of strangeness, charm,
bottomness, and topness, while the weak interaction can alter the total S, C, B and T quantum
numbers of an isolated system.

Q46.13 No. Antibaryons have baryon number –1, mesons have baryon number 0, and baryons have baryon
number +1. The reaction cannot occur because it would not conserve baryon number, unless so
much energy is available that a baryon-antibaryon pair is produced.

Q46.14 The Standard Model consists of quantum chromodynamics (to describe the strong interaction) and
the electroweak theory (to describe the electromagnetic and weak interactions). The Standard Model
is our most comprehensive description of nature. It fails to unify the two theories it includes, and
fails to include the gravitational force. It pictures matter as made of six quarks and six leptons,
interacting by exchanging gluons, photons, and W and Z bosons.

Q46.15 All baryons and antibaryons consist of three quarks. All mesons and antimesons consist of two

quarks. Since quarks have spin quantum number 
1
2

 and can be spin-up or spin-down, it follows that

the three-quark baryons must have a half-integer spin, while the two-quark mesons must have spin
0 or 1.

Q46.16 Each flavor of quark can have colors, designated as red, green and blue. Antiquarks are colored
antired, antigreen, and antiblue. A baryon consists of three quarks, each having a different color. By
analogy to additive color mixing we call it colorless. A meson consists of a quark of one color and
antiquark with the corresponding anticolor, making it colorless as a whole.

Q46.17 In 1961 Gell-Mann predicted the omega-minus particle, with quark composition sss. Its discovery in
1964 confirmed the quark theory.



Chapter 46     621

Q46.18 The Ξ−  particle has, from Table 46.2, charge –e, spin 
1
2

, B = 1, L L Le = = =µ τ 0, and strangeness –2.

All of these are described by its quark composition dss (Table 46.5). The properties of the quarks

from Table 46.3 let us add up charge: − − − = −
1
3

1
3

1
3

e e e e ; spin + − + =
1
2

1
2

1
2

1
2

, supposing one of the

quarks is spin-down relative to the other two; baryon number 
1
3

1
3

1
3

1+ + = ; lepton numbers, charm,

bottomness, and topness zero; and strangeness 0 1 1 2− − = − .

Q46.19 The electroweak theory of Glashow, Salam, and Weinberg predicted the W+ , W− , and Z particles.
Their discovery in 1983 confirmed the electroweak theory.

Q46.20 Hubble determined experimentally that all galaxies outside the Local Group are moving away from
us, with speed directly proportional to the distance of the galaxy from us.

Q46.21 Before that time, the Universe was too hot for the electrons to remain in any sort of stable orbit
around protons. The thermal motion of both protons and electrons was too rapid for them to be in
close enough proximity for the Coulomb force to dominate.

Q46.22 The Universe is vast and could on its own terms get along very well without us. But as the cosmos is
immense, life appears to be immensely scarce, and therefore precious. We must do our work,
growing corn to feed the hungry while preserving our planet for future generations. One person has
singular abilities and opportunities for effort, faithfulness, generosity, honor, curiosity,
understanding, and wonder. His or her place is to use those abilities and opportunities, unique in all
the Universe.

SOLUTIONS TO PROBLEMS

Section 46.1 The Fundamental Forces in Nature

Section 46.2 Positrons and Other Antiparticles

P46.1 Assuming that the proton and antiproton are left nearly at rest after they are produced, the energy E
of the photon must be

E E= = = = × −2 2 938 3 1 876 6 3 00 100
10. . . MeV  MeV  Ja f .

Thus, E hf= = × −3 00 10 10.  J

f =
×
× ⋅

= ×
−

−
3 00 10

6 626 10
4 53 10

10

34
23.

.
.

 J
 J s

 Hz

λ = =
×

×
= × −c

f
3 00 10
4 53 10

6 62 10
8

23
16.

.
.

 m s
 Hz

 m .
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P46.2 The minimum energy is released, and hence the minimum frequency photons are produced, when
the proton and antiproton are at rest when they annihilate.

That is, E E= 0  and K = 0 . To conserve momentum, each photon must carry away one-half the
energy.

Thus, E
E

E hfmin .= = = =
2

2
938 30

0  MeV min .

Thus, fmin

. .

.
.=

×

× ⋅
= ×

−

−

938 3 1 60 10

6 626 10
2 27 10

13

34
23

 MeV  J MeV

 J s
 Hz

a fe j
e j

λ = =
×

×
= × −c

fmin

.

.
.

3 00 10
2 27 10

1 32 10
8

23
15 m s

 Hz
 m .

P46.3 In γ → ++ −p p ,

we start with energy 2.09 GeV

we end with energy 938.3 MeV + 938.3 MeV + 95.0 MeV + K2

where K2  is the kinetic energy of the second proton.

Conservation of energy for the creation process gives K 2 118=  MeV .

Section 46.3 Mesons and the Beginning of Particle Physics

P46.4 The reaction is µ ν ν+ −+ → +e

muon-lepton number before reaction: − + = −1 0 1a f a f
electron-lepton number before reaction: 0 1 1a f a f+ = .

Therefore, after the reaction, the muon-lepton number must be –1. Thus, one of the neutrinos must
be the anti-neutrino associated with muons, and one of the neutrinos must be the neutrino
associated with electrons:

ν µ and ν e .

Then µ ν νµ
+ −+ → +e e .

P46.5 The creation of a virtual Z0  boson is an energy fluctuation ∆E = ×93 109  eV . It can last no longer

than ∆
∆

t
E

=
2

 and move no farther than

c t
hc

E
∆

∆
a f e je j

e j
= =

× ⋅ ×

× ×

F
HG

I
KJ = × =

−

−
− −

4

6 626 10 3 00 10

4 93 10

1
1 06 10 10

34 8

9 19
18 18

π π

. .
. ~

 J s  m s

 eV

 eV
1.60 10  J

 m  m .
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P46.6 A proton has rest energy 938.3 MeV. The time interval during which a virtual proton could exist is at

most ∆t  in ∆ ∆E t =
2

. The distance it could move is at most

c t
c
E

∆
∆

= =
× ⋅ ×

×

−

−
−

2

1 055 10 3 10

2 938 3 1 6 10
10

34 8

13
16

.

. .
~

 J s  m s

 J
 m

e je j
a fe j

.

According to Yukawa’s line of reasoning, this distance is the range of a force that could be associated
with the exchange of virtual protons between high-energy particles.

P46.7 By Table 46.2, M cπ 0 135 2=  MeV .

Therefore, Eγ = 67 5.  MeV  for each photon

p
E

c
c= =γ 67 5.  MeV

and f
E

h
= = ×γ 1 63 1022.  Hz .

P46.8 The time interval for a particle traveling with the speed of light to travel a distance of 3 10 15× −  m  is

∆ = =
×
×

=
−

−t
d
v

3 10
3 10

10
15

8
23 m

 m s
 s~ .

P46.9 (a) ∆ = − −E m m m cn p ee j 2

From Table A-3, ∆ = − =E 1 008 665 1 007 825 931 5 0 782. . . .b ga f  MeV .

(b) Assuming the neutron at rest, momentum conservation for the decay process implies
p pp e= . Relativistic energy for the system is conserved

m c p c m c p c m cp p e e n
2 2 2 2 2 2 2 2 2e j e j+ + + = .

Since p pp e= , 938 3 0 511 939 62 2 2 2. ( ) . ( ) .a f a f+ + + =p c p c  MeV .

Solving the algebra, pc = 1 19.  MeV .

If p c m v ce e e= =γ 1 19.  MeV , then
γ v

c
x

x
e = =

−
=

1 19
0 511 1

2 33
2

.
.

.
 MeV
 MeV

 where x
v
c
e= .

Solving, x x2 21 5 43= −e j .  and x
v
c
e= = 0 919.

v ce = 0 919. .

Then m v m vp p e e e= γ : v
m v c
m cp

e e e

p
= =

×

× ×

−

−

γ 1 19 1 60 10

1 67 10 3 00 10

13

27 8

. .

. .

 MeV  J MeV

 m s

a fe j
e je j

vp = × =3 80 10 3805.  m s  km s .

(c) The electron is relativistic,  the proton is not.
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Section 46.4 Classification of Particles

P46.10 In ? + → ++ +p n µ , charge conservation requires the unknown particle to be neutral. Baryon
number conservation requires baryon number = 0. The muon-lepton number of ? must be –1.

So the unknown particle must be ν µ .

P46.11 Ω Λ+ +→ +0 K KS
0 → ++ −π π (or π π0 0+ )

Λ0 → + +p π n p e e→ + ++ ν

Section 46.5 Conservation Laws

P46.12 (a) p p e+ → ++ −µ Le 0 0 0 1+ → +

and Lµ 0 0 1 0+ → − +

(b) π π− ++ → +p p charge − + → + +1 1 1 1

(c) p p p+ → + +π baryon number : 1 1 1 0+ → +

(d) p p p p n+ → + + baryon number : 1 1 1 1 1+ → + +

(e) γ π+ → +p n 0 charge 0 1 0 0+ → +

P46.13 (a) Baryon number and charge are conserved, with values of 0 1 0 1+ = +

and 1 1 1 1+ = +  in both reactions.

(b) Strangeness is  conservednot  in the second reaction.

P46.14 Baryon number conservation allows the first and forbids the second .

P46.15 (a) π µ ν µ
− −→ + Lµ : 0 1 1→ −

(b) K + +→ +µ ν µ Lµ : 0 1 1→− +

(c) ν e p n e+ → ++ + Le : − + → −1 0 0 1

(d) ν e n p e+ → ++ − Le : 1 0 0 1+ → +

(e) ν µµ + → ++ −n p Lµ : 1 0 0 1+ → +

(f) µ ν ν µ
− −→ + +e e Lµ : 1 0 0 1→ + + and Le : 0 1 1 0→ − +
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P46.16 Momentum conservation for the decay requires the pions to have equal speeds.

The total energy of each is
497 7.  MeV

2

so E p c mc2 = +2 2 2 2e j  gives

248 8 139 62 2 2. . MeV  MeVa f b g a f= +pc .

Solving, pc mvc
mc

v c

v
c

= = =
−

F
HG
I
KJ206

1

2

2
 MeV γ

b g
pc

mc v c

v
c2 2

206 1

1
1 48= =

−

F
HG
I
KJ =

 MeV
139.6 MeV b g

.

v
c

v
c

= − FHG
I
KJ1 48 1

2

.

and
v
c

v
c

v
c

F
HG
I
KJ = − FHG

I
KJ

L
N
MM

O
Q
PP = − F

HG
I
KJ

2 2 2

2 18 1 2 18 2 18. . .

3 18 2 18
2

. .
v
c
F
HG
I
KJ =

so
v
c
= =

2 18
3 18

0 828
.
.

.

and v c= 0 828. .

P46.17 (a) p+ +→ +π π 0 Baryon number : 1 0 0→ +

(b) p p p p+ + + ++ → + +π 0 This reaction can occur .

(c) p p p+ + + ++ → +π Baryon number  is violated: 1 1 1 0+ → +

(d) π µ ν µ
+ +→ + This reaction can occur .

(e) n p e0
e→ + ++ − ν This reaction can occur .

(f) π µ+ +→ + n Violates baryon number : 0 0 1→ +

Violates muon - lepton number : 0 1 0→− +
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P46.18 (a) p e→ ++ γ

Baryon number: + → +1 0 0

∆B ≠ 0 , so baryon number conservation is violated.

(b) From conservation of momentum for the decay: p pe = γ .

Then, for the positron, E p c Ee e e
2 2

0
2= +b g ,

becomes E p c E E Ee e e
2 2

0
2 2

0
2= + = +γ γd i , , .

From conservation of energy for the system: E E Ep e0, = + γ

or E E Ee p= −0, γ

so E E E E Ee p p
2

0
2

0
22= − +, , γ γ .

Equating this to the result from above gives E E E E E Ee p pγ γ γ
2

0
2

0
2

0
22+ = − +, , ,

or E
E E

E
p e

p
γ =

−
=

−
=0

2
0
2

0

2 2

2
938 3 0 511

2 938 3
469, ,

,

. .
.

 MeV  MeV
 MeV

 MeV
a f a f

a f .

Thus, E E Ee p= − = − =0 938 3 469 469, .γ  MeV  MeV  MeV .

Also, p
E

c cγ
γ= =

469 MeV

and p p
ce = =γ

469 MeV
.

(c) The total energy of the positron is Ee = 469 MeV .

But, E E
E

v c
e e

e
= =

−
γ 0

0

2
1

,
,

b g

so 1
0 511

1 09 10
2

0 3− FHG
I
KJ = = = × −v

c

E

E
e

e

, .
.

 MeV
469 MeV

which yields: v c= 0 999 999 4. .

P46.19 The relevant conservation laws are: ∆Le = 0

∆Lµ = 0

and ∆Lτ = 0 .

(a) π π+ +→ + +0 e ? Le : 0 0 1→ − + Le implies Le = 1 and we have a ν e

(b) ?+ → + +− +p pµ π Lµ
: Lµ + → + + +0 1 0 0 implies Lµ = 1 and we have a ν µ

continued on next page
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(c) Λ0 → + +−ρ µ ? Lµ
: 0 0 1→ + + Lµ implies Lµ = −1 and we have a ν µ

(d) τ µ+ +→ + +? ? Lµ
: 0 1→− + Lµ implies Lµ = 1 and we have a ν µ

Lτ : − → +1 0 Lτ implies  L τ = −1 and we have a ντ

Conclusion for (d): Lµ = 1  for one particle, and Lτ = −1  for the other particle.

We have ν µ

and ντ .

Section 46.6 Strange Particles and Strangeness

P46.20 The ρ π π0 → ++ −
 decay must occur via the strong interaction.

The KS
0 → ++ −π π  decay must occur via the weak interaction.

P46.21 (a) Λ0 → + −p π Strangeness: − → +1 0 0 (strangeness is not conserved )

(b) π − + → +p K 0Λ0 Strangeness: 0 0 1 1+ → − + (0 0=  and strangeness is conserved )

(c) p p+ → +Λ Λ0 0 Strangeness: 0 0 1 1+ → + − (0 0=  and strangeness is conserved )

(d) π π− − ++ → + Σp Strangeness: 0 0 0 1+ → − (0 1≠ − : strangeness is not conserved )

(e) Ξ Λ− −→ +0 π Strangeness: − → − +2 1 0 (− ≠ −2 1  so strangeness is not conserved )

(f) Ξ0 → + −p π Strangeness: − → +2 0 0 (− ≠2 0 so strangeness is not conserved )

P46.22 (a) µ γ− −→ +e Le : 0 1 0→ + ,

and Lµ : 1 0→

(b) n p e→ + +− ν e Le : 0 0 1 1→ + +

(c) Λ0 0→ +p π Strangeness: − → +1 0 0 ,

and charge: 0 1 0→+ +

(d) p e→ ++ π 0 Baryon number: + → +1 0 0

(e) Ξ0 0→ +n π Strangeness: − → +2 0 0
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P46.23 (a) π η− + →p 2  violates conservation of baryon number as 0 1 0+ → , not allowed .

(b) K n− −+ → +Λ0 π

Baryon number, 0 1 1 0+ → +

Charge, − + → −1 0 0 1

Strangeness, − + → − +1 0 1 0

Lepton number, 0 0→

The interaction may occur via the strong interaction  since all are conserved.

(c) K − −→ +π π 0

Strangeness, − → +1 0 0

Baryon number, 0 0→

Lepton number, 0 0→

Charge, − → − +1 1 0

Strangeness is violated by one unit, but everything else is conserved. Thus, the reaction can
occur via the weak interaction , but not the strong or electromagnetic interaction.

(d) Ω Ξ− −→ +π 0

Baryon number, 1 1 0→ +

Lepton number, 0 0→

Charge, − → − +1 1 0

Strangeness, − → − +3 2 0

May occur by weak interaction , but not by strong or electromagnetic.

(e) η γ→ 2

Baryon number, 0 0→

Lepton number, 0 0→

Charge, 0 0→

Strangeness, 0 0→

No conservation laws are violated, but photons are the mediators of the electromagnetic
interaction. Also, the lifetime of the η is consistent with the electromagnetic interaction .
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P46.24 (a) Ξ Λ− −→ + +0 µ ν µ

Baryon number: + → + + +1 1 0 0 Charge: − → − +1 0 1 0

Le : 0 0 0 0→ + + Lµ : 0 0 1 1→ + +

Lτ : 0 0 0 0→ + + Strangeness: − → − + +2 1 0 0

Conserved quantities are: B L Le, , charge,  and τ

(b) KS
0 → 2 0π

Baryon number: 0 0→ Charge: 0 0→

Le : 0 0→ Lµ : 0 0→

Lτ : 0 0→ Strangeness: + →1 0

Conserved quantities are: B L L Le, , , charge,  and µ τ

(c) K − + → +p nΣ0

Baryon number: 0 1 1 1+ → + Charge: − + → +1 1 0 0

Le : 0 0 0 0+ → + Lµ : 0 0 0 0+ → +

Lτ : 0 0 0 0+ → + Strangeness: − + → − +1 0 1 0

Conserved quantities are: S L L Le, , , charge,  and µ τ

(d) Σ Λ0 0+ +γ

Baryon number: + → +1 1 0 Charge: 0 0→

Le : 0 0 0→ + Lµ : 0 0 0→ +

Lτ : 0 0 0→ + Strangeness: − → − +1 1 0

Conserved quantities are: B S L L Le, , , , charge,  and µ τ

(e) e e+ − + −+ → +µ µ

Baryon number: 0 0 0 0+ → + Charge: + − → + −1 1 1 1

Le : − + → +1 1 0 0 Lµ : 0 0 1 1+ → + −

Lτ : 0 0 0 0+ → + Strangeness: 0 0 0 0+ → +

Conserved quantities are: B S L L Le, , , , charge,  and µ τ

(f) p n+ → + −Λ Σ0

Baryon number: − + → − +1 1 1 1 Charge: − + → −1 0 0 1

Le : 0 0 0 0+ → + Lµ : 0 0 0 0+ → +

Lτ : 0 0 0 0+ → + Strangeness: 0 0 1 1+ → + −

Conserved quantities are: B S L L Le, , , , charge,  and µ τ
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P46.25 (a) K p  ? p+ + → +

The strong interaction conserves everything.

Baryon number, 0 1 1+ → +B so B = 0

Charge, + + → +1 1 1Q so Q = +1

Lepton numbers, 0 0 0+ → +L so L L Le = = =µ τ 0

Strangeness, + + → +1 0 0S so S = 1

The conclusion is that the particle must be positively charged, a non-baryon, with

strangeness of +1. Of particles in Table 46.2, it can only be the K + . Thus, this is an elastic

scattering process.

The weak interaction conserves all but strangeness, and ∆S = ±1.

(b) Ω− −→ +  ? π

Baryon number, + → +1 0B so B = 1

Charge, − → −1 1Q so Q = 0

Lepton numbers, 0 0→ +L so L L Le = = =µ τ 0

Strangeness, − → +3 0S so ∆S = 1: S = −2

The particle must be a neutral baryon with strangeness of –2. Thus, it is the Ξ0 .

(c) K  ? + +→ + +µ ν µ

Baryon number, 0 0 0→ + +B so B = 0

Charge, + → + +1 1 0Q so Q = 0

Lepton numbers, L Le e,  0 0 0→ + + so Le = 0

L Lµ µ,  0→ − +1 1 so Lµ = 0

L Lτ τ,  0→ + +0 0 so Lτ = 0

Strangeness, 1 0 0→ + +S so ∆S = ±1

(for weak interaction): S = 0

The particle must be a neutral meson with strangeness = ⇒0 0π .



Chapter 46     631

Section 46.7 Making Elementary Particles and Measuring Their Properties

*P46.26 (a) p eBr
c cΣ Σ+ += =

×

× ⋅
=

−

−

1 602 177 10 1 15 1 99

5 344 288 10
686

19

22

. . .

.

 C  T  m

kg m s MeV
 MeVe ja fa f

b g b g

p eBr
c cπ π+ += =

×

× ⋅
=

−

−

1 602 177 10 1 15 0

5 344 288 10
200 MeV

19

22

. .

.

 C  T .580 m

kg m s MeV

e ja fa f
b g b g

(b) Let ϕ  be the angle made by the neutron’s path with the path of the Σ+  at the moment of
decay. By conservation of momentum:

p c cn cos . cos . .ϕ + °=199 961 581 64 5 686 075 081 MeV  MeVb g
∴ =p cn cos .ϕ 599 989 401 MeV (1)

p c cn sin . sin . .ϕ = °=199 961 581 64 5 180 482 380 MeV  MeVb g (2)

From (1) and (2): p c c cn = + =599 989 401 180 482 380 627
2 2

. . MeV  MeV  MeVb g b g

(c) E p c m cπ π π+ + += + = + =e j e j b g a f2 2 2 2 2199 961 581 139 6 244. . MeV  MeV  MeV

E p c m cn n n= + = + =b g e j b g a f2 2 2 2 2626 547 022 939 6 1 130. . MeV  MeV  MeV

E E EnΣ+ += + = + =π 243 870 445 1 129 340 219 1 370. . MeV  MeV  MeV

(d) m c E p cΣ Σ Σ+ + += − = − =2 2 2 2 2
1 373 210 664 686 075 081 1 190d i b g b g. . MeV  MeV  MeV

∴ =+m cΣ 1 190 2 MeV

E m cΣ Σ+ += γ 2 , where γ = −
F
HG
I
KJ = =
−

1
1 373 210 664

1 154 4
2

2

1 2
v
c

.
.

 MeV
1 189.541 303 MeV

Solving for v, v c= 0 500. .

P46.27 Time-dilated lifetime:

T T
v c

= =
×

−
=

×

−
= ×

− −
−γ 0 2 2

10

2

100 900 10

1

0 900 10

1 0 960
3 214 10

. .

( . )
.

10  s  s
 s

distance  m s  s  cm= × × =−0 960 3 00 10 3 214 10 9 268 10. . . .e je j .
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*P46.28 (a) Let Emin  be the minimum total energy of the bombarding particle that is needed to induce
the reaction. At this energy the product particles all move with the same velocity. The
product particles are then equivalent to a single particle having mass equal to the total mass
of the product particles, moving with the same velocity as each product particle. By
conservation of energy:

E m c m c p cmin + = +2
2

3
2 2

3
2e j b g . (1)

By conservation of momentum: p p3 1=

∴ = = −p c p c E m c3
2

1
2 2

1
2 2b g b g e jmin . (2)

Substitute (2) in (1): E m c m c E m cmin min+ = + −2
2

3
2 2 2

1
2 2e j e j .

Square both sides:

E E m c m c m c E m c

E
m m m c

m

K E m c
m m m m m c

m

m m m c

m

min min min

min

min min

2
2

2
2

2 2
3

2 2 2
1

2 2

3
2

1
2

2
2 2

2

1
2 3

2
1
2

2
2

1 2
2

2

3
2

1 2
2 2

2

2

2

2

2 2

+ + = + −

∴ =
− −

∴ = − =
− − −

=
− +

e j e j e j
e j

e j b g

Refer to Table 46.2 for the particle masses.

(b) K
c c

c
min

. .

.
.=

−
=

4 938 3 2 938 3

2 938 3
5 63

2 2 2 2

2

a f a f
e j

 MeV  MeV

 MeV
 GeV

2 2

(c) K
c c

cmin
. . . .

.
=

+ − +
=

497 7 1 115 6 139 6 938 3

2 938 3
768

2 2 2 2

2

b g a f
a f

 MeV  MeV

 MeV
 MeV

2 2

(d) K
c c

cmin
. .

.
=

+ −
=

2 938 3 135 2 938 3

2 938 3
280

2 2 2 2

2

a f a f
a f

 MeV  MeV

 MeV
 MeV

2 2

(e) K
c

cmin

. . .

.
.=

× − +L
NM

O
QP =

91 2 10 938 3 938 3

2 938 3
4 43

3 2 2 2

2

e j a f
a f

 MeV

 MeV
 TeV

2
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Section 46.8 Finding Patterns in the Particles

Section 46.9 Quarks

Section 46.10 Multicolored Quarks

Section 46.11 The Standard Model

P46.29 (a) The number of protons

Np =
×F

HG
I
KJ
F
HG

I
KJ = ×1 000

10
3 34 1026 g

6.02 10  molecules
18.0 g

 protons
molecule

 protons
23

.

and there are Nn =
×F

HG
I
KJ
F
HG

I
KJ = ×1 000 2 68 1026 g

6.02 10  molecules
18.0 g

8 neutrons
molecule

 neutrons
23

. .

So there are for electric neutrality 3 34 1026. ×  electrons .

The up quarks have number 2 3 34 10 2 68 10 9 36 1026 26 26. . .× + × = ×e j  up quarks

and there are 2 2 68 10 3 34 10 8 70 1026 26 26. . .× + × = ×e j  down quarks .

(b) Model yourself as 65 kg of water. Then you contain:

65 3 34 10 1026 28. ~×e j  electrons

65 9 36 10 1026 29. ~×e j  up quarks

65 8 70 10 1026 29. ~×e j  down quarks .

Only these fundamental particles form your body. You have no strangeness, charm, topness
or bottomness.

P46.30 (a) proton u u d total
strangeness 0 0 0 0 0
baryon number 1 1/3 1/3 1/3 1
charge e 2e/3 2e/3 –e/3 e

(b) neutron u d d total
strangeness 0 0 0 0 0
baryon number 1 1/3 1/3 1/3 1
charge 0 2e/3 –e/3 –e/3 0

P46.31 Quark composition of proton = uud and of neutron = udd.
Thus, if we neglect binding energies, we may write

m m mp u d= +2 (1)

and m m mn u d= + 2 . (2)

Solving simultaneously,

we find m m m c c cu p n  MeV  meV  MeV= − = − =
1
3

2
1
3

2 938 939 6 3122 2 2e j e j .

and from either (1) or (2), m cd  MeV= 314 2 .
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P46.32 (a) K 0 d s total
strangeness 1 0 1 1
baryon number 0 1/3 –1/3 0
charge 0 –e/3 e/3 0

(b) Λ0 u d s total
strangeness –1 0 0 –1 –1
baryon number 1 1/3 1/3 1/3 1
charge 0 2e/3 –e/3 –e/3 0

P46.33 (a) π − + → +p K 0 0Λ

In terms of constituent quarks: ud uud ds uds+ → +

up quarks: − + → +1 2 0 1, or 1 1→

down quarks: 1 1 1 1+ → + , or 2 2→

strange quarks: 0 0 1 1+ → − + , or 0 0→

(b) π + + ++ → +p K Σ du uud us uus+ → +

up quarks: 1 2 1 2+ → + , or 3 3→

down quarks: − + → +1 1 0 0 , or 0 0→

strange quarks: 0 0 1 1+ → − + , or 0 0→

(c) K p K K− + −+ → + +0 Ω us uud us ds sss+ → + +

up quarks: − + → + +1 2 1 0 0 , or 1 1→

down quarks: 0 1 0 1 0+ → + + , or 1 1→

strange quarks: 1 0 1 1 3+ → − − + , or 1 1→

(d) p p K p0+ → + + ++π ? uud uud ds uud ud+ → + + + ?

The quark combination of ? must be such as to balance the last equation for up, down, and
strange quarks.

up quarks: 2 2 0 2 1+ = + + + ? (has 1 u quark)

down quarks: 1 1 1 1 1+ = + − + ? (has 1 d quark)

strange quarks: 0 0 1 0 0+ = − + + + ? (has 1 s quark)

quark composition = =uds  or 0Λ Σ0

P46.34 In the first reaction, π − + → +p K 0 Λ0 , the quarks in the particles are: ud uud ds uds+ → + . There is a
net of 1 up quark both before and after the reaction, a net of 2 down quarks both before and after,
and a net of zero strange quarks both before and after. Thus, the reaction conserves the net number
of each type of quark.

In the second reaction, π − + → +p K n0 , the quarks in the particles are: ud uud ds uds+ → + .
In this case, there is a net of 1 up and 2 down quarks before the reaction but a net of 1 up, 3 down,
and 1 anti-strange quark after the reaction. Thus, the reaction does not conserve the net number of
each type of quark.



Chapter 46     635

P46.35 Σ Σ0 + → + ++p γ X

dds uud uds 0 ?+ → + +

The left side has a net 3d, 2u and 1s. The right-hand side has 1d, 1u, and 1s leaving 2d and 1u
missing.

The unknown particle is a neutron,  udd.

Baryon and strangeness numbers are conserved.

P46.36 Compare the given quark states to the entries in Tables 46.4 and 46.5:

(a) suu = +Σ

(b) ud = −π

(c) sd K0=

(d) ssd = −Ξ

P46.37 (a) uud : charge = −FHG
I
KJ + −FHG

I
KJ +
F
HG
I
KJ = −

2
3

2
3

1
3

e e e e . This is the antiproton .

(b) udd : charge = −FHG
I
KJ +
F
HG
I
KJ +
F
HG
I
KJ =

2
3

1
3

1
3

0e e e . This is the antineutron .

Section 46.12 The Cosmic Connection

P46.38 Section 39.4 says f f
v c
v c

a

a
observer source=

+
−

1
1

.

The velocity of approach, va , is the negative of the velocity of mutual recession: v va = − .

Then,
c c v c

v c′
=

−
+λ λ

1
1

and ′ =
+
−

λ λ
1
1

v c
v c

.

P46.39 (a) ′ =
+
−

λ λ
1
1

v c
v c

510 434
1
1

 nm  nm=
+
−

v c
v c

1 18
1
1

1 3812. .=
+
−

=
v c
v c

1 1 381 1 381+ = −
v
c

v
c

. . 2 38 0 381. .
v
c
=

v
c
= 0 160. or v c= = ×0 160 4 80 107. .  m s

(b) v HR= : R
v
H

= =
×

× ⋅
= ×−

4 80 10
17 10

2 82 10
7

3
9.

.
 m s

 m s ly
 ly
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P46.40 (a) ′ =
+
−

= +λ λ λn n n
v c
v c

Z
1
1

1a f 1
1

1 2+
−

= +
v c
v c

Za f

1 1 12 2+ = + − FHG
I
KJ +

v
c

Z
v
c

Za f a f v
c

Z Z Z ZF
HG
I
KJ + + = +2 22 2 2e j

v c
Z Z

Z Z
=

+
+ +

F
HG

I
KJ

2

2
2

2 2

(b) R
v
H

c
H

Z Z
Z Z

= =
+

+ +

F
HG

I
KJ

2

2
2

2 2

P46.41 v HR= H =
× −1 7 10 2.  m s

ly
e j

(a) v 2 00 10 3 4 106 4. .× = × ly  m se j ′ =
+
−

= =λ λ
1
1

590 1 000 113 3 590 07
v c
v c

. .b g  nm

(b) v 2 00 10 3 4 108 6. .× = × ly  m se j ′ =
+
−

=λ 590
1 0 011 33
1 0 011 33

597
.
.

 nm

(c) v 2 00 10 3 4 109 7. .× = × ly  m se j ′ =
+
−

=λ 590
1 0 113 3
1 0 113 3

661
.
.

 nm

P46.42 (a) Wien’s law: λmax .T = × ⋅−2 898 10 3  m K .

Thus, λmax
. .

. .=
× ⋅

=
× ⋅

= × =
− −

−2 898 10 2 898 10
1 06 10 1 06

3 3
3 m K  m K

2.73 K
 m  mm

T .

(b) This is a microwave .

*P46.43 We suppose that the fireball of the Big Bang is a black body.

I e T= = × ⋅ = ×− −σ 4 8 4 61 5 67 10 2 73 3 15 10( ) . . . W m K  K  W m2 4 2e ja f
As a bonus, we can find the current power of direct radiation from the Big Bang in the section of the
universe observable to us. If it is fifteen billion years old, the fireball is a perfect sphere of radius
fifteen billion light years, centered at the point halfway between your eyes:

P = = = × ×
×F
HG

I
KJ ×−IA I r( ) . .4 3 15 10 4 15 10

3 10
3 156 102 6 9 2 8 2

7 2
π π W m  ly

 m s
1 ly yr

 s yr2e ja fe j e j

P = ×7 98 1047.  W.
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P46.44 The density of the Universe is

ρ ρ
π

= =
F
HG
I
KJ1 20 1 20

3
8

2

. .c
H

G
.

Consider a remote galaxy at distance r. The mass interior to the sphere below it is

M r
H

G
r

H r
G

= FHG
I
KJ =
F
HG
I
KJ
F
HG
I
KJ =ρ π

π
π

4
3

1 20
3
8

4
3

0 6003
2

3
2 3

.
.

both now and in the future when it has slowed to rest from its current speed v H r= . The energy of
this galaxy-sphere system is constant as the galaxy moves to apogee distance R:

1
2

02mv
GmM

r
GmM

R
− = − so

1
2

0 600
0

0 6002 2
2 3 2 3

mH r
Gm

r
H r

G
Gm
R

H r
G

−
F
HG

I
KJ = −

F
HG

I
KJ

. .

− = −0 100 0 600. .
r
R

so R r= 6 00. .

The Universe will expand by a factor of 6 00.  from its current dimensions.

P46.45 (a) k T m cpB ≈ 2 2

so T
m c

k
p

≈ =
×

×F
HG

I
KJ−

−2 2 938 3

1 38 10

1 60 10
10

2

23

13
13

B

 MeV

 J K

 J
1 MeV

 K
.

.

.
~

a f
e j

(b) k T m ceB ≈ 2 2

so T
m c
k

e≈ =
×

×F
HG

I
KJ−

−2 2 0 511

1 38 10

1 60 10
10

2

23

13
10

B

 MeV

 J K

 J
1 MeV

 K
.

.

.
~

a f
e j

*P46.46 (a) The Hubble constant is defined in v HR= . The distance R between any two far-separated
objects opens at constant speed according to R v t= . Then the time t since the Big Bang is
found from

v H vt= 1 = H t t
H

=
1

.

(b)
1 1

17 10
3 10

1 76 10 17 63

8
10

H
=

× ⋅

×F
HG

I
KJ = × =−  m s ly

 m s
1 ly yr

 yr  billion years. .
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*P46.47 (a) Consider a sphere around us of radius R large compared to the size of galaxy clusters. If the
matter M inside the sphere has the critical density, then a galaxy of mass m at the surface of
the sphere is moving just at escape speed v according to

K Ug+ = 0
1
2

02mv
GMm

R
− = .

The energy of the galaxy-sphere system is conserved, so this equation is true throughout the

history of the Universe after the Big Bang, where v
dR
dt

= . Then

dR
d t

GM
R

F
HG
I
KJ =

2
2 dR

d t
R GM= −1 2 2/ R dR GM d t

R T

0 0
2z z=

R
GM t

R
T3 2

0
03 2

2
/

=
2
3

23 2R GM T/ =

T
R

GM
R

GM R
= =

2
3 2

2
3 2

3 2

.

From above,
2GM

R
v=

so T
R
v

=
2
3

.

Now Hubble’s law says v HR= .

So T
R

HR H
= =

2
3

2
3

.

(b) T =
× ⋅

×F
HG

I
KJ = × =

−

2

3 17 10

3 10
1

1 18 10 11 8
3

8
10

 m s ly

 m s
 ly yr

 yr  billion years
e j

. .

*P46.48 In our frame of reference, Hubble’s law is exemplified by v R1 1= H  and v R2 2= H . From these we
may form the equations − = −v R1 1H  and v v R R2 1 2 1− = −Hb g. These equations express Hubble’s
law as seen by the observer in the first galaxy cluster, as she looks at us to find − = −v R1 1Hb g  and as
she looks at cluster two to find v v R R2 1 2 1− = −Hb g.

Section 46.13 Problems and Perspectives

P46.49 (a) L
G

c
= =

× ⋅ × ⋅

×
= ×

− −
−

3

34 11

3
35

1 055 10 6 67 10
1 61 10

. .
.

 J s  N m kg

3.00 10  m s
 m

2 2

8

e je j
e j

(b) This time is given as T
L
c

= =
×
×

= ×
−

−1 61 10
5 38 10

35
44.

.
 m

3.00 10  m s
 s8 ,

which is approximately equal to the ultra-hot epoch.

(c) Yes.
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Additional Problems

P46.50 We find the number N of neutrinos:

10 6 6 1 60 1046 13 J  MeV  J= = × × −N Na f e j.

N = ×1 0 1058.  neutrinos

The intensity at our location is

N
A

N
r

= =
×

× × ×

F
H
GG

I
K
JJ = × −

4
1 0 10

4 1 7 10

1

3 00 10 3 16 10
3 1 102

58

5 2 8 7

2

14 2

π
.

. . .
.

π  ly

 ly

 m s s
 m

 e j e je j
.

The number passing through a body presenting 5 000 0 50 cm  m2 2= .

is then 3 1 10 0 50 1 5 1014 14. . .×FHG
I
KJ = × 

1
m

 m2
2e j

or ~1014 .

*P46.51 A photon travels the distance from the Large Magellanic Cloud to us in 170 000 years. The
hypothetical massive neutrino travels the same distance in 170 000 years plus 10 seconds:

c v170 000 10 yr 170 000 yr  sb g b g= +

v
c
=

+
=

+ × ×
=

+ × −

170 000
170 000 10

1

1 10

1
1 1 86 10 12

 yr
 yr  s  s 1.7 10  yr 3.156 10  s yr5 7e je j{ } .

For the neutrino we want to evaluate mc2  in E mc= γ 2 :

mc
E

E
v
c

2
2

2 12 2

12 2

12 21 10 1
1

1 1 86 10
10

1 1 86 10 1

1 1 86 10
= = − = −

+ ×
=

+ × −

+ ×−

−

−γ
 MeV  MeV

.

.

.e j
e j
e j

mc2
12

610
1 86 10

1
10 1 93 10 19≈

×
= × =

−
− MeV

2
 MeV  eV

.
.

e j e j .

Then the upper limit on the mass is

m
c

=
19

2
 eV

m
c c

=
×

F
HG

I
KJ = × −19

931 5 10
2 1 102 6 2

8 eV u
 eV

 u
.

. .

P46.52 (a) π π− + → Σ +p + 0 is forbidden by charge conservation .

(b) µ π ν− −→ + e is forbidden by energy conservation .

(c) p→ + ++ + −π π π is forbidden by baryon number conservation .
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P46.53 The total energy in neutrinos emitted per second by the Sun is:

0 4 4 1 5 10 1 1 1011 2 23. . .a f e jπ ×L
NM

O
QP = ×W  W .

Over 109  years, the Sun emits 3 6 1039. ×  J in neutrinos. This represents an annihilated mass

m c2 393 6 10= ×.  J

m = ×4 0 1022.  kg .

About 1 part in 50 000 000  of the Sun’s mass, over 109  years, has been lost to neutrinos.

P46.54 p p p+ → + ++π X

We suppose the protons each have 70.4 MeV of kinetic energy. From conservation of momentum for
the collision, particle X has zero momentum and thus zero kinetic energy. Conservation of system
energy then requires

M c M c M c M c K M c KXp p p p p
2 2 2 2 2+ + = + + +π e j e j

M c M c K M cX
2 2 22 938 3 2 70 4 139 6 939 5= + − = + − =p p  MeV  MeV  MeV  MeVπ . . . .a f

X must be a neutral baryon of rest energy 939.5 MeV. Thus X is a neutron .

*P46.55 (a) If 2N particles are annihilated, the energy released is 2 2Nmc . The resulting photon

momentum is p
E
c

Nmc
c

Nmc= = =
2

2
2

. Since the momentum of the system is conserved, the

rocket will have momentum 2Nmc  directed opposite the photon momentum.

p Nmc= 2

(b) Consider a particle that is annihilated and gives up its rest energy mc2  to another particle
which also has initial rest energy mc2  (but no momentum initially).

E p c mc2 2 2 2 2
= + e j

Thus 2 2 2 2 2 2 2
mc p c mce j e j= + .

Where p is the momentum the second particle acquires as a result of the annihilation of the

first particle. Thus 4 2 2 2 2 2 2
mc p c mce j e j= + , p mc2 2 2

3= e j . So p mc= 3 .

This process is repeated N times (annihilate 
N
2

 protons and 
N
2

 antiprotons). Thus the total

momentum acquired by the ejected particles is 3Nmc , and this momentum is imparted to
the rocket.

p Nmc= 3

(c) Method (a) produces greater speed since 2 3Nmc Nmc> .
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P46.56 (a) ∆ ∆ ≈E t , and ∆ = =
×
×

= ×
−

−t
r
c

1 4 10
3 10

4 7 10
15

8
24.

.
 m

 m s
 s

∆ ≈
∆

=
× ⋅
×

= ×
×

F
HG

I
KJ = ×

−

−
−

−E
t

1 055 10
4 7 10

2 3 10
1 60 10

1 4 10
34

24
11

13
2.

.
.

.
.

 J s
 s

 J
1 MeV

 J
 MeVe j

m
E

c
c c=

∆
≈ ×2

2 2 2 21 4 10 10. ~ MeV  MeV

(b) From Table 46.2, m cπ
2 139 6= .  MeV a pi - meson .

P46.57 m cΛ
2 1115 6= .  MeV Λ0 → + −p π

m cp
2 938 3= .  MeV m cπ

2 139 6= .  MeV

The difference between starting rest energy and final rest energy is the kinetic energy of the
products.

K Kp + =π 37 7.  MeV and p p pp = =π

Applying conservation of relativistic energy to the decay process, we have

938 3 938 3 139 6 139 6 37 72 2 2 2 2 2. . . . .a f a f+ −L
NM

O
QP + + −L
NM

O
QP =p c p c  MeV .

Solving the algebra yields

p c p cpπ = = 100 4.  MeV .

Then, K m c m cp p p= + − =2 2 2 2100 4 5 35e j a f. .  MeV

Kπ = + − =139 6 100 4 139 6 32 32 2. . . .a f a f  MeV .

P46.58 By relativistic energy conservation in the reaction, E m c
m c

v c
e

e
γ + =

−

2
2

2 2

3

1
. (1)

By relativistic momentum conservation for the system,
E

c
m v

v c
eγ =

−

3

1 2 2
. (2)

Dividing (2) by (1), X
E

E m c
v
ce

=
+

=γ

γ
2 .

Subtracting (2) from (1), m c
m c

X

m c X

X
e

e e2
2

2

2

2

3

1

3

1
=

−
−

−
.

Solving, 1
3 3

1 2
=

−

−

X

X
 and X =

4
5

 so E m ceγ = =4 2 042 .  MeV .
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P46.59 Momentum of proton is qBr = × ⋅−1 60 10 0 250 1 3319. . . C  kg C s  me jb ga f
p m sp = × ⋅−5 32 10 20.  kg c pp = × ⋅ = × =− −1 60 10 1 60 10 99 811 11. . . kg m s  J  MeV2 2 .

Therefore, p cp = 99 8.  MeV .

The total energy of the proton is E E cpp = + = + =0
2 2 2 2983 3 99 8 944b g a f a f. .  MeV .

For pion, the momentum qBr  is the same (as it must be from conservation of momentum in a 2-
particle decay).

p cπ = 99 8.  MeV E0 139 6π = .  MeV

E E cpπ = + = + =0
2 2 2 2139 6 99 8 172b g a f a f. .  MeV

Thus, E Etotal after total before Rest energy= = .

Rest Energy of unknown particle = + =944 172 1 116 MeV  MeV  MeV (This is a Λ0  particle!)

Mass  MeV= 1 116 2c .

P46.60 Σ → +0 0Λ γ

From Table 46.2, m cΣ = 1 192 5 2.  MeV and m cΛ = 1115 6 2.  MeV .

Conservation of energy in the decay requires

E E K Eo0, ,Σ = + +Λ Λe j γ or 1 192 5 1 115 6
2

2

. . MeV  MeV= +
F
HG

I
KJ +

p
m

EΛ

Λ
γ .

System momentum conservation gives p pΛ = γ , so the last result may be written as

1 192 5 1 115 6
2

2

. . MeV  MeV= +
F
HG

I
KJ
+

p

m
Eγ
γ

Λ

or 1 192 5 1 115 6
2

2 2

2. . MeV  MeV= +
F
HG

I
KJ
+

p c

m c
Eγ
γ

Λ

.

Recognizing that m cΛ
2 1 115 6= .  MeV and p c Eγ γ=

we now have 1 192 5 1 115 6
2 1 115 6

2

. .
.

 MeV  MeV
 MeV

= + +
E

Eγ
γb g .

Solving this quadratic equation, Eγ = 74 4.  MeV .

P46.61 p p p n+ → + + +π

The total momentum is zero before the reaction. Thus, all three particles present after the reaction
may be at rest and still conserve system momentum. This will be the case when the incident protons
have minimum kinetic energy. Under these conditions, conservation of energy for the reaction gives

2 2 2 2 2m c K m c m c m cp p p n+ = + +e j π

so the kinetic energy of each of the incident protons is

K
m c m c m c

p
n p

=
+ −

=
+ −

=
2 2 2

2
939 6 139 6 938 3

70 4π . . .
.

a f MeV
2

 MeV
.
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P46.62 π µ νµ
− −→ + : From the conservation laws for the decay,

m c E Eπ µ ν
2 139 6= = +.  MeV [1]

and p pµ ν= , E p cν ν=  : E p c p cµ µ ν
2 2 2 2 2105 7 105 7= + = +d i a f b g a f. . MeV  MeV

or E Eµ ν
2 2 2105 7− = .  MeVa f . [2]

Since E Eµ ν+ = 139 6.  MeV [1]

and E E E Eµ ν µ ν+ − =d id i a f105 7 2.  MeV [2]

then E Eµ ν− = =
105 7
139 6

80 0
2.

.
.

 MeV
 MeV

a f
. [3]

Subtracting [3] from [1], 2 59 6Eν = .  MeV and Eν = 29 8.  MeV .

P46.63 The expression e dEE k T− B  gives the fraction of the photons that have energy between E and E dE+ .
The fraction that have energy between E and infinity is

e dE

e dE

e dE k T

e dE k T

e

e
e

E k T

E

E k T

E k T

E

E k T

E k T
E

E k T

E k T

−
∞

−
∞

−
∞

−
∞

− ∞

− ∞
−

z
z

z
z

=

−

−

= =

B

B

B

B

B

B

B

B

B
0 0

0

b g

b g
.

We require T when this fraction has a value of 0.0100 (i.e., 1.00%)

and E = = × −1 00 1 60 10 19. . eV  J .

Thus, 0 010 0
1.60 10 1.38 1019 23

. =
− × ×− −

e
T J  J Ke j e j

or ln .
. .

0 010 0
1 60 10 1 16 1019

23

4

b g
e j

= −
×

×
= −

×−

−

 J

1.38 10  J K

 K

T T
 giving T = ×2 52 103.  K .

P46.64 (a) This diagram represents the annihilation of an
electron and an antielectron. From charge and
lepton-number conservation at either vertex, the

exchanged particle must be an electron, e− .

(b) This is the tough one. A neutrino collides with a
neutron, changing it into a proton with release of a
muon. This is a weak interaction. The exchanged

particle has charge +e and is a W+ .

γ      γ                           

(a) (b)

FIG. P46.64
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P46.65 (a) The mediator of this weak interaction is a

Z  boson0 .

(b) The Feynman diagram shows a down quark and
its antiparticle annihilating each other. They can
produce a particle carrying energy, momentum,
and angular momentum, but zero charge, zero
baryon number, and, it may be, no color charge. In
this case the product particle is a photon .

FIG. P46.65

For conservation of both energy and momentum in the collision we would expect two
photons; but momentum need not be strictly conserved, according to the uncertainty
principle, if the photon travels a sufficiently short distance before producing another matter-
antimatter pair of particles, as shown in Figure P46.65. Depending on the color charges of
the d and d  quarks, the ephemeral particle could also be a gluon , as suggested in the

discussion of Figure 46.14(b).

*P46.66 (a) At threshold, we consider a photon and a proton colliding head-on to produce a proton and
a pion at rest, according to p p+ → +γ π 0 . Energy conservation gives

m c

u c
E m c m cp

p

2

2 2

2 2

1−
+ = +γ π .

Momentum conservation gives 
m u

u c

E

c
p

1
0

2 2−
− =γ .

Combining the equations, we have

m c

u c

m c

u c

u
c

m c m c

u c

u c u c

p p
p

 MeV
 MeV  MeV

2

2 2

2

2 2

2 2

1 1

938 3 1

1 1
938 3 135 0

−
+

−
= +

+

− +
= +

π

.
. .

b g
b gb g

so
u
c
= 0 134.

and Eγ = 127 MeV .

(b) λmax .T = ⋅2 898 mm K

λmax
.

.=
⋅

=
2 898

1 06
 mm K

2.73 K
 mm

(c) E hf
hc

γ λ
= = =

⋅

×
= ×

−
−1 240

1 17 10
9

3 eV 10  m
1.06 10  m

 eV-3 .

continued on next page
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(d) In the primed reference frame, the proton is moving to the right at 
′
=

u
c

0 134.  and the

photon is moving to the left with hf ′ = ×1 27 108.  eV . In the unprimed frame,
hf = × −1 17 10 3.  eV. Using the Doppler effect equation from Section 39.4, we have for the
speed of the primed frame

1 27 10
1
1

1 17 10

1 1 71 10

8 3

22

. .

.

× =
+
−

×

= − ×

−

−

ν
ν

c
c

v
c

Then the speed of the proton is given by

u
c

u c c
u c

=
′ +

+ ′
=

+ − ×

+ − ×
= − ×

−

−
−ν

ν1
0 134 1 1 71 10

1 0 134 1 1 71 10
1 1 30 102

22

22
22. .

. .
.

e j
.

And the energy of the proton is

m c

u c

p  MeV
 eV  eV

2

2 2 22 2

10 6 19

1

938 3

1 1 1 30 10
6 19 10 938 3 10 5 81 10

−
=

− − ×
= × × × = ×

−

.

.
. . .

e j
.

ANSWERS TO EVEN PROBLEMS

P46.2 2 27 1023. ×  Hz; 1 32.  fm P46.22 (a) electron lepton number and muon
lepton number;
(b) electron lepton number;P46.4 ν µ  and ν e
(c) strangeness and charge;
(d) baryon number; (e) strangeness

P46.6 ~10 16−  m

P46.24 see the solution
P46.8 ~10 23−  s

P46.26 (a) 
686 MeV

c
 and 

200 MeV
c

;P46.10 ν µ

(b) 627 MeV c ;
P46.12 (a) electron lepton number and muon

lepton number; (b) charge;
(c) 244 MeV , 1 130 MeV , 1 370 MeV ;
(d) 1 190 2 MeV c , 0 500. c

(c) baryon number; (d) baryon number;
(e) charge

P46.28 (a) see the solution; (b) 5 63.  GeV ;
(c) 768 MeV ; (d) 280 MeV ; (e) 4 43.  TeV

P46.14 the second violates conservation of baryon
number

P46.30 see the solution

P46.16 0 828. c
P46.32 see the solution

P46.18 (a) see the solution;
P46.34 see the solution

(b) 469 MeV ; 
469 MeV

c
 for both;

P46.36 (a) Σ+ ; (b) π − ; (c) K 0 ; (d) Ξ−
(c) 0 999 999 4. c

P46.38 see the solutionP46.20 see the solution
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P46.40 (a) v c
Z Z

Z Z
=

+
+ +

F
HG

I
KJ

2

2
2

2 2
; (b) 

c
H

Z Z
Z Z

2

2
2

2 2
+

+ +

F
HG

I
KJ

P46.56 (a) ~102 2 MeV c ; (b) a pi - meson

P46.58 2 04.  MeV

P46.42 (a) 1 06.  mm; (b) microwave
P46.60 74 4.  MeV

P46.44 6 00.
P46.62 29 8.  MeV

P46.46 (a) see the solution; (b) 17 6.  Gyr
P46.64 (a) electron-position annihilation; e− ;

(b) a neutrino collides with a neutron,
producing a proton and a muon; W+

P46.48 see the solution

P46.50 ~1014

P46.66 (a) 127 MeV ; (b) 1 06.  mm; (c) 1 17.  meV ;
(d) 5 81 1019. ×  eVP46.52 (a) charge; (b) energy; (c) baryon number

P46.54 neutron
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