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Q1.7

Q1.8

Q1.9
Q1.10

Q1.11

Physics and Measurement

ANSWERS TO QUESTIONS

Q1.1 Atomic clocks are based on electromagnetic waves which atoms
emit. Also, pulsars are highly regular astronomical clocks.

Q1.2 Density varies with temperature and pressure. It would be
necessary to measure both mass and volume very accurately in
order to use the density of water as a standard.

Q1.3 People have different size hands. Defining the unit precisely
would be cumbersome.

Q14 (a) 0.3 millimeters (b) 50 microseconds (c) 7.2 kilograms

Q1.5 (b) and (d). You cannot add or subtract quantities of different
dimension.

Q1.6 A dimensionally correct equation need not be true. Example:

1 chimpanzee = 2 chimpanzee is dimensionally correct. If an
equation is not dimensionally correct, it cannot be correct.

If T were a runner, I might walk or run 10" miles per day. Since I am a college professor, I walk about
10° miles per day. I drive about 40 miles per day on workdays and up to 200 miles per day on
vacation.

On February 7, 2001, I am 55 years and 39 days old.

86400 s

55 yr( 365.25 d

]+39 d=20128 d[
1yr

j=1.74><109 s~107 s.

Many college students are just approaching 1 Gs.

Zero digits. An order-of-magnitude calculation is accurate only within a factor of 10.
The mass of the forty-six chapter textbook is on the order of 10° kg .

With one datum known to one significant digit, we have 80 million yr + 24 yr = 80 million yr.
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SOLUTIONS TO PROBLEMS

Section 1.1 Standards of Length, Mass, and Time

No problems in this section

Section 1.2 Matter and Model-Building

P11

From the figure, we may see that the spacing between diagonal planes is half the distance between
diagonally adjacent atoms on a flat plane. This diagonal distance may be obtained from the

Pythagorean theorem, Ly;,, = VI* +I* . Thus, since the atoms are separated by a distance

L =0.200 nm, the diagonal planes are separated by %\/ [*+I* =[ 0141 nm |.

Section 1.3 Density and Atomic Mass

*P1.2

P1.3

*P1.4

P1.5

3
Modeling the Earth as a sphere, we find its volume as %ﬂ'r3 = gﬂ'(6.37 x10° m) =1.08x10%" m?. Its

98x10%
density is then p= 2. 598><—021k% =|552x10% kg / m? | . This value is intermediate between the
V. 1.08x10* m
tabulated densities of aluminum and iron. Typical rocks have densities around 2 000 to
3000 kg / m® . The average density of the Earth is significantly higher, so higher-density material

must be down below the surface.

With V = (base area)(height) V = (71'7’2 )h and p= %, we have

pe mo 1kg 10° mm’
zr*h 7(195 mm)*(39.0 mm)|  1m’
p=|215x10* kg/m’ |.

Let V represent the volume of the model, the same in p= % for both. Then p;,, =9.35 kg/V and

m P m 19.3x10% kg /m®
gold gold gold g
= . Next, = and m =9.35 k: =[23.0kg |.
s =8 N, 208~ M 03519 SIS

4 3.3
ng,so m=pV=p(§ﬂ')(r23—r13)= M .




P1.6

P1.7

*P1.8

Chapter 1 3

For either sphere the volume is V = %7[1’3 and the mass is m= pV = p%ﬂr?’. We divide this equation

for the larger sphere by the same equation for the smaller:

m, pArr}3 3 rp _5
mg  parr3 P

Then 7, = r,3/5 = 450 cm(1.71) = 7.69 cm |.

Use Tu=1.66x10" g.

(@)

(b)

(©

(@)

(b)

(©

(d

1.66x10™%
For He, 1, = 4.00 u(%} =[6.64x10% g .
u
1.66x 10
For Fe, m, = 55.9 u(%} ~[929x102 g |.
u
1.66x10
For Pb, 1, = 207 u[%} =[3.44x102 g |.
u

The mass of any sample is the number of atoms in the sample times the mass m of one
atom: m = Nmy,. The first assertion is that the mass of one aluminum atom is

my =27.0u=270 ux1.66x10"% kg/l u=4.48x10"% kg.
Then the mass of 6.02x10% atoms is
m=Nmy=602x10% x4.48x 1072 kg=0.0270kg=27.0 g.

Thus the first assertion implies the second. Reasoning in reverse, the second assertion can be
written m = Nm,,.

0.027 kg

0.027 0 kg = 6.02 x 10 m,, so ny = ———o—
& 0 6.02x 107

=4.48x107 kg,

in agreement with the first assertion.

The general equation m = Nm,, applied to one mole of any substance gives M g=NM u,
where M is the numerical value of the atomic mass. It divides out exactly for all substances,
giving 1.000 000 0 x 10~ kg = N1.660 540 2x10~% kg . With eight-digit data, we can be quite
sure of the result to seven digits. For one mole the number of atoms is

1.660 540 2

N= (;}0-3*27 =1 6022137 x 107 |.

The atomic mass of hydrogen is 1.008 0 u and that of oxygen is 15.999 u. The mass of one
molecule of H,O is 2(1.008 0)+15.999 u=18.0 u. Then the molar massis | 18.0 g |.

For CO, we have 12.011 g +2(15.999 g) =| 44.0 g | as the mass of one mole.
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P1.9

P1.10

P1.11

1kg
10° g

Mass of gold abraded: | Am | =3.80g-3.35g=0.45g=(0.45 g)[ ] =45x107* kg.

1.66x107% kg

Each atom has mass my =197 u=197 u[
u

J =327x107% kg.

Now, | Am | = | AN |m0, and the number of atoms missing is

C|Am|  45x107 kg
my  327x107% kg

=1.38x10% atoms.

The rate of loss is

|AN|  1.38x10* atoms( 1yr )( 1d )( 1h )(1 minj
At 50 yr 365.25d N\ 24 h A 60 min \ 60 s

|AN | -
—=| 872x10"" atoms/s |
At
3
@) m=pL® =(7.86 g/cm’)(5.00x 10 cm)” =| 9.83x10 " g |=9.83x10 ™" kg
9.83x107" k
® N=T- * & ~[ 1.06 x 107 atoms |
my 559 u(1.66 x107% kg/1 u)
@) The cross-sectional area is |«15.0 cm—»|
st
A =2(0.150 m)(0.010 m)+(0.340 m)(0.010 m) 1.00 | [ I
_ 32 . cm
=6.40x10"" m~. 36.0
cm
The volume of the beam is 1.00
cm l
V=AL=(6.40x10" m*)(1.50 m)=9.60x10~° m’. , : v
Thus, its mass is
FIG. P1.11

m=pV =(7.56x10° kg /m’)(9.60x10~ m’)= [726kg |.
1.66x10% kg

] =9.28 x107* kg . Now
u

(b) The mass of one typical atom is m;, =(55.9 u)(

72.6 k
m = Nm, and the number of atoms is N = 2 —_;56 = | 7.82x10% atoms |.
my  9.28x1077 kg
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1.66x107% kg

P1.12 (@) The mass of one molecule is m, =18.0 u[
u

j =2.99 x 107 kg. The number of

molecules in the pail is

m 1.20 kg

N i:_:—
Py 2.99%107% kg

:| 4.02x10% molecules |.

(b) Suppose that enough time has elapsed for thorough mixing of the hydrosphere.

M pai 1.20 k
Nioth =Nopai — Pl = (4.02 x 10% molecules) —2% ,
P\ Mygtal 1.32x10" kg

or
Nioin =| 3.65 x10* molecules |

Section 1.4 Dimensional Analysis

P1.13 The term x has dimensions of L, 2 has dimensions of LT 2, and t has dimensions of T. Therefore, the

equation x =ka™t" has dimensions of
L=(LT2)"(T)" or L'T" =L"T"2",
The powers of L and T must be the same on each side of the equation. Therefore,
L'=L" and .

Likewise, equating terms in T, we see that n — 2m must equal 0. Thus, . The value of k, a

dimensionless constant, | cannot be obtained by dimensional analysis |

*P1.14 (@) Circumference has dimensions of L.
(b) Volume has dimensions of L%
(c) Area has dimensions of L.

1/2
Expression (i) has dimension L(LZ) =12, so this must be area (c).
Expression (ii) has dimension L, so it is (a).
Expression (iii) has dimension L(LZ) =13, soitis (b). Thus,

(a)=ii; (b)=iii, (0)=i|.
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P1.15

*P1.16

P1.17

(a) | This is incorrect | since the units of [ax] are m?/s? , while the units of [0] are m/s.

(b) since the units of [y] are m, and cos(kx) is dimensionless if [k] is in m.
2F 2F

(@) ac=—ora=k
the inverse proportionality of acceleration to mass. If k has no dimensions, we have

represents the proportionality of acceleration to resultant force and
m

[F] L [F] M-L
=lk]t+—=, = =1—, [F]|= .
[a=[Kp =1 =
(b) In units, %Z kgsém, SO | 1 newton=1 kg~1rn/s2 |

Inserting the proper units for everything except G,

T

oSt

Multiply both sides by [m]* and divide by [kg]2 ; the units of G are

Section 1.5 Conversion of Units

*P1.18

P1.19

*P1.20

Each of the four walls has area (8.00 ft)(12.0 ft) = 96.0 ft*. Together, they have area

4(96.0 ftz)(;z;“fj =.

Apply the following conversion factors:

1in=254cm,1d=86400s,100 cm=1m,and 10’ nm=1m

(2.54 cm/in)(lO_2 m/cm)(lO9 nm/m)

1
2 injd _[919 .
(32 inf ay) 86 400 s/day no/s

This means the proteins are assembled at a rate of many layers of atoms each second!

3
025 4
8.50 in® = 8.50 ins(ool&j ~[139x10% m?
m




P1.21

P1.22

P1.23

Chapter 1

Conceptualize: We must calculate the area and convert units. Since a meter is about 3 feet, we should
expect the area to be about A ~ (30 m)(50 m)=1500 m?.

Categorize: We model the lot as a perfect rectangle to use Area = Length x Width. Use the
conversion: 1 m=3.281 ft.

Analyze: A=LW = (100 ft) (1—1“)(150 ft)( I m j= 1390 m? =[ 139 x10° m? .
3.281 ft 3.281 ft

Finalize: Our calculated result agrees reasonably well with our initial estimate and has the proper

units of m?. Unit conversion is a common technique that is applied to many problems.

(a) V =(40.0 m)(20.0 m)(12.0 m) =9.60 x 10° m?
V=9.60x10° m*(3.28 ft/1 m)’ =[ 3.39x 10% ft°

(b) The mass of the air is
m=pV =(120 kg/m*)(9.60x10° m*)=1.15x10* kg.
The student must look up weight in the index to find
F, =mg=(1.15x10* kg)(9.80 m/s*)=1.13x10° N.

Converting to pounds,

F, =(113x10° N)(11b/445N)=[ 254x10" Ib |.

@) Seven minutes is 420 seconds, so the rate is
30.0 gal
r=""8T 17142107 galys .
420 s
(b) Converting gallons first to liters, then to m?,

3 3
r= (7.14 x1072 gal/s) 3786 L 1110~ m
1 gal 1L

r=| 2.70x10™* m®/s |

(c) At that rate, to fill a 1-m® tank would take

1m? 1h
= = 1.03h .
t (2.70><104 ms/sJ(3600] [103k]

7
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*P1.24

P1.25

P1.26

*P1.27

P1.28

1.609 km

(@) Length of Mammoth Cave =348 mi( 1
mi

j=| 560 km = 5.60 x 10° m = 5.60 x 107 cm |

304
(b)  Height of Ribbon Falls =1612 ft(%) =| 491 m=0.491 km=491x10* em |.

304
©) Height of Denali =20 320 ft(%) =619km=619x10> m=619x10° cm |.

304
(d) Depth of King’s Canyon = 8 200 ft(%) = | 2.50 km = 2.50 x 10° m=2.50 x 10° cm |

From Table 1.5, the density of lead is 1.13x10* kg/m?, so we should expect our calculated value to
be close to this number. This density value tells us that lead is about 11 times denser than water,
which agrees with our experience that lead sinks.

Density is defined as mass per volume, in p= % We must convert to SI units in the calculation.

3
o 2304 g 1kg (100 ij ~[114x10" kg/m” |
210 cm3 (1000 g | 1m

At one step in the calculation, we note that one million cubic centimeters make one cubic meter. Our
result is indeed close to the expected value. Since the last reported significant digit is not certain, the
difference in the two values is probably due to measurement uncertainty and should not be a
concern. One important common-sense check on density values is that objects which sink in water
must have a density greater than 1 g / cm?, and objects that float must be less dense than water.

It is often useful to remember that the 1 600-m race at track and field events is approximately 1 mile
in length. To be precise, there are 1 609 meters in a mile. Thus, 1 acre is equal in area to

.2 2
(1 acre)| LM (1609 m Y o 09 m? |,
640 acres mi

The weight flow rate is 1 200 toTn ( 2 22?1 b )( 601n}111n j( 16??) = .
1 mi=1609 m=1.609 km; thus, to go from mph to km/h, multiply by 1.609.
(a) 1 mi/h=

(b) 55 mi/h = W

© 65 mi/h=104.6 km/h. Thus, Av= .
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6x102$) 1h (1 dayj 1yr
P1.29 ~[19
@ ( 1000 $/s ](3 600 s] 24 ) 365 days

(b) The circumference of the Earth at the equator is 27z(6.378 x10° m) =4.01x10” m. The length

P1.30

P1.31

P1.32

or

P1.33

*P1.34

of one dollar bill is 0.155 m so that the length of 6 trillion bills is 9.30 x 10'" m. Thus, the
6 trillion dollars would encircle the Earth

9.30x10" m

—E 2 =[232x10" times |.
401x0” m

1.99x10% kg

N, = Msun _ =[119x107 atoms |

atoms

Myom 1.67x107% kg

vV 378x107° m® -
V= At so t:Z:W:| 151x10~* m (or 151 ym) |
1 [(13.0 acres)(43 560 ft?/ acre)]
V==Bh= (481 ft)

3 3
=9.08x107 ft3,

2.3 '
V= (9.08 %107 fﬁ)(Mj

3
Lt FIG. P1.32
=] 257x10° m?
F, =(250 tons/block)(2.00 x 10° blocks)(2000 Ib/ton) =| 1.00x 10" Ibs

The area covered by water is
2
Ay =070 Ap,pgy, = (070)( 47 R,y ) = (0.70)(47)(6.37 x10° m)” =3.6x10"* m”.

The average depth of the water is
d = (2.3 miles)(1609 m/l mile) =3.7 x 10° m.
The volume of the water is

V=A4,d=(36x10" m*)37x10° m|=13x10" m’

and the mass is

m=pV =(1000 kg/m*)(13x10"® m?)=[13x10% kg |.
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d f
P1.35 (a) dnucleus, scale = dnucleus, real ;L,SQIQ = (240 X 10_15 m)( 300 tlo ) 6.79 x 10_3 ft, or

atom, real 06 x10
ductens, scale = (679 %107 £t)(304.8 mmy/1 ft) =

4”ramm 3 - 3

(b) Vatom — 3 — ( Tatom j ( atom j ( 1.06 x10 v mj
3 _
Vnucleus % Tnucleus nucleus 2.40x10 5 m

=| 8.62x10" times as large |

*P1.36 scale distance real scale 70x107° m
=| =(4.0x10" km|| =————— |=[ 200 km
(e e ) e Y RE

between distance || factor

P1.37 The scale factor used in the “dinner plate” model is

3 0.25 m
1.0 x10° lightyears

=2.5x10"° m/lightyears.

The distance to Andromeda in the scale model will be

Dzt = DactualS = (2.0 x10° lightyears)(Z.S x107° m/lightyears) = .

2
2 2 6

P1.38 (a) AEarth _ 4”rEarth _ "Earth _ (637X10 m)(loo Cm/m) =113.4

Avoon  47M0on \ Moon 1.74x10% cm

A7 oy 3 ((6.37x10° m)(100 ’
(b) VEarth _ 3 — TEarth — ( 07X m)( Cm/ m) =[491

VMOOn % rMoon 174: X 108 cm

P1.39 TO balance, mFe = mAl or pFeVFe = pAIVAl

e o = oal Do
Fe 3 Fe Al 3 Al

1/3 1/3
PFe 7.86)
Ta] = Tpe| —— =(2.00 cm) —— =1 286 cm |.
Al ™ TFe ( P J ( )( 2.70

Al



P1.40
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The mass of each sphere is

3
47 p ot

- _ Al'AL
My =paVa=——7rg —

and

3

471 ppot;
— _ Fe'Fe
MEe _pFeVFe -

Setting these masses equal,

3 3

3 3

A7 p it 47 pr 1,
Pallal _ 27 PrelFe 09 Fal = Tred Pre
Pal

Section 1.6 Estimates and Order-of-Magnitude Calculations

P1.41

P1.42

P1.43

Model the room as a rectangular solid with dimensions 4 m by 4 m by 3 m, and each ping-pong ball

as a sphere of diameter 0.038 m. The volume of the room is 4 x 4x 3 =48 m> , while the volume of
one ball is

3
4?”(0'0328 mj —2.87x107° m?>.

ﬁ - ping-pong balls in the room.
.87 x

As an aside, the actual number is smaller than this because there will be a lot of space in the
room that cannot be covered by balls. In fact, even in the best arrangement, the so-called “best

Therefore, one can fit about

packing fraction” is %72’\/5 =0.74 so that at least 26% of the space will be empty. Therefore, the

above estimate reduces to 1.67 x 10° x 0.740 ~ 10° .

A reasonable guess for the diameter of a tire might be 2.5 ft, with a circumference of about 8 ft. Thus,

the tire would make (50 000 mi)(5 280 ft/mi)(1 rev/8 ft)=3x10 rev ~ .

In order to reasonably carry on photosynthesis, we might expect a blade of grass to require at least
% in2 =43 x107° ft2. Since 1 acre = 43 560 ft?, the number of blades of grass to be expected on a

quarter-acre plot of land is about

total area (0.25 acre)(43 560 ft?/ acre)

- = =2.5x10” blades ~| 10 blades |.
" area per blade 43x107° ft*/blade % ades
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P1.44

*P1.45

P1.46

P1.47

Physics and Measurement

A typical raindrop is spherical and might have a radius of about 0.1 inch. Its volume is then
approximately 4x107% in®. Since 1 acre = 43 560 ft, the volume of water required to cover it to a
depth of 1inch is

43560 ft \ 144 in?
(1 acre)(1 inch) =(1 acre- i“)[ I 7
1 acre

i jz6.3 x10° in®.

The number of raindrops required is

. volume of wat'er required _6.3x IE): in: C16x10° ~ .
volume of asingle drop  4x107 in

Assume the tub measures 1.3 m by 0.5 m by 0.3 m. One-half of its volume is then
V =(0.5)(1.3 m)(0.5 m)(0.3 m) =0.10 m® .

The mass of this volume of water is

Mygater = PraterV =(1000 kg/m?)(0.10 m?) =100 k| ~107 kg |.

Pennies are now mostly zinc, but consider copper pennies filling 50% of the volume of the tub. The
mass of copper required is

Meopper = PeopperV = (8920 kg/m?)(0.10 m*) =892 kg ~107 kg |.

The typical person probably drinks 2 to 3 soft drinks daily. Perhaps half of these were in aluminum
cans. Thus, we will estimate 1 aluminum can disposal per person per day. In the U.S. there are ~250
million people, and 365 days in a year, so

(250 x10° cans/ day)(365 days/year) =

are thrown away or recycled each year. Guessing that each can weighs around 1/10 of an ounce, we
estimate this represents

(10™ cans)(0.1 oz/can)(1 Ib/16 0z)(1 ton/20001b) =3.1x10° tons/year.

Assume: Total population =107 ; one out of every 100 people has a piano; one tuner can serve about
1 000 pianos (about 4 per day for 250 weekdays, assuming each piano is tuned once per year).
Therefore,

1 tuner 1 piano 7
#t ~ 10" people) =| 100 |.
Hher (1 000 pianos j(lOO people j( people)
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Section 1.7 Significant Figures

*P1.48 METHOD ONE
We treat the best value with its uncertainty as a binomial (21.3+0.2) cm (9.8+0.1) cm,

A=[21.3(9.8)+21.3(0.1)+0.2(9.8) £(0.2)(0.1)] cm”.

The first term gives the best value of the area. The cross terms add together to give the uncertainty
and the fourth term is negligible.

A=|209 cm? +4 cm?

METHOD TWO
We add the fractional uncertainties in the data.

A=(21.3 cm)(9.8 cm) + (£+ E) =209 cm? +2% =209 cm? + 4 cm?
213 9.8
P149  (a) 7r? = 7(10.5 m=0.2 m)°

= 7[(10.5 m)? £ 2(10.5 m)(0.2 m) + (0.2 m)”]

=| 346 m2 +13 m?2 |

(b) 277 =27(105m + 0.2 m) :
P150  (a) (b) © d)

PL51 r=(6.50+0.20) cm= (650 £0.20)x 102 m
m=(1.85+0.02) kg
m

RO

also,
op om 30r

- = 4

p m r
In other words, the percentages of uncertainty are cumulative. Therefore,

Sp 002 3(0:20)

p 18 650

=0.103,

p= 185 _[161x10° kg/m’ |

(4)2(65x10 m)

and

pESp=|(161£017)x10° kg/m® |=(16£0.2)x10° kg/m’.
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PL52  (a) 75622

37.2?
0.83
+2.5?
796.33 =

(b) 0.003 2(2s.£.)x 356.3(4 5.£) =1.140 16 = (2 5.£.)

(c) 5.620(4 s5.f.) x (>4 5.£) =17.656 = (4 5.f.)

*P1.53 We work to nine significant digits:

(365.242 199 dj( 24 hj( 60 minj( 60 s
lyr=1yr

: j: 31556 926.0 s |.
1yr 1d 1h 1 min

P1.54 The distance around is 38.44 m+19.5 m+38.44 m+19.5 m=115.88 m, but this answer must be
rounded to 115.9 m because the distance 19.5 m carries information to only one place past the

decimal.

P1.55 V=2V, +2V, =2(V; + 1) :
V; =(17.0 m+1.0 m +1.0 m)(1.0 m)(0.09 m)=1.70 m>
V, =(10.0 m)(1.0 m)(0.090 m) = 0.900 m?

19.0m —»

//////////////////{////////////{/

V= 2(1.70 m? +0.900 m3) - g
FIG. P1.55

24 _01am_ o063

t; 19.0m
Sw; 00lm sV ~ ~

o T 10m 0.010 v 0.006 +0.010 +0.011 = 0.027 =

ot _0lem 4019

t;  9.0cm

Additional Problems
P1.56 It is desired to find the distance x such that

x 1000 m
100 m X

(i.e., such that x is the same multiple of 100 m as the multiple that 1 000 m is of x). Thus, it is seen that
x* =(100 m)(1000 m) =1.00 x 10° m?

and therefore

x =100 x 10° m? :.
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*P1.57 Consider one cubic meter of gold. Its mass from Table 1.5 is 19 300 kg. One atom of gold has mass

1.66 x107% k
my = (197 u)(gJ =3.27x107% kg.
u
So, the number of atoms in the cube is
19300 kg

=————2 —=590x10%.
3.27x107 kg

The imagined cubical volume of each atom is

3 1m3

= W =1.69 x 10_29 m3 .

So

d=]257x10"" m|.

PL58  Aw =(N)(Adop) = (;“”al }(Adrop) = {Zﬁfﬁ?l ](4’”2)

drop 3
3V, 30.0x107° m?
A, =| —total j =3 =| 450 m?
total ( r 2.00x107° m

P1.59 One month is

1 mo = (30 day)(24 h/day)(3 600 s/h) = 2.592x 10° s.
Applying units to the equation,
V=(150 Mft’/mo)t+(0.00800 Mft’/mo?)¢>.
Since 1 Mft® =10° ft°,
V=(150x10° ft*/mo)t+(0.00800x10° ft*/mo? )¢,

Converting months to seconds,

150x10° ft*/mo , 000800 x 10° ft*/mo? 2
2592x10° s/mo (2590,x10° s/mo)’

Thus, | V [f°]=(0579 ft/s)t+(119x107 ft/s*)¢* |
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P1.60

P1.61

*P1.62

P1.63

a'(deg) a(rad) tan(a) sin() difference
15.0 0.262 0.268 0.259 3.47%
20.0 0.349 0.364 0.342 6.43%
25.0 0.436 0.466 0.423 10.2%
24.0 0.419 0.445 0.407 9.34%
24.4 0.426 0.454 0.413 9.81%
24.5 0.428 0.456 0.415 9.87%
24.6 0.429 0.458 0.416 9.98%
247 0.431 0.460 0.418 10.1%
27r=15.0m
r=239m
E = tan 55.0°
.

h=(2.39 m)tan(55.0°) =

FIG. P1.61

Let d represent the diameter of the coin and 4 its thickness. The mass of the gold is

2

2
m =pV:pAt=p[ 7d +7zdh]t

where t is the thickness of the plating.

(2.41)?
4

m= 19.3[2;: + 7:(2.41)(0.178)}(0.18 x107*)

=0.003 64 grams

cost = 0.003 64 grams x $10/gram = $0.036 4 =

This is negligible compared to $4.98.
The actual number of seconds in a year is

(86 400 s/day)(365.25 day/yr)= 31557600 s/yr.
The percent error in the approximation is

| (7107 s/yr)-(31557 600 5/yr)

100% =[ 0.449% |.
31557 600 s/yr < 100%
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P64  (a) [V]=L% [A]=17% [H]=L
[V1=[A]ln]
L? =L*L =L°. Thus, the equation is dimensionally correct.
(b)  Viginger =7R*1=(7R?)i= Ah, where
Viectangular object = (Wh = ({w)h = Ah , where
P1.65 (a) The speed of rise may be found from
3
e S
(b) Likewise, at a 1.35 cm diameter,
oo <[5 e
4
P1.66 (@) 1 cubic meter of water has a mass
m=pV=(100x10" kg/em®)(1.00 m* (10> cm/m)3 =
(b) As a rough calculation, we treat each item as if it were 100% water.

cell: m=pV = p(%ﬁR?’j = p(%ﬂD?’j = (1 000 kg/m3 )(%7{)(1.0 x107° m)3

= 52x107" kg

kidney: m=pV = p(%ﬁR?’j = (1.00 x107° kg/cm3 )(% ﬂj(4.0 cm)?

=|0.27 kg

(

=| 1.

fly: m=

X
N

w

x107° kg

8 4 :
PLET Vg, =0 )0 miyD) 5 1010 ooy rpr
20mpg 20 mi/gal

(10® cars)(10* mi/yr) 10
v - =4.0x10 1
2 mpg 25 mi/gal g Bal/y

Fuel saved = V35 npe = Voo mpg :| 1.0x10% gal/yr |

Dzh) = (1 x107 kg/cm?’)(%j(Z.O mm)2(4.0 mm)(lO’1 Cm/mm)3

17
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PLes oo (5. oo furlongs )( 220 yd j( 0914 4 mj( 1 fortnight j( 1 day j[ 1hr ):| 5325107 mys]

fortnight )\ 1 furlong 1yd 14 days )\ 24 hrs }{ 3600 s
This speed is almost 1 mm/s; so we might guess the creature was a snail, or perhaps a sloth.

P1.69 The volume of the galaxy is
2
xrit= 7[(1021 m) (1019 m)~1061 m.
If the distance between stars is 4x10'® m, then there is one star in a volume on the order of

(410" m)3 ~10% m?.

1061 m?3 -
The number of stars is about ————+—— ~ m .
10T oy~ A0 stars

P1.70 The density of each material is p= 7. mz = 4mz .
V. zr*h zD°h
4(51.5
Al: = ( 3 g) = 2.75i3 The tabulated value (2.70 ig,) is smaller.
7(2.52 cm)“(3.75 cm) cm cm
4(56.3
Cu: = ( 5 g) = 9.36i3 The tabulated value (8.92%) is smaller.
7(1.23 cm)”(5.06 cm) cm cm
4(94.4
Brass: p= ( 5 8) = 8.91i3
7(1.54 cm)”(5.69 cm) cm
4(69.1
Sn: p= (918) ;58
7(1.75 cm)” (3.74 cm) cm
4(216.1g) g ( g )
Fe: = =|7.88—+ The tabulated value | 7.86 is | 0.3% | smaller.
7(1.89 cm)*(9.77 cm) cm’ em®

PL71  (a) (3600 s/hr)(24 hr/day)(365.25 days/yr)=| 316x10” s/yr |

3
(b) Vinm = %nr"’ = %n(s.oo x107 m) =5.24x107"" m’
3
“//mbe =~ 1;8719 —=1.91x10" micrometeorites
mm X m

This would take 191x10™ micrometeorites _ 605 < 107 yr |.

3.16x 107 micrometeorites/yr
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ANSWERS TO EVEN PROBLEMS

P1.2 552x10° kg/m? , between the densities P1.34 1.3x10* kg
of aluminum and iron, and greater than
the densities of surface rocks. P1.36 200 km
P14 23.0kg P1.38 (a) 13.4; (b) 49.1
P16 7.69 cm v
PLA0 1y = rFe(") Fe j
P1.8 (a) and (b) see the solution, Al
N, =6.022137x10%; (c) 18.0 g; ;
(d) 440 g P1.42 ~10" rev
—~ 9 1
P110  (a) 9.83x107 g; (b) 1.06 x107 atoms Plad 107 raindrops
2 P1.46 ~10" cans; ~10° tons
P1.12 (a) 4.02x10” molecules;
(b) 3.65 x 104 molecules P1.48 (209 + 4) sz
P1.14 (a) ii; (b) iii; (c) i P1.50 (@) 3; (b) 4; (0) 3; (d) 2
M-L 2
P1.16 (a) T—Z; (b) 1 newton=1 kg~m/s P1.52 (a) 797; (b) 1.1; (c) 17.66

P1.54 1159 m
P1.18 35.7 m>

P1.56 316 m
P1.20 1.39x107* m®

P1.58 450 m?
P1.22  (a) 339x10° ft>; (b) 2.54x10* Ib
P1.60 see the solution; 24.6°

P124  (a) 560 km=5.60x10° m=5.60x10" cm;
(b) 491 m=0.491 km =491 x10* cm ;
(©) 619km=6.19x10° m=6.19x10° cm;
(d) 2.50 km =250 x10°> m =250 x10° cm

P1.62 3.64 cents ; no

Pl1.64 see the solution

P1.66  (a)1000kg; (b) 5.2x107'° kg; 0.27 kg ;

P1.26  4.05x10° m? -
13x107° kg

P1.28 (@) 1 mi/h=1.609 km/h; (b) 88.5 km/h;
(c) 16.1 km/h P1.68 8.32x10™* m/s; a snail

P130 119 x 107 atoms P1.70 see the solution

P1.32 2.57 x10® m?



Motion in One Dimension

ANSWERS TO QUESTIONS

Q2.1 If I count 5.0 s between lightning and thunder, the sound has
traveled (331 m/s)(5.0 s) =1.7 km. The transit time for the light

is smaller by

3.00x10® m/s
331 m/s

=9.06 x10° times,

so it is negligible in comparison.
Q2.2 Yes. Yes, if the particle winds up in the +x region at the end.
Q2.3 Zero.

Q24 Yes. Yes.

Q2.5 No. Consider a sprinter running a straight-line race. His average velocity would simply be the
length of the race divided by the time it took for him to complete the race. If he stops along the way
to tie his shoe, then his instantaneous velocity at that point would be zero.

Q2.6 We assume the object moves along a straight line. If its average
velocity is zero, then the displacement must be zero over the time
interval, according to Equation 2.2. The object might be stationary
throughout the interval. If it is moving to the right at first, it must
later move to the left to return to its starting point. Its velocity must
be zero as it turns around. The graph of the motion shown to the
right represents such motion, as the initial and final positions are
the same. In an x vs. t graph, the instantaneous velocity at any time
t is the slope of the curve at that point. At {, in the graph, the slope
of the curve is zero, and thus the instantaneous velocity at that time T

t
is also zero. fo
FIG. Q2.6
Q2.7 Yes. If the velocity of the particle is nonzero, the particle is in motion. If the acceleration is zero, the

velocity of the particle is unchanging, or is a constant.

21
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Q2.8

Q2.9

02.10

Q2.11

Q2.12

Q2.13

Q2.14

Q2.15

Q2.16

Yes. If you drop a doughnut from rest (v =0), then its acceleration is not zero. A common
misconception is that immediately after the doughnut is released, both the velocity and acceleration
are zero. If the acceleration were zero, then the velocity would not change, leaving the doughnut
floating at rest in mid-air.

No: Car A might have greater acceleration than B, but they might both have zero acceleration, or
otherwise equal accelerations; or the driver of B might have tramped hard on the gas pedal in the
recent past.

Yes. Consider throwing a ball straight up. As the ball goes up, its

v
velocity is upward (v > 0), and its acceleration is directed down

(%%
(a<0). A graph of v vs. t for this situation would look like the figure

to the right. The acceleration is the slope of a v vs. t graph, and is

always negative in this case, even when the velocity is positive.

\ ¢

FIG. Q2.10
(@) Accelerating East (b) Braking East (c) Cruising East
(d) Braking West (e) Accelerating West () Cruising West
(8) Stopped but starting to move East
(h) Stopped but starting to move West
No. Constant acceleration only. Yes. Zero is a constant.
The position does depend on the origin of the coordinate system. Assume that the cliff is 20 m tall,
and that the stone reaches a maximum height of 10 m above the top of the cliff. If the origin is taken
as the top of the cliff, then the maximum height reached by the stone would be 10 m. If the origin is
taken as the bottom of the cliff, then the maximum height would be 30 m.

The velocity is independent of the origin. Since the change in position is used to calculate the

instantaneous velocity in Equation 2.5, the choice of origin is arbitrary.

Once the objects leave the hand, both are in free fall, and both experience the same downward
acceleration equal to the free-fall acceleration, —g.

They are the same. After the first ball reaches its apex and falls back downward past the student, it
will have a downward velocity equal to v;. This velocity is the same as the velocity of the second

ball, so after they fall through equal heights their impact speeds will also be the same.

With h== gt?,
2
(@) 0.5h = % g(0.707t)2. The time is later than 0.5¢.

(b) The distance fallen is 0.25h = % g(O.St)2 . The elevation is 0.75h, greater than 0.5h.
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Q217  Above. Your ball has zero initial speed and smaller average speed during the time of flight to the
passing point.

SOLUTIONS TO PROBLEMS

Section 2.1 Position, Velocity, and Speed

P2.1 (@ ©v=|230 m/s

Ax 575 m-920m

b =—=———"—=/161

® =TT 0
Ax 57.5m-0m

v=—=—+————=|115
© 7= 5= 5005
1
*P2.2 (@) Ax_20ft ( L m )( A - j: 2x107 m/s | or in particularly windy times

At 1yr \3.281ft \3.156x10" s

5=£=100ft( 1 m )( Lyr ): 1x107° m/s |.
At 1yr \3.281ft \ 3156 x107 s

<
Il

(b) The time required must have been
Ax 3000 mi (1609 m) 10° mm 3
At =—2= =[5x10 .
v 10 mm/yr( 1 mi )[ 1m ]

_ Ax 10m
P2.3 (a) U:EZZ—SZ
5m
o]
Xp—x; _5m-10m _—
ty—t,  4s-2s _

QY
Il

(b)

<
Il

(©)

Ql
Il

Xy —X -5m-5m
d 2 1 =[-3.3 m/s
C " 7eds

(=]

p— xz_xl O_
e U= =——=|0 m/s
© hoh B

t(s)

x(m)
Ax 50 m
=—=——=|50.0 m/s
YRR
O Ly y ey
At 01s -

20 21 30
40 441 90

P2.4 x =10#%: For

<

(@)
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P2.5 (@) Let d represent the distance between A and B. Let ¢; be the time for which the walker has

the higher speed in 5.00 m/s = ti Let t, represent the longer time for the return trip in
1

-3.00 m/s = —i. Then the times are t{ =————— and t, = L The average speed
t (5.00 my/s) (3.00 my/s)
is:
5 Total distance d+d 2
Total time 4 ( d (8.00 nys)d

(5.00 m/s) * (3.00 m/s) (15_0 mz/sz)

2(15.0 m?/s?)

5=W=

(b) She starts and finishes at the same point A. With total displacement = 0, average velocity

:@,

Section 2.2 Instantaneous Velocity and Speed

P2.6 (@) At any time, ¢, the position is given by x = (3.00 m/s? )tz.

Thus, at £, =3.00 s: x; =(3.00 m/s*)(3.00 5)* =[27.0 m |.

b Att, =3.00 s+At: x, =(3.00 m/s%)(3.00 s+ At)?, or
f f

xp =| 27.0 m+ (180 m/s)At+(3.00 m/s>)(at)? |.

(c) The instantaneous velocity at t =3.00 s is:
Xp—X;
T f i . 2 _
U—AI}TO( o j_AI}TO(l&O m/s+(3.00 m/s )At)— 18.0 m/s |.
P2.7 (a) att;=15s, x; =8.0 m (Point A) x (m)
att;=4.0s, x; =2.0 m (Point B) 127
104
xe—-x  (20-8.0) 6.0 81 “\*
_ XX 0-80)m Om
U= = =— =|-2.4 m/s
tr—t;  (4-15)s 25s 67
N B
(b) The slope of the tangent line is found from points C and 27 D
D.(t-=10s, x- =9.5m) and (t, =3.5 s, x, =0), Or—T—T—T1>T T Ti(S)
(tc =105, % =95 m) and (tp =35 5, 45 =0) e

(c) The velocity is zero when x is a minimum. This is at t = .



P2.8 (@) x (M)
60
40- 7
/.
/4
20 4/
)/
4/ /
7 //////
0 f T t(s)
0 2 4

(b) Att=50s, theslopelsv—&
25s

At t=2.0 s, the slope is 0536m;
40s

Av
At

() a=

23 m/s
5.0s

(d) Initial velocity of the car was .

_(5—0)m_
P2.9 (a) _(I_—O)S_ 5 m/S
=025 ]
(4—2)s -
_(5m—5m)_
© ~ (55—45) _@
) U:w:
(8s—75)

*P2.10

Once it resumes the race, the hare will run for a time of

In this time, the tortoise can crawl a distance

xp—x;=(0.2 m/s)(25s)= .

i 1000 m—800 m
- 8 my/s

t (s)

F-+ o+

A

-t -

Chapter 2

A e |
1

——+++++
+++++4
1

+-+-

=4 4 -
|
I

- —

Lbopros

I
P

b HNp

6L

=25s.

‘
+-t-t-t-
I
~
—~~
93]
L

|
E-
'

=

'

s

|
L

I-—+—+————+—
P-4+
1 1
4+4<44+4
:+<_+9
1 oo,

FIG. P2.9
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Section 2.3 Acceleration

P2.11 Choose the positive direction to be the outward direction, perpendicular to the wall.

Av 220 m/s—(—25.0 m/s
At 350x107° s

vp=v;+at:a= ):|1.34><104 m/sz|.

P2.12 (@) Acceleration is constant over the first ten seconds, so at the end,

v =v;+at =0+(2.00 m/s*)(10.0 s):.

Then a =0 so v is constant from t=10.0 s to t =15.0 s. And over the last five seconds the
velocity changes to

v =0 +at =200 m/s+(3.00 m/s*)(5.00 s)=[ 5.00 mys |.

(b) In the first ten seconds,
1 2 1 2 2

Xp =X ot —at’ = 0+0+E(2.00 m/s?)(10.0 s)* =100 m.

Over the next five seconds the position changes to
Xp=x;+ Uﬁ—k%atz =100 m+(20.0 m/s)(5.00 s)+0 =200 m.

And at t=20.0s,

_ 1 2 1 2 2 _
Xp=x;+ vit+5ut =200 m+(20.0 m/s)(5.00 s)+§(—3.00 m/s?)(5.00 5)” = )

distance traveled

*P2.13 (@) The average speed during a time interval At is 7= N

. During the first

quarter mile segment, Secretariat’s average speed was

0.250 mi 1320 ft
T, = - =[524 ft/s| (35.6 mi/h).
1™ 2525 2525 ( /h)

During the second quarter mile segment,

13201t

T =|55.0 ft/s | (37.4 mi/h).

For the third quarter mile of the race,

1320 ft

Uy = =[555 ft/s| (377 mi/h),

and during the final quarter mile,

1320 ft

%= a0 =[574 ft/s] (390 mi/h).

continued on next page
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(b) Assuming that v, =, and recognizing that v; =0, the average acceleration during the race

was

_ Uy —0; 57.4 ft/s—0
fo T 2
a= = = -_0.598 ft/s” |.
total elapsed time  (25.2424.04+23.8+23.0) s /

P2.14 (@) Acceleration is the slope of the graph of v vs t. a(m/s?)
204 e
For 0<t<5.00s,a=0. 161
For150s<t<200s,a=0. | | |
— 10 oot
For50s<t<150s,a=— " | |
b=t b
0.0 t(s)
. 8.00 —(—8.00) 160 m/s> 0 5 10 15 20
15.0—5.00 ’

FIG. P2.14
We can plot a(t) as shown.

(b) Q= "

(i) For 500 s<t<15.0s,t;=5.00s, v; =—8.00 m/s,

tf =15.0s
vy =8.00 m/s

vy 8.00-(-8.00) 5
= tp—t;  150-500 160 m/s” |

(ii) t;=0, v;,=-8.00 m/s,tfzz().() s,vf:8.00 m/s

1
ve—v; 8.00—(—8.00)
— -
a _0.800 m/s
ty—t 20.0-0 /

P2.15 x=2.0043.00t —t%, v = % =3.00—2.00t, a= % =-2.00

Att=3.00s:

(a) x=(2.0049.00—9.00) m =
(b) 0=(3.00—6.00) m/s =
@ -
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P216 (a)  Att=200s,x= [3.00(2.00)2 —2.00(2.00)+ 3.00] m=11.0 m.

Att=3.00s, x= [3.00(9.00)2 —2.00(3.00) + 3.00] m=240m

SO
Ax 240m-11.0m
t=—=——-—"""-=130 .
? At 3.00s—2.00s
(b) At all times the instantaneous velocity is
v= %(:«;.()Ot2 —2.00¢ 4 3.00) = (6.00¢ — 2.00) m/s

Att=200's, v =[6.00(2.00)—2.00] m/s=[10.0 m/s |.
Att=3.00s, v=[6.00(3.00)—2.00] m/s=[160 m/s|.

S R = L

(d)  Atalltimes a= %(6.00 —2.00)=[6.00 m/s? |. (This includes both t=2.00 s and t=3.00 ).
P217  (a) a:%:%:

(b) Maximum positive acceleration is at t =3 s, and is approximately .

(c) a=0,at , and also for .

(d) Maximum negative acceleration is at t =8 s, and is approximately .

Section 2.4 Motion Diagrams

P2.18 (@) [ [ [ D—i — =reading order
— = velocity

b . = i
(b) E‘; g E:>_’ E:>_’ => = acceleration

©  [—C— [
<= <= <= <=
(d) ] -] <] <]
<= <= <= <=
@) <« <] ] ~—]
> => =>4 =

continued on next page
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) One way of phrasing the answer: The spacing of the successive positions would change
with less regularity.
Another way: The object would move with some combination of the kinds of motion shown
in (a) through (e). Within one drawing, the accelerations vectors would vary in magnitude
and direction.

Section 2.5 One-Dimensional Motion with Constant Acceleration

P2.19

P2.20

P2.21

*P2.22

2
From v}% =0} +2ax, we have (10.97><1O3 m/s) =0+ 24(220 m), so that | a=2.74x10° m/s> |

which is | a=279%10* times g |

(@) Xp—X; :%(Ui + vf)t becomes 40 m:%(vi +2.80 m/s)(8.50 s) which yields v; =| 6.61 m/s |.
Up—0v; 2 -6.61
b) a— Ui 280 mys—66lmjs e e
t 8.50s

Given v; =12.0 cm/s when x; =3.00 cm(t =0), and at t=2.00 s, Xy =-5.00 cm,

X =% = ot +~at?: —5.00—3.00 = 12.0(2.00) = a(2.00)2
f i i ) P

—8.00=24.0+2a a:—%: -16.0 Cm/s2 .

(@) Let i be the state of moving at 60 mi/h and f be at rest

Uff = Ufi +2ax(xf —xl»)

0=(60 mi/h)? +2a, (121 ft—0)
5 280 ft

ux:—3600m1 5280 ft 1h _218 mi/h-s
242 h? Imi A 3600s
1609 m 1h
=-218 mi/h- =[-975 m/s* |
s i

(b) Similarly,
0=(80 mi/h)” +2a, (211 ft—0)
6 400(5 280)

. - 2
a, = M ml/h~s:| —22.2 mi/h-s=-9.94 m/s |

() Let i be moving at 80 mi/h and fbe moving at 60 mi/h.
vff = vfi +2ux(xf —xl»)
12 L7 \2
(60 mi/h)” =(80 mi/h)” +2a, (211 ft—121 ft)

~2800(5 280)
7 3(90)(3 600)

mi/h-s = -22.8 mi/h-s=-102 m/s* |.
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*P2.23 (@) Choose the initial point where the pilot reduces the throttle and the final point where the
boat passes the buoy:

x;=0, Xy =100 m, v,; =30 m/s, Vs =?,a,=-35 m/sz, t="7?
1
Xg :x,»+vxit+5axt :
100 m =0+ (30 m/s)t+%(—3.5 m/s?)t?

(175 m/s?)t* —(30 m/s)t+100 m=0.
We use the quadratic formula:

b=+ b? —4ac
2a

t

2/.2 2
30 mys,[900 m?/s?— 4(175 m/s?)100 M) 30 s 4141 mys

=12.6 453 s |.
2(1_75 m/sz) 3.5 I‘I‘I/S2 s or

t

The smaller value is the physical answer. If the boat kept moving with the same acceleration,
it would stop and move backward, then gain speed, and pass the buoy again at 12.6 s.

(B) vy =0, +a,t=30 m/s—(35 m/s* 453 s=[ 141 m/s |

P2.24 (@) Total displacement = area under the (v, t) curve from t=0  a(m/s?)

to 50s. 5r-T
-+

1 a5

Ax = E(SO m/s)(15 s)+ (50 m/s)(40-15) s -
-+
0} —
+%(50 m/s)(10 s) -+
F-+
Ax=|1875m Lot
—Ht-+

(b) From t=10s to t =40 s, displacement is

1
Ax=5(50 m/s+33 m/s)(5 s)+ (50 m/s)(25 s):.

Av  (50—0) m/s 3
0<t<15s:gy=—=—"—"=|33
© Shsiosim At 155—0
15s<t<40s:[a,=0]

0-50
205512505 0, = 20 =T M _[F50
S— S

continued on next page



(d)

()

P225  (a)

(b)

(1) X4 :O—F%alt2 :%(3.3 m/sz)if2 or|x; = (1.67 m/sz)if2

Chapter2 31

(ii) Xy :%(15 s)[50 m/s—0]+(50 m/s)(t—15s) or| x, =(50 m/s)t—375 m

(iii)  For40s<t<50s,
_ (area under v vs t 1 b 4081 4 (50 b 40
5| from t=0 to 4 s | 517 408) + (50 nys)(t—40's)

or
x; =375 m+1250 m+%(—5.0 m/s?)(t-40 5)* + (50 mys)(t 40 s)

which reduces to

x5 = (250 m/s)t—(2.5 m/sz)i‘2 -4375m |.

_ total displacement 1875 m
U= = =|37.5 m/s
505

total elapsed time
Compare the position equation x = 2.00 +3.00¢ — 4.00¢* to the general form
1 .2
Xp=x; +vit+Eut

to recognize that x; = 2.00 m, v; =3.00 m/s, and a =—8.00 m/s?. The velocity equation,
vy =v; +at,is then

v; =3.00 m/s—(8.00 m/s?)t.

The particle changes direction when v, =0, which occurs at ¢ :% s. The position at this

time is:
3 3 .Y
x=2.00 m+(3.00 m/s)(g sj—(4.00 m/sz)(g sj =[256m .

1 2v;
From x; =x; +v;t +Eat2, observe that when x; = x;, the time is given by t = 2% Thus,
a

when the particle returns to its initial position, the time is

; —2(3.00 m/s)
800 m/s?

and the velocity is v, =3.00 m/s— (8.00 m/sz)(% sj: .

3
=—5
4
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*P2.26 The time for the Ford to slow down we find from

Xp=X; +%(vxi +vxf)t

‘e 2Ax 2(250 m)

- = =6.99s.
0, +0y 715 m/s+0

Its time to speed up is similarly

2(350 m)

=————=979s.
0+71.5 m/s

The whole time it is moving at less than maximum speed is 6.99 s+5.00 s +9.79 s=21.8 s. The
Mercedes travels

1 1
Xp=x+ E(U"i +o t=0+ S 715+ 71.5)(m/s)(21.8 s)
=1558 m

while the Ford travels 250 + 350 m =600 m, to fall behind by 1558 m—600 m = :

P2.27 (@) v; =100 m/s, a=-5.00 m/sz,vf:vi—&—ut S0 0:100—5t,v%:z}i2+2u(xf—xi)so
0=(100)* —2(5.00)(x; —0). Thus x; =1000 m and = 1200 |.

(b) At this acceleration the plane would overshoot the runway: .

P2.28 (@) Take t; =0 at the bottom of the hill where x; =0, v; =30.0 m/s, a=-2.00 m/ s*. Use these
values in the general equation

1
xj: in +Uit+§at2

to find
x; =0+(30.0t m/s) +%(—2.00 m/s?)t?

when f1is in seconds

x; =(30.0t—t*)m|.

To find an equation for the velocity, use vy =v; +at =30.0 m/s+ (—2.00 m/s? )t,

v =(30.0—2.00t) m/s |.
f

(b) The distance of travel x; becomes a maximum, x,,,, when v, =0 (turning point in the
motion). Use the expressions found in part (a) for v to find the value of t when x has its

maximum value:

From v; =(3.00 - 2.00t) m/s, v; =0 when t=15.0 s. Then

Xmax = (30.0 — ) m = (30.0)(15.0) - (15.0) :.
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P2.29 In the simultaneous equations:
Uy =yt vy =0y —(5.60 m/s?)(4.20 s)
1 we have 1
Xf—X :E(Uxi oyt 62.4 m:E(vxi +0,)(420 )

So substituting for v,; gives 62.4 m :%

0, +(56.0 m/s?)(4.20 5)+ 0 ](4.20 )

149 m/s=1v, +%(5.60 m/s?)(4.20s).

Thus

Uy = Uy +a,t

P2.30 Take any two of the standard four equations, such as 1 . Solve one for v,;, and
Xf —xi :E(Uxi +Uxf)t

substitute into the other: v,; = v, —a,t

1
Xf—xi :E(vxf —let—|—vxf)t.

Thus

Xp—X; :vxft—%uxtz .

Back in problem 29, 62.4 m = v ;(4.20 s)—%(—5.60 m/s?)(4.20 s)*

624 m—49.4 m
v4=——————=|310 m/s |.
xf 4205

5280

_o 632(320
vy To (3600) _ 2| _ 2
P231  (a) a=— = = 662 ft/s* |= 202 m/s

1 5280 1 2
(b) xf:vl-t+§at =(632)(mj(1.40)—5(662)(1.40) = 649 ft |=[ 198 m |
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P2.32 (@) The time it takes the truck to reach 20.0 m/s is found from v; =v; 4 at. Solving for t yields

05— 200 m/s—0 m/s
a 2.00 m/s2

t =10.0s.

The total time is thus

10.0 s+20.0 s+5.00 s=.

(b) The average velocity is the total distance traveled divided by the total time taken. The
distance traveled during the first 10.0 s is

X, =Tt = (0 + 220‘0 )(10.0) —100 m.
With a being 0 for this interval, the distance traveled during the next 20.0 s is
X, = vt +%ut2 = (20.0)(20.0)+0 =400 m.
The distance traveled in the last 5.00 s is
X3 =0t= (WJ(S.OO) =50.0 m.

The total distance x = x; +x, +x3 =100+ 400+ 50 =550 m, and the average velocity is
x 550
ivenby v=—=——=|15.7 m/s |.
givenby 9=3=275

P2.33  We have v; =2.00x10* m/s, v; =6.00x10° m/s, x; —x; =1.50x10"% m.

2(x; —x;) 2(1.50x107% m)

1 -9
a X=X =—(v;+vf)t: t= = =|498x10"" s
@ smri=g oty v;+0;  200x10% m/s+6.00x10° m/s

(b) v%=vf+2ax(xf—xi):

2_2  (600x10° m/s)’ —(2.00x10* m/s)’
ax _ Uf Uz _ ( X m/s) ( -~ X m/s) :| 1.20)(1015 m/SZ |
2(x; - x,) 20150 10 2 m)




*P2.34

*P2.35

(@)

(b)

(@)

(b)

(©

()
()
()

Chapter 2
2
vff =02 +2ax(xf —xi): I0.01(3><1O8 m/s)l =0+24,(40 m)
6 2
(3><10 m/s)

a, :80—m:| 1L12x10" m/s? |

We must find separately the time ¢; for speeding up and the time ¢, for coasting;
xf—x»:l(vxf+vxi)t1: 40 m:l 3x10° m/s+0}t
2 2
t, =267x107 s
1 1 6 6
Xp—X; :E(vxf +Uxi)t21 60 m:E(S x10” m/s+3x10 m/s)t2
t, =2.00x107 s

total time =| 4.67x107° s |.

Along the time axis of the graph shown, leti=0 and f =t,,. Then v, =v,; +a,t gives
v, =0+a,t,

Z)C
a, =—¢%
m tm
The displacement between 0 and t,, is
1 1o 1
Xp—x; = vxit—&—Euxtz = 0+Et—ft§1 = Vet

m

The displacement between ¢,, and ¢ is
Lo 2
xf_xizvxit+5axt :vc(to_tm)+0'

The total displacement is

1 1
Ax=Evctm+Uct0—thm= vc(to—ztm) .

For constant v, and ¢;, Ax is minimized by maximizing ¢,, to t,, =t,. Then

1
Axmin = Uc(to _Etoj:

UctO
2

This is realized by having the servo motor on all the time.

We maximize Ax by letting t,, approach zero. In the limit Ax=v(t, —0)= .

This cannot be attained because the acceleration must be finite.

35
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*P2.36 Let the glider enter the photogate with velocity v; and move with constant acceleration a. For its
motion from entry to exit,

1
Xp=1x; +Uxit+5axt2

g == 0"‘ UiAtd +%ﬂAt§ = UdAtd
1
vy =0; +E“Atd
(@) The speed halfway through the photogate in space is given by

14
vi = v} +2u(5): v? +av,At,.

vy = /07 +av,At,; and this is not equal to v, unless a=0.

(b) The speed halfway through the photogate in time is given by v,, = v, + a(%) and this is

equal to v, as determined above.

P2.37 (@) Take initial and final points at top and bottom of the incline. If the ball starts from rest,

v;=0,2=0500 m/s”, x; —x; =9.00 m.
Then
0} =07 +2a(x; - x;) =0 +2(0.500 m/s*)(9.00 m)

vy =[3.00 m/s |.
1
(b) xf—xi:Uit"_Eatz

9.00=0+ %(0.500 m/s? )t>

() Take initial and final points at the bottom of the planes and the top of the second plane,
respectively:
v; =3.00 m/s, vy =0, Xp—X; =15.00 m.

vj% =0? +2a(xf —x,») gives

0o} [0—(3.00 m/s)zl

2(x;—x;) 2(15.0 m)

(d) Take the initial point at the bottom of the planes and the final point 8.00 m along the second:
v; =3.00 m/s, x; —x; =800 m, a=—0.300 m/s’

a=

v} =0} +2a(x; —x;)=(3.00 m/s)” +2(-0.300 m/s)(8.00 m)=420 m?/s
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*P2.39
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Take the original point to be when Sue notices the van. Choose the origin of the x-axis at Sue’s car.
For her we have x;, =0, v, =30.0 m/s, a, =—2.00 m/s2 so her position is given by

x ()= x4 +vi5t+%ust2 =(30.0 m/s)t+%(—2.00 m/sz)tz.
For the van, x;, =155 m, v;, =5.00 m/s, a, =0 and
x, ()= x; + vivt—k%avtz =155+(5.00 m/s)t+0.

To test for a collision, we look for an instant . when both are at the same place:

30.0t, -t =155+5.00t,

0=1t2-25.0t, +155.
From the quadratic formula

25.0 +4/(25.0)* — 4(155)

t, > =136's or .

The smaller value is the collision time. (The larger value tells when the van would pull ahead again
if the vehicles could move through each other). The wreck happens at position

155 m+(5.00 m/s)(11.4 s)=| 212 m |.

As in the algebraic solution to Example 2.8, we let ¢ x (km)

represent the time the trooper has been moving. We graph
1.5
Xear =45+ 45t car
1 -
and .
police
- officer
xtrooper = 15t2 0.5
They intersect at T 7 T =1t (s)
10 20 30 40
t=|3ls

FIG. P2.39
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Section 2.6 Freely Falling Objects

P2.40

P2.41

Choose the origin (y =0, t =0) at the starting point of the ball and take upward as positive. Then

y;=0,v;,=0,and a=—g=-9.80 m/s2 . The position and the velocity at time ¢ become:

_ 1 o 1 2 1 2,2
yf—yi—vl-H—Eut .yf——Egt ——5(9.80 m/s )t

and

vf=v;+at: v; :—gt:—(9.80 m/sz)t.

(a) att=100s: 1y, :—%(9.80 m/s?)(1.00 s)* :
att=200s:y, :—%(9.80 m/s?)(2.00 s)* =[ <196 m |
)30+ ~[“diim]
(b) att=100s: v; =—(9.80 m/s?)(1.00s)=
at £=2.00's: v, =—(9.80 m/s>)(2.00 5)=[ ~19.6 mys |

)

at t=3.00s: v; =—(9.80 m/s*)(3.00 s)=[—29.4 m/s

)
att=3.00s:y, :—%(9.80 m/s%)(3.00 s)*

Assume that air resistance may be neglected. Then, the acceleration at all times during the flight is
that due to gravity, a=—g=—-9.80 m/ s*. During the flight, Goff went 1 mile (1 609 m) up and then
1 mile back down. Determine his speed just after launch by considering his upward flight:

of =0 +2a(y;—y; ) 0=0]-2(9.80 m/s>)(1609 m)
v; =178 m/s.

His time in the air may be found by considering his motion from just after launch to just before
impact:

YV :viH—%atz: 0=(178 m/s)t—%(—9.80 m/sz)tz.

The root t =0 describes launch; the other root, t =36.2 s, describes his flight time. His rate of pay
may then be found from

_$1.00 B
pay rate === (0.0276 $/s)(3600 s/h)= :

We have assumed that the workman’s flight time, “a mile”, and “a dollar”, were measured to three-
digit precision. We have interpreted “up in the sky” as referring to the free fall time, not to the
launch and landing times. Both the takeoff and landing times must be several seconds away from
the job, in order for Goff to survive to resume work.



P2.42

P2.43

P2.44

*P2.45
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We have y; = —%gt2 +uit+y;
0=—(490 m/s*)t* —(8.00 m/s)t+30.0 m.

Solving for ¢,

b 8.00+ 4/64.0 + 588

-9.80

Using only the positive value for t, we find that t = .

(a) yi—yi= vit+%at2: 4.00 = (1.50)v; — (4.90)(1.50)* and ©; =|10.0 m/s upward |.

b) vy =0, +at=100-(9.80)(1.50)=—4.68 m/s

vy :| 4.68 m/s downward

The bill starts from rest v; =0 and falls with a downward acceleration of 9.80 m/ s? (due to gravity).
Thus, in 0.20 s it will fall a distance of

Ay= vit—%gtz =0— (490 m/s?)(0.20 5)* =—0.20 m.

This distance is about twice the distance between the center of the bill and its top edge (= 8 cm).

| Thus, David will be unsuccessful |.

(@) From Ay=wv;t +lut2 with v; =0, we have
2

[2(Ay) 2(—23 m)
t: = = 2.17 .
a —9.80 m/s”
(b) The final velocity is v; = 0+(-9.80 m/sz)(2.17 s)=|—212 m/s |.

(c) The time take for the sound of the impact to reach the spectator is

Ay  23m

t = =
sound Usound 340 m/ s

=6.76x107% s,

50 the total elapsed time is .., = 2.17 5+ 6.76 x 10> s ~ .
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P2.46 At any time ¢, the position of the ball released from rest is given by y; =h —% gt*. At time t, the
position of the ball thrown vertically upward is described by y, = v;t — % gt?. The time at which the

first ball has a position of y, :% is found from the first equation as gz h —% gt?, which yields

t= \/E . To require that the second ball have a position of y, :g at this time, use the second
g

equation to obtain %z v; \/z - % g( h j This gives the required initial upward velocity of the second
8

g
ball as m

P2.47 (@) v;=v;—gt: v, =0 when t=3.00s, g =9.80 m/s2 . Therefore,

v; = gt =(9.80 m/s*)(3.00 5)=[ 29.4 my/s |.

1
®)  yi-yi=g (o)

1
Y-y = 5(29.4 m/s)(3.00 s) =

*P2.48 (@) Consider the upward flight of the arrow.

oy =03+ 28,y = ¥i)
0=(100 m/s)” +2(-9.8 m/s?)ay
Ay 10000 m?/s?

W:

(b) Consider the whole flight of the arrow.
Yi=Yyi+ vyit + %ayt2
0=0+(100 m/s)t +%(—9.8 m/s? )¢
The root t =0 refers to the starting point. The time of flight is given by
P249  Time to fall 3.00 m is found from Eq. 2.12 with v; =0, 3.00 m= %(9.80 m/s?)t?, t=0.782s.
(@) With the horse galloping at 10.0 m/s, the horizontal distance is vt = .

© e[



P2.50

P2.51

*P2.52

Chapter 2
Take downward as the positive y direction.
(@) While the woman was in free fall,

Ay=144ft, v;=0,and a =g =320 ft/s>.

Thus, Ay =v;t + %atz — 144 ft=0+(16.0 ft/s®)t* giving t,; =3.00 s. Her velocity just

before impact is:

v =v;+gt=0+(320 ft/s*)(3.00 s)=[ 96.0 ft/s|.
(b) While crushing the box, v; =96.0 ft/s, v = 0,and Ay =18.0 in.=1.50 ft. Therefore,
v} —v?  0—(96.0 ft/s)’
a—= =
2(Ay) 2(1.50 ft)

=-3.07x10° ft/sz,or| a=3.07x10° ft/s* upward |

A A 2(1.50 ft
(c) Time to crush box: At= T]/ -2V ( ) or | At=313x10"%s |
7 ”fT”* 0+496.0 ft/s

y=3.00£> At t=2.00 s, y = 3.00(2.00)° = 240 m and

d
v, =2 -9.00t> =360 m/sT.
dt

If the helicopter releases a small mailbag at this time, the equation of motion of the mailbag is
Yo = Ypi 0t —%gt2 =24.0+36.0t —%(9.80)1‘2.

Setting v, =0,
0= 24.0 + 36.0t — 4.90¢>.

Solving for t, (only positive values of ¢ count), .

Consider the last 30 m of fall. We find its speed 30 m above the ground:

1
yf = yi + U]/l‘t+5u]/t2

0=30 m+0,(15 s)+%(—9.8 m/s?)(15 5)*
v, :M:_ub m/s.
Y 15s

Now consider the portion of its fall above the 30 m point. We assume it starts from rest
oy =y + 28, (y; ~ 1)
(126 nys)” =0+2(-9.8 m/s?)ay

Its original height was then 30 m+|-8.16 m|= .

4
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Section 2.7 Kinematic Equations Derived from Calculus

P2.53 (@) J= % = constant

da = Jdt

u:]Jdt:]t+c1

but a=a; when t =0 so ¢; =a;. Therefore,

dv
a=—
dt

dv =adt

U:J‘adt:_].(]t+al-)dt:%]t2 +a;t+cy

1
but v=v; when t =0, so ¢, =v; and v:EIt2+uit+vi

dx
v=—0
dt

dx = vdt

xzjvdtzj(%]tz +ait+vl~)dt

1 1
x:g]if3 +Eait2 +vit+cy

1 1
when t =0, so c3 = x;. Therefore, x:gh‘3 +—at?+ot+x; |

®)  a?=(t+a) =] +a?+2Jat
a* =a} +(]2t2 + 2]ait)

a? =a? +2](%]t2 —&—uit)

Recall the expression for v: v = %]t‘2 +a;t+v;.50 (v—v;)= %]t‘2 +a;t. Therefore,

a*=a? +2J(v—v;) |




P254  (a)

(b)

(©

(d)

()

P255  (a)

(b)

(©

(d

See the graphs at the right.
Choose x=0 at t=0.

Att=3s, x:%(S m/s)(3 s)=12m.
Att=5s, x=12m+(8 m/s)(2s)=28 m.

Att=7s,x=28 m+%(8 m/s)(2 s)=36 m.

8 m/s

For0<t<3s,a= =267 m/sz.

For3<t<5s,a=0.

16 m/s 2
For5s<t<9s,a=— =|—4 m/s” |.
e

Att=6s, x=28 m+(6 m/s)(1 s):.

1
Att=9s,x=36 m+E(—8 m/s)(2 s):.

a=T_ A1 50010712 +3.00><105t|
dt dt

Chapter 2
0™
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w1
A
0 6 8
v (m/s)
81777,
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Lo+
Lo+
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477777 | . Lo
.
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FIG. P2.54

a=—(10.0x10" m/s*)t+3.00x10° m/s>

Take x; =0 at t=0. Then v:%

x—O:jvdt:
0

S —

t3

(—5.00 %107 t2 +3.00 x 10° t)dt

2
x=-500x107 1 +3.00x10° -
3 2

x=—(167x107 m/s’ ) +(150x10° m/s?)¢* |.

The bullet escapes when 2 =0, at —(10.0 x107 m/s’ )t +3.00%x10° m/s* =0

~3.00x10°s

©10.0x107

3.00x1073 s |.

New .= (~5.00x107)(3.00x10~)" +(3.00x10°)(3.00x10~?)

v=—450 m/s+900 m/s=| 450 m/s |.

x=—(167x107)(3.00x10-%)’ +(150x10°)(3.00x10~?)*

x=-0.450 m+1.35 m:

43



44  Motion in One Dimension

P2.56

:d—?z —3.000%, v; =1.50 m/s

Solving for v, % =—3.000"

Tzfzdv =-3.00 _t[dt

v=7; t=0
—l+l =-3.00¢ or 3.00t = l—l
U U; v U

1 1

v 1
When v=—-,t=——={0.222s |.
2 =000 L0222

Additional Problems

*P2.57

*P2.58

The distance the car travels at constant velocity, v,, during the reaction time is (Ax), = vyAt,. The
time for the car to come to rest, from initial velocity v,, after the brakes are applied is

A e
ty=rt—=—0=_20
a a a

and the distance traveled during this braking period is

_ Vs +7; 0+, v 05
A = t = t: —_— | =
(&), =tz ( 2 )27 U2 Na) 2

Thus, the total distance traveled before coming to a stop is

p)
v
Sstop = (AX); +(AX), =| vyAt, —2—2 )

2

(@) If a car is a distance s, = vyAf, —;—0 (See the solution to Problem 2.57) from the
a

stop

intersection of length s; when the light turns yellow, the distance the car must travel before
the light turns red is
02
0
Ax =540p +5; = VgL, —Z+ S;.
Assume the driver does not accelerate in an attempt to “beat the light” (an extremely
dangerous practice!). The time the light should remain yellow is then the time required for

the car to travel distance Ax at constant velocity v,. This is

2

4
My =——=—— 20— = At = DL |,
[ vy a v,

(b) With s; =16 m, v=60 km/h, a=-2.0 m/sz, and Af, =11s,

60 km/h ( 0.278 m/s 16 m 1 km/h
Ao =1.1 5 - + =[6.235].
tight =77 > 2(-20 m/SZ)( 1 km/h ] 60 km/h(0.278 mys




*P2.59

(@)

(b)

(©

As we see from the graph, from about —50 s to 50 s

Acela is cruising at a constant positive velocity in 200
the +x direction. From 50 s to 200 s, Acela

accelerates in the +x direction reaching a top speed _ 1 A
of about 170 mi/h. Around 200 s, the engineer
applies the brakes, and the train, still travelingin =~ <
the +x direction, slows down and then stops at _5Q
350 s. Just after 350 s, Acela reverses direction (v
becomes negative) and steadily gains speed in the
—x direction.

Chapter2 45

0 100 ' 200 @ 300 0

FIG. P2.59(a)

The peak acceleration between 45 and 170 mi/h is given by the slope of the steepest tangent
to the v versus f curve in this interval. From the tangent line shown, we find

155—45) mi/h
a:slopezgzﬁz 2.2 (mi/h)/s |=0.98 m/s?.
At (100—-50) s

Let us use the fact that the area under the v versus

t curve equals the displacement. The train’s 200
displacement between 0 and 200 s is equal to the ="
area of the gray shaded region, which we have —~ 1004
approximated with a series of triangles and < J4| 3
rectangles. £ 12
5 0 £(s)

Ax_,o00 s =area; +area, +area +area, +areas

~(50 mi/h)(50 s)+(50 mi/h)(50 s) L
+(160 mi/h)(100 s)

+ %(50 5)(100 mi/h)

+%(100 5)(170 mi/h—160 mi/h)

= 24000(mi/h)(s)

I I >
0 100 200 300 EVO

FIG. P2.59(c)

Now, at the end of our calculation, we can find the displacement in miles by converting

hours to seconds. As1h=3600s,

24000 mi -
AXo 5200 5 * (WJ(S) = -
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*P2.60

P2.61

P2.62

Average speed of every point on the train as the first car passes Liz:

Ax _860m
At 150

=573 m/s.

The train has this as its instantaneous speed halfway through the 1.50 s time. Similarly, halfway

860m _ 7.82 m/s. The time required for the speed
s

through the next 1.10 s, the speed of the train is
to change from 5.73 m/s to 7.82 m/s is

%(1.50 s)+%(1.10 5)=130s

L Av, 782 m/s—5.73 m/s >
so the accelerationis: g, = —% = =|1.60 m/s“ |.
X At 130 s

The rate of hair growth is a velocity and the rate of its increase is an acceleration. Then
d
v,; =104 mm/d and a, = 0132(%). The increase in the length of the hair (i.e., displacement)
w

during a time of t=5.00 w=35.0 d is

1 2
Ax=vt +Euxt

Ax =(1.04 mm/d)(35.0 d)+%(0.132 mm/d-w)(35.0 d)(5.00 w)

or | Ax=48.0 mm |

Let point 0 be at ground level and point 1 be at the end of the engine burn. Let /'\\2
point 2 be the highest point the rocket reaches and point 3 be just before ' \\1
impact. The data in the table are found for each phase of the rocket’s motion. 1 f/\ ]
1 1
1
(0to1) vj% ~(80.0)* = 2(4.00)(1 000) S0 vy =120 m/s 04'} {lh
120 = 80.0 + (4.00)¢ giving t=100s s
) o FIG. P2.62
(1to2) 0-(120)" = 2(—9.80)(xf - xi) giving Xp—x;=735m
0—120=-9.80¢t giving t=122s

This is the time of maximum height of the rocket.

(2to 3) v% —0=2(-9.80)(-1735)
v;=—184=(-9.80)t giving t=188s

() b =10412.2+18.8 =
(b) (xf B xi)total -

continued on next page



P2.63

P2.64

(C) Ufinal =

Chapter 2

t X v a
0 | Launch 0.0 0 80 +4.00
#1 | End Thrust 10.0 1000 120 +4.00
#2 | Rise Upwards 22.2 1735 0 -9.80
#3 | Fall to Earth 41.0 0 -184 -9.80

Distance traveled by motorist = (15.0 m/s)t

Distance traveled by policeman = %(2.00 m/s? )if2

(@) intercept occurs when 15.0t = t2,or t=

(b) v(officer) = (2.00 m/s*)t =
(c) x(officer)= %(2.00 m/sz)t‘2 =

Area A, is arectangle. Thus, A; =hw=1v,t.

1 1
Area A, is triangular. Therefore A, = Ebh = Et(vx —0,).

The total area under the curve is

A:Al

and since v, —v,; =a,t

1
The displacement given by the equation is: x=v;t + Euxtz, the

+A,=v,t+

1
A= vxit+§axt2 :

same result as above for the total area.

(Ux - Uxi)t
2

Oyi

FIG. P2.64
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48  Motion in One Dimension

P2.65

P2.66

@)

(b)

(©

Let x be the distance traveled at acceleration g until maximum speed v is reached. If this is

achieved in time #; we can use the following three equations:

x:%(m—vi)tl, 100 —x=10(10.2—t;) and v=v; +at;.

The first two give
1 1
100: 102—Et1 U= 102—Et1 ﬂtl
3 200
(20.4—t)t;
. 200 3
For Maggie: n1=———=| 5.43 m/s
T VABBIE 1718 4)(2.00)
200 5
For Judy: a=————=|3.83 m/s
Judy: 2= 7 5 G00)
U:ﬂlt

Maggie: v = (5.43)(2.00) =
(3.83)(3.00) =

Judy: v=

At the six-second mark

x= %atf +0(6.00— 1)

Maggie: x = %(5.43)(2.00)2 +(10.9)(4.00) =543 m
Judy: x = %(3.83)(3.00)2 +(11.5)(3.00)=51.7 m
Maggie is ahead by .
a; =0.100 m/s? a, =—0.500 m/s>
x=1000 m= %ultf +o,t, +%a2t§
2
1000 = Sa,82 4ay,| - | Lo [ @b 1000=La, 1=
2 a, 2 a, 2 a

2
- 53]

;b 129

tz__

t: tl +t2 and Ul :ultl :—ﬂztz

=——r26s Total time =t=| 155 s
0.500 '



P2.67

*P2.68

Chapter 2
Let the ball fall 1.50 m. It strikes at speed given by

Uff =vi+ Za(xf — xl»):
v} =0+2(-9.80 m/s*)(—150 m)
vy =—542 m/s
and its stopping is described by
Uff = v)za- + Zax(xf - xi)

0=(-5.42 my/s)’ +2a,(~10 m)

294 m?/s?

- =+1.47x10° m/s2.
Y 200x10% m /

Its maximum acceleration will be larger than the average acceleration we estimate by imagining

constant acceleration, but will still be of order of magnitude .

1
(@) Xp=x;+oy,t +Eaxt2. We assume the package starts from rest.

~145m=0+0 +%(—9.so m/s?)t?

—145 m)
t= 5 44 s
980 m/s -
(b) Xp=x +vxit+%uxt2 :0+0+%(—9.80 m/s?)(5.185)° =—131 m

distance fallen = |x f| :
Vs :|vxi +axt|:‘0+(—9.8 m/sz)5.18 s‘ :

(d) The remaining distance is

(c) speed =

145 m—131.5 m=13.5 m.
During deceleration,

vy =—50.8 m/s, v,y =0, x; —x; =—13.5m
Uff =U§i+2ax(xf—xi):

0=(—50.8 m/s)’ +2a,(—135 m)

-2580 m?/s?

- _ 2 _ 2
a,= 2135 m) = 4953 m/s —| 95.3 m/s? upward |

49



50 Motion in One Dimension

P2.69  (a)
(b)
(©
P270  (a)
(b)
P271  (a)
(b)
(©

(d

Y= Uﬂt+%at2 =50.0= 2.00t+%(9.80)t2,

4.90t% +2.00t—50.0 =0

| 2,00 +1/2.00% — 4(4.90)(~50.0)
= 2(4.90)

Only the positive root is physically meaningful:
t= after the first stone is thrown.
Y =0pt —&-%atz and t=3.00—1.00=2.00 s

substitute 50.0 = v;, (2.00)+—=(9.80)(2.00):

1
2
v, =|15.3 m/s | downward

vy = vy +at =2.00+(9.80)(3.00)=| 31.4 m/s | downward
Uy =V +at =15.3+(9.80)(2.00) = | 34.8 m/s | downward

d= %(9.80)1‘12 d = 336t,

t 41, =2.40 336t, = 4.90(2.40—t,)’
s 359.5+/359.52 — 4(4.90)(28.22)
4.90t2 —359.5¢, +28.22 =0 ty = 550
359.5+358.75 :
2= ey 007655 S0 d=336t, =| 264 m |

. . 1 2
Ignoring the sound travel time, d = 5(9.80)(2.40) =28.2 m, an error of | 6.82% |.

In walking a distance Ax, in a time At, the length
of rope ¢ is only increased by Axsiné.

.. The pack lifts at a rate i—fsin&.

v—ﬁsinﬂ—v X v _x
At boyg boy ,—x2+h2
dv  Upoy dx d (1)
an=—= ——4 v xX—| —
dt 0 odt P ar\y
a=v Oboy  Uboy* db u %—v—v x
boy 2 odt’ T adt boy g
N vgoy _ﬁ _ U%oy hz - hzvgoy
L / Kz , £2 (xz +h2)3/2
2
Up
>0 FIG. P2.71

Vpoy / 0
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v X
P272  h=600m, vy, =200 m/s 0= ~Lsing =y, =2
Y At Yl (x2+h2)/
2
Vpovl
However, x = 0o t: . 0= boy = 4 .
(02,2 +02)" (a2 +36)"
boy
(a) t(s) | v(m/s) v (m/s)
0 |0 200 bl
0.5 | 0.32 IS NN
1 |06 ot e
F-d-t-+-+-+ 47+ 4
1.5 | 0.89 120 b4
F-d-t-t/ -t -+-+ 4
2 |11 08 4t /b it
25 [1.28 BN .
04} - i/t t-dod-dt -ttt
3 |14 I SRR ;444,4t()
00/t r (s
1'51'25 0 1 2 3 4 5
45 | 1.66 FIG. P2.72(a)
5 |1.71
hZUZ hZUZ
(b) From problem 2.71 above, a = boy3/2 = = 32 14 TR
x* 4+ h? vE 12+ h? 4% + 36
boy
t(s) a(m/sz) 0761(_111_/52_) -
0 0.67 O
05 | 0.64 0.6 -\ - -+ttt
-+ R k|
1 ]057 05 4\ bbbt
N S
1.5 1048 04 + 4\~ Fododdodod
2 0.38 Lot R
03]+ttt
2.5 1 0.30 A R R VA R
3. 024 02 -ttt
R e e O
351018 0Lttt
4. 014 RERRER RN
15 | 011 00531 3'®
5 1009 FIG. P2.72(b)

P2.73 (@) We require x, = x, when ¢, =t, +1.00

. 1
x, =5 (350 m/s?)(t, +1.00)" = (490 m/s?)t)* = x,
tk + 100 = 1183tk

®)  x= %(4.90 m/s”)(5.46 5)* =

©) v, =(490 m/s”)(5.46 5) =[267 mys |
v, =(350 m/s”)(6.46 5)=[ 22.6 m/s]



52  Motion in One Dimension

P2.74 Time  Height Ah At v midpt time
t (s) h (m) (m) (s) (m/s) t (s)
0.00 5.00

0.75 0.25 3.00 0.13
0.25 5.75

0.65 0.25 2.60 0.38
0.50 6.40

0.54 0.25 2.16 0.63
0.75 6.94

0.44 0.25 1.76 0.88
1.00 7.38

0.34 0.25 1.36 1.13
1.25 7.72

0.24 0.25 0.96 1.38 FIG. P2.74
1.50 7.96

0.14 0.25 0.56 1.63
1.75 8.10

0.03 0.25 0.12 1.88
2.00 8.13

~0.06 0.25 ~0.24 2.13
2.25 8.07

~0.17 0.25 ~0.68 2.38
2.50 7.90

-0.28 0.25 ~1.12 2.63
2.75 7.62

~0.37 0.25 ~1.48 2.88
3.00 7.25

-0.48 0.25 ~1.92 3.13
3.25 6.77

~0.57 0.25 -2.28 3.38
3.50 6.20

~0.68 0.25 -2.72 3.63
3.75 5.52

~0.79 0.25 -3.16 3.88
4.00 473

-0.88 0.25 352 413
425 3.85

~0.99 0.25 -3.96 438
450 2.86

~1.09 0.25 436 463
475 1.77

~1.19 0.25 476 488
5.00 0.58

TABLE P2.74

acceleration = slope of line is constant.

a=-1.63 m/s> :| 1.63 m/s* downward




P2.75

The distance x and y are always related by x* + y* =*.
Differentiating this equation with respect to time, we have

dx dy

2x—+2y—=0

at Y ar

Now % is vy, the unknown velocity of B; and % =-0.
From the equation resulting from differentiation, we have

d x(dx X
£33
y\dt y

Chapter2 53

FIG. P2.75

y

But =
x

=tana so vg =
tana

jv. When a=60.0°, vg

(% U'\/g
“neos 3 L070)

ANSWERS TO EVEN PROBLEMS

P2.2

P2.4

P2.6

P2.8

P2.10

P2.12

P2.14

P2.16

P2.18

P2.20

P2.22

(@) 2x107 m/s; 1x10™° m/s;
(b) 5x10° yr

(a) 50.0 m/s; (b) 41.0 m/s

(@) 27.0 m;
(b) 27.0 m+(18.0my/s)At + (3.00m/s>)(At);
(c) 18.0 m/s

(@), (b), (c) see the solution; 4.6 m/ s%;(d)0
5.00 m
(a) 20.0 m/s; 5.00 m/s; (b) 262 m

(a) see the solution;
(b) 1.60 m/s*; 0.800 m/s>

(a) 13.0 m/s; (b) 10.0 m/s; 16.0 m/s;
(©) 6.00 m/s?; (d) 6.00 m/s?

see the solution
(@) 6.61 m/s; (b) —0.448 m/s?

(a) 21.8 mi/h-s=-9.75 m/s?;
(b) —22.2 mi/h-s=-9.94 m/s?;
(c) —22.8 mi/h-s=-10.2 m/s*

P2.24

P2.26

P2.28

P2.30

P2.32

P2.34

P2.36

P2.38

P2.40

P2.42

() 1.88 km; (b) 1.46 km;

(c) see the solution;

(d) (i) x; =(1.67 m/s?)¢;

(i) x, = (50 m/s)t—375 m;

(i) x; = (250 my/s)t - (25m/s? )¢* ~ 4375 m;
(e) 37.5 m/s

958 m

(@) x¢ :(30.0t—t2) m; v, =(30.0-2t) m/s;
(b) 225 m

1
Xp—x;= vxft—auxtz; 310 m/s

(a) 35.0s; (b) 15.7 m/s
(@) 112x 10" m/s?; (b) 467x107° s

(a) False unless the acceleration is zero;
see the solution; (b) True

Yes; 212m; 114 s

(@) 490 m; -19.6 m; —44.1 m;
(b) -9.80 m/s; —19.6 m/s; —29.4 m/s

1.79s



54  Motion in One Dimension

P2.44

P2.46

P2.48

P2.50

P2.52

P2.54

P2.56

P2.58

No; see the solution

The second ball is thrown at speed

0, = gh
(@) 510 m; (b) 20.4 s

(a) 96.0 ft/s;
(b) a=3.07x10° ft/s* upward;
(c) At=313x107 s

38.2m

(a) and (b) see the solution; (c) —4 m/ s%;
(d) 34 m; (e) 28 m

0.222s

(a) see the solution; (b) 6.23 s

P2.60

P2.62

P2.64

P2.66

P2.68

P2.70

P2.72

P2.74

1.60 m/s*

(a) 41.0 s; (b) 1.73 km; (c) —184 m/s
1 5 ..
vt + Ea (17, displacements agree

1555; 129 s

(a) 5.44 s; (b) 131 m; (c) 50.8 m/s;
(d) 953 m/s* upward

(a) 26.4 m; (b) 6.82%
see the solution

see the solution; a, =-1.63 m/ s2



Q3.2

Vectors

ANSWERS TO QUESTIONS

No. The sum of two vectors can only be zero if they are in
opposite directions and have the same magnitude. If you walk
10 meters north and then 6 meters south, you won’t end up
where you started.

No, the magnitude of the displacement is always less than or
equal to the distance traveled. If two displacements in the same
direction are added, then the magnitude of their sum will be
equal to the distance traveled. Two vectors in any other
orientation will give a displacement less than the distance
traveled. If you first walk 3 meters east, and then 4 meters
south, you will have walked a total distance of 7 meters, but
you will only be 5 meters from your starting point.

Q3.3 The largest possible magnitude of R = A + B is 7 units, found when A and B point in the same
direction. The smallest magnitude of R = A + B is 3 units, found when A and B have opposite

directions.

Q3.4 Only force and velocity are vectors. None of the other quantities requires a direction to be described.

Q3.5 If the direction-angle of A is between 180 degrees and 270 degrees, its components are both
negative. If a vector is in the second quadrant or the fourth quadrant, its components have opposite

signs.

Q3.6 The book’s displacement is zero, as it ends up at the point from which it started. The distance

traveled is 6.0 meters.

Q3.7 85 miles. The magnitude of the displacement is the distance from the starting point, the 260-mile
mark, to the ending point, the 175-mile mark.

Q3.8 Vectors A and B are perpendicular to each other.

Q3.9 No, the magnitude of a vector is always positive. A minus sign in a vector only indicates direction,

not magnitude.
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Q3.10

Q3.11

Q3.12

Q3.13

Q3.14

Vectors

Any vector that points along a line at 45° to the x and y axes has components equal in magnitude.
Ay=B,and A =B,.
Addition of a vector to a scalar is not defined. Think of apples and oranges.

One difficulty arises in determining the individual components. The relationships between a vector
and its components such as A, = Acosé, are based on right-triangle trigonometry. Another problem
would be in determining the magnitude or the direction of a vector from its components. Again,

A= A%+ A; only holds true if the two component vectors, A, and A, are perpendicular.

If the direction of a vector is specified by giving the angle of the vector measured clockwise from the
positive y-axis, then the x-component of the vector is equal to the sine of the angle multiplied by the
magnitude of the vector.

SOLUTIONS TO PROBLEMS

Section 3.1 Coordinate Systems

P3.1

P3.2

P3.3

x =7rcosf=(5.50 m)cos 240°= (5.50 m)(—0.5) =
y =rsin@=(5.50 m)sin 240°= (5.50 m)(—0.866) =

(@) x=rcos@ and y =rsin@, therefore
%1 =(2.50 m)cos30.0°, y; =(2.50 m)sin30.0°, and

(x1, y1)=| (217, 1.25) m

x, =(3.80 m)cos120°, y, =(3.80 m)sin120°, and

(x2, ¥2)=| (-1.90, 3.29) m |.

(b) d=,(Ax)> +(Ay)® =166+ 416 =| 455 m

The x distance out to the fly is 2.00 m and the y distance up to the fly is 1.00 m.

(@) We can use the Pythagorean theorem to find the distance from the origin to the fly.

distance = \/xz +y? = \/(2.00 m)2 +(1.00 m)2 = x/S.OO m? =
(b) O=tan" G) =26.6° r=|224m, 26.6°




P3.4

P3.5

P3.6

@  d= \/(xz -1+ (ya ) = \/(2.00 —~[-3.00])” + (~4.00 - 3.00)°

d=+/25.0+49.0 =| 8.60 m
B) 1 =y(200)> +(~400)* =+/200 =
L 400 _
0, = tan 1(‘%) =[-634°]
1, = (-3.00)” +(3.00)> =180 =[ 424 m |

6, = measured from the +x axis.

We have 2.00 =7 cos 30.0°

.o 2.00
cos 30.0°

and y =r5sin30.0°= 2.31sin30.0°= .
We have r = w/xz + yz and 6=tan! (Z)

=| 231

X

(@) The radius for this new point is

V) +y? =y +y? =[7]

and its angle is

tan~'| L |=[180°=0].
an (£ )- [1507]
(b) J(=20)% +(2y)% = . This point is in the third quadrant if (x, y) is in the first quadrant

or in the fourth quadrant if (x, y) is in the second quadrant. It is at an angle of | 180°+6 |.

(c) JBx)* +(-3y)* = . This point is in the fourth quadrant if (x, y) is in the first quadrant

Chapter 3

or in the third quadrant if (x, y) is in the second quadrant. It is at an angle of .
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58 Vectors
Section 3.2 Vector and Scalar Quantities
Section 3.3 Some Properties of Vectors
x
P3.7 tan 35.0°=
100 m
x = (100 m)tan35.0°= £
100 m
FIG. P3.7
PSR-
6=|65° NofE
R 13 km
- 0
1 km 6 km
FIG. P3.8
P3.9 —R=[310 kmat57° Sof W | Ll BO
bote iéi -
bodoq t
(Scale: 1 unit = 20 km) T
R
A
Fotododot
AT 4
-+
-+
i
L
=
+
FIG. P3.9
P3.10 (@) Using graphical methods, place the tail of
vector B at the head of vector A. The new _ B —B
vector A +B has a magnitude of
6.1 at 112° | from the x-axis. A
A+B
A—B
(b) The vector difference A —B is found by
placing the negative of vector B at the ‘ = — : :
head of vector A. The resultant vector
A — B has magnitude | 14.8 | units at an
gritude | 145 FIG. P3.10

angle of 22° | from the + x-axis.
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P3.11 (@) | d | = ‘ ~10.0i ‘ = since the displacementis in a

straight line from point A to point B.

(b) The actual distance skated is not equal to the straight-line
displacement. The distance follows the curved path of the
semi-circle (ACB). FIG. P3.11

S=%(27zr)=57z:

(c) If the circle is complete, d begins and ends at point A. Hence,

d|=@.

P3.12 Find the resultant F; + F, graphically by placing the tail of F, at the head of F,. The resultant force
vector F; +F, is of magnitude and at an angle of | 57° above the x-axis |

y
F +F
175 F,
F,
x
IS N E—
0123N
FIG. P3.12
P3.13 (@) The large majority of people are standing or sitting at this hour. Their instantaneous foot-to-

head vectors have upward vertical components on the order of 1 m and randomly oriented

horizontal components. The citywide sum will be | ~10° m upward |.

(b) Most people are lying in bed early Saturday morning. We suppose their beds are oriented
north, south, east, west quite at random. Then the horizontal component of their total vector
height is very nearly zero. If their compressed pillows give their height vectors vertical
components averaging 3 cm, and if one-tenth of one percent of the population are on-duty

nurses or police officers, we estimate the total vector height as ~10°(0.03 m)+10(1 m)

~10% m upward |.




60 Vectors

P3.14 Your sketch should be drawn to scale, and N
should look somewhat like that pictured to
the right. The angle from the westward
direction, 6, can be measured to be

S . w X |
4° N of W |, and the distance R from the R 55 3.20
meters
sketch can be converted according to the metersy A 30.0°
scale to be .

—
Im

15.0 meters

<4

S
FIG. P3.14
P3.15 To find these vector expressions graphically, we I O T N
draw each set of vectors. Measurements of the
results are taken using a ruler and protractor.

(Scale: 1 unit=0.5m)

(a) A + B =52mat60°

)  A-B=30mat330°

(0  B-A=30mat150°

(d)  A-2B=52mat300°.

FIG. P3.15

*P3.16 The three diagrams shown below represent the graphical solutions for the three vector sums:
R,=A+B+C,R,=B+C+A,and R; =C+B+A. You should observe that R; =R, =R3,
illustrating that the sum of a set of vectors is not affected by the order in which the vectors are
added.

FIG. P3.16



P3.17

Section 3.4

P3.18

P3.19

P3.20

Chapter 3 61

-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-A

The scale drawing for the graphical solution
should be similar to the figure to the right. The
magnitude and direction of the final displacement
from the starting point are obtained by measuring
d and don the drawing and applying the scale
factor used in making the drawing. The results
should be

(Scale: 1 unit = 20 ft)

d =420 ftand 6=-3° FIG. P3.17

Components of a Vector and Unit Vectors

<

Coordinates of the super-hero are:

x = (100 m)cos(—30.0°) =
y = (100 m)sin(-30.0°) =

T
4

=1
8
/\/'

|| —

FIG. P3.18

A, =-250 — Y

X —

A, =400

A= [AZ+ A2 = (-250) +(40.0)" =[ 472 units | 41.0 A

We observe that 0 0

|4, | [ -25.0 |

tang = |A | .
x FIG. P3.19

So

A
¢=tan™ (ﬁ} = tan% =tan "' (1.60) = 58.0°.
N :

The diagram shows that the angle from the +x axis can be found by subtracting from 180°:

6=180°-58°=|122° |.
The person would have to walk 3.10sin(25.0°) =| 1.31 km north |, and
3.10cos(25.0°) =| 2.81 km east |.
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P3.21 x=rcos® and y=rsin@, therefore:
(@)  x=128cos150°, y=128sin150°, and (x, y)=(~11.1i +6.40j) m
()  x=330c0s60.0°, y=330sin60.0°, and (x, y)=(165i + 2.86j) cm

(©  x=220c0s215°, y=220sin215° and (¥, y) =(~18.0i-12.6j) in

P3.22 x=dcos€=(50.0 m)cos(120) =-25.0 m
y=dsin€=(50.0 m)sin(120) = 43.3 m

~

d=| (=250 m)i+(43.3 m)j

*P3.23 (@) Her net x (east-west) displacement is —=3.00 + 0+ 6.00 = +3.00 blocks, while her net y (north-

south) displacement is 0+ 4.00+ 0 =+4.00 blocks. The magnitude of the resultant
displacement is

R=(xnet)* + (Vner)” =(3.00)> +(4.00)* =5.00 blocks

and the angle the resultant makes with the x-axis (eastward direction) is

O=tan™! (%) =tan"'(1.33) = 53.1°.

The resultant displacement is then | 5.00 blocks at 53.1° N of E |

(b) The total distance traveled is 3.00 + 4.00 + 6.00 =| 13.0 blocks |.

*P3.24  Leti=east and i =north. The unicyclist’s displacement is, in meters N

280j + 220 +360] — 3001 — 120j + 60i — 40j —90i + 70j.

N N R
R =-110i +550j
2 2 1 110 m
= \/ (110 m)” +(550 m)~ at tan ==0 west of north E
=561 m at 11.3° west of north.
FIG. P3.24

The crow’s velocity is

V_ﬂ_561mat11.3°WofN
At 40's

:| 140 m/s at 11.3° west of north |.
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P3.25 +x East, +y North

> x=250+125c0s30°=358 m
3y = 75+1255in30°-150 = ~12.5 m

d= (%) +(Zy)* ={(358)? +(-125)* =358 m

tan@ = (Z y) = —g =-0.0349
(Z x) 358
0=-2.00°

|d=358mat2.00° SofE

63

P3.26 The east and north components of the displacement from Dallas (D) to Chicago (C) are the sums of
the east and north components of the displacements from Dallas to Atlanta (A) and from Atlanta to

Chicago. In equation form:

ADC east = ADA east TAAC east = 73005 5.00°-560 sin 21.0°= 527 miles.
AbC north = DA north T A AC north = 730 5in5.00°+560 cos 21.0° = 586 miles.

By the Pythagorean theorem, d = \/ (Ape east) + (@pC nopn ) = 788 mi.

Then tan@ = 4DC north _ 1.11 and 6 = 48.0°.
DC east

Thus, Chicago is | 788 miles at 48.0° northeast of Dallas |.

P3.27 (a) See figure to the right.

(b)  C=A+B=200i+6.00j+3.00i—2.00j=|5.00i+400j

C=4/250+16.0 at tan" (gj =[6.40 at 38.7°

D =A-B=200i+6.00j—3.00i +2.00j=| —1.00i+8.00j

8.00
D =./(=1.00)* +(8.00)? at t -1(—)
J(=1.00)* +(8.00)? at tan —

D =8.06 at (180°-82.9°) =| 8.06 at 97.2°

P3.28 d:\/(xl +x2+x3)2+(y1 +]/z+3/3)2

= J(s.oo ~5.00+6.00)> +(2.00+3.00+1.00)* =+4/52.0 =[7.21 m
6.00
O=tan™'| —— |=[56.3°
an (420}

FIG. P3.27
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P3.29

P3.30

P3.31

P3.32

Vectors

We have B=R-A:

A, =150 cos120°=-75.0 cm
A, =150sin120°=130 cm
R, =140c0s35.0°=115 cm

R, =140sin35.0°=80.3 cm
FIG. P3.29

Therefore,

B =[115 - (-75)]i + [80.3 - 130j = (1901 - 49.7j) cm

| B|=+190% +49.7% =[ 196 cm |
(7 e
0 =tan ( 19()) .

A =-870i+15.0j and B=13.2i - 6.60j

A-B+3C=0:

or

(@)

(b)

(©

()

()

(@)

(b)

3C=B-A =21.9i-216j
C=7.30i-7.20j

(A+B)=(3i-2j)+(~i-4j)=| 2i-6j

(A-B)=(3i-2j)- (~i-4j)=| 4i+2j

|A+B|=v2%+6° =[632]
A—B|=4" +27 =[ 447 |
Oasn = tanl(—%j:—7l.6°:
Aoy =ton (3] =[265]

D=A+B+C=2i+4j

ID|=+2%+4% =[ 447 m at 0 =63.4°

E=-A-B+C=-6i+6]

[E|=v6% +6> =[ 849 m at §=135°
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P333  d; =(-350j)m
d, =8.20c0545.0°1 +8.205in 45.0° j = (5.80i + 5.80j) m

dy = (—15.0%) m

~
.

R=d, +d, +dy =(~15.0 +5.80)i + (5.80 - 3.50)j = | (~9.20i +2.30j) m
(or 9.20 m west and 2.30 m north)

The magnitude of the resultant displacement is

R|=[R2 + R? =/(-9.20)” +(2.30)" =[948 m .
The direction is 0 = arctan( 2.30 j = .
9.20

P3.34 Refer to the sketch |A|=10.0

R=A+B+C=-10.0i-15.0j+50.0i

—40.0i-15.0j
IR|= [(40.0)2 + (—15.0)2]1/ : =[427 yards | C|=50.0
FIG. P3.34
P3.35 (@) F=F +F,

F =120 cos(60.0°)i + 120 sin(60.0°)j — 80.0 cos(75.0°)i + 80.0sin(75.0°)j
F =60.0i+104j—20.7i +77.3] = (3931 + 181j) N

[F|=+/39.3% +181% =[ 185 N |
(181 _
f=tan 1(%J=

(b) F, = —F=| (-39.3i - 181j) N

P3.36 East West
X ¥
0Om 4.00 m
1.41 1.41
—0.500 —0.866
+0.914 4.55

IR| =[x +]y|” =[ 464 m at 78.6° N of E
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P3.37 A=3.00m, 8, =30.0° B=3.00 m, 85 =90.0°
A, =Acosf, =3.00c0s30.0°=2.60 m A, =Asind, =3.00sin30.0°=1.50 m

A=A d+A,j=(260i+150j) m

B,=0,B,=3.00m SO B=3.00j m

A+B=(260i+150j)+3.00j=| (260i+450j) m

P3.38 Let the positive x-direction be eastward, the positive y-direction be vertically upward, and the
positive z-direction be southward. The total displacement is then

d =(4.80i + 4.80j) cm + (3.70j — 3.70k) cm = (4,801 + 8.50j — 3.70k ) cm.

()  The magnitude is d = /(480)% + (8.50)* +(~3.70)* cm = .

. . 850 . . s
(b) Its angle with the y-axis follows from cosf = 104’ giving | §=35.5° |.

P339 B=B,i+B,j+B.k=400i+600j+3.00k
[B|=+4.00% +6.00% +3.00% =[ 7.81 |

a=cos™ (%) =
e

P3.40 The y coordinate of the airplane is constant and equal to 7.60x10° m whereas the x coordinate is
given by x = v;t where v, is the constant speed in the horizontal direction.

At t=30.0 s we have x =8.04x10°, so v; =268 m/s. The position vector as a function of time
is

~
.

P = (268 m/s)ti +(7.60x10° m]j.

Att=450s,P= [1.21 %101 +7.60 x 103 i] m. The magnitude is

P \/(1.21><104)2 +(7.60x10°)” m=[143x10" m|

and the direction is

7.60x10°
1.21x10*

0= arctan( j: | 32.2° above the horizontal |.



P3.41

P3.42

P3.43

P3.44

Chapter 3

@) A =| 8.00i+12.0j—4.00k

=| 2.00i +3.00j — 1.00k

©) C=-3A=| —24.0i-36.0j +12.0k

~
.

R =75.0c0s 240°1 + 75.0sin 240° j + 125 cos 135°1 + 125 sin 135° j + 100 cos 160° + 100 sin 160° j

R =—37.5i — 65.0] — 88.4i + 88.4j —94.0i + 34.2]

R =| —220i+57.6]

R= 1/(—220)2 +57.6% at arctan(%) above the —x-axis

R = 227 paces at 165° |

@) C=A+B=| (5.00i-1.00j-3.00k) m
1€ = /(5.00)? +(1.00)? + (3.00)> m =

(b) D=2A-B=|(400i-110j+15.0k) m

D= y/(400)° +(110)° +(150) m=[190m |

The position vector from radar station to ship is

~

§=(17.3sin136°1 +17.3 cos136°j) km = (12.01 - 12.4j) km.
From station to plane, the position vector is
P = (19.65in153°1 +19.6 cos 153° j + 2.20k) km,
or
P = (8.90i - 17.5j +2.20k) km.

(@) To fly to the ship, the plane must undergo displacement

D=S-P=|(312i+502j-2.20k) km |.

(b) The distance the plane must travel is

D =[D|=/(3.12)° +(5.02) +(220)" km=631 km |.

67
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P3.45

P3.46

P3.47

Vectors

The hurricane’s first displacement is (

|

25.0 km

41.0 km

displacement is:

with magnitude /(61,5 km)* + (144 km)® =[157 km |.

@)

(b)

(©

Ay

(@)

(b)

(©

~

E =(17.0 cm)cos 27.0°1 + (17.0 cm)sin 27.0° j

E=| (151i+772]j) cm

~
.

F=—(17.0 cm)sin 27.0° i+ (17.0 cm)cos 27.0°j

F=|(-7.72i+151j) cm

~

G =+(17.0 cm)sin 27.0°i+(17.0 cm) cos 27.0° j

G=| (+7.721+15.1j) cm

—-3.00, A, =2.00

~
.

A=Ai+A,j=|-3.00i+2.00j

A= [A2 + A2 = [(-3.00)" +(2.00)* =[ 361 |

A
tang=—L—_200__ 667, tan!(—0.667) = —33.7°
A, (—3.00)

X

0 is in the 2™ quadrant, so 6 = 180°+(—33.7°) = .

R, =0, Ry =—-400, R=A+B thus B=R—-A and

j(3.00 h) at 60.0° N of W, and its second displacement

j(l.SO h) due North. With i representing east and ] representing north, its total

(41.0%&5 60.00)(3.00 h)(—i)+(41.0%sin60.0°j(3.00 h)j + (25.0%)(1.50 h)j =615 km(i)

+144 km j

>
»

FIG. P3.46

B,=R,—A,=0-(-300)=3.00, B, =R, — A, =—4.00—2.00 = —6.00.

X

Therefore, B=| 3.00i —6.00] |.
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P3.48 Let +x = East, +y = North,

X Yy
300 0
-175 303
0 150
125 453

@ e L[S NE]
X
© R [0

P3.49 (a) R, =40.0c0s45.0°+30.0 cos45.0°=49.5
R, =40.0sin45.0°-30.0sin 45.0°+20.0 = 27.1

R =| 49.5i +27.1j

b)  [R[=y(495)"+(271)" =[564]
(271 _
O=tan™ (m) =

FIG. P3.49

P3.50 Taking components along i and } , we get two equations:

6.00a—8.000+26.0=0

and
—8.00a+3.006+19.0=0.

Solving simultaneously,

a=5.00, b=7.00 |.

Therefore,

5.00A+7.00B+C=0.
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Additional Problems

P3.51 Let Orepresent the angle between the directions of A and B. Since
A and B have the same magnitudes, A, B, and R=A + B form an

isosceles triangle in which the angles are 180°—4, g, and g The

magnitude of Ris then R=2A cos(g). [Hint: apply the law of

cosines to the isosceles triangle and use the fact that B=A.]

Again, A, -B, and D = A — B form an isosceles triangle with apex FIG. P3.51
angle 6. Applying the law of cosines and the identity

(1-cos8) = Zsinz(gj

gives the magnitude of D as D =2A sin(g).

The problem requires that R =100D.

Thus, 2A cos(gj =200A sin(g) . This gives tan(gj =0.010 and

[o=15]

P3.52 Let Orepresent the angle between the directions of A and B. Since
A and B have the same magnitudes, A, B,and R=A + B form an

isosceles triangle in which the angles are 180°—4, g, and g The

magnitude of Ris then R=2A cos(g). [Hint: apply the law of

cosines to the isosceles triangle and use the fact that B=A. ]

Again, A, -B, and D = A — B form an isosceles triangle with apex
angle 6. Applying the law of cosines and the identity FIG. P3.52

(1-cosf)=2sin? (gj
2
gives the magnitude of D as D =2A sin(g).

The problem requires that R=nD or cos(g) =n sin(g) giving

0=2tan™" (lj .
n




P3.53

*P3.54

*P3.55

Chapter 3

R, =[3.00

2 2 2
(b) R|=/RZ +R2 +RZ =+/4.00+1.00+9.00 =140 =[ 3.74

(c) cos b, —|1;| =0, =cos" [| J |577° from +x|

R]/ o
cosﬁy:—éﬁy:cos | | —|745 from +y|

R

cos&zz%:w%:cos (| J |367° from +z|

Take the x-axis along the tail section of the snake. The displacement from tail to head is
240 mi + (420 — 240) mcos(180°-105°)i — 180 msin75° j = 287 mi— 174 mj.

Its magnitude is 1/(287)” +(174)> m=335 m. From v = dl%atnce the time for each child’s run is

distance 335 m(h)(1 km)(3 600 s) B
v (12km)(1000 m)(1h)

Olaf: At :M =126 s.
3.33m

Inge: At =

Inge wins by 126 —101 = :

The position vector from the ground under the controller of the first airplane is

1, = (19.2 km)(cos 25°)i +(19.2 km)(sin 25°)j + (0.8 km)k
= (17.4i +8.11j+0.8Kk) km.

The second is at

1, = (17.6 km)(cos 20°)i + (17.6 km)(sin 20°)j + (1.1 km)k
= (16.51 +6.02j+ 11k) km.

Now the displacement from the first plane to the second is
r, -1 =(~0.8631 - 2.09j+ 03k km

with magnitude

J(0863)° +(2.09)° +(03)° =[229km .

7
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*P3.56

*P3.57

Vectors

Let A represent the distance from island 2 to island 3. The
displacement is A = A at 159°. Represent the displacement from 3
to1as B=B at 298°. We have 4.76 km at 37° +A+B=0.

For x-components

(4.76 km) cos 37°+ A cos 159°+B cos 298°= 0

3.80 km—0.934A +0.469B=0
B=-810 km+1.99A FIG. P3.56

For y-components,

(@)

(b)

@)

(b)

(4.76 km)sin 37°+ A sin159°+Bsin 298°=0
2.86 km+0.358A—0.883B=0

We solve by eliminating B by substitution:

2.86 km+0.358 A — 0.883(—8.10 km +1.99A4) =0
2.86 km+0.358 A+7.15 km—-1.76 A=0
10.0 km=1.40A

B=-8.10 km+1.99(7.17 km) =

We first express the corner’s position vectors as sets of components

A =(10 m)cos50°i+(10 m)sin50°j = 6.43 mi+7.66 mj
B = (12 m)cos30°i + (12 m)sin30° j = 10.4 mi +6.00 mj.

The horizontal width of the rectangle is

10.4 m—6.43 m=3.96 m.
Its vertical height is

7.66 m—6.00 m=1.66 m.

Its perimeter is

2(3.96+1.66) m=[11.2m|.

The position vector of the distant corner is Bxi + Ayi =10.4 mi+7.66 m} =+10.4% +7.66> m at
7.66 m
10.4 m

tan~! =[12.9 mat 36.4° |.




P3.58

P3.59

P3.60

P3.61

Choose the +x-axis in the direction of the first force. The total force, y'\\

in newtons, is then

12.0i +31.0j - 8.40i - 24.0j =| (3.601) +(7.00j) N |.

The magnitude of the total force is

(3.60) +(7.00)> N=[7.87 N

7.00
and the angle it makes with our +x-axis is given by tané = (700)

(3.60)"
0 =62.8°. Thus, its angle counterclockwise from the horizontal is

35.0°4+62.8° = .

d, =100i

d, =-300j

d, =-150c0s(30.0°)i — 150 5in(30.0°)j = —130i — 75.0j
d, =-200cos(60.0°)i + 200 sin(60.0°)j = —100i + 173j

R=d, +d,+d; +d, =| (-130i-202j) m
IR = /(-130) + (-202)° =
¢=tan™" (@) =57.2°
130

6=180+¢=[ 237 |

g d(4i+3j-26)
a - dt

=0+0-2j=|—(200 m/s)j

3IN
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x
~

12N

o}

------ horizontal
24 N
\

FIG. P3.58

FIG. P3.59

The position vector at t =0 is 4i+ 33. At t=1s, the position is 4i+ li, and so on. The object is

moving straight downward at 2 m/s, so

d - -
d—: represents | its velocity vector |.

~

v =0,i+v,j=(300+100c0s30.0°)i +(1005in30.0°)]
v =(3871+50.0j) mi/h

[v|=| 390 mi/h at7.37° N of E |
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P3.62  (a)  Youstartatpoint A: 1, =1, =(30.0i-20.0j) m.
The displacement to B is

1; — 1, = 60.0i+80.0j — 30.0i + 20.0j = 30.0i + 100j.

You cover half of this, (15.0i +50.0j) to move to t, =30.0i - 20.0j +15.01 + 50.0j = 45.0i + 30.0j.

Now the displacement from your current position to C is
1. — 1, =—-10.0i —10.0j — 45.0i - 30.0j = —55.0i — 40.0j.
You cover one-third, moving to
I, =1, + Ary; = 45.0i+30.0] +%(—55.oi ~40.0j)=267i+167].
The displacement from where you are to D is
1, —1; = 40.0i—30.0j— 26.7i—16.7j = 13.3i — 46.7].
You traverse one-quarter of it, moving to

r=5 +i(rD —1,)=267i+16.7j+ %(13.3% —46.7j) =30.0i +5.00j.
The displacement from your new location to E is
1 —1, =—70.0i+60.0j— 30.0i — 5.00j = —100i + 55.0]

of which you cover one-fifth the distance, ~20.0i + 11.0}, moving to

1, + Ar,s =30.0i+5.00j — 20.0i + 11.0j = 10.0i + 16.0j.

The treasure is at | (10.0 m, 16.0 m) |

(b) Following the directions brings you to the average position of the trees. The steps we took
numerically in part (a) bring you to

1 T, +1p
1, +—(p—1,)=|24—L
A Z(B A) ( P )
(1) te—0% e

3 3
(ty +15 +l'c)_kl't)_m_ Iy +1p +1Ic +1p

4 4
(ty +15 +1c +ID)_~_1'E_%AAW_ Iy +Ig +Ic +1Ip +1g

4 5 5

then to

then to

and last to

This center of mass of the tree distribution is the same location whatever order we take the
trees in.



*P3.63

P3.64

(@)

(b)

@)

(b)

Chapter 3 75
Let T represent the force exerted by each child. The x- y

component of the resultant force is T

T cos0+T cos120°+T cos240°=T(1)+T(-0.5)+ T(-0.5)=0. T

The y-component is T /

Tsin0+Tsin120+ T'sin240 = 0+ 0.866T —0.866T = 0.
FIG. P3.63
Thus,

STF=0.

If the total force is not zero, it must point in some direction. When each child moves one
. . 360° . .
space clockwise, the total must turn clockwise by that angle, N Since each child exerts

the same force, the new situation is identical to the old and the net force on the tire must still
point in the original direction. The contradiction indicates that we were wrong in supposing
that the total force is not zero. The total force must be zero.

From the picture, R, = ai +bj and R|=+a*+b*. |‘
v ~—
b

R, = ai+ bi +ck; its magnitude is

VIR ¢ =ya? 462+ 2.

FIG. P3.64
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P3.65 Since
A+B=6.00j,
we have
(A, +B,)i+ (Ay + By)} = 0i+6.00j
giving
A, +B,=0or A, =-B,
and

A, +B,=6.00.
Since both vectors have a magnitude of 5.00, we also have
A+ A} =B +B; =5007.

From A, =—B,, itis seen that

A} =B}
Therefore, A2 —|—A§ =B? +B; gives
2 _p2
Ay =B,
Then, A, =B, and Eq. [2] gives
A, =B, =3.00.

Defining 6 as the angle between either A or B and the y axis, it is seen that

A B
Cosg:_y:_y:ﬂ:%oo and 6 =53.1°.
A B 5.00

The angle between A and B is then | ¢ =20 =106° |.

FIG. P3.65



*P3.66

P3.67

Chapter 3

Let Orepresent the angle the x-axis makes with the horizontal. Since
angles are equal if their sides are perpendicular right side to right
side and left side to left side, fis also the angle between the weight
and our y axis. The x-components of the forces must add to zero:

—0.150 N'sin#+0.127 N=0.

©  o-[7]

FIG. P3.66

(@) The y-components for the forces must add to zero:

+T, —(0.150 N)c0s57.9°=0, T, =| 0.0798 N |.

() The angle between the y axis and the horizontal is 90.0°—57.9°= .

The displacement of point P is invariant under rotation of y
2 '
the coordinates. Therefore, r =7’ and r> =(r')" or, v i
2 2 N
x*+y? =(x')" +(y')". Also, from the figure, 3=0—a .
\ . \ r y
~tan! (y—,) =tan! (1) -a \\ N
x x AL .- }1
' (1) —tana ol
y_ X

X l+(%)tana I
. P3.67

Which we simplify by multiplying top and bottom by xcos« . Then,

x'=xcosa+ysina, y' =—xsina+ycosa.

77

ANSWERS TO EVEN PROBLEMS

P3.2

P3.4

P3.6

P3.8

P3.10

P3.12

P3.14

(@) (2.17 m, 1.25 m); (-1.90 m, 3.29 m); P3.16 see the solution
(b) 4.55 m
P3.18 86.6 m and —-50.0 m
(a) 8.60 m;
(b) 4.47 m at —63.4°; 4.24 m at 135° P3.20 1.31 km north; 2.81 km east
(a) rat 180°-0; (b) 2r at 180°+6; (c) 3rat—6  P3.22  —250mi+433mj
14 km at 65° north of east P3.24 14.0 m/s at 11.3° west of north
(a) 6.1 at 112°; (b) 14.8 at 22° P3.26 788 mi at 48.0° north of east
9.5 N at 57° P3.28 7.21 m at 56.3°

7.9 m at 4° north of west P330 C=730cmi-7.20 cmj
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P3.32

P3.34

P3.36

P3.38

P3.40

P3.42

P3.44

P3.46

P3.48

Vectors

(a) 4.47 m at 63.4°; (b) 8.49 m at 135°
42.7 yards

4.64 m at 78.6°

(a) 10.4 cm; (b) 35.5°

1.43x10* m at 32.2° above the horizontal

—220i +57.6] = 227 paces at 165°

(a) (3121 +5.02j - 2.20k) km; (b) 631 km

(a) (1510 +7.72j) em;
(b) (7721 +15.1]) cm;

(©) (+7.721 +15.1j) cm

(a) 74.6° north of east; (b) 470 km

P3.50

P3.52

P3.54

P3.56

P3.58

P3.60

P3.62

P3.64

P3.66

a=>5.00, b=7.00

2tan”! (l)
n
254 s

(@) 7.17 km; (b) 6.15 km

7.87 N at 97.8° counterclockwise from a
horizontal line to the right

(—2.00 my/ s)j ; its velocity vector

(@) (10.0 m, 16.0 m); (b) see the solution

(@) Ry :ai-lrb}; R1|:\/a2+b2;
(b) R, :ai+bj+cf<; R2|:xlaz+b2+c2

(a) 0.079 8N (b) 57.9% (c) 32.1°




Q4.3

Q44
Q4.5

Q4.6

Motion in Two Dimensions

ANSWERS TO QUESTIONS

Q4.1 Yes. An object moving in uniform circular motion moves at a
constant speed, but changes its direction of motion. An object
cannot accelerate if its velocity is constant.

Q4.2 No, you cannot determine the instantaneous velocity. Yes, you
can determine the average velocity. The points could be widely
separated. In this case, you can only determine the average
velocity, which is

AX
At

V=

@  10i m/s b)  -9.80j m/s?

The easiest way to approach this problem is to determine acceleration first, velocity second and
finally position.

Vertical: In free flight, a, =—g. At the top of a projectile’s trajectory, v, =0. Using this, the
maximum height can be found using vﬁy = vl-zy +2a, (y I yi).

Horizontal: a, =0, so v, is always the same. To find the horizontal position at maximum

height, one needs the flight time, ¢. Using the vertical information found previously, the flight time
can be found using v, =v;, +a,t. The horizontal position is x ¢ = v;t.

If air resistance is taken into account, then the acceleration in both the x and y-directions
would have an additional term due to the drag.

A parabola.
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Q4.7

Q4.8

Q4.9

Q4.10

Q4.11

Q4.12

Q4.13

Q4.14

Q4.15

Q4.16

Q4.17

Q4.18

Q4.19

Q4.20

Q4.21

Q4.22

The balls will be closest together as the second ball is thrown. Yes, the first ball will always be
moving faster, since its flight time is larger, and thus the vertical component of the velocity is larger.
The time interval will be one second. No, since the vertical component of the motion determines the
flight time.

The ball will have the greater speed. Both the rock and the ball will have the same vertical
component of the velocity, but the ball will have the additional horizontal component.

(@) yes (b) no (c) no (d) yes (e) no

Straight up. Throwing the ball any other direction than straight up will give a nonzero speed at the
top of the trajectory.

No. The projectile with the larger vertical component of the initial velocity will be in the air longer.

The projectile is in free fall. Its vertical component of acceleration is the downward acceleration of
gravity. Its horizontal component of acceleration is zero.

(@) no (b) yes (c) yes (d) no

60°. The projection angle appears in the expression for horizontal range in the function sin2 6. This
function is the same for 30° and 60°.

The optimal angle would be less than 45°. The longer the projectile is in the air, the more that air
resistance will change the components of the velocity. Since the vertical component of the motion

determines the flight time, an angle less than 45° would increase range.

The projectile on the moon would have both the larger range and the greater altitude. Apollo
astronauts performed the experiment with golf balls.

Gravity only changes the vertical component of motion. Since both the coin and the ball are falling

from the same height with the same vertical component of the initial velocity, they must hit the floor
at the same time.

(@) no (b) yes
In the second case, the particle is continuously changing the direction of its velocity vector.
The racing car rounds the turn at a constant speed of 90 miles per hour.

The acceleration cannot be zero because the pendulum does not remain at rest at the end of the arc.

(@) The velocity is not constant because the object is constantly changing the direction of its
motion.
(b) The acceleration is not constant because the acceleration always points towards the center of

the circle. The magnitude of the acceleration is constant, but not the direction.

(@) straight ahead (b) in a circle or straight ahead



Q4.23

Q4.25

Q4.26

Q4.27

Q4.28

Chapter4 81
Q4.24

The unit vectors # and @ are in dlfferent dlrectlons at different points in the xy plane At a location
along the x-axis, for example, r =1 iand 9= ), but at a point on the y-axis, = ) and @ = —i. The unit
vector i is equal everywhere, and ] is also uniform.

The wrench will hit at the base of the mast. If air resistance is a factor, it will hit slightly leeward of
the base of the mast, displaced in the direction in which air is moving relative to the deck. If the boat

is scudding before the wind, for example, the wrench’s impact point can be in front of the mast.

(@) The ball would move straight up and down as observed by the passenger. The ball would
move in a parabolic trajectory as seen by the ground observer.

(b) Both the passenger and the ground observer would see the ball move in a parabolic
trajectory, although the two observed paths would not be the same.

(@) g downward (b) g downward

The horizontal component of the motion does not affect the vertical acceleration.

SOLUTIONS TO PROBLEMS

Section 4.1 The Position, Velocity, and Acceleration Vectors
P4.1 x(m) y(m)
0 -3 600
-3 000 0
-1270 1270

4270 m 2330 m

(@) Net displacement = y/x* +y*

=| 487 km at 28.6° Sof W |

FIG. P41

(20.0 m/s)(180 s)+(25.0 m/s)(120 s)+(30.0 m/s)(60.0 s)

=|23.3 m/s
180 s+120 s+60.0 s

(b) Average speed =

4.87x10° m

C Average velocity =
(c) verage velocity 360 5

=| 13.5 m/s along R |
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~

P4.2 @) r=| 180 +(4.00t - 4.90¢?)j

(®)  v=| (180 mys)i+[400 nys-(9.80 m/s?)t];j
(c) a= (—9.80 m/sz)j
(d)  r(300s)=| (540 m)i—(321m)j |
€  v(3.00s)=| (180 m/s)i—(25.4 my/s)j
® a(3.00 5)=| (-9.80 m/s?)j
*P4.3 The sun projects onto the ground the x-component of her velocity:
5.00 m/s cos(—60.0°) = .
P4.4 (@) From x=-5.00sinwt, the x-component of velocity is

v, = ax _ (i)(—S.OO sinwt)=-5.00wcoswt
dt  \dt

and a, = do, _ +5.000°% sinw t
dt
.y d .
similarly, v, = n (4.00-5.00coswt)=0+5.00wsinwt

and a, = (%)(5.000) sinwt)= 5.000>% coswt.

Att=0, v=-5.000c0s0i +5.000sin0j =| (5.00i+0j) m/s

and a =5.000” sin0i +5.000° cos 0 = | (0i+5.000%j) m/s* |.

(b) r=xi+ yi =|(4.00 m)j +(5.00 m)(— sinwti-coswt i)

v=|(5.00 m)a)-—cosa)ti+sina)t}-

a=|(5.00 m)w? [sinwti+ cosa)tj-

(©) The object moves in | a circle of radius 5.00 m centered at (0, 4.00 m) |
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Section 4.2 Two-Dimensional Motion with Constant Acceleration

P4.5 (@) vy=v;+at

v (9.00i +7.00j) - (3.00i - 2.005) [ 200+ 3005
' 3.00

N 1 ., 3 A, 1 3 %) ,2
®)  y=rnavioatis (3.001—2.00])t+5(2.001+3.00])t

x=(3.00t+#*) m | and | y = (150> ~2.00¢) m

dl' d N 2% A
P4.6 @  v=_ = (E)(?).OOI ~6.00¢7) =| ~12.0tj m/s

_dv_(d) AV PTY 2
a= T _(dtj( 12.0t])— 12.0j m/s

(b) r =(3.00i-6.00j) m; v=-12.0j m/s

P4.7 v; =(4.00i +1.00j) m/s and v(20.0)=(20.0i - 5.00j) m/s

A 0-4
(a) a, = Avtx _20 (;0(;100 m/s* =| 0.800 m/s?
Av, _ _
a, = Aty = 5'0200 01'00 m/s? =| —0.300 m/s>

800

(b) O=tan! (%j =-20.6°= | 339° from + x axis |
(c) Att=250s

1 1 2
X=X+ 0t +Eaxt2 =10.0 + 4.00(25.0) +E(O.800)(25.O) =
1

1 2 2
Y =yi+ogttoat = —4.00 +1.00(25.0) +E(_0'300)(25'0) =
Uyp =0y +a,t=4+0.8(25) =24 m/s
vy =0y +a,t=1-03(25)=-6.5 m/s

_ 1 Uy _ 1 —6.50 _ P
0 =tan (Z =tan m —
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P4.8 a= 3.005 m/s?; v, = 5.00i m/s; r; = 0§+0§

(@) I :ri+vit+%at2: 5.00ti+%3.00t23 m

v, =v;+at=|(500i+3.00£) m/s

(b) t=2.00's, 1; =5.00(2.00) +%(3.00)(2.00)23 =(10.0i+6.00j) m
S0 X ¢ :| 10.0m |, y¢ :| 6.00 m |
v =5.00i+3.00(2.00) ] = (5.00i +6.00j) m/s
v =|vy|=fo? +0% ={/(5.00)" +(6.00)" =
*P4.9 (@) For the x-component of the motion we have x, = x; +v,,t + %uxtz.

0.01 m=0+(1.80x10” m/s)t+%(8 x10" m/s?)¢>

(4x10" m/s?)£* +(1.80x 107 m/s)t ~10> m =0

~1.80x 107 m/s + \/(1.8 x107 m/s)2 —4(4x10" m/s?)(<10m)
- 2(4x10" m/s?)

_ -1.8x107 +1.84x10” m/s
8x10™ m/s?

We choose the + sign to represent the physical situation

439x10°
= 23S 5 49,1070 s,
8x10" m/s
Here

2
Y=Y +vyit+%ayt2 :0+0+%(1.6><1015 m/s?)(549x10™ s)" =2.41x10™* m.

So, | 1, =(10.0 i+0.241 j) mm |

()  vp=v;+at=180x10"m/si+(8x10" m/s*i+16x10" m/s*j)(5.49x 107" s)

= (1.80x107 mys)i+ (439 x 10> m/s)i +(8.78 x 10° m/s)

=| (1.84x107 mys)i+(8.78 x 10° m/s)j

©  |vl= \/(1.84>< 107 mjs)” +(8.78 x 10° mys)” =[ 185 107 mys |

U 5
(d) O=tan™'| L |=tan! m =| 2.73°
v, 1.84x10




Section 4.3 Projectile Motion

P4.10

P4.11

xX=v,t=0;cos0;t
x =(300 m/s)(cos55.0°)(42.0 s)

x=|7.23%x10° m

1 : 1
y= vyit‘—zgt2 =v;sinf;t —Egt2
y=(300 m/s)(sin55.0°)(42.0 s)—%(9.80 m/s?)(42.0 5)* =| 168 x10° m

(@) The mug leaves the counter horizontally with a velocity v;
(say). If time t elapses before it hits the ground, then since there
is no horizontal acceleration, x £ =04t ie.,

(X _ (140 m)

v v

Xi xi

In the same time it falls a distance of 0.860 m with acceleration
downward of 9.80 m/s*. Then

1 1
Yy =yi+vyit+zayt2: 0=0.860 m+5(—9.80 m/sz)(

ty

Chapter 4

+X

‘ i
nl

AN

\

KV

FIG. P4.11

1.40 m

2
Oyi j

Thus,
(490 m/s?)(1.96 m?)
= =|3.34 .
Ui \/ 0.860 m
(b) The vertical velocity component with which it hits the floor is
3 3 2\ 140m |
Oy =0y +a,t=0+ (—9.80 m/s )(334—111/5 =—411 m/s.

Hence, the angle @ at which the mug strikes the floor is given by

_ -1 vyf _ -1 —4.11 _ 5
0 =tan [— =tan ﬁ —.

vxf

85
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P4.12

The mug is a projectile from just after leaving the counter until just before it reaches the floor. Taking
the origin at the point where the mug leaves the bar, the coordinates of the mug at any time are

,X'f :'Uxit‘i‘%ux tzzvxit""o and yf :int-l-%ﬂytz :0—%gt2.

When the mug reaches the floor, y; =—h so

L .2
~h=——gt
58
which gives the time of impact as
s
g

(@) Since x; =d when the mug reaches the floor, x; =v,; t becomes d =v,; /Z?h giving the

initial velocity as

Uxi:d i .
2h

(b) Just before impact, the x-component of velocity is still

Uxf = Uy

/Zh
V=0, +a,t=0-g ?

Then the direction of motion just before impact is below the horizontal at an angle of

while the y-component is

2h

v 8
f=tan! M =tan " Bl . S tanl(z—hj .
Vyf d % d




P4.13

P4.14

Chapter 4

(@) The time of flight of the first snowball is the nonzero root of y; =y; +v,,t; +%11yif12

0=0+(25.0 m/s)(sin70.0°)¢, - %(9.80 m/s? )t}

. _ 2250 m/s)sin70.°

=479s.
! 9.80 m/s’

The distance to your target is

X;—x; =0t =(25.0 m/s)c0s70.0°(4.79 5) =41.0 m.
Now the second snowball we describe by
L .2
Ye=Yyi+ vyitz +ant2
0=(25.0 mys)sin0,t, —(4.90 m/s* )3

t, =(5.10 s)siné,
Xp=X; =0yt

41.0 m=(25.0 m/s)cos 6,(5.10 s)sind, = (128 m)sind, cos 6,

0.321 =sin @, cos 0,

1
Using sin 20 = 2sin & cos § we can solve 0.321 = Esin 20,

20, =sin"' 0.643 and 6, =| 20.0° |.

87

(b) The second snowball is in the air for time ¢, =(5.10 s)sin8, =(5.10 s)sin20°=1.75 s, so you

throw it after the first by

t,—t, =479 s—1.75 s:.

From Equation 4.14 with R=15.0 m, v; =3.00 m/s, 6, =45.0°

2
_Di _900_ 2
§=5 =150 ~ 0600 m/s
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2 6in2 0. 2(sin 20,
Pa1s  p=liSnTOi g U (sin ’),- 3h=R,
28 g
“ 30Zsin0; 0} (sin26),)
2g 8

2 sin? 6, _ tang,

3 sin20, 2
(2 5370
thus 6; =tan (5 —.

*P4.16 (@) To identify the maximum height we let i be the launch point and f be the highest point:

vy = 0y + 2,y ~¥;)
0= viz Sin2 61’ + 2(_g)(]/max - 0)
o7 sin? 6,
2g '

Ymax =
To identify the range we let i be the launch and f be the impact point; where ¢ is not zero:
1
Y=Y+ vyii}+5ayif2

0=0+7; sir16’iif+%(—g)if2
= ZUI' Sih@i
8
1
Xg =xi+vxit+5uxt

2v;sin 6,

d=0+7v;cosb,; +0.

For this rock, d =y,

o7 sin? 6, 3 207 sin @), cos b,

28 8
sinf; _ tand; =4
cos 6,

0-
(b) Since g divides out, the answer is on every planet.

() The maximum range is attained for 6; =45°:

dax  0;C0845°20;8in45°¢ 2125

d gv; C0s76°2v; sin76°

max

Sod_ . =|—|.

max
8
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P417  (a) X =0, t=8.00c0s20.0°(3.00) =

(b) Taking y positive downwards,
1
Yg= vyl-t + Egt
. o 1 2
y; =8.005in 20.0°(3.00) +§(9.80)(3.00) =|523m|.
(c) 10.0 = 8.00(sin 20.0°)t + %(9.80)152

4.90t% +2.74t-10.0=0
—2.74+4/(2.74)% +196

t= 9.80 -

*P4.18 We interpret the problem to mean that the displacement from fish to bug is

~

2.00 m at 30°=(2.00 m)cos30°i + (2.00 m)sin30°j = (1.73 m)i + (1.00 m)j.

If the water should drop 0.03 m during its flight, then the fish must aim at a point 0.03 m above the
bug. The initial velocity of the water then is directed through the point with displacement

(1.73 m)i +(1.03 m)j = 2.015 m at 30.7°.
For the time of flight of a water drop we have

1
Xp=x+ vxit+zaxt2

1.73 m =0+ (v; cos30.7°)t +0 so

~ 173m
v;c0830.7°

The vertical motion is described by
L 2
Ye=Yi+ vyit+5ayt .
The “drop on its path” is

2
1.73 m ]

~3.00 cm= l(—9.80 m/sz)(—
2 v; 0s30.7°

Thus,

_173m [9.80 m/s® 1y
% o0 2003 m =~ 2015 m(12857)=[ 58 mye ]
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P4.19 (@) We use the trajectory equation:

2
Yp=x; tan&i—%.
With
Xy =36.0 m, v; =20.0 m/s, and 8=53.0°
we find

(9:80 m/s?)(36.0 m)?

Y¥s =(36.0 m)tan53.0°- > =3.94 m.
2(20.0 m/s)” cos*(53.0°)
The ball clears the bar by
(3.94-3.05) m=| 0.889 m |.
(b) The time the ball takes to reach the maximum height is
sin@; (20.0 m/s)(sin53.0°
f, - 2usinG; _ (200 mys) . ) _1635.
g 9.80 m/s
. . . X¢
The time to travel 36.0 m horizontally is t, =——
, = 360 m =299s.
(20.0 m/s)(cos53.0°)
Since t, > t; | the ball clears the goal on its way down |
P4.20 The horizontal component of displacement is x = v,;t = (v; cos 0; )t . Therefore, the time required to
reach the building a distance d away is f = o At this time, the altitude of the water is
v; cos b;
2
1 2 . d g d
=v,t+—a,t" =v;sinb,; - .
V=Pt oy ' ’(vicosé?ij Z(Uicosﬁi]

Therefore the water strikes the building at a height & above ground level of

2
h=y;=|dtang; - 8

Zviz cos” 0,




*P4.21

@)

(b)

(©

Chapter 4

For the horizontal motion, we have

Xp=x+ vxit+%axt2
24 m=0+v;(cos53°)(2.2 s)+0

1
As it passes over the wall, the ball is above the streetby y; =y; +v,;t + Euytz

y; =0+(181 m/s)(sin53°)(2.2 s)+%(—9.8 m/s*)(2.25)* =813 m.

So it clears the parapet by 813 m—-7 m= .

Note that the highest point of the ball’s trajectory is not directly above the wall. For the
whole flight, we have from the trajectory equation

8 2
=(tan@. )x; - | —=2——— |x
Vi ( 1) f (Zvizcoszeij f

or
6 m = (tan53°)x; —{ o8 m2/52 Jx%
2(18.1 m/s)” cos®53°
Solving,
(0.0412 m™ )x} ~133x; +6 m=0
and

1.33+,/1.332 - 4(0.0412)(6)
x =
f 2(0.0412 m ™)

This yields two results:

Xy =26.8 mor5.44m

The ball passes twice through the level of the roof.

It hits the roof at distance from the wall

26.8m—24m:.
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*P4.22 When the bomb has fallen a vertical distance 2.15 km, it has traveled a horizontal distance x f given by

x; =4(3.25 km)? — (215 km)? =2.437 km
8%
207 cos?
(98 m/s?)(2437 m)*
2(280 m/s)2 cos?
».=2150 m = (2437 m)tan ) - (37119 m)(1 + tan> 6,

Yp=xptanf-

—2150 m = (2437 m)tan6; -

~tan? 0—6.565tan @, —4.792 =0

~tang, = %(6.565 +)(6.565) - 4(1)(—4.792)) =3.283+3.945.

Select the negative solution, since 6; is below the horizontal.

~.tan@; =—0.662,

P4.23 The horizontal kick gives zero vertical velocity to the rock. Then its time of flight follows from
1
Y=Yy +o,t +anif2
~40.0 m=0+0 +%(—9.80 m/s” )t>
t=286 s.
The extra time 3.00 s —2.86 s =0.143 s is the time required for the sound she hears to travel straight

back to the player.
It covers distance

(343 m/s)0.143 5 =49.0 m = y/x* +(40.0 m)*

where x represents the horizontal distance the rock travels.

x=283m=vt+0t>

28.3 m
R YT :




P4.24
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From the instant he leaves the floor until just before he lands, the basketball star is a projectile. His
vertical velocity and vertical displacement are related by the equation vﬁf = vj,» +2a, (y I yi).

Applying this to the upward part of his flight gives 0 = vﬁi + 2(—9.80 m/s? )(1.85 —1.02) m. From this,
v,; =4.03 m/s. [Note that this is the answer to part (c) of this problem. ]
For the downward part of the flight, the equation gives vﬁf =0+ 2(—9.80 m/ sz)(0.900 —-1.85) m.

Thus the vertical velocity just before he lands is

vy =—432 m/s.

(@) His hang time may then be found from v, =v,; +a,t:
432 m/s =403 m/s+(-9.80 m/s? )t

(b) Looking at the total horizontal displacement during the leap, x = v,;t becomes

2.80 m=1v,;(0.852 s)
which yields v,; =| 3.29 m/s |.
(c) v, =| 403 m/s |. See above for proof.

1 Yyi _1[ 403 m/s
d The takeoff angle is: #=tan™'| - |=tan"'| ——— |=[50.8° |.
(d) e takeoff angle is an (U ‘ an 329 mjs

pe

(e) Similarly for the deer, the upward part of the flight gives
2 _.2 .
oy =0y +2a,(y; —yi):

0=03; +2(-9.80 m/s*)(250-1.20) m
s0 v,; =5.04 m/s.

For the downward part, Ujf = U;i + Zuy(yf - yi) yields vjf =0+ 2(—9.80 m/sz)(0.700 —-2.50) m
and v, =-5.94 m/s.

The hang time is then found as v, =v,; +4a,t: -5.94 m/s=5.04 m/s+ (—9.80 m/sz)t and

[i=115s].



94  Motion in Two Dimensions
*P4.25 The arrow’s flight time to the collision point is
Xp =X 150 m

t = = = 5.19 S.
vy (45 m/s)cos50°

The arrow’s altitude at the collision is
L
Yp=Y; ot +ant
= 0+(45 m/s)(sin50°)5.19 s+%(—9.8 m/s?)(5.19 5)* =47.0 m.

(@) The required launch speed for the apple is given by

oy =y +2a,(y; - i)

0="03 +2(-9.8 m/s*)(47 m-0)

v, =|30.3 m/s |.

(b) The time of flight of the apple is given by

Uy =0y Ta,t
0=30.3 m/s—9.8 m/s*¢
t=3.10s.

So the apple should be launched after the arrow by 519 s—3.10 s = .

*P4.26  For the smallest impact angle

f=tan"" v—yf
Uxf

we want to minimize v,; and maximize v,; = v,;. The final y-component

{
(B
\

1
|

|
1
1

of velocity is related to v,; by vﬁf = vj,» +2gh, so we want to minimize v, ‘\\

and maximize v,;. Both are accomplished by making the initial velocity

horizontal. Then v,; =v, v, =0, and v,; =,/2gh . At last, the impact FIG. P4.26
angle is

f=tan! (Uifj =| tan™ [—“Zgh} .
v

xf v
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Section 4.4 Uniform Circular Motion

P4.27

P4.28

P4.29

P4.30

P4.31

02 (200 mys)” .

The mass is unnecessary information.

2
a =%, T =24 h(3600 s/h)=86400 s

,_27R _27(6.37 % 10° m)

=463 m/s
T 86400 s
(463 m/s)2 BT
a=———7-"—= | 0.0337 m/s” directed toward the center of Earth |.
6.37 x10° m
r=0.500 m;
27zr  27(0.500 m)
v, = = 00 =10.47 m/s=|10.5 m/s
2 (1047)°
:U—:( ) :|219 m/szinward|
R 0.5

2

v
a,=—
’

v=\lar =,[3(9.8 m/s?)(9.45 m) =167 m/s

Each revolution carries the astronaut over a distance of 2z r = 27(9.45 m) =59.4 m. Then the rotation
rate is

1 rev
16.7 m/s(59‘4mj= 0.281 rev/s |.

(@) V=T®
At 8.00 rev/s, v=(0.600 m)(8.00 rev/s)(2x rad/rev)=30.2 m/s =9.607 m/s.
At 6.00 rev/s, v=(0.900 m)(6.00 rev/s)(2x rad/rev)=33.9 m/s=10.87 m/s.

6.00 rev/s |gives the larger linear speed.

2 (9.607 m/s)*

(b) Acceleration = ~— = :| 1.52x10° m/s2 |
r 0.600 m
(10.87 m/s)*
(©) At 6.00 rev/s, acceleration = ~——————— =| 1.28x10° m/s? |

0.900 m
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P4.32 The satellite is in free fall. Its acceleration is due to gravity and is by effect a centripetal acceleration.
ac=g
SO
02
E— g .
’
Solving for the velocity, v=/rg = \/(6,400 +600)(10° m)(8.21 m/s?) =|7.58 x10° m/s
27
v="n
T
and

27r  27(7,000x10° m)

T= - =|5.80x10° s
v 7.58x10° m/s

T =5.80x10° s(l mmj =967 min.
60 s
Section 4.5 Tangential and Radial Acceleration
P4.33 We assume the train is still slowing down at the instant in question.
2
a, =——=129 m/s’
' 150m &
3
Ay (400 km/h)(lo m/km)(—?) 1h s) .
a, =20 = =-0.741 m/s
At 150 s @

®

a=rfa? +a? = \/(1.29 m/s?)” +(-0741 m/s?)’

FIG. P4.33

u .
at an angle of tan™! (u] —tan! (%j
uC

1.29

a :| 1.48 m/s* inward and 29.9° backward

P434 (@) a-=

02 (400 mys)” .
(b) “r—T—W—
O =i [T

6=tan' °r =[531° inward from path |
a




P435  r=250m,a=150 m/s?
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(a) a. =acos30.0° = (15.0 m/sz)(cos 30°)=|13.0 m/s*
2
® a==- -
g _15. (—)Aﬁ{ /s?
so v? =ra, =2.50 m(13.0 m/sz):32.5 m?/s? 4=
v=+/32.5 m/s=| 570 m/s FIG. P4.35
(c) a® =al +a?
2
S0 a; =ya*—a’ = \/(15.0 m/sz) —(13.0m/sz) =|7.50 rn/s2
P4.36 (@) See figure to the right.
(b) The components of the 20.2 and the 22.5 m/s? along the rope together
constitute the centripetal acceleration:
a. =(225 m/s?)cos(90.0°-36.9°)+ (202 m/s*)cos36.9°=| 297 m/s’
2 Jar =4/29.7 m/s? (150 m) = 6.67 ircl
(c) a, = SO U =,/a,r =4/29. m/s (1.50 m) =6.67 m/s tangent to circle FIG. P4.36
v =| 6.67 m/s at 36.9° above the horizontal |
*P4.37  Let i be the starting point and f be one revolution later. The curvilinear motion a;
with constant tangential acceleration is described by
oy
1 > a
Ax= vxit+5uxt
2rr=0+ %uttz
drr FIG. P4.37

4rr
and v,y =v,; +a,t, v, =0+a,t= % The magnitude of the radial acceleration is a, = -

a, =—5—
12

v _16x%r

t2r

a Arrt? 1
Then tanf=—t=——"——_——=—— 6=|455°|.
PRREE P
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Relative Velocity and Relative Acceleration

Section 4.6
P438  (a) Vi =0+agt =(3.00i - 2.005) m/s*(5.00 s)
vy =(15.0i-10.0j) mys
vy =0+a;t =(1.00i+3.00j) m/s* (5.00 s
vy =(5.00i+15.0j) m/s
Vi = 0y — vy = (15.0 - 10.0j - 5.001 - 15.05) my/s
viy =(10.01-25.05) m/s
[Vig| =/(10.0)* +(25.0)* my/s=
() Iy =O+O+%aHt2 =%(3.00i—2.00}) m/s? (5.00 s)*

*P4.39

= (37,51~ 25.0j) m

1= %(1.003 +3.00j) m/s” (5.00s)* = (12,51 +37.5]) m
iy =Ty — 1y = (37.51 - 250~ 1251 - 37.5]) m
1y = (25.0i- 625]) m

Ity | =(25.0) +(625) m =

(©) apy =y —a; =(3.00i - 2.00j - 1.00i - 3.00j) m/s*

apy =| (2.00i-5.00j) m/s?

v, = the velocity of the car relative to the earth.
v, = the velocity of the water relative to the car.
v, =the velocity of the water relative to the earth.

These velocities are related as shown in the diagram at the right.

(@) Since v, is vertical, v, sin60.0°=v, =50.0 km/h or
A\ :| 57.7 km/h at 60.0° west of vertical |

(b) Since v, has zero vertical component,

V.
we
Ve

60°

Vwe = VCC + VZUC

FIG. P4.39

= Uy €0560.0°= (57.7 km/h)cos60.0°=| 289 km/h downward |.

Uwe = P
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P4.40 The bumpers are initially 100 m = 0.100 km apart. After time ¢ the bumper of the leading car travels
40.0 t, while the bumper of the chasing car travels 60.0¢.
Since the cars are side by side at time ¢, we have

0.100 + 40.0t = 60.0¢,

yielding

t=5.00><10’3h:.

. . d 2000 3
P4.41 Total time in still water t =—=——=| 1.67 x10° s |.
i water t=—="—_

Total time = time upstream plus time downstream:

up = (1.23 ?(())(.)500) <1310 s
tdown = % =588 s.
Therefore, =143 x10° +588 =| 202x10° s |.
P442  0=v150° +300% =[153 km/h |
f=tan™" (M) = | 11.3° north of west |
150
P4.43 For Alan, his speed downstream is ¢ + v, while his speed upstreamis c—v.
Therefore, the total time for Alan is
L L 2L

°|

IS

[N}

2L 2
Thus, the total time for Beth is ¢, = = £

\/cz—vz \/1—%

2
. [ . .
Since 1-—-<1,t >t,, or Beth, who swims cross-stream, returns first.
c
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P4.44 (@) To an observer at rest in the train car, the bolt accelerates downward and toward the rear of
the train.

a= \/(2.50 m/s)2 +(9.80 m/s)2 :

0= | 14.3° to the south from the vertical |

(b) a :| 9.80 m/ s? vertically downward |

P4.45 Identify the student as the S” observer and the professor as
the S observer. For the initial motion in S’, we have

Z)I
— = tan60.0°= 3.
UX

Let u represent the speed of S’ relative to S. Then because
there is no x-motion in S, we can write v, =v) +u=0 so
that v, = —u=-10.0 m/s. Hence the ball is thrown ,

backwards in S’. Then, Ty y
— U
v, =0}, =3[0} =10.0v3 mys. 17> :
o\, Lt
Using vﬁ =2gh we find o’ X0 X
(b) (©
FIG. P4.45

(10043 m/s)2 )
" 2(9.80 m/sz) _.

The motion of the ball as seen by the student in 5" is shown in diagram (b). The view of the professor
in S is shown in diagram (c).

*P4.46  Choose the x-axis along the 20-km distance. The y- X
components of the displacements of the ship and N \ /
the speedboat must agree: ! /
1 40° 1 25°
(26 km/h)tsin(40°~15°)=(50 km/h)tsina 152
a=sin 22 _127°. y,
50 e ¥
The speedboat should head Y
FIG. P4.46

15°+12.7°=| 27.7° east of north |.
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Additional Problems

*P4.47

P4.48

P4.49

(@)

(b)

(©

(d

The speed at the top is v, = v; cos §; = (143 m/s)cos45°=| 101 m/s |.

In free fall the plane reaches altitude given by

vy =0y +2a, (v —v;)
0=(143 m/ssin45°)" +2(-9.8 m/s*)(y, —31000 ft)

y;=31000 ft+522 m(3'28 ftj: 3.27 x10° ft |.
Im

For the whole free fall motion v,; =v,; +a,t

~101 m/s=+101 my/s—(9.8 m/s’}¢

v=ar = [08(9.8 m/s?}4,130 m =

At any time ¢, the two drops have identical y-coordinates. The distance between the two drops is
then just twice the magnitude of the horizontal displacement either drop has undergone. Therefore,

d= 2|x(t)| =2(v,t) = 2(v; cos 6; )t = .

After the string breaks the ball is a projectile, and reaches the ground at time t: y; = v, +%11yif2

~120 m=0 +%(—9.80 m/s?)t>

so t=0.495s.

x  2.00m

Its constant horizontal speed is v, =—= =4.04 m/s

t 0495s

v
so before the string breaks 4, =—*=-——"——"—=

|><l\)
A~~~
o5
W | =~
S|a
CRRT
[ °)
(@)]
=
I
=]
w
[\ )
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8 —
P4.50 (a) yf =(tan9i)(xf)—mx% ///V
1 1 v; _ -~ d
Setting x ; =dcos¢, and y; =dsing, we have [
! ! A\
o B g 2
dsin ¢ =(tan 6, )(d cos ¢) —ZU? ) (dcosg)”. FIG. P4.50

202 cos b, [sir\ 0; cos ¢ —sin ¢ cos 01-]

Solving for d yields, d =

gcos® ¢
or d— 207 cos b sizn(ei - 9) ‘
gcos” ¢
2 .
2(1-
(b) Setting Ad_ 0 leads to | 6; = 45"+2 and | d,,, =Ul(—szm¢) .
o, 2 gcos” ¢

P4.51 Refer to the sketch:

(b) Ax =wv,t; substitution yields 130 = (v; cos 35.0°)t.

1
Ay=v,t+ Eat‘2 ; substitution yields

20.0 = (v; sin35.0°)¢ +%(—9.80)t2.

Solving the ab ives t=|3.81s |.
olving the above gives FIG. P4.51
(a) v; =| 417 m/s

(c) vy =0;8inG; - gt, v, =v; cos b

Att=381s, v, =4175in35.0°(9.80)(3.81)=[ ~13.4 my/s

v, =(41.7¢0s35.0°) =[ 341 ny/s |
vy =0 + vy =[367 mys |



P4.52

P4.53

P4.54

@)

(b)

(@)

(b)

(©

XfZU

Thus, when Xp= 100m, t=

Chapter4 103

The moon’s gravitational acceleration is the probe’s centripetal acceleration:
(For the moon’s radius, see end papers of text.)

0
.
r
1 2\ _ v’
6(9'80 m/s )_1.74><106 m

0=1/284x10° m?/s* =

2rr
V=——
T
271 27(1.74x10° m) 3
T="—= =6.47x10° s=[1.80 h
v 1.69x10° m/s
0% (5.00 m/s)2 50 w7 S
a, =—= = . m/s 7 ~
oy 1.00 m 7 AN
/ \
a, =g=|9.80 m/s’ ! )
25.0 25.0
| |
See figure to the right. ¢ i i qﬁj 1
080  * 777980

a=+a+a? :\/(25.0 m/sz)2+(9.80 rn/sz)2 : AN o
_ 1 9.80 m/s”
g=tan 1(:—ijtan 1ﬁ:

FIG. P4.53

it = v;t cos 40.0°

10.0 m
v; c0540.0°

At this time, y; should be 3.05 m-2.00 m=1.05 m.

2
-sin 40.0°)10.0
Thus, 1.05 m = (Uz sin ) m ] (—9.80 m/sz){ 10.0 m } .

+ f—
v; cos 40.0° 2 v; cos 40.0°

From this, v; = .
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P4.55

The special conditions allowing use of the horizontal range equation applies.
For the ball thrown at 45°,

2 .
D=Ry = v; sm90‘

For the bouncing ball,

v? sin 26 . (%)2 sin26

D=R, +R, =
8 8

where #is the angle it makes with the ground when thrown and when bouncing.

(a) We require: Pt —~o
-7 >
2 2 . 2 . - . ~
v _ Y sm26?+v,» sin 26 4/29‘_# T /,ﬂ,_:\\
4 o e NN
8 48 8 ‘ 45 al
Sil‘lZHZg | D |
0=266° FIG. P4.55

(b) The time for any symmetric parabolic flight is given by

1
vy = vyt =8t

0 = Ul' Slnﬁlt—%gtz .

If t =0 is the time the ball is thrown, then ¢ = 20;51n0; is the time at landing.
g
So for the ball thrown at 45.0°

2v; sin45.0°
5= — -

For the bouncing ball,

v\ . °
20, sin 26.6° 2(7) SiN26.6° 34 s5in26.6°
+ = .
g g g

b=t +1, =

The ratio of this time to that for no bounce is

3v;5in26.6°

g 134
8

2osnd0° 4] 0.949 |.
8
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P4.56 Using the range equation (Equation 4.14)

v} sin(26,)
g

R

2

the maximum range occurs when 6; =45°, and has a value R = Y Given R, this yields v; = ,/gR.
g
If the boy uses the same speed to throw the ball vertically upward, then

2
vy=\/g—R—gt andszg—Rt—%

at any time, ¢.

At the maximum height, v, =0, giving t = \/E , and so the maximum height reached is
g

2
— [R g [R R [R
= R _—— = —_— :R——: — .

P4.57 Choose upward as the positive y-direction and leftward as the
positive x-direction. The vertical height of the stone when released Vi
from A or Bis

y; =(1.50+1.205in30.0°) m = 2.10 m

(@) The equations of motion after release at A are

v, =v;sin60.0°- gt = (1.30 - 9.80¢) m/s vi
v, =v,;c0560.0°=0.750 m/s
y=(210+130t-490¢*) m

Ax, =(0.750t) m FIG. P4.57

~1.30++/(1.30) + 41.2
When y=0, t= 980 =0.800 s. Then, A x, =(0.750)(0.800) m=| 0.600 m |.

(b) The equations of motion after release at point B are

v, = v;(-sin60.0°) - gt = (-1.30 - 9.80t) m/s
v, =v;c0560.0=0.750 m/s
y; =(210-130¢ - 490% ) m.

+1.30 £ /(-1.30)* + 41.2

When y=0, t= 580 =0.536 s. Then, A xz =(0.750)(0.536) m=| 0.402 m |.

2 (150 mys)*
(c) a, = g ﬂ :| 1.87 m/ s? toward the center |
r 1.20 m

(d) After release, a=— g} :| 9.80 m/s? downward |
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P4.58

P4.59

The football travels a horizontal distance

_ v7sin(26;)  (20.0)° sin(60.0°)

R = =353 m.
g 9.80
Time of flight of ball is
fo 2v;sind; _ 2(20.0)sin30.0° _ 2045

g 9.80

—_—— -
~

Aﬁ)o// \\\

<20 m—»L— Ax —

« R — »

FIG. P4.58

The receiver is A x away from where the ball lands and A x =35.3 -20.0 =15.3 m. To cover this

distance in 2.04 s, he travels with a velocity

153

:| 7.50 m/s in the direction the ball was thrown |

U=——-
2.04

(@) Ay:—%gtz;Ax:Uit

Y @ = 275m/s
‘_T—>+x -

Combine the equations eliminating : [
2 ¢
1 (Ax 3000 m
Ay= 3 gl —1 -
Ui

oA ) >7

From this, (A x)2 = (—ij,z x>
g
FIG. P4.59
—2Ay \/-2(—300) 3
thus Ax=v; =275,/————=6.80x10" =| 6.80 km |.
(b) The plane has the same velocity as the bomb in the x direction. Therefore, the plane will be

| 3 000 m directly above the bomb | when it hits the ground.

Ax
(c) When ¢is measured from the vertical, tan ¢ = "

Ax 6 800
therefore, ¢ =tan'| — |=tan"!| —— | =[ 66.2° |.
potant 32t S0



*P4.60

(@)

(b)

(©

(d)

()

(®), (8)
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We use the approximation mentioned in the problem. The time to travel 200 m horizontally is

= 2X__200m 5005, The bullet falls by
1,000 m/s

_ 1 2 _ 1 2 2 _
Ay= vyit+5uyt = O+E(_9'8 m/s )(0.2 s)" =|-019 m |.
The telescope axis must point below the barrel axis

0.196 m
by O=tan! =[0.0561°].
y 00

Uy

bullet path
scope axis
50.0 m J T ! Nl
=—————=0.0500 s. The bullet falls by only 50 150 200 250
1000 m/s

. FIG. P4.60(b)
Ay= E(—9.8 m/s?)(0.05 5)* =-0.0122 m.

Atrange 50 m= i(ZOO m), the scope axis points to a location i(19.6 cm)=4.90 cm above the

barrel axis, so the sharpshooter must by 490 cm-1.22 cm= .

150 m

=———=0150s
1000 m/s

Ay :%(—9.8 m/s*)(0.15 5)* =0.110 m

by 225196 cm)~11.0 cm=[368 e |.

250 m

=——=0250s
1000 m/s

Ay= %(—9.8 m/s?)(0.25 5)* =0.306 m

by 306 cm-21(19.6 cm) = [6.12cm |

Many marksmen have a hard time believing it, but
they should aim low in both cases. As in case (a) above,
the time of flight is very nearly 0.200 s and the bullet
falls below the barrel axis by 19.6 cm on its way. The
0.0561° angle would cut off a 19.6-cm distance on a
vertical wall at a horizontal distance of 200 m, but on a
vertical wall up at 30° it cuts off distance & as shown,
where cos30°=19.6 cm/h, h=22.6 cm. The marksman 196 cm A

must by 22.6 cm—-19.6 cm =3.03 cm. The

h
answer can be obtained by considering limiting cases.
Suppose the target is nearly straight above or below - v
you. Then gravity will not cause deviation of the path bullet hits here

scope axis

of the bullet, and one must aim low as in part (c) to

cancel out the sighting-in of the telescope. FIG. P4.60(f-g)
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P4.61 €)] From Part (c), the raptor dives for 6.34—2.00=4.34 s
undergoing displacement 197 m downward and
(10.0)(4.34) = 43.4 m forward.

Ad 1/(197)? +(43.4)
0=

At 434 -
4 (-197 _
(b) a =tan 1(mj:
(©) 197 = % gt?, FIG. P4.61

P4.62 Measure heights above the level ground. The elevation y, of the ball follows

Yy =R+0—%gt2

2
. gx
with x=9;¢so y, =R—=—-.
Yo 20}
(@) The elevation y of points on the rock is described by

yZ +x* =R%

We will have y, =y, at x=0, but for all other x we require the ball to be above the rock
surface as in y, >v,. Then y; + x* > R?

w2\
( —g—J +x%>R?

2

27;
2 2.4
x“R x
Rz—g2 L8 —+x°>R*
Ui 401'
2.4 2
X x“R
g 4'+x2>gz )
4v; v;

1 1

If this inequality is satisfied for x approaching zero, it will be true for all x. If the ball’s
parabolic trajectory has large enough radius of curvature at the start, the ball will clear the

R
whole rock: 1> g—z
v;

(o5

2
(b)  With v; = /3R and , =0, we have 0=R-%
8

orx:R\/E.

The distance from the rock’s base is

x-R=|(V2-1)R .
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P4.63 (@) While on the incline
U% —v? = 2aAx
vp—v; =at

v§ —0=2(400)(50.0)
20.0 -0 = 4.00¢

vy =[200 mjs

(b) Initial free-flight conditions give us

FIG. P4.63

v,; =20.0c0s37.0°=16.0 m/s

and

v, =-20.0sin37.0°=-12.0 m/s

Uy =0, since a, =0

Dy = —JZayAy + vyiz = —\/2(—9.80)(—30.0) + (—12.0)2 =-271 m/s

vy = 1/vxfz + vyfz = \/(16.0)2 + (—27.1)2 :| 31.5 m/s at 59.4° below the horizontal

vyf - vyi _ -271+12.0

a, -9.80

b=t +t, :
d) Ax=v_t, =16.0(153) =

P4.64 Equation of bank: y? =16x (1)
Equations of motion: ~ x=v;t (2)

1 5
———ot? (3
y=-58 (3)

(o) ty=5s; ty = =153s

2
Substitute for ¢ from (2) into (3) y = —% g[x—z] Equate y
Ui
from the bank equation to y from the equations of motion:

FIG. P4.64

2
1 (x2 g2x4 g2x3
lox=|——¢| — || = —16x=x -16|=0.

[ Zg(viz ﬂ 4014 401-4

1/3
640; 10*
From this, x=0 or x° = L and x=4 =[18.8 m |. Also,
gz (9.802j
1 (2 1 (9.80)(18.8)°
=2 5O

109
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P4.65

P4.66

(a) Coyote: Ax= %atz; 70.0 = %(15.0)1,L2
Roadrunner: Ax=v;t; 70.0=v;t

Solving the above, we get

=229 m/s |and t=3.06 s.
(b) At the edge of the cliff,

v =(15.0)(3.06)=45.8 m/s.

xi =
T 1 5 .
Substituting into Ay = Euy t“, we find

~100 = %(—9.80) t2

t=452s

Ax=v, t+%ax t? = (45.8)(4.52 s) +%(15.0)(4.52 s)2.

Solving,

() For the Coyote’s motion through the air

Uy =0y +a, t=458+15(452)=| 114 m/s
Oy =0y +a, t=0-9.80(452)=| 443 m/s |.

Think of shaking down the mercury in an old fever thermometer. Swing your hand through a
circular arc, quickly reversing direction at the bottom end. Suppose your hand moves through one-
quarter of a circle of radius 60 cm in 0.1 s. Its speed is

1(27)(0.6 m)
0.1s

9 m/s
and its centripetal acceleration is — ( / ) m
r 0.6 m

The tangential acceleration of stopping and reversing the motion will make the total acceleration
somewhat larger, but will not affect its order of magnitude.

=9 m/s
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P4.67 (@) Ax=v,t, Ay:vyit+%gt2
d c0s50.0°=(10.0 cos 15.0°)¢
and
—d sin50.0°=(10.0sin15.0°)t + % (-9.80)t2.

Solving, d = and t=2.88s.

(b) Since a, =0, FIG. P4.67

0y =0, =10.0c0815.0°=| 9.66 m/s
vy =0y +a,t =10.0sin15.0°-9.80(2.88) =| -25.6 m/s |.

Air resistance would decrease the values of the range and maximum height. As an airfoil, he
can get some lift and increase his distance.

*P4.68 For one electron, we have

Y
1 2 5 1 5 _ /V
y=vt, D:vixt+5axt :Eaxt P Uy = vyi,ar\d Uy =0y tat=at. - o

The angle its direction makes with the x-axis is given by \‘\

\
- D —

v [ vt
f=tan"" /. tan! L =tan™' £
Uy a,t a

X

FIG. P4.68

Thus the horizontal distance from the aperture to the virtual source is 2D. The source is at

coordinate .

*P4.69 (@) The ice chest floats downstream 2 km in time t, so that 2 km = v t. The upstream motion of

the boat is described by d = (v - v,,)15 min. The downstream motion is described by
km

d+2 km=(v+v,)(t—15 min). We eliminate ¢ = 2 and d by substitution:

Uy

2 km
v

(v-v,)15 min+2 km=(v+ vw)( -15 min]

w

v(15 min) - v, (15 min) + 2 km = 2 2 km+2km- v(15 min) - v, (15 min)

Uy

v(30 min) =  2km

U'{U
2 km
= =|4.00 km/h |.
O 30 min
(b) In the reference frame of the water, the chestis motionless. The boat travels upstream for 15 min

atspeed v, and then downstream at the same speed, to return to the same point. Thus it travels
for 30 min. During this time, the falls approach the chest at speed v,,, traveling 2 km. Thus

Ax 2km
v, =—= =| 4.00 kim/h |.
© AT 30 min
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*P4.70 Let the river flow in the x direction.

@)

(b)

(©)

(d

To minimize time, | swim perpendicular to the banks | in the y direction. You are in the

water for time tin Ay =v,t, t:SO—m:53.3 s.
Y 1.5 m/s

The water carries you downstream by Ax =v,t=(2.50 m/s)53.3 s = :

To minimize downstream drift, you should swim so that -
your resultant velocity v, + v, is perpendicular to your

swimming velocity v, relative to the water. This condition v, + v,,
is shown in the middle picture. It maximizes the angle

between the resultant velocity and the shore. The angle -
1.5 m/s V,= 25m/si

2.5 m/s’

between v, and the shore is given by cos 8 =

[=5r]

Now v, =v,sinf=15 m/s sin53.1°=1.20 m/s

Ay  80m

v, - 1.2 m/s

Ax=v,t=(25 m/s—15 m/scos53.1°)66.7 s = .

=66.7 s
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Find the highest firing angle ; for which the projectile will clear the mountain peak; this will
yield the range of the closest point of bombardment. Next find the lowest firing angle; this will yield
the maximum range under these conditions if both 6, and 6; are >45°; x =2500 m, y =1800 m,
v; =250 m/s.
1 ., _ 1 5
=v,t——gt* =v;(sinO)t ——gt
Yp =0yt =587 =0,5nO) =g

Xy =0t =v;(cosO)t

Thus

Substitute into the expression for y

2 2
. x 1 x 8X
f f f
=v;(sind - =x,tanf-————
g =vilsin) v;cosf 2 [vi cos 9) f 207 cos® 0
2

8*f 2
=tan?0+1soy, =x,tanf--L (tan? 0+1) and
cos* 6 Yr=%s 20.2( )

but

1

2 2
x x
=g—£tan2 O-x¢ tan¢9+g—£+yf.

1 1

0
20

Substitute values, use the quadratic formula and find

tan @ =3.905 or 1.197, which gives 0y =75.6° and 6; =50.1°.

Z’?Siﬂ =3.07x103

Range (at 0y) = m from enemy ship

3.07 x 10 — 2500 — 300 = 270 m from shore.

07 sin 26,

Range (at 6, ) = =6.28 x10°> m from enemy ship

6.28 x 10% — 2500 — 300 = 3.48 x 10° from shore.

Therefore, safe distance is | <270 m | or | > 3.48 x 10°> m | from the shore.

2500 m | 300 m_p!

FIG. P4.71
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dcos¢

*P4.72 We follow the steps outlined in Example 4.7, eliminating ¢ = to find

v; cos @

v; sin@d cos ¢ gdz cos” ¢ =—dsing
20,-2 cos? '

v; cos
Clearing of fractions,

Z'Ui2 cos@sinfcos¢g— gd cos® = —Zviz cos® fsing.

To maximize d as a function of g, we differentiate through with respect to fand set % =0:

207 cos @cos 0cos ¢+ 20} sin O(—sin #) cos ¢ — g%cos2 ¢ =—2072cos O(—sin O)sin ¢.

We use the trigonometric identities from Appendix B4 cos26 = cos” 6 —sin* @ and

i 1
sin 26 = 2sin@cos @ to find cos ¢ cos 20 = sin 20sin ¢. Next, sin ¢ =tan¢g and cot260=——- give
cos ¢ tan 26

cot2¢ = tan ¢ = tan(90°-26) so ¢ =90°-20 and 0= 45°—g.

ANSWERS TO EVEN PROBLEMS

A

P42 (a) r=18.0ti +(4.00¢ - 490¢* ) ; P48 (a) r=(5.001i + 1.50%]) m;
(b) v=18.01+(4.00 - 9.801)j; v = (5008 +3.005) m/s;
(c)a= (—9.80 m/sz)j; - -
R R (b) 1= (10.01+6.00]) m; 7.81 m/s
(d) (540 m)i— (321 m)j;
() (18.0 nys)i-(254 mys)j; P410  (7.23x10° m, 168 x10° m)
() (-9.80 m/s?)]
A n / & hor )
P44 (a) v = (—5.00wi+ 0]) mys; P4.12 (@) d o7 horizontally;
a= (0; + 5.000)23) m/ s?; (b) tan ! (%h) below the horizontal
(b) r=400m j
. . 2
+5.00 m(— sinwti-coswt j),‘ F4.14 0600 m/s
v=500m a)(— coswti+sinmt ]); P4.16 (a) 76.0° (b) the same; (c) %
a=5.00m a)z(sina)tiJrcosa)ti);
(c) a circle of radius 5.00 m centered at P4.18 25.8 m/s
(0, 4.00 m)
2
A s P420  dtang,—— 89
P4.6 (@) v=-12.0tj m/s; a=-12.0j m/s ; (Zviz cos> 91’)

(b) r=(3.00i - 6.00j) m; v=-12.0j nys



P4.22

P4.24

P4.26

P4.28

P4.30

P4.32

P4.34

P4.36

P4.38

P4.40

P4.42

P4.44

P4.46

33.5° below the horizontal

(a) 0.852's; (b) 3.29 m/s; (c) 4.03 m/s;
(d) 50.8° (e) 1.12's

tan ! [@}

0

0.0337 m/s* toward the center of the
Earth

0.281 rev/s
7.58x10° m/s; 5.80 x10° s

(a) 0.600 m/ s* forward;
(b) 0.800 m/s* inward;
(c) 1.00 m/ s* forward and 53.1° inward

(a) see the solution; (b) 29.7 m/ s%;

(c) 6.67 m/s at 36.9° above the horizontal

(a) 26.9 m/s; (b) 67.3 m;
(c) (2.00i-5.00j) m/s’
18.0s

153 km/h at 11.3° north of west

(a) 10.1 m/s2 at 14.3° south from the

vertical; (b) 9.80 m/s® vertically
downward

27.7° east of north

P4.48

P4.50

P4.52

P4.54

P4.56

P4.58

P4.60

P4.62

P4.64

P4.66

P4.68

P4.70

P4.72

Chapter 4

2v;tcos 0,
(a) see the solution;

ﬁ'd _v}(1-sing)
2/ T gcoszqﬁ

(b) ; = 45°+
(a) 1.69 km/s; (b) 6.47 x10° s
10.7 m/s

R

2

7.50 m/s in the direction the ball was
thrown

(a) 19.6 cm; (b) 0.0561°;

115

(c) aim low 3.68 cm; (d) aim low 3.68 cm;

(e) aim high 6.12 cm; (f) aim low;
(g) aim low

(a) 3R (b) (V2 -1)R

(188 m; —17.3 m)

see the solution; ~ 102 m/ s2
x=-D

(a) at 90° to the bank; (b) 133 m;

(c) upstream at 53.1° to the bank; (d) 107 m

see the solution



Q5.4

Q5.5

Q5.6

The Laws of Motion

ANSWERS TO QUESTIONS

Q5.1 (@) The force due to gravity of the earth pulling down on
the ball—the reaction force is the force due to gravity
of the ball pulling up on the earth. The force of the
hand pushing up on the ball—reaction force is ball
pushing down on the hand.

(b) The only force acting on the ball in free-fall is the
gravity due to the earth -the reaction force is the
gravity due to the ball pulling on the earth.

Q5.2 The resultant force is zero, as the acceleration is zero.

Q5.3 Mistake one: The car might be momentarily at rest, in the
process of (suddenly) reversing forward into backward motion.
In this case, the forces on it add to a (large) backward resultant.

Mistake two: There are no cars in interstellar space. If the car is remaining at rest, there are
some large forces on it, including its weight and some force or forces of support.

Mistake three: The statement reverses cause and effect, like a politician who thinks that his
getting elected was the reason for people to vote for him.

When the bus starts moving, the mass of Claudette is accelerated by the force of the back of the seat
on her body. Clark is standing, however, and the only force on him is the friction between his shoes
and the floor of the bus. Thus, when the bus starts moving, his feet start accelerating forward, but
the rest of his body experiences almost no accelerating force (only that due to his being attached to
his accelerating feet!). As a consequence, his body tends to stay almost at rest, according to Newton’s
first law, relative to the ground. Relative to Claudette, however, he is moving toward her and falls
into her lap. (Both performers won Academy Awards.)

First ask, “Was the bus moving forward or backing up?” If it was moving forward, the passenger is
lying. A fast stop would make the suitcase fly toward the front of the bus, not toward the rear. If the
bus was backing up at any reasonable speed, a sudden stop could not make a suitcase fly far. Fine
her for malicious litigiousness.

It would be smart for the explorer to gently push the rock back into the storage compartment.

Newton's 3rd law states that the rock will apply the same size force on her that she applies on it. The
harder she pushes on the rock, the larger her resulting acceleration.

117
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Q5.7

Q5.8

Q5.9

Q5.10

Q5.11

Q5.12

Q5.13

Q5.14

Q5.15

The Laws of Motion

The molecules of the floor resist the ball on impact and push the ball back, upward. The actual force
acting is due to the forces between molecules that allow the floor to keep its integrity and to prevent
the ball from passing through. Notice that for a ball passing through a window, the molecular forces
weren’t strong enough.

While a football is in flight, the force of gravity and air resistance act on it. When a football is in the
process of being kicked, the foot pushes forward on the ball and the ball pushes backward on the
foot. At this time and while the ball is in flight, the Earth pulls down on the ball (gravity) and the ball
pulls up on the Earth. The moving ball pushes forward on the air and the air backward on the ball.

It is impossible to string a horizontal cable without its sagging a bit. Since the cable has a mass,
gravity pulls it downward. A vertical component of the tension must balance the weight for the
cable to be in equilibrium. If the cable were completely horizontal, then there would be no vertical
component of the tension to balance the weight.

Some physics teachers demonstrate this by asking a beefy student to pull on the ends of a
cord supporting a can of soup at its center. Some get two burly young men to pull on opposite ends
of a strong rope, while the smallest person in class gleefully mashes the center of the rope down to
the table. Point out the beauty of sagging suspension-bridge cables. With a laser and an optical lever,
demonstrate that the mayor makes the courtroom table sag when he sits on it, and the judge bends
the bench. Give them “I make the floor sag” buttons, available to instructors using this manual.
Estimate the cost of an infinitely strong cable, and the truth will always win.

As the barbell goes through the bottom of a cycle, the lifter exerts an upward force on it, and the
scale reads the larger upward force that the floor exerts on them together. Around the top of the
weight’s motion, the scale reads less than average. If the iron is moving upward, the lifter can
declare that she has thrown it, just by letting go of it for a moment, so our answer applies also to this
case.

As the sand leaks out, the acceleration increases. With the same driving force, a decrease in the mass
causes an increase in the acceleration.

As the rocket takes off, it burns fuel, pushing the gases from the combustion out the back of the
rocket. Since the gases have mass, the total remaining mass of the rocket, fuel, and oxidizer
decreases. With a constant thrust, a decrease in the mass results in an increasing acceleration.

The friction of the road pushing on the tires of a car causes an automobile to move. The push of the
air on the propeller moves the airplane. The push of the water on the oars causes the rowboat to
move.

As a man takes a step, the action is the force his foot exerts on the Earth; the reaction is the force of
the Earth on his foot. In the second case, the action is the force exerted on the girl's back by the
snowball; the reaction is the force exerted on the snowball by the girl’s back. The third action is the
force of the glove on the ball; the reaction is the force of the ball on the glove. The fourth action is the
force exerted on the window by the air molecules; the reaction is the force on the air molecules
exerted by the window. We could in each case interchange the terms ‘action’ and ‘reaction.’

The tension in the rope must be 9 200 N. Since the rope is moving at a constant speed, then the
resultant force on it must be zero. The 49ers are pulling with a force of 9 200 N. If the 49ers were
winning with the rope steadily moving in their direction or if the contest was even, then the tension
would still be 9 200 N. In all of these case, the acceleration is zero, and so must be the resultant force
on the rope. To win the tug-of-war, a team must exert a larger force on the ground than their
opponents do.



Q5.16

Q5.17

Q5.18

Q5.19

Q5.20

Q5.21

Q5.22

Q5.23

Q5.24

Q5.25

Q5.26
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The tension in the rope when pulling the car is twice that in the tug-of-war. One could consider the
car as behaving like another team of twenty more people.

This statement contradicts Newton’s 3rd law. The force that the locomotive exerted on the wall is
the same as that exerted by the wall on the locomotive. The wall temporarily exerted on the
locomotive a force greater than the force that the wall could exert without breaking.

The sack of sand moves up with the athlete, regardless of how quickly the athlete climbs. Since the
athlete and the sack of sand have the same weight, the acceleration of the system must be zero.

The resultant force doesn’t always add to zero. If it did, nothing could ever accelerate. If we choose a
single object as our system, action and reaction forces can never add to zero, as they act on different
objects.

An object cannot exert a force on itself. If it could, then objects would be able to accelerate
themselves, without interacting with the environment. You cannot lift yourself by tugging on your
bootstraps.

To get the box to slide, you must push harder than the maximum static frictional force. Once the box
is moving, you need to push with a force equal to the kinetic frictional force to maintain the box’s
motion.

The stopping distance will be the same if the mass of the truck is doubled. The stopping distance will
decrease by a factor of four if the initial speed is cut in half.

If you slam on the brakes, your tires will skid on the road. The force of kinetic friction between the
tires and the road is less than the maximum static friction force. Anti-lock brakes work by “pumping”
the brakes (much more rapidly that you can) to minimize skidding of the tires on the road.

With friction, it takes longer to come down than to go up. On the way up, the frictional force and the
component of the weight down the plane are in the same direction, giving a large acceleration. On
the way down, the forces are in opposite directions, giving a relatively smaller acceleration. If the
incline is frictionless, it takes the same amount of time to go up as it does to come down.

(@) The force of static friction between the crate and the bed of the truck causes the crate to
accelerate. Note that the friction force on the crate is in the direction of its motion relative to
the ground (but opposite to the direction of possible sliding motion of the crate relative to
the truck bed).

(b) It is most likely that the crate would slide forward relative to the bed of the truck.

In Question 25, part (a) is an example of such a situation. Any situation in which friction is the force
that accelerates an object from rest is an example. As you pull away from a stop light, friction is the

force that accelerates forward a box of tissues on the level floor of the car. At the same time, friction

of the ground on the tires of the car accelerates the car forward.
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SOLUTIONS TO PROBLEMS

The following problems cover Sections 5.1-5.6.

Section 5.1 The Concept of Force

Section 5.2 Newton’s First Law and Inertial Frames
Section 5.3 Mass

Section 5.4 Newton’s Second Law

Section 5.5 The Gravitational Force and Weight

Section 5.6 Newton’s Third Law

P5.1 For the same force F, acting on different masses
F=mja,
and
F=mja,

@ M
M, 0 3
(b) F=(my+my)a=4mua= ml(S.OO m/sz)

*P5.2 v, =880 m/s, m=25.8 kg,xf:6m
F
2
UfZZQXIzsz(Zj
3 :
F:—:| 1.66x10° N forward
ZXf

P5.3 m=3.00 kg
a=(2.00i +5.00j) m/s*

> F=ma=|(6.00i+150j) N

> F[=1/(6.00)* +(15.0)* N =




P5.4

P5.5

P5.6

Chapter 5
F, = weight of ball = mg

Vselease = 0 and time to accelerate =1t :

(@) Distance x = vt:
SRk
2 2

» Fo.

(b) Fp—Pg]:?l
F,v. A
| fegY s s
FP = ?l'l'Fg]

m =400 kg, v;=3.00i m/s, vs =(8.00i+10.0j) m/s, t=8.00's

Qo AV _500i41005 o
t 8.00
F =ma =| (2.50i+5.00j) N

F=4/(250)* +(5.00)* =[559 N

(@) Let the x-axis be in the original direction of the molecule’s motion.

vp =0, +at: 670 m/s=670 m/s+a(3.00x10™ s)

a=[-447x10" m/s? |

(b) For the molecule, > "F =ma. Its weight is negligible.

Foyall on molecute = 468 %10 kg(~4.47x10"° m/s?)=-2.09x107"" N

1::molecule onwall = | +2.09x107° N |

121
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2 2
Vi —U;
P5.7 a F=ma and v? =0? +2ax; ora= o
( ) Z f 1 f ZXf
Therefore,
2 .2
Zsz—(”f i)
ZXf

[(7.00><105 m/s?)” - (3.00x10° m/sz)z}

> F=911x10"" kg =[3.64x107"® N |.
2(0.050 0 m)

(b) The weight of the electron is

F, =mg=(911x10""" kg)(9.80 m/s*)=893x10"% N

The accelerating force is | 4.08x10" times the weight of the electron.

P5.8 (a) F, =mg =120 Ib=(4.448 N/Ib)(120 Ib)=

E 534 N
O T T e el

900 N
P5.9 F,=mg=900N, m=———=918k
g8 9.80 m/s* &
— 2\ =
(lfg)onIupiter =91.8 kg(25.9 m/s*)=| 238 kN
P5.10 Imagine a quick trip by jet, on which you do not visit the rest room and your perspiration is just

canceled out by a glass of tomato juice. By subtraction, (Fg)p =mg, and (Fg )c =mgc give

AFg :m(gp —gc).

For a person whose mass is 88.7 kg, the change in weight is

AF, =887 kg(9.8095-9.7808)=[ 255 N |.

A precise balance scale, as in a doctor’s office, reads the same in different locations because it
compares you with the standard masses on its beams. A typical bathroom scale is not precise enough
to reveal this difference.
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P511  (a)  YF=F +F,=(200i+150j)N F>

> F=ma: 20.0i+150j=500a \90"

a=(4.00i +3.00j) m/s? F,
or F,

a=>5.00 m/s* at §=36.9° fé)

N\, Fi
() F,, =15.0c0860.0°=7.50 N
F,, =15.0sin60.0°=13.0 N FIG. P5.11

F, =(7.50i+13.0j) N

> F=F, +F, =(27.5i +13.0j) N =ma=500a

a=| (550i+2.60j) m/s* =6.08 m/s* at25.3°

P5.12 We find acceleration:
1
rp—1; = vl-t+§::1t‘2
420 mi—330mj=0 +%a(1.20 s)* =0.720 s%a
a=(5.83i-458]) m/s”.
Now > F=ma becomes

E, +F, =ma

F, =2.80 kg(5.83i - 458]) m/s” +(2.80 kg)(9.80 m/s’}j

F, = (163i+146j) N |

P5.13 (@) You and the earth exert equal forces on each other: m, ¢ = M,a,. If your mass is 70.0 kg,

70.0 kg )(9.80 m/s>
ue:( g)( 51 / ): ~10% m/s2 .
5.98x10* kg

(b) You and the planet move for equal times intervals according to x = %ai}2 . If the seat is

50.0 cm high,
2y j2x
a, a,

a, m, 70.0 kg(0.500 m) 5
y = y = % ~10
a m 598 x10* kg

m |.
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P5.14

P5.15

The Laws of Motion

> F=ma reads
(~2.00i +2.00j +5.00i — 3.00j - 45.0i) N = m(3.75 m/s)a
where a represents the direction of a
(~42.01-1.00j) N =m(3.75 m/s*)a
> F= (42.0)* 4+(1.00)* N at tanl(%) below the —x-axis

S F=420Nat181°=m(3.75 m/s*)a.

For the vectors to be equal, their magnitudes and their directions must be equal.

(@) .| ais at 181° | counterclockwise from the x-axis
42.0N

b m=————>=|112k

®) 3.75 m/ g2

(d)  vy=v,+at=0+(375 m/s” at181°J10.0 s so v; =375 m/s at 181°

~
.

vy =375m/s 0s181°i+37.5m/s sin181°j so V= (—375{—0-8933) m/s

© [y B0 s [575 ]
@

®

© [0]

Section 5.7 Some Applications of Newton’s Laws

P5.16

szd—leot,vy:d—y:%Z
dt dt
dv

o =B 19, ~ 20 g
dt Yoo dt

Att=200s,a, =100 m/s*, a, =360 m/s>

SF, =ma,: 3.00 kg(10.0 m/s*)=300 N
S F, =ma,: 3.00 kg(36.0 m/s*)=108 N

S F=E +F =[112N]



P5.17 m=1.00 kg
mg =9.80 N
~0.200 m

© 250m
a =0.458°

tana

Balance forces,

2T sina =mg

9.80 N
r= 2sina :

P518 T, =F,

T, cosb@; =T, cosO,
Eliminate T, and solve for T}

F, cos 0, F, cos 0,

T, = =
' (sin@, cos O, +cos @, sind,)  sin(6,; +0,)

T;=F, =325 N
cos 25.0°
T, =F,| —="_|=]296 N
! g(sinSS.O")
cos @ co0s60.0°
T, =T L1=296 N| ———— |=[163 N
2 1[cosezj (c0525.0°)

P5.19 See the solution for T;in Problem 5.18.

1)
(2)

)
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50.0 m

CEMENT

0.200 m

mg

\)

FIG. P5.17

FIG. P5.18
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P5.20

P5.21

The Laws of Motion

(@)

(b)

@)

(b)

(©

An explanation proceeding from fundamental physical principles will
be best for the parents and for you. Consider forces on the bit of string
touching the weight hanger as shown in the free-body diagram:

Horizontal Forces: Y "F, =ma,: —T, +Tcos =0
Vertical Forces: Z Fy =ma,: —Fg +Tsind=0

FIG. P5.20

You need only the equation for the vertical forces to find that the tension in the string is

Fg

sin g
the counterweight hangs on the string. On the other hand, the kite does not notice what you
are doing and the tension in the main part of the string stays constant. You do not need a
level, since you learned in physics lab to sight to a horizontal line in a building. Share with
the parents your estimate of the experimental uncertainty, which you make by thinking
critically about the measurement, by repeating trials, practicing in advance and looking for
variations and improvements in technique, including using other observers. You will then
be glad to have the parents themselves repeat your measurements.

givenby T = . The force the child feels gets smaller, changing from T to T cos¢, while

P, 0132kg(9.80 m/s?)

T2~ mr -
Isolate either mass 1 T
T+mg=ma=0
7| = mgl.
The scale reads the tension T, 1 49.0N
50 FIG. P5.21(a)
T =mg =500 kg(9.80 m/s*)=[ 490N .
Isolate the pulley |T2

T, +2T, =0 ‘CL,
T, =2{Ty|=2mg =[ 980N | |1 | l|
T T
S F=n+T+mg=0 1 '

Take the component along the incline FIG. P5.21(b)

n, +T,+mg, =0 y
\n T /,x
or A7\ 0=300°
0+T-mgsin30.0°=0 -\ <
5.00(9.80 |
T:mgsin30.0°=%:¥ AN

2 490N O

FIG. P5.21(c)



P5.22

P5.23

*P5.24

The two forces acting on the block are the normal force, 1, and the
weight, mg. If the block is considered to be a point mass and the x-
axis is chosen to be parallel to the plane, then the free body
diagram will be as shown in the figure to the right. The angle &is
the angle of inclination of the plane. Applying Newton's second
law for the accelerating system (and taking the direction up the
plane as the positive x direction) we have

ZFy =n—mgcosf=0:n=mgcosd
> F, =—mgsinf=ma: a=—gsinf

(@) When 6=15.0°
a=|-254 m/s?
(b) Starting from rest

vj% =0? +2a(xf —xi): 2ax

L=

mgsinf

Chapter 5 127

FIG. P5.22

oy | = f2ax =\/2(—2.54 m/s?)(~2.00 m) = 318 mys |

Choose a coordinate system with i Eastand ] North.

> F=ma=100 kg(10.0 m/s*) at 30.0°
(5.00 N)j+F, =(10.0 N).£30.0°= (5.00 N)j+(8.66 N)i

..F, =| 8.66 N (East)

First, consider the block moving along the horizontal. The only
force in the direction of movement is T. Thus, » " F, = ma

T=(5kg)a (1)

Next consider the block that moves vertically. The forces on it are
the tension T and its weight, 88.2 N.

We have ZFy =ma

882 N—T=(9 kg)a @)

1

-

\o

1,00 |
kg .

g \30.0°

—
Fl

tn

Y49

—
T

5kg = 9kg
N

FIG. P5.23

+x AT # t+y

ngz 882N

FIG. P5.24

Note that both blocks must have the same magnitude of acceleration. Equations (1) and (2) can be

added to give 88.2 N =(14 kg)a. Then

| 2=630 m/s” and T=315N |.
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P5.25

P5.26

*P5.27

The Laws of Motion

After it leaves your hand, the block’s speed changes only
because of one component of its weight:

> F. =ma, -mgsin20.0°=ma

v% =07 +2a(xf —xl-).
Taking vy =0, v; =5.00 m/s, and a=—gsin(20.0°) gives
2 : o
0=(5.00)" —2(9.80)sin(20.0°)(x; —0)

or

25.0
X, = =|373m|.
f " 2(9.80)sin(20.0°)

m, =2.00 kg, m, =6.00 kg, §=55.0°

(a) > F, =mygsing—T =m,a T u
af -
and -- 0 -—-x L mygsing
2
T—m1g=m1ﬂ mg

_ my,gsind—myg _ 2 ' m gcost’-l\'/
”—W— T mae
FIG. P5.26
®)  T=m(a+g)=[267N]
() Since v; =0, vy =at = (3.57 m/sz)(Z.OO s):.

We assume the vertical bar is in compression, pushing up
on the pin with force A, and the tilted bar is in tension,
exerting force B on the pin at —50°. 2500 N

> F,=0: -2500 N cos30°+Bcos50°=0 2500 N cos30° B cos50°

| B=337x10° N | -~ —
> F,=0: -2500 Nsin30°+A-337x10° N sin50°=0 l L l
_ 3
| A=383x10° N | 2500 N'sin30°  Bsin50°
Positive answers confirm that FIG. P5.27

| B is in tension and A is in compression.




P5.28

*P5.29

Chapter 5
First, consider the 3.00 kg rising mass. The forces on it are 1 T
the tension, T, and its weight, 29.4 N. With the upward 1 T
direction as positive, the second law becomes X
T Rising Mass Falhng é\gakss
SF, =ma,: T—29.4N = (3.00 kg)a ) my=3.00kg | | Ma= 2T EE
The forces on the falling 5.00 kg mass are its weight and T, 1
and its acceleration is the same as that of the rising mass. (Fg)=294N  (Fp),=49N
Calling the positive direction down for this mass, we have
FIG. P5.28
> F,=ma,: 499 N—T = (500 kg)a )
Equations (1) and (2) can be solved simultaneously by adding them:
T—29.4N+49.0 N—T =(3.00 kg)a+(5.00 kg)a
(b) This gives the acceleration as
a= 96N _ 2.45 m/s*
8.00 kg ' '
(@) Then
T—29.4N=(3.00 kg)(2.45 m/s*)=735N.
The tension is
T=|368N |.
(c) Consider either mass. We have
S T S 2 2 _
y=vit+—at* =0 +E(2'45 m/s?)(1.00 s)” = .
As the man rises steadily the pulley turns steadily and the tension in
the rope is the same on both sides of the pulley. Choose man-pulley- T
and-platform as the system:
D F, =ma,
+T-950 N =0 [ | 1
T =950 N. 1 950 N
The worker must pull on the rope with force | 950 N |. FIG. P5.29
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*P5.30 Both blocks move with acceleration a = (%j g:
My T 1y

a= 7kg—2kg 9.8 m/52:5.44m/52.
7kg+2kg

(@) Take the upward direction as positive for m;.

vl =0} +2ax(xf —x,-): 0=(-24 m/s)2 +2(5.44 m/sz)(xf —0)

2/ .2
X __576mYst o m
2(5.44 m/s’)

Xy :| 0.529 m below its initial level

(b) Uy =0y Hagt vy =-2.40 m/s+(5.44 m/sz)(1.80 s)

O =| 7.40 m/s upward |

P5.31 Forces acting on 2.00 kg block: 1n
8 kg
T—mg=mya 1) T — kK
. "78.4 N
Forces acting on 8.00 kg block:
F,—T=mya (2)
(@) Eliminate T and solve for a:
F,—mg ENRNRRRNN RN a4 (m/s?)
a= rr)z( +m Note that |15
! 2 | slope changes | 104 - T
Jat F,=—78.4 N [ 5
a>0forF, >m;g=19.6 N |. EEEEEEEEE e B(N)
-150/"-100 " 50 2 50 1100711150
(b) Eliminate 4 and solve for T: 10
15
T=—TL—(F, +mg)
myq + ny
FIG. P5.31
| T=0forF, <—m,g=—784N|.
() F.,N -100 -784 500 O 50.0 100

a,, m/s*  -125 -980 -696 -196 3.04 804



*P5.32

Chapter 5

(a) For force components along the incline, with the upward direction taken as positive,

> F =ma,: -mgsin@=ma,
a, =—gsin9=—(9.8 m/sz)sin35°:—5.62 m/sz.

For the upward motion,

Uff = Ufl- +2ux(xf —xl»)

0=(5 m/s)2 +2(—5.62 m/sz)(xf —0)

(b) The time to slide down is given by

1
Xp=X; +vxit+zaxt2
0=2.22 m+0+%(—5.62 m/s? )t>

2(2.22
po |222m) _6eg0s.

5.62 m/s2

For the second particle,

1
Xp=x+ vxit+Euxt2

0=10 m+0,,(0.890 5)+(-5.62 m/s*)(0.890 s)*

S -10 m+2.22 m
XI 0.890 s

=-8.74 m/s
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P5.33 First, we will compute the needed accelerations:
(1) Before it starts to move: a, =0
Uy =0y 1.20 -0
(2) During the first 0.800 s: g, =2y % 120 mys
Y t 0.800 s

=1.50 m/ s?
(3) While moving at constant velocity: a, =0

Uy =0y 0-1.20
(4) During the last 1.50 s: g =Y V_ mys
y t 1.50 s

=-0.800 m/s”

FIG. P5.33

Newton’s second law is: ) F, =ma,

+$-(72.0 kg)(9.80 m/s*)=(72.0 kg)a,
=706 N +(72.0 kg)a, .

(a) When a, =0, S:.

(b) When a, =150 m/s*, S = .
© When a, =0, sz.

(d)  Whena, =—0.800 m/s*, S= .

P5.34 (@) Pulley P; has acceleration a, .

7
. . . 7
Since m; moves twice the distance P; moves in the same
time, m; has twice the acceleration of P, , i.e., .
(b) From the figure, and using
D F=ma: myg—T,=mya, (1)
Ty =myay =2mya, (2)
T,-2T, =0 (3) FIG. P5.34

Equation (1) becomes m, g —2T; = m,a,. This equation combined with Equation (2) yields

L(2.1711 +%)=m2g

my
T, = —mlmlz and | T, = —mlnfz
2m1+§m2 myq +Zm2
(c) From the values of T; and T, we find that
T, 1
g1:_1: m—2§ andgzz—glz m—zg .
my 2my +5m, 2 4mq +m,




Chapter 5
Section 5.8 Forces of Friction
*P5.35
=F,/2 =85.01b
"""""""""" +x
F=4581b
F=1701b

Free-Body Diagram of Person  Free-Body Diagrlam of Crutch Tip
FIG. P5.35
From the free-body diagram of the person,
> F, = F; sin(22.0°)— F, sin(22.0°) =0,

which gives

Then, > F, =2F c0s22.0°+85.0 Ibs —170 Ibs = 0 yields F = 45.8 Ib.

(@) Now consider the free-body diagram of a crutch tip.
> F, =f—(4581b)sin22.0°=0,

or

f=1721b.
> F, =ny, —(45.8 1b)cos 22.0°=0,
which gives
Ny, =42.51b.

For minimum coefficient of friction, the crutch tip will be on the verge of slipping, so

_ _ _f 1721
f = () = Hsip and prg = —— =72 =| 0404 |.

ntip

(b) As found above, the compression force in each crutch is

133
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P5.36

P5.37

The Laws of Motion

For equilibrium: f=F and n=F,. Also, f =pun i.e., u
_f_F —F
p=t=— f
n F e
8 ANTHTIITETTTW
5.0

750 N
__IN 15306 E
s 25.0(9.80) N §

FIG. P5.36

—~~

and

60.0 N
~ O 0245,
= 55.0(9.80) N [025]

> F,=ma,; +n-mg=0
fsSpn=pmg

This maximum magnitude of static friction acts so long as the tires roll without skidding.
> F, =ma,: —f,=ma
The maximum acceleration is

a=—H§-

The initial and final conditions are: x; =0, v; =50.0 mi/h=22.4 m/s, v; =0

vj% =0? +2a(xf —xi): —v} =—2u,8%x¢

2

o

(@) Xp=—t
T g

(22.4 m/s)”

- ~[256
20100980 m/s?)

2
Y;
(b) Xp="7"—"

28
(22.4 m/s)’

_ —[427
T 2(0.600)(9.80 m/s?)




P5.38

*P5.39

P5.40

Chapter 5
If all the weight is on the rear wheels,
(a) F=ma: pumg=ma
But
2 2
Ax at _Hs gt
2 2
2Ax
SO U, = g7 :
2(0.250 mi)(1609 m/mi)
T (980 m/s?)(4.96 5)?
(b) Time would increase, as the wheels would skid and only kinetic friction would act; or

perhaps the car would flip over.

(@) The person pushes backward on the floor. The floor pushes forward
on the person with a force of friction. This is the only horizontal
force on the person. If the person’s shoe is on the point of slipping

the static friction force has its maximum value.

D F . =ma,: f=un=ma,
D F, =may n-mg=0
ma, = L mg a, = ysg:0.5(9.8 m/sz): 49 rn/s2

xf:xl-+vxit+%axt2 3m:0+0+%(4.9 m/sz)if2

1
(b) X :E/usgtzr t:\/

2xf _ 2(3 m)
g 1(0.8)(98 m/s?)

m =200kg, F=350N

suitcase

> F.=ma,: -200N+Fcosf=0
> F,=ma, +n+Fsinf-F, =0

(a) Fcos8=20.0 N

cosf = M =0.571
35.0N
6=55.2°
(b) n=F, — Fsinf =[196 —35.0(0.821)| N

- [ow75]

FIG. P5.39

BN

£220N Fgl

FIG. P5.40
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P5.41 m=23.00 kg, §=30.0°, x=2.00m, t=1.50 s

@)

(b)

(©

(d

x:lutzz
2

2.00 m= %a(l.SO s)°

I

> F=n+f+mg=ma:

Along x: 0— f +mgsin30.0°=ma
f =m(gsin30.0°-a)

Alongy: n+0-mgcos30.0°=0
n =mg cos 30.0°

f m(gsin30.0°—a) . a
=—=—"——— 4 =tan30.0°——— = 0.368
n mg cos 30.0° H gcos30.0° -

f=m(gsin30.0°—a), f =3.00(9.80sin30.0°~1.78)=[ 9.37 N

v} =0} +2a(x; —x;)

1

Hi

where

xp—x;=2.00m

v} =0+2(178)(2.00)=7.11 m*/s?

vy =711 mz/s2 =

n

30° mg

FIG. P5.41
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*P5.42  First we find the coefficient of friction: 1.
YF,=0.  +n-mg=0 (B
f=un=pmg O
> F =ma,: v} =0} +2a,Ax=0 vm
2
mo;
—HsME =— ’ f
Ax . o
) mgsinl0
v? (88 ft/s) =
Il’lS = L = 5 = 0.981 o
2gAx (321 ft/s?)(123 ft) mgcos10
FIG. P5.42
Now on the slope
2 E =0 +n—mgcos10°=0
fs = ugn = pgmg cos10°
2
> F.=ma,: -pgmgcosl0°+mgsinl0°=— i
2Ax )
Ax = Yi -
2g(u, c0s10°-sin10°)
2
(88 ft/s)
2(32.1 ft/s?)(0.981cos10°—sin 10°)
P5.43 T — f, =5.00a (for 5.00 kg mass) 5.00 kg
9.00g — T =9.00a (for 9.00 kg mass) J?
Adding these two equations gives: 9.00 kgl M
9.00(9.80) — 0.200(5.00)(9.80) = 14.0a a
==
a=>5.60 m/s? £, —»T
T =5.00(5.60) + 0.200(5.00)(9.80) e T 1a
~[378N ll
Mg

FIG. P5.43
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P5.44 Let a represent the positive magnitude of the acceleration —ui of

m,, of the acceleration —ai of m,, and of the acceleration +a} of m;.
Call T, the tension in the left rope and T,; the tension in the cord

on the right.
For ml, ZFy:mﬂy —|—T12_m1g:_m1u
For my, > Fo=ma, Ty 4 puyt + Ty = =130
and > F,=ma, n—myg=0
T Ty
for mj;, ZFy =ma, Ty —Msg =-—+msa

we have three simultaneous equations

~Ty, +39.2 N =(4.00 kg)a
+Ty, —0.350(9.80 N) - Ty, = (1.00 kg)a m g ms g
1Ty —19.6 N =(2.00 kg)a.

FIG. P5.44
(@) Add them up:
+39.2N—-3.43 N—-19.6 N=(7.00 kg)a
a :| 2.31 m/s2 , down for my, left for m,, and up for mj, |
(b) Now —Tj, +39.2 N = (4.00 kg)(2.31 m/s?)
T, =30.0 N
and Tp; —19.6 N =(2.00 kg)(2.31 m/s?)
Ty =242 N |.
P5.45 (@) See Figure to the right lTli T | m, >F
(b) 68.0—T — umyg=mya (Block #2)
T—pumg=mya (Block #1) " "2
- -
1 2
. PR
Adding, fi= ey fo= ey
myg =118 N myg =176 N

68.0 — p(my +my)g =(my +my)a

68.0
a= m_ g = FIG. P5.45
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P5.46 (Case 1, impending upward motion) n
Setting P cos 50° -~
=
SE=0:  Pcos50.0°-n=0 / l Vi = uen
fs,max ::usn: fs,max :/'ISPCOSSO'OO P:-___» mg
=0.250(0.643)P = 0.161P Psin 50°
fs, max = UgM
Setting t
n
> F,=0: Psin50.0°-0.161P —3.00(9.80) =0 Pcos 50°
=
P =| 486 N / I
(Case 2, impending downward motion) P/ 5ol Sofong
Asin Case 1, sin .-
fs max =0.161P FIG. P5.46

Setting

S F,=0: Psin50.0°+0.161P -3.00(9.80) = 0

Poin =| 317N
*P5.47  When the sled is sliding uphill

Y
. F,=ma,: +n-mgcosf=0 f" Lx

f=mn=pmgcoso % L
> F =ma,: +mgsin 0+ p1,mg cos 0 =ma,, J ~X&sn
0 =0=0; +aypty, =
_ mg cos 6
i _auptup
1
Ax :E(vi +0 FIG. P5.47
1 2
Ax :E(auptup +0)tup :Eauptup

When the sled is sliding down, the direction of the friction force is reversed:
mg sin@— p;mg cos 6 = mag,un

1 2
Ax= Eadowntdown .

Now
tdown = Ztup
1 0, 1 2
Euuptup = Eudown (Ztup )

uup :4udown
gsin@+ ;g cos=4(gsinf— p; g cos )
Sy cos@=3sinf

3
Hyp = (gjtane
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*P5.48

*P5.49

The Laws of Motion

Since the board is in equilibrium, Z F,. =0 and we see that the normal

forces must be the same on both sides of the board. Also, if the
minimum normal forces (compression forces) are being applied, the " f f n
board is on the verge of slipping and the friction force on each side is > -

f:(fs)max = Mg

The board is also in equilibrium in the vertical direction, so 1 F = 955N

F
J— —_ — :—g
> F,=2f-F,=0,or f 5 FIG. P5.48

The minimum compression force needed is then

f F 955N
n=-_L-_% — =[720N|.
200.663)

ts 24

(a) n+ Fsin15°—(75 N)cos25°=0 n F
. n=67.97-0.259F 15;
Fo. max = Mg = 2467 —0.094F s, max
25°

For equilibrium: F cos15°424.67 —0.094F —75sin 25°=0. ‘ 75 N

This gives .

FIG. P5.49(a)

(b) F cos15°—(24.67 —0.094F ) — 75sin 25°=0. n E
This gives | F=53.2 N |. 50
fS, max
25°

Y75N

FIG. P5.49(b)

(c) fi = 11n =10.6 —0.040F . Since the velocity is constant, the net n F
force is zero: 15°
F cos15°—(10.6 —0.040F)— 75sin 25° = 0. fi 50

This gives .

FIG. P5.49(c)

V75N
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*P5.50  We must consider separately the disk when it is in contact with the roof
and when it has gone over the top into free fall. In the first case, we take
x and y as parallel and perpendicular to the surface of the roof:

Y. F, =ma,: +n-mgcosf=0
n=mgcosf

then friction is f; = yn = pmgcosd

FIG. P5.50

> Fo=ma,;: -f,—mgsin@=ma,
a,=—u,gcosd—gsinf=(-0.4cos37°-sin37°)9.8 m/s2 =-9.03 rn/s2

The Frisbee goes ballistic with speed given by

02 =02 +2a,(x; - x,)=(15 m/s)" + 2(~9.03 m/s*)(10 m—0)=44.4 m*/s’
0, =6.67 m/s

For the free fall, we take x and y horizontal and vertical:
vy = i+ 20, (v~ ;)
0=(667 m/s sin37°)" +2(-9.8 m/s?)(y; —10 m sin37°)

(401 mys)*

yf =6.02 m+mz

Additional Problems

P5.51 (a) see figure to the right 1 T TT T
(b) First consider Pat and the chair as the system. € T
Note that two ropes support the system, and n \
T =250 Nin each rope. Applying > " F =ma | n
1
480 0N 320N 1480 N

2T — 480 =ma, where m=——=49.0 kg.
9.80

FIG. P5.51
Solving for a gives

_ 500—480 3
a= 49.0 _'

() > F=uma on Pat:

> F=n+T—320=ma, where m:%:%? kg

n=ma+320—T =32.7(0.408)+320— 250 =| 83.3 N |.
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P5.52 > "F=ma gives the object’s acceleration

SF (8.00i - 4.00£) N
“m 200kg

a= (4.00 m/sz)i - (2.00 m/ss)ti = Z_‘t]

Its velocity is
_U[dv=v—vi=v—0=j‘adt
v:j[(400 m/s?)i-(200 m/s )t
V=E400t m/s? )i—(1.00£* m/s’)j.
(@  Werequire |v|=15.0 my/s, |v|* =225 m?/s?

16.0t> m?/s* +1.00t* m?/s® =225 m?/s?
1.00t* +16.0 s%t?> =225 s* =0

o -160% J(16.0)* - 4(~225) i

2.00

Take r; =0 at t =0. The position is

-

r= Jt'v J[(4 00t m/s? ) (1.001L2 m/s? )i]dt

0

(400 m/s? )—1 (1 00 m/s?’)%;

at t =3 s we evaluate.

©) r=|(18.0i-9.00j) m

®)  Solf=4/(18.0)%+(9.00)* m=[201m ]

0 s>



*P553  (a)
(b)
(©
(d)
P5.54
(b)

Chapter 5 143
Situation A y
i - \/x
> F, =ma,: F,+pn-mgsind=0 ¢
Y. F, =may +n—mgcos@=0 FA/y '

- mg sin 6 mgcos 0
Eliminate n =mg cos @ to solve for

FIG. P5.53(a)

| F, =mg(sind — u, cosb) |

Situation B y
. n \/x
> F,=ma,: Fycos@+ pugn-mgsind=0 Fy
F,=ma,: ~Fysind 9=0 ' —
D F,=ma,; —Fysing+n—mgcosf=
mgsin 6  ymgcos 0

Substitute n =mg cos#+ Fz sind to find

, , FIG. P5.53(b)
Fg cos 0+ pugmg cos 0+ p Fp sinf) —mg sind =0

_ mg(sind — 15 cos )

cosf + 1, sinf

F,=2kg9.8 m/s2 (sin25°-0.16 cos 25°) =5.44 N
19.6 N(0.278)

B = R = 559 N
€0s 25°+0.16 sin 25°

Student need exert less force.

Fs Fa

FB = - =
c0s25°4+-0.385in25°  1.07

Student need exert less force.

18 N-P=(2kg)a \ A 1114
Q=(4kg)a J1o6N J204n 392 Nl
Adding gives 18 N = (9 kg)a so
88l O ke) FIG. P5.54

a=|2.00 m/s* |.

Q=4 kg(z m/sz):| 8.00 N net force on the 4 kg |
P-8N=3 kg(Z m/sz)=| 6.00 N net force on the 3 kg | and P=14 N
18 N =14 N =2 kg(2 m/s?) =[ 400 N net force on the 2kg |

continued on next page
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P5.55

P5.56

The Laws of Motion

(©

(d

@)

(b)

From above, Q = and P= .

The 3-kg block models the heavy block of wood. The contact force on your back is
represented by Q, which is much less than the force F. The difference between F and Q is
the net force causing acceleration of the 5-kg pair of objects. The acceleration is real and
nonzero, but lasts for so short a time that it never is associated with a large velocity. The
frame of the building and your legs exert forces, small relative to the hammer blow, to bring
the partition, block, and you to rest again over a time large relative to the hammer blow.
This problem lends itself to interesting lecture demonstrations. One person can hold a lead
brick in one hand while another hits the brick with a hammer.

First, we note that F =T;. Next, we focus on the tT
mass M and write T; = Mg . Next, we focus on the >
bottom pulley and write Ty =T, 4 T5. Finally, we
focus on the top pulley and write T, =T, + T, + T;. l Mg
Since the pulleys are not starting to rotate and are
frictionless, T; =T, and T, =T;. From this ‘Tz ‘T3
M )
information, we have T; = 2T,, soT, = zL [}”W
2 N
M 3M, ‘ K
Then |T; =T, =T; :Tg ,and | T, :Tg ,and
T,
Ty=Mg |. L\"
7 ’\
M
Since F =T, we have =& N /A
2 Tl' 5

FIG. P5.55

We find the diver’s impact speed by analyzing his free-fall motion:

v? =0} +2ax:0+2(—9.80 m/sz)(—10.0 m) so v, =—14.0 m/s.

Now for the 2.00 s of stopping, we have v, =v; +at:

0=-14.0 m/s+a(2.00 s)
a=+7.00 m/s2 .

Call the force exerted by the water on the diver R. Using ZFy =ma,

+R =700 kg(9.80 m/s?)=70.0 kg(7.00 m/s?)
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P5.57 () The crate is in equilibrium, just before it starts to N7 .
move. Let the normal force acting on it be n and P4
the friction force, f,. _|_‘
Resolving vertically: fs‘ I

1E
n="F, +Psind
FIG. P5.57

Horizontally:

PcosO=f,
But,

fs <nen
ie.,

Pcosd < yi5(F, + Psin6)
or

P(cos ) — pu; sinf) < pu F.
Divide by cos¥:

P(1—p  tand) < pu F, sect.
Then

F,sect
Pminimum = Msg— .
1—p tand
0.400(100 N)secd
) P ( )sec
1-0.400tan ¢

0(deg) | 0.00 15.0 30.0 45.0 60.0
P(N) | 40.0 46.4 60.1 94.3 260

If the angle were 68.2° or more, the expression for P would go to infinity and motion would
become impossible.
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P558  (a)

(b)

(©

(d

(@)

Following the in-chapter Example about a block on a frictionless incline, we have

a=gsind=(9.80 m/s”)sin30.0°

The block slides distance x on the incline, with sin30.0°= w

X

x =100 m: v} =] +2a(x; —x;)=0+2(490 m/s*)(1.00 m)

2x;  2(100 m)

v, =|3.13 m/s | after time t = =———— ~=0.639s.
/ * o, 313 mys

Now in free fall y; —y; = vyit+%ayt2:

—2.00=(-3.13 m/s)sin30.0°t—%(9.80 m/s?)t>

(490 m/s?)#* +(1.56 mys)t-2.00 m=0

~1.56 m/si\/(1.56 m/s)” —4(490 m/s?)(-2.00 m)

t=
9.80 m/s>
Only one root is physical

t=0.499 s

xf = 0,4 =[(313 m/s)cos30.0°|(0.499 5)=[1.35 m |
total time = t, +t = 0.639 5+0.499 s =

The mass of the block makes no difference.



P5.59

*P5.60

Chapter 5 147

With motion impending, Tsin6 T
\ |
i " T/ |
n+Tsind-mg=0 I Teos 6
= u,(mg~Tsin6) m
d h
an
 E;
T cos@ — pu;mg + ;T sinf =0
FIG. P5.59
SO
T—_ KM
cos  + ju, sind

To minimize T, we maximize cos 8+ i, sin @
d . .
%(coséw Uy sin@)=0=—sinO+ u, coso.

(a) f=tan"' y, =tan '0.350 =

0.350(1.30 kg)(9.80 m/s?)

= =421 N
€0s19.3°4-0.350sin19.3°

(a) See Figure (a) to the right. mg=(36.4kg)(9.8 m/s*)=357 N

(b)

0
(b) See Figure (b) to the right. :\/n
I/ -
For the pin,
(c) or the pin ’/6*‘
Y. F, =ma,: Ccos@-357N=0 £
C _ 357 N ) / — an
cos 6 |
For the foot,
FIG. P5.60(a) FIG. P5.60(b)
D F,=ma,: +ny—Ccosf=0
TZB = 357 N .
(d) For the foot with motion impending,
> F.o=ma,: +f—Csinf,=0
unp =Csind,
Csin@, (357 N/cos6,)siné,
U = S = =tand;.
np 357 N

(e) The maximum coefficient is

1y = tand, = tan50.2° = .
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P5.61 S F=ma m, lng
K et
For m;: T=ma F—’ M 1, —__
For m,: T—-—myg=0 [O) O} ny

T O T e R S *n

|
X, M+m+m, —>

Eliminating T,

n,
g 28 l
M + (Fg)total myg
For all 3 blocks: FIG. P5.61
m
F=(M+m, +m,)a= (M+m1+m2)( Zgj
my
PR O] ) Acclersion dctermition o
0 0 0 x (m)
1.02  1.040  0.100 T T B R R
y=00714x oLy L
153 2341  0.200 AR2=09919 -4t d g d T
201 4040 0350 R R S S SEL L SE SR EE
R R I S i e A A S
264 6970  0.500 +‘;o,',f,:,‘,;,;,4,;,%%,%,%,&2(82)

3.30 10.89 0.750
375 14.06 1.00

FIG. P5.62

From x = %utz the slope of a graph of x versus t* is %u, and

u:2><slope:2(0.07l 4 m/sz):.

/ .
From a’ = gsind,

1.77 4
a’=9.80 m/s* (%) =0.137 m/s?, different by 4%.

The difference is accounted for by the uncertainty in the data, which we may estimate from the third
point as

0.350 — (0.071 4)(4.04)
0.350

=18%.



P5.63 (1)

2)

)
(@)

(b)

(©

(d)

mi(a—A)=T=a

:i+A

my

T

MA=R,=T=A=—
M

mya=myg—T=T=m,(g—n)

Substitute the value for a from (1) into (3) and solve for T:

Substitute for A from (2):

el

T
_+Mﬂz ng{mlM—&-mz(ml —&-M)} '

el

Chapter 5
a-A
= ml T
A T
<= M ",
{Ls‘m

FIG. P5.63

m{M

Solve (3) for a and substitute value of T:

m,8(my +M)

B myM +m,(M+m;) '

From (2), A= %, Substitute the value of T:

mim,&

A= .
myM +m,(my + M)

a—A=

Mm,g

B myM +m,(m; + M)

149
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P5.64

*P5.65

The Laws of Motion

(a), (b) Motion impending

(©

@)

(b)

(©)

I n=490N
15.0kg
Fo = 490N 196 Nl 147N
\ 4
fa=mn=147N f., =0.500(196 N)=98.0 N
FIG. P5.64

P=f 4+ f,=147N+980N=|113 N

Once motion starts, kinetic friction acts.

112.7 N —0.100(49.0 N) - 0.400(196 N) = (15.0 kg)a,

0.100(49.0 N) = (5.00 kg)a,

Let x represent the position of the glider along the air track. Then z? = x* + h,

1/2 12
x= (zz —hg) / , Uy :d_x:l( 2 —hg) / (Zz)%. Now % is the rate at which string passes

at 2 dt
over the pulley, so it is equal to v, of the counterweight.

v, = 2(22 —hg)_l/zvy =uv,

dv, d dv, du
q, =—*=—yv, =u—=-+v,— atrelease fromrest, v, =0 and a. =ua,, .
Toodr odr Y dt Y dt Y * Y
80.0 cm

z
For the counterweight

sin30.0°=

,2=160m, u=(z* —hg)’”zz = (167 —0.82)71/2(1.6) =115.

>F,=ma,; T-05kg98m/s*=-05kga,
a,=-2T+9.8

For the glider

> F, =ma,: Tcos30°=100 kg a, =115a, =115(-2T +9.8)=-2.31T +11.3 N
318T=113 N
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*P5.66  The upward acceleration of the rod is described by mg

| | m H_>l<_I_I/
1
Yy :yi+vyit+5ayt2 f X
N\

2
1x10° m=0+0++a (8x10‘3s)
2 Yy

n
a, =312 m/s? : F \ F
A A

M M
The distance y moved by the rod and the distance x o o 44
moved by the wedge in the same time are related Bl Ymg
by tan15°= L= : Y —. Then their speeds and

x an
accelerations are related by FIG. P5.66
dx 1 dy

dt - tan15° dt

and

d*x 1 dzy_( 1

22 7 31.2 m/s? =117 m/s?.
A2 tan15° d¢? tan15°j / /

The free body diagram for the rod is shown. Here H and H' are forces exerted by the guide.

D F, =may ncos15°~mg =ma,
ncos15°~0.250 kg(9.8 m/s? ) =0.250 kg(31.2 m/s? )
n= 103 N =10.6 N
cos15°

For the wedge,

> F,=Ma,: -nsin15*+F=05kg(117 m/s’)
F =(10.6 N)sin15°+58.3 N =

*P5.67 (a) Consider forces on the midpoint of the rope. It is nearly in f
equilibrium just before the car begins to move. Take the y-axis
in the direction of the force you exert:

T ' b
T T
Y. F, =ma,; -Tsinf+f-Tsing=0 /\

T= f .
2sin @

FIG. P5.67

(b) T= 109 N =410 N
2sin7°




152 The Laws of Motion

P5.68 Since it has a larger mass, we expect the 8.00-kg block to move
down the plane. The acceleration for both blocks should have the
same magnitude since they are joined together by a non-stretching
string. Define up the left hand plane as positive for the 3.50-kg
object and down the right hand plane as positive for the 8.00-kg

object.
F =ma;: —m;gsin35.0°+T =
ST A FIG. P68

and

~(3.50)(9.80)sin 35.0°+T = 3.50a

(8.00)(9.80)sin 35.0°~T = 8.004.
Adding, we obtain

+45.0 N—19.7 N= (115 kg)a.
(b) Thus the acceleration is

]
By substitution,
~19.7 N+T = (3.50 kg)(2.20 m/s?)=7.70 N.
(@) The tension is
r=an]
P5.69 Choose the x-axis pointing down the slope. a=>5.00 m/ g2
vy =v; +at: 30.0 m/s=0+a(6.00s)
a=5.00 m/s>.
Consider forces on the toy.
> F, =ma,: mgsin@=m(5.00 m/sz)
Y. F,=ma,; —mgcos@+T=0 FIG. P5.69

T =mg cos 0 =(0.100)(9.80) cos 30.7°
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*P5.70  Throughout its up and down motion after release the block has y
Y. F,=ma,; +n-mgcosf=0 n@ <Ax
n=mgcosé.

Let R= in + Ryj represent the force of table on incline. We have y

n T_»
x
> F, =ma,: +R, —nsin@=0 /

R, =mgcos@sin@

>.F, =ma,; —-Mg-ncos@+R, =0 |4
R, = Mg + mg cos* 6. Mgl |Ry
R =mgcos@sind to the right + (M +mcos? 49)g upward FIG. P5.70

*P5.71 Take +x in the direction of motion of the tablecloth. For the mug;:

> F.=ma, 01N=02kga,
a, =05 m/sz.

Relative to the tablecloth, the acceleration of the mug is 0.5 m/s* —3 m/s* = —2.5 m/s*. The mug
reaches the edge of the tablecloth after time given by

1
Ax= vxit+Eaxt2

_ 1 2\,2
0.3 m—O+E(—2.5 m/s? )t
£=0.490's.

The motion of the mug relative to tabletop is over distance

1 1
Eaxtz :E(O'S m/s?)(0.490 5)* =[ 00600 m |.

The tablecloth slides 36 cm over the table in this process.
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P5.72 > F,=ma,:n—mgcosf=0 YA
n //
or /
1 =8.40(9.80)cos 0 @ e
¢ sin 0
1= (82.3 N)cos 6 N
A > 'Y

 mg cos 6

> F, =ma,: mgsind =ma

a(m/s?)
or (UM RS A A ge e 23
Rt S L L L R -4
JRRREY &
a=gsinf bt
6 o
a:(9.80 m/sz)siné’ cdedededeed
4 Ao
B A
2 by bt
0,deg n, N a, m/s’ I
0 20 40 60 80 100
0.00 82.3 0.00 8 (deg) Y (Ges)

5.00 82.0 0.854
10.0 81.1 1.70 FIG. P5.72
15.0 79.5 2.54
20.0 774 3.35
25.0 74.6 4.14
30.0 71.3 4.90
35.0 67.4 5.62
40.0 63.1 6.30
45.0 58.2 6.93
50.0 52.9 7.51
55.0 47.2 8.03
60.0 41.2 8.49
65.0 34.8 8.88
70.0 28.2 9.21
75.0 21.3 9.47
80.0 14.3 9.65
85.0 717 9.76
90.0 0.00 9.80

At 0°, the normal force is the full weight and the acceleration is zero. At 90°, the mass is in free fall
next to the vertical incline.
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P5.73 (@) Apply Newton’s second law to two points
where butterflies are attached on either half
of mobile (other half the same, by symmetry)

(1) T,cos@,—T cosé =0

(2) Tysin#; —T,sinf, —mg=0
3) T,cosb,—T;=0

4) T,sinf, —mg=0

Substituting (4) into (2) for T, sind,,

T;sinf; —mg—mg=0.

FIG. P5.69

Then

2
I, = ﬂ
siné,

Substitute (3) into (1) for T, cosf,:
T3 _Tl C0591 :0, T3 :Tl C0591

Substitute value of T;:

2
T, — 2mg cos b, _| 2mg

3 |-

siné, tand; B

From Equation (4),

TZ = 'n/lg .
sind,

(b) Divide (4) by (3):

T,sind, mg
T,cosf, T,

Substitute value of T:

tand, :—mgztan % 0= tan_l(—tar;gl j :
mg

Then we can finish answering part (a):

ms
T, =— -
sinftan” " (L tan 6, )
() D is the horizontal distance between the points at which the two ends of the string are
attached to the ceiling.

D=2(cosf;+20cosb, + (¢ and L =5¢

D= %{2 cosf; +2 cos{tan_1 (% tand; j} + 1}
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ANSWERS TO EVEN PROBLEMS

P5.2

P5.4

P5.6

P5.8

P5.10

P5.12

P5.14

P5.16

P5.18

P5.20

P5.22

P5.24

P5.26

P5.28

P5.30

P5.32

P5.34

P5.36

P5.38

P5.40

1.66 x10° N forward

~

F,v).
@25 ®) (?:jﬂpgl

(a) 4.47 x10% m/ 52 away from the wall;

(b) 2.09x107° N toward the wall
(a) 534 N down; (b) 54.5 kg
2.55 N for an 88.7 kg person

(16,31 +14.6j) N

(a) 181°; (b) 11.2 kg; (c) 37.5 m/s;
(d) (-37.51 - 0.893]) m/s

112N

T, =296 N; T, =163 N; T, =325 N
(a) see the solution; (b) 1.79 N

(a) 2.54 m/ s down the incline;
(b) 3.18 m/s

see the solution; 6.30 m/ s?;315N
(a) 3.57 m/s?; (b) 26.7 N; (c) 7.14 m/s
(a) 36.8 N; (b) 2.45 m/s*; (c) 1.23 m
(a) 0.529 m; (b) 7.40 m/s upward

(a) 2.22m; (b) 8.74 m/s

(a) ay =2ay;
_ g g8
®) 1 Comy 42 Tz_m ym
1 2 1 4
_ . mg my8
() ay = my 4

0 =

1, =0.306; u;, =0.245
(a) 3.34; (b) Time would increase

(a) 55.2° (b) 167 N

P5.42

P5.44

P5.46

P5.48

P5.50

P5.52

P5.54

P5.56

P5.58

P5.60

P5.62

P5.64

P5.66

P5.68

P5.70

P5.72

152 ft

(a) 2.31 m/ s* down for my, left for m, and
up for mjy; (b) 30.0 N and 24.2 N

Any value between 31.7 N and 48.6 N
720N

6.84 m
(2) 3.00s; (b) 20.1 m; (<) (18.01-9.00j) m

(a) 2.00 m/ s% to the right;

(b) 8.00 N right on 4 kg;

6.00 N right on 3 kg; 4 N right on 2 kg;
(c) 8.00 N between 4 kg and 3 kg;

14.0 N between 2 kg and 3 kg;

(d) see the solution

1.18 kN

(a) 490 m/s?; (b) 3.13 m/s at 30.0° below
the horizontal; (c) 1.35 m; (d) 1.14 s; (e) No

(a) and (b) see the solution; (c) 357 N;
(d) see the solution; (e) 1.20

see the solution; 0.143 m/ 2 agrees with
0137 m/s?

(a) see the solution;
(b) on block one:

490Nj-49.0Nj+147 Ni;

on block two: —49.0 Nj—147 Ni-147 N j
+196 Nj-98.0 Ni+113 Ni;

() for block one: 0.980i m/ s%;

for block two: 1.96 m/ s2i

61.1N
(@) 220 m/s*; (b) 27.4N

mg cos @sin @ to the right
+ (M +mcos? 9) g upward

see the solution



Q6.4

Q6.5
Q6.6

Q6.7

Q6.8

Circular Motion and Other
Applications of Newton’s Laws

ANSWERS TO QUESTIONS

Q6.1 Mud flies off a rapidly spinning tire because the resultant force
is not sufficient to keep it moving in a circular path. In this case,
the force that plays a major role is the adhesion between the
mud and the tire.

Q6.2 The spring will stretch. In order for the object to move in a

circle, the force exerted on the object by the spring must have a
2

size of . Newton'’s third law says that the force exerted on

r

the object by the spring has the same size as the force exerted
by the object on the spring. It is the force exerted on the spring
that causes the spring to stretch.

Q6.3 Driving in a circle at a constant speed requires a centripetal
acceleration but no tangential acceleration.

(@) The object will move in a circle at a constant speed.

(b) The object will move in a straight line at a changing speed.

The speed changes. The tangential force component causes tangential acceleration.

Consider the force required to keep a rock in the Earth’s crust moving in a circle. The size of the
force is proportional to the radius of the circle. If that rock is at the Equator, the radius of the circle
through which it moves is about 6400 km. If the rock is at the north pole, the radius of the circle
through which it moves is zero!

Consider standing on a bathroom scale. The resultant force on you is your actual weight minus the
normal force. The scale reading shows the size of the normal force, and is your ‘apparent weight.” If
you are at the North or South Pole, it can be precisely equal to your actual weight. If you are at the
equator, your apparent weight must be less, so that the resultant force on you can be a downward

force large enough to cause your centripetal acceleration as the Earth rotates.

A torque is exerted by the thrust force of the water times the distance between the nozzles.

157
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Q6.9

06.10

Q6.11

06.12

Q6.13

Q6.14

Q6.15

06.16

I would not accept that statement for two reasons. First, to be “beyond the pull of gravity,” one
would have to be infinitely far away from all other matter. Second, astronauts in orbit are moving in
a circular path. It is the gravitational pull of Earth on the astronauts that keeps them in orbit. In the
space shuttle, just above the atmosphere, gravity is only slightly weaker than at the Earth’s surface.
Gravity does its job most clearly on an orbiting spacecraft, because the craft feels no other forces and
is in free fall.

This is the same principle as the centrifuge. All the material inside the cylinder tends to move along
a straight-line path, but the walls of the cylinder exert an inward force to keep everything moving
around in a circular path.

The ball would not behave as it would when dropped on the Earth. As the astronaut holds the ball,
she and the ball are moving with the same angular velocity. The ball, however, being closer to the
center of rotation, is moving with a slower tangential velocity. Once the ball is released, it acts
according to Newton's first law, and simply drifts with constant velocity in the original direction of
its velocity when released—it is no longer “attached” to the rotating space station. Since the ball
follows a straight line and the astronaut follows a circular path, it will appear to the astronaut that
the ball will “fall to the floor”. But other dramatic effects will occur. Imagine that the ball is held so
high that it is just slightly away from the center of rotation. Then, as the ball is released, it will move
very slowly along a straight line. Thus, the astronaut may make several full rotations around the
circular path before the ball strikes the floor. This will result in three obvious variations with the
Earth drop. First, the time to fall will be much larger than that on the Earth, even though the feet of
the astronaut are pressed into the floor with a force that suggests the same force of gravity as on
Earth. Second, the ball may actually appear to bob up and down if several rotations are made while
it “falls”. As the ball moves in a straight line while the astronaut rotates, sometimes she is on the side
of the circle on which the ball is moving toward her and other times she is on the other side, where
the ball is moving away from her. The third effect is that the ball will not drop straight down to her
feet. In the extreme case we have been imagining, it may actually strike the surface while she is on
the opposite side, so it looks like it ended up “falling up”. In the least extreme case, in which only a
portion of a rotation is made before the ball strikes the surface, the ball will appear to move
backward relative to the astronaut as it falls.

The water has inertia. The water tends to move along a straight line, but the bucket pulls it in and
around in a circle.

There is no such force. If the passenger slides outward across the slippery car seat, it is because the
passenger is moving forward in a straight line while the car is turning under him. If the passenger
pushes hard against the outside door, the door is exerting an inward force on him. No object is
exerting an outward force on him, but he should still buckle his seatbelt.

Blood pressure cannot supply the force necessary both to balance the gravitational force and to
provide the centripetal acceleration, to keep blood flowing up to the pilot’s brain.

The person in the elevator is in an accelerating reference frame. The apparent acceleration due to

u

gravity, “g,” is changed inside the elevator. “¢"=g*a

When you are not accelerating, the normal force and your weight are equal in size. Your body
interprets the force of the floor pushing up on you as your weight. When you accelerate in an
elevator, this normal force changes so that you accelerate with the elevator. In free fall, you are
never weightless since the Earth’s gravity and your mass do not change. It is the normal force—your
apparent weight—that is zero.



Q6.17

06.18

06.19

06.20

06.21
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From the proportionality of the drag force to the speed squared and from Newton’s second law, we
derive the equation that describes the motion of the skydiver:

do DpA
y PA 2
dt 2 Y

where D is the coefficient of drag of the parachutist, and A is the projected area of the parachutist’s
body. At terminal speed,

dv 2m 2
a,=—~=0and V; s\
Yodt DpA

When the parachute opens, the coefficient of drag D and the effective area A both increase, thus
reducing the speed of the skydiver.

Modern parachutes also add a third term, lift, to change the equation to

do DpA , LpA
Y 2 2
m—=me——m0,, ———0
a8 Ty Ty O

where v, is the vertical velocity, and v, is the horizontal velocity. The effect of lift is clearly seen in

y
the “paraplane,” an ultralight airplane made from a fan, a chair, and a parachute.

The larger drop has higher terminal speed. In the case of spheres, the text demonstrates that
terminal speed is proportional to the square root of radius. When moving with terminal speed, an
object is in equilibrium and has zero acceleration.

Lower air density reduces air resistance, so a tank-truck-load of fuel takes you farther.

Suppose the rock is moving rapidly when it enters the water. The speed of the rock decreases until it
reaches terminal velocity. The acceleration, which is upward, decreases to zero as the rock
approaches terminal velocity.

The thesis is false. The moment of decay of a radioactive atomic nucleus (for example) cannot be
predicted. Quantum mechanics implies that the future is indeterminate. On the other hand, our
sense of free will, of being able to make choices for ourselves that can appear to be random, may be
an illusion. It may have nothing to do with the subatomic randomness described by quantum
mechanics.
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SOLUTIONS TO PROBLEMS

Section 6.1 Newton’s Second Law Applied to Uniform Circular Motion

Pe.1

Pe6.2

m=3.00 kg, ¥ =0.800 m. The string will break if the tension exceeds
the weight corresponding to 25.0 kg, so
T

max

= Mg =25.0(9.80) = 245 N.

When the 3.00 kg mass rotates in a horizontal circle, the tension
causes the centripetal acceleration,

2 (3.00)0>
w 7o _ (30007
r 0.800

0.800)T _ (0.800)T,y  0.800(245
Then o2 =1L - (080T (0800)Tmq _0800(245) m?/s?
m 3.00 3.00 3.00

and 0<0v<4/65.3

FIG. P6.1

or |0Sv£8.08 m/s|.

2
In ) F=m U—, both m and r are unknown but remain constant. Therefore, Y F is proportional to 0?
r

2
and increases by a factor of Gi—gj as v increases from 14.0 m/s to 18.0 m/s. The total force at the

higher speed is then

18.0

2
> Fragt = (mj (130 N)=215 N.

Symbolically, write D" Fy,, = (EJ(MD m/ s)2 and ) Fyq = (ﬂj(l&o m/ s)z.
r r

Z Ffast _ (@)2 or
z F, slow ’

Dividing gives
Viding v 14.0

1802 18.0)2
ZFfast :(mj stlow :(mj (130 N)Z,

This force must be | horizontally inward | to produce the driver’s centripetal acceleration.




Pe6.3

Pe.4

Pe6.5

Pe6.6

Pe.7

mo? (91107 kg)(220x10° mys)’
() F=——= - =|832x10"° N inward
r 0.530x107" m

2

2 (2.20x10° m/s
(b) a:v—: (0530 10_10/ ) =| 913 x10% rn/s2 inward |
r . X m

Neglecting relativistic effects. F =ma, = 7
r

(2.998 x 107 m/s)2

F=(2x1661x10" kg) =|622x10 2 N
(0.480 m)
@

(b) mai =f§+nj+mg(—j)
2 F,=0=n-mg

2
thus n=mg and ) F, =mUT:f=yn:ymg.

v? (50.0 cm/s)2
Then y=—-= =10.0850 |.
g (30.0 cm)(980 cm/ s )
2
(a) D F, =ma,, mg, .., down= down

r
0= g :J(1.52 m/s?)(17x10° m+100x 10° m) =[ 165 x 10° m/s]|

2 27(18x10° m)

b =" T=—~ 1 _|684x10% s [=190 h
(b) 65107 s 684x10° s |

T
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n=mg since a, =0 2
. . .. .. Center
The force causing the centripetal acceleration is the frictional force f. of
- Motion
2 A =
From Newton’s second law f =ma, = . ‘
r mg
| 35.0 m—»|
But the friction condition is f < un
FIG. P6.7

2

ie., <umg

o< Jurg = \/0.600(35.0 m)(9.80 m/s?) v<
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e [(86.5 km/h)(séo%s)(l?(fmm)r[ 1g

s amTs 9.80 m/SZJ:

r 61.0 m

P6.9 T c0s5.00°= mg = (80.0 kg)(9.80 m/s’)

@) T=787 N: T=| (686 N)i +(784 N)j |

(b) T'sin5.00°=ma,:

the circle.

a, =0.857 m/s? | toward the center of

The length of the wire is unnecessary information. We
could, on the other hand, use it to find the radius of the

circle, the speed of the bob, and the period of the motion.

235 m

The radius is given by %Zm’ =235m

r=150 m

2
(a) a, = [UT] toward center

(6.53 m/s)2
=————" at 35.0° north of west
150 m

(0.285 m/s*)(cos35.0°(~i) +sin35.0°j)

=|-0.233 m/s?i+0.163 m/s?

(vi-vi)
t
(653 m/sj-653 mysi)
36.0 s
= 0181 m/s*1+0.181 m/s?] |

(©) a=

mg

FIG. P6.9
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*P611  F, =mg=(4kg)(98 m/s*)=39.2N

sinf = —1'5 m
2m

0=48.6°
r=(2 m)cos48.6°=1.32 m

2

mo
S, =ma, =" . U
2
4kg)(6 m/s
T. cosd8.6°4T, cos48.6°= - <ENO W8]
1.32 m "
motion
T, +T, :%:165 N
COS0: FIG. P6.11
D F, =ma,
+T, sin48.6°-T, sin48.6°-39.2 N =0
T -1, =222N 53
sin48.6°
(@) To solve simultaneously, we add the equations in T, and Tj,:

T,+T,+T,—T, =165 N+523 N

217 N
(b) T, =165 N-T, =165 N-108 N=[ 562 N |

2

*P6.12 a, = Let frepresent the rotation rate. Each revolution carries each bit of metal through distance
r

c

27,50 v=_2mf and

UZ

a,=—=4zrf2=100g.
r

c

A smaller radius implies smaller acceleration. To meet the criterion for each bit of metal we consider
the minimum radius:

100 ¢)* (100-9.8 m/s? )" 1( 60s
f=( > j =l ————| =344 —(_j =[2.06x10% rev/min |.
4y 47°(0.021 m) s\ 1 min
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Section 6.2 Nonuniform Circular Motion

P6.13

P6.14

P6.15

M=40.0kg, R=3.00m, T=350 N TT TT Mg

Mv?

(a) > F=2T-Mg=

R
2=(2T-M (—j
v =( g) M A
v? =[700- (40.0)(9.80)](@j =231 (m?/s?)
40.0 M n
=4.81 m/s g
o= child + seat child alone
Mv?
(b) n-Mg=F= FIG. P6.13(a) FIG. P6.13(b)
R
Mo? 231
=Mg+ =40.0{9.80+—— |=| 700 N
=g+ =050+ 25
(@) Consider the forces acting on the system consisting of the child and the seat:
02
> F, =ma,=2T-mg= m—
AT
m
)
m
(b) Consider the forces acting on the child alone:
2
2 F =ma,=>n=m 8+ %
and from above, v% = R(E— g), SO
m
2T
n= +—-g|=| 2T |.
'ﬂ(g m g) 2T
Let the tension at the lowest point be T. "T
mo*
> F=ma: T-mg=ma,=
mgl
\ Forces

2
sz[g-i-v—j
;

T =(85.0 kg)[9.80 m/s? (800 mjs).

=138 kN >1000 N
10.0 m

a.
- .
S~ o _P__; v Motion

He doesn’t make it across the river because the vine breaks. | FIG. P6.15




Pe6.16

P6.17

P6.18

P6.19

@)

(b)

2

02 (400 mys)” .
e Ty 120m _

a=+la’+a?
a=+(133)% +(1.20) =

atan angle 0 =tan™! (“_cj =| 48.0° inward

a;

2
=mg+n
r

But 7 =0 at this minimum speed condition, so

mo

r

=mg:>v=\/§=\/(9.80 m/sz)(l.OO m) =.

At the top of the vertical circle,

2

0
T=m——
mR mg
or T (0400)(4'00)2 (0.400)(9.80) =| 888 N
r T =(0. —(0. 80)=]| 8.
0.500

@)

(b)

v=20.0 m/s,
n = force of track on roller coaster, and

R=10.0 m.

2

ZF:MI: =n-Mg

From this we find

2
n:Mg+MU

Chapter 6

FIG. P6.16

{}ﬂc

FIG. P6.17

FIG. P6.19

(500 kg)(20.0 m/s?)

<=5 kg)(9-80 m/s?)

n=4900 N+20000 N=|249x10* N

2
At B, n—Mgz—MU
R
The max speed at B corresponds to
n=0

2

10.0 m

~Mg = —%: Umax = YRE =4/15.0(9.80) =[ 12.1 my/s |

165
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P6.20  (a)

(b)

(©

Section 6.3

P621  (a)

(b)

(©

o2 v (130 mys)?

R CPrya ) L :

n J,mg
Let 1 be the force exerted by the rail.

Newton’s law gives FIG. P6.20

Mg+n:Mv
’

2
n= M(U——gj = M(2g - g)=| Mg, downward
r

13.0 m/s)’

If the force exerted by the rail is 7,

2
then ny+Mg=

=Ma,
1y = M(a, — g) which is <0 since a, =8.45 m/s*

Thus, the normal force would have to point away from the center of the curve. Unless they
have belts, the riders will fall from the cars. To be safe we must require n; to be positive.
Then a, > g. We need

2
UT> goro>.frg = J(zo.o m)(9.80 my/s?), 0>140 mys.

Motion in Accelerated Frames

T 180N 5 —
F.=Ma,a=—= =|3.60
Z x a,a M  5.00 kg

to the right.

If v= const, a=0, so (This is also

an equilibrium situation.)

Someone in the car (noninertial observer)
claims that the forces on the mass along x
are T and a fictitious force (~Ma). Someone
at rest outside the car (inertial observer) “
claims that T is the only force on M in the

x-direction.

FIG. P6.21



*P6.22

P6.23

*P6.24
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We adopt the view of an inertial observer. If it is on the verge of sliding, the n

cup is moving on a circle with its centripetal acceleration caused by friction.

—l- f

Y. F =ma,; +n-mg=0
2

ZFx:max: f:m: =H = fmg g

V=4 u,8r = \/0.8(9.8 m/sz)(30 m) :

If you go too fast the cup will begin sliding | straight across the dashboard to the left.

FIG. P6.22

The only forces acting on the suspended object are the force of gravity mg

and the force of tension T, as shown in the free-body diagram. Applying Tcos @
Newton'’s second law in the x and y directions,

Tsin 6
> F =Tsinf=ma (1) mg
> F, =Tcosf-mg=0
FIG. P6.23

or Tcosf=mg (2)
(@) Dividing equation (1) by (2) gives

2
g & _ 300 m/s

= =0.306.
¢ 9.80 m/s>

Solving for 6, =

(b) From Equation (1),

ma (0500 kg)(3.00 m/s?)

= sinf sin(17.0°) - '

The water moves at speed

27 27(0.12 m)
o=——m—=———"7"—

=0.104 m/s.
T 7.25s

The top layer of water feels a downward force of gravity mg and an outward fictitious force in the
turntable frame of reference,

mv?  m(0.104 my/s)”

= =m9.01x107 m/s?.
r 012 m

It behaves as if it were stationary in a gravity field pointing downward and outward at

2

Its surface slopes upward toward the outside, making this angle with the horizontal.
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P6.25 Frax =F; +ma=591N
Fojn =F; —ma=391N

(a) Adding, ZFg =982 N, Fg =491 N
. 491 N ”
(b) Since Fg =mg, m= W =[50.1 g

() Subtracting the above equations,

2ma =200 N .'.a:

P6.26 (a) > F, =ma,

"SR TRUT
3 47°R
==
47°R 6.37 x10° m 5
T= =27 =507x10° s=[1.41h
\/ g \/ 9.80 m/s”

v 272R (T T 240 h
b speed increase factor = —2W__ = current | _ _current _ =171
( ) P Ocurrent T ( 27R j T 141h

new new

*P6.27 The car moves to the right with acceleration 4. We find the acceleration of a; of the block relative to
the Earth. The block moves to the right also.

D F =ma,; +n-mg=0, n=mg, f=umg
Y E =mas +pmg=may, a, =g

The acceleration of the block relative to the car is a;, —a = ;g —a. In this frame the block starts from
rest and undergoes displacement —¢ and gains speed according to

Uff = v)za- +2ax(xf —xi)

Uff =0+2(ppg—a)(—L—-0)=20(a— 1 g).

(a) v= (Zﬂ(u — Uy g))l/2 to the left

continued on next page
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(b) The time for which the box slides is given by

1/2
t:[ 2t ] |
a— g

The car in the Earth frame acquires finals speed v,; =v,; +at =0+ a( 2t

a—pr8

1/2
j . The speed

of the box in the Earth frame is then

12
1/2 20
Upe = Upe + V¢ = —[Zé(u - ,ng)] + Il( ]

a—Hr&
20 (- 1,8)+ (200 | peg(20)”
(ﬂ—/lkg)l/z (”_,ng)l/z
1820 _ Z,ngg‘

= 172
[25 (a— g )] v
*P6.28 Consider forces on the backpack as it slides in the Earth frame of reference.

Y. F, =ma,;: +n-mg=ma, n=m(g+a), fy = pem(g+a)
> F, =ma,: —uum(g+a)=ma,

The motion across the floor is described by L = vt + %axt2 =0t - %,uk(g +a)t?.

1 2(vt-L
We solve for gy : vt —L=—=pu,(g+a)t?, (0—2): |-
2 (g+a)t
P6.29 In an inertial reference frame, the girl is accelerating horizontally inward at

In her own non-inertial frame, her head feels a horizontally outward fictitious force equal to its mass
times this acceleration. Together this force and the weight of her head add to have a magnitude
equal to the mass of her head times an acceleration of

2
g2+(?J =/(9.80)* +(135)* m/s*=16.7 m/s>

This is larger than g by a factor of ;6_8; =1.71.

Thus, the force required to lift her head is larger by this factor, or the required force is

F=171(550 N)=[ 938 N |.
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*P6.30 (@) The chunk is at radius r = 0137 m+0.080 m _ 0.054 2 m. Its speed is

4

2
0= 2 22(0.0542 m) 2220
T 60

=114 m/s
S /

and its acceleration

2 (114 mys)?
a.= L M = | 2.38x10° m/s? horizontally inward
r 00542 m

8
=2.38 x 105 I'I’l/S2 (W} =.

(b) In the frame of the turning cone, the chunk feels a
2

horizontally outward force of ™0 In this frame its

r

.. 1 33 cm o
acceleration is up along the cone, at tan 1 . 49.2°,
2
Take the y axis perpendicular to the cone: FIG. P6.30(b)
mo®
ZFy =ma,: +n— sin49.2°=0

r
n=(2x10" kg)(238x10° m/s?)sin49.2°=
©  f=mn=06(360 N)=216 N
2
> F, =ma,: o

(2x107 kg)(2.38x10° m/s*)cos49.2°-216 N =(2x10~° kg)a,

c0s49.2°—f =ma,
;

a, :| 47.5x10* m/s? radially up the wall of the cone |

N
P6.31

[

47°R
) =( z ejcos35.0°:0.0276 m/s?
T

We take the y axis along the local vertical.
_ _ _ 2
(4net), =9.80(a,), =9.78 m/s

(exaggerated size)

(Apet), =0.0158 m/s?

a o
0= arctané =

FIG. P6.31
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Section 6.4 Motion in the Presence of Resistive Forces
DpAvi  DpA _mg

£ -0314 kg/m

P6.32 m=280.0 kg, vy =50.0 m/s, mg = 5 5
or

@) At ©v=30.0 m/s
2

DpAvZ
0.314)(30.0
a= g_L =9.80 _M = | 6.27 m/s2 downward |
m 80.0

(b) At v=50.0 m/s, terminal velocity has been reached.
> F,=0=mg-R
= R=mg =(80.0 kg)(9.80 m/s?)=[ 784 N directed up

(c) At ©v=30.0 m/s
DpAY” _ 314)(300)> <[ 283 N | upward
5 . )
P6.33 (@ a=g-bv
When v=v;,a=0 and g=bvy b=25
ur
The Styrofoam falls 1.50 m at constant speed v7 in 5.00 s.

_y_150m
t 5.00s

980 m/s® =
Then "= 0300 ms -[2747]
(b) Att=0,v=0 and uzg:down
(c) When v=0.150 m/s, a=g—-bv=9.80 m/s* - (32..7 st )(0.150 m/s) = down

P63 @  pei, A=00201m’ R= %pairADv% —mg

Thus, Ur

=0.300 m/s

M= PpeaqV =0.830 g/cm? E 7(8.00 cm)S} =178 kg

Assuming a drag coefficient of D =0.500 for this spherical object, and taking the density of
air at 20°C from the endpapers, we have

2(1.78 kg)(9.80 m/s’)

or = ):

0500(1.20 kg/m*)(0.0201 m?

v} _ (53.8 rn/s)2

(b) v} =0 +2gh=0+2gh: h=— —):

28 2(9.80 m/ s?



172  Circular Motion and Other Applications of Newton’s Laws

P6.35 Since the upward velocity is constant, the resultant force on the ball is zero. Thus, the upward
applied force equals the sum of the gravitational and drag forces (both downward):
F=mg+bv.

The mass of the copper ball is

3
"= 4”? - (%jﬂ(8.92 x10° kg/m’)(2.00x107 m)3 =0.299 kg.

The applied force is then

F =mg +bv = (0.299)(9.80) + (0.950)(9.00 x 10 % ) = [30IN].

P6.36 > F,=ma,
+T cos40.0°-mg =0

620 ke)(9.80 m/s>
T=( g)( / )=7.93x103N
cos40.0°

D> F, =ma,
—R+Tsin40.0°=0

R=(7.93x10° N)sin40.0°=5.10x10> N = %Dpsz

FIG. P6.36

2R 2(510x10° N)( kgmjs? )
D= (120 kg/m?)(3.80 m?)(40.0 m/s)’ =[1.40

P6.37 (@) At terminal velocity, R=v;b=mg

,_ms (3.00x107° kg)(9.80 m/s?)

= =| 147 N-s/m
ur 2.00x107° m/s

(b) In the equation describing the time variation of the velocity, we have

v=0;(1-¢"") v =0.632v; when ¢ /" =0.368

or at time t= —(%)111(0.368) =] 2.04x107 s
(c) At terminal velocity, R=vrb=mg=|294x10> N

P6.38 The resistive force is

R =%DpAUZ =%(0.250)(1.20 kg/m?)(2.20 m?)(27.8 nys)’
R=255N

a=-R__ 2N o /s
m 1200 kg
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P639 (a) o()=ve™ 9(20.0 5) =5.00 = v;e >, v, =10.0 m/s.

-20.0¢ 1 In(3) |
So 5.00 =10.0e and -20.0c =1n| — c=— =[347x10" s
2 20.0
(b)  Att=400s 0=(10.0 m/s)e *"% =(10.0 m/s)(0.250) =] 2.50 m/s

_ dv _
(©) v=ve s=—=—cve " = —cv
1 dt 1

P6.40 > F=ma

—th' dt = Tzfzdv
0 [N

1
k(t-0)=2—| =—Z4—
-1 (O
0]
1_1 ., l+ogkt
v Dy Vg
V= Y%
1+ vkt

*P6.41 (@) From Problem 40,
dt  1+vykt
X t t
J‘dx:J‘Uo dt :lJ' vokdt
0 o L+ookt  kyl+upkt

x|y = %ln(l + vokt)|;

x-0= %[ln(l + vokt)—lnl]

x= %ln(l +0gkt)

(b) We have In(1+ vokt) = kx

v v =
L —=—0=|ope _y
1+vgkt e

T+0vpkt=e™ so v=

*P6.42 We write —kmv? = —%DpAv2 SO

o _Dph_ 0305(1.20 kg/m?)(42x107> m?)
2m 2(0.145 kg)

0= 0pe™ = (402 m/s)e—(5.3x10*3/m)(18.3 m) _

=53x107/m
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1

P643 InR= EDpAvZ, we estimate that D=1.00, p=1.20 kg/m?, A =(0.100 m)(0.160 m)=1.60 x 10> m?

and v =27.0 m/s. The resistance force is then

or

Section 6.5 Numerical Modeling in Particle Dynamics

1

R= E(1.00)(1.20 kg/m®)(1.60x 102 m*)(27.0 my/s)* =7.00 N

R[]

Note: In some problems we compute each new position as x(t + At) = x(t) + v(t + At)At, rather than
x(t+ At) = x(t) + v(t)At as quoted in the text. This method has the same theoretical validity as that presented in
the text, and in practice can give quicker convergence.

mg (3.00x107° kg)(9.80 m/s?)

P6.44 (@) Atv=vy,a=0, -mg+buy =0 Ur > 300x102 kg)s
2
(b) £(s) x(m) o(m/s) F(mN) a(m/s?)
0 2 0 -294 -9.8
0.005 2 —-0.049 -27.93 -9.31
0.01 1.999 755 —-0.095 55 -26.534 -8.8445
0.015 1.999 3 -0.139 77 -25.2 -8.40
.. we list the result after each tenth iteration
0.05 1.990 -0.393 -17.6 -5.87
0.1 1.965 -0.629 -10.5 -3.51
0.15 1.930 -0.770 -6.31 -2.10
0.2 1.889 -0.854 -3.78 -1.26
0.25 1.845 -0.904 -2.26 -0.754
0.3 1.799 -0.935 -1.35 -0.451
0.35 1.752 -0.953 -0.811 -0.270
0.4 1.704 -0.964 -0.486 -0.162
0.45 1.65 -0.970 -0.291 -0.096 9
0.5 1.61 -0.974 -0.174 -0.058 0
0.55 1.56 -0.977 -0.110 -0.0347
0.6 1.51 -0.978 -0.062 4 -0.020 8
0.65 1.46 -0.979 -0.037 4 -0.0125

Terminal velocity is never reached. The leaf is at 99.9% of v; after 0.67 s. The fall to the
ground takes about 2.14 s. Repeating with At =0.001 s, we find the fall takes 2.14 s.



P6.45

P6.46

(@)

(b)

(@)

(b)

(©)
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When v=1v;,a=0, > F=-mg+Cvj =0

4.80x10™* kg)(9.80 m/s*
mg |l 8 )
U = — | —= = — =| -13.7 m/s
T c \/ 2.50x107 kg/m
Ks) x(m) o(m/s) F(mN) a(m/s?)

0 0 0 -4.704 -9.8

0.2 0 -1.96 —4.608 -9.5999

0.4 -0.392 -3.88 -4.3276 -9.0159

0.6 -1.168 -5.683 2 -3.896 5 -8.117 8

0.8 -2.30 -7.306 8 -3.369 3 -7.0193

1.0 -3.77 -8.7107 -2.8071 -5.848 1

1.2 -5.51 -9.880 3 -2.263 5 -4.7156

14 -7.48 -10.823 -1.7753 -3.698 6

1.6 -9.65 -11.563 -1.361 6 -2.836 6

1.8 -11.96 -12.13 -1.03 -2.14

2 -14.4 -12.56 —0.762 -1.59
... listing results after each fifth step

3 -27.4 -13.49 -0.154 -0.321

4 —41.0 -13.67 -0.0291 -0.060 6

5 -54.7 -13.71 —0.005 42 -0.011 3

The hailstone reaches 99% of
99.999% of v after 7.4 s.

vr after 3.3 s,99.95% of v after 5.0's,99.99% of v after 6.0s,

At terminal velocity, > F =0 =-mg +Coj

(0.142 kg)(9.80 m/s”)

S " =[770x10" kg/m]|
vT (425 m/s)
Co? =(7.70x10* kg/m)(36.0 nys)’ =[0.998 N
Elapsed Altitude Speed Resistance Net Acceleration
Time (s) (m) (m/s) Force (N) Force (N) (m/ 52)
0.000 00 0.000 00 36.000 00 -0.998 49 -2.39009  -16.831 58
0.050 00 1.757 92 35.158 42 -0.952 35 -2.34395  -16.506 67
2.950 00 48.623 27 0.824 94 -0.000 52 -1.39212 -9.803 69
3.000 00 48.640 00 0.33476 -0.000 09 -1.391 69 -9.800 61
3.050 00 48.632 24 -0.155 27 0.000 02 -1.391 58 -9.799 87
6.250 00 125085  -26.85297 0.555 55 -0.836 05 -5.887 69
6.300 00 -0.106 52 -27.147 36 0.567 80 -0.823 80 -5.801 44

Maximum height is about . It returns to the ground after about with a speed

of approximately .
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P6.47  (a)
(b)
6.48 (a)
(b)
(©

At constant velocity > F=0=-mg + Cv?

UT:—

=| —49.5 m/s | with chute closed and
C 0.200 kg/m
50.0 kg)(9.80
2 :—J ( ZOf))(kg/mm/S) =| —4.95 m/s | with chute open.

g \/(50.0 kg)(9.80 m/s?)

We use time increments of 0.1 s for 0<#<10 s, then 0.01 s for 10 s<f<12 s, and then 0.1 s
again.

time(s) height(m) velocity(m/s)

0 1000 0
1 995 9.7
2 980 -18.6
4 929 -32.7
7 812 —43.7
10 674 —47.7
10.1 671 -16.7
10.3 669 -8.02
11 665 -5.09
12 659 —4.95
50 471 -4.95
100 224 —4.95
145 0 —4.95

We use a time increment of 0.01 s.

time(s) x(m) y(m) with &  we find range
0 0 0 30.0° 86.410 m
0.100 7.81 543 35.0° 81.8 m
0.200 14.9 10.2 25.0° 90.181 m
0.400 27.1 18.3 20.0° 92.874 m
1.00 51.9 32.7 15.0° 93.812m
1.92 70.0 38.5 10.0° 90.965 m
2.00 70.9 38.5 17.0° 93.732 m
4.00 80.4 26.7 16.0° 93.839 8 m
5.00 81.4 17.7 15.5° 93.829 m
6.85 81.8 0 15.8° 93.839 m
16.1° 93.838 m
15.9° 93.840 2 m

So we have maximum range at 8=
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(@) At terminal speed, D F =-mg + Cv* =0. Thus,
0.046 0 kg)(9.80 m/s?
C=m—§=( I . / ):|2.33><104 kg/m |
v (44.0 m/s)
(b) We set up a spreadsheet to calculate the motion, try different initial speeds, and home in on

as that required for horizontal range of 155 m, thus:

v
-1 Yy
2, .2 tan | —
a, v:,/vx+vy (ij

Time X Uy Ay y Uy
He) m) A (m/s?) ) ) (fsT) () (deg)

0.0000 0.0000 45.6870 -10.5659 0.0000 27.4515 -13.6146 53.3000 31.000 0
0.0027 01211 45.6590 -10.5529 0.0727 27.4155 -13.604 6 53.257 4 30.982 2
25016 90.19496 289375 —-4.2388 325024 0.0235 -9.8000 28.937 5 0.046 6

25043 90.2713 289263 -4.2355 325024 —-0.0024 -9.8000 28.926 3 —-0.004 8
25069 90.3480 289150 —-4.2322 325024 -0.0284 -9.8000 289151 —-0.056 3
34238 115.2298 254926 -3.2896 28.3972 -8.8905 -9.3999 26.998 4 —-19.226 2
3.4265 1152974 254839 -3.2874 283736 -89154 -9.3977 26.998 4 -19.282. 2
34291 115.3649 254751 -3.2851 28.3500 -8.9403 -9.3954 26.998 4 —-19.338 2
51516 1549968 20.8438 -2.1992 0.0059 -23.3087 —-7.049 8 31.269 2 -48.195 4
5.1543 155.0520 20.8380 -2.1980 -0.0559 -23.3274 -7.0454 31.279 2 —48.226 2

() Similarly, the initial speed is .

The motion proceeds thus:

4
a _ .2, 2 tan'| L
y v=4/0y + 7, v,

Time x (N Ay y vy
t(s) (m) (m/s) (m/ 52) (m) (m/s) (m/ 52) (m/s) (deg)
0.0000 0.0000 28.7462 —4.1829 0.0000 30.8266 -14.6103 421500 47.000 0
0.0035 0.1006 287316 —4.1787 0.1079 30.7754 -14.5943 42.1026 46.967 1
27405 66.3078 205484 -2.1374 39.4854 0.0260 -9.8000 20.548 5 0.0725
27440 663797 205410 -2.1358 39.4855 -0.0083 -9.8000 20.541 0 -0.0231
27475 664516 20.5335 -2.1343 39.4855 —0.0426 -9.8000 20.533 5 -0.118 8
3.1465 744805 19.7156 -19676 38.6963 -3.9423 -9.7213 20.105 8 -11.307 7
3.1500 745495 19.7087 -1.9662 38.6825 -39764 -9.7200 20.105 8 -11.406 7
3.1535 74.6185 19.7018 -1.9649 38.6686 —4.0104 -9.7186 20.105 8 -11.505 6
56770 1189697 157394 -1.2540 0.0465 -25.2600 -6.5701 29.762 3 -58.073 1
56805 119.0248 15.7350 -1.2533 —-0.0419 -25.283 0 —6.564 2 29.779 5 -58.1037

The trajectory in (c) reaches maximum height 39 m, as opposed to 33 m in (b). In both, the
ball reaches maximum height when it has covered about 57% of its range. Its speed is a

minimum somewhat later. The impact speeds are both about 30 m/s.
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Additional Problems

*P6.50  When the cloth is at a lower angle 6, the radial

component of Y F =ma reads < mgsin68

P

mg cos68°

58]

. mo
n+mgsing =
’

At 6=168.0°, the normal force drops to zero and

2
¢sin68°= v . FIG. P6.50
r

0= [rgsin68° = J(0.33 m)(9.8 m/s)sin68° =173 my/s

The rate of revolution is

angular speed =(1.73 m/s)( 121:;V j( o g’; m)j =| 0.835 rev/s |=50.1 rev/min.

*P651 (a)  0=(30 km/h)(320}(1) J(li)i?nmjzs.s?) m/s n
S
2
> F, =ma,: +n—mg:—mv
p
mg
2 8.33 m/s)’
n=m| g—>—|=1800 kg| 9.8 m/sz—M
r 204 m FIG. P6.51

=[115x10* N up |

2

(b) Take n=0. Then mg = mo_
r

o= g7 = (98 m/s?)(20.4 m) =[ 141 my/s =509 kny/h

2

P652 () Y F =ma,=""
- _n_mvz nelm _m02
8 8 R
mo*
(b) When n=0, mg =

R
Then, v= \/g_R .



*P6.53

P6.54

(@)

(b)

(©

(d

()

(@)

(b)

(©

0.160 N-0
slope =—————=]0.016 2 kg/m
P 9.9 mz/s2 8/

R 1DpAv? [1
slope =—=2—""=| = DpA
P v? v? 2 P

%DpA =0.016 2 kg/m

2(0.016 2 kg/m)
D= ~=[0778
(120 kg/m*)7(0.105 m)

From the table, the eighth point is at force mg = 8(1.64 x107 kg)(9.8 m/sz) =0.129 N and

horizontal coordinate (2.80 m/ s)z. The vertical coordinate of the line is here
0.129 N-0.127 N

Chapter 6

(0.016 2 kg/m)(2.8 m/s)2 =0.127 N. The scatter percentage is

0.127 N

=15%.

The interpretation of the graph can be stated thus: For stacked coffee filters falling at
terminal speed, a graph of air resistance force as a function of squared speed demonstrates
that the force is proportional to the speed squared within the experimental uncertainty
estimated as 2%. This proportionality agrees with that described by the theoretical equation

179

R= %DpAv2 . The value of the constant slope of the graph implies that the drag coefficient

for coffee filtersis D=0.78+2%.

While the car negotiates the curve, the accelerometer is at the angle 6.

71102

Horizontally: Tsin@=
’

Vertically: TcosO@=mg

where r is the radius of the curve, and v is the speed of the car.

02
By division, tanf0=—
4

2

Then a, =U—:gtanz9:

- a. =(9.80 m/s*)tan15.0°

o2 (23.0 m/s)*

" 77263 m/s? =[201m]
v* =rgtan0=(201 m)(9.80 m/s*)tan9.00°  v=[17.7 m/s |

A

(7]

|

|

I \T
mg

FIG. P6.54
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P6.55 Take x-axis up the hill

> F,=ma,: +Tsin@-mgsing=ma
azzsiné?—gsirm
m

> F,=ma,: +TcosO—mgcosg=0
T:mgcos¢
cosd p
a:m_gsiw
cosd
a:| g(cos¢tan9—sin¢)|

272(7.46 s
*P6.56  (a) The speed of the bag is % =1.23 m/s. The S n
s
total force on it must add to &
ac
2
30kg)(1.23 m/s
ma, = CORBLB ms) mg
7.46 m
FIG. P6.56

> F, =ma,: f,cos20-nsin20=6.12N
> F,=ma,: f,sin20+ncos20(30 kg)(9.8 m/s*)=0
. f,cos20-6.12 N

sin 20
Substitute:
2
fsin20+ £ 220 61oN) 9520 _pou N
sin 20 sin
£.(292)=294N +168 N
f. =106 N
27(7.94
(b) v= M =147 m/s
34s
2
30 kg )(1.47 m/s
ma, = (30 ke)( /s) =813 N

7.94 m
f,c0s20-nsin20=8.13 N

f,sin20+ncos20 =294 N
f,c0s20-8.13 N
sin 20

2
fsin20+ £, <520 _ (513 N) <520
sin 20

=294 N

sin 20
f,(292)=294 N +22.4 N
f, =108 N

(108 N)cos20-8.13 N

n= - =273 N
sin 20

. 108N
v L




P6.57

P6.58

P6.59

(@)

(b)

@)

(b)

(©

(@)

(b)

(©
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Since the centripetal acceleration of a person is downward (toward N T
the axis of the earth), it is equivalent to the effect of a falling
elevator. Therefore,

2
mo

r_ _ '

Fg—Fg - or Fg>Fg

At the poles v=0 and F; = F, =mg =75.0(9.80)=| 735 N | down.

FIG. P6.57

At the equator, Fy = F, —ma, =735 N~75.0(0.0337) N =| 732 N | down.

Since the object of mass m, is in equilibrium, > F,=T-m,g=0

The tension in the string provides the required centripetal acceleration of the puck.

Thus, F=T=[myg]

From F. = o
R

we have o= R _ J (ﬂ)gR
my my

88.0 ft/s

0=(300 mi/ h)(60.0 mi/h

] — 440 ft/s

At the lowest point, his seat exerts an upward force; therefore, his weight seems to increase.
His apparent weight is

160 ) (440)°

2

v
F=mg+m—=160+| — =967 1b |.
g = Mg mr (32‘0)1200

At the highest point, the force of the seat on the pilot is directed down and

2
r U —
Fg = mg —m=——= —647 Ib |.
Since the plane is upside down, the seat exerts this downward force.

2
When F; =0, then mg = o

. If we vary the aircraft’s R and v such that the above is true,

then the pilot feels weightless.
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P6.60

Pe.61

P6.62

Circular Motion and Other Applications of Newton’s Laws

For the block to remain stationary, >’ F,=0and > F =ma,. : '
|
ny :(mp+mh)g SOfS,uSli’Zl ::usl(mp"_mb)g' J
At the point of slipping, the required centripetal force equals the "3 v 8
maximum friction force:
n
(mp+mb) r:ax :ysl(mp+mb)g i fy
OF Uy = /78 = \/(0.750)(0.120)(9.80) =0.939 m/s. [ |
For the penny to remain stationary on the block: my, g| m,g
Y F,=0=n,-m,g=0o0rn,=m,g
1y
02
and ) F, =ma, = f,=m,—.
r
=
When the penny is about to slip on the block, f, = f, nax = K212 —
Urznax
O HgpMp8 =1, — "= m,g
O = H1278 = /(0520)(0.120)(9.80) = 0.782 m/s FIG. P6.60

This is less than the maximum speed for the block, so the penny slips before the block starts to slip.
The maximum rotation frequency is

Max rpm = -2 _ (0.782 m/s) L rev ( 60.5 ): 62.2 rev/min |.
27 272(0.120 m) \ 1 min

2w 272(9.00 m)
T (1505s)

2
_v _ 2
o e
(b) Flow:m(g+ur):
(C) Fhigh :m(g_ar):

(d) Foug =my g +a? :| 397 N upward and | at =tan!

=3.77 m/s

1.
=tan’19i:= 9.15° inward |.

Standing on the inner surface of the rim, and moving with it, each person will feel a normal force

a
8

exerted by the rim. This inward force causes the 3.00 m/s* centripetal acceleration:

a, =L 0=1lar =,/(3.00 m/s?)(60.0 m) =13.4 mys

2 2 272(60.0
The period of rotation comes from v = A= 27600 m)
T v 13.4 m/s

so the frequency of rotation is f:l: LE— ( 60.5 ): 2.14 rev/min |.
T 281s 281s\1min

=281s




P6.63

Pe6.64

P6.65

(@)

(b)

(@)

(b)

@)

(b)

The mass at the end of the chain is in vertical equilibrium.

Thus T cos @ =mg.

m‘UZ

Horizontally T'sin6=ma, = ——

r

r=(2.50sin 0+ 4.00) m

r =(2.505in 28.0°+4.00) m =5.17 m

2
Then a, =

By division tan§=—-—

v? =5.17g tan 6 = (5.17)(9.80)(tan 28.0°) m? /s>

517 m’

a
8

2

(%

517g

Tcos@=mg
g (50.0 kg)(9.80 m/s?)
cosO cos 28.0°

[N

Chapter 6
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FIG. P6.63

The putty, when dislodged, rises and returns to the original level in time ¢. To find t, we use

If R is the radius of the wheel, v = @, SO

vp=v;+atiie, -v=+v—gtort=

Thus, v* = zRg and .

The putty is dislodged when F, the force holding it to the wheel is

f=umn

- \/ﬂ
8

rev lrev

60 s

min  2.54s

(

min

)

20 2aR

236 =<V
min

mg

FIG. P6.65

where v is the speed of a point on the rim of the wheel.



184  Circular Motion and Other Applications of Newton’s Laws

P6.66 Let the x—axis point eastward, the y-axis upward, and the z-axis point southward.
v? sin 26,

8
The initial speed of the ball is therefore

9.80)(285
v; = ‘gZ = ( - X ):53.0 m/s
sin 26; sin 96.0°

The time the ball is in the air is found from Ay =v,,t +%ayt2 as

(@) The rangeis Z =

0=(53.0 mys)(sin48.0°)t — (490 m/s )¢

giving t = .

2aR,cosg;  27(6:37x10° m)cos35.0°

b . =| 379 m/s
O o= e 400 s 86400 s
() 360° of latitude corresponds to a distance of 2zR,, so 285 m is a change in latitude of

285 m

S -3
Ag= (360°) = (360°)=2.56 x 10 degrees
(ZnRe j 27(6.37x10° m) s

The final latitude is then ¢, = ¢; — A¢ =35.0°-0.002 56° = 34.997 4°.

) ) 27R, cos ¢ f S
The cup is moving eastward at a speed v, = 864005 which is larger than the eastward
s
velocity of the tee by
27 27R
AV, =0, -V =—""F—|COSP;—COSQ; |= £—lcos(g; — Ag)—cos¢;
xR T 86 400 s[ ¢ ¢’] 86 400 s[ (4= 29)—cosi]

_ 27R,
86400 s

[cos #; cos Ag+sin g; sin Ag— cos ¢, |

Since A¢ is such a small angle, cosA¢~1 and Av, = 82:?5 sing; sinA¢.
s

27(637x10° m) ~
Av, ~ $in35.0°sin 0.002 56°=| 1.19x 10 my/s |
86 400 s

(d)  Ar=(Av,)t=(119x107 mys)(8.045)=0.0955 m=



P6.67

@)

(b)

(©

If the car is about to slip down the incline, fis directed up
the incline.

ZFy =ncosf@+ fsinf—-mg =0 where f=pumn gives

mg HsMZ

= d = .
! cos (1 + p, tan 0) and f cos §(1 + p tan 0)

2
Then, Y F, =nsind— f cos = mv“‘T‘“ yields

Rg(tan6— 1)
Vpnin = 4| ———————= |
i 1+pu tan@

When the car is about to slip up the incline, fis directed
down the incline. Then, ) F,=ncosf- fsind-mg=0

with f = umn yields

n= 8 and f = il .
cos (1 - p, tan 0) cos §(1— p, tan 0)

2
Ymax

In this case, Y| F, =nsin@+ f cos@=m , which gives

Rg(tan @+ u1,)
Vpmax = | —————2 |.
nax 1- pu tan@

ng(tanH—,u )
If Omin = Tm@s = 0, then .

\/ (100 m)(9.80 m/s”)(tan10.0°-0.100)
Omin =

=|8.57 m/s
1+(0.100) tan10.0°

\/(100 m)(9.80 m/s?)(tan10.0°+0.100)
vmax =

=[16.6 m/s
1-(0.100)tan10.0°

Chapter 6 185

1
—
1

1

|

1
I,

mg

ncose
fsing '
fcos6 nsin o
I
mg

n cose

nsin@

| fcos6

fsind

mg

FIG. P6.67
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P6.68

@)

(b)

The bead moves in a circle with radius v = Rsin @ at a speed e
of /
/
/
_2mr _ 27Rsin@ {
T T \
\
\

The normal force has
an inward radial component of nsiné
and an upward component of 711.cos 6

> F,=ma,: ncos@-mg=0

or

n= m
cos

2
Then Y F, =nsinf=m 2 becomes
r

which reduces to
This has two solutions:

and

FIG. P6.68(a)

N2
mg oo m (ZﬁRsmej
cosd Rsiné T

gsind 47°Rsin 6

cosf T?
sin@d=0=6=0°

2

gT

cosf = 5
47°R

If R=15.0 cm and T =0.450 s, the second solution yields

(9.80 m/s)(0.450 )

=0.335 and 6=70.4°

cosf@ =

47%(0.150 m)

Thus, in this case, the bead can ride at two positions | 0=70.4°

and| 0=0°

At this slower rotation, solution (2) above becomes

(9.80 m/s?)(0.850 5)°

cosf = 5
477(0.150 m)

=1.20, which is impossible.

mg

1)

(2)

In this case, the bead can ride only at the bottom of the loop, . The loop’s rotation

must be faster than a certain threshold value in order for the bead to move away from the

lowest position.
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P6.69 At terminal velocity, the accelerating force of gravity is balanced by frictional drag: mg =arov + br*v*

@) mg =(310x107"Jo+(0.870 x 107 Jo?
For water, m= pV =1000 kg/m3 [% 7:(10‘5 m)q

411x107 = (3.10 x 10‘9)0 + (0.870 x 10‘10)02

Assuming v is small, ignore the second term on the right hand side: | v=0.013 2 m/s |

(b) mg =(310x10"* Jo+(0.870x10* Jo’*

Here we cannot ignore the second term because the coefficients are of nearly equal

magnitude.

411x10°8 = (3.10 x1078 )v + (0.870 x 10‘8)02

310+ \/(3.10)2 +4(0.870)(4.11)

2(0.870) -

0

©) mg=(310x107 Jo+(0.870x10* Jo*

Assuming v>1 m/s, and ignoring the first term:

411x107° = (0.870 X 10*6)02 v =

P6.70 v= (%)[1 - exp( o H where exp(x)=e¢” is the exponential function.

m

Att— oo, V>0 = %
—b(5.54
Att=554s 0.5000, = o7| 1—exp| 2345
9.00 kg
—b(5.54
p| 2O 500,
9.00 kg
—b(5.54
“b534S) 0,500 = ~0.693;
9.00 kg
9.00 kg)(0.693
po O00ke)06%) m/s
554 s
9.00 kg)(9.80 m/s’)
_mg _ 8 _
(@) ur = Ur = 113 ke)s =| 783 m/s
~1.13t ~1.13¢
(b) 0.7500; = vT{l - exp( 900 s H exp( 900 s ) =0.250

, _ 9:00(In0.250)

113 =[1115]

continued on next page
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d b T, ~bt
(0 d_)tc = (ng){l — exp(—zﬂ; ;[dx = {(%){1 - exp(Tﬂdt
. mgt m*g bt _mgt (m’g (—bt)_ }
x xo——b +[ 2 ]exp(—m jo——b +( 2 j{exp oy 1

5545 [ (900kg)*(9.80 m/s?)

Att=554s, x=9.00 kg|9.80 m/s2 + exp(-0.693) -1
( )1-13 kg/s (L13 mys)’ [ ]
x = 434 m+ 626 m(-0.500) =
P6.71 sz = Ly - Ty —mg =Lcos20.0°-T sin 20.0°-7.35 N = ma, = 0 Fi =L 20°
2 T !
S'F, =L, +T, = Lsin 20.0°+T c0s 20.0°= m —— o\
r 4
2 35.0 m/s)’
m<—=0.750 kg ( ) 163N
7 (60.0 m)cos20.0°
. Lsin20.0°+T c0s 20.0°=16.3 N
Lcos20.0°-Tsin20.0°=7.35 N
LT cos20.0° 163 N
sin20.0°  sin 20.0° FIG. P6.71

LT sin20.0° 735N

c0s20.0°  €0s20.0°

c0t20.0°+ tan20.0°) = 03N 735N

sin20.0°  cos?20.0°

T(
T(3.11)=398 N



P6.72

*P6.73

(a) t(s) | d(m) (b)
1.00 488
2.00 | 189
3.00 | 421
400 | 738
5.00 | 112
6.00 | 154
7.00 | 199
8.00 | 246
9.00 | 296

10.0 | 347
11.0 | 399
12.0 | 452
13.0 | 505
14.0 | 558
150 | 611
16.0 | 664
17.0 | 717
18.0 | 770
19.0 | 823
20.0 | 876
(©

speed.

vr =slope=

v =1v; — kx implies the acceleration is

Then the total force is

The resistive force is opposite to the velocity:
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d(m)

B e e e
Ry
L e R S s v
AR o

R A S A S
I .

A T N 4 ]
e 4 I N
IR n
s s A s
REEEaEEnnn

S e R S it St i Sy
AR

SR S 'S T O S

200 [ I___r__ I_/¢I___r | r | r |
BRAREEERE

L —q---L { Y S, L
100 Pt
‘.: 1 1 : 1 : 1 : 1
0‘_. 1 | | 1 ! 1 ! 1 't(S)

0 2 4 6 8 10 12 14 16 18 20

a

_dv
dt

A straight line fits the points from f=11.0 s to 20.0 s quite precisely. Its slope is the terminal
876 m—-399 m
———— = 53.0 m/s

2005 1105

—:O—kﬂ:—kv

dt

> F =ma=m(—ko)

[XF=ow]

ANSWERS TO EVEN PROBLEMS

Pe6.2

P6.4

Pe6.6

P6.8

P6.10

215 N horizontally inward
6.22x10"* N

(a) 1.65 km/s; (b) 6.84x10° s
0.966 ¢

(a) (~0.233 1+0.163 j)m/s* ; (b) 653 m/s;
(c) (-0.181 i +0.181 j)m/s?

P6.12

P6.14

Pe6.16

P6.18

2.06 x103 rev/min

(@) R(%— gj ; (b) 2T upward

(a) 1.33 m/ s%; (b) 1.79 m/ s* forward and
48.0° inward

8.88 N



190 Circular Motion and Other Applications of Newton’s Laws

P6.20

P6.22

P6.24

P6.26

P6.28

P6.30

P6.32

Pe6.34

P6.36

P6.38

P6.40

Pe6.42

Pe6.44

(a) 8.62 m; (b) Mg downward;
(c) 8.45 m/ s*, Unless they are belted in,
the riders will fall from the cars.

15.3 my/s Straight across the dashboard to
the left

0.527°
(a) 1.41 h; (b) 17.1

2(vt—L)
- (g+a)t?

(a) 2.38 x10° m/ s* horizontally inward
=2.43x10%g; (b) 360 N inward
perpendicular to the cone;

(c) 47.5x10* m/s2

(a) 6.27 m/ s? downward; (b) 784 N up;
(c) 283 N up

(a) 53.8 m/s; (b) 148 m
1.40

-0.212 m/s?

see the solution

36.5 m/s

(a) 0.980 m/s; (b) see the solution

P6.46

P6.48

P6.50

P6.52

P6.54

P6.56

P6.58

P6.60

P6.62

Pe6.64

P6.66

P6.68

P6.70

P6.72

(a) 7.70x10~* kg/m; (b) 0.998 N;
(c) The ball reaches maximum height 49 m.

Its flight lasts 6.3 s and its impact speed is
27 m/s.

(a) see the solution; (b) 81.8 m; (c) 15.9°

0.835 rev/s

2
(@) mg ~=—; (b) v= /3R
(a) 2.63 m/s*; (b) 201 m; (c) 17.7 m/s

(a) 106 N; (b) 0.396

(@) mag; (b) mag; (9 [%)gl%

1
62.2 rev/min

2.14 rev/min

(@) v=y/7Rg; (b) mrzg

(a) 8.04's; (b) 379 m/s; (c) 1.19 cm/s;
(d) 9.55 cm

(a) either 70.4° or 0% (b) 0°
(@) 78.3 m/s; (b) 11.1 s; (c) 121 m

(a) and (b) see the solution; (c) 53.0 m/s
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ANSWERS TO QUESTIONS

Q7.1 The force is perpendicular to every increment of displacement.
Therefore, F-Ar=0.

Q7.2 (@) Positive work is done by the chicken on the dirt.
(b) No work is done, although it may seem like there is.
(c) Positive work is done on the bucket.
(d) Negative work is done on the bucket.
(e) Negative work is done on the person’s torso.

Q7.3 Yes. Force times distance over which the toe is in contact with
the ball. No, he is no longer applying a force. Yes, both air
friction and gravity do work.

Force of tension on a ball rotating on the end of a string. Normal force and gravitational force on an
object at rest or moving across a level floor.

(@) Tension (b) Air resistance

() Positive in increasing velocity on the downswing.
Negative in decreasing velocity on the upswing.

No. The vectors might be in the third and fourth quadrants, but if the angle between them is less
than 90° their dot product is positive.

The scalar product of two vectors is positive if the angle between them is between 0 and 90°. The
scalar product is negative when 90°< 9 <180° .

If the coils of the spring are initially in contact with one another, as the load increases from zero, the
graph would be an upwardly curved arc. After the load increases sufficiently, the graph will be
linear, described by Hooke’s Law. This linear region will be quite large compared to the first region.
The graph will then be a downward curved arc as the coiled spring becomes a completely straight
wire. As the load increases with a straight wire, the graph will become a straight line again, with a
significantly smaller slope. Eventually, the wire would break.

k' =2k . To stretch the smaller piece one meter, each coil would have to stretch twice as much as one
coil in the original long spring, since there would be half as many coils. Assuming that the spring is
ideal, twice the stretch requires twice the force.

191
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Q7.10

Q7.11

Q7.12

Q7.13

Q7.14

Q7.15

Q7.16

Q7.17

Q7.18

Q7.19

Q7.20

Q7.21

Q7.22

Energy and Energy Transfer

Kinetic energy is always positive. Mass and squared speed are both positive. A moving object can
always do positive work in striking another object and causing it to move along the same direction
of motion.

Work is only done in accelerating the ball from rest. The work is done over the effective length of the
pitcher’s arm—the distance his hand moves through windup and until release.

Kinetic energy is proportional to mass. The first bullet has twice as much kinetic energy.

The longer barrel will have the higher muzzle speed. Since the accelerating force acts over a longer
distance, the change in kinetic energy will be larger.

(@) Kinetic energy is proportional to squared speed. Doubling the speed makes an object's
kinetic energy four times larger.

b If the total work on an object is zero in some process, its speed must be the same at the final
] p p
point as it was at the initial point.

The larger engine is unnecessary. Consider a 30 minute commute. If you travel the same speed in
each car, it will take the same amount of time, expending the same amount of energy. The extra
power available from the larger engine isn’t used.

If the instantaneous power output by some agent changes continuously, its average power in a
process must be equal to its instantaneous power at least one instant. If its power output is constant,
its instantaneous power is always equal to its average power.

It decreases, as the force required to lift the car decreases.

As you ride an express subway train, a backpack at your feet has no kinetic energy as measured by
you since, according to you, the backpack is not moving. In the frame of reference of someone on the
side of the tracks as the train rolls by, the backpack is moving and has mass, and thus has kinetic
energy.

The rock increases in speed. The farther it has fallen, the more force it might exert on the sand at the
bottom; but it might instead make a deeper crater with an equal-size average force. The farther it
falls, the more work it will do in stopping. Its kinetic energy is increasing due to the work that the
gravitational force does on it.

The normal force does no work because the angle between the normal force and the direction of
motion is usually 90°. Static friction usually does no work because there is no distance through
which the force is applied.

An argument for: As a glider moves along an airtrack, the only force that the track applies on the
glider is the normal force. Since the angle between the direction of motion and the normal force is
90°, the work done must be zero, even if the track is not level.

Against: An airtrack has bumpers. When a glider bounces from the bumper at the end of the
airtrack, it loses a bit of energy, as evidenced by a decreased speed. The airtrack does negative work.

Gaspard de Coriolis first stated the work-kinetic energy theorem. Jean Victor Poncelet, an engineer
who invaded Russia with Napoleon, is most responsible for demonstrating its wide practical
applicability, in his 1829 book Industrial Mechanics. Their work came remarkably late compared to the
elucidation of momentum conservation in collisions by Descartes and to Newton’'s Mathematical
Principles of the Philosophy of Nature, both in the 1600’s.
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SOLUTIONS TO PROBLEMS

Section 7.1 Systems and Environments
Section 7.2 Work Done by a Constant Force
P7.1 (@) W = FAr cos 6 = (16.0 N)(2.20 m)cos 25.0°=| 31.9 ]

P7.2

P7.3

(b), (c) The normal force and the weight are both at 90° to the displacement in any time interval.
Both do @ work.

d) ZW=31.9]+0+0=

The component of force along the direction of motion is
Fcos@=(35.0 N)cos25.0°=31.7 N.

The work done by this force is

W = (Fcos@)Ar =(31.7 N)(50.0 m)=| 1.59x10% J |.

Method One.

Let ¢ represent the instantaneous angle the rope makes with the vertical as
it is swinging up from ¢; =0 to ¢, =60°. In an incremental bit of motion

from angle ¢to ¢+d¢, the definition of radian measure implies that

Ar =(12 m)d¢ . The angle 0 between the incremental displacement and the

force of gravity is =90+ ¢. Then cos 0= cos(90°+¢) = —sing.

The work done by the gravitational force on Batman is FIG.P7.3
$=60°

f
W= chos odr = ng(— sin ¢)(12 m)d¢
i 4=0

— “mg(12 m)6JO.°sin¢ dp=(-80 kg)(9.8 m/s*)(12 m)(~cos )

0
= (784 N)(12 m)(~ cos 60°+1) = [ -4.70 x 10% |

Method Two.

The force of gravity on Batmanis mg = (80 kg)(9.8 m/ sz) =784 N down. Only his vertical

displacement contributes to the work gravity does. His original y-coordinate below the tree limb is
-12 m. His final y-coordinate is (—12 m)cos60°=—6 m. His change in elevation is

-6 m—(—12 m) =6 m . The work done by gravity is

W = FAr cos 6= (784 N)(6 m)cos180°=] —4.70 k] | .
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P7.4 @) W = mgh = (3.35x10"°)(9.80)(100) J=| 3.28x 10 |
(b) Since R=mg , Wi resistance =| —3-28 X 1072
Section 7.3 The Scalar Product of Two Vectors
P7.5 A=500; B=9.00; 6=50.0°
A -B = ABcos 6 =(5.00)(9.00)cos 50.0°= E
P76  A-B=(A,i+A,j+AKk)(Bi+B,j+BK)
A-B=A.B,(i-i)+A,B,(i-j)+A,B,(i-k)
+A,B,(j-1)+A,B,(3-j)+ A,B.(j k)
+A,B,(k-i)+ A,B, (k-j)+ A,B, (k k)
A-B=
P7.7 () W =F-Ar =F,x+F,y=(6.00)(3.00) N-m+(~2.00)(1.00) N-m=[16.0]]
1 F-Ar -1 16
(b) 0=cos™! (—) =Cos =
Far \/((6.00)2 +(-2.00))((3.00)” +(100)?)
P7.8 We must first find the angle between the two vectors. It is: y
6 = 360°-118°-90.0°~132° = 20.0°
118°
Then .
F=328N |
F-v=TFvcosf=(328 N)(0.173 m/s)cos20.0° ) 132°
m J v=173cm/s
=533 2=[533 W
.
FIG. P7.8
P7.9 () A =3.00i - 2.00j
B = 4.00i — 4.00j =cos 1 A B _ o1 1204800
AB (13.0)(32.0)
(b) B =3.00i — 4.00] + 2.00k
. . A-B  -6.00-16.0
A =-2.00i+4.00j cosf = = 0=[156°
AB /(20.0)(29.0)
©) A =i-2.00j+2.00k
. - (A ~6.00+8.00
B =3.00j + 4.00k 0= cos 1( ) ( ) 82.3°
J AB Jo0 Jm0 ) L2
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P710  A-B=(300i+j-k)-(-i+200j+500k)
A -B=400i-j-6.00k
C-(A-B)=(2.00j-3.00k):(4.00i - j— 6.00k) = 0+(~2.00) + (+18.0) = 16.0

Section 7.4 Work Done by a Varying Force
f
P7.11 W = J'Fdx = area under curve from x; to x;
(@) x;=0 x;=8.00 m
x(m)
W = area of triangle ABC = (%)AC x altitude, i
1
Wog=| = [x800mx6.00 N=| 24.0
. (2) FIG. P7.11
(b) x; =8.00 m x; =100 m

W = area of ACDE = (%)CE x altitude,
Ws 10 = (%) % (2.00 m) x (-3.00 N)=| -3.00 J

P712 [, =(8x-16)N

(@) See figure to the right

~(2.00 m)(16.0 N) (1.0 m)(8.00 N)
(b) Wnet = P + P =

FIG. P7.12
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P7.13 W= [Fadx

and W equals the area under the Force-Displacement curve

(@) For the region 0<x<5.00 m,

W=

(3.00 N')(5.00 m)
2

-[750]]

(b) For the region 5.00<x<10.0, FIG. P7.13

=(3.00 N)(5.00 m)=[ 1507 |

(c) For the region 10.0<x <150,

W=

(3.00 N)(5.00 m)
2

-[750]]

(d) For the region 0<x<15.0

W =(750+7.50+15.0)J=| 30.0]

f m
P714  W=|[F.dr= 5](49& +3yj) N-dxd
i 0

5m 5m
4 N/m)xdx+0=(4 N/m)>—  =[500
!;( /m)xdx +0 = ( /m)2 0

4.00)(9.80) N
P7.15 k:fzﬂz#zmwm” N/m
¥y y 250x107 m

mg  (1.50)(9.80)

a For 1.50 kg mass y=—=—2"""=|(0.938 cm
@ s Y = T 57 x10°

(b) Work =%ky2
Work = %(1.57 x10° N -m)(4.00 x1072 m)2 -

P7.16 (@) Spring constant is given by F = kx
F_ (230N)
=—= 575 N
" o m) - 22 N/
1
(b) Work =F,,x = 5(230 N)(0.400 m)=| 46.0 ]
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“P7.17 (a) Fapplied = kleafx/ + khelperxh = kl‘x/, + kh (xé’ - ]/0)

5x10° N=5.25x10° Ex/+3.60x105 E(x/—O.S m)
m m

6.8x10° N
x,=—2" " N _T0768 m
" 885x10° N/m
(b) w :%kfxf +%khxﬁ :%(5.25 x10° Ej(o.768 m)” +%3.60 «10° N(0.268 m)?

m m
-[ie7]

f
P718  (a) W = [F-dr

0.600 m
W= [(15000 N+10000x N/m-25000x* N/m?)dxcos0°

0

0.600 m
10000x> 25000 |

3,

W =9.00 kJ +1.80 k] — 1.80 k] =

(b) Similarly,

W =15000x +

(10.0 KN/m)(100 m)> (250 kN/m?)(1.00 m)’

W = (15.0 KN)(1.00 m)+ 5 5

W =|11.7 KJ |, larger by 29.6%

P7.19  400]= %k(OJOO m)®
- k=800 N/m and to stretch the spring to 0.200 m requires

AW =(800)(0.200)" ~ 400 J =[ 120

P7.20 (@) The radius to the object makes angle 8 with the horizontal, so ~_F
its weight makes angle 0 with the negative side of the x-axis,
when we take the x—axis in the direction of motion tangent to
the cylinder.

> F, =ma,
F-mgcos@=0

F= FIG. P7.20

f
(b) W =[F-dr

197

We use radian measure to express the next bit of displacement as dr = Rd6 in terms of the

next bit of angle moved through:

/2
W= [mgcos0RdO=mgRsind|”
0

W =mgR(1-0)=[ mgR |
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*P7.21 The same force makes both light springs stretch.

(@) The hanging mass moves down by
mg mg 1 1
X=X +Xy=—"+—"=mg| —+—
TR T mg(kl kzj
_15kg98 m/s?| — M, 1M | 04102 m
1200 N 1800N
(b) We define the effective spring constant as

F mg 11
[ S
x mg(Uk +1/ky) \ky K,

-1
(1200N 1800N] =[720 Njm]

*P7.22 See the solution to problem 7.21.

P23 [K]- H N_kgm/s” [kg

Section 7.5 Kinetic Energy and the Work-Kinetic Energy Theorem

Section 7.6 The Non-Isolated System—Conservation of Energy

P724  (a) K, =%(0.600 kg)(2.00 mys)* =

1 2K, [(2)7.50)
®  gmon=Keop =T =700 =[50 mjs ]

1
© ZW=AK:KB—1<A=Em(v§—v§):7.50]—1.20]:

P7.25  (a) K :%mv ;(0 300 kg)(15.0 m/s)” =

1 1
(b) K= E(0.300)(30.0)2 = 3(0'300)(15'0)2 (4)=4(33.8) =



P7.26

P7.27

P7.28

P7.29
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v; =(6.001-2.00j) = mys

@) v; = Ul-zx +vi2y =+/40.0 m/s
1 5, 1 2/.2
K;=—mof =—(3.00 kg)(40.0 m*/s*)=[ 60.07 |

(b) v =8.00i +4.00j
vj=v;-v;=640+160=80.0 m*/s’

1 3.00
AK =K, - K, =Em(v§ —v?):T(so.O)—a).o ~[60.07]

Consider the work done on the pile driver from the time it starts from rest until it comes to rest at
the end of the fall. Let d =5.00 m represent the distance over which the driver falls freely, and
h=0.12 m the distance it moves the piling.

1 1
> W=AK: Weravity + Woeam = Emv? —Emviz
so (mg)(h+d)cos 0°+(I?)(d)cos 180°=0-0.

_ (mg)(h+d) (2100kg)(9.80 m/s)(5.12 m)

Thus, F= = =| 8.78x10° N |. The force on the pile
d 0.120 m

(@) AK=K;-K;= %mv% —0=>) W = (area under curve from x =0 to x =5.00 m)
o Pl PR

(b) AK=K;-K;= %mv% —0=) W = (area under curve from x=0 to x =10.0 m)
o - oD

(o) AK=K;-K;= %mv? —0=>) W = (area under curve from x =0 to x=15.0 m)
N

1
(a) Ki+ZW:Kf:Emvj%

_1 -3 2
0+ W= E(15.0 x107 kg)(780 mys) = 456 k]
1 456x10% J
b F= = =[634kN
®) Arcos® (0.720 m)cos0°

o2 —v? (780 m/s)> -0
f i 2
= = = _422 km
© ‘ 2x; 2(0.720 m) /S

(d) Y F=ma=(15x10" kg)(422x10> m/s?)=



200 Energy and Energy Transfer
P730 (@)  0;=0.09(3x10° m/s)=2.88x10" mys

1 1 . 2 -
K, =Emv§:§(9.11x1o ¥ kg)(288x107 mys) =[3.78x10"° |

(b) Ki+W=K;: 0+FArcos@=K¢

F(0.028 m)cos0°=3.78 x 1071 |
F=|135x10* N

e D F 135x10™N
m  911x107! kg

() > F =ma;

| 1.48x10"° m/s” |

(d)  oy=vg+at  288x107 m/s=0+(148x10" m/s’ )t
t=]1.94x107 s
Check: Xp=X; +%(vxi + 0y )t

0.028 m=0 +%(0 +2.88x107 mys)t

t=194x10" s
Section 7.7 Situations Involving Kinetic Friction
P7.31 ZFyzmay: n-392N =0 4
n=392N %\é F=130N
—
fo = =(0.300)(392 N)=118 N O e
-l X
(@) W = FAr cos € = (130)(5.00)cos0°=| 650 ] mg =392 N

‘47 Ar=5.00m——

(b) AE;, = f,Ax =(118)(5.00) =

© W, =nAr cos 0 = (392)(5.00) cos 90° = @

FIG. P7.31

(d) W, =mgArcos6=(392)(5.00)cos(-90°) = @

(e) AK = Kf -K;= Zwother —AE

int

1
Emv%—0:650]—588]+0+0= 6207

2K, [2(6207)
® vf:\/ m | 400 kg =[1.76 m/s]



P7.32

P7.33

P7.34

(@)

(b)

@)

(b)

(©)

()

()

W, :lkxi2 —lkx2 =
2 2

2
%(500)(5.00 x1072)" ~0=0.625]

1 1 1
Wi =—mv% mvz mvf—O

2
ZW (0.625)
,I 1/ 1
200 m/s = 079 m/s

L 2 L 2
> Moi - frAx+ W, = My

0-(0.350)(2.00)(9.80)(0.050 0) ] +0.625 ] = %mv%

0.282]== (2 00 kg)o?

2(0.282)

Uy = 2.00 m/s:

W, =mglcos(90.0°+0)
W, =(10.0 kg)(9.80 m/sz)(S.OO m)cos110°=| -168 ]

e = pyn = pymg cos @
AE = lfy = luymgcosd

AE,., =(5.00 m)(0.400)(10.0)(9.80) cos 20.0°=[ 184 J
W, = F/=(100)(5.00) =] 500 ]
AK =S Wper — =Wp +W, - AE;, =[148]

AK = lmv? —lmvi2
2 2

2(AK) ,  [2(148) 2
Uf :J - +Ui :\/W-i-(lSO) = 565 m/S

ZFy =ma,: n+ (70.0 N)sin 20.0°-147 N =0

(@)

(b)

(©

(d

(©)

n=123N
o =1, =0.300(123 N) =369 N

W = FAr cos 8 =(70.0 N)(5.00 m)cos20.0°=| 329 ]
W = FAr cos 6 = (123 N)(5.00 m)cos90.0°=
W = FAr cos 0= (147 N)(5.00 m)cos 90.0°=[ 0 |

AE,, = FAx=(36.9 N)(5.00 m)=[ 185

AK=Kj —K; =YW - AE;, =329 ]-185 ] =[ +144] |

Chapter 7 201

k=500 N/m

’<—>| 5cm

FIG. P7.32

FIG. P7.33

n (70 N) sin 20

4}':> (70 N) cos 20°

el
AN

f_P15.0ked
W/—I
mg =147 N
«— Ar=5.00m——
FIG. P7.34
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P7.35 v; =2.00 m/s 4 =0.100
K; — frAx + W ger =Kj: %mvf—kax=0
0 (200 mys)*

1 5
—mo; =y, mgAx Ax=—2-—= =|2.04m
o M TS 21,8 2(0.100)(9.80)

Section 7.8 Power

W K mo?  0.875kg(0.620 mys)’

T TN T A 2(21x107 s =[sorw]

124 mgh (700 N)(10.0 m)
P7.37 P =— P = = =| 875 W
e t 8.00 s

P7.38 A 1300-kg car speeds up from rest to 55.0 mi/h = 24.6 m/s in 15.0 s. The output work of the engine is
equal to its final kinetic energy,

%(1 300 kg)(24.6 m/s)’ =390 k]

390 000
with power & = 1—] around 30 horsepower.

P7.39 (@) > W = AK, but AK =0 because he moves at constant speed. The skier rises a vertical
distance of (60.0 m)sin30.0°=30.0 m. Thus,

Wi, =-W, =(70.0 kg)(9.8 m/s*)(30.0 m)=| 2.06x10* J | =[ 20.6 K] |.
(b) The time to travel 60.0 m at a constant speed of 2.00 m/s is 30.0 s. Thus,

W 206x10%]
R == T _[686 W |=0.919 hp.
fuput = 7 = 00— =| 686 W | P

P7.40 (@) The distance moved upward in the first 3.00 s is
0+175
Ay =7t = [%m/s}(aoo 5)=2.63 m.
The motor and the earth’s gravity do work on the elevator car:

lmvi2 + W otor +MgAY cos180° = %mv%

Wioor :%(650 kg)(175 m/s)” — 0+ (650 kg)g(2.63 m) =177 x10* ]
4
Also, W=t so 7 =~ 17707 ] 5617705 W |=7.92 hp.

t 3.00s

(b) When moving upward at constant speed (v=1.75 m/s) the applied force equals the
weight = (650 kg)(9.80 m/s? ) =6.37x10° N. Therefore,

#=Fo=(6.37x10> N)(1.75 m/s)=| 1.11x10* W |=149 hp.
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*P7.42

*P7.43

Chapter 7
energy = power x time

For the 28.0 W bulb:

Energy used =(28.0 W)(1.00x 10* h) =280 kilowatt - hrs
total cost =$17.00 + (280 kWh)($0.080/kWh) = $39.40

For the 100 W bulb:

Energy used = (100 W)(1.00 x10* h)=1.00x 10° kilowatt - hrs

4
# bulb used = 100x10" h _ 133
750 h/bulb

total cost =13.3($0.420) +(1.00 x 10° KWh)($0.080/kWh) = $85.60

Savings with energy-efficient bulb = $85.60 —$39.40 =| $46.20

(@) Burning 1 1b of fat releases energy 1 lb( g j(g keal j( 4186 ]j =1.71x107 J.

11b 1g N 1kcal
The mechanical energy output is (1.71 x 107 ])(0.20) =nFAr cos@.
Then 3.42x10° J = nmgAy cos0°

203

3.42x10° ] =n(50 kg)(9.8 m/s”)(80 steps)(0.150 m)

3.42x10° J=n(588x10° )

. . . 3.42x10° 3.42x10° ]
where the number of times she must climb the stepsis n =
P 5.88x10° ] -

This method is impractical compared to limiting food intake.

(b) Her mechanical power output is

W _588x10° ] 1hp
P = ——=1905 90.5 W =[0.121 hp |.
W20 (905 W]-905 W{ o |

. 8
(a) The fuel economy for walking is 22(1) l}:cal (3 Eu)(i 11(;21] j(lﬁ(i xgi? J ] = .

1h (10 mi) 1kcal | 130x10%7]
b For bicycli =[776 mi/gal |.
(b) Forbieyding 455 kcal( h )(4186 ]]( 1gal ]
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Section 7.9 Energy and the Automobile

P7.44 At a speed of 26.8 m/s (60.0 mph), the car described in Table 7.2 delivers a power of 4 =18.3 kW to
the wheels. If an additional load of 350 kg is added to the car, a larger output power of

P, =9 + (power input to move 350 kg at speed v)
will be required. The additional power output needed to move 350 kg at speed v is:
A% =(Af Yo =(u,mg)v.

Assuming a coefficient of rolling friction of x, =0.016 0, the power output now needed from the
engine is

% =% +(0.016 0)(350 kg)(9.80 m/s*)(26.8 my/s)=18.3 kW +1.47 kW

With the assumption of constant efficiency of the engine, the input power must increase by the
same factor as the output power. Thus, the fuel economy must decrease by this factor:

R 18.3
fuel economy), =| - |(fuel economy), =| —————— [(6.40 km/L
(fu Y (/2 j( " Y (18.3+1.47j( /L)
or (fuel economy), =| 5.92 kmy/L |.
Tmot —Lmo} Tmo? -0

P7.45 (@) fuel needed =

useful energy per gallon B eff.x(energy content of fuel)

1(900 kg)(24.6 m/s)’
_ (0 kg)(246 nys) _ 1.35x107 gal
(0.150)(1.34x 10° J/gal)

(b) 7338

Tgal \(55.0mi) 1.00 h \(1.34x10%J
= 0.150) =[ 8.08 kW
(@ power (38.0 mi )( 100 h )(3 600 sj( Tgal )

Additional Problems

~

P7.46  Atstart, v=(40.0 m/s)cos30.0°i+(40.0 m/s)sin30.0°]
Atapex, v =(40.0 m/s)cos30.0°i+0j= (346 m/s)i

And K =%mvz = (0150 kg)(34.6 m/s)* =[90.0]

L
2



P7.47 Concentration of Energy output = (0.600 J/kg-step)(60.0 kg)(

P748  (a)

(b)

P7.49

@)

(b)

(©

()

Thus,

Similarly,

and

where

x=t+2.008

Therefore,

1
P 1240 J/m
1.50 m
F=(240 J/m)(1 N-m/])=240 N
P =Fov
70.0 W = (24.0 N)o
v=|292 m/s
A~i=(A)(1)COSO(. But also, A~i:Ax.
A
(A)1)cosa=A, or| cosa :7’( .
A
—
cos "
cos _A:
"~ A
A= AZ+ AL+ AL
2 1A 2 2
cos? o +cos® f+cos’ y :(ij + L +(ij :A_2:1
A A A A
0= _ 146002
dt
2
K= %mvz = %(4.00)(1 +6.00¢%)" = (2.00+24.0¢> +72.0¢*) ]

dU 2
a=—=|(12.0t) m/s

120 my
F=ma=4.00(12.0t)=| (48.0t) N

= Fo=(48.00)(1+6.00¢>) =

2.00
W= J.%it =
0

2.00

(48.0t + 288t3) w

| (48.0t + 288t3)dt =

0
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*P7.50 (@) We write

F=ax"

1000 N =4(0.129 m)”
5000 N =4(0.315 m)”

b
:(0.315j o agh
0.129

In5=bIn2.44
b= _go=p
In2.44
1
a:%ﬂ 401x10* N/m'® = |
(0.129 m)"

0.25 m 0.25 m

N
b W= [Fix= [ 401x10* Fxl‘gdx
0

N x28

m1.8 28

0.25 m

2.8
=401 x10* N (025—m)

=401x10*
8 ml8 2.8

-[2947]

*P7.51 The work done by the applied force is

0

Xmax

J ppheddx = J‘ [_(klx + kzxz)]dx
0

Xmax 2, Xmax 3 | ¥max
= Jklxdx+ jkzx dx = k1 +hy ]
3 0
2 3
— kl xnzllax +k2 xsaX

P7.52 (@) The work done by the traveler is mgh,N where N is the number of steps he climbs during

the ride.
N = (time on escalator)(n)
. h
where (time on escalator) = - -
vertical velocity of person
and vertical velocity of person = v +nh;
Then, N= nh
v+nh,

mgnhh,
and the work done by the person becomes Wyergon = P

v +nh

continued on next page



(b)

P7.53 (@)

(b)

Chapter 7 207

The work done by the escalator is

W, = (power)(time) = [(force exerted)(speed)(time)] = mgot

where t= as above.
v+nh,
h
Thus, w,=| 289 |
v +nh,

As a check, the total work done on the person’s body must add up to mgh, the work an
elevator would do in lifting him.

_ mgnhh, L mgoh _ mgh(nhy +v)

It does add up as follows: dW=W +W,
v+nhy  v+nh v+nh

— " 'person e

=mgh

AK=%mv2 -0=>W,so

2W 2W
v*’=""and v= \/—
m m

W=F-d=Fd=F, =

w
d

*P7.54 During its whole motion from y =10.0 m to y = -3.20 mm, the force of gravity and the force of the
plate do work on the ball. It starts and ends at rest

P7.55 (@)

(b)

K;+> W=K;
0+ F;Ay cos0°+F,Axcos180°=0
mg(10.003 2 m) — F,(0.003 20 m) =0
5 kg(9.8 m/s”)(10 m)
F,= -3
32x107 m

=[153x10° N upward

#=Fo=F(v, +ut):F(0+£t)=
m

(20.0 N)*
9= "1 |300s)=[240 W
00k |2%09)
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Xi1+X, 1

f
*P7.56 (a) Wl =JF1dx= Jklx dx:zkl[(xil +xu)2_xi21]:%k1(x3+2xuxil)
i

*P7.57

(b)

(©

(d)

(@)

(b)

Xi1
—Xjp+X, 1 3 1
W, = szx dx = Ekz[(‘xiz +x,) - xl-ZZ] = Ekz(xf - quxiz)
—Xia

Before the horizontal force is applied, the springs exert equal forces: k;x;; = k,x;,

_ kyxy
2=
ky

kixiq
ky

1 1
= 5k1x§ +Ek2x§ +kyx, X —kox,

a

t t
v=[adt=[(116t-021t> +0.24" )dt
0 0
t? t al 2 3 s
=116 -021—+024-| =058t*~007¢ +0.06t
0

Att=0,v,=0.Att=25s,

v =(058 m/s’}(255)* - (0.07 m/s*)(25 5)° +(0.06 m/s*)(2.55)* =488 mys

K, +W=K,
_1 2_1 2 4
0+W—Emvf—51160kg(4.88 m/s)” =|1.38x10" J
Att=25s,

a=(116 m/s*)25 5-(0210 m/s*)(25 5)* +(0.240 m/s°)(255) =5.34 m/s>.
Through the axles the wheels exert on the chassis force
> F=ma=1160 kg 534 m/s* =6.19x10° N

and inject power

9 =Fu=619x10° N(488 m/s)=| 3.02x10* W |.



P7.58

*P7.59

@)

(b)

209

Chapter 7
\ Y
The new length of each spring is vx* + [, so its extension is T %ﬂj
L "
x* +I* — L and the force it exerts is k(\/xz +12 - L) toward its 1 kL
fixed end. The y components of the two spring forces add to T <
zero. Their x components add to 1‘/§ 3
/=

F- —Zik(\/xz +12 - L); - —2kxi[1 - ;] ) FIG. P7.58

x/x2+L2 -

f 0
L
W =|F.dx W=|-2kx| ] ————— |dx
'!'.x A ( x/x2+L2J
12
0 0 » 510 2, g2
W=-2ijdx+ij(x2+L2) 2 o dx W= -2k +kL( )
! A 2|, (1/2)
A
W =-0+kA? + 2kL[? — 2k A% + 12 W =| 2KI2 + kA% — 2kLV A% + 12

For the rocket falling at terminal speed we have

@)

(b)

> F=ma

+R-Mg=0

Mg = %DpAv%

For the rocket with engine exerting thrust T and flying up at the same speed,

> F=ma
+T-Mg-R=0
T =2Mg

The engine poweris & =Fv=Tuv; = .

For the rocket with engine exerting thrust T, and flying down steadily at 3v,

R, = %DpA(3UT)2 —9Mg

> F=ma
-T, —-Mg+9Mg =0
T, =8Mg

The engine power is ¥ =Tv =8Mg3v; =| 24Mgvy |.
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A
.

P7.60  (a) F, =(25.0 N)(c0s35.0°1 +sin35.0°j) =| (20.51 +143j) N

~

F, =(42.0 N)(cos150°1 +sin150° ) = | (~36.4i + 21.0j) N

®)  YF=F+F=|(-159+353j)N

©) a= 2F_ (-318i+7.07j) m/s’
m

(d) v =v;+at=(400i+250j) m/s+(-3.18i+7.07])(m/s*)(3.00 5)

V= (—5.54§+23.7j) m/s

1 .
e r,=r.+v.it+—at
() f i i 2

r; =0+ (4,001 +2.50j)(m/s)(3.00 5) +%(—3.18§ +7.07j)(m/s?)(3.00 )

Ar=1; =| (-2.30i+39.3]) m

O K= lmv]% - %(5.00 1<g)[(5.54)2 + (23.7)2](m/ s2) =

\S}

(g) K =%mvi2+ZF-Ar

K = %(5.00 1<g)[(4.00)2 + (2.50)2](m/s)2 +[(~15.9 N)(-2.30 m)+(35.3 N)(39.3 m)]

Kf=55.6]+1426]:

P761 (3 Y W=AK: W, +W, =0
%kxiz —0+mgAx cos(90°+60°) =0

%(1.40 x10° N/m) x (0.100)* —(0.200)(9.80)(sin 60.0°)Ax = 0

(b) DW=AK+AE,: W, +W,-AE, =0
1
Ekxiz +mgAx cos 150°— 1, mg cos 60° Ax =0

%(1.40 x10° N/m)x (0.100)* - (0.200)(9.80)(5in 60.0°) Ax - (0.200)(9.80)(0.400)(c05 60.0°)Ax = 0
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r7.62 () F(N) L(mm) F(N) L(mm)

200 150 140 112 +

400 320 160 126 !

600 490 180 149 T

800 640 200 175 olr" T

100 790 220 190 0 40 80 120 160 200
L (mm)

120 98,0
FIG. P7.62

(b) A straight line fits the first eight points, together with the origin. By least-square fitting, its
slope is

0125 N/mm+2% =[125 N/m |+2%

In F = kx, the spring constant is k = £, the same as the slope of the F-versus-x graph.
x

© F=kx=(125 N/m)(0.105 m) =

P7.63 Ki+Ws+Wg :Kf

lmvi2 +lkxi2 —lkxj% +mgAxC059:lmvj%
2 2 2 2

FIG. P7.63

0 +%kxi2 —0+mgx; cos100° = %mv%
%(1.20 N/cm)(5.00 cm)(0.050 0 m)—(0.100 kg)(9.80 m/sz)(0.0SO 0 m) sinlO.OO:%(OJOO kg)v?
0.150 J-8.51x107 J=(0.050 0 kg)o?

0141
“=y00500 =[1.68 mys

1 2 2. 1 2 2 2
P7.64 (@)  AE,, =-AK= —Em(v F-0l): AEg = ~ (0400 kg)((6.00)* = (8.00)* )(m/s)” =

(b)  AE,, = fAr = uymg(27r): 5.60 ] = 11,,(0.400 kg)(9.80 m/s”}27(1.50 m)
Thus, M =|0.152 |.
(c) After N revolutions, the object comes to rest and K; =0.
Thus, AE,, =-AK=-0+K; = %mvf
or ykmg[N(Zm’)]:lmv»z.
2 1
Lmo? 1(8.00 ms)’

This gives N= = = .

~ mmg(2ar) - (0152)(9.80 m/s?22(150 m)
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P7.65

P7.66

P7.67

If positive F represents an outward force, (same as direction as r), then

f r
W= _[F -dr = _"(21-"00'131”13 - F007r’7)dr
i

Ti

C2R0%r ™ Ro’ro|
O -12 -6

4%

T

W =

_F0013 (71;12 _ ri*12) . Fog7 (rf66 — ri*6) _ F06G7 rf—6 B ri—6:| B FOZJS [7_12 B ri—lz]
W =1.03x10"7 rf—a _ 7’1‘_6] ~1.89 10_134[7’f_12 _ r'—u]

1

W =103 x 10‘77[1.88 x1070 —2.44x1076 ]1060 ~1.89 10-134[3.54 x1072 —5.96 x 10-8]10120

W=-249x10" J+112x1072' J=| -1.37x1072' |

A 2 <« VAt >
IAt=W =AK = (Am)o W&“,?L\
A '_/ \v '
e —
oo A A \ \ / N
The density is p=—m= u Lo
vol AAx
A
Substituting this into the first equation and solving for &, since = v,
At FIG. P7.66
A 3
for a constant speed, we get P= % .
Av?
Also, since ¥ = Fuv, F=£

Our model predicts the same proportionalities as the empirical equation, and gives D =1 for the
drag coefficient. Air actually slips around the moving object, instead of accumulating in front of it.
For this reason, the drag coefficient is not necessarily unity. It is typically less than one for a
streamlined object and can be greater than one if the airflow around the object is complicated.

23.7
We evaluate _[ Fi by calculating
128 X~ +3.75x
375(0100)  375(0100) 375(0.100)
(12.8)° +3.75(12.8) (12.9)° +3.75(12.9)  (23.6)° +3.75(23.6)
and
375(0100)  375(0100) 37501000 o

(12.9)° +3.75(12.9) (13.0)* +3.75(13.0)  (23.7)° +3.75(23.7)

The answer must be between these two values. We may find it more precisely by using a value for

Ax smaller than 0.100. Thus, we find the integral to be | 0.799 N-m |.
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*P7.68 P = %me’zv?’

@ 2 =%1(1.20 kg/m?)z(15 m)*(8 mys)’ =[ 217x10° W |
g vy (24 m/s ’
© i:”—b:[—J 5o

% v 8 m/s
% =27(217x10° W)=| 586 x10* W
P7.69 (@) The suggested equation 9At = bwd implies all of the v = constant
following cases: 1
n d :
w At w
1)  9At=b| —|(2d 2) P|—|=bl—Hd
g (zj( ) @ (2) (zj f =myn F
- -
3) ,,)(ﬁj - bw(ij and (4) (ijAt - b(ﬂjd
2 2 2 2
W
These are all of the proportionalities Aristotle lists.
FIG. P7.69
(b) For one example, consider a horizontal force F pushing an object of weight w at constant

velocity across a horizontal floor with which the object has coefficient of friction ;.
Y F =ma implies that:
+n—w=0and F—yn=0
so that F =y, w
As the object moves a distance d, the agent exerting the force does work

W
W =Fdcos = Fdcos0°= u,wd and puts out power & = m

This yields the equation At = 1, wd which represents Aristotle’s theory with b = x;.

Our theory is more general than Aristotle’s. Ours can also describe accelerated motion.

*P7.70  (a) So long as the spring force is greater than the friction force, v v
the block will be gaining speed. The block slows down when Mmm_
the friction force becomes the greater. It has maximum
speed when kx, — f, =ma=0.

o4

(10x10* N/m)x, -40 N =0 | x=-40x10" m | mm T

(b) By the same logic,

FIG. P7.70

(10x10* N/m)x, ~10.0 N =0 | x=-10x10" m |
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ANSWERS TO EVEN PROBLEMS

P7.2

P7.4

P7.6

P7.8

P7.10

P7.12

P7.14

P7.16

P7.18

P7.20

P7.22

P7.24

P7.26

P7.28

P7.30

P7.32

P7.34

P7.36

P7.38

P7.40

P7.42

1.59x10° |

(a) 328 x107* J; (b) -3.28 x 1072 |
see the solution

533 W

16.0

(a) see the solution; (b) —-12.0 ]

50.0]

(a) 575 N/m; (b) 46.0 ]

(a) 9.00 kJ; (b) 11.7 KJ, larger by 29.6%

(a) see the solution; (b) mgR

-1
mg mg (1 1
(a) k1+k2’(b)[k1+k2j

(@) 1.20J; (b) 5.00 m/s; (c) 6.30 ]
(@) 60.0J; (b) 60.0]
(a) 1.94 m/s; (b) 3.35 m/s; (c) 3.87 m/s

(a) 3.78x107' J; (b) 1.35x 10 N;
(c) 1.48 x10*16 m/sz; (d) 1.94 ns

(a) 0.791 m/s; (b) 0.531 m/s

(@) 3297; (b) 0; (0) 0; (d) 185 J; (e) 144 ]
8.01 W

~10* W

(@) 5.91 kW; (b) 11.1 kW

No. (a) 582; (b) 90.5 W =0.121 hp

P7.44

P7.46

P7.48

P7.50

P7.52

P7.54

P7.56

P7.58

P7.60

P7.62

P7.64

P7.66

P7.68

P7.70

5.92 km/L
90.0]

Ax Ay Az
a) cosa =—%; cosf=—=; coOsy =—=;
(a) cosa " B 3 r="

(b) see the solution

401 kN
(@) a=—"r5—; b=180; (b) 294]

mgnhhg ) mgoh

7
v +nh,

(@)

v +nh,

1.53x10° N upward
see the solution

(a) see the solution;
(b) 2kL? + kA% — 2kL A% + 2

(a) F; = (2051 +143]) N;
F, =(-36.41+210j) N;
(b) (~15.91+35.3j) N;

(c) (-3.181+7.07j) m/s?;
(d) (-5.54i +23.7]) m/s;
(

(e) (~2:30i+39.3]) m; (f) 148 KJ; () 148k

(a) see the solution; (b) 125 N/m+2%;
() 13.1N

(@) 5.60J; (b) 0.152; (c) 2.28 rev
see the solution
(@) 2.17 kW; (b) 58.6 kW

(@) x=—4.0 mm; (b) -1.0 cm



Q8.4

Q8.5

Q8.6

Q8.2

Q8.3

Potential Energy

ANSWERS TO QUESTIONS

The final speed of the children will not depend on the slide
length or the presence of bumps if there is no friction. If there is
friction, a longer slide will result in a lower final speed. Bumps
will have the same effect as they effectively lengthen the
distance over which friction can do work, to decrease the total
mechanical energy of the children.

Total energy is the sum of kinetic and potential energies.
Potential energy can be negative, so the sum of kinetic plus
potential can also be negative.

Both agree on the change in potential energy, and the kinetic
energy. They may disagree on the value of gravitational
potential energy, depending on their choice of a zero point.

(@) mgh is provided by the muscles.

(b) No further energy is supplied to the object-Earth system, but some chemical energy must be
supplied to the muscles as they keep the weight aloft.

() The object loses energy mgh, giving it back to the muscles, where most of it becomes internal

energy.

Lift a book from a low shelf to place it on a high shelf. The net change in its kinetic energy is zero,
but the book-Earth system increases in gravitational potential energy. Stretch a rubber band to
encompass the ends of a ruler. It increases in elastic energy. Rub your hands together or let a pearl
drift down at constant speed in a bottle of shampoo. Each system (two hands; pearl and shampoo)

increases in internal energy.

Three potential energy terms will appear in the expression of total mechanical energy, one for each
conservative force. If you write an equation with initial energy on one side and final energy on the
other, the equation contains six potential-energy terms.

215
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Q8.7

Q8.8

Q8.9

Q8.10

08.11

08.12

Q8.13

08.14

08.15

Q8.16

08.17

(@) It does if it makes the object’s speed change, but not if it only makes the direction of the
velocity change.

(b) Yes, according to Newton's second law.

The original kinetic energy of the skidding can be degraded into kinetic energy of random molecular
motion in the tires and the road: it is internal energy. If the brakes are used properly, the same
energy appears as internal energy in the brake shoes and drums.

All the energy is supplied by foodstuffs that gained their energy from the sun.

Elastic potential energy of plates under stress plus gravitational energy is released when the plates
“slip”. It is carried away by mechanical waves.

The total energy of the ball-Earth system is conserved. Since the system initially has gravitational
energy mgh and no kinetic energy, the ball will again have zero kinetic energy when it returns to its
original position. Air resistance will cause the ball to come back to a point slightly below its initial
position. On the other hand, if anyone gives a forward push to the ball anywhere along its path, the
demonstrator will have to duck.

Using switchbacks requires no less work, as it does not change the change in potential energy from
top to bottom. It does, however, require less force (of static friction on the rolling drive wheels of a
car) to propel the car up the gentler slope. Less power is required if the work can be done over a
longer period of time.

There is no work done since there is no change in kinetic energy. In this case, air resistance must be
negligible since the acceleration is zero.

There is no violation. Choose the book as the system. You did work and the earth did work on the
book. The average force you exerted just counterbalanced the weight of the book. The total work on
the book is zero, and is equal to its overall change in kinetic energy.

Kinetic energy is greatest at the starting point. Gravitational energy is a maximum at the top of the
flight of the ball.

Gravitational energy is proportional to mass, so it doubles.

In stirring cake batter and in weightlifting, your body returns to the same conformation after each
stroke. During each stroke chemical energy is irreversibly converted into output work (and internal
energy). This observation proves that muscular forces are nonconservative.



08.18

08.19

08.20

Q8.21

Q8.22

08.23
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Let the gravitational energy be zero at the lowest point in the @) /
motion. If you start the vibration by pushing down on the block (2), K / -
its kinetic energy becomes extra elastic potential energy in the / g
spring (U ). After the block starts moving up at its lower turning @) / Uy
point (3), this energy becomes both kinetic energy (K) and /<
gravitational potential energy (U Q ), and then just gravitational /4 \LL
energy when the block is at its greatest height (1). The energy then / o) \\\\
turns back into kinetic and elastic potential energy, and the cycle -
repeats.

FIG. Q8.18
(@) Kinetic energy of the running athlete is transformed into elastic potential energy of the bent

pole. This potential energy is transformed to a combination of kinetic energy and
gravitational potential energy of the athlete and pole as the athlete approaches the bar. The
energy is then all gravitational potential of the pole and the athlete as the athlete hopefully
clears the bar. This potential energy then turns to kinetic energy as the athlete and pole fall
to the ground. It immediately becomes internal energy as their macroscopic motion stops.

(b) Rotational kinetic energy of the athlete and shot is transformed into translational kinetic
energy of the shot. As the shot goes through its trajectory as a projectile, the kinetic energy
turns to a mix of kinetic and gravitational potential. The energy becomes internal energy as
the shot comes to rest.

() Kinetic energy of the running athlete is transformed to a mix of kinetic and gravitational
potential as the athlete becomes projectile going over a bar. This energy turns back into
kinetic as the athlete falls down, and becomes internal energy as he stops on the ground.

The ultimate source of energy for all of these sports is the sun. See question 9.

Chemical energy in the fuel turns into internal energy as the fuel burns. Most of this leaves the car
by heat through the walls of the engine and by matter transfer in the exhaust gases. Some leaves the
system of fuel by work done to push down the piston. Of this work, a little results in internal energy
in the bearings and gears, but most becomes work done on the air to push it aside. The work on the
air immediately turns into internal energy in the air. If you use the windshield wipers, you take
energy from the crankshaft and turn it into extra internal energy in the glass and wiper blades and
wiper-motor coils. If you turn on the air conditioner, your end effect is to put extra energy out into
the surroundings. You must apply the brakes at the end of your trip. As soon as the sound of the
engine has died away, all you have to show for it is thermal pollution.

A graph of potential energy versus position is a straight horizontal line for a particle in neutral
equilibrium. The graph represents a constant function.

The ball is in neutral equilibrium.

The ball is in stable equilibrium when it is directly below the pivot point. The ball is in unstable
equilibrium when it is vertically above the pivot.
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SOLUTIONS TO PROBLEMS

Section 8.1 Potential Energy of a System
P8.1 (@) With our choice for the zero level for potential energy when thecar A
is at point B, I /V\ 40.0°
U, =0]. T

5 ft
l \ b
When the car is at point A, the potential energy of the car-Earth mmmmmin. T

tem is given b
system is given by FIG. P8.1
Uy =mgy
where v is the vertical height above zero level. With 135 ft = 41.1 m, this height is found as:

y=(411m)sin40.0°=26.4 m.

Thus,

U, =(1000 kg)(9.80 m/s?)(26.4 m)=[ 259x10° J |

The change in potential energy as the car moves from A to B is

Ug —U, =0-259%x10° J=| -259x10° J |.

(b) With our choice of the zero level when the car is at point A, we have . The potential

energy when the car is at point B is given by Uy =mgy where y is the vertical distance of
point B below point A. In part (a), we found the magnitude of this distance to be 26.5 m.
Because this distance is now below the zero reference level, it is a negative number.

Thus,

Uy = (1000 kg)(9.80 m/s?)(-26.5 m) = -2.59x10° J |

The change in potential energy when the car moves from A to B is

Ug —U, =-259x10° J-0=| -2.59x10° J |.
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P8.2 (@) We take the zero configuration of system
potential energy with the child at the
lowest point of the arc. When the string
is held horizontal initially, the initial
position is 2.00 m above the zero level.
Thus, o /
200m |00 (2.00 m) cos 30.0°
U, =mgy =(400 N)(2.00 m)=| 800 ] |. / /
\
(b) From the sketch, we see that at an angle - . (2.00 m)(1- cos 30.0°)
of 30.0° the child is at a vertical height of N .
(2.00 m)(1-cos30.0°) above the lowest
point of the arc. Thus, FIG. PS.2
U, =mgy = (400 N)(2.00 m)(1-co0s30.0°)=| 107 J |.
(c) The zero level has been selected at the lowest point of the arc. Therefore, at this
location.
*P8.3 The volume flow rate is the volume of water going over the falls each second:
3m(0.5 m)(1.2 m/s)=1.8 m’/s
The mass flow rate is % = p% = (1 000 kg/m3)(1.8 m3/s) =1800 kg/s
If the stream has uniform width and depth, the speed of the water below the falls is the same as the
speed above the falls. Then no kinetic energy, but only gravitational energy is available for
conversion into internal and electric energy.
The input power is %, = % = @ = %gy =(1800 kg/s)(9.8 m/sz)(S m)=8.82x10* J/s
The output power is %..¢ = (efficiency)%, = 0.25(8.82, x10* W) = 220x10* W
The efficiency of electric generation at Hoover Dam is about 85%, with a head of water (vertical
drop) of 174 m. Intensive research is underway to improve the efficiency of low head generators.
Section 8.2 The Isolated System—Conservation of Mechanical Energy
*P8.4 (@) One child in one jump converts chemical energy into mechanical energy in the amount that

her body has as gravitational energy at the top of her jump:
mgy =36 kg(9.81 m/s? )(0.25 m) =388.3 J. For all of the jumps of the children the energy is

12(1.05 x 106)88.3 J=|111x10° J |.
0.01

(b) The seismic energy is modeled as E = Wl'll x10” J=1.11x10° J, making the Richter

, logE—48 logll1x10°-48 5.05-4.8
t d = = = 0.2 .
s T 15 5 02
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P8.5 U +K; =Up + K2 mgh+0:mg(ZR)+%mv2 - A
¢(3.50R) =2 g(R)+%vz h

2 2
v
F: P n+ — -
2 m mg=m

2
n= m{%— g} = m[3.01(igR - g} =2.00mg
n

n=2.00(5.00 <107 kg)(9.80 m/s?) mg

:| 0.098 0 N downward |

FIG. P8.5

P8.6 From leaving ground to the highest point, Ki+U; =K, +U;
%m(6.00 m/s)” +0=0+m(9.80 m/s?)y

2
: (6.00 m/s)
The mass makes no difference: cy=—"""7°  _[184m
Y (2)(9.80 m/sz)
*P8.7 (@) lmvlz +lkxi2 = lmvj% +lkxj% vvvv
/ L
0 +%(10 N/m)(-0.18 m)2 _ %(0.15 kg)v? +0 initial

10N 1kg-m Ve/e/0/0 NI
N O e ez I 111 N
VvV V V
®) K +U,=K,+U, e
iy o [BBBEBL"] i

0 +%(10 N/m)(-0.18 m)* = %(0.15 kg)o?

+%(10 N/m)(0.25 m -0.18 m)? FIG. P8.7

0.162 ] = %(0.15 kg)o? +0.0245]

~[2(0138))
oy = [T (155 s
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The energy of the caris E = %mv2 +mgy

E= %mv2 +mgd sin @ where d is the distance it has moved along the track.

4/’—d—E— mvﬂﬂn sin 6
C o dt ar
(@) When speed is constant,
# =mgosin 0 =950 kg(9.80 m/s?)(2.20 m/s)sin30°=| 1.02x10* W
2.2 -
(b) @:azﬂzo.l% m/s2
dt 12s

Maximum power is injected just before maximum speed is attained:

9 =moa-+mgosinf =950 kg(2.2 m/s)(0.183 m/s?)+1.02x10* W=| 1.06x10* W
(c) At the top end,

1 2 . _ 1 2 2 . o|_ 6
o +mgd sin @ = 950 kg(E(Z.ZO m/s) +(9.80 m/s )1 250 msin30 j—

(@) Energy of the object-Earth system is conserved as the object moves between the release
point and the lowest point. We choose to measure heights from y =0 at the top end of the

string.

(K+Ug)i:(K+Ug)f: 0+mgyi:%mvj%+mgyf
9.8 m/s2 (-2 mcos30°) ==v% +(9.8 m/s2 (-2 m)
3
vf= \/2(9.8 m/sz)(Z m)(1 - cos30°) :

(b) Choose the initial point at 8 =30° and the final point at 8 =15°:

0+ mg(—Lcos30°) = %mv? +mg(—L cos15°)

vp = \/ZgL(cos 15°-c0s30°) = \/2(9.8 m/sz)(Z m)(cos15°—cos 30°) =

Choose the zero point of gravitational potential energy of the object-spring-Earth system as the
configuration in which the object comes to rest. Then because the incline is frictionless, we have
EB = EA .

or 0+mg(d+x)sin6?+0:0+0+%kx2.
2
Solving for d gives d= L— x
2mgsin @
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P8.11 From conservation of energy for the block-spring-Earth system,

or

This gives a maximum height i = .

P8.12  (a)

(b)

ugt = usi/

(0.250 kg)(9.80 m/s? )= G)(s 000 N/m)(0.100 m)”

The force needed to hang on is equal to the force F the
trapeze bar exerts on the performer.

From the free-body diagram for the performer’s body, as
shown,

2
F—mgcosezm%

or

2
F=mgcos&+ m% FIG. P8.12

Apply conservation of mechanical energy of the performer-Earth system as the performer
moves between the starting point and any later point:

mg(¢—(cos6;)=mg(¢—(cos 9)+%m02

2

Solve for

and substitute into the force equation to obtain F = | mg(3cos@—2cos;) |

At the bottom of the swing, 8=0° so

F =mg(3-2cos ;)
F =2mg =mg(3—2cos0;)

which gives
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P8.13 Using conservation of energy for the system of the Earth and the two objects mﬁmm

(@) (5.00 kg)g(4.00 m) = (3.00 kg)g(4.00 m) +%(5.00 +3.00)0? %3
v=+196 =[ 443 m/s lmSl 00 kg
m2 =
(b) Now we apply conservation of energy for the system of the 3.00 kg 3.00kg| 4 00 m
object and the Earth during the time interval between the instant l
when the string goes slack and the instant at which the 3.00 kg
object reaches its highest position in its free fall.
1 FIG. P8.13
5(3.00)02 =mg Ay =3.00gAy
Ay=1.00 m
Ymax =400 m+ Ay =
P8.14 my >m,
1
(a) mygh= (ml 1115 )0 + 1 gh
o= 2(my —my)gh
(my +m,)
(b) Since m, has kinetic energy %mzv2 , it will rise an additional height A determined from
L 2
m,g Ah= m 50
or from (a),
ppo i ma)h
2g  (my+my)
The total height m, reachesis h+Ah= _2mh .
my +ni,
P8.15 The force of tension and subsequent force of compression in the
rod do no work on the ball, since they are perpendicular to each
step of displacement. Consider energy conservation of the ball-
Earth system between the instant just after you strike the ball and
the instant when it reaches the top. The speed at the top is zero if L
you hit it just hard enough to get it there. initial final
L 2
Ki+Ug =Ky +Ug: 5 ™Mo +0=0+mg(2L) L
v; = ,J4gL = /4(9.80)(0.770)

0,=[549 mys] v

—

FIG. P8.15
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useful output energy  useful output power

*P8.16 efficiency =
Y Ttotal input energy total input power

mwatergy/t _ zpwater(vwater/t)gy _ ZpW(UW/t)gy
paﬂ;,ZUS

(1/2)mair(vz/t) pairmz(gvz/t)

where ¢ is the length of a cylinder of air passing through the mill and v,, is the volume of water
pumped in time t. We need inject negligible kinetic energy into the water because it starts and ends

at rest.
2% 0.275(1.20 kg/m®)z(115 m)*(11 m/s)’

Uw _ epmrTu”
t 2p8y 2(1000 kg/m’)(9.80 m/s*)35 m
) 1000 L) 60s .

=2.66x10 3 m3/s (W)(mj =

P8.17 (@) Ki+Ug =K¢+Ugy
L 2 L >
—mvj +0=—mvs +m
i 5 Mof 8Y ¢

1 , 1 5, 1 5
Emvxi +Emvyi :Emvxf +mgy

But v,; =v,y, so for the first ball

2 . 2
v 1000sin37.0°
Y l—gz 1.85x10* m

T2¢ 2(9.80)
and for the second

2
y _ (1000 _ 510x10* m
f7 29.80) L=

The total energy of each is constant with value

%(20.0 kg)(1000 m/s)” =[ 1.00x107 J |.

(b)
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*P8.19
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In the swing down to the breaking point, energy is conserved:
1
mgr cos O = —mov*
2
at the breaking point consider radial forces
> F, =ma,
02
+T hax —MgCOsO=m—
r
02
Eliminate — = 2gcos 8
r
Tinax — Mg cos @ = 2mg cos @
Trnax = 3mg cos @
6=cos™ Tina | cos ™ 445N >
3mg 3(2.00 kg)(9.80 m/s?)
o=
(@) For a 5-m cord the spring constant is described by F = kx, %@W@i
mg = k(1.5 m). For a longer cord of length L the stretch distance
is longer so the spring constant is smaller in inverse proportion: >0%
7 e
k=21 8 _333meir i
L 15m
K+U,+U) =(K+U, +U 7
( £ )z‘ ( £ )f initial final

_ 1,2
0+mgyi+0—0+mgyf+2kxf FIG. P8.19(a)

1 m
mg(yl- —yf) = kx? = 33.33—gx%

1
2 L

here y; —y; =55m=L+x;

55.0 mL = %3.33(55.0 m-L)

55.0 mL =5.04x10°> m? —183 mL + 1.671>
0=1.671%—-238L+5.04x10% =0

238 + \/2382 ~4(1.67)(5.04x10%) 381 15

2(1.67) 3.33 =[58m]

only the value of L less than 55 m is physical.

L

b k=333 25";5’ ¥max =¥ =550 m-258 m=29.2 m
.0

> F=ma +hX oy — Mg =ma

3.33—8 292 m-mg =ma
258 m
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*P8.20 When block B moves up by 1 cm, block A moves down by 2 cm and the separation becomes 3 cm.
We then choose the final point to be when B has moved up by g and has speed UTA. Then A has
moved down %h and has speed v, :

(Kp +Kp +ug)i =(Ky +Kg +ug)f
2
0+0+0 =lmvi +lm(v—Aj Jmgh _ mg2h
2 2 2 3 3
mgh 5 2
——=—mv
3 A
8gh
oA _\/ 15
Section 8.3 Conservative and Nonconservative Forces
P821  F, =mg=(400 kg)(9.80 m/s*)=39.2 N y
B¢ <
(@) Work along OAC = work along OA + work along AC A (5.00, 5.00) m
= F,(OA)cos90.0°+F, (AC) cos 180°
=(39.2 N)(5.00 m)+(39.2 N)(5.00 m)(-1)
=[-196]
0| A
(b) W along OBC = W along OB + W along BC
=(39.2 N)(5.00 m)cos180°+(39.2 N)(5.00 m)cos90.0° FIG. P8.21
=[-196]
() Work along OC = F,(OC)cos135°
1
=(392N)(5.00 x+/2 m)(—ﬁj =[-1%]
The results should all be the same, since gravitational forces are conservative.
P8.22 (@) W= JF -dr and if the force is constant, this can be written as

W =F ~Idr =|F- (rf - rl-), which depends only on end points, not path.

() W=[F-dr=[(3i+4j): (dxi+dyj) = (3.00 N)S‘O? dx+ (4.00 N)5'0(j) ;lny
0 0

5.00 m

W =(3.00 N)o

+(4.00 N)y|"" ™ =15.07+20.0]=[35.0]

0

The same calculation applies for all paths.



P8.23

P8.24

@)

(b)

(©

(d

(@)

(b)

Chapter 8
5.00 m 5.00 m

Woa = dei-(2y§+xzj)= _[Zydx
0 0
and since along this path, y=0 Wos =0

500m R .  5.00m
Wye = dej-(Zyi+x2j): szdy
0 0

For x=5.00 m, Wyc =125]
500 m 5.00 m

Wop = jdyj-(Zyi+xzi): szdy
0 0

since along this path, x=0, Weop =0

5.00 m 5.00 m

~

Wpe = dei . (Zyi + xzj) = IZydx
0 0
since y=5.00 m, Wge =50.0]
Wope =0+50.0 =

Woc = J'(dxi + dyj) . (Zyi + xzj) = J(Zydx + xzdy)

5.00 m

Since x =y along OC, Woe = J(Zx + xz)dx =

0

Fis | nonconservative | since the work done is path dependent.

(AK), = > W =W, =mgAh=mg(5.00—3.20) A
%mvg —%mv% =m(9.80)(1.80)

. _ [ _
Similarly, vc =403 +2g(5.00 - 2.00) =[ 767 m/s FIG. P8.24
Wl =mg(3.00m)=[147]

227
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P825  (a) F =(3.00i +5.00j) N
m=4.00 kg
r=(2.00i-3.00j) m
W =3.00(2.00) +5.00(-3.00) =| —9.00 J
The result does not depend on the path since the force is conservative.
(b) W =AK
2 4.00)”
~9.00=+000" _ 4 o[ (400
2 2
[32.0-9.00
SO U= 2—00 =| 3.39 m/s
(c) AU=-W=[9.00]
Section 8.4 Changes in Mechanical Energy for Nonconservative Forces
P8.26 (@) Uy =K; -K; +U; Uy =30.0-18.0+10.0=| 22.0]
E=400]
(b) Yes, AE .., = AK+ AU is not equal to zero. For conservative forces AK + AU =0.
P8.27 The distance traveled by the ball from the top of the arc to the bottom is zR . The work done by the
non-conservative force, the force exerted by the pitcher,
is AE = FAr cos0°= F(zR).
We shall assign the gravitational energy of the ball-Earth system to be zero with the ball at the
bottom of the arc.
1 . 1 5
Then AE ech = MUy~ mo; +mgy  —mgy;
L 2 1 5
becomes 5 Mof = mo; +mgy; + F(7R)
2F(7R 2(30.0)7(0.600
or vp= Jv,z +28Y; + (R) = \/(15.0)2 +2(9.80)(1.20) +w
m 0.250
vy =|265 m/s
*P8.28 The useful output energy is

120 Wh(1-0.60) =mg(y, ;) = F, Ay

120 W(36005)0.40( | \(N-m
Ay = ~[194
Y 890 N (w -5 )[ ] J
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P8.30

P8.31

P8.32
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As the locomotive moves up the hill at constant speed, its output power goes into internal energy
plus gravitational energy of the locomotive-Earth system:

Pt =mgy + fAr = mgAr sin@ + fAr P=mgu,sind+ fo;
As the locomotive moves on level track,

74iwj £(27 nys) f=276x10* N
p

9= fo, 1000 hp(

Then also 746 000 W = (160 000 kg)(9-8 m/ 52)”f (12(;“
m

j+ (2.76 x10* N)vf

746 000 W

We shall take the zero level of gravitational potential energy to be at the lowest level reached by the
diver under the water, and consider the energy change from when the diver started to fall until he
came to rest.

L 2

AE = Moy —%mvi2 +mgy; —mgy; = frd cos180°

0-0-mg(y; ~y;)=—fid
mg(y;—yy) (700 kg)(9.80 m/s*)(10.0 m+5.00 m)

== 500 m | 206 kN |

3.00 kg

1
Ui +K; + AE ecn =Uf + Kz ngh—ﬂizamlvz +%m202
f=pm=pmg
1
mogh— pm, gh=— (m1+m2) :

o2 Ao — pmy ) ()
My +m, FIG. P8.31

2(9.80 m/'s)(1.50 m)[5.00 kg —0.400( 300kg]
AEpeen = (K = K;)+ Uy ~U,)

But AE, o, =W, — fAx, where W, is the work the boy
did pushing forward on the wheels.

Thus, W,y =(K; —K;)+(Ug —Ug )+ fAx

1
p =5 m(vf ~0F )+ mg(-h)+ fx FIG. P8.32

or W
W,, ; (47.0)[(6.20)2 - (1.40)2] — (47.0)(9.80)(2.60) + (41.0)(12.4)
W,,
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P8.33

P8.34

@)

(b)

(©

()

Consider the whole motion: K; +U; + AE

(@)

(b)

(©

(d

1 1
AK = Em(v? - UIZ) = —Emviz =
AU = mg(3.00 m)sin30.0°=

The mechanical energy converted due to friction is 86.5 ]

_865] FIG. P8.33

~[288N
f=300m-L288N]

f=wn=pmgcos30.0°=288 N

288 N
~[0.679
(5.00kg)(9.80 m/s?)cos30.0°

Hi =

Kf +Uf

mech —

0+mgy; — fiAx; — fAx, :%mv? +0

(80.0 kg)(9.80 m/s>}1000 m - (50.0 N)(800 m)— (3 600 N)(200 m) :%(80.0 kg)o?
784000 ] —40 000 ] 720 000 J = %(80.0 kg)o?

2(24.000 )

V=, |———==| 245 m/s
f 80.0 kg
this is too fast for safety.

Now in the same energy equation as in part (a), Ax, is unknown, and Ax; =1000 m— Ax,:

784000 J - (50.0 N)(1 000 m — Ax, ) - (3 600 N)Ax, = %(80.0 kg)(5.00 mys)’

784000 J —50 000 ] — (3 550 N)Ax, =1000 ]
733000]

Ax, =———=| 206 m
2= 3eoN - L206m]

Really the air drag will depend on the skydiver’s speed. It will be larger than her 784 N
weight only after the chute is opened. It will be nearly equal to 784 N before she opens the
chute and again before she touches down, whenever she moves near terminal speed.
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P8.36

@)

(b)

(©

> F,=n-mgcos37.0°=0
~.n=mgcos37.0°=400 N

f=pn=0.250(400 N)=100 N
—fAx=AE

(-100)(20.0) = AU , + AU + AK 4 + AK, / A
37°
AU 4 =m ,g(h; - h;) =(50.0)(9.80)(20.05in 37.0°) = 5.90 x 10°

Chapter 8 231

(K+ LI)I, +AE o =(K +U)f:

0+lkx2 —fo:lmv2 +0
2 2

%(8.00 N/m)(5.00x 10 m)2 ~(3.20x107* N}(0.150 m) :%(5.30 x107 kg)o’

2(5.20x107 )

When the spring force just equals the friction force, the ball will stop speeding up. Here
|F,| = kx; the spring is compressed by

320x107% N
8.00 N/m

=0.400 cm

and the ball has moved

5.00 cm—-0.400 cm :| 4.60 cm from the start.

Between start and maximum speed points,

lkx,»2 —fo:lmv2 +lkxj%
2 2 2

%8.00(5.00 x 10*2)2 - (3.20 x1072 )(4.60 x 10*2) - %(5.30 x1073 )02 +%8.00(4.00 x1073 )2

mech

AUy =mpg(hy —h;)=(100)(9.80)(-20.0) = ~1.96 x 10* AN T

AK 4 =%TI1A(UJ%—UI»2)

1 2 2)\_Mpg in37° &
AKB:EmB(Uf_Ui ):ZAKA:ZAKA mg sin 3 7 g cos 37°
mg ¥
Adding and solving, AK 4, =| 3.92 k] |. m =50.0 kg

FIG. P8.36



232  Potential Energy

P837  (a)

(b)

(©

The object moved down distance 1.20 m + x. Choose y =0 at its lower point.

K1+Ugl+U51+AE h:Kf+ugf+qu

mec

0+mgyi+0+0:0+0+%kx2

(150 kg)(9.80 m/s?)(1.20 m+x) = %(320 N/m)x?
0=(160 N/m)x* —(14.7 N)x~17.6 ]

147 N'+,/(-147 N)* - 4(160 N/m)(~17.6 N-m)
e 2(160 N/m)

147 N+107 N
320 N/m

The negative root tells how high the object will rebound if it is instantly glued to the spring.
We want

From the same equation,

(150 kg)(1.63 m/s*)(1.20 m+x) = %(320 N/m)x>
0=160x* - 2.44x - 2.93

The positive root is x=| 0.143 m |.

The equation expressing the energy version of the nonisolated system model has one more
term:

mgy; — fAx = %kx2

(150 kg)(9.80 m/s*)(1.20 m+ x) - 0.700 N(1.20 m + x) = %(320 N/m)x?

17.6 J +14.7 Nx—0.840 J - 0.700 Nx =160 N/m x>
160x% —14.0x-16.8 =0

| 140:+/(14.0)* - 4(160)(-16.8)
- 320

X
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P8.38 The total mechanical energy of the skysurfer-Earth system is
Eneen =K +U, =~ mv? + mgh
mech =K +Ug =—mv” +mgh.
Since the skysurfer has constant speed,
AE ech dv dh
—2 = myv—+ mg— =0+mg(-v) =-mgu.
ar " ar " mg(~v) = ~mgo
The rate the system is losing mechanical energy is then
dEmech _ _ 2 —
‘T = mgo = (75.0 kg)(9.80 m/s)(60.0 m/s)=[441kW |.
*P8.39 (@) Let m be the mass of the whole board. The portion on the rough surface has mass me The
normal force supporting it is % and the frictional force is 24~ = yq. Then
a= ,ukTgx opposite to the motion.
(b) In an incremental bit of forward motion dx, the kinetic energy converted into internal
energy is fidx = ad izzgx dx. The whole energy converted is
1 R g mgx mg x* ' mgL
_mvz:J‘ﬂk 8X gy = HME X} _ HiME
2 , L L 2 2
0
Section 8.5 Relationship Between Conservative Forces and Potential Energy
x 2 3
P8.40 (@) U= —J' (—Ax +Bx? )dx | A B
0 2 3
soom  A[(3.002)-(2.00)*|  B|(3.00)° - (2.00)
b) AU = Jde: [( ) ]_ [ ]: 5.00A_19.OB
2.00 m 2 3 2 3
AK = (_ 5.00 A 19.0 Bj
2 3
5.00 m 22 5.00m
P8.41 a W=|Fdx= |(Q2x+4)dx=|—+4x =25.0+20.0-1.00-4.00=| 40.0J
I L O ] 007

(b) AK+AU=0 AU:—AK:—W:
i K, —aK+ ™ [
j=AK+ P _

muv]

(c) AK =K, -
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P8.42 F. =- ou_ 5(3963]/ _ 7X)

N E_—T:—(9x2y—7):7—9x2y
F __QZ_M:_(%S —0):—3x3
Yoo oy oy

Thus, the force acting at the point (x, y) is F= F,i+ ij = (7 — 9x2y)i -3x% .

P83 U(r)=2
;
= _ou_ —i(éj = iz . The positive value indicates a force of repulsion.
or dr\r r
Section 8.6

Energy Diagrams and the Equilibrium of a System

AV

stable unstable neutral

FIG. P8.44

P8.45 (@) F, is zero at points A, C and E; F, is positive at point B and negative at point D.

(b) A and E are unstable, and C is stable.

(©) Fy

X (m)

FIG. P8.45
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P8.47

@)

(b)

(©

(d

()

(®)

@)

(b)

(©
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There is an equilibrium point wherever the graph of potential energy is horizontal:
At r =1.5 mm and 3.2 mm, the equilibrium is stable.

At r =2.3 mm, the equilibrium is unstable.
A particle moving out toward r — c approaches neutral equilibrium.

The system energy E cannot be less than -5.6 J. The particle is bound if | -5.6 J<E<1]|.

If the system energy is -3 J, its potential energy must be less than or equal to -3 J. Thus, the
particle’s position is limited to | 0.6 mm<r <3.6 mm |

K+U=E.Thus, Ky = E-Upy, =-3.0]-(-56])=| 2.6 |.
Kinetic energy is a maximum when the potential energy is a minimum, at .

-3 J+ W =1]. Hence, the binding energy is W = .

When the mass moves distance x, the length of each spring
changes from L to v/x* + L* , so each exerts force
k(x/ x24I - L) towards its fixed end. The y-components

cancel out and the x components add to:

F, = —Zk(\/xz +12 —L) S S N P
Vx? 412 Va2 +12 FIG. P8.47(a)

Choose U =0 at x=0. Then at any point the potential energy of the system is

z H 2kLx
x)=—|F.dx= ——— |dx =2k | xdx — 2kL
frasm] e B st aa]
U(x)=| kx? +2kL(L— N +L2)

U(x)=40.0x* + 96.0(1.20 —Vx?+ 1.44)

For negative x, U(x) has the same value as for
positive x. The only equilibrium point (i.e., where

F,=0)is[x=0].

K;+U;+AE

mech —

Kf +Uf

0+0.400 J+0=— (118 kg)o? +0

vy =| 0823 m/s FIG. P8.47(b)
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Additional Problems

P8.48

P8.49

P8.50

The potential energy of the block-Earth system is mgh.
An amount of energy x,mgd cos @ is converted into internal energy due to friction on the incline.
Therefore the final height v, is found from

MY max = Mgh — pymgd cos 6

where

d — y.max

sin @

S M8 max = mgh — HMEY max COL 0 ym%\

Solving,
FIG. P8.48
k-
Ymax 1+ 1y ot o .

At a pace I could keep up for a half-hour exercise period, I climb two stories up, traversing forty
steps each 18 cm high, in 20 s. My output work becomes the final gravitational energy of the system
of the Earth and me,

mgy = (85 kg)(9.80 m/s”)(40x0.18 m)=6000 ]

) ) 6000] 3
making my sustainable powe =|~10° W |.
& my sustat power 20s

v=100 km/h =27.8 m/s
The retarding force due to air resistance is

R= %DpAUZ = %(0.330)(1.20 kg/m?)(2.50 m*)(27.8 mys)* =382 N
Comparing the energy of the car at two points along the hill,
or K1+Ugl+AWe—R(AS)=Kf+Ugf
where AW, is the work input from the engine. Thus,

AW, = R(8s) + (K =K;)+ (U ~Uy)

Recognizing that K, = K; and dividing by the travel time At gives the required power input from
the engine as

P = (AWE j = R(ﬁ) + mg[ﬂ) =Rv+mgusind
At At At

#=(382 N)(27.8 m/s)+ (1500 kg)(9.80 m/s*)(27.8 m/s)sin3.20°

#=|33.4kW=448 hp |




P8.51

P8.52

P8.53
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m = mass of pumpkin N AN
R =radjius of silo top
v? vi=0 "
>'F, =ma, =n-mgcosl=—m— ‘
R 0 \
mg R

When the pumpkin first loses contact with the surface, n=0. ng
Thus, at the point where it leaves the surface: v* = Rg cos 6.
FIG. P8.51

Choose U, =0 in the #=90.0° plane. Then applying conservation of energy for the pumpkin-Earth

system between the starting point and the point where the pumpkin leaves the surface gives

Kf +Ugf :Ki +Ugi
%mv2 +mgRcos @ =0+mgR
Using the result from the force analysis, this becomes

1
Eng cos 8+ mgR cos @ =mgR, which reduces to

_2 ves O= cosL(2/3) = [28.20
cos @ =3 and gives 0=cos™ (2/3)=
as the angle at which the pumpkin will lose contact with the surface.
@) U, =mgR =(0.200 kg)(9.80 m/s*)(0.300 m)=[ 0588

Ky =K, +U, —Up =mgR=[ 05887 |

2Ky _ [2(0588])

© %= {0200 ke
(d)  Uc =mghe =(0.200 kg)(9.80 m/s*)(0.200 m) ~[03927]

Ke=K,+U, -Uc :mg(hA ‘hc)

Kc =(0.200 kg)(9.80 m/s>)(0.300 - 0.200) m =
1 1 2
@  Kg =Emv§ =~ (0.200 kg)(1.50 m/s) =[0.225] |

=0.225 J+(0.200 kg)(9.80 m/s*)(0-0.300 m)

=0.225]-0.588 ] =[ -0.363 ]

(c) It's possible to find an effective coefficient of friction, but not the actual value of 4 since n
and f vary with position.

FIG. P8.52
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P8.54 The gain in internal energy due to friction represents a loss in mechanical energy that must be equal
to the change in the kinetic energy plus the change in the potential energy.

Therefore,
1., .
—pmgx cos @ = AK +Ekx —mgxsin@

and since v; =v,; =0, AK=0.

Thus,

(100)(0.200)*

— 11,(2.00)(9.80)(cos 37.0°)(0.200) = —(2.00)(9.80)(sin 37.0°)(0.200)

and we find g, =| 0.115 |. Note that in the above we had a gain in elastic potential energy for the

spring and a loss in gravitational potential energy.

P8.55 (@) Since no nonconservative work is done, AE =0 k = 100 N/m
Also AK=0
therefore, U; =U

where U; = (mgsin)x

and Uf :lkx2
2

FIG. P8.55

Substituting values yields (2.00)(9.80)sin37.0°= (100)% and solving we find

(b) > F=ma. Only gravity and the spring force act on the block, so
—kx +mgsin6=ma

For x=0.236 m,

a=|-5.90 m/ s® |. The negative sign indicates a is up the incline.

The | acceleration depends on position |.

() U(gravity) decreases monotonically as the height decreases.
U(spring) increases monotonically as the spring is stretched.

K initially increases, but then goes back to zero.
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P8.56  k=250x10* N/m, m =250 kg
x4 =—0.100 m, U  =Uy _,=0
1, 2
(a) Emech :KA +ugA +usA Emech :0+mng +EkxA

Ennecn = (25.0 kg)(9.80 m/s}(~0.100 m)
1
+E(2'50 x10* N/m}(-0.100 m)*

Epeen =—2457+125]=[100 ]

(b) Since only conservative forces are involved, the total energy of the child-pogo-stick-Earth
system at point C is the same as that at point A.

Ko +Uge +Uge =Ky +U gy +Ugy: 0+(25.0 kg)(9.80 m/s” Jxc +0=0-245]+125]

(0 Kg+Ugp +Ugp =Ky +Ugy +Ugy: %(25.0 kg)up +0+0=0+(-245])+125]

(d) Kand v are at a maximum when a= ) F / m =0 (i.e,, when the magnitude of the upward
spring force equals the magnitude of the downward gravitational force).

This occurs at x<0 where  klx|=mg
(25.0 kg)(98 m/s?)

or x| = I =9.80x10° m
250x10% N/m

Thus, K=K, at x=

(e) Kmax = KA +(ugA _ug

x=-9.80 mm) * (usA - u5|x:—9.80 mm)
or %(25.0 Kg)0ma = (25.0 kg)(9.80 m/s?)[(~0.100 m)—(-0.009 8 m)]

+%(2.50 x10* N/m)[(—O.lOO m)® - (~0.0098 m)z]

yielding Umax =

P8.57 AE och = —fAx
Ef —E;=—f-dgc

%kx2 —mgh=—pumgdpc

g b srm—————————— e L
TR 10328
H i FIG. P8.57

mgdpc
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P8.58

P8.59

P8.60

(a) F:—%(—x3 +2x2 +3x)i: (?:x2 —4x—3)i

(b) =0
when x =| 1.87 and —0.535 |

(c) The stable point is at

x=-0.535 point of minimum U(x).
The unstable point is at
x =1.87 maximum in U(x).

(K+U), :(K+U)f
0+(30.0 kg)(9.80 m/s)(0.200 m)+%(250 N/m)(0.200 m)*

1
2
588 J+5.00 ] =(25.0 kg)v® +25.2 ]

v=124 m/s

(@) Between the second and the third picture, AE ., = AK+AU

(50.0 kg)o® +(20.0 kg)(9:80 m/s*)(0.200 m)sin 40.0°

FIG. P8.59

—pmgd = —%mviz +%kd2
%(50.0 N/m)d? +0.250(1.00 kg)(9.80 m/s* )d —%(1.00 kg)(3.00 m/s*)=0
[-2.45+21.25] N

a= 50.0 N/m =[0378m]

(b) Between picture two and picture four, AE

AK + AU — k

mech —

1 1
—f(2d)= Emv2 —Emviz

2
(1.00 kg)

(2.45 N)(2)(0.378 m)

v:\/(3.00 m/s)z—
-[z0]

() For the motion from picture two to picture five,
AE AK+AU

mech —

—f(D+2d)= —%(1.00 kg)(3.00 m/s)’

D= 9007 ) —2(0.378 m) = FIG. P8.60

©2(0.250)(1.00 kg)(9.80 m/s




P8.61

P8.62

@)

(b)

(©

Let A represent the mass of each one meter of the chain and T
represent the tension in the chain at the table edge. We imagine the
edge to act like a frictionless and massless pulley.

(@)

Chapter 8 241

Initial compression of spring: %kx2 = %mv2

%(450 N/m)(Ax)” =

Speed of block at top of track: AE_ ., = —fAx

%(0.500 kg)(12.0 mys)’

A x> k E

FIG. P8.61

(mghT +%mv%) - (mghB + %mvﬁ) =—f(aR)

(0.500 kg)(9:80 m/s*)(2.00 m) +%(0.500 kg)o2 —%(0.500 kg)(12.0 m/s)*

=—(7.00 N)(r)(1.00 m)
0.25007 = 4.21

Does block fall off at or before top of track? Block falls if 2, < g

2
a :ﬁ:—(4'10) =16.8 m/s2
° R 1.00

Therefore a, > g and the | block stays on the track |

For the five meters on the table with motion impending,

2 F,=0: +n-51g=0 n=>51g
fo Sun=06(54g)=34g {378
SF =0: +T-f =0 T=f, T<3ig FIG. P8.62

The maximum value is barely enough to support the hanging segment according to
> F,=0: +T-3ig=0 T=31¢

so it is at this point that the chain starts to slide.

continued on next page
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(b) Let x represent the variable distance the chain has slipped since the start.

Then length (5 - x) remains on the table, with now

2 F,=0: +n-(5-x)g=0 n=(»5-x)Ag
fie = pn=04(5-x)Ag =24g—0.4xAg

Consider energies of the chain-Earth system at the initial moment when the chain starts to
slip, and a final moment when x =5, when the last link goes over the brink. Measure
heights above the final position of the leading end of the chain. At the moment the final link
slips off, the center of the chain is at y; =4 meters.

Originally, 5 meters of chain is at height 8 m and the middle of the dangling segment is at
height 8 —% =6.5m.

f
K +U; + AEecn =Ky +Uj: 0+(mlgy1 +m2gyz)i —J'fkdx:(%mvz +mgyj
i f
5

(548)8 +(34g)6.5 - J(Zﬂg —0.4xAg)dx = %(8/1)02 +(84g)4

5 5
40.0g +19.5g — 2.00g [ dx +0.400g [ x dx = 4000> +32.0g
0 0

5
=4.000>

2
27.5¢ ~2.00ga] +0.400 g"7

0
27.5g - 2.004(5.00) + 0.400g(12.5) = 4.000>

22.5¢ = 4.000°

2
o J(zz.s m)4(1‘9(.)z(3)0 m/s?) _FE

P8.63 Launch speed is found from

Y
mg(éh)zlmvz: v= Zg(éjh h /,Ji\
5 2 5 ﬂg‘ v S
v, =vsind v
h/ 54T t
The height y above the water (by conservation of energy
for the child-Earth system) is found from FIG. P8.63
1 5 . 1 5. . I .
mgy = Emvy + mgg (since Emvx is constant in projectile motion)
y =Lv; +E=L02 sin’ 6’+ﬁ
28 5 2¢g 5

yzL Zg(éh) sin2¢9+ﬁ= éhsin26?+ﬁ
g 5 5 |5 5
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*P8.64 (@) The length of string between glider and pulley is given by ¢* = x* + h5. Then 2/ ar_ 2x ax +0.

dt dt

Now % is the rate at which string goes over the pulley: % =0, = %vx =(cosO)v,

(b) (KA+KB+Ug)i:(KA+KB+Ug)f

2

1
0+0+mpg(Ys0 ~Yas) =~ mavs +EmBUy

2

Now 13, — 145 is the amount of string that has gone over the pulley, /5, — ¢45. We have

h h h h
5in30°=—L and sind5°=—L, 50 /3 — L5 =—2———0 =040 m(2-+2)=0.234 m.
L3 lys sin30° sin45°

From the energy equation

0.5 kg 9.8 m/s? 0.234 m= %1.00 kg 02 +%0.500 kg 02 cos? 45°
(1157
1 35
Ox = 0.625 kg m
(c) v, =0, cosf=(1.35 m/s)cos45°=| 0.958 m/s

(d) The acceleration of neither glider is constant, so knowing distance and acceleration at one
point is not sufficient to find speed at another point.

P8.65 The geometry reveals D = Lsin 8+ Lsin¢, 50.0 m =40.0 m(sin50°+sin ¢), ¢ = 28.9°

(@) From takeoff to alighting for the Jane-Earth system
(k+ ug)i + Wing = (K + ug)f
%mv? +mg(~Lcos 6) + FD(~1) = 0 + mg(~L cos ¢)
%50 kg 07 +50 kg(9.8 m/s”)(~40 mcos50°)—110 N(50 m) =50 kg(9.8 m/s” (40 mcos 28.9°)

%50 kg 07 —1.26x10* J-5.5x10° J=-1.72x10* J

(b) For the swing back

%mvf +mg(~Lcos ¢)+ FD(+1) = 0 + mg(~L cos 0)

%130 kg 07 +130 kg(9.8 m/s” (40 mcos 28.9°)+ 110 N(50 m)
=130 kg(9.8 m/s”)(-40 mcos50°)

%130 kg 07 —4.46x10* J+5500 J=-3.28x10* J

2(63407)

v; = = 987 m/s
130kg
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P8.66 Case I: Surface is frictionless %mv2 = %kx2
2 (500 kg)(1.20 m/s)’
k=" ! g)g s 9720107 N/m
X 107 m
Case II: Surface is rough, . =0.300

1 1

Emv2 :Ekx2 — pmgx

500kg , 1 2 1 )\2 2\(1n-1
S =E(7.20><10 N/m|(10™" m)" - (0.300)(5.00 kg)(9.80 m/s*)(10™" m)

“P8.67  (a) (K + Ug)A = (K * ug)s

0+mgyA=%mv§+0 vp =428y :\/2(9.8 m/s2)6.3m=

o2 (111 m/s)”

®) o= . m/s® up

() > F,=ma, +ng—mg=ma,

ny =76 kg(9.8 m/s> +19.6 m/s*)=[ 223x10° N up |

(d) W = FAr cos 0 = 2.23 x 10% N(0.450 m)cos0°=| 1.01 x10° J

(e) (K+Ug)B+W:(K+Ug)D

o} +0+1.01x10° J = o, +mg(y )

%76 kg(111 m/s)” +1.01x10° J= %76 kg 0 +76 kg(9.8 m/s?)6.3 m

(5.70 x10° J-4.69x10° ])z
() (K + Ug)D = (K + Ug)E where E is the apex of his motion
2 (514 m/s)

1 2 ,4_ _Y _ —
Eva+0—0+mg(3/E—]/D) ]/E—]/D—z—g—m—

(8) Consider the motion with constant acceleration between takeoff and touchdown. The time
is the positive root of

1
Ye=Yyi+ vyit+5ayif2
234 m=0+514 m/st+%(—9.8 m/s? )t

49> —514t-2.34=0

,_ 54z J5.142 —4(4.9)(-2.34)

9.8 -
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P8.69
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If the spring is just barely able to lift the lower block from the table, the spring lifts it through no
noticeable distance, but exerts on the block a force equal to its weight Mg. The extension of the
spring, from |Fs| = kx, must be Mg/k. Between an initial point at release and a final point when the

moving block first comes to rest, we have

dmg

Kl'+ugi+usi =Kf+ugf +Usf:

k 2

0+mg(— 4mgj+lk

k

freenft)

_4m2g2+8m2g2_mMg +M2g2
k kK k 2k
2
4mz=mz\/I+MT

2
MT+mM—4m2=O

M =

—m+ \/mz - 4(%)(—4;112)

2(z)

Only a positive mass is physical, so we take M =m(3-1)= .

(@) Take the original point where the ball is
released and the final point where its
upward swing stops at height H and F

horizontal displacement
—-
_ [y2 2 2 —
x=4/L*-(L-H)" =V2LH-H
w—-

Since the wind force is purely horizontal, it
does work

W,ging = | F-ds=F [dx=FJ2LH - H

The work-energy theorem can be written:

Ki+ugi+Wwind:Kf +Ugf,0r

(a)

=== Pivot

m

FIG. P8.69

0+0+FV2LH-H? =0+ mgH giving F>2LH - F*H* = m*g*H?

2
W1 k(%j
2\ k

Here H =0 represents the lower turning point of the ball’s oscillation, and the upper limit is

at F?(2L) = (FZ + ngZ)H. Solving for H yields

2
He 2LF _

2L

F2 4 m2g> 1+(mg/F)2

As F -0, H— 0 as is reasonable.

As F—» oo, H— 2L, which would be hard to approach experimentally.

_ 2(2.00 m)
1+](2.00 kg)(9.80 m/s?) /147 N]2

® [t

continued on next page
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P8.70

() Call @the equilibrium angle with the vertical.

> F,=0=Tsinf=F, and
Y. F,=0=>TcosO=mg
F 147N

Dividing: tanf=—=
mg 19.6 N

Therefore, H,q =L(1-cos8)=(2.00 m)(1-c0s36.9°)=| 0.400 m

(d) As F >, tanf—> o, §—>90.0° and H,y > L
A very strong wind pulls the string out horizontal, parallel to the ground. Thus,

(Heq)max =L

=0.750, or =36.9°

Call ¢ =180°-0 the angle between the upward vertical and v.=Rg
the radius to the release point. Call v, the speed here. By The path 1

. after string .
conservation of energy s out N\ e € )~_’-.,.0
*
*

K;+U; +AE=K, +U,

%mviz +mgR+0= %mvr2 +mgR cos ¢

gR+2gR=v? +2gRcos ¢

v, =,/3gR~2gRcos ¢ TR PR

FIG. P8.70
The components of velocity at release are v, = v, cos ¢ and

v, =0, sing so for the projectile motion we have

X=0,t Rsing =v, cos ¢t

1 2 . 1 2
=v,t——gt —Rcos¢=1v,s —-—gt
y=v, Zg $=v, singt Zg

By substitution

Rsing g R*sin®¢
v, cos$ 2 v?cos® ¢

—Rcos¢g=1v, sing

with sin? g+ cos® ¢=1,

gRsin® ¢ =20} cos ¢ = 2cos #(3gR — 2gR cos ¢)
sin? ¢=6COS¢—4C052 ¢:1—cos2 @
3cos® g—6cosp+1=0

_6++436-12

0s
¢ 6

Only the - sign gives a value for cos ¢ that is less than one:

cos$=0.1835 $=79.43° so 0=[100.6°



P8.71

P8.72

Applying Newton’s second law at the bottom (b) and top (t) of the
circle gives

2 2
T, —mg = m;)b and -T, -mg=— m}zt
m(vf - vf)

Adding these gives T, =T, +2mg+

Also, energy must be conserved and AU + AK =0

2_ 2 2_ .2
SO,M+(O—2ng)=O and Mzmﬂg

Substituting into the above equation gives | T, =T, + 6mg |.

(@) Energy is conserved in the swing of the pendulum, and the
stationary peg does no work. So the ball’s speed does not
change when the string hits or leaves the peg, and the ball
swings equally high on both sides.

(b) Relative to the point of suspension,
From this we find that

-mg(2d—L)+ %mv2 =0

Also for centripetal motion,

2

mg = where R=L—d.

Upon solving, we get | d =— |.

Chapter 8 247

FIG. P8.71

FIG. P8.72
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*P8.73  (a) At the top of the loop the car and riders are in free
fall:

2
D F, =ma,: mg down:% down

o= kg

Energy of the car-riders-Earth system is conserved
between release and top of loop:

K +Ug =Ky +Uyg: O+mgh=%mvz+mg(2R)
gh= %Rg +8(2R)
h=250R

(b) Let h now represent the height > 2.5R of the release
point. At the bottom of the loop we have

mgh:%mvi or ovp=2gh

2
mo

> F, =ma,: nb—mngb(up)
m(2gh)

R

nb :mg+

At the top of the loop, mgh= %mvf +mg(2R)

Utz = 2gh—4gR FIG. P8.73
2
mo
2. F, =ma,: —nt—mg:—Tt

n, :—mg+%(2gh—4gR)

Then the normal force at the bottom is larger by

m(2gh) m(2gh)

n, —n, =mg+ R R +5mg:.




*P8.74

@)

(b)

(©

()

(©)
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Conservation of energy for the sled-rider-Earth system, e T
between A and C: ;o 2m \\

A B \ /
1 1 9.76 c D
Sm(25 mys)” +m(9.80 m/s*)(9.76 m) = SmE+0 " e 50m—l

vc = \/(2.5 nys)” +2(9.80 m/s?)(9.76 m) =[ 141 nys | FIG. P8.74(a)

Incorporating the loss of mechanical energy during the portion of the motion in the water,
we have, for the entire motion between A and D (the rider’s stopping point),

1 2
KUy~ fidx =Ky +Ug: (80 kg)(25 nys) +(80 kg)(9.80 m/s*)(9.76 m)— f,Ax=0+0

—fiAx=| -790x10% J

790x10° ] 7.90x10° N-m

The water exerts a frictional force fe =158 N
Ax 50 m
and also a normal force of n=mg = (80 kg)(9.80 m/sz) =784 N
The magnitude of the water force is \/ (158 N)2 +(784 N)2 =| 800 N
The angle of the slide is / ng @ ng
0=sin 270 ™M _ 10 4o > /@,@A
543 m mgsin 6
g mg cos 0
For forces perpendicular to the track at B,
FIG. P8.74(d)
> F,=ma,;: ny-mgcosd=0
1y =(80.0 kg)(9.80 m/s*)cos10.4°=[ 771 N
2
moc motion force

Y F,=ma,;: +nc-mg=

r
ne =(80.0 kg)(9.80 m/sz) ﬁa_»"c nc
(80.0 kg)(14.1 m/s)* &J
+
20 m g
nc =|157x10° Nup |

FIG. P8.74(e)

The rider pays for the thrills of a giddy height at A, and a high speed and tremendous splash
at C. As a bonus, he gets the quick change in direction and magnitude among the forces we
found in parts (d), (e), and (c).
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ANSWERS TO EVEN PROBLEMS

P8.2

P8.4

P8.6

P8.8

P8.10

P8.12

P8.14

P8.16

P8.18

P8.20

P8.22

P8.24

P8.26

P8.28

P8.30

P8.32

P8.34

P8.36

P8.38

P8.40

(a) 800J; (b) 107 J; (c) O

(a) 1.11x10° J; (b) 0.2

1.84m

(@) 10.2 kW; (b) 10.6 kW; (c) 5.82x10° J

kx?

d=——"—-x
2mgsin @

(a) see the solution; (b) 60.0°

2(my — h
@) (my —my)g ; () 2myh
(my +my) my +m,
160 L/min
40.8°
8gh "
15

(a) see the solution; (b) 35.0]
(@) v =5.94 m/s; v- =7.67 m/s; (b) 147 ]

(@) U; =22.0]; E=40.0J; (b) Yes. The total
mechanical energy changes.

194 m
2.06 kN up
168]

(a) 24.5 m/s; (b) yes; (c) 206 m; (d) Air drag
depends strongly on speed.

3.92K]
441 kW
Ax?  Bx®
@-—F—-—F
2 3
) au_ A 198, o 198 54
2 3 3 2

P8.42

P8.44

P8.46

P8.48

P8.50

P8.52

P8.54

P8.56

P8.58

P8.60

P8.62

P8.64

P8.66

P8.68

P8.70

P8.72

P8.74

(7 - 9x2y)i - 3x3§

see the solution

(@) r=1.5 mm and 3.2 mm, stable; 2.3 mm
and unstable; ¥ — o neutral;

(b) 5.6 J<E<17J; (c) 0.6 mm<r<3.6 mm;
(d)2.67]; () 1.5 mm; (f) 4]

see the solution

334 kW

(2) 0.5887; (b) 0.588J; (c) 2.42 m/s;
(d) 0.196J; 0.3927

0.115

(a) 100 J; (b) 0.410 m; (c) 2.84 m/s;
(d) —9.80 mm; (e) 2.85 m/s

(a) (3x* - 4x-3)i; (b) 1.87; —0.535;

(c) see the solution
(a) 0.378 m; (b) 2.30 m/s; (c) 1.08 m
(a) see the solution; (b) 7.42 m/s

(a) see the solution; (b) 1.35 m/s;
(c) 0.958 m/s; (d) see the solution

0.923 m/s

2m

100.6°

see the solution

(a) 141 m/s; (b) =7.90 J; (c) 800 N;
(d) 771 N; (e) 1.57 kN up
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ANSWERS TO QUESTIONS
Q9.1 No. Impulse, FAt, depends on the force and the time for which
it is applied.
Q9.2 The momentum doubles since it is proportional to the speed.

The kinetic energy quadruples, since it is proportional to the
speed-squared.

Q9.3 The momenta of two particles will only be the same if the
masses of the particles of the same.

Q94 (@) It does not carry force, for if it did, it could accelerate
itself.
(b) It cannot deliver more kinetic energy than it possesses.

This would violate the law of energy conservation.

(c) It can deliver more momentum in a collision than it possesses in its flight, by bouncing from
the object it strikes.

Provided there is some form of potential energy in the system, the parts of an isolated system can
move if the system is initially at rest. Consider two air-track gliders on a horizontal track. If you
compress a spring between them and then tie them together with a string, it is possible for the
system to start out at rest. If you then burn the string, the potential energy stored in the spring will
be converted into kinetic energy of the gliders.

No. Only in a precise head-on collision with momenta with equal magnitudes and opposite
directions can both objects wind up at rest. Yes. Assume that ball 2, originally at rest, is struck
squarely by an equal-mass ball 1. Then ball 2 will take off with the velocity of ball 1, leaving ball 1 at
rest.

Interestingly, mutual gravitation brings the ball and the Earth together. As the ball moves
downward, the Earth moves upward, although with an acceleration 10% times smaller than that of
the ball. The two objects meet, rebound, and separate. Momentum of the ball-Earth system is
conserved.

(@) Linear momentum is conserved since there are no external forces acting on the system.

(b) Kinetic energy is not conserved because the chemical potential energy initially in the
explosive is converted into kinetic energy of the pieces of the bomb.

251



252
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09.10

Q9.11

Q9.12

Q9.13

09.14

09.15

Q9.16

Q9.17

Q9.18

Q9.19

Q9.20

Q9.21

Linear Momentum and Collisions

Momentum conservation is not violated if we make our system include the Earth along with the
clay. When the clay receives an impulse backwards, the Earth receives the same size impulse
forwards. The resulting acceleration of the Earth due to this impulse is significantly smaller than the
acceleration of the clay, but the planet absorbs all of the momentum that the clay loses.

Momentum conservation is not violated if we choose as our system the planet along with you.
When you receive an impulse forward, the Earth receives the same size impulse backwards. The
resulting acceleration of the Earth due to this impulse is significantly smaller than your acceleration
forward, but the planet’s backward momentum is equal in magnitude to your forward momentum.

As a ball rolls down an incline, the Earth receives an impulse of the same size and in the opposite
direction as that of the ball. If you consider the Earth-ball system, momentum conservation is not
violated.

Suppose car and truck move along the same line. If one vehicle overtakes the other, the faster-
moving one loses more energy than the slower one gains. In a head-on collision, if the speed of the
T

mp +3m, . .
——= times the speed of the car, the car will lose more energy.
3mr +m,

truck is less than

The rifle has a much lower speed than the bullet and much less kinetic energy. The butt distributes
the recoil force over an area much larger than that of the bullet.

His impact speed is determined by the acceleration of gravity and the distance of fall, in
vjzf = v} —2¢(0~y;). The force exerted by the pad depends also on the unknown stiffness of the pad.

The product of the mass flow rate and velocity of the water determines the force the firefighters
must exert.

The sheet stretches and pulls the two students toward each other. These effects are larger for a
faster-moving egg. The time over which the egg stops is extended so that the force stopping it is
never too large.

(c) In this case, the impulse on the Frisbee is largest. According to Newton’'s third law, the impulse
on the skater and thus the final speed of the skater will also be largest.

Usually but not necessarily. In a one-dimensional collision between two identical particles with the
same initial speed, the kinetic energy of the particles will not change.

g downward.

As one finger slides towards the center, the normal force exerted by the sliding finger on the ruler
increases. At some point, this normal force will increase enough so that static friction between the
sliding finger and the ruler will stop their relative motion. At this moment the other finger starts
sliding along the ruler towards the center. This process repeats until the fingers meet at the center of
the ruler.

The planet is in motion around the sun, and thus has momentum and kinetic energy of its own. The
spacecraft is directed to cross the planet’s orbit behind it, so that the planet’s gravity has a
component pulling forward on the spacecraft. Since this is an elastic collision, and the velocity of the
planet remains nearly unchanged, the probe must both increase speed and change direction for both
momentum and kinetic energy to be conserved.
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Q9.25
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Q9.27
Q9.28

09.29

Chapter 9 253

No—an external force of gravity acts on the moon. Yes, because its speed is constant.

The impulse given to the egg is the same regardless of how it stops. If you increase the impact time
by dropping the egg onto foam, you will decrease the impact force.

Yes. A boomerang, a kitchen stool.

The center of mass of the balls is in free fall, moving up and then down with the acceleration due to
gravity, during the 40% of the time when the juggler’s hands are empty. During the 60% of the time
when the juggler is engaged in catching and tossing, the center of mass must accelerate up with a
somewhat smaller average acceleration. The center of mass moves around in a little circle, making
three revolutions for every one revolution that one ball makes. Letting T represent the time for one
cycle and F, the weight of one ball, we have F;0.60T =3F,T and F; = 5F,. The average force exerted

by the juggler is five times the weight of one ball.

In empty space, the center of mass of a rocket-plus-fuel system does not accelerate during a burn,
because no outside force acts on this system. According to the text’s ‘basic expression for rocket
propulsion,” the change in speed of the rocket body will be larger than the speed of the exhaust
relative to the rocket, if the final mass is less than 37% of the original mass.

The gun recoiled.

Inflate a balloon and release it. The air escaping from the balloon gives the balloon an impulse.
There was a time when the English favored position (a), the Germans position (b), and the French
position (c). A Frenchman, Jean D’Alembert, is most responsible for showing that each theory is

consistent with the others. All are equally correct. Each is useful for giving a mathematically simple
solution for some problems.

SOLUTIONS TO PROBLEMS

Section 9.1 Linear Momentum and Its Conservation

P91

m=3.00 kg, v =(3.00i - 4.00j) m/s

() p=mv=(9.00i-120j) kg-m/s

Thus, | P, =9.00 kg-m/s |

and | p, =-12.0 kg-m/s |

© =t =0 1207 -
O=tan™" (P_yj =tan ' (-1.33)=

Px
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P9.2

P9.3

P9.4

Linear Momentum and Collisions

@)

(b)

At maximum height v=0,so p= @

Its original kinetic energy is its constant total energy,

L 2

K; =Emvl~ =

%(0.100)kg(15.0 m/s)’ =1127].

At the top all of this energy is gravitational. Halfway up, one-half of it is gravitational and
the other half is kinetic:

K=562]= %(0.100 kg)o®

v= 2x562] _ 10.6 m/s
0.100 kg

Then p = mv = (0.100 kg)(10.6 m/s);

p=|1.06 kg-m/s} .

I'have mass 85.0 kg and can jump to raise my center of gravity 25.0 cm. I leave the ground with

speed given by
vj% —vf = Za(xf - xi): 0-v} = 2(—9.80 m/sz)(O.ZSO m)
v; =2.20 m/s
Total momentum of the system of the Earth and me is conserved as I push the earth down and
myself up:
0=(5.98x10* kgo, +(85.0 kg)(2.20 mys)
(@) For the system of two blocks Ap =0,
;
or Pi =Ps Before
(@
Therefore, 0=Mo,, +(3M)(2.00 m/s) 2.00m/s

(b)

A\
—
Solving gives v,, =| —6.00 m/s | (motion toward the "M "

left).

1 1 1
Ekx2 =EMU§4 +E(3M)U§M =(8.40]

After
(b)

FIG. P9.4
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2 2
P9.5 (@) The momentum is p=mv, so v = P and the kinetic energy is K = lmv2 = lm L
m 2 2 \m 2m
1 5. . / 2K o /ZK _
(b) K—Emv implies v = ?,sop—mv—m ?—\IZmK.
Section 9.2 Impulse and Momentum
*P9.6 From the impulse-momentum theorem, F(At) = Ap = no s —mvj, the average force required to hold
onto the child is
- mv;—-7;) (12kg)(0-60 mi/h
F= (24 -v) _(12kg)(0-60 mi/h) Lms | 644x10° N,
(At) 0.050 s—-0 2.237 mi/h
Therefore, the magnitude of the needed retarding force is | 6.44x10° N |, or 1400 Ib. A person
cannot exert a force of this magnitude and a safety device should be used.
P9.7 (@) I= J'th = area under curve FN) p_ 18000N
20000 \}\
1 5 150001
I=—1.50x107" s)(18000 N)=| 13.5 N -s \
150,10 s)s000 )= [155 %5 R AN
135N i
5 N-s
b F=——————=9.00 kN Hms)
®) 150x107 s ¢t e
FIG. P9.7
) From the graph, we see that F,,,, =| 18.0 kN
. o 1 5 o 1,
*P9.8 The impact speed is given by 5oL = mgy; . The rebound speed is given by mgy, = 7 M3 The

impulse of the floor is the change in momentum,

mov, up —mo; down =m(v, +v;) up
= m(1/2gh2 +./28h ) up
=015 kg,(2(9.8 m/s?)(v0.960 m ++1.25 m) up

=[ 139 kg-m/s upward |
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P9.9 Ap =FAt
Ap, = m(vfy - vl-y) =m(vcos60.0°) —mv cos60.0°=0
Ap,. =m(-vsin60.0°-vsin 60.0°) = —2mwv sin 60.0°
= —2(3.00 kg)(10.0 m/s)(0.866)
=-52.0 kg-m/s

Ap, 520 kg-m/s
Frpe=—>+= =| -260 N FIG. P9.9
At 0.200 s

P9.10 Assume the initial direction of the ball in the —x direction.

(@)  Impulse, 1= Ap=p; - p; =(0.060 0)(40.0)i - (0.060 0)(50.0)(~i) =| 5.40i N s

1
(0)  Work =K, ~K;=—(0.060 0)[(40.0)2 - (50.0)2] -

P9.11 Take x-axis toward the pitcher

(a) Pic ¥ =P (0.200 kg)(15.0 m/s)(—cos45.0°)+ 1, =(0.200 kg)(40.0 m/s)cos30.0°
I,=9.05N-s
Piy +1, =pg (0.200 kg)(15.0 m/s)(~sin45.0°)+1I, =(0.200 kg)(40.0 m/s)sin30.0°

I=| (9.05i+612j) N

(b) I= %(0 +F,, )(4.00 ms)+F,, (20.0 ms)+ %Fm (4.00 ms)

F, x240x107 s=(9.051 +6.12j) N -s

F, =|(377i+255j) N

m

P9.12 If the diver starts from rest and drops vertically into the water, the velocity just before impact is
found from

Kf +Ugf :Ki+ugi

1
Emvfmpact +0=0+mgh=> Vynpact =280

With the diver at rest after an impact time of At, the average force during impact is given by

— m0—=0ipac —-mi2¢h  — m,/2¢h
= ( p t) _m 8 or F = Myest (directed upward).
At At At

Assuming a mass of 55 kg and an impact time of ~ 1.0 s, the magnitude of this average force is

(55 kg)|/2(98 m/s?)(10 m)

E|= =770 N, or | ~10° N |.
G o
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P9.13 The force exerted on the water by the hose is

_ APyater _ 05 ~M0; (0.600 kg)(25.0 m/s)-0

At A 100 s =[150N7.

According to Newton's third law, the water exerts a force of equal magnitude back on the hose.
Thus, the gardener must apply a 15.0 N force (in the direction of the velocity of the exiting water
stream) to hold the hose stationary.

F

*P9.14 (a) Energy is conserved for the spring-mass system:
L2 1 5
Ki+Ug; =K, +Uy: O+Ekx =Emv +0
k

V=X,—
m

k
b From the equation, a | smaller | value of m makes v = x,|— larger.
® : JE e

k
() I:‘pf—pi‘:mvf:0:mx\/%:x\/km
(d) From the equation, a value of m makes I = x+km larger.

(e) For the glider, W =K, - K; :%mvz—O:%kxz

The mass makes to the work.

Section 9.3 Collisions in One Dimension
P9.15 (200 g)(55.0 m/s)=(46.0 g)v+(200 g)(40.0 m/s)

== @<
22.5 g(35 m/s)+300 g(-2.5 m/s)=22.5 gv;( +0 I:">
375 g-m/s \

E_>

i\

FIG. P9.16
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P9.17 Momentum is conserved
(10.0x 107 kgJo = (5.01 kg)(0.600 m/s)

P9.18 (@)  muy; +3mvy; = 4mo; where m=2.50 x 10* kg
:
b)  K;-K= %(4171)0]% - B mo’, +%(3m)v%1} = (250 x10*)(125 - 8.00 - 6.00) =

P9.19 (@) The internal forces exerted by the actor do —_—Vi
not change the total momentum of the %T%%T%%%m %—m%

system of the four cars and the movie actor 2,00 m/s 400 m/s
—

—
(4m)o; =(3r7)(2.00 m/j)+m(4.00 m/s) TR e == %@E
6.00 m/s+4.00 m/s
= =| 2.50 m/s
! 4 FIG. P9.19

4,00 +3(2.00)
Vp =
4

®) Wi =K, -K; = %[(3111)(2.00 m/s)” +m(£00 nys)? |- %(4 m)(2.50 m/s)’
(250x10* kg)

2
Woctor = f(mo +16.0-25.0)(m/s)” =| 37.5 k]
(c) The event considered here is the time reversal of the perfectly inelastic collision in the

previous problem. The same momentum conservation equation describes both processes.

P9.20 vy, speed of m;at B before collision. A, @my
1, ]
—myv; =mygh
5 M 18 L
01 =+/2(9.80)(5.00) =9.90 m/s l E":ljz
vy, speed of m; at B just after collision. =~ T B @
my —my 1
=——>=0v;,=——(9.90 =-3.30
e I L mys FIG. P9.20

At the highest point (after collision)
(-3.30 m/s)

1 2
B = =171 (=3.30 Mmax = ———— 51 =| 0-556
M1 8Mmax Zml( ) max 2(9.80 m/SZ)
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(a), (b) Let v, and v, be the velocity of the girl and the plank Initial

relative to the ice surface. Then we may say that v, -0, is motion

. . . diagram §-
the velocity of the girl relative to the plank, so that
v, —v, =150 1) | i
Final

But also we must have m gUg +1M,0, = 0, since total motion

momentum of the girl-plank system is zero relative to the diagram

ice surface. Therefore v

p(—
45.0v, +150v, =0, or v, =-3.330, o = 7
Putting this into the equation (1) above gives
& a @ 8 FIG. P9.21
-3.33v, —v, =150 or v, =| -0.346 m/s

Then v, =-3.33(-0.346)=| 1.15 m/s
For the car-truck-driver-driver system, momentum is conserved:
P1i + P2 = P1f + Py’ (4000 kg)(8 m/s)i+ (800 kg)(8 m/s)(—i) = (4800 kg)v,i

2 kg-
o, = DO EKEMYS o3 s
4800 kg

For the driver of the truck, the impulse-momentum theorem is
FAt=p; —p;: F(0.120 s) = (80 kg)(5.33 m/s)i— (80 kg)(8 mys)i

F=|178x10° N(—i) on the truck driver

For the driver of the car, F(0.120 5) = (80 kg)(5.33 m/s)i - (80 kg)(8 mys)(-i)

F=| 889 x10° Ni on the car driver , 5 times larger.

(@) According to the Example in the chapter text, the fraction of total kinetic energy transferred

to the moderator is

f = dmym,

2
(my +my)
where m, is the moderator nucleus and in this case, m, =12m;

dmy(12my) 48

fr=————F-=—-=|0.284 or 28.4%
©(1Bmy) 169
of the neutron energy is transferred to the carbon nucleus.

®)  Kc=(0.284)(16x107" J)=
K, = (0.716)(1.6 x1071° ]) =[115x1072 ]
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P9.24 Energy is conserved for the bob-Earth system between bottom and LT
top of swing. At the top the stiff rod is in compression and the bob N
nearly at rest. \

1 0
/
K;+U;=K;+U;:  —Moj +0=0+Mg2¢ M
2 w:rg— — B
vp = g4l s0 v, =2,[g/ v ~v/2
Momentum of the bob-bullet system is conserved in the collision: FIG. P9.24
mo = m2+M(2 gf) v:ﬂ gt
2 m
P9.25 At impact, momentum of the clay-block system is conserved, so:

moy = (my +my v,

After impact, the change in kinetic energy of the clay-block-surface
system is equal to the increase in internal energy:

1
E(ml +1m,)05 = frd= p(my +my)gd

1
5 (0112 kg)o3 =0.650(0.112 kg)(9.80 m/s*)(7.50 m) FIG. P9.25
03 =95.6 m?/s* v, =9.77 m/s
(120x107 kg)o, = (0112 kg)(9.77 m/s) v, =[91.2 m/s
P9.26 We assume equal firing speeds v and equal forces F required for the two bullets to push wood fibers

apart. These equal forces act backward on the two bullets.

For the first, K; + AEpen = K %(7.00 %107 kg)o® = F(8.00x10 m)=0
For the second, pi=p;s (7.00 x1073 kg)v =(1.014 kg)o,
(7.00x10 Jo
Vf =
1.014
Again, K+ AE e =K %(7.00 x107 kg)o® - Fd = %(1.014 kg)v?

3 \2
1 700x107%0
2 1.014

Substituting for v, %(7.00 x107° kg)UZ —Fd==(1014 kg)(

1 (7.00x10%)’
2 1014

-3
Substituting foro, ~ Fd = F(8.00x 107 m)(l _%) d=

1

Fd=§(7.00x10_3)02 - 2
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*P9.27 (a) Using conservation of momentum, (3’ p)a for = » p)be ore” B1VES

[(40+10+3.0) kglo = (4.0 kg)(5.0 m/s)+(10 kg)(3.0 m/s)+(3.0 kg)(—40 m/s).

Therefore, v=+2.24 m/s, or | 2.24 m/s toward the right |

(b) . For example, if the 10-kg and 3.0-kg mass were to stick together first, they would

move with a speed given by solving
(13 kg)v; = (10 kg)(3.0 m/s)+(3.0 kg)(—4.0 m/s), or v; =+1.38 m/s.
Then when this 13 kg combined mass collides with the 4.0 kg mass, we have

(17 kg)v = (13 kg)(1.38 m/s)+(4.0 kg)(5.0 m/s), and v =+2.24 m/s

just as in part (a). Coupling order makes no difference.

Section 9.4 Two-Dimensional Collisions

P9.28 (@) First, we conserve momentum for the system of two football players in the x direction (the
direction of travel of the fullback).

(90.0 kg)(5.00 m/s)+0=(185 kg)V cos &

where 6is the angle between the direction of the final velocity V and the x axis. We find
Vcos6=2.43 m/s (1)

Now consider conservation of momentum of the system in the y direction (the direction of
travel of the opponent).

(95.0 kg)(3.00 m/s)+0=(185 kg)(V sin )

which gives, Vsind=1.54 m/s (2)

Divide equation (2) by (1) tanf= ;—ii =0.633

From which
Then, either (1) or (2) gives V=
(b) K; =%(90.0 kg)(5.00 m/s)’ +%(95.o kg)(3.00 m/s)* =1.55x10°

1 2
K =E(185 kg)(2.88 m/s)” =7.67x10%J

Thus, the kinetic energy lost is | 783 J into internal energy.
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P9.29

P9.30

Linear Momentum and Collisions

Pxf = Pxi

mog cos 37.0°+mvy c0s53.0°=m(5.00 m/s)
0.7990, +0.6020y =5.00 m/s 1)
Pyf = Pyi

mvg sin 37.0°-muvy sin53.0°=0

0.6020 =0.7990y @)

Solving (1) and (2) simultaneously,

| vo =3.99 m/s | and| vy =3.01 m/s |

Py = Pait mvg cos 0+ mvy cos(90.0°—6) = mv;
Vo cos @+ vy sinf = v,
Py = Pyit mug sin @ —movy sin(90.0°-0) =0

Vg siné = vy cos @
From equation (2),

cos 6’)

Uo =Vy|
(sm@

Substituting into equation (1),

cos? 0
Oy| —
sin @

j+vY sind = v,

Yo
=5, Y
v; =500 m/s . 3320_,‘
® \ 53;.2)"
%
\
Ay
Vy
before after
FIG. P9.29
Vi
@ o o
Before ®
M @/
<
/// 9
After \
) \\(90 -0
\v
3) Y
FIG. P9.30

SO vY(cos2 0+ sin® 0) =v;sinf, and | vy =v;sind |.

Then, from equation (3), .

We did not need to write down an equation expressing conservation of mechanical energy. In the
problem situation, the requirement of perpendicular final velocities is equivalent to the condition of

elasticity.
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The initial momentum of the system is 0. Thus,

(1.20m)vg; =m(10.0 m/s)
and  vp =833 m/s

1 2 1 2 1 2/ .2
Ki =2 m(100 nys)" +—(1.20m)(8.33 nys)" = Em(183 m?/s?)
1 2 1 2 1 1 2 2
K== +—(1.20 =—|—=m|183 m~/s
f Zm(vc) 2( m)(vp) 2(2’”( / )j

or 02 +1.2003 =91.7 m?/s* 1)
From conservation of momentum,

mog =(1.20m)vg
or ve =1.200, (2)
Solving (1) and (2) simultaneously, we find

vs =7.07 m/s | (speed of green puck after collision)
and vp =5.89 m/s | (speed of blue puck after collision)
We use conservation of momentum for the system of two vehicles (North) /
for both northward and eastward components. +y 4
13.0 m/ s 2t
For the eastward direction: ﬁ
55. 0 -+ (East)

M(13.0 m/s)=2MV cos55.0°

For the northward direction:

Mu,; = 2MV sin55.0° FIG. P9.32

Divide the northward equation by the eastward equation to find:

05 =(13.0 m/s)tan55.0°=18.6 m/s =[ 415 mi/h |

Thus, the driver of the north bound car was untruthful.
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P9.34

P9.35

P9.36
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By conservation of momentum for the system of the two billiard y
balls (with all masses equal), 4.33m/s
5.00m/s
5.00 m/s+0=(4.33 m/s)cos30.0°+0v, 30°
" O——C 7

Uy =1.25 m/s o
0=(4.33 m/s)sin30.0°+0,, Y
Uy =—2.16 m/s
Va5 =| 250 m/s at —60.0° FIG. P9.33

Note that we did not need to use the fact that the collision is perfectly elastic.

(@) Pi=Ps SO P, =Py

and Pyi =Py
mv; = mv cos @+ mv cos ¢ (1)
0 =movsin @+ mosin ¢ ) Q_’
From (2), sind=—sin¢g
SO O0=—¢

Furthermore, energy conservation for the system
of two protons requires

1 1 1
Emviz szvz +Em02
FIG. P9.34

NG

. 2v; cos B S B
(b) Hence, (1) gives v; = 0= ¢=

My 1V, = (g + )V 3.00(5.00)i — 6.00j = 5.00v

v = (3.00i-120j) mys

x-component of momentum for the system of the two objects:

Piix t Paix =P1px T P2p’ —mv; +3mov; =0+ 3muv,,
y-component of momentum of the system: 0+0=—mvy, +3mo,,
. 1 1 1 1
by conservation of energy of the system: +Emvi2 +=3mo? = Emvlzy +53m(v§x + viy)
20,
we have Vyy = %
also vy, =30y,
. 2 2 | 407 2

So the energy equation becomes 4vi =903, + Ty +303,

80?2

L. 12.v§y

- V29,

or Vo =5

continued on next page
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(@) The object of mass m has final speed v}, =3v,, = V27,

[40? 202
and the object of mass 3 m moves at  ,/v3, + viy = %+%
2 2 2
v%x + v%y = \/;vi
v 20,
(b) O=tan™! (ﬂj f=tan! (%Zi =
i

Uox
P9.37 my,=17.0x10"% kg v; =0 (the parent nucleus) <f>vl
A~ m
m, =5.00x10"7 kg v, =6.00x10%] m/s n; &,
m, =8.40x107 kg v, =400x10°1 m/s v/ "2
Original Final
(@) MV +MyVy +1m3Vy =0
where ms =my—m; —m, =3.60x10"7 kg FIG. P9.37

~
.

(5.00x1077)(6.00 x 10°5) + (8.40 x 107 )(4.00 x 10°1) + (3.60 x 10 Jv; =0

~
.

vy =|(-9.33x10°1-8.33x10%j) mys

1 1 1
(b) E=Em10f+zm2z1§+§m3vg

E= %[(5.00 x 10‘27)(6.00 x10° )2 + (8.40 x107% )(4.00 x10° )2 + (3.60 x107% )(12.5 x 106)2}

| E=439x10 ]|

Section 9.5 The Center of Mass

P9.38 The x-coordinate of the center of mass is

Cmx 0+0+0+0

T TS T (2,00 kg +3.00 kg + 2,50 kg + 4.00 kg)

and the y-coordinate of the center of mass is

Y. my; (200 kg)(3.00 m)+(3.00 kg)(2.50 m) +(2.50 kg )(0) +(4.00 kg)(~0.500 m)

Yo =S, 2.00 kg +3.00 kg +2.50 kg + 4.00 kg
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*P9.40

P9.41

Linear Momentum and Collisions

Take x-axis starting from the oxygen nucleus and pointing toward the
middle of the V.

and _ zmixi _

x =
CM zmi

0+1.008 u(0.100 nm)cos53.0°+1.008 u(0.100 nm)cos 53.0°

XcMm =

15.999 u +1.008 u+1.008 u FIG. P9.39

xcpm = 0.006 73 nm from the oxygen nucleus |

Let the x axis start at the Earth’s center and point toward the Moon.

x4y, | 5:98x10% kg 0+7.36x10% kg(3.84x10° m)

X, =
M7y +my 6.05x10* kg

=| 4.67 x10° m from the Earth’s center |

The center of mass is within the Earth, which has radius 6.37 x 10® m

Let A, represent the area of the bottom row of squares, A, y{cm)

the middle square, and Aj; the top pair. 30
A=A + A, + Ay I
M=M, +M,+M, 20 f
M, M i q
A_1 A 10f :
=300 cm?, A, =100 cm?, A5 =200 cm?, A =600 cm? S
300 cm” cm? M
( j w2 1020 %0
( j W0em® M FIG. P9.41
600 cm? 6
( ) 200 cm® cm? M
600cm® 3
XM, +x2,M, +x3M; _ 150 em(3 M) +5.00 em(3 M) +10.0 em(; M)
Xem = M M

1 M(5.00 cm)+ L M(15.0 cm) + (3 M)(25.0 cm)
Yom = =13.3 cm

M

x(cm)



*P9.42

P9.43

*P9.44

Chapter 9 267

(@) Represent the height of a particle of mass dm within the object as y. Its contribution to the
gravitational energy of the object-Earth system is (dm)gy . The total gravitational energy is

ngdm gjydm For the center of mass we have yqy = —Iydm so U, = gMycy-

all mass

(b) The volume of the ramp is %(3.6 m)(15.7 m)(64.8 m) =1.83 x10%> m>. Its mass is
pV = (3 800 kg / m’ )(1.83 x10° m® ) =6.96x10° kg. Its center of mass is above its base by one-

third of its height, vy = %15.7 m=>5.23 m. Then
U, = Mgycy =696 x10° kg(9.8 m/s?)5.23 m=| 357x10° J |.
0.300 m 0.300 m
@ M= [adx= [[50.0 g/m+200x g/m*]dx
0 0

-[159]

- [S0.0x g/m+10.0x> g/mz]zﬁoo "

[xdm 1 0300m 1 0300
(b) xCM:aHm%:M _([ﬂxdx—ﬁ _![00xg/m+200x g/m]

2 70-300 m

rerr = ——| 25,07 /m+m ~[0153 m
MZ159¢| " 8 3 :

Take the origin at the center of curvature. We have L = 12717’ , Y
r= % An incremental bit of the rod at angle 6 from the x axis has f:
/4

mass given by dm M , dm = Mdé’ where we have used the

rdg L’ L 0
definition of radian measure. Now X

1 135° 2 135°

Yem = Jydm _M _[rosmé?TdH—T Josmed@ FIG. P9.44
all mass 6=45 45

2L’ 1
=|— | —(—cos@
(2] 1-cos0)
The top of the bar is above the origin by r = £, so the center of mass is below the middle of the bar
r

2L 442 L 2 24/2
by —— 1-—— |L=|0.0635L |.
Y R ( ]

T

g

T

45°
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Section 9.6 Motion of a System of Particles

_ 2 mv; _ vyt v,

v = =
P9.45 (@) @Y M M
(2.00 kg)(2.00i m/s—3.00j m/s)+(3.00 kg)(1.00i m/s+6.00j m/s)
- 5.00 kg
veu =| (1401 +2.405) m/s
() p=Mvey =(5.00 kg)(1.40i +2.40j) m/s =| (7.00i +12.0j) kg-m/s
P9.46 (@) See figure to the right. ~_d
(b) Using the definition of the position vector at the center of mass, [
Icm = L
my +mi, i
(2.00 kg)(1.00 m, 2.00 m)+(3.00 kg)(—4.00 m, —3.00 m)
Tom = ;
o™ 2.00 kg +3.00 kg =
fow =| (2.00i-1.00j) m
o= i) FIG. P9.46
(c) The velocity of the center of mass is
P myv, +m,v, (2.00kg)(3.00 m/s, 0.50 m/s)+(3.00 kg)(3.00 m/s, —2.00 m/s)
AY4 = —= =
MIM T g 4m, (2.00 kg +3.00 kg)
veu =| (3.00i-1.00j) mys
(d) The total linear momentum of the system can be calculated as P = Mvy,
Either gives P =| (15.0i-5.00j) kg-m/s
P9.47 Let x= distance from shore to center of boat

¢ = length of boat
x' = distance boat moves as Juliet moves toward Romeo
The center of mass stays fixed.

Before:

After:

\
\
N\

[th+M](x—§)+MR(x+§)]
(Mp +M; + M)
[MB(x—x’)+M](x+§—x’)+MR(x+§—x’)]
(Mp +M; + M)

XcMm =
FIG. P9.47

XcMm =

f(—%‘%%‘oj = x'(-80.0-55.0— 77.0) + 2(55.0 +77.0)

55.0¢ 55.0(2.70)
- - =[0.700
e PR
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P9.48 (@) Conservation of momentum for the two-ball system gives us:
0.200 kg(1.50 m/s)+0.300 kg(~0.400 m/s)=0.200 kg v; ; +0.300 kg v,
Relative velocity equation:
0y — 015 =190 m/s
Then 0.300 -0.120 =0.200v s + 0.300(1.90 + vlf)
vy =—0.780 m/s vy =112 m/s
Vif ——0.780i m/s \Y; ~1.12i m/s
0.200 kg)(1.50 m/s)i +(0.300 kg)(~0.400 m/s)i
b Do, v - (1200KEN150 mys)i+ (0300 kg)-0400 )
0.500 kg
Ve =(0.360 mys)i
Afterwards, the center of mass must move at the same velocity, as momentum of the system
is conserved.
Section 9.7 Rocket Propulsion
P9.49  (a)  Thrust=|o, ii—]\f‘ Thrust =(2.60x10° m/s)(1.50x10* kg/s)=| 3.90x10” N
(b)  YF, =Thrust-Mg=Ma:  390x10” -(3.00x10°)(9.80) =(3.00x 10° Ja
a=|3.20 m/s?
12.
*P9.50 (@) The fuel burns at a rate M = 1278 =6.68x107° kg /s
dt  190s
Thrust =, ii—]\f 526 N=0,(668x10~ kg/s)
v, =|787 m/s
; 53.5 25.5
(b) v;—v;=v,In M ). vy —0=(797 m/s)in 12008
M; 535g+255g-127 g
vy =|138 m/s
P9.51 v="o, ln%
f
@  M=e"M, M; =¢°(3.00x10° kg) =445x10° kg
The mass of fuel and oxidizeris ~ AM =M; — M =(445-3.00) x 10° kg = | 442 metric tons
(b) AM = ¢2(3.00 metric tons)— 3.00 metric tons :| 19.2 metric tons |

Because of the exponential, a relatively small increase in fuel and/or engine efficiency causes

a large change in the amount of fuel and oxidizer required.
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. M; Mg

P9.52 (@) From Equation 9.41, v-0=v,In| — |=-v,In| ——
My

i

Now, My =M; —kt,so v=-v, ln[Mi _ktj:_ve 1n(1_itj
M M;

i i

With the definition, Tp = %, this becomes

t
u(t)=| -o, ln[l - T—pJ

(b) With v, =1500 m/s, and T, =144 s, v = (1500 m/s)ln(l 7 ! )

44 s

t(s) | v(m/s) v (m/s)
0T o 4000 {

3500 {
20 224 3000 ,,,,, [ [ [ [— [ Y S
40 | 488 2500
0 | 808 2000 S

1500 o S
80 | 1220 1000 - o o
100 | 1780 500 -~ o R P oo oo ;
120 | 2690 EREEEREEEREE
132] 3730 FIG. P9.52(b)

_ _t
dv d[ vgln(l Tpﬂ 1 1 v, 1
© ap=Tet | e L or
T, P P T,
v
a(t)= £
(t) T 1
1
()  With o, =1500 m/s,and T, = 144 s, a = 00 VS
P 144 s—t

t(s) a(m/ sz) a(m/s?)
0 [ 104 L R s Sy

120
20 12.1 100 |
40 14.4 80 -
60 | 17.9 60 -

40
80 | 234 o
100 34.1 0 — ‘
120 | 625 ° R ¥ 38 8§ §
| 1 FIG. P9.52(d)

continued on next page
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(e) x(t)—0+j'vdt—j' -0, In| 1—L dt=0v,T jln 1—L —ﬂ
) 0 _0 ‘ T, o po T, T,

t t t
Hy=v, T ||1-—|In1-—|-|1-—
O Romon el

x(t)= ve(Tp - t)ln(l _TL] +0,t

P

) With v, =1500 m/s=1.50 km/s,and T, =144 s,

x=150(144 - t)ln(l —Lj +1.50¢
144

t(s) | x(km) X (km)

0 0 160 - ;

20 | 219 i;‘g

40 | 9.23 100 4

60 | 221 80 -

80 | 42.2 60 |

100 | 717 o

120 | 115 0 L ‘ t(s)
132| 153 °© &8 ¥ 3 8 8 § %

FIG. P9.52(f)

*P9.53 The thrust acting on the spacecraft is
> F = ma: > F=(3500 kg)(250 x10°)(9.80 m/s*)=858x10> N

thrust = (dﬂ)vgz 858x1072 N = _AM (70 m/s)
dt 3600 s

v -[£A1g]
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Additional Problems

P9.54 (a) When the spring is fully compressed, each cart moves with same velocity v. Apply
conservation of momentum for the system of two gliders

+
Pi =Py: MV +myVy =(my +my)v y= vy *ipVsy
my +n,
. 1 5 1 , 1 , 1,
(b) Only conservative forces act, therefore AE=0. Emlvl +Emzvz :E(ml +m2)v +Ekxm

Substitute for v from (a) and solve for x,,.

(ml +m2)m1012 + (ml +m2)mzv§ _(mlvl)z _(mzvz)z — 2mymy 0,0,

2
X =
" k(my +m,)
mlmz(vlz +03 _20102) mym,
Xy = p =| (01 -0y) |2
(my +m,) k(my +m,)
() MyVy +MyVy =MyVip + 1MV
Conservation of momentum: ml(v1 —vlf):mz(vzf —vz) (1)
Conservation of energy: lm vt +lm v3 —lm v? +lm v3
gy- 5 MU T MUy =T U1 p 5 Mo Usf
which simplifies to: ml(vlz - vlzf) = mz(vgf - U%)
Factoring gives ml(vl —Vlf)~(V1 +v1f):m2(v2f —v2)~(v2f +v2)

and with the use of the momentum equation (equation (1)),
this reduces to (vl + vlf) = (sz + VZ)
or Vif=Vyp+Vy =V (2)

Substituting equation (2) into equation (1) and simplifying yields:
2m my —m
Upon substitution of this expression for v, into equation 2, one finds
m;—m 2m
my +m, my +m,

Observe that these results are the same as Equations 9.20 and 9.21, which should have been
expected since this is a perfectly elastic collision in one dimension.




P9.55  (a)

(b)

(©

(d

()

()

(8)

(h)
()

P9.56 The equation for the horizontal range of a projectile is R =

Chapter9 273

(60.0 kg)4.00 m/s = (120 +60.0) kgo 600 kg g, 400m/s
vy =|133 m/si
120 k;
YF=0:  n-(600kg)980 m/s>=0 @ @
fe = s =0.400(588 N) = 235 N
£, =| —235 Ni FIG. P9.55

For the person, p; +I=p;
mv; + Ft =muv;
(60.0 kg )4.00 m/s—(235 N)t =(60.0 kg)1.33 m/s

person: mv ; —mv; =60.0 kg(1.33 - 4.00) m/s =| ~160 N-si

cart: 120 kg(1.33 m/s)—0=| +160 N -si
1 1

xp=x; = {0+ vy )t = [(400+133) m/s]0.680 5 =[181m |

X% :%(vi +vf)t:%(0+l.33 m/s)0.680 s =[ 0.454 m |

%mv% —%mvf =%60.0 kg(1.33 mys)* —%60.0 kg(4.00 mys)” =

1

Emv} —%mvf = %120.0 kg(1.33 m/s)’ —0=

The force exerted by the person on the cart must equal in magnitude and opposite in

direction to the force exerted by the cart on the person. The changes in momentum of
the two objects must be equal in magnitude and must add to zero. Their changes in
kinetic energy are different in magnitude and do not add to zero. The following
represent two ways of thinking about“why.” The distance the cart moves is different
from the distance moved by the point of application of the friction force to the cart.
The total change in mechanical energy for both objects together, —320 J, becomes

+320 J of additional internal energy in this perfectly inelastic collision.

v? sin 20

g

. Thus, with 6 =45.0°, the initial

velocity is

0, = Rg = /(200 m)(9.80 m/s?) =443 mys
I:f(At):Apzmvi -0

Therefore, the magnitude of the average force acting on the ball during the impact is:

mo,  (46.0x107 kg)(443 m/s)

Py = 700x107 s =[21N].
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P9.58
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We hope the momentum of the wrench provides enough recoil so that the astronaut can reach the
ship before he loses life support! We might expect the elapsed time to be on the order of several
minutes based on the description of the situation.

No external force acts on the system (astronaut plus wrench), so the total momentum is constant.
Since the final momentum (wrench plus astronaut) must be zero, we have final momentum = initial
momentum = 0.

0

m htm

wrench Uwrend astronaut Yastronaut —

_ MyrenchUwrench _ _ (0'500 kg)(zoo m/s) =-0.125 m/S
Mastronaut 80.0 kg

At this speed, the time to travel to the ship is

30.0 m
t=————=| 240 s |=4.00 minutes
0.125 m/s

Thus v

astronaut ™

The astronaut is fortunate that the wrench gave him sufficient momentum to return to the ship in a
reasonable amount of time! In this problem, we were told that the astronaut was not drifting away
from the ship when he threw the wrench. However, this is not quite possible since he did not
encounter an external force that would reduce his velocity away from the ship (there is no air
friction beyond earth’s atmosphere). If this were a real-life situation, the astronaut would have to
throw the wrench hard enough to overcome his momentum caused by his original push away from
the ship.

Using conservation of momentum from just before to just \£
after the impact of the bullet with the block:

mu; =(M+m)v,

M+m N
or v =( - jvf (1) h AN

The speed of the block and embedded bullet just after v \

impact may be found using kinematic equations:

A

d=vst and h:%gt2

[ 2
Thus, t = Z—handvfzizdfiz &
g t 2h 2h

2
Substituting into (1) from above gives v; = (M)\/% .
m

FIG. P9.58
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@)

(b)

(©
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Conservation of momentum:
05 kg(2i - 3j+1k) m/s+15 kg(-1i+2j-3k) m/s
=05 kg(-1i+3j-8k) m/s+15 kg v,

(-05i+1.5j- 4k) kg-m/s +(0.5i - 1.5]+ 4k) kg-m/s

1.5 kg @

sz =

The original kinetic energy is

%0.5 kg(2? +3% +1%) m?/s? +%1.5 kg(17+22+3%) m?/s” =140]

The final kinetic energy is %0.5 kg(l2 +3%+ 82) m? / s* +0=185 ] different from the original

energy so the collision is .

We follow the same steps as in part (a):

(-05i+1.5j- 4k) kg-m/s =05 kg(-0.25i +0.75] - 2k) m/s+15 kg v,

(<051 +1.5j- 4k) kg-m/s +(0.125i - 0.375j + 1k) kg-m/s
1.5 kg

sz:

= | (~0.250i +0.750j - 2.00k) m/s

We see v, = vy, so the collision is | perfectly inelastic |

Conservation of momentum:
(—0.5§ + 1.5} - 412) kg-m/s=0.5 kg(—ﬁ + 3} + aﬁ) m/s+15kgv,,
(—0.5§ + 1.55 - 412) kg-m/s + (O.Si - 1.55 - O.Salz) kg-m/s
1.5 kg

sz =

=| (-2.67-0333a)k m/s |

Conservation of energy:

140 = %0.5 kg(1%+3% +4*) m?/s’ +%1.5 kg(2.67 +0.333a)> m?/s?
=2.5]+0.25a% +5.33 J+1.33a + 0.083 34>

0=0.333a> +1.332 - 6.167

133 +,/133% - 4(0.333)(-6.167)

0.667
a=2.74 or —6.74. Either value is possible.

[a=274], vy =(-2.67-0333(274))k m/s=| ~3.58k m/s
w[a==674], vy =(-2.67-0.333(~6.74))k m/s=| 0419k m/s |

a
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(@)

(b)

@)

(b)

The initial momentum of the system is zero, which
remains constant throughout the motion.
Therefore, when m, leaves the wedge, we must
have

mZUwedge T 1MVl = 0 7

or  (3.00 kg)v,eqge +(0.500 kg)(+4.00 m/s)=0

Vwedge
<+ Vplock = 4.00 m/s
SO Uyedge =| —0.667 m/s ﬁ,
Using conservation of energy for the block-wedge- >t+x
Earth system as the block slides down the smooth
FIG. P9.60

(frictionless) wedge, we have

[Kblock + usystem]. + [Kwedge ] = [Kblock + usystem] + [Kwedge]
i i f f

or  [0+mgh]+0= Bml (4.00)* + 0} +%m2(—0.667)2 which gives [ 1=0.952 m |.

Conservation of the x component of momentum for the cart-bucket-water system:

mv; +0=(m+ pV)o vi:Mv
m

Raindrops with zero x-component of momentum stop in the bucket and slow its horizontal
motion. When they drip out, they carry with them horizontal momentum. Thus the cart
slows with constant acceleration.
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Consider the motion of the firefighter during the three
intervals:

(1) before, (2) during, and (3) after collision with the

(@)

(b)

platform. v h

While falling a height of 4.00 m, his speed changes

from v; =0 to v; as found from = = = l
= = =
= S ==

- = = =S
AE—(Kf +Uf)—(Kl—U1),OI' E; E; E;
When the initial position of the platform is taken as
the zero level of gravitational potential, we have
L
—moj = fhcos(180°)— 0+ 0+ mgh
2 FIG. P9.62

Solving for v; gives

\/2(— fli+ mgh) \/2(—300(4.00) +75.0(9.80)4.00)
vy = =

During the inelastic collision, momentum is conserved; and if v, is the speed of the
firefighter and platform just after collision, we have mv; =(m+ M)v, or

m

myv;  75.0(6.81)
m+M 750+ 20.0

v, = =5.38 m/s

Following the collision and again solving for the work done by non-conservative forces,
using the distances as labeled in the figure, we have (with the zero level of gravitational
potential at the initial position of the platform):

AE:Kf+ufg+ufS_Ki_uig_u‘ or

157

—fs:0+(m+M)g(—s)+%ks2 —%(m+M)v2 -0-0

This results in a quadratic equation in s:

2.000s% —(931)s+300s —1375=0 or
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P9.64
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@)

(b)

(@)

(b)

(©
(d

Each object swings down according to

1 1
ngzEmvlz MngEle2 v =4/2¢R
The collision: —mov; + Mv; = +(m+ M)v,
v, = M—m v
2" M+m !

Swinging up: %(M +m)vs = (M +m)gR(1 - cos35°)

v, =+/2¢R(1 - cos 35°)
\28R(1—-c0s35°) (M +m) = (M —m),/2gR

0.425M +0.425m=M —m
1.425m = 0.575M

M _0.403
M

No change is required if the force is different. The nature of the forces within the system of
colliding objects does not affect the total momentum of the system. With strong magnetic
attraction, the heavier object will be moving somewhat faster and the lighter object faster
still. Their extra kinetic energy will all be immediately converted into extra internal energy
when the objects latch together. Momentum conservation guarantees that none of the extra
kinetic energy remains after the objects join to make them swing higher.

Use conservation of the horizontal component of
momentum for the system of the shell, the cannon,
and the carriage, from just before to just after the
cannon firing.

Pxf = Puxi’ M el Ushell €O 45.0°+1M cannon Vrecoil =0
(200)(125) 05 45.0°4(5 000) 0, =0

or Urecoil = —-3.54 m/s FIG. P9.64

Use conservation of energy for the system of the cannon, the carriage, and the spring from
right after the cannon is fired to the instant when the cannon comes to rest.

Ky +Ugy +Uy =K; + Uy +Uy: 0+0+— kx :1 moZ g +0+0

max

{ (5000)(-3.54)°
rec011
=[177 m |
Femax = 2.00x10* -
=(200x10* N/m)(1.77 m)=| 354x10* N

No. The rail exerts a vertical external force (the normal force) on the cannon and prevents it
from recoiling vertically. Momentum is not conserved in the vertical direction. The spring
does not have time to stretch during the cannon firing. Thus, no external horizontal force is
exerted on the system (cannon, carriage, and shell) from just before to just after firing.
Momentum of this system is conserved in the horizontal direction during this interval.

=kx

|F

S, max

FS, max max
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(@) Utilizing conservation of vi;
—
momentum,
myvy, = (my +my)vg RS
~
~
ml + mz S
vy =——=,J2gh y AN
ml \\
\

U4 =| 6.29 m/s '

\

(b) Utilizing the two equations,

1, FIG. P9.65
Egt =y and x =04t

we combine them to find

X

Vip=——
1= Ty
8

From the data, v;4 =| 6.16 m/s

Most of the 2% difference between the values for speed is accounted for by the uncertainty

in the data, estimated as 0.0t + £ + 1 + L + 0L =11%.
8.68 688 263 257 853

The ice cubes leave the track with speed determined by mgy; = %mv2 ;

v=2(98 m/s)L5 m =542 m/s.

Its speed at the apex of its trajectory is 5.42 m/scos40°=4.15 m/s. For its collision with the wall we
have

mv; + FAt =mv,
0.005 kg 4.15 m/s+ FAt =0.005 kg(—%4.15 m/sj

FAt=-312x10"> kg-m/s

The impulse exerted by the cube on the wall is to the right, +3.12x10> kg-m/s. Here F could refer
to a large force over a short contact time. It can also refer to the average force if we interpret At as

1
0 s, the time between one cube’s tap and the next’s.

312x107* kg -m/s
v 0.1s

=| 0.312 N to the right
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P9.67

*P9.68

Linear Momentum and Collisions

(@) Find the speed when the bullet emerges from the 400 m/s
block by using momentum conservation: —

mv; = MV, + mv

The block moves a distance of 5.00 cm. Assume for

|

|
4k e

|

an approximation that the block quickly reaches its 5.00 cm:
maximum velocity, V;, and the bullet kept going
with a constant velocity, v. The block then
compresses the spring and stops.
FIG. P9.67

Lo 1,0

—MV" =—kx

2 2

-2 2
(900 N/m)(5.00x 10~ m)
V= =150 m/s
1.00 kg
=MV, _ (5.00x10 kg)(400 mys)—(1.00 kg)(1.50 mys)
m 5.00x107° kg

1 3 2 1 -3 2
(b)  AE=AK+AU-= 5(5'00 x107 kg)(100 m/s) —E(s.oo x107 kg)(400 mys)
+%(900 N/m)(5.00x 10> m)2

AE =-374], or there is an energy loss of | 374 ] |.

The orbital speed of the Earth is S
M |

_ 22 271496 x10" m
T 3.156 x107 s

o =2.98x10* m/s E

In six months the Earth reverses its direction, to undergo

FIG. P9.68
momentum change

me|Avg| = 2mpop =2(5.98x10* kg)(298x 10" m/s)=3.56x10% kg-m/s.

Relative to the center of mass, the sun always has momentum of the same magnitude in the
opposite direction. Its 6-month momentum change is the same size, mS|AvS| =356x10%* kg-m/s.

356x10% kg-m/s
Then |Avg|= 910" kg 0.179 m/s |.




P9.69

P9.70

Chapter 9
(@  p;+Ft=p;: (3.00 kg)(7.00 m/s)j+(12.0 Ni)(5.00 5) = (3.00 kg)v
v =[(20.0i+7.00j) m/s
v, 20.0i+7.00j—7.00j) m/s
_ Vf Vi . _ ( ) ]) _ N 2
(b) a= P a= 500 s =1 4.00i m/s
F i 3
(c) a =z—: a= 120Ni 4.00i m/s2
m 3.00 kg
d  Ar= Vit+%at2: Ar=(7.00 m/sj)(5.00 s)+%(4.00 m/s”i)(5.00 s)°
Ar =/ (50.01 +35.0) m
()  W=F-Ar: W =(12.0 Ni)-(50.0 mi +35.0 mj) =[ 600 ]
(f) lmvf - L0 kg)(20.0i +7.00])-(20.0i +7.00j) m?/s
2 2
1 2 2/:2) _
St =(1.50 kg)(449 m*/s?)=[674]
1 5 1 2
—mo; +W =—=(3.00 kg)(7.00 +600 J=| 674
(® ol +W=2(300kg)(7.00 m/s)” +600]
We find the mass from M =360 kg —(2.50 kg/s)t.
v,[dM/dt| (1500 m/s)(2.50 kg/s) 3750 N
We find the acceleration from = Thrust = e| / | = ( /) 8/s) =
M M M M
We find the velocity and position according to Euler,
from Vpew = Uoig + A(AL)
and Xpew = Xoig + V(AY)
If we take At =0.132 s, a portion of the output looks like this:
Time Total mass Acceleration Speed, v Position
t(s) (kg) a(m/ s* ) (m/s) x(m)
0.000 360.00 10.4167 0.0000 0.0000
0.132 359.67 10.4262 1.3750 0.1815
0.264 359.34 10.4358 2.7513 0.54467
65.868 195.330 19.1983 916.54 27191
66.000 195.000 19.2308 919.08 27312
66.132 194.670 19.2634 921.61 27433
131.736 30.660 122.3092 3687.3 152382
131.868 30.330 123.6400 3703.5 152871
132.000 30.000 125.0000 3719.8 153362

(@) The final speed is vy =|3.7 km/s
(b) The rocket travels 153 km

281
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P9.71 The force exerted by the table is equal to the change in momentum
of each of the links in the chain.

=—p]

By the calculus chain rule of derivatives,

dp dmv) dm  do
Fl - = =

V—+m—.
dt dt dt dt

We choose to account for the change in momentum of each link by FIG. P9.71
having it pass from our area of interest just before it hits the table,
so that

vd—m¢0 and m@:O.
dt dt
Since the mass per unit length is uniform, we can express each link of length dx as having a mass dm:
dm = de.
L

The magnitude of the force on the falling chain is the force that will be necessary to stop each of the

elements dm.
Foot_ (M) (),
dt L )dt L

After falling a distance x, the square of the velocity of each link v* = 2gx (from kinematics), hence

2M,
F1: gx.
L

The links already on the table have a total length x, and their weight is supported by a force F,:

Hence, the total force on the chain is

3Mgx

Ftota1:F1+F2: L

That is, the total force is three times the weight of the chain on the table at that instant.
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A picture one second later differs by showing five extra kilograms of sand moving on the belt.

Ap, (500 kg)(0.750 nys)

@ At 100 s ~[375N]

(b) The only horizontal force on the sand is belt friction,
_ e o APy _
so from Py + fAt=py  thisis  f= N 375N
(c) The belt is in equilibrium:

> F,=ma,: +F,—-f=0 and F,=|375N
(d) W = FArcos8=3.75 N(0.750 m)cos0°=| 2.81]

©  (am)? =500 kg(0750 mys)’ =[ 1417

63) | Friction between sand and belt converts half of the input work into extra internal energy.
x;  my(R+5)+my(0) | my(R+%) y

X _ zmlxz M 2 2 1 2

M S, my +m, my +m,

x
4
~r| L e
FIG. P9.73

ANSWERS TO EVEN PROBLEMS

P9.2

P9.4

P9.6

P9.8

P9.10

P9.12

P9.14

P9.16

P9.18

(a) 0; (b) 1.06 kg-m/s; upward P9.20 0.556 m
(a) 6.00 m/s to the left; (b) 8.40] P9.22 1.78 kN on the truck driver; 8.89 kN in the
opposite direction on the car driver
The force is 6.44 kN
P9.24 v= am gl
1.39 kg-m/s upward
() 5.40 N -s toward the net; (b) —27.0 P9.26  754cm

P9.28 (a) 2.88 m/s at 32.3°% (b) 783 ] becomes

~10° N upward )
internal energy

(a) and (c) see the solution; (b) small;

(d) large; (e) no difference P9.30 vy =v;8inf; v =v; cosd

167 m/s P9.32 No; his speed was 41.5 mi/h

() 250 m/s; (b) 3.75x10* J P934  (a)v= % (b) 45.0° and —45.0°
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P9.36

P9.38

P9.40

P9.42

P9.44

P9.46

P9.48

P9.50

P9.52

P9.54

Linear Momentum and Collisions

(a) V2v;; \/gv,- ; (b) 35.3°

(0, 1.00 m)

467 x10° m from the Earth’s center
(a) see the solution; (b) 3.57 x 108 J
0.063 5L

(a) see the solution;
(b) (-2.00 m, —1.00 m);

(c) (3.001 - 1.00j) mys;

(d) (15.01-5.005) kg-m/s

(a) —0.780i m/s; 1.12i m/s; (b) 0.360i m/s
(a) 787 m/s; (b) 138 m/s

see the solution

mqVq+mo,v
(a) 1v1 2 2,.
my+m,

(b) (01 _UZ)W/ﬁ;

P9.56

P9.58

P9.60

P9.62

P9.64

P9.66

P9.68

P9.70

P9.72

my; —m 2m
(C)Vlf:( ! ZJV1+( 2 jvz}
my +m, my +m,
My +m, My +m,
291 N
2
(M+mj lgd
m 2h

(a) —0.667 m/s; (b) 0.952 m

(a) 6.81 m/s; (b) 1.00 m

(a) -3.54 m/s; (b) 1.77 m; (c) 35.4 kN;
(d) No. The rails exert a vertical force to
change the momentum

0.312 N to the right

0.179 m/s

(@) 3.7 km/s; (b) 153 km

(@) 3.75 N to the right; (b) 3.75 N to the
right; (c) 3.75N; (d) 2.81J; (e) 1.41 J;

(f) Friction between sand and belt converts

half of the input work into extra internal
energy.



Rotation of a Rigid Object
About a Fixed Axis

ANSWERS TO QUESTIONS

Q10.1 1 rev/min, or 3—7; rad/s. Into the wall (clockwise rotation). & =0.

FIG. Q10.1

Q102  +k, -k

Q10.3 Yes, they are valid provided that @ is measured in degrees per
second and « is measured in degrees per second-squared.

Q10.4 The speedometer will be inaccurate. The speedometer measures the number of revolutions per
second of the tires. A larger tire will travel more distance in one full revolution as 27r.

Q10.5 Smallest I is about x axis and largest I is about y axis.

2

Q10.6 The moment of inertia would no longer be if the mass was nonuniformly distributed, nor

could it be calculated if the mass distribution was not known.

Q10.7  The object will start to rotate if the two forces act along different lines. Then the torques of the forces
will not be equal in magnitude and opposite in direction.

Q10.8 No horizontal force acts on the pencil, so its center of mass moves straight down.

Q10.9 You could measure the time that it takes the hanging object, m, to fall a measured distance after
being released from rest. Using this information, the linear acceleration of the mass can be
calculated, and then the torque on the rotating object and its angular acceleration.

Q10.10  You could use @ = ot and v =at. The equation v = R is valid in this situation since a = Rer.

Q10.11 The angular speed @ would decrease. The center of mass is farther from the pivot, but the moment
of inertia increases also.

285
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Q10.12

Q10.13

Q10.14

Q10.15

Q10.16

Q10.17
Q10.18

Q10.19

Q10.20

The moment of inertia depends on the distribution of mass with respect to a given axis. If the axis is
changed, then each bit of mass that makes up the object is a different distance from the axis. In
example 10.6 in the text, the moment of inertia of a uniform rigid rod about an axis perpendicular to
the rod and passing through the center of mass is derived. If you spin a pencil back and forth about
this axis, you will get a feeling for its stubbornness against changing rotation. Now change the axis
about which you rotate it by spinning it back and forth about the axis that goes down the middle of
the graphite. Easier, isn’t it? The moment of inertia about the graphite is much smaller, as the mass
of the pencil is concentrated near this axis.

Compared to an axis through the center of mass, any other parallel axis will have larger average
squared distance from the axis to the particles of which the object is composed.

A quick flip will set the hard-boiled egg spinning faster and more smoothly. The raw egg loses
mechanical energy to internal fluid friction.

Icp = MR?, Iy = MR?, Iy, = %MRZ, Iem = %MRZ
Yes. If you drop an object, it will gain translational kinetic energy from decreasing gravitational
potential energy.

No, just as an object need not be moving to have mass.
No, only if its angular momentum changes.

Yes. Consider a pendulum at its greatest excursion from equilibrium. It is momentarily at rest, but
must have an angular acceleration or it would not oscillate.

Since the source reel stops almost instantly when the tape stops playing, the friction on the source
reel axle must be fairly large. Since the source reel appears to us to rotate at almost constant angular
velocity, the angular acceleration must be very small. Therefore, the torque on the source reel due to
the tension in the tape must almost exactly balance the frictional torque. In turn, the frictional torque
is nearly constant because kinetic friction forces don’t depend on velocity, and the radius of the axle
where the friction is applied is constant. Thus we conclude that the torque exerted by the tape on
the source reel is essentially constant in time as the tape plays.

. . ’ 0 .
As the source reel radius R shrinks, the reel’s angular speed o = R must increase to keep the

tape speed v constant. But the biggest change is to the reel’'s moment of inertia. We model the reel as
a roll of tape, ignoring any spool or platter carrying the tape. If we think of the roll of tape as a

uniform disk, then its moment of inertiais I = EMRZ . But the roll’s mass is proportional to its base

area 7 R*. Thus, on the whole the moment of inertia is proportional to R*. The moment of inertia

decreases very rapidly as the reel shrinks!
The tension in the tape coming into the read-and-write heads is normally dominated by
balancing frictional torque on the source reel, according to TR ~ 7o - Therefore, as the tape plays

the tension is largest when the reel is smallest. However, in the case of a sudden jerk on the tape, the
rotational dynamics of the source reel becomes important. If the source reel is full, then the moment

of inertia, proportional to R*, will be so large that higher tension in the tape will be required to give
the source reel its angular acceleration. If the reel is nearly empty, then the same tape acceleration
will require a smaller tension. Thus, the tape will be more likely to break when the source reel is
nearly full. One sees the same effect in the case of paper towels; it is easier to snap a towel free when
the roll is new than when it is nearly empty.



Q10.21

Q10.22

Q10.23

Q10.24

Q10.25
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The moment of inertia would decrease. This would result in a higher angular speed of the earth,
shorter days, and more days in the year!

There is very little resistance to motion that can reduce the kinetic energy of the rolling ball. Even
though there is static friction between the ball and the floor (if there were none, then no rotation
would occur and the ball would slide), there is no relative motion of the two surfaces—by the
definition of “rolling”—and so no force of kinetic friction acts to reduce K. Air resistance and friction
associated with deformation of the ball eventually stop the ball.

In the frame of reference of the ground, no. Every point
moves perpendicular to the line joining it to the
instantaneous contact point. The contact point is not
moving at all. The leading and trailing edges of the
cylinder have velocities at 45° to the vertical as shown.

FIG. Q10.23

The sphere would reach the bottom first; the hoop would reach the bottom last. If each object has
the same mass and the same radius, they all have the same torque due to gravity acting on them.
The one with the smallest moment of inertia will thus have the largest angular acceleration and
reach the bottom of the plane first.

To win the race, you want to decrease the moment of inertia of the wheels as much as possible.
Small, light, solid disk-like wheels would be best!

SOLUTIONS TO PROBLEMS

Section 10.1 Angular Position, Velocity, and Acceleration

P10.1

@ 6, -[500md]
o|,_, =Z—f‘ =100+ 4.004],_ =[ 10.0 rad/s |

t=0

Y0 =
(b) 0,5 00 . =5-00+30.0+18.0 =[ 53.0 rad

@500 = % T 10.0+4.00¢,_, o, =
dw

SEETS

t=3.00 s

0‘|t:3‘00 s T |




288  Rotation of a Rigid Object About a Fixed Axis

Section 10.2  Rotational Kinematics: Rotational Motion with Constant Angular Acceleration

*P10.2 @ =251x10" rev/min=263x10° rad/s

®;-o; 2.63x10° rad/s-0
t 32s

(b) 0 =o;t +%at2 =0 +%(8.22 x10? rad/sz)(3.2 s)? =| 4.21x10° rad
o-w; 120 rad/s 3
P10.3 = = =| 4.00 rad
@  a=— e
1 1 2
®) 6= a)it+5at2 25(4'00 rad/s)(3.00 s)* =[ 18.0 rad

P104  ®; =2000 rad/s, & =-80.0 rad/s>

@  @;=;+at=2000-(80.0)(10.0)=[1200 rad/s

®  O=w+at
®; 2000

Za 800 =[ 2505

100 rev (1 minj( 27 rad j_ 107

(a) a= =[8.22x10% rad/s?
|

P10.5

w; = - = rad/S,(UfZO
1.00 min \ 60.0 s A\ 1.00 rev 3

wi-0; 0-1%%

3
= s=|524s
— =0
_, (ofto; (107[ )(107[ j
b 0, =owt= t= rad/s || — s |=| 27.4 rad
)  Oy=o ( 5 o radjs | =

P10.6  ®;=3600 rev/min=23.77x10* rad/s

(@) t=

0=50.0 rev =3.14x 102 rad and w;=0

a)% :a)i2 + 206

0=(3.77x10 rad/s)z +2a(314x10” rad)

a=|-226x10 rad/s” |

P10.7 ® =5.00 rev/s =10.07 rad/s. We will break the motion into two stages: (1) a period during which the
tub speeds up and (2) a period during which it slows down.

— 0+10.07 rad/s

While speeding up, 0, = wt (8.00 s)=40.0zrad

While slowing down, 0, =gt = 007 rad/s 0

So, Orora =01 +0, =100z rad =

(12.0 s) =60.07rad
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P10.8 O;-0; =t +%at2 and w; =w; +at are two equations in two unknowns ; and &
w;=w;—at: 0 —6’-z((0 —at)t+lat2=w t—latz
t f f ! f 2 f 2
37.0 rev( Z”radj — 980 rad/s(3.00 5)—~(3.00 5)°
rev 2

232 rad=294rad - (450 %Jar: @ =%: 137 rad/s’
. S

w_A_B_lrev_ 27rad
At 1day 86400s

P10.9  (a) =[7.27x107 rad/s |

AB 107° 2z rad
b At=—"= =|257x10* s | or 428 min
®) 7.27x107 rad/s( 360° ) | 257x10% s |

@

*P10.10  The location of the dog is described by 6,4 =(0.750 rad/s)t. For the bone,
1 1 2,2
0, =~ 27rad +—0.015 rad/s* t2.

We look for a solution to

0.75t = %”Jr 0.007 5¢>

0=0.007 5t* —0.75t +2.09 = 0

t 0.75+ Joys2 —4(0.007 5)2.09
B 0.015

=288s0r97.1s

The dog and bone will also pass if 0.75¢ = 23—” ~27+0.007 5t or if 0.75¢ = 23—” +27+0.007 5t that is, i

either the dog or the turntable gains a lap on the other. The first equation has

,_075% |0.752 ~4(0.007 5)(~4.19)
- 0.015

=105sor —5.30s

only one positive root representing a physical answer. The second equation has

0.75+,/0.75 —4(0.007 5)8.38

t= =128 sor87.2s.
0.015

In order, the dog passes the bone at after the merry-go-round starts to turn, and again at
and 26.6 s, after gaining laps on the bone. The bone passes the dog at 73.4 s, 87.2s,97.1 s,

105 s, and so on, after the start.
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Section 10.3  Angular and Linear Quantities

P10.11  Estimate the tire’s radius at 0.250 m and miles driven as 10 000 per year.

0==
r 0.250 m

0=6.44x107 rad/yr( L rev j =1.02x107 rev/yr or | ~ 107 rev/yr
2rrad
v 450 m/s
P10.12 v=rw; w=—=——+—"—=|0.180 rad
@ 0-2-80m

2 (450 m/s)
(b) 0, =2 = M =|8.10 m/ s% toward the center of track
r
r 250 m

4 .
510010 ml[1609 m):6.44x107 rad/yr

1 mi

P10.13  Given r =1.00 m, a = 400 rad/s*, w; =0 and 6, =57.3°=1.00 rad

(@) wi=w;+at=0+at

Att=200s, ® =400 rad/s*(2.00 ) :
(b) v=rw =100 m(8.00 rad/s)=|8.00 m/s

|a,|=a, =r&* =1.00 m(8.00 rad/s)2 =640 m/s*

a; =ra =100 m(400 rad/s®) =400 m/s*
The magnitude of the total acceleration is:

a=qa’+a} =\/(64.0 m/sz)2 +(4.00 m/sz)2 :

The direction of the total acceleration vector makes an angle ¢ with respect to the radius to
point P:

- B | a1 2001 5
¢=tan (ﬂ—j—tan (m —

c

©) 0,=6;+ a)it+%at2 =(1.00 rad)+%(4.00 rad/s)(2.00 ) =[ 9.00 rad



*P10.14

P10.15

P10.16

@)

(b)

(©

(d

(@)

(b)

(©)

@)

(b)
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Consider a tooth on the front sprocket. It gives this speed, relative to the frame, to the link of
the chain it engages:

0.152 m 2zrad (1 min
=1 = 76 i =| 0.605
o=r0=( 22 g revjmin| 2720 L 1in)

Consider the chain link engaging a tooth on the rear sprocket:

v 0.605 m/s
w=7= (0 m) :lml

Consider the wheel tread and the road. A thread could be unwinding from the tire with this
speed relative to the frame:

0.673 m
v=rm :( 5 )17.3 rad/s=| 5.82 m/s

We did not need to know the length of the pedal cranks, but we could use that information
to find the linear speed of the pedals:

v=rw=0175m7.96 rad/s(
1rad

): 1.39 m/s

v 250 m/s
w_7_—1.00 = 25.0 rad/s

a); = w? +2a(A0)

0% - w? (25.0 rad/s)2 -0
f i 2
a= = =__39.8 rad/s
2(A0) 2[(1.25 rev)(2z rad/rev)] /

Aw 250 rad/s
ANft=——=————"T_—=10628s

a 398 rad/s2
s=0t=(11.0 m/s)(9.00 s)=99.0 m

s 99.0m
O s~ = [Ba3rev

Uy 220 m/s

o :7_m=75.9 rad/s=| 12.1 rev/s
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P10.17

P10.18

*P10.19

2zrad (1200 rev
—oaf = ~[126 rad
@ on2-2Rd( 120
®)  v=0r=(126 rad/s)(300x 107 m)=[377 m/s

(c) A, =o’r= (126)2(8.00 x 10’2) =1260 m/s2 so a, =| 1.26 km/s2 toward the center

(d)  s=r0=aort=(126 rad/s)(8.00x10 m})(2.00 5)=

The force of static friction must act forward and then more and more inward on the tires, to produce

both tangential and centripetal acceleration. Its tangential component is m(1.70 m/s? ) Its radially
2

. . mo . .
inward component is . This takes the maximum value

mcoj%r = mr(a)l2 + ZaAH) = mr(O + Za%) =mara=mm;, = mﬁ(1.70 m/sz).

With skidding impending we have ) F, =ma,, +n—-mg=0,n=mg

fo=pun=pumg= \/m2(1.70 m/sz)2 +m27r2(1.70 m/sz)2
1.70 m/s2 P
=————41 =|0.572
=IO i

(@) Let Rg represent the radius of the Earth. The base of the building moves east at v; =@ Rg
where @ is one revolution per day. The top of the building moves east at v, = (R +h). Its
eastward speed relative to the ground is v, —v; =@ h. The object’s time of fall is given by

Ay=0 +% gt?, t= /Z_h During its fall the object’s eastward motion is unimpeded so its
g

2 2"
deflection distance is Ax=(v, v, t=wh |— =| @ K32 (_] )
8 8

12
2z rad 3/2 252
b R som)’ 22| ~[116
® ga00s0™ (9.8111

() The deflection is only 0.02% of the original height, so it is negligible in many practical cases.
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Section 10.4  Rotational Energy

P10.20  m; =400kg, r; =|y;|=3.00 m; y
my =200 kg, 15 =y, =2.00 m; 4.00kg y=3.00m
my =3.00 kg,r3:|y3|:4.00 m; n
® =2.00 rad/s about the x-axis W d
2.00 kg y=-2.00m

(a) Ix =m11’12 +m27’22 +m37’32

I, = 4.00(3.00)° + 2.00(2.00)> +3.00(4.00)* = [ 92.0 kg - m> 3.00 kg @ y——4.00m
_1 s 1 2 _
Ky =5 1,0” =2 (920)(200)" =[184]

FIG. P10.20
1 1 2
(b) v; =r,0 =3.00(2.00)=| 6.00 m/s K, =Em1012 :5(4.00)(6.00) =720]
1 2 1 2
=r,w=2.00(2.00)=| 4.00 m/s K, == =—(2.00)(4.00)" =16.0
03 = 0= 2.00(2.00) = [ 200 mjs] = Lnso3 = Laooaooy - 160
1 1 2
v3 =130 =4.00(2.00) =| 8.00 m/s K; = Em3v§ = 3(3.00)(8.00) =96.0]

K=K, +K, +K;=720+16.0+96.0=| 184] :%waz

P10.21  (a) 1= m;} y (m)
j i
In this case, 6}9— (2'00 kg)
7’1:7’2:7’3:7’4 2+
r =(3.00 m)? +(2.00 m)> =130 m L]
2
1=[v13.0 m] [3.00+2.00+2.00 + 4.00] kg | —+— ()
=| 143 kg-m? T

1 2 1 2 2
©)  Kg=ylo® = (143 kg-m?)(6.00 rad/s) @__@
=| 2.57x10% J T

FIG. P10.21
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P10.22

I=Mx?+m(L-x)

% =2Mx—2m(L-x)=0 (for an extremum)
X
mL
Sx=
M+m

d*I . .
d_z =2m + 2M; therefore I is minimum when the axis of

X

which is also the center

rotation passes through x =

of mass of the system. The moment of inertia about an axis
passing through x is

mL P m P Mm
Iem =M[ } +m[1— } I*= [* = ul?
M+m M+m M+m

Mm

where u = M .
+m

FIG. P10.22

Section 10.5 Calculation of Moments of Inertia

P10.23

We assume the rods are thin, with radius much less than L.

Call the junction of the rods the origin of coordinates, and
the axis of rotation the z-axis.

For the rod along the y-axis, I = %mL2 from the table.

For the rod parallel to the z-axis, the parallel-axis theorem
gives

2
I:lmr2 +m(£) ;lmL2
2 2 4

- - . .
_ -~ axis of rotation
- -
z

FIG. P10.23

m

In the rod along the x-axis, the bit of material between x and x + dx has mass ( I jdx and is at

2
distance r = |x? + (Ej from the axis of rotation. The total rotational inertia is:

L2 2
1 1 L7 (m
Liotal :EWZLZ +ZML2 + _[ (xz +—j(—)dx

i 4 \L
L2
7 (mjxs/ mL |4*
=—mL" +| — |— +—X
12 L)sl,, 4l
7 o ml* ml* | 11mL?
=—mL" + + =
12 12 4 12

Note: The moment of inertia of the rod along the x axis can also be calculated from the parallel-axis

2
theorem as lmL2 + m(é) .
12 2



P10.24

P10.25

P10.26
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Treat the tire as consisting of three parts. The two sidewalls are each treated as a hollow cylinder of
inner radius 16.5 cm, outer radius 30.5 cm, and height 0.635 cm. The tread region is treated as a
hollow cylinder of inner radius 30.5 cm, outer radius 33.0 cm, and height 20.0 cm.

Use I = %m(Rl2 +R? ) for the moment of inertia of a hollow cylinder.

Sidewall:
m= ﬂ[(0.305 m)® —(0.165 m)z](6.35 x107 m)(1.10x10° kg/m’)=144 kg
Iy = %(1.44 kg)[(0.165 m)? +(0.305 m)z] =868x1072 kg-m>

Tread:

m= ﬂ[(0.330 m)? — (0.305 m)z](O.ZOO m)(110x10° kg/m?)=11.0 kg

Lead =%(11.0 kg)[(o.33o m)? +(0.305 m)z] =111 kg -m>

Entire Tire:

Tiotal = 2Lsige + lireaq = 2(8:68 10 kg-m*)+ 111 kg-m” =| 1.28 kg-m”

Every particle in the door could be slid straight down into a high-density rod across its bottom,
without changing the particle’s distance from the rotation axis of the door. Thus, a rod 0.870 m long
with mass 23.0 kg, pivoted about one end, has the same rotational inertia as the door:

1. ., 1 2 2
I =§ML =§(23.0 kg)(0.870 m)” =| 5.80 kg-m~ |.

The | height of the door is unnecessary | data.

Model your body as a cylinder of mass 60.0 kg and circumference 75.0 cm. Then its radius is

0.750 m
Vid

=0.120 m

and its moment of inertia is

%MRZ :%(60.0 kg)(0.120 m)® = 0.432 kg -m? ~| 10° kg-m? =1 kg-m? |.
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P10.27  For a spherical shell dI = 2 dmr? = %[(Mrzdr)p]rz

"3
I=Jdlzj§(4m2)r2p(r)dr
I= T%(4m4)(14.2 - 11.6%)(103 kg/m?)dr
0
= (%)47[(14.2 x10° )R?S— (%)4ﬂ(11.6 x 103)%5
1=8—”(103)R5(£—11—‘6j
3 5 6

R
M= [dm=[4nr?| 142~ 11.6 103 dr
! R

e 103(14.2 B 11.6)R3
3 4

1 (87/3)(10°)R°(142/5-116/6) (_907
1.83

MR?  47x10°R°R*(14.2/3-11.6/4) 3

*P10.28 (a) By similar triangles, L. %, y= hL_x The area of the front face
x

j:0.330

is %hL. The volume of the plate is %th . Its density is y h
P _M_ T M__2M . The mass of the ribbon is
V. shlw hLw |<x—>|
- -
P L
dm = pdV = pywdx = ]\;Izwdx = Z;l\gix dx = ZAﬁ;cdx .
v FIG. P10.28
The moment of inertia is
L L 4 2
I= J.rzdm = J x? ZM;cdx =¥J.x3dx=%L—= ML .
all mass x=0 L L 0 L 4 2
. 2L\’ 4MI?
(b) From the parallel axis theorem I = I + M 5= Iepm + and
L\’ Mr? , . .
Iy=Icyq+M 3] = Iem +T. The two triangles constitute a rectangle with moment of
4MI? ML* 1

inertia Ioy +—5—+ley +—5— =3 (2M)L?. Then 2l = %MLZ

2
AML” 1 vz 8 e 2| Lz |
18 18 2

I:ICM+
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We consider the cam as the superposition of the original solid disk and a disk of negative mass cut
from it. With half the radius, the cut-away part has one-quarter the face area and one-quarter the
volume and one-quarter the mass M, of the original solid cylinder:

1 4
My-=My,=M M,=—M.
0 4 0 0 3

By the parallel-axis theorem, the original cylinder had moment of inertia

RY 1 ) R*> 3 )
Iem+ Myl = | ==MyR*+My—=—M,R".
M 0(2) 5 Vo 0 3%
2 2
The negative-mass portion has [ = l(—lMO )(Ej _ MR . The whole cam has
2\ 4 2 32
2
1=§M0R2—M°R :§M0R2=§éMR2:§MR2 and K =L 10% =12 MRr20? = | 2 MR%0? |.
4 32 32 323 24 2 224 48

Section 10.6 Torque

P10.30

P10.31

P10.32

Resolve the 100 N force into components perpendicular
to and parallel to the rod, as

Foar =(100 N)cos57.0°=545 N 100 N

and  Fy.,, = (100 N)sin57.0°=83.9 N

The torque of F,,, is zero since its line of action passes

ar

through the pivot point. FIG. P10.30

The torque of F,, is 7=283.9 N(2.00 m)=| 168 N-m | (clockwise)
> 7=0.100 m(12.0 N)-0.250 m(9.00 N)-0.250 m(10.0 N)=| -3.55 N-m

The thirty-degree angle is unnecessary information.

9.00 N

FIG. P10.31

The normal force exerted by the ground on each wheel is

1500 kg)(9.80 m/s?
n:%:( g)(4 / ):3680N

The torque of friction can be as large as

Tiax = fmax = (151)r = (0.800)(3 680 N')(0.300 m) =

The torque of the axle on the wheel can be equally as large as the light wheel starts to turn without
slipping.
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P10.33  In the previous problem we calculated the maximum torque that can be applied without skidding to
be 882 N - m. This same torque is to be applied by the frictional force, f, between the brake pad and
the rotor for this wheel. Since the wheel is slipping against the brake pad, we use the coefficient of
kinetic friction to calculate the normal force.

T 882 N-m 3
=fr= nyr,son=—-=———————=802x10° N=| 8.02 kN
7= fr=(un) (0.500)(0.220 m)

My

Section 10.7  Relationship Between Torque and Angular Acceleration

2
P1034 (a) I:%MRZ = %(2.00 kg)(7.00x10™* m)" =490x10~° kg-m”

=1:&03=122 rad/s>
[ 490x10"

_Aao
At

o lo 1 200(27)

PR TR LT

1

(b) AO= Eatz = %(122 rad/s)(1.03 s)* = 64.7 rad =

P10.35 m=0.750 kg, F =0.800 N

@) 7 =F =30.0 m(0.800 N)=[ 240 N-m

r _rF 24.0
I mr* 0.750(30.0)

©  a =ar=00356(30.0)=

1 0.800 N

- =| 00356 rad/s” |

FIG. P10.35

P10.36 ;= +at: 10.0 rad/s =0+ a(6.00 s)
_ 1000 rad/s* =1.67 rad/s>
6.00
>7 360N-m 5
a 7=360N m=Ia: I= = =| 21.6 kg-m
@ X o 167 rad s
(b) wp=w;+at: 0=10.0+ (60.0)

a=-0.167 rad/s*

7= |Ia| = (216 kg-m®)(0.167 rad/s?)=

1
(c) Number of revolutions 0 = 0; + w;t + ~at?
2

During first 6.00 s 0= %(1.67)(6.00)2 =30.1 rad

During next 60.0s 6 =10.0(60.0) —%(0.167)(60.0)2 =299 rad

1rev
O =329 rad 5 1 |-




P10.37

P10.38
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For m,, T, IR

2 F =ma;: +n-mg=0 1y
nl =m1g=196 N
fra = mny =7.06 N

> F,=ma,: -7.06N+T; =(2.00 kg)a 1)

For the pulley,

S r=la: —T1R+T2R=1MR2(E) T,
2 R

1 f1a
-T, +T, =—(10.0 kg)a T
2 l 1
T, +T, = (5.00 kg)a 2) @ g
g \
For m,, +1y —m,gcosf =0 /1 T
2
1, =6.00 kg(9.80 m/s”)(c0s30.0°) n, Mg
=509 N
FIG. P10.37
fra = iy
=183 N: -183 N-T, +m,sinf@=m,a
~183 N-T,+29.4 N =(6.00kg)a (3)
(@) Add equations (1), (2), and (3):
~7.06 N—18.3 N+29.4 N = (13.0 kg)a
401N 2
= = 0.309
T30k
®) T, =200kg(0.309 m/s*)+7.06 N=[7.67 N
T, =7.67 N+5.00 kg(0.309 m/s*)=[9.22N
R
I= %mRZ = %(100 kg)(0.500 m)* =12.5 kg - m>
®; =50.0 rev/min=>5.24 rad/s n=700N
s —Q; —
@ 2r~ 01 07528 rad)s o g/s
t 6.00 s
r=1la=125kg-m*(~0.873 rad/s’)=-10.9 N-m f=un
FIG. P10.38

The magnitude of the torque is given by fR=10.9 N-m, where fis
the force of friction.

109 N-m
Therefore, = — and =1un
refore, =500 m f=m

. f 218N
1d L _[0312
yieds K= T 700N




300 Rotation of a Rigid Object About a Fixed Axis

*P10.39 Y. r=Ila= %MRza

2
~135 N(0.230 m)+T(0.230 m)=—(80 kg)(% mj (~1.67 rad/s?)

1
2

Section 10.8  Work, Power, and Energy in Rotational Motion

P10.40  The moment of inertia of a thin rod about an axis through one end is I = lMLZ. The total rotational

kinetic energy is given as

1 1
Ky =51hw§+§1mw;

_myL3 _ 60.0 kg(2.70 m)*

with I =146 kg-m”
h 3 3 3
2100 kg(4.50 m)”

and I,= Mol _ 8 m) =675 kg-m?

3 3
In addition, o, = 2rrad( _1h 1 1.45x107* rad/s

12h (3600s

while ©, = 2rrad( 1h ) 1.75x107 rad/s

1h {3600s

2 2
Therefore,  Kg =%(146)(1.45 x107*) +%(675)(1.75 x107) = 1.04x107 J
. E 1., 11, 5 5.
*P10.41  The power output of the bus is ¥ = N where E = EI 0° = EEMR o~ is the stored energy and
At = Ax is the time it can roll. Then iMRza)2 = 9Nt = AX and
v v

MR2w2v 1600 kg(0.65 m)2(4000-%)211.1 m/s

Ax 24.5 km |.
49 4(18-746 W)
P10.42  Work done = FAr =(5.57 N)(0.800 m)=4.46 ] ~
| ) ~||:|||N L >

and Work = AK = — I} -~ lo}
2 2
(The last term is zero because the top starts from rest.)

1 B}
Thus, 4.46 J = E(4.00 x10* kg-m”)o}

and from this, @ ; =| 149 rad/s |.

FIG. P10.42
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1

*P10.43  (a) (R1 +R3)= (035 kg)[(o.oz m)* +(0.03 m)z] =2.28x10* kg -m>

K1 +K2 +Kr0t +ug2)i _kax:(Kl +K2 +Kr0t)f

1 2 1 2 1 o 2)(0.82 m/s )
5 (0850 kg)(0.82 mys)” +—(0.42 kg)(0.82 mys) +E(2.28 x107* kg-m )(m
+0.42 kg(9.8 m/s?)(0.7 m)-0.25(0.85 kg)(9.8 m/s*)(0.7 m)

2
1 1 1 B} v
= (085 kg)o + (042 kg)o] +E(2.28 x107 kg.mz)[ ! j

0.03 m
0.512 ] +2.88 ] - 1.46 ] = (0.761 kg)v?

C194]
159
U5 = 0.761 kg m
v 159 m/s
(b) w—;—m— 53.1 rad/s

P10.44  We assume the rod is thin. For the compound object

1 2
I =§MrodL2 + |:gmballR2 + MballDzjl

I= %1.20 kg(0.240 m)? +§2.00 kg(4.00x10 m)2 +2.00 kg(0.280 m)?

[=0.181 kg-m?
(@) Ki+U;=K;+U; +AE
1., L
Elw +0=0+M,.48 5 +MpauS(L+R)+0
%(0.181 kg-m®)o® =1.20 kg(9.80 m/s*)(0.120 m)~+2.00 kg(9.80 m/s”}(0.280 m)
1 2\ 2
E(0.181 kg-m )a) =[6.907
(b) o =873 rad/s
() v=rw=(0.280 m)8.73 rad/s=| 2.44 m/s

(d) vj% :vi2+2a(yf—y,-)
0= J0+2(9.80 m/s?)(0.280 m) = 2.34 mys

The speed it attains in swinging is greater by 2—:4 =| 1.043 2 times

301
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P1045 (a) For the counterweight,

50.0
ZFy = ma, becomes: 50.0-T = (9 80)5{

For the reel ) r=1Ia reads TRzIazI%

where 1=%MR2 =0.093 8 kg -m?> ‘T
We substitute to eliminate the acceleration: v 1
6.00 mf ii
TR?
50.0-T = 510( : ) | 563
T=|114N and
FIG. P10.45
50.0—11.4 -
=————=|757 m/s
10
v} =07 +2a(x; - x;): v; =4/2(7.57)6.00 =[ 953 my/s
(b) Use conservation of energy for the system of the object, the reel, and the Earth:

1 1
(K+U)i:(K+U)f: mgh=3m02+zlw2

2meh =mv® +1 i =2 rrz+L
&= R*| R?

[2mgh  [2(50.0 N)(6.00 m)
A meL :\/ 5.10 kg + oo | 953 mjs
RZ

(0.250)"
P10.46  Choose the zero gravitational potential energy at the level where the masses pass.
K¢+Ug =K;+Ug +AE
1 2, 1 2 1.5
—Mmyv +Em20 +Ela) =0+m;ghy; +mygh,; +0

2

1 11 o)
5(15'0 +10.0)0% + E[EGDO)RZ }(Ej = 15.0(9.80)(1.50) + 10.0(9.80)(~1.50)

(265 kg)o? =735] = v

P10.47  From conservation of energy for the object-turntable-cylinder-Earth
system,

%()+ ~mo* = mgh

02
Ir_z_ 2mgh —mo*

I= mrz[L‘Zl—l)
v FIG. P10.47
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P10.48  The moment of inertia of the cylinder is

I= Emrz = %(81.6 kg)(1.50 m)® =91.8 kg-m?

and the angular acceleration of the merry-go-round is found as

= =0.817 rad/s”.
1 (91.8 kg~m2) /
At t=3.00 s, we find the angular velocity

7 (Fr) (50.0 N)(150 m)

w=w;+aot
©=0+(0.817 rad/s*)(3.00 s) = 2.45 rad/s

1
and K =— Io* :5(91.8 kg-m?)(2.45 rad/s)” =[ 276 |

P1049 (a) Find the velocity of the CM

(K+U), =(K+U),

FIG. P10.49
3R 3

2mgR
©  vow =y =R
*P10.50  (a) The moment of inertia of the cord on the spool is
%M(Rf +R3) :%0.1 kg((0.015 m)* +(0.09 m)*) = 416 x 10~ kg-m”.

The protruding strand has mass (10*2 kg /m)0.16 m=16x10" kg and

I=Icy +Md? :%MLZ +Md*=16x107 kg(é(o.w m)® +(0.09 m+0.08 m)zj
=4.97x107 kg -m?

For the whole cord, I = 4.66 x10~* kg-m?. In speeding up, the average power is
1

o E _ 1lo®  466x107* kg-m® (2500-2;;

2
s 7B

At At 2(0.215 s)

20002
b)  #=1w=(7.65N)0.16 m+0.09 m)(M

60 s ):

303
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Section 10.9  Rolling Motion of a Rigid Object

P10.51

P10.52

P10.53

P10.54

1 1 2
(a) Ktrans:Eva:E(lO.O kg)(10.0 m/s)” =| 500 J
b K =11w2=l(lmr2j v 1100 kg)(10.0 mys)* =[ 2507
) 202 2 ) g '

7

(0 Kiotal = Kigans + Kror =| 750 ]

W= Kf _Ki = (Kl‘rans + Krot)f - (Ktrans +Kr0t ),’

2
W=l 102 —0-0=L a2 +l(EMR2)(£j
2 2 2 2\5 R

or W= (l)MUZ
10

(a) r=la
mgRsin6 = (ICM + mRz)a

e mgR? sin @

Iy +mR? ”
2 .
mgR*singd |1 .
fhoop =~ 3~ | 7 8sin0 /
2 . n mg
g mgR”sin@ _| 2 sind
disk %mRZ 3 8 . 6
. . 4 .
The disk moves with 3 the acceleration of the hoop. FIG. P10.53
(b) Rf=Ia
f=un=pmgcosd
e (%gsin&)(%mRz) R
mgcos@ mgcosO R*mgcos 6 3
K= lmv2 + llwz = l[m +LZ}JZ where w=— since no slipping.
2 2 2 R R
Also, U; =mgh, Uf =0, and v; =0
Therefore, l[m + LZ},Z =mgh
2 R
Thus, v = Lgh
1
[1 + (mR2 )]
For a disk, I= %mR2
2gh J4gh
So 0? = 0 sk =l
1+% ) Udisk 3
. 2 2 Zgh
For aring, I=mR*so v* = — or Vsing = \/E

Since vgig > Vying, | the disk | reaches the bottom first.



P10.55

P10.56

v, =400 m/s and w; =—=

Z_]_ﬂ_ 3.00 m
At 150s

Chapter 10
1
=2.00 m/s=—(0+v
/s=5(0+2y)

vy 400 m/s 8.00

r (6.38 x1072 m) /2 T 6.38x1072 rad/s

We ignore internal friction and suppose the can rolls without slipping.

(

+ Kot +Ug)i +AE

(Ktrans + Krot + ug)f

mech —

(0+0+mgyi)+0:(%mv? +%1w? +0j

2
0.215 kg(9.80 m/s*)[(3.00 m)sin 25.0°] :%(0.215 kg)(4.00 m/s)® + = I(ﬂ rad/S)

2 \6.38x1072

267]=1727+ (7 860 s’z)t

| 0951 kg-m?/s?

(@)

(b)

(©

7860 s>

Energy conservation for the system of the ball and the
Earth between the horizontal section and top of loop:

1 5, 1. 5 1 5, 1 5
—moy +—lw5 +mgy, =—mvy +—1
275 25} 8Y2 5 Mty 1

2
1 2 1(2 2 Uy jz
e = =2+
> M Z(er J( ; mgy,
2
=lmvf+l(3mr2)(v—lj FIG. P10.56
2 2\3 y

5 5 5 5
o =—7
628]/261

v, = \/012 —g QYy = \/(4.03 mys)’ —%(9.80 m/s”)(0.900 m) =[238 m/s|

2 (238 ms)’
The centripetal acceleration is L/ M =12.6 m/s*>g

r 0.450 m

Thus, the ball must be in contact with the track, with the track pushing downward on it.

2 2
1 5, 1(2 , v3j 1 1(2 Zj(vl)
—moy +—|—mr” | —=| +mgyz =—moi +—| —mr” | —
2 ° 2(3 )(r 3727 T al3 r

vy = \/012 —g QY = \/(4.03 mys)’ —%(9.80 m/s?)(~0.200 m) =[ 431 mys |

lmvz+m —lmvz
5 02 SY2 5 M1

0y =40} —2gy =\/(4.03 mys)” ~2(9.80 m/s?)(0.900 m) = ~1.40 m?/s?

This result is imaginary. In the case where the ball does not roll, the ball starts with less
energy than in part (a) and | never makes it to the top | of the loop.

305

=| 1.21x107* kg -m? | The | height of the can | is unnecessary data.

2
-
| j
—_—
o 3
N o
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Additional Problems

P10.57 mgﬁsinﬁzlméza
2 3
38

a=—=sin@
2/

a, = (%%sin&jr

Then (ig)r >gsiné
20

— ag — gsin6

for r>E£
3

.. About % the length of the chimney | will have a FIG. P10.57

tangential acceleration greater than gsiné.

P10.58  The resistive force on each ball is R = DpAv®. Here v=r®, where r is the radius of each ball’s path.
The resistive torque on each ballis 7 =R, so the total resistive torque on the three ball system is
Ttotal = 3rR.
The power required to maintain a constant rotation rate is & = 7,,;@ = 3rR@ . This required power
may be written as

P =T ® = 3r[DpA(rw)2]a) = (3r3DAw3 )p

3 i 1000
With o 2zrad( 10 1jev (1 mm): T rad/s
Irev | 1min N\ 60.0s 30.0
10007 )’
9 =3(0.100 m)>(0.600)(4.00 x 107 m?2
(0100 m)'(0500)(400 10+ ) S
or P= (0.827 m®/s? ) p, where pis the density of the resisting medium.

(a) In air, p=1.20 kg/m?,

and #=0827 m°/s* (1.20 kg/m*)=0.992 N -m/s=[ 0.992 W |
(b) In water, p=1000 kg / m® and 9= .

P10.59  (a) W:AK:%Ia)J%—%Iw-Z:%I(a)?—a)?) where I:%mR2

1

_ G)@)(Loo kg)(0.500 m)z[(S.OO rad/s)” - 0] -

;=0 g (800 rad/s)(0.500 m)

=|1.60s
a a 2.50 rn/s2
© 0; :9i+wit+%at2; 0,=0; w;=0

2.50 m/s’
0, =~at® = l(—m/sj(mo 5)? =6.40 rad

b) ¢

2 2\ 0.500 m

s=r0=(0.500 m)(6.40 rad) = | 3.20 m< 4.00 m Yes




*P10.60 The quantity of tape is constant. Then the area of the rings you
see it fill is constant. This is expressed by

2 2 2 2 2 2 _[2, 2 2.
— T, + 7y =7 O 1y =4/t +1{ —1” is the

TS —nr =xr
outer radius of spool 2.

(@) Where the tape comes off spool 1, @, = 2 Where the
4
-1/2
tape joins spool 2, @, = 2 v(rs2 17— rz) / .
)
v v
(b) At the start, r =7, and r, =7, so @; =— and w, =—. The
Tt s
takeup reel must spin at maximum speed. At the end,
r=r;and 1, =7, SO @, -2 and @4 -2 The angular
Tt Ts
speeds are just reversed.
P10.61 (a) Since only conservative forces act within the system of the
rod and the Earth,
AEZO SO Kf+Uf=Kl+ul
Lip2i0-= 0+Mg(£)
2 2
where I = %MLZ
/3
Therefore, = 28
L
(b) > r=Ia, so that in the horizontal orientation,
L L
Mg(—) = M a
2 3
3
S
2L

38

a,=-a,=—-ra= —a(é)
2 v 2

© =4, =—r0’ :_(_)wz _

(d) Using Newton's second law, we have
3M
R,=Ma, = el 4
2
3Mg Mg
R]/_Mg:Mu]/:_T R]/: T

Chapter 10

Start

—_—

FIG. P10.60

Ry« L»’

R* Force
C Diagram
Mg

g <::-U Motion
- Diagram

ay

FIG. P10.61
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308 Rotation of a Rigid Object About a Fixed Axis
do

dt
t

«
[do = [[-10.0-5.00¢]dt = -10.0¢ - 2.50t* = & - 65.0 rad/s
65.0 0

o= % =65.0 rad/s— (10.0 rad/sz)t - (2.50 rad/s’ )if2

P10.62  a=-10.0 rad/s* - (5.00 rad/sS)t =

@  Att=3.00s,

© =650 rad/s—(10.0 rad/s*)(3.00 s)-(2.50 rad/s*)(9.00 s*)=[125 rad/s |

t t

(b) fd@: Jwat = [[650 rad/s(10.0 rad/s? )t~ (250 rad/s” )¢ at
2?:(65(?0 rad/so)t—(S.OO rad/s” )¢* - (0.833 rad/s’ )¢’
At£=3.00s,
0=(65.0 rad/s)(3.00 5)(5.00 rad/s*)9.00 s> ~(0.833 rad/s’)27.0 s’

P10.63  The first drop has a velocity leaving the wheel given by %mvl2 =mgh;, so

v, = [2gh; = \/2(9.80 m/s?)(0.540 m) =3.25 m/s

The second drop has a velocity given by

v, = 2gh, = \/2(9.80 m/s?)(0.510 m) =316 m/s

v .
From w =—, we find
r

3.25
o, _ o m/s

r  0381m

1
=8.53 rad/s and w, = Dy 316 mjs 8.29 rad/s
r 0381 m

or

2_,2 (829 rad/s)’ (853 rad/s)’
a=22-9 :( rad/s)” —( rad)s) =] -0.322 rad/s>
20 'y



P10.64

P10.65

Chapter 10

At the instant it comes off the wheel, the first drop has a velocity v, directed upward. The
magnitude of this velocity is found from

Kl-+Ugi=Kf +Ugf

%mvlz +0=0+mgh, orv; =,/2¢8h

and the angular velocity of the wheel at the instant the first drop leaves is

v 2.¢h
i

[2
Similarly for the second drop: v, =/2gh, and @, = %: 1‘322 .

The angular acceleration of the wheel is then

2gh 2gh
a:wﬁ—a)f: R R _ 8(hy —hy)
20 2(27) 27R>

1 1 1 1
K; :EM‘UJ% +Elw?: Uy =Mghy=0; K; :EMUz’Z +EI‘01'2 =0

U; =(Mgh).: f=uN = pMgcosb; w=2; h=dsin® and I:%mr2
! 4

(a) AEZEf—ElOr—deKf+Uf—Kl—Ul
1 1
—fd:EMv]hEIa)]%—Mgh
1 2 mrz 7;
—(,uMgcosé?)d:EMv i r?—Mgdsir\@
1 m o .
E[MJFE}) = Mgd sin 0 — (uMg cos 6)d or
v? = 2Mgd (sin@— pcos )
T+M

12
vy = {4gdm(sin9— LCOS 9)}

(b) Uj% =07 +2aAx, v; = 2ad

2
a=0 - Zg( M
2d m+2M

)(sin 0— pcosb)
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310 Rotation of a Rigid Object About a Fixed Axis

P10.66  (a) E= l(EMR2 )(a)z)

205
2
5.98x102%)(6.37x10°)| 27— | =[257x10% ]
( )( ) 86 400

dE_d l(zMRz)(z_ﬂ)Z

dt  dt|2\5 T
1o o g dT
=2 MR*(27) (2T )E

= lMRZ(Z_”)Z(__Z)d_T
5 T T )dt

-2 10x10° s
=(2.57 x10% 86400 s/d
(257> ])[86400 sj[3.16><107 sj( ¥/day)

E:

N | =
[ ERNS

o

~

‘;—f =| -163x10" J/day |

*P10.67 (a) wr=0;+at

2 2
) :Tf_% :2”(Ti_Tf)
t t TTyt

27z(—1073 S) 1d 2 1
yr -_—22 2
~ = -10
1d1d100yr[864005J (3.156><107 sj °

(b) The Earth, assumed uniform, has moment of inertia

I =§MR2 =§(5.98 x10* kg)(6.37x10° m)2 =9.71x10% kg-m?
Y r=la~971x10¥ kg-m?(-267x102 s7%)=

The negative sign indicates clockwise, to slow the planet’s counterclockwise rotation.

(©) |z| = Fd. Suppose the person can exert a 900-N force.

7] 259%10 N-m e
d=l1="2"" S 10
ST

This is the order of magnitude of the size of the planetary system.



P10.68

P10.69

P10.70

AO= ot
a0 () e

= 7 900 rev
@ 60s

0.800 m
V=——- = -139 m/s
0.00574 s -

t =0.00574 s

¢ will oppose the torque due to the hanging object:

Zrzla:TR—rf: szTR—Ia

311

Chapter 10

1)

Now find T, I and «in given or known terms and substitute into

equation (1).

Y F,=T-mg=-ma: T=m(g—a)
at? 2y
alsoAy:vit+7 a:t—2
2
and aziz—yzz
R Rt
2
1=1m R2+(5j =2 MR?
2 2 8

Substituting (2), (3), (4), and (5) into (1),

we find >
Rt

(a) W =AK+AU
W:Kf _Ki+uf —Ul-
0=lmv2 +llco2 —mgﬂlsin@—lkd2
2 2 2

la)z(1+mRz)= mgdsin49+lkd2
2 2

\/2mgdsin0+kd2
O=———
[+mR?

2y, 5MR*(2y)
- e~ B
Tf m(g tz ) 8

(2)

€)

4)

()

FIG. P10.69

FIG. P10.70

\/ 2(0.500 kg)(9.80 m/s)(0.200 m)(sin37.0°)+50.0 N/m(0.200 m)*
(b) =

1.00 kg -m? +0.500 kg(0.300 m)”

[1.18+2.00
o=\ " /3.04 =| 1.74 rad/s
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P10.71

P10.72

P10.73

(a) myg—T, =mya 2.00 m/s?

T, =my(g—a) =200 kg(9.80 m/s* ~2.00 m/s*)=[156 N | - L

T, —m;gsin37.0°=mja 15.0kg

Ty = (15.0 kg)(9.805in37.0°+2.00) m/s* =[ 118 N |
®  (T,-T,)R=Ia= 1(%)

(T, ~T;)R* (156 N —118 N)(0.250 m)* 5
I = = = 1.17 k -m
200 /s

a

FIG. P10.71

For the board just starting to move,

Y r=la: mg(é)cosez(%mﬂzja R
azi(éjcose yl
2\ ¢ mg

The tangential acceleration of the endis a4, =la = 3 gcosd
2 FIG. P10.72

. . 3
The vertical component is a,=a,co80=—g cos® 0
2

If this is greater than g, the board will pull ahead of the ball falling:

3 2 . 2 5 2 2 S
(@) Egcos 6> g gives cos” 62> 3 SO cos@ = \/; and 6<353

(b) When 6 =35.3°, the cup will land underneath the release-point of the ball if r,={cosd

When ¢=1.00 m, and 8=35.3° 1, =1.00 m\/g =0.816 m

so the cup should be (1.00 m—0.816 m) =| 0.184 m from the moving end

Att=0, »=3.50 rad/s = wye’. Thus, ®, = 3.50 rad/s
Att=930s, o=2.00 rad/s=w,e ¥, yielding o =6.02x1072 57!

dow d(a)oe_d)
oa==—=—-

dt dt
Att=3.00s,

— %1072
o =(3.50 rad/s)(-6.02x107 s e 300(60210%) _ 75176 rad/s?

t
b 0= g we " dt :f—g[e*ﬁ ~1] =%[1 —e

=wy(-0)e ™

(@)

Att=250s,

2
0= 3.50 rad/s |:1 _ 67(6.02X10 )(2.50):‘ —812 rad =

(6.02x1072)1/s

©  Astom 052 (1-e7)- 200 552 rad - [936 rev |

o
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Consider the total weight of each hand to act at the center of gravity (mid-point) of that hand. Then
the total torque (taking CCW as positive) of these hands about the center of the clock is given by

T= —mhg(%’) sing, — mmg(LTm) sin@,, = —%(mth sin@, +m,L, sind,,)

If we take t = 0 at 12 o’clock, then the angular positions of the hands at time ¢ are

Hh = wht ’
where o), =% rad/h
and 6, =0,t,
where o, =27 rad/h
Therefore, 7=-490 m/ s {60.0 kg(2.70 m) sin(%) +100 kg(4.50 m)sin 2;#}
or 7=-794 N-m sm(zj +2.78sin me} , where t is in hours.
(@) (i) At 3:00, t=3.00 h,
[ (x .
SO 7=-794N- m_sm(a) +2.78sin 67:} =[-794 N-m
.. 15 L .
(ii) At5:15,t=5 h+a h =5.25 h, and substitution gives:
7=|-2510 N-m
(i)  At6:00, r=
(iv) At 8:20, r=|-1160 N-m
v) At 9:45, 7=[-2940 N-m
(b) The total torque is zero at those times when

sin(%) +2.78sin27at =0

We proceed numerically, to find 0, 0.515 295 5, ..., corresponding to the times

12:00:00 12:30:55 12:58:19 1:32:31 1:57:01
2:33:25 2:56:29 3:33:22 3:56:55 4:32:24
4:58:14 5:30:52 6:00:00 6:29:08 7:01:46
7:27:36 8:03:05 8:26:38 9:03:31 9:26:35

10:02:59 10:27:29 11:01:41 11:29:05
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*P10.75  (a)

(b)

P10.76  Energy is conserved so AU + AK,, + AK ;a0 =0 !

Since rw =, this gives

or

As the bicycle frame moves forward at speed v, the center of each wheel moves forward at
the same speed and the wheels turn at angular speed o = % The total kinetic energy of the

bicycle is

+K

trans rot

or

1 1 1 1 v*
K= E(mframe + 2‘7/’/lwh(—:‘e1)v2 + Z(Elwheelwzj = E(mframe + meheel)v2 + (Emwheele)(F] .

This yields

1 1 2
K =~ (Mtrame *+ 3 shea Jo? = E[8.44 kg +3(0.820 kg)](3.35 m/s)” =[ 61.2] |-

As the block moves forward with speed v, the top of each trunk moves forward at the same

speed and the center of each trunk moves forward at speed % The angular speed of each

roller is w = % As in part (a), we have one object undergoing pure translation and two

identical objects rolling without slipping. The total kinetic energy of the system of the stone
and the trees is

or

1 1 o) (1 1 1 1 v?
K= Ernstonev2 + ZEmtree (E) + Z(Eltreewzj :E(mstone +Emtree)vz + (EmtreeRz)(ﬁj'

This gives

1 3 1 2
K= E(mstone + threejvz = E[844 kg +0.75(82.0 kg)|(0.335 my/s)” =[ 50.87 |.

mg(R—r)(cos@-1)+ [%mvz —0}+—[§mr2}a)2 =0

a)=\/2 (R-r)1-cosO)g

7 r2

10Rg(1—cos @ FIG. P10.76
\/% since R>>r.
B




P10.77

P10.78

S F=T-Mg=—Ma: Zr:TR:IazéMRZ(EJ

(@)

(b)

(©

(b)

Chapter 10

R

Combining the above two equations we find

T=M(g-a)
and
2T
a= M FIG. P10.77
thus T= Mg
3
2T 2 (Mg) 2
==l 2 15|38
M M\ 3 3
vf =0 +2a(xf xl) v?:0+2(zgj(h—0)
3
4gh
<[ 22

For comparison, from conservation of energy for the system of the disk and the Earth we
have

2
1(1 % 1
ugi +Kr0ti +Ktransi = ugf +Krotf +Ktransf1 Mgh+0+0 =0+E(EMR2)[%J +EMUf2
4qh
s
YFE =F—f=Ma: Y r=fR=Ia
Using [ =1MR2 and o =£, we find a = E
2 R 3IM

When there is no slipping, f =uMg.

Substituting this into the torque equation of part (a), we have

yMng%MRu and u=| ——|.

315



316  Rotation of a Rigid Object About a Fixed Axis
P10.79 (a) AK, + AK +AU=0 m

trans
Note that initially the center of mass of the sphere is a

distance h+r above the bottom of the loop; and as the

mass reaches the top of the loop, this distance above h R

the reference level is 2R —r. The conservation of P
energy requirement gives

_ 1 5,1 5
mg(h+r)=mg(2R~r)+_mv”+_lo FIG. P10.79

2 .
For the sphere I = Emr2 and v=r® so that the expression becomes

gh+2.gr=2gR+%v2 (1)

Note that h = h,;, when the speed of the sphere at the top of the loop satisfies the condition
mo*

®-7) or v* =g(R-r)

> F=mg=

Substituting this into Equation (1) gives

Hinin = 2(R=7)+0.700(R =) or | Iy, =2.70(R—7)=2.70R |

(b) When the sphere is initially at #=3R and finally at point P, the conservation of energy
equation gives

mg(3R+r)= ng+%mv2 +%mvz, or

v? :g(ZRﬂf)g

Turning clockwise as it rolls without slipping past point P, the sphere is slowing down with
counterclockwise angular acceleration caused by the torque of an upward force f of static

friction. We have ) F, =ma, and ) 7=Ia becoming f—mg=—-mar and fr= (%)mrza.

5
Eliminating f by substitution yields o = 7_g so that ) F, = —;mg
r

2 10)2R +7 )
ZFX:‘”:‘IT::‘(»;J )mgz % (since R>>7)




P10.80

P10.81
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Consider the free-body diagram shown. The sum of torques pivot J2i
. . ~— y
about the chosen pivot is 'y > 3

H
Sr=la=Fi= (%mlz)[%TM] = @mz}zCM (1)

2

(@) {=1=1.24 m: In this case, Equation (1) becomes M l mg i
3(14.
SF_SU4TN) 45, m/s’
2m  2(0.630 kg) '
D F. =macy = F+H, =macy or H, =macy —F F=147N

Thus, H, =(0.630 kg)(35.0 m/s*)-147 N=+735 N or

H, - , FIG. P10.80

(b) (= % =0.620 m: For this situation, Equation (1) yields

acm =

3F  3(147 N)

= = =175 m/s*.
4m  4(0.630 kg) ms

acm =
Again, ) F, =macy = H, =macy —F, so
H, =(0.630 kg)(175 m/s*)-147 N=-3.68 N or H, = -3.68i N |.

F
(©) If H, =0, then ) F, =macy = F=macy, or dcy =—.
m
Thus, Equation (1) becomes
2

Fi= (—ml)(i) so (= El = %(1.24 m) =| 0.827 m (from the top) |
3 m 3 3

Let the ball have mass m and radius r. Then I = %mr2 . If the ball takes four seconds to go down

twenty-meter alley, then v =5 m/s. The translational speed of the ball will decrease somewhat as
the ball loses energy to sliding friction and some translational kinetic energy is converted to
rotational kinetic energy; but its speed will always be on the order of 5.00 m/s, including at the
starting point.

As the ball slides, the kinetic friction force exerts a torque on the ball to increase the angular speed.

When o = 2, the ball has achieved pure rolling motion, and kinetic friction ceases. To determine the
7

elapsed time before pure rolling motion is achieved, consider:

2 2){(5.00 m/s)/r}
t

ZT:Ia:(,ukmg)r:(gmr which gives

. 2(5.00 m/s) 2.00 m/s

S8 Hk8
Note that the mass and radius of the ball have canceled. If x; =0.100 for the polished alley, the
sliding distance will be given by

Ax =5t = (500 m/s) —200 WS | =102 m or Ax~[10" m .

(0.100)(9.80 m/s”
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P10.82

P10.83

Conservation of energy between apex and the point where
the grape leaves the surface:

1 1
mgAy:Emvj% +Elw%

2
1 2 1(2 2)\ Y
R(1-cosf)=— +—| =mR* | —
mgR( ) zmvf Z(Sm j(RJ

2
which gives g(1-cos8)= A )
10| R

mg cosd mg sinf

Consider the radial forces acting on the grape:

) FIG. P10.82
0 . me
mgcosd—n= )

g R

At the point where the grape leaves the surface, n— 0.

mvj% vj%
Thus, mgcos@= R or ?=gcosz9.

Substituting this into Equation (1) gives
7 10 S
g—gcosé’:ﬁgcosé’ or COSHZE and 6= .

(@) There are not any horizontal forces acting on the rod, so the center of mass will not move
horizontally. Rather, the center of mass drops straight downward (distance //2) with the rod
rotating about the center of mass as it falls. From conservation of energy:

Kf +Ugf :Ki+ugi

%MU%M +%Ia)2 +0=0 +Mg(gj or

2
1 Moy + l(i Mh* j(UCTMJ = Mg(gj which reduces to
2

2 2\12
3gh
Y
(b) In this case, the motion is a pure rotation about a fixed pivot point (the lower end of the rod)

with the center of mass moving in a circular path of radius //2. From conservation of energy:

L0240 =0+Mg(ﬁj or

2 2

1(1 ’ h

E(EMhz )[UC—MJ =Mg ( ) which reduces to

L 2
3gh




P10.84

P10.85

@)

(b)

(©

@)

(b)

(©

Chapter 10 319

2

The mass of the roll decreases as it unrolls. We have m = where M is the initial mass of

RZ
2

the roll. Since AE =0, we then have Aug +AK +AK,,; =0. Thus, when I = %,

trans

2 2 2
mo mr- @
- MgR)+ +|————1|=0
(mgr ~MgR) +— { 5 2}

Since wr = v, this becomes v =

3r2

Using the given data, we find v=| 5.31x10* m/s

We have assumed that AE =0. When the roll gets to the end, we will have an inelastic
collision with the surface. | The energy goes into internal energy |. With the assumption we

made, there are problems with this question. It would take an infinite time to unwrap the
tissue since dr — 0. Also, as r approaches zero, the velocity of the center of mass approaches
infinity, which is physically impossible.

ZFx:F+f:MuCM F

> t=FR-fR=1Ia

Ia 4F
FR—(MQCM_F)R:% fem =557 > f
FIG. P10.85
4F 1
=Macyy -F=M|— |-F=|-F
f acm (3M) 3

vj% :viz +2a(xf —xi)

Jst
Ufz _—
3M
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P10.86

Call f, the frictional force exerted by each roller M F
backward on the plank. Name as f; the rolling = ===
resistance exerted backward by the ground on m @ R m O R

each roller. Suppose the rollers are equally far

from the ends of the plank.

For the plank, FIG. P10.86

. F.=ma, 6.00N-2f, =(6.00 kg)a,

a
The center of each roller moves forward only half as far as the plank. Each roller has acceleration ?p
and angular acceleration
a,/2 %
(5.00 cm) (0.100 m)

Then for each,

a
> F.o=ma, +f—f, =(2.00 kg)?p

1 2 A
=] 5.00 5.00 =—(2.00 kg)(5.00
Seela 500 cm)+ f(500 cm)=(200 kg)5.00 cm)’ L

1
So fi+f :(E kg)ap
Add to eliminate f,:

2f, = (1.50 kg)a,,

() And 6.00 N - (1.50 kg)a,, = (6.00 kg)a,
(6.00 N)
ap Zmz 0.800 I'I'I/S2
o P
For each roller, a = > 0.400 m/s

(b) Substituting back, 2f, = (1.50 kg)0.800 m/s> 1 Mg
6.00 N
fi 1 |<—u <A —
0.600 N+ f, = kg(0.800 m/s?) o]y, LI IS
f, =—0.200 N
N Nt
The negative sign means that the horizontal force f §
of ground on each roller is | 0.200 N forward mg mg
rather than backward as we assumed. JL l’
<A \
W] bl

FIG. P10.86(b)
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P10.88

P10.89

Rolling is instantaneous rotation about the contact point P. The
weight and normal force produce no torque about this point.

Now F, produces | a clockwise torque | about P and makes the

spool roll forward.

Counterclockwise torques | result from F; and F,, making the

spool roll to the left.

The force F, produces about point P and does

not cause the spool to roll. If F, were strong enough, it would
cause the spool to slide to the right, but not roll.

The force applied at the critical angle exerts zero torque about
the spool’s contact point with the ground and so will not make
the spool roll.

From the right triangle shown in the sketch, observe that
0. =90°-¢=90°-(90°-y )=y .

Thus, | cos @, =cosy=% .

Chapter 10 321

AL,

F

FIG. P10.87

FIG. P10.88

(@) Consider motion starting from rest over distance x along the incline:

(Ktrans + Krot + u)l +AE= (Ktrar\s

0+0+ngsin0+0:%Mvz Jrz(l

2Mgxsin @ = (M + 2m)v*

Since acceleration is constant,

v? = v} +2ax =0+ 2ax, so s
y ’
2Mgxsin @ = (M + 2m)2ax L ,'I
e Mgsiné X ,"
| (M +2m)

continued on next page

+Kr0t+ll)f

2
T IR

FIG. P10.88
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() Suppose the ball is fired from a cart at rest. It moves with acceleration gsin@=a, down the
incline and 4, = —g cos @ perpendicular to the incline. For its range along the ramp, we have

1 2
-y;=v,t——gcos@"“=0-0
Y=Y =0y 28
(o 20,
gcosf

1
X—x;=v,t +Eaxt2

402,
d=0+ 1 gsiné %
2 g“cos” 0
i 2051» sinéd
- gcos®
(b) In the same time the cart moves

1
X—x;=v,t +Eu"t2

1{ gsin6M 4051'
d.=0+— 5 5
2\ (M+2m) | g% cos” 0

20;; sin6M
g(M +2m)cos® 0

c

So the ball overshoots the cart by

205sin0 20y sin6M
Ax=d-d, =

gcos® @ - gcos® O(M +2m)
20}, sin M + 4o, sin Om — 207, sin M

Ax 5
gcos” O(M +2m)

2 .
4mv,; sin 0

Ax = 5
(M+2m)gcos” 8




P10.90
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we can use Y 7 =la, which reads +fR, —-TR; = I«a. For rolling without

> F.=ma, reads —f + T = ma. If we take torques around the center of mass, %
T

slipping, o = 4 By substitution,

R, f
tn
In I

fRy—TR, = R, Rom (T-f) FIG. P10.90

fR3m —TR,Rym =IT - If
f(I+mR3)=T(I+mR,R,)

f:(l+mR1R2]T

[+mR3

Since the answer is positive, the friction force is confirmed to be | to the left.

ANSWERS TO EVEN PROBLEMS

P10.2

P10.4

P10.6

P10.8

P10.10

P10.12

P10.14

P10.16

P10.18

P10.20

P10.22

P10.24

P10.26

(a) 822 rad/s*; (b) 4.21x10° rad P10.28 % M2

1.20x10” rad/s; (b) 25.0
(a) 1.20x10” rad/s; (b) 25.0 s P10.30 168 N-m clockwise

2
~226 rad/s P1032 882N-m
13.7 rad/s* P10.34  (a) 1.03s; (b) 10.3 rev
(a) 2.88s; (b) 12.8 s P10.36  (a) 21.6 kg-mz; (b) 3.60 N-m; (c) 52.4 rev
(a) 0.180 rad/s; P10.38  0.312
(b) 8.10 m/ s% toward the center of the
track P10.40 1.04x107°]

(a) 0.605 my/s; (b) 17.3 rad/s; (c) 5.82 m/s; P10.42 149 rad/s
(d) The crank length is unnecessary
P10.44  (a) 6.90]; (b) 8.73 rad/s; (c) 2.44 m/s;

(a) 54.3 rev; (b) 12.1 rev/s (d) 1.043 2 times larger
0.572 P10.46 236 m/s
(@) 92.0 kg-m?; 1847; P10.48  276]

(b) 6.00 m/s; 4.00 m/s; 8.00 m/s; 184 ]
P10.50 (a) 743 W; (b) 401 W
see the solution

7Mo?
1.28 kg -m? F10.52 10

—~ 0 . 2
10" kg-m P10.54  The disk; 1/%2}1 versus \/E
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P10.56

P10.58

P10.60

P10.62

P10.64

P10.66

P10.68

P10.70

P10.72

P10.74

(a) 2.38 m/s; (b) 431 m/s;

(c) It will not reach the top of the loop.

(@) 0.992 W; (b) 827 W
see the solution

(a) 12.5 rad/s; (b) 128 rad

g(hz _hl)
27R?

(a) 2.57x10% J; (b) -1.63 x 10" J/day

139 m/s

. 2
(@) \/M (b) 1.74 rad/s

I+mR>
see the solution

(@) 794 N-m; -2510 N-m; 0;
-1160 N-m; —2940 N -m;
(b) see the solution

P10.76

P10.78

P10.80

P10.82

P10.84

P10.86

P10.88

P10.90

10Rg(1-cos6)

7r?
see the solution
(a) 35.0 m/s?; 7.35i N;

(b) 175 m/s?; -3.68i N;
(c) At 0.827 m from the top.

54.0°

4¢(R3 -#3
(a) g(3 ) ; (b) 5.31x10* m/s;
r

(c) It becomes internal energy.

(a) 0.800 m/s?; 0.400 m/s?;

(b) 0.600 N between each cylinder and the
plank; 0.200 N forward on each cylinder
by the ground

see the solution

see the solution; to the left



Q114

Q115

Q11.6

Q11.7

Q11.8

Angular Momentum

ANSWERS TO QUESTIONS

Q11.1  No to both questions. An axis of rotation must be defined to
calculate the torque acting on an object. The moment arm of
each force is measured from the axis.

Q11.2 A -(BxCQ) is a scalar quantity, since (Bx C) is a vector. Since
A B is a scalar, and the cross product between a scalar and a
vector is not defined, (A -B)x C is undefined.

S A

Q11.3 (@) Down-—cross-left is away from you: —i x (—i) =-k

(b) Left—cross—down is toward you: —ix (— ) =k

FIG. Q11.3
The torque about the point of application of the force is zero.
You cannot conclude anything about the magnitude of the angular momentum vector without first
defining your axis of rotation. Its direction will be perpendicular to its velocity, but you cannot tell

its direction in three-dimensional space until an axis is specified.

Yes. If the particles are moving in a straight line, then the angular momentum of the particles about
any point on the path is zero.

Its angular momentum about that axis is constant in time. You cannot conclude anything about the
magnitude of the angular momentum.

No. The angular momentum about any axis that does not lie along the instantaneous line of motion
of the ball is nonzero.

325
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Q11.9

Q11.10

Q11.11

Q11.12

Q11.13

Q11.14

Q11.15

Q11.16

Q11.17

Q11.18

Q11.19

Q11.20

There must be two rotors to balance the torques on the body of the helicopter. If it had only one
rotor, the engine would cause the body of the helicopter to swing around rapidly with angular
momentum opposite to the rotor.

The angular momentum of the particle about the center of rotation is constant. The angular
momentum about any point that does not lie along the axis through the center of rotation and
perpendicular to the plane of motion of the particle is not constant in time.

The long pole has a large moment of inertia about an axis along the rope. An unbalanced torque will
then produce only a small angular acceleration of the performer-pole system, to extend the time
available for getting back in balance. To keep the center of mass above the rope, the performer can
shift the pole left or right, instead of having to bend his body around. The pole sags down at the
ends to lower the system center of gravity.

The diver leaves the platform with some angular momentum about a horizontal axis through her
center of mass. When she draws up her legs, her moment of inertia decreases and her angular speed
increases for conservation of angular momentum. Straightening out again slows her rotation.

Suppose we look at the motorcycle moving to the right. Its drive wheel is turning clockwise. The
wheel speeds up when it leaves the ground. No outside torque about its center of mass acts on the
airborne cycle, so its angular momentum is conserved. As the drive wheel’s clockwise angular
momentum increases, the frame of the cycle acquires counterclockwise angular momentum. The
cycle’s front end moves up and its back end moves down.

The angular speed must increase. Since gravity does not exert a torque on the system, its angular
momentum remains constant as the gas contracts.

Mass moves away from axis of rotation, so moment of inertia increases, angular speed decreases,
and period increases.

The turntable will rotate counterclockwise. Since the angular momentum of the mouse-turntable
system is initially zero, as both are at rest, the turntable must rotate in the direction opposite to the
motion of the mouse, for the angular momentum of the system to remain zero.

Since the cat cannot apply an external torque to itself while falling, its angular momentum cannot
change. Twisting in this manner changes the orientation of the cat to feet-down without changing
the total angular momentum of the cat. Unfortunately, humans aren’t flexible enough to accomplish
this feat.

The angular speed of the ball must increase. Since the angular momentum of the ball is constant, as
the radius decreases, the angular speed must increase.

Rotating the book about the axis that runs across the middle pages perpendicular to the
binding—most likely where you put the rubber band—is the one that has the intermediate moment
of inertia and gives unstable rotation.

The suitcase might contain a spinning gyroscope. If the gyroscope is spinning about an axis that is
oriented horizontally passing through the bellhop, the force he applies to turn the corner results in a
torque that could make the suitcase swing away. If the bellhop turns quickly enough, anything at all
could be in the suitcase and need not be rotating. Since the suitcase is massive, it will want to follow
an inertial path. This could be perceived as the suitcase swinging away by the bellhop.
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SOLUTIONS TO PROBLEMS

Section 11.1

P11.1

P11.2

P11.3

P11.4

MxN=|6 2 -1/=|-7.00i+16.0j-10.0k

(@)

(b)

(@)

(b)

The Vector Product and Torque

~ ~ ~

i j k

2 -1 -3

area=|A x B|= ABsin 0 = (42.0 cm)(23.0 cm)sin(65.0°~15.0%) =

A +B=[(42.0 cm)cos15.0°+(23.0 cm) cos 65.0°]i +[(42.0 cm)sin15.0°+(23.0 cm)sin 65.0°]j
A+B=(50.3 cm)i +(317 cm)i

length =|A +B| = /(503 cm)* + (317 cm)? =

i
AxB=|-3

k
0

[ SO T Y

|A x B| = |A[[B|sin @
17 =5+4/13 sin@

. 17 S
0= arcsm(smj :

A -B=-3.00(6.00)+ 7.00(~10.0) + (—4.00)(9.00) = 124

AB=1/(-3.00) +(7.00)* + (~4.00) /(6.00)* + (~10.0)* + (9.00)> =127

@)

(b)

(©

a(ABY B S
cos (EJ—COS (-0.979) =

i j k
AxB=|-300 700 -4.00=23.0i+3.00j—120k
600 -100  9.00

|A < B|=/(23.0)? +(3.00)° + (-12.0)* =26.1

sin”! (%j — sin(0.206) = or 168°

Only | the first method | gives the angle between the vectors unambiguously.
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*P11.5

P11.6

P11.7

P11.8

P11.9

7 =rxF=0.450 m(0.785 N)sin(90°-14°) up x east
=|0.343 N-m north |

/
//ai e

/ /
/ a4

FIG. P11.5

The cross-product vector must be perpendicular to both of the factors, so its dot product with either
factor must be zero:

Does (2i -3j +4k)- (4i+3j-k)=07?
8-9-4=-5%0
. The cross product could not work out that way.

|AxB|=A-B= ABsinf=ABcosf=tanf=1 or

ij k
@) r=rxF=[1 3 0|=i(0-0)-j(0-0)+k(2-9)=|(-7.00 N-m)k
20
(b) The particle’s position vector relative to the new axis is li+ 3} - 6} =1i- 3} .
i j k
r=|1 -3 0|=|(11.0 N-m)k
3 20

The torque produced by E; depends on the

perpendicular distance OD, therefore translating the
point of application of F; to any other point along

BC | will not change the net torque |.

FIG. P11.9
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* ixil= in0°= IR B P R
P11.10 |ixi|=1-1-sin0°=0 A ] ixj=k 1 jxi=-k
j — g
TR Vvis
jxj and kxk are zero similarly since the |\“rj’) jxk=i so C@ékxj:‘i
vectors being multiplied are parallel. k N @ . ..
kxi=j so ixk=-j
R © =—— —_—
ixj|=1-1-5sin90°=1
FIG. P11.10

Section 11.2  Angular Momentum
P11.11 L= Zmiviri
=(4.00 kg)(5.00 m/s)(0.500 m)+(3.00 kg)(5.00 m/s)(0.500 m)
L=175 kg-m? /s, and

L:(17.5 kg-mz/s)lA(

4.00 kg

FIG. P11.11
P11.12 L=rxp
L =(1.501 +2.20j) m x (1.50 kg)(4.20i - 3.60j) m/s

L=(-810k-13.9k) kg-m*/s=| (-22.0 kg-m*/s)k

P11.13  r=(6.00i+5004 m) v

=5.00j
y7 j m/s

o p=mv=200kg(500j m/s)=10.0j kg-m/s

i ik
and L=rxp=[600 500t 0|=|(60.0 kg-m®/s)k
0 100 0
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P11.14

P11.15

P11.16

S'F, =ma, Tsinf=_~
r
> F, =ma, T cosO=mg
sinf  ©v? sind
So ——=— v=.|rg
cosf rg cosd

L =rmvsin90.0°

- /ngrg, sind
cosd

r=1/{siné, so

L= \/ngfs Sin49
cos &

ot

The angular displacement of the particle around the circleis 6= @t = <

The vector from the center of the circle to the mass is then
Rc0549§+Rsin6?j .

The vector from point P to the mass is

l‘=Ri+RCOS€i+RSin9}

r=R|| 1+ Cos(v—t) i+ sin(v—tj}
R R
The velocity is

dr . (Utjc (Utjc
v=—=-0sin| — |i+vcos| — |j
dt R R

So L=rxmv

L= va[(l + cos a)t)i +sin a)t;] X [— sin i + cos a)tj

L=| muRk Cos(v—tj +1
R

(@) The net torque on the counterweight-cord-spool system is:

FIG. P11.14

FIG. P11.15

|2 = fr < F| =8.00 x 10 m(4.00 kg)(9.80 m/s? )= :

(b) L =[x xmv|+Iw

dL 314 N-m 3
_9L _(0.400 kg - = 20785 m)s? |
C g m)a “~ 0400 kg-m /s

|L| = Rmv +%MR2(%) = R(m +%jv =1 (0.400 kg-m)o |




P11.17

P11.18

g

(b) At the highest point of the trajectory,

07 sin 26
28
(v; sin6)’

2g

leR: and
2

y:h =

max

L, =1 xmv,
5. . 2
v?sin260; (v;sind)” + .
i+ j |xmo i

2g 2g

—m(v; sin 6’)2 v; cos 0 ¢

28

v? sin 26
g

=mR§x(vi cos@i—vi siné?j)

() L, =R§><mv2, where R =

—mo? sin 20sin 0

=-mRwo; sind k=

g
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- ‘-—=1>\Vi = ini
~

FIG. P11.17

(d) The downward force of gravity exerts a torque in the —z direction.

Whether we think of the Earth’s surface as curved or flat, we interpret the problem to mean that the
plane’s line of flight extended is precisely tangent to the mountain at its peak, and nearly parallel to
the wheat field. Let the positive x direction be eastward, positive y be northward, and positive z be

vertically upward.

() r=(430 km)k = (430x10° m)k

p =mv=12000 kg(-175i m/s)=-210x10°i kg-m/s

L=rxp=(430x10"km)x(-210x10°i kg-m/s)=

(-9.03x10° kg-m*/s)j

(b) . L= |r||p| sin@=mu(rsin6), and rsin@ is the altitude of the plane. Therefore, L =

constant as the plane moves in level flight with constant velocity.

() . The position vector from Pike’s Peak to the plane is anti-parallel to the velocity of

the plane. That is, it is directed along the same line and opposite in direction.

Thus, L = mvrsin180°=0.
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P11.19

P11.20

The vector from P to the falling ball is
r:ri+v,-t+lat2
2
AP 1 o)
r=(€cosz91+€sm9])+0— Egt j

The velocity of the ball is

V=Vi+at=0—gtj

So L=rxmv
3 I 1 5 4
L—m{(ﬂcost91+€sm9])+0—(zgt j]}x(—gt]) FIG. P11.19

L =| —m{gt cos 0k

In the vertical section of the hose, the water has zero angular
momentum about our origin (point O between the fireman’s feet).
As it leaves the nozzle, a parcel of mass m has angular momentum:
L =[r x mv|=mrvsin90.0°=m(1.30 m)(12.5 m/s)
L=(163 m®/s)m

The torque on the hose is the rate of change in angular momentum.
Thus,

dL

== (163 m? /s)‘;—’? = (163 m*/s)(631 kg/s)=

FIG. P11.20

Section 11.3  Angular Momentum of a Rotating Rigid Object

*P11.21

P11.22

2.2 12
K:lla)zzll_a):L_
2 2 1 21

The moment of inertia of the sphere about an axis through its center is

I :%MRZ :%(15.0 kg)(0.500 m)* =150 kg - m>

Therefore, the magnitude of the angular momentum is
L=1Iw=(150 kg-m")(3.00 rad/s) =450 kg-m”/s

Since the sphere rotates counterclockwise about the vertical axis, the angular momentum vector is
directed upward in the +z direction.

Thus, L=(4.50 kg-mz/s)f( .
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P1123  (a) L=Io= (%MRZJCU = %(3.00 kg)(0.200 m)*(6.00 rad/s)=| 0360 kg-m* /s |

2
(b) L=Iw= EMR2 +M(§j :law

=%(3.00 kg)(0.200 m)*(6.00 rad/s)=| 0.540 kg-m?/s |

P11.24  The total angular momentum about the center point is given by L=, +1,0,,

_mylLy _ 60.0 kg(2.70 m)®

with I =146 kg-m?
h 3 3 g
2100 kg(4.50 m)

and I,5= MLy _ 8 m) =675 kg -m?

3 3
In addition, @)= 2zrad & =145x107* rad/s

12h (36005

while ®, = 2rradf 1h | 1.75x107 rad/s

1h (3600s
Thus, L =146 kg-m*(145x10™* rad/s)+675 kg-m*(1.75x 10~ rad}s)
or |L:1.20 kg~m2/s|

P11.25 (a) I= %mle +m,(0.500)° = %(0.100)(1.00)2 +0.400(0.500)* = 0.108 3 kg -m>

L=10=01083(400)=| 0.433 kg-m” /s |

(b) I= %mle +m,R% = %(0.100)(1.00)Z +0.400(1.00)° =0.433

L=1Iw=0.433(400)=| 1.73 kg-m?/s

*P11.26 Y F, =ma,: +f =ma,
88 cmT(gﬁ)
al

We must use the center of mass as the axis in

Yr=la:  F,(0)-n(77.5 cm)+ £,(88 cm) =0 15' 5 le
2
> F,=ma,: +n-F, =0
FIG. P11.26

We combine the equations by substitution:

-mg(77.5 cm)+ma (88 cm) =0
(9.80 m/sz)77.5 cm

= 88 cm :
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*P11.27  Werequire g, =g = L=
r

9 80 m/s
=0.313 rad/s
©100m

I=Mr? —5><104kg100m =5x10% kg-m?

(@  L=Io=5x10° kg-m*0313/s=|1.57x10° kg-m’/s |

I(a)f ; )
At
ZTAt:Ia)f —lo;=L¢ -1,

() dr=lg=—-——

This is the angular impulse-angular momentum theorem.

Li=0 157x10% kg-m?/s

f g 3
b At= = =[6.26x10° s |=174h
®) z T 2(125 N)(100 m) “

Section 11.4  Conservation of Angular Momentum

P11.28 (a) From conservation of angular momentum for the system of two cylinders:
(11+12)a)lela)i or o= L ;
I +1,
1 2 L, o
(b) Kf 25(114‘12)0)]( and Kizzllwl‘

whichislessthan1 |.

K, (I, +1 2
_f_2(1+ 2)[ L wi]: I

Ki B %Ilwlz Il +12

L+,

P11.29 Lo, =l;0;: (250 kg-m*)(10.0 rev/min)= [250 kg -m? +25.0 kg(2.00 m)* |w,

®, =| 7.14 rev/min
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P11.30 (a) The total angular momentum of the system of the student, the stool, and the weights about
the axis of rotation is given by

I

total =1 weights

+ Istudent = z(mr2)+ 3.00 kg . In2

Before: r=100m.

Thus,  I; =2(3.00 kg)(1.00 m)* +3.00 kg-m? = 9.00 kg -m?
After: r=0.300 m

Thus, I =2(3.00 kg)(0.300 m) +3.00 kg -m? =3.54 kg -m”

We now use conservation of angular momentum.

Ifa)f :Iia)i
or 0 =| i o, =(@j(0.750 rad/s)=|1.91 rad/s
VP R XY

1 1
(b) K, = El,w? =—(9.00 kg m*)(0.750 rad/s)* =[253]
1
K;=-10%= 3(3'54 kg-m*)(191 rad/s)’ =[ 6.44]

P1131 (a) Let M = mass of rod and m = mass of each bead. From [;w; =I;0,, we have

\S}

DO | =

iMEZ +2mr12 w; = iM€2+2,mr22 oy
12 12

When ¢=0.500 m, », =0.100 m, r, =0.250 m , and with other values as stated in the
problem, we find

w,=9.20 rad/s |.
f /

(b) Since there is no external torque on the rod,

L = constant and | ®is unchanged |

*P11.32  Let M represent the mass of all the ribs together and L the length of each. The original moment of

inertia is %ML2 . The final effective length of each rib is Lsin22.5° and the final moment of inertia is

1
EM(L sin 22.5")2 angular momentum of the umbrella is conserved:

lMLZw,. Ly sin? 2500 §
3 3

1.25 rad/s
W, =— " = _8.54 rad/s
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P11.33  (a) The table turns opposite to the way the woman walks, so its angular momentum cancels
that of the woman. From conservation of angular momentum for the system of the woman
and the turntable, we have L f= L;=0

50, Lf = Iwomanwwoman + Itablewtable =0
and a)t bl — (_ Iwoman ]a) — (_ mwomanrz J( vwoman j —_ mwomanrvwoman
able woman
I table I table r I table
60.0 kg(2.00 m)(1.50 m/s
@able =~ g( )( > / ) =-0.360 rad/s
500 kg -m
or O table =| 0.360 rad/s (counterclockwise) |

woman ¥ woman table

(b) workdonezAKsz—O:%m 2 +%1a)2

1 2 1 2 2
W =—(60 kg)(1.50 m/s) +E(500 kg-m?)(0.360 rad/s)* =[99.9]
P11.34  When they touch, the center of mass is distant from the center of the larger puck by

0+80.0 g(4.00 cm+6.00 cm)

=4.00 cm
120 g+80.0 g

Yom =

@) L=rmy oy + 13m0, =0+(6.00x102 m)(80.0x10 kg)(150 m/s)=| 7.20x10 kg-m? /s |

(b) The moment of inertia about the CM is

I= (lmlrl2 + mldlz) + (lmzrz2 + mzdf)
2 2
I= %(0.120 kg)(6.00x10°2 m)2 +(0.120 kg)(4.00x 10‘2)2

+%(80.0 x107 kg)(4.00x 107 m)2 +(80.0x10 kg)(6.00x 107 m)2

1=7.60x107* kg-m?
Angular momentum of the two-puck system is conserved: L =

L 720x107 kg-m?/s
w=—= =

=|9.47 rad/s
I 760x10™ kg-m?




P11.35

P11.36

P11.37
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() Li=mol Y7o =0,50 Ly =L;=[mol|

Lf =(m+M)Uf€
m
Uf:( )U
m+M

1 5
b K. ==
(b) 2mv

1

1
Ky =E(M+m)v?

vy = (Mm jv = velocity of the bullet
+m

FIG. P11.35
and block
Typ? — 1 _m 42
Fraction of K lost = -2 2 Az/”m _|_M
1mo M+m
For one of the crew,
2
> F =ma,: n:m: =mao?r
We require n=mg,s0 @; = \/g
r

NOW, Iia)i = Ifa)f

[500><108k -m? +150 x 65.0 kg x (100 )Z] 8 _[500x10® kg-m? +50 x 65.0 kg (100 m)>

. g 0kg m)” |y =[50 g-m” +50x65.0 kg(100 m)” (o
8

598><108\/7 o - 112\/7

5.32x 10

Now, |a,|=a)%r:1.26g= 123 m/s?

(@) Consider the system to consist of the wad of clay

and the cylinder. No external forces acting on this P

system have a torque about the center of the T M
cylinder. Thus, angular momentum of the system tz
is conserved about the axis of the cylinder. =~ --"---
Lf:Li: Ia):mvid

1
or [E MR? 4 mRz} 0 =mod FIG. P11.37
Thus, = Ldz .

(M +2m)R

(b) . Some mechanical energy changes to internal energy in this perfectly inelastic collision.
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*P11.38 (a) Let @ be the angular speed of the signboard when it is vertical.

1
1 2
~Iw*=Mgh 0
2
l(lMLZ)wZ = MglL(l —cos6)
203 2
3g9(1—cos8) Mg
SO= m ~
L ——» L_---~
v
3(9.80 m/s*)(1- cos25.0°)
- 0.50 m FIG. P11.38

SESET

(b) Iyw =IL;0; —muL represents angular momentum conservation

(lML2 +mL? )a)f = lMLZawl- —muoL
3 3
IMLw; —mv
@, ==
T (AMm)L
1(2.40 kg)(0.5 m)(2.347 rad/s)—(0.4 kg)(1.6 m/s)

) [4(2.40 kg)+0.4 kg (0.5 m) =

(c) Let hqy; = distance of center of mass from the axis of rotation.

2.40 kg )(0.25 m)+ (0.4 kg )(0.50
how = (240 kg)(025 m) + (04 kg) 050 m) _ o
240 kg +0.4 kg

Apply conservation of mechanical energy:
(1, 2| 2
(M+m)ghCM(1—cosz9):E EML +mL* |o

1 2 2
0= COS_l [1 _M}

2(M +m)ghcy
[4(2.40 kg) +0.4 kg](0.50 m)*(0.498 rads)’

=cos 41—
2(2.40 kg +0.4 kg)(9.80 m/s*)(0.2857 m)

-[557]
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P11.39  The meteor will slow the rotation of the Earth by the largest amount if its line of motion passes
farthest from the Earth’s axis. The meteor should be headed west and strike a point on the equator

tangentially.
Let the z axis coincide with the axis of the Earth with +z pointing northward. Then, conserving

angular momentum about this axis,
L= L =lo;=lo;+mvxr
2 ) . .

or =MR*0 (k ==MR?»k - mvRk
5 5

_ muvR  5mvu or
f72MR? 2MR
5(3.00x10" kg)(30.0x10° m/s)

_ _ -14
Cimers 2(5.98x10% kg)(6.37 x10° m) =507 xadfs

Thus, ®; -0

| |Aa)max| ~107" rad/s |

Section 11.5  The Motion of Gyroscopes and Tops

*P11.40  Angular momentum of the system of the spacecraft and the gyroscope is conserved. The gyroscope
and spacecraft turn in opposite directions.

0=lLo+,0,: —11w1:12§
_20 kgmz(_loo I'ad/S):5><105 kgmz(ﬂ)(ﬂradj
t 180°
5
_2602610°s o
2000

2
*P11.41 I:%MRZ :§(5.98 x10* kg)(6.37x10° m|" =9.71x10” kg-m”

2rrad
86 400 s

L=10=9.71x10¥ kg~m2[ j:7.06><1033 kg-m? /s

1
r=Lo, =(706x10% kg-m? J5) ——2 [ . ) Ld | T545x102 N'm
258 x10* yr | 365.25d )| 86 400's

Section 11.6  Angular Momentum as a Fundamental Quantity

6261x107 J.
P1142 (a) inzmvr S0 v= h v= 66261x10 " s ): 2.19x10° m/s

2 2mmr ~22(9.11x10 kg)(0529x 10 m
(b) K= %mvz = %(9.11 x10! kg)(219x10° m/s)2 =[218x107® ]
-34
© oL _ 1055x107 J-s -=[413x10 rad)s |
I

mr®(9.11x10° kg)(0.529 %107 m)
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Additional Problems

*P11.43

First, we define the following symbols:

I» = moment of inertia due to mass of people on the equator
I'r =moment of inertia of the Earth alone (without people)
o = angular velocity of the Earth (due to rotation on its axis)

T= 27 _ rotational period of the Earth (length of the day)
o

R =radius of the Earth
The initial angular momentum of the system (before people start running) is
L =Ipew; +Ipw; =(Ip +Ig)o,

When the Earth has angular speed o, the tangential speed of a point on the equatoris v, =R .
Thus, when the people run eastward along the equator at speed v relative to the surface of the Earth,
v v

=0, +v=Rw+v and their angular speed is ®p =—=w +— .

their tangential speed is v
ir tang p is v, R R

The angular momentum of the system after the people begin to run is

I
Ly =1Pwp+1Ew=1P(a)+%j+1Ew=(1P+1E)w+%’.

Since no external torques have acted on the system, angular momentum is conserved (L f= Li) P

giving (Ip + I )w +IPTU =(Ip +I)w;. Thus, the final angular velocity of the Earth is

I
® =, —#:a)i(l—x):,where x=
(Ip+Ig)R

Ipv
(IP +IE)Ra’i '
27

The new length of the day is T = 2n__ 2 _ L ~T;(1+x), so the increase in the length of the
o w(l-x) 1-x

2
dayis AT=T-T,~Tx=T, v . Since w; :Z—H,thismaybewrittenas ATzﬁ.
(Ip +Ig)Ro; T 27(Ip +1g)R

To obtain a numeric answer, we compute

I, =m,R? =[(5.5x10°)(70 kg) (637 x 10° m)’ =156x10% kg-m?

and
I, =§mER2 :§(5.98><1024 kg)(6.37x10° m)2 =9.71x10Y kg-m?.
2
8.64x10* s) (1.56 x10® kg-m?)(2.5 m/s
thus, o (BP0 [ ke B3 )

27](156 x10% +9.71x 107 ) kg -m?][6.37 x 10° m)
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(@)

(b)

(©

(d

(©)

(®)

(8)

(h)

Q)

Chapter 11 341
(K+US)A =(K+US)B

0+mgy 4 :%mv§+0
05 =289 =/2(98 n/5?)6.30 m =[ 111 s |

L=mvr=76kg11.1 m/s 6.3 m :| 532x10° kg-m? /s | toward you along the axis of the

channel.

The wheels on his skateboard prevent any tangential force from acting on him. Then no
torque about the axis of the channel acts on him and his angular momentum is constant. His
legs convert chemical into mechanical energy. They do work to increase his kinetic energy.
The normal force acts forward on his body on its rising trajectory, to increase his linear
momentum.

532x10° kg-m?*/s
L =mor = =|12.0 m/s
g m

(1<+ug)B+W=(1<+ug)C

%76 kg(11.1 m/s)* +0+W = %76 kg(12.0 m/s)” +76 kg 9.8 m/s® 0.45 m

W =544k -469 k] +335]=[1.08 k]

(K+Ug)C:(K+Ug)D
(

%76 kg(12.0 m/s)* +0 =%76 kgod +76 kg 9.8 m/s? 5.85m
vp =| 5.34 m/s

Let point E be the apex of his flight:
(K+ug) =(K+uy),

%76 kg(5.34 m/s)” +0=0+76 kg(9.8 m/s*)(y; - yp)

(ve _VD):

For the motion between takeoff and touchdown
1
Ye=y;+ vyit +ant2

234 m=0+534 m/st—49 m/s*t?

,_ 534z |5.34% + 4(4.9)(2.34)
- 9.8

=(1.43s

This solution is more accurate. In chapter 8 we modeled the normal force as constant while
the skateboarder stands up. Really it increases as the process goes on.
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P1145 (a)

(b)

(©

(d)

(©)

()

(8)

(h)

I = z miriz

o o o2

2
= 7md—
3

2d
I . 3 I
O OO0
I 1 I ) 1
£ O o9
[ 7 > 7 >

FIG. P11.45

Think of the whole weight, 3mg, acting at the center of gravity.

= rx P 40)xmg() - [mgai

r 3mgd |3g

I 7md* |7d

countercl

ockwise

o G2

28
7 up

The angular acceleration is not constant, but energy is.

(K+U)l.+AE:(K+U)f

0+(3m)g(§j+0:%1m)%+0

maximum kinetic energy =

(Ufz —

7md* [6g (M_g

3

72
) md3/2

e
1V 21
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P1146 (a) The radial coordinate of the sliding mass is 7(t) =(0.0125 m/s)t . Its angular momentum is

L=mr’o=(1.20 kg)(2.50 rev/s)(2z rad/rev)(0.0125 m/s)’t>

or L= (2.95 x107 kg~m2/s3)if2

The drive motor must supply torque equal to the rate of change of this angular momentum:

r= % (295107 kg-m*/s’)(2t)=| (0.00589 W)t

(b) 7, =(0.00589 W)(440 s) =

(c) & =10 =(0.00589 W)t(57 rad/s)=| (0.0925 W/s)t
(d) % =(0.0925 W/s)(440 s) =

(e) T= m——= mro® =(1.20 kg)(0.0125 m/s)t(57 rad/s)2 =|(3.70 N/s)t

440 s 440 s

(f) W= g gt="[(0.0925 W/s)tdt =%(0.092 5 J/s*)(440 5)* =[896 KT |

0

(8) The power the brake injects into the sliding block through the string is

%, =F-v=Tocos180°=—(3.70 N/s)t(0.0125 m/s)=—(0.0463 W/s)t = %
440 s 440 s
W, = [gdt=— [(0.0463 W/s)tdt
0 0

= _%(0.046 3 W/s)(440 s)” =[ 448 kJ

(h) S W =W +W, =896 k] - 4.48 k]:

Just half of the work required to increase the angular momentum goes into rotational kinetic
energy. The other half becomes internal energy in the brake.

P11.47 Using conservation of angular momentum, we have

L =L or (mruz)wu = (mrpz)a)p.

aphelion perihelion

Thus, (mru2 )Z:—“z(mrpz)j—p giving
a P

r 0.590 AU
1,0, :erp or v, =r—pvp :m(540 km/S)z 0.910 krn/S .

a
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P1148  (a)
(b)
P1149 (a)
(b)
(©
(d)

> 7 =MgR-MgR=[0] —
dL .
Zng,and since ) 7=0, L= constant.

Since the total angular momentum of the system is zero, the
| monkey and bananas move upward with the same speed |

at any instant, and | he will not reach the bananas | (until they

get tangled in the pulley). Also, since the tension in the rope is
the same on both sides, Newton’s second law applied to the
monkey and bananas give the same acceleration upwards.

FIG. P11.48

///
g
\ r, 1
y{ /
— ] //
m |
. +7>J/

|
|
|

7 =|r x F|=[t|F|sin180°=0

N

Angular momentum is conserved.

Ly =L,
mro = mr;v; R
[
o= %
r
\
mo® | m(r0)”

r 1’3

The work is done by the centripetal force in the FIG. P11.49

negative direction.
Method 1:

2 2|
(r,v;) ' m(r;0;) |
(r)’ 20) |,

i

wsz-df:—der’z—jm

7i

2 2
m(r;v; ;
2 r 7: 2 r

1

Method 2:

2
W=AK:lmv2 —lmv,-2 = lmvf(r’—z— J
2 2 2

Using the data given, we find



P11.50

P11.51

(b)

(b)

(©

(d

()

()
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Angular momentum is conserved: @

) m@——> - — o ©
ot w2 o
2 12 2
6muv; Ole| d Ole
o= —m—
Md +3md
@ (b)
The original energy is %mvl2 . - =
The final energy is FIG. P11.50
2 2,2 2,2
lla)zzl iMd2+md 36m*v; - 3m-v;d ‘
2 2112 4 J(Md+3md)* 2(Md+3md)
The loss of energy is
1 5 3m?vid mMuo?d
—mo: — =
2" 2(Md+3md) 2(Md+3md)

and the fractional loss of energy is

mMo?d2 | M
2(Md +3mdymo} | M+3m |

L; = myoq;ry; + myvyty; = va(%) \

L; =2(75.0 kg)(5.00 m/s)(5.00 m)

U P
Ll»=|3750 kg-mz/s| % >

1 1
K; :Emlvlzﬁzmzv%i \

1 2
K; = 2(5)(75.0 kg)(5.00 m/s)” = FIG. P11.51

2

Angular momentum is conserved: Ly =L; :| 3750 kg-m? / s |

L 3750 kg -m?
f &
V= = 100 m/s

" 2(mr,) 2750 kg) 250m) =[100 mjs

K= 2(%)(75.0 kg)(10.0 m/s)* =[7.50 kJ

W=K;-K;=[562K]]
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P11.52

*P11.53

0 ofufg] o Af
m=750kg

(b) K=2(%Mvz)= % C;’w %

m=750kg |l—r=d/2—]
I\

FIG. P11.52

© 1=t

L Mud
d __f _ _
@ s 2Mrf 2M (fi)

© K= 2(%1\40;) = M(20)* =[ 4o |
() W=K;-K =[3M0? |

The moment of inertia of the rest of the Earth is
2
I= %MRZ :§5.98 %10 kg(6.37x10° m)” =971x107 kg-m”.

For the original ice disks,

1 1

2
I= ZMrZ :52.30x1019 kg(6x10° m)” =414x10% kg-m”.

For the final thin shell of water,
2
I= %Mrz :%2.30 x10" kg(6.37x10° m)” =622x10” kg-m”.

Conservation of angular momentum for the spinning planet is expressed by [;w; =1

27
86400 s

5 4.14x10% 6.22x 10%
1+ 1+ w7 =1t ———=
86400 s 9.71x10 9.71x 10
S 622x107  414x10%
86400s 9.71x107 9.71x10¥

27
(86 400 s + 5)

(4.14 x10% +9.71 x 1037) = (6.22 x10% +9.71 x 1037)
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P11.54  For the cube to tip over, the center of mass (CM) must rise so that it
is over the axis of rotation AB. To do this, the CM must be raised a

distance of a(\/E - 1) .

Mga(ﬁ—l):%lwbewz A

From conservation of angular momentum,

2 :
ﬂmv= 8Ma @ >y
3 3
B

mo 4a/3
=

2Ma
1(8Ma* ) m*v?
- — = Maql2 -1 FIG. P11.54
2( 3 ]4M2u2 se(2-1)

0=

38a(v2-1)

m

P11.55  Angular momentum is conserved during the
inelastic collision.

Muva=Iw
Muva _3_v
I 8a

The condition, that the box falls off the table, is that
the center of mass must reach its maximum height

as the box rotates, &, =a+/2 . Using conservation

of energy:

%Ia)z =Mg(a 2 —a)

(a)

1(8Ma? )30\
3( 3 j(g) = Mg(av2 ~q FIG. P11.55

v? =%ga(\/§—l)

{5t

P11.56 (a) The net torque is zero at the point of contact, so the angular momentum before and after the
collision must be equal.

S

[lMRz)wi Z(lMszer(MRz)a) w=|—t
2 2

) - ‘ =2
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P11.57

(@) At—g— Mv MRo | Ro;
fomMg Mg | 3ug
(b) W= AK =L 102 =iMR2w,.2
2 18
2 2
iMgx =L MR 0? | x=RO0
18 18 ug

(See Problem 11.56)

ANSWERS TO EVEN PROBLEMS

P11.2

P11.4

P11.6

P11.8

P11.10

P11.12

P11.14

P11.16

P11.18

P11.20

P11.22

P11.24

P11.26

P11.28

P11.30

(a) 740 cm?; (b) 59.5 cm

(a) 168°; (b) 11.9° principal value;
(c) Only the first is unambiguous.

No; see the solution

(@) (7.00 N-m)k; (b) (11.0 N -m)k
see the solution

(220 kg-m*/s)k

see the solution

(a) 3.14 N-m; (b) (0.400 kg -m)v;
(c) 7.85 m/s2

(@) (+9.03 x10° kg~m2/s) south; (b) No;
(©0

103 N-m

(4.50 kg- mz/s) up

1.20 kg-m? / s perpendicularly into the
clock face

8.63 m/s*
, K
(@) 2 () L=
L +1, K, IL,+1I,

(a) 1.91 rad/s; (b) 2.53J; 6.44 ]

P11.32

P11.34

P11.36

P11.38

P11.40

P11.42

P11.44

P11.46

P11.48

P11.50

P11.52

P11.54

P11.56

8.54 rad/s

(@) 7.20x10° kg-m?/s; (b) 9.47 rad/s
12.3 m/s?

(a) 2.35 rad/s; (b) 0.498 rad/s; (c) 5.58°
131s

(a) 2.19x10° m/s; (b) 218 x107® J;
(c) 413 x10' rad/s

(a) 11.1 m/s; (b) 5.32x10° kg~m2/s;
(c) see the solution; (d) 12.0 m/s;

(e) 1.08 kJ; (f) 5.34 m/s; (g) 1.46 m;
(h) 1.43 s; (i) see the solution

(a) (0.00589 W)t; (b) 2.59 N-m;

(©) (0.0925 W/s)t; (d) 40.7 W;

(e) (3.70 NJs)t; (f) 8.96 kJ; (g) ~4.48 k]
(h) +4.48 k]

(@) 0; (b) 0; no

M
M+3m

6muv; ®)

@ N+ 3md’

(a) Mod ; (b) Mo?; (c) Mud ; (d) 20;
() 4Mv?; (f) 3BMv?

2 Jasalvz-1)



Q124

Q125

Q12.6

Q127

Q12.8

(@)

(b)

Q123

Static Equilibrium and Elasticity

ANSWERS TO QUESTIONS

When you bend over, your center of gravity shifts forward.
Once your CG is no longer over your feet, gravity contributes
to a nonzero net torque on your body and you begin to rotate.

Yes, it can. Consider an object on a spring oscillating back and
forth. In the center of the motion both the sum of the torques
and the sum of the forces acting on the object are (separately)
zero. Again, a meteoroid flying freely through interstellar space
feels essentially no forces and keeps moving with constant
velocity.

No—one condition for equilibrium is that ) F=0. For this to

be true with only a single force acting on an object, that force
would have to be of zero magnitude; so really no forces act on
that object.

Consider pushing up with one hand on one side of a steering wheel and pulling down
equally hard with the other hand on the other side. A pair of equal-magnitude oppositely-
directed forces applied at different points is called a couple.

An object in free fall has a non-zero net force acting on it, but a net torque of zero about its

center of mass.

No. If the torques are all in the same direction, then the net torque cannot be zero.

@)
(b)

Yes, provided that its angular momentum is constant.

Yes, provided that its linear momentum is constant.

A V-shaped boomerang, a barstool, an empty coffee cup, a satellite dish, and a curving plastic slide
at the edge of a swimming pool each have a center of mass that is not within the bulk of the object.

Suspend the plywood from the nail, and hang the plumb bob from the nail. Trace on the plywood
along the string of the plumb bob. Now suspend the plywood with the nail through a different point
on the plywood, not along the first line you drew. Again hang the plumb bob from the nail and trace
along the string. The center of gravity is located halfway through the thickness of the plywood
under the intersection of the two lines you drew.

349
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Q12.9

Q12.10

Q12.11

Q12.12

Q12.13

Q12.14

Q12.15

The center of gravity must be directly over the point where the chair leg contacts the floor. That
way, no torque is applied to the chair by gravity. The equilibrium is unstable.

She can be correct. If the dog stands on a relatively thick scale, the dog’s legs on the ground might
support more of its weight than its legs on the scale. She can check for and if necessary correct for
this error by having the dog stand like a bridge with two legs on the scale and two on a book of
equal thickness—a physics textbook is a good choice.

If their base areas are equal, the tall crate will topple first. Its center of gravity is higher off the incline
than that of the shorter crate. The taller crate can be rotated only through a smaller angle before its
center of gravity is no longer over its base.

The free body diagram demonstrates that it is necessary to have
friction on the ground to counterbalance the normal force of the
wall and to keep the base of the ladder from sliding. Interestingly
enough, if there is friction on the floor and on the wall, it is not
possible to determine whether the ladder will slip from the
equilibrium conditions alone.

FIG. Q12.12

When you lift a load with your back, your back muscles must supply the torque not only to rotate
your upper body to a vertical position, but also to lift the load. Since the distance from the
pivot—your hips—to the load—essentially your shoulders—is great, the force required to supply
the lifting torque is very large. When lifting from your knees, your back muscles need only keep
your back straight. The force required to do that is much smaller than when lifting with your back,
as the torque required is small, because the moment arm of the load is small—the line of action of
the load passes close to your hips. When you lift from your knees, your much stronger leg and hip
muscles do the work.

Shear deformation.

The vertical columns experience simple compression due to gravity acting upon their mass. The
horizontal slabs, however, suffer significant shear stress due to gravity. The bottom surface of a
sagging lintel is under tension. Stone is much stronger under compression than under tension, so
horizontal slabs are more likely to fail.
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SOLUTIONS TO PROBLEMS

Section 12.1  The Conditions for Equilibrium

P12.1 To hold the bat in equilibrium, the player must exert both a
force and a torque on the bat to make

2 E=>F=0and > r=0

> F,=0=F-10.0 N=0, or the player must exert a net

upward force of F=| 100 N

To satisfy the second condition of equilibrium, the player must
exert an applied torque 7, to make
> r=17,-(0.600 m)(10.0 N) =0. Thus, the required torque is

7,=+6.00 N-m or | 6.00 N -m counterclockwise

P12.2 Use distances, angles, and forces as shown. The conditions of
equilibrium are:

Y F,=0=|F +R,~F =0|
SF=0=[F-K 0]

dYr=0= Fyﬂcosﬁ—Fg(ﬁ)cosﬁ—FxﬂsinezO
2

P12.3 Take torques about P.
1 1
2.7 =—no[a+d}+m1g{z+d}+mbgd—m2gx=0

We want to find x for which n, =0.

(mig +myg)d +mg 5 _ (my +my)d+my 5

my8 ny

0.600 m

10.0N

FIG. P12.1

AN

FIG. P12.2

’71181 mbgl mg

7 d !
m_1| 2 pl | ™2
- 0 °
OA CG
A x f—

ng
np

- l

FIG. P12.3
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Section 12.2  More on the Center of Gravity
P124 The hole we can count as negative mass

myXy —MyXy
Xecg=—_
nmy —my

Call o the mass of each unit of pizza area.

P12.5 The coordinates of the center of gravity of piece 1 are S |400em|«——

x; =2.00 cm and y; =9.00 cm.

The coordinates for piece 2 are
180cm| 1

x, =8.00 cm and y, =2.00 cm.

The area of each piece is . 4,00 cm

‘<— 12.0cm —»‘

A, =720 cm? and A, =32.0 cm?.

o _ FIG. P12.5
And the mass of each piece is proportional to the area. Thus,

S mx, (720 em?)(2.00 cm)+(32.0 cm? )(8.00 cm)

- . =[385
™ 72.0 cm? +32.0 cm?

and

Sy, (720 cm?)(9.00 cm) +(32.0 em®)(2.00 cm)

yee = Sm; 104 cm? =[685em].
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P12.6 Let orepresent the mass-per-face area. A y

vertical strip at position x, with width dx and 4

(x-3.00)* 100m —

height has mass

o(x—3.00)%dx s (x — 3.00)%/9
9

The total mass is X

dm

—_ —
9 0 _:ljx 300m

3.00
M= (%J | (x2 —6x+ 9)dx FIG. P12.6

The x-coordinate of the center of gravity is

[xdm 1 30 300 1{x4 6 9xT'°°_6.75m

I _ - 20 =2 (3 —6x2 -2 _
9 E[o-x(x 3) dx—go_ I(x 6x +9x)dx— 9.00 —

9

4 3 2

Xcg =

0 0

P12.7 Let the fourth mass (8.00 kg) be placed at (x, y), then

(3.00)(4.00) + 11, (x)
Xcg =VU=
12.0+my,
12.0
(3.00)(4:00) +8.00(y)
Similarly, =0=
imilarly lde 12.0 +8.00

P12.8 In a uniform gravitational field, the center of mass and center of gravity of an object coincide. Thus,
the center of gravity of the triangle is located at x=6.67 m, y=2.33 m (see the Example on the
center of mass of a triangle in Chapter 9).
The coordinates of the center of gravity of the three-object system are then:
~Ymx; (6,00 kg)(5.50 m)+(3.00 kg)(6.67 m) +(5.00 kg)(-3.50 m)

X =
TS m, (6.00 +3.00 + 5.00) kg

355 kg-m
Xeg =————>—=|254m | and
7 140kg

> my; (600 kg)(7.00 m)+(3.00 kg)(2.33 m)+(5.00 kg)(+3.50 m)

Y& = S, 140 kg
66.5 kg-m

J/CG=W=
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Section 12.3  Examples of Rigid Objects in Static Equilibrium
P12.9 > r=0=mg(3r)-Tr
2T — Mgsin45.0°=0
_ Mgsin45.0° 1500 kg(g)sin45.0°

T
2 2
=(530)(9.80) N
T 5308

:g 38- _

FIG. P12.9

*P12.10  (a) For rotational equilibrium of the lowest rod about its point of support, > 7=0.

+12.0 g ¢ 3 cm—-m g4 cm m;=9.00¢g

(b) For the middle rod,

+m,2 cm—(12.0 g+9.0 g)5 cm=0

(c) For the top rod,

(525 g +12.0 g +9.0 g)4 cm—m36 cm =0

P12.11 Fg — standard weight 240cm | 26.0cm

)

Fg Fy

(13
Fg=F (E) FIG. P12.11
Fs T 100—(9—1}100— 8.33%
F; 12 -

*P12.12  (a) Consider the torques about an axis perpendicular T

to the page and through the left end of the
. H
horizontal beam.

F; — weight of goods sold
F,(0.240) = F;(0.260)

30.0°

Y

< 196 N
3 7 =+(Tsin30.0°)d — (196 N)d =0, 1% d

giving T=| 392 N |. FIG. P12.12

(b) From }"F, =0, H-Tc0s30.0°=0, or H=(392 N)cos30.0°=| 339 N to the right |.

From Y F, =0, V+Tsin30.0°-200 N=0, or V=196 N — (392 N)sin30.0°= @ .



P12.13

P12.14

(@)

(b)

(@)

(b)

Chapter 12
z FX = f — ]’lw = O r-IW
> F,=n, =800 N-500 N =0
Taking torques about an axis at the foot of the ladder,
(800 N)(4.00 m)sin30.0°+(500 N)(7.50 m)sin 30.0° 500 N
-1,,(15.0 cm)cos30.0°=0 Ny
Solving the torque equation,
800 N
[(4.00 m)(800 N)+(7.50 m)(500 N)]tan 30.0° f —
o= =268 N. A
15.0 m

Next substitute this value into the F, equation to find FIG. P12.13

f=n,=| 268 N | in the positive x direction.

Solving the equation )’ F, =0,

n, =| 1300 N | in the positive y direction.

In this case, the torque equation ) 7, =0 gives:
(9.00 m)(800 N)sin30.0°+(7.50 m)(500 N)sin30.0°—(15.0 m)(n,, )sin60.0°=0

or n, =421 N.

Since f=n,=421N and f = f., = un,, we find

_ fmax

421 N
=——=10.324].

Y E =f-n,=0 1)
Y F =ng—mg—myg=0 (2)

dr,= —mlg(éjcose—ngxcost9+nstin0=0

From the torque equation,

1 x
n, = {—mlg-k(zjng}cotﬁ

355

2
. [1 X ]
Then, from equation (1): f=n,= Em1g+ (f)ng cotd A T ng
and from equation (2): ng =\ (my +my)g FIG. P12.14

If the ladder is on the verge of slipping when x=d,

f|x:d _ (% + ’”Tzd)cot 0

ng my + 1,

then e
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P12.15

P12.16

P12.17

(@) Taking moments about P,

(Rsin30.0°)0 + (R cos 30.0°)(5.00 cm) — (150 N)(30.0 cm) =0
R=1039.2 N=1.04 kN

The force exerted by the hammer on the nail is equal in magnitude

and opposite in direction: / Pt

| 1.04 kN at 60° upward and to the right. 30.0°

(b) f =Rsin30.0°-150 N =370 N FIG. P12.15

n=Rcos30.0°=900 N

~
.

F, e = (370 N)i+(900 N)j

surface —

See the free-body diagram at the right.
When the plank is on the verge of tipping about point P, the j«<— 3.00m —
normal force 1, goes to zero. Then, summing torques about \

|
|
|
}
point P gives .

|

A l T }

i «d-> 4—»}

ZT =-mgd+Mgx=0 or x=2 4. mg n21.50m}
P |

M «~—— 600m—————>|

From the dimensions given on the free-body diagram, observe FIG. P12.16
that d =1.50 m Thus, when the plank is about to tip,

30.0 kg
= 150 m)=[0.643 m |.
x [70.01%]( m)

Torque about the front wheel is zero.
0 =(1.20 m)(mg) - (3.00 m)(2F,)
Thus, the force at each rear wheel is

F, =0.200mg = :

The force at each front wheel is then

FIG. P12.17

Ff:M: 441 kN |.
2
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P1218 > F =F -F +550N=0 1) 550N

F =n-mg=0
2F, 14

>

Summing torques about point O,

10.0m "
3 76 = F,(1.50 m) - (5.50 m)(10.0 m) = 0 l ¢
F
which yields F, =| 36.7 N to the left | «—'
I 1.50m
Then, from Equation (1), - J ..........
F,=36.7 N-550 N :| 31.2 N to the right n
FIG. P12.18
P1219 (a) T,sin420°=200N [T, =299N
(b) T, cos42.0°=T, T,=222N
P12.20  Relative to the hinge end of the bridge, the cable is attached Ry
horizontally out a distance x =(5.00 m)cos20.0°=4.70 m and
vertically down a distance y =(5.00 m)sin20.0°=1.71 m. The R & 2000 \
cable then makes the following angle with the horizontal: y
L[(120+1.71) m .
f=tan™'|————~—|=7LI°. :
i { 470 m \ 5.00 m \
7.00m \\ 196 kN
(@) Take torques about the hinge end of the bridge: \ 9.80 kKN

R,(0)+ R, (0)—19.6 kN(4.00 m)cos20.0°

~Tcos71.1°(1.71 m)+ T'sin71.1°(4.70 m) FIG. P12.20
~9.80 kN(7.00 m) cos 20.0°= 0

which yields T =

® Y F =0=R,-Tcos71.1°=0

or R, =(35.5KkN)cos 71.1°:| 11.5 kN (right) |

(©) > F,=0=R,~19.6 kN +Tsin711°-9.80 kN =0

Thus,

R, =29.4 kN - (355 kN)sin71.1°= -419 kN

=| 4.19 kN down
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*P12.21 (a)

(b)

(©

(d

We model the horse as a particle. The drawbridge will fall
out from under the horse.

% Re
1/tcosh, 3 14
2 0 8
a=mg--———=—c0s0,
g Tme? 20 0
3(9.80 m/'s?)cos20.0° mg

- =1 2
2500 2]

FIG. P12.21(a)

1 5
—Iw* =mgh
p @ Te

L
o

35 . 3(9.80 m/s?) )
S = 7(1—Sln90): W(l—stO):

The linear acceleration of the bridge is:

W | =

ml*w® = mg%é(l —sind)

Ry
1,1 % R
a=la=—(80 m)(1.73 rad/s”)=6907 m/s
The force at the hinge + the force of gravity produce the a mg
acceleration a=6.907 m/ s? at right angles to the bridge.

FIG. P12.21(c)
R, =ma, =(2000 kg)(6.907 m/s?)cos 250°=~4.72 kN

R, -mg=ma,

“ Ry =m(g+a,)=(2000 kg)[9.80 m/s” +(6.907 m/s?)sin250°|=6.62 kN

Thus: | R=(-472i +6.62j) kN |.

RX = 0 Ry
2(1 2 2 R«
a=w Eé = (1.56 rad/s)” (4.0 m)=9.67 m/s a ﬂ
R, —mg=ma l
“R, =(2000 kg)(9.8 m/s> +9.67 m/s?)=38.9 kN "3

_ FIG. P12.21(d)
Thus: | R, =38.9j kN




P12.22

*P12.23
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Call the required force F, with K, 400 N
components F, = Fcos15.0° and E—
F, =-Fsin15.0°, transmitted to the 3 / \

center of the wheel by the handles.

Just as the wheel leaves the ground, the
ground exerts no force on it.

distances

D> F,=0: Fcos15.0°-n, 1)
2. F,=0: —Fsin15.0°~400 N+, =0 (2) FIG. P12.22

Take torques about its contact point with the brick. The needed distances are seen to be:

b=R-8.00 cm=(20.0-8.00) cm=12.0 cm
a=vR*-b* =16.0 cm

(a) 2.,7=0: -Fb+F,a+(400 N)a=0, or
F[-(12.0 cm)c0s15.0°+(16.0 cm)sin15.0°]+ (400 N)(16.0 cm) =0

3 6400 N-cm

7.45 cm B

(b) Then, using Equations (1) and (2),

n, =(859 N)cos15.0°=830 N and
n,= 400 N +(859 N)sin15.0°= 622 N

o= e = [100K]

n
f=tan™ [—yJ = tan ' (0.749) = | 36.9° to the left and upward

nx
When x =x_,;,, the rod is on the verge of slipping, so | 20m !
——————p
no ! ! 37°
!
f=(fs) 0 = #s1=050m. —> )
|
- >
. fl" x 20m
From ) F, =0, n—Tcos37°=0,0r n=0.799T . YE,  VE
Thus, f=0.50(0.799T)=0.399T FIG. P12.23

From )’ F,=0, f+Tsin37°-2F, =0, or 0.399T - 0.602T - 2F, =0, giving T = 2.00F, .

Using > 7=0 for an axis perpendicular to the page and through the left end of the beam gives

—Fg X ppin — Fo (2.0 m) + [(ZFg)sin 37"](4.0 m) =0, which reduces to x,, = .
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< L _
P12.24 xX= % ‘ ‘
4
If the CM of the two bricks does not lie over the edge, then _
the bricks balance. ’

If the lower brick is placed % over the edge, then the

3L
second brick may be placed so that its end protrudes —
4 FIG. P12.24

over the edge.

P12.25  To find U, measure distances and forces from point A. Then, balancing torques,

(0.750)U = 29.4(2.25) U=882N
To find D, measure distances and forces from point B. Then, balancing torques,
(0.750)D = (1.50)(29.4) D=588 N
Also, notice that U=D+F,, so > E,=0.
*P12.26  Consider forces and torques on the beam.

> F =0: Rcos—-Tcos53°=0
ZFy =0: Rsin@+T'sin53°-800 N =0

> r=0: (T'sin53°)8 m— (600 N)x— (200 N)4 m=0
(@) Then T = 600 8Nx +.80§310\I m_ (93.9 N/m)x+125 N . As x increases from 2 m, this expression
msin

grows larger.
(b) From substituting back,

Rcos@=[93.9x +125]cos 53°
Rsind =800 N — [93.9x + 125] sin53°

Rsing tan53°+ 800 N

Dividing, tan =
Rcosd (93.9x +125) cos 53°

tané = tan53°( 32 —1)
3x+4

As x increases the fraction decreases and | @decreases | .

continued on next page
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(c) To find R we can work out R* cos® #+ R*sin® § = R?. From the expressions above for
Rcos®@ and Rsind,

R? =T? cos? 53°+T? sin? 53°~1 600 NT sin 53°+(800 N)*
R? =T? -1600T sin 53°+640 000
R? =(93.9x +125)> —1278(93.9x + 125) + 640 000

) 1/2
R= (8 819x2 — 96 482x + 495 678)

At x=0 this gives R=704 N. At x=2m, R=581 N.At x=8 m, R=537 N . Over the
range of possible values for x, the negative term —96 482x dominates the positive term

8819x2, and | R decreases | as x increases.

Section 12.4  Elastic Properties of Solids

P12.27 F = YA—L
A L

1

L= ELi (200)(9.80)(4.00)

TAY (0.200x10)(8.00x10") =[490 mm]

P12.28 (a) stress =

x|

F= (stress)ﬂ(%j2

2 2
F=(150x10° N/m?)sf 220X107m
2

F=|73.6 kN

(b) stress = Y(strain) = %

i

(stress)L; (1.50 x10® N/mz)(0.250 m)

Ay T T 15010 N =[230mm]

*P12.29 The definition of Y = stress

means that Y is the slope of the graph:

strain

_300x10° N/m?

003 =[10x10" N/m? |.

361
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P12.30  Count the wires. If they are wrapped together so that all support nearly equal stress, the number
should be

200kN

=100.
0.200 kN

Since cross-sectional area is proportional to diameter squared, the diameter of the cable will be

(1 mm)y/100 .

P12.31  From the defining equation for the shear modulus, we find Ax as

s (5.00x10 m)(20.0 N)

SA = -5
“SA (30%10° N/m?)[140 %10 m?) 2.38x10° m

or Ax=| 2.38x102 mm |

P12.32  The force acting on the hammer changes its momentum according to

mo; + f(At) =mv; S0 |f| - m‘UfA—t_U"

— 30.0 kg|-10.0 m/s—20.0 m/s
F- g / /S _g18x10° N.
0.110 s

Hence,

By Newton’s third law, this is also the magnitude of the average force exerted on the spike by the
hammer during the blow. Thus, the stress in the spike is:

3
E_BI8A0TN 970107 N/m?
A (0.0230m)

4 1

stress =

stress 1.97 x 107 N/m2

_ -5
Y  200x10" N/m? _'

P12.33  (a) F =(A)(stress) F

and the strain is: strain =

= 7(5.00x10"° m)’(400x10° N/m?)

=|3.14x10* N i """
A

(b) The area over which the shear occurs is equal to
the circumference of the hole times its thickness.
Thus,

A=(22)t=27(5.00 %10~ m})(5.00x10° m) FIG. P12.33
=157x10"* m?

So, F=(A)Stress =(1.57x 10~ m*)(4.00x10° N/m?)=[6.28x10" N .
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P12.35

*P12.36

*P12.37
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Let the 3.00 kg mass be mass #1, with the 5.00 kg mass, mass # 2. Applying Newton’s second law to
each mass gives:

ma=T-mg (1) and mya=myg—T (2)
where T is the tension in the wire.

T
Solving equation (1) for the acceleration gives: a=—-g,
my

and substituting this into equation (2) yields: o1 m 2§=myg-T.
my

Solving for the tension T gives

2mymag 2300 kg)(5.00 kg)(9.80 m/s?)
Com, +my 8.00 kg

T =36.8 N.

i

A(AL)
, 36.8 N)(2.00
aL=1ki (368 N)(2.00 m) ~=[0.0293 mm |.

YA (200x10" N/m?)7(2.00x10 m)

From the definition of Young’s modulus, Y =

, the elongation of the wire is:

Consider recompressing the ice, which has a volume 1.09V},.

—(2.00x10° N/m?}(-0.090
APZ_B(ﬂj: (200~ /m) )=| 165x10° N/m” |
v, 1.09
AV AV

i

(113%10° N/m? )1 m’

APV,
@ av=-2PY_ . = —=[-0.0538 m’
B 0.21x10" N/m

(b) The quantity of water with mass 1.03 x 10° kg occupies volume at the bottom

1.03x10° k
1m® -0.0538 m® =0.946 m’. So its density is ~———— -0 =] 109x10° kg/m” |.
m
() With only a 5% volume change in this extreme case, liquid water is indeed nearly

incompressible.
Part of the load force extends the cable and part compresses the column by the same distance A/:

_ YaAuAL | VAN

F
EA fs
e F 8500 N
- Yihs Ys{As © 7x10"2(016242-01614%)  20x101 £(0.0127)?
A s 4(3.25) + 4(5.75)

= 860x10* m
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Additional Problems

4
*P12.38  (a) The beam is perpendicular to the wall, since 3% + 4% =52, Then sin 6 = z

AE

(b) D Thinge = 0: +Tsin6(3 m)—250 N(10 m)=0

po_220Nm e SN
3 msin53.1°
T  104x10° N
© k  825x10° N/m

The cable is 5.126 m long. From the law of cosines, 4m 0126 m
4% =5126% + 32 - 2(3)(5.126) cos 0
32 151262 — 42 3m
2(3)(5.126) FIG. P12.38

sinag  sin51.2°

(d) From the law of sines, the angle the hinge makes with the wall satisfies =
5126 m 4m

sina =0.998 58
z 7'-hirlge =0
+T(3 m)sin51.2°~250 N(10 m)(0.998 58) =0

T=|107x10° N
1.07x10° N
e x=—— "~ _[0129 m
©) 8.25x10> N/m

32 +51292 — 42
O=cos 1222 "~ = _[511°
06 L

() Now the answers are self-consistent:

sinb51.1°
m
T(3 m)sin51.1°-250 N(10 m)(0.998 51) =0
T=1.07x10° N
x=0.1295m

P12.39  Let n, and np be the normal forces at the points of
support.

sina =5.129 m =0.998 51

Choosing the origin at point A with ' F, =0 and } 7 =0,
we find:

ny+np—(8.00x10*)g~(3.00x10*)g =0 and
~(3.00x10*)()15.0- (8.00 x 10*)(3)25.0 + 5(50.0) = 0

50.0 m

FIG. P12.39

The equations combine to give 1, =| 598 x10° N | and by =| 480 x10° N |.
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When the concrete has cured and the pre-stressing tension has been released, the rod presses in on
the concrete and with equal force, T,, the concrete produces tension in the rod.

(@) In the concrete: stress = 8.00 x 10° N/ m? =Y - (strain) = Y(i—Lj
L. (8:00x10° N/m?)(1.50 m)
Thus, AL = (stress)L; :( é ) -
Y 30.0x10° N/m

or AL=400x10"* m=[0.400 mm |.

T
(b) In the concrete: stress = A—2 =8.00x10° N/m2 , SO
c

T, =(8.00x10° N/m?)(50.0x10* m?)=

T2Li
ARYS

() For the rod: Z—Z = (i—Lijteel so AL =

R i teel

(4.00x10* N}(1.50 m)

AL = )=2.00><103m=

(150x107* m?)(20.0x10" N/m?

(d) The rod in the finished concrete is 2.00 mm longer than its unstretched length. To remove
stress from the concrete, one must stretch the rod 0.400 mm farther, by a total of .

(e) For the stretched rod around which the concrete is poured:
T, AL AL
A_l = ( iotal ]Ysteel or Tl = ( iotal ]ARYsteel
R i i
1, o[ 240x107° m (150x107* m?)(20.0x 10" N/m?)=[48.0 kN
! 150 m ' ' :
With ¢ as large as possible, nn; and n, will both be large. The 0 ‘fz
equality sign in f, < un, will be true, but the less-than sign
in f; < ugn,. Take torques about the lower end of the pole. v ! v g
1 " 1 ™
nylcos@+F,| —{ |cosf— f,(sin@=0
2 g ( 0 j f2 B 0
Setting f, =0.576n,, the torque equation becomes h
FIG. P12.41

1
1, (1 —0.576tan9)+EFg =0

Since n, >0, it is necessary that

1-0.576tan6<0

cotan@ >

! =1.736
6
-.0>60.1°

d 7.80 ft
f=——<———=19.00 ft
sin @ < sin60.1°
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P12.42  Call the normal forces A and B. They make angles o and S
with the vertical.

> F,=0: Asina-Bsinf=0
2. F,=0: Acosa-Mg+Bcosf=0

Asina

sin

Substitute B =

sina
Acosa+ Acosf =

sin

A(cosasin B +sina cos ) = Mgsin B
sin

sin(a +
( ) Acos 0 B cos o

Bsino

Asing

A= M

B _ Mg : sIno
sin(a + f) FIG. P12.42

P1243 (a) See the diagram. AR T

(b) If x=1.00 m, then =

|
3" 76 = (=700 N)(1.00 m)— (200 N)(3.00 m) - +l l oo N ¥ 800N
~(80.0 N')(6.00 m) 1 700N
fe—300m — l«—300m —>
+(T sin 60.0°)(6.00 m) =0

FIG. P12.43
Solving for the tension gives: T =| 343 N |.
From ) F, =0, R, =T c0s60.0°=| 171 N |.
From ZFy =0, R, =980 N-Tsin60.0°=| 683 N |.

©) If T =900 N:

> 76 = (~700 N)x — (200 N)(3.00 m)— (80.0 N)(6.00 m) +[(900 N)sin 60.0°|(6.00 m) =0.

Solving for x gives: x = .



P12.44

P12.45

(@) Sum the torques about top hinge:

ZrzO:

C(0)+D(0) +200 N cos30.0°(0)
+200 N sin30.0°(3.00 m)
~392 N(1.50 m)+ A(1.80 m)

+B(0)=0

Giving A =|160 N (right) |.

® Y F =0:

Chapter 12 367

T sin 30.0°
D A
T cos 30.0°
C :’
1.80m
‘ 392 N

A > \

\

~—150 m— <—1%&m—»}

FIG. P12.44

—C—200 N co0s30.0°+A=0
C=160N-173 N=-132 N

In our diagram, this means | 13.2 N to the right |.

(c) ZFy:O:+B+D—39Z N +200 Nsin30.0°=0

B+D =392 N-100 N =/ 292 N(up)

(d) Given C = 0: Take torques about bottom hinge to obtain

A(0) + B(0)+0(1.80 m) + D(0) — 392 N(1.50 m) + T sin 30.0°(3.00 m)+ T cos 30.0°(1.80 m) =0

588 N -m
soT = =| 192 N |.
(1.50 m+1.56 m)

Using > F, =) F, => r=0, choosing the origin at the left end
of the beam, we have (neglecting the weight of the beam)

> F,=R,-Tcos0=0,
>.F, =R, +Tsin0-F, =0,

and » 7 =—F (L+d)+Tsinf(2L+d)=0.

Solving these equations, we find:

F,(L+d
@ 1ot
sin (2L +d)
F,(L+d)coto
®) g 2L+d Y

F L
2L +d

-+ —>

| <tp—
b Tcos

8

~d+2—>

FIG. P12.45
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P12.46

P12.47

P12.48

z Tpoint 0= 0 giVES
30 . . 3¢
(T cos 25.0°) — on 65.0° |+ (T sin 25.0°) 4 s 65.0°

= (2000 N)(¢c0s 65.0°)+(1 200 N)(écos 65.0°j

From which, T=1465 N =| 1.46 kN

From ) F, =0,

H =T cos25.0°=1328 N(toward right) =

From sz =0,
V'=3200 N - Tsin25.0°= 2 581 N(upward) =

We interpret the problem to mean that the support at
point B is frictionless. Then the support exerts a force in
the x direction and

ZFX :FBX_FAXZO
F,, —(3000+10000)g =0

and 3" 7 =—(3000g)(2.00) - (10 000)(6.00) + Fy, (1.00) = 0.

These equations combine to give

F,, =Fs =| 647x10° N
Fy, =|127x10° N

n=M+m)g H=f
HmaX :fmaX = ILIS(mJ’_M)g
mgL .
dr,=0= —,os 60.0°+Mgx cos 60.0°— HL sin 60.0°
x _Htan60.0° m _ p (m+M)tan60.0° m
L~ Mg 2M M 2M

3 o 1_
= w,tan60.0°- <[ 0.789 |

2000 N

FIG. P12.46

1 (10000 kg)g
En, <T A
1.00 m
l (3000 kg)g
Fg, =B
‘42.00 m»

‘4— 6.00 m —

FIG. P12.47

AN

Mg

mg

n
\ 60.0°

A f

FIG. P12.48




P12.49

P12.50

P12.51

From the free-body diagram, the angle T makes with the rod is
0 =60.0°+20.0°=80.0°

and the perpendicular component of T is T sin80.0°.
Summing torques around the base of the rod,

Z‘l':OZ

~(4.00 m)(10 000 N))cos 60°+T(4.00 m)sin80°= 0

(10 000 N') cos 60.0° .
T- : _[5.08x10° N
sin80.0°
> F,=0: Fy-Tcos20.0°=0

Fy; =T c0s20.0°=| 477 x10° N

sz =0: F, +Tsin20.0°-10000 N=0

and F, =(10000 N)—Tsin20.0°= | 8.26x10> N

Choosing the origin at R,

(1) Y F,=+Rsin15.0°-Tsind=0
(2) D F,=700-Rcos15.0°+T cos@ =0
(3) 3 r=-700c0s6(0.180)+T(0.0700)=0

Solve the equations for 8

from (3), T =1800cos & from (1), R = 000 sin#cosd

sin15.0°

1800 sin & cos #cos15.0°
sin15.0°

or cos® 0+0.388 9 —3.732sin fcos 0 = 0

Squaring, cos* @—0.8809 cos +0.01013 =0

Then (2) gives 700 — +1800cos? =0

Let u=cos®@ then using the quadratic equation,
1=0.01165 or 0.869 3

Only the second root is physically possible,

O=cos'.,0.8693 =
~T=|168x10°> N and R=|234x10°N

Choosing torques about R, with > 7=0
—%(350 N)+(T sin1z.oo)(%j ~ (200 N)L=0.

From which, T = .

Let R, = compression force along spine, and from ) F, =0

R, =T, =Tcos120°=[ 265 kN |.
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T

10 000 N

Fv

FIG. P12.49

FIG. P12.50

200 N
350 N

FIG. P12.51
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P12.52

P12.53

(@)

(b)

(@)

(b)

Just three forces act on the rod: forces perpendicular to the
sides of the trough at A and B, and its weight. The lines of
action of A and B will intersect at a point above the rod.
They will have no torque about this point. The rod’s weight
will cause a torque about the point of intersection as in
Figure 12.52(a), and the rod will not be in equilibrium
unless the center of the rod lies vertically below the
intersection point, as in Figure 12.52(b). All three forces
must be concurrent. Then the line of action of the weight is
a diagonal of the rectangle formed by the trough and the
normal forces, and the rod’s center of gravity is vertically
above the bottom of the trough.

FIG. P12.52(a)

In Figure (b), AO c0s30.0°= BO cos60.0° and

— — — — 2 o
I2=A0° +BO” =A0" + AO"| <5 0
cos” 60.0°

— L

A - -
'1 + c0s?30.0°
cos?60.0°

_AO 1 3 S FIG. P12.52(b)
So COSB_T_E and 0= .

L
2

Locate the origin at the bottom left corner of the cabinet w =60 cm
and let x = distance between the resultant normal force and
the front of the cabinet. Then we have

D F, =200c0s37.0°-un =0 (1)

> F, =2005in37.0°1 400 =0 @)

(200 N) sin 37°
(200 N) cos 37°

3" 7 =1(0.600 — x) — 400(0.300) + 200 sin 37.0°(0.600)

—200c0s37.0°(0.400)=0 (3) 400N | #
el
From (2),  n=400-200sin37.0°=280 N ——h
72.2-120 + 280(0.600) — 64.0 (300 1) sin 37°
From (3), x= 280 (300 N) cos 37°
400N | 1
x=| 20.1 cm | to the left of the front edge
: iE
f
_ 200c0837.0° ‘_m”_
From (1), Hi = 2—80 =10.571

FIG. P12.53
In this case, locate the origin x =0 at the bottom right

corner of the cabinet. Since the cabinet is about to tip, we
can use Y =0 to find h:

120
— 400(0.300) — (300 c0s 37.0°)h = 0 he—2 _ _T050Im
2, 7=400(0.300)( ) 300 c0s37.0°



P12.54

P12.55

(@), (b) Use the first diagram and sum the torques about the lower

(©

@)

(b)

front corner of the cabinet.
Z 7=0= —F(1.00 m)+ (400 N)(0.300 m)=0
L (400 N)(0.300 m)
1d F= =|120 N
yielding o0
ZFX=O:>—f+120N:O, or f=120N
ZFy:O:>—4OON+n:O, o n=400 N

120 N
Thus, He =£=m= 0.300 |.

Apply F’ at the upper rear corner and directed so
0+ ¢=90.0° to obtain the largest possible lever arm.

0= tan_l( 100 m ) =59.0°
0.600 m

Thus, ¢ =90.0°-59.0°=31.0°.

Sum the torques about the lower front corner of the
cabinet:

—F’\/(l.OO m)® +(0.600 m)* + (400 N)(0.300 m)=0
so  Fr=t2ONm_ ey
1.17 m
Therefore, the minimum force required to tip the cabinet is

Chapter 12
0.300 m
G

400 N ‘

o |

A f

0.600 m

FIG. P12.54

| 103 N applied at 31.0° above the horizontal at the upper left corner |

We canuse ) F, =) F, =0 and ) r=0 with pivot point at

the contact on the floor.
Then ) F, =T-pumn=0,
Y. F, =n-Mg-mg=0,and

> 7 =Mg(Lcos8)+ mg(%cos 9) ~T(Lsin8)=0

Solving the above equations gives

m( 2ugsinf—cosd
2| cos@—pu,sing

M=

L2

n

f

FIG. P12.55
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This answer is the maximum vaue for M if u, <cot8.If u, > cot@, the mass M can increase
without limit. It has no maximum value, and part (b) cannot be answered as stated either. In

the case u, <cot#, we proceed.

At the floor, we have the normal force in the y-direction and frictional force in the x-

direction. The reaction force then is

R= \/nz +(um) = (M+m)g\/1+,uf

At point P, the force of the beam on the rope is

F= \/TZ +(Mg)* = g\/MZ + p2 (M +m)*
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P1256 (a)

(b)

(©

The height of pin B is
(10.0 m)sin30.0°=5.00 m.

The length of bar BC is then

BC = w =7.07 m.
sin 45.0°

FIG. P12.56(a)

Consider the entire truss:

>F,=n, ~1000 N+nc =0
> 7,4 =—(1000 N)10.0 cos 30.0%+1[10.0 cos 30.0°+7.07 cos 45.0°] = 0

Which gives .

Then, | 14, =1000 N -1, =366 N |.

Suppose that a bar exerts on a pin a force not along the
length of the bar. Then, the pin exerts on the bar a
force with a component perpendicular to the bar. The
only other force on the bar is the pin force on the other

end. For ZF =0, this force must also have a

component perpendicular to the bar. Then, the total FIG. P12.56(b)

torque on the bar is not zero. The contradiction proves
that the bar can only exert forces along its length.

Joint A: Cas
ZFy =0: -C 45 sin30.0°+366 N =0, A
TAC
so Cup=|732N Na=366N
ZFX = 0 : _CAB Ccos 30‘00+TAC = 0 1000 N

T,c =(732 N)cos30.0°=] 634 N

Joint B:

,,,,,,,,,,,, l B
Cag=732N Cac

FIG. P12.56(c)

D F,=0: (732 N)cos30.0°~Cpc c0s45.0°=0

(732 N)cos30.0°
Cpr=———""——=|897N
BC cos45.0°



P12.57  From geometry, observe that

For the left half of the ladder, we have

> F =T-R, =0 @
Y F, =R, +n,—686 N=0 ©)

Chapter 12 373

cosf = % and 0="75.5°

3 T4op =686 N(1.00 c0s 75.5°) + T(2.005in 75.5°)
—11 4 (4.00c0s75.5%) =0 €

FIG. P12.57

For the right half of the ladder we have

> F =R, -T=0

YF, =ng—-R, =0 4)
Tiop =Mp(4.00c0s75.5°)-T(2.00sin75.5°) =0 5
top B

Solving equations 1 through 5 simultaneously yields:

@)
(b)

(©

P12.58 (a)

(b)

(©

T=133 N

n, =429 N and ng =257 N
R, =133 N and R, =257 N

The force exerted by the left half of the ladder on the right half is to the right and
downward.

Zmixi

XcG = S m;
1
(1000 kg)10.0 m+ (125 kg)0 + (125 kg)0 + (125 kg)20.0 m

- 1375kg :

(1 000 kg)l0.0 m+ (125 kg)Z0.0 m+ (125 kg)Z0.0 m+ (125 kg)O
Ycc =
1375 kg

-[105m]

By symmetry, xcg =
There is no change in yg =

10.0 m-9.09 m
Ocg = (WJ =[0.114 m/s

P12.59  Considering the torques about the point at the bottom of the bracket yields:

(0.050 0 m)(80.0 N)~ F(0.0600 m)=0 so [ F=66.7 N |.
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P12.60  When it is on the verge of slipping, the cylinder is in equilibrium. P A
2 F.=0: fi=ny=pm and  fy = pgny Lﬂ
Y. F,=0: P+ny+f=F,

Se-0: P=fiif,
= fi
As P grows so do f; and f, “11
1 n n, n
Therefore, since u, =—, f;=— and fo=—2=-L1
T2 2 24 FIG. P12.60
n n, ny 3
then P+n;+—L=F, (1 and P=-"+"1L="pn (2
H=F () 1=t @
So P+En1 =F becomes P+§(EPJ:F or §P:F
4 § 4\3 § 3 §
Therefore, P = EF
8 ¢
% L
’ : A i
P12.61 (a) |F|=k(AL), Young's modulus is Y = £-=
1 A(AL)
Thus, ng and k= ﬁ
A L
AL AL AL 2
AL
(b) wz—dexz—j(—kx)dxzﬁjxdxz ya 8L~
0 0 L; 2L;

P12.62 (a) Take both balls together. Their weight is 3.33 N
and their CG is at their contact point.

ZFy=O:+PZ—3.33N=O P,=|333N
37,4 =0: =P;R+ P,R—3.33 N(R+ Rcos45.0°)
+P(R+2Rco0s45.0°)=0
Substituting,
—PR+(3.33 N)R-(3.33 N)R(1 + cos 45.0°)
+P,R(1+2c0s45.0°)=0
(3.33 N)cos 45.0°= 2P, cos45.0°

P, : so P, : FIG. P12.62(a)

(b) Take the upper ball. The lines of action of its weight, of P,
and of the normal force n exerted by the lower ball all go
through its center, so for rotational equilibrium there can be
no frictional force.

P2

> F,=0:ncos45.0°-P, =0 n cos 45.0° \

1.67 N
= =236 N

sz =0: nsin45.0°-1.67 N =0 gives the same result

nsin 45.0°

FIG. P12.62(b)



P12.63

P12.64

P12.65

Chapter 12 375

2. F,=0: +380 N-F, +320 N=0 |« 2.00m >
F, =700 N ST
——
Take torques about her feet:
Eq 129 /
> r=0: -380 N(2.00 m)+(700 N)x+(320 N)0=0 —
x=|109 m
FIG. P12.63

The tension in this cable is not uniform, so this becomes a fairly difficult problem.

dL F

L YA

At any point in the cable, F is the weight of cable below that point. Thus, F = ugy where yis the mass
per unit length of the cable.

Ll

Then, Ay = J.(dTL)dy = ‘u_g J. ydy — l Iung
0 0

(2.40)(9.80)(500)

Ayl
2 (2.00 x 10" )(3.00 x1074

):0.0490m:

(10.0-1.00) m/s

Av

B 3O 1500105 N/m? |
A (0.010 m)(0.100 m)

(b) stress =

(c) . This is more than sufficient to break the board.
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P12.66  The CG lies above the center of the bottom. Consider a disk of water at height iy above the bottom.
Its radius is

25.0 cm+(35.0 - 25.0 cm)| — 72— | =250 cm+ 2
0.0 cm 3

2

2
dy and its mass is ﬂp(ZS.O cm+z) dy. The

2
Its area is 72'(25.0 Cm+%) . Its volume is 7[(25.0 Cm+%j 3

whole mass of the water is
30.0 cm 30.0 cm

50.0y  y?
M= [dm= 625 Z_\d
Jin-"] ﬂp[ 2 +9jy

5009 2 "
M:ﬁp{625y+ ‘63/ +y—}

27
0

2 3
M = 7p| 625(30.0) + 50.0(30.0)" _ (30.0)
6 27
M= 7[(1073 kg/Cm3 )(27 250 Cm3) —856 kg

The height of the center of gravity is

30.0 cm
ydm
Yeg = -
y=0 M
30.0 cm 2 3
50.0 d
=7p _[ 625y+—y+y— 4
0 3 9 M
30.0 cm

2 9 36

=

_p {625y2 L 500¢° y‘*}

0

_ 7p| 625(30.0)> . 50.0(30.0) N (30.0)*
M 2 9 36

-3 3
_ ”(10 ;g/ @ )[453 750 cm4]

1.43x10° kg-cm
= =| 16.7 cm
Yea 85.6 kg




P12.67

P12.68

Let Orepresent the angle of the wire with the vertical. The radius of

the circle of motion is r =(0.850 m)sin .
For the mass:

2
v

>.F, =ma, =m—=mre
r

2
T'sin 6 =m|[(0.850 m)sin f]o*
Further, %: Y -(strain) or T = AY -(strain)

Thus, AY -(strain) = m(0.850 m)w?, giving

Chapter 12 377

FIG. P12.67

#(3.90x10* m)’(7.00x 10" N/m?)(1.00x10°?)

AY - (strain)
w= =
m(0.850 m)

For the bridge as a whole:
> 7,4 =1,4(0)—(13.3 kN)(100 m)+7;(200 m)=0
(13.3 kN)(100 m)
= =|6.66 kN
S0 T 200 m

2. F,=n,—133kN+np =0 gives

na =133 kN -ng =[ 6.66 kN |

At Pin A:
2. F, =—F455in40.0°+6.66 KN =0 or
B = %éd;ﬂ 10.4 kN (compression) |

D F. =F,c —(10.4 kN)cos40.0°=0 so
Fuc =(10.4 kN)cos40.0°=| 7.94 kN (tension) |

At Pin B:
z Fy =(10.4 kN)sin 40.0°—Fp- sin 40.0°=0

Thus, Fzc :| 10.4 kN (tension) |

D F, =F,5 c0s40.0°+Fpc cos40.0°~Fgp, =0
Fzp = 2(10.4 kN)cos 40.0°:| 15.9 kN (compression) |

By symmetry: | Fpg = F45 =10.4 kN (compression) |

| Fpe = Fge =10.4 kN (tension) |

and | Fre =F4c =7.94 kN (tension) |

We can check by analyzing Pin C:

SF, =+7.94kN-7.94 kN =0 or 0=0
> F, =2(10.4 kN)sin40.0°-133 kN =0

which yields 0=0.

(1.20 kg)(0.850 m)

Fag=10.4 kN

10.4 kKN 10.4 kN

40.0° 40.0°

7.94 kN 7.94 kN

13.3 kN

FIG. P12.68
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P12.69

Member AC is not in pure compression or tension. It Sac ‘ A Sac
' 250m —— |«— 25.0m ——
also has shear forces present. It exerts a downward !
force S 4c and a tension force F4- onPinAandon  Fac ‘ ‘ Fac
Pin C. Still, this member is in equilibrium. A l ¢
> 1,=0: —(14.7 kN)(25.0 m) +5/,(50.0 m) =0

or SLc=735kN

SF, =Sac ~147 KN +7.35 KN =0= S, =7.35 kN /V\
Then S, =S¢ and we have proved that the loading by the car A E

is equivalent to one-half the weight of the car pulling downon T

each of pins A and C, so far as the rest of the truss is concerned. " 250m

For the Bridge as a whole: > 7, =0:

—(14.7 kN)(25.0 m)+n; (100 m)=0
ng =3.67 kN
> F, =n,-147 kN+3.67 kN =0

At Pin A:
sz =-7.35kN+11.0 kN - F,;sin30.0°=0

| F,p =7.35 kN (compression)
D> F, =F,c —(7.35 kN)c0s30.0°=0
| F,c =6.37 kN (tension) |

At Pin B:
z Fy =—(7.35 kN)sin 30.0°-F5. sin60.0°=0

| Fyc =4.24 kN (tension) |
> F, =(7.35 kN)cos 30.0°+(4.24 kN) cos 60.0°~ Fzp, =0
| Fyp =8.49 kN (compression) |

At Pin C:
F =(4.24 kN)sin 60.0°+F~ sin 60.0°-7.35 kN =0
y CD

| Fop =4.24 kN (tension) |
> F, =-6.37 kN — (4.24 kN) cos 60.0°+(4.24 kN)cos 60.0°+F; =0
| Fop =6.37 kN (tension) |

At Pin E:
sz = —Fpp sin30.0°+3.67 kN =0

| Fpr =7.35 kN (compression) |

or Y F, =-6.37 kN - Fp c0s30.0°=0
which gives Fpp =7.35 kN as before.

75.0m ne
14.7 kN
7.35 kN

777777777 Fep
3W 60.0°
7.35 kN Fac

FDE
30.0°
6.37 kN
3.67kN
FIG. P12.69



P12.70

P12.71

*P12.72

*P12.73
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1) ph=lw
2)  p=Muocy
If the ball rolls without slipping, Rw = vy
Sop=te_ 1o 1 _|2p
p Moy MR |5 FIG. P12.70
(@) If the acceleration is a4, we have P, =ma and L

P, +n—F, =0. Taking the origin at the center of

gravity, the torque equation gives

P,(L-d)+Ph-nd=0.

,,,,,, *,
7

Solving these equations, we find

I h
g a
Py — _(d__j .

ah (200 m/s?)(150 m)

(b) Iny:O,thend:E— 550 m/s? =.

(c) Using the given data, P, =-306 N and P, =553 N.

FIG. P12.71

Thus, | P =(~306i +553j) N |.

When the cyclist is on the point of tipping over forward,
the normal force on the rear wheel is zero. Parallel to the
plane we have f; —mgsin@=ma. Perpendicular to the

plane, n; —mgcos@=0. Torque about the center of mass:

mg(0)— (105 m)+1,(0.65 m)=0. /i

Combining by substitution, FIG. P12.72

1,0.65 m 0.65 m
a=f; —mgsin@=——"———mgsin@=mgcosd —-mgsing
ma=homg 105m oo T g m S
a= g(cos 20°%— sin ZOOJ =| 235 m/s2
When the car is on the point of rolling over, the normal
force on its inside wheels is zero.
2. F,=ma,;: n-mg=0 .
2
mo
> F,o=ma,: f= R
Pra—
d fmg
Take torque about the center of mass: fh— ne = 0.
le d >l
< ™

2
max g,

|
mgd 0 ’ B gdR
2 max =\ "op FIG. P12.73

A wider wheelbase (larger d) and a lower center of mass (smaller /) will reduce the risk of rollover.

Then by substitution
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ANSWERS TO EVEN PROBLEMS

P12.2

P12.4

P12.6

P12.8

P12.10

P12.12

P12.14

P12.16

P12.18

P12.20

P12.22

P12.24

P12.26

P12.28

P12.30

P12.32

P12.34

P12.36

P12.38

F,+R,-F, =0; F, =R, =0;

1 .
F,lcos6- Fg(ajcose— F./sinf=0

see the solution
0.750 m
(2.54 m, 4.75 m)

(@) 9.00 g; (b)52.5¢g; (c)49.0 g
(a) 392N; (b) (339 +0j) N
(@ f= {%+m2Tgx}cot6;
”g:(m1+m2)8}(b)/1: ——

see the solution; 0.643 m

36.7 N to the left; 31.2 N to the right

(a) 35.5 kN; (b) 11.5 kN to the right;
(c) 4.19 kN down

(a) 859 N; (b) 104 kN at 36.9° above the
horizontal to the left

3L

4

(a) see the solution; (b) #decreases;
(c) R decreases

(@) 73.6 kN; (b) 2.50 mm
~1cm
9.85x107°

0.029 3 mm

(a) -0.0538 m®; (b) 1.09x10° kg/m?;
(c) Yes, in most practical circumstances

(a) 53.1° (b) 1.04 kN; (c) 0.126 m, 51.2°;
(d) 1.07 kN; (e) 0.129 m, 51.1°; (f) 51.1°

(% + mTzd) cotd

P12.40

P12.42

P12.44

P12.46

P12.48

P12.50

P12.52

P12.54

P12.56

P12.58

P12.60

P12.62

P12.64

P12.66

P12.68

P12.70

P12.72

(a) 0.400 mm; (b) 40.0 kN; (c) 2.00 mm;
(d) 2.40 mm; (e) 48.0 kN

sina

sin 8
tA: Mg——————; atB: Mg————
? § a gsin(a+/3)

sin(a + )
(a) 160 N to the right;

(b) 13.2 N to the right; (c) 292 N up;
(d) 192N

146 kN; (1.33i + 2.58j) kN

0.789
T=168 kN; R=2.34kN; §=21.2°
(a) see the solution; (b) 60.0°

(@) 120 N; (b) 0.300; (c) 103 N at 31.0° above
the horizontal to the right

(a), (b) see the solution;
(C) CAB = 732 N, TAC :634 N, CBC :897 N

(@) (9.09 m, 10.9 m); (b) (10.0 m, 10.9 m);
(c) 0.114 m/s to the right

3
gl

(a) P, =167 N; P, =333 N; P, =167 N;
(b) 2.36 N

490 cm

16.7 cm above the center of the bottom
TBC = 104 kN, CBD = 159 kN,

CDE = 104 kN, TDC = 104 kN,

TEC = 794 kN

2R
5

2.35 m/s2



Q133

Q134

Q135

Q13.6

Universal Gravitation

ANSWERS TO QUESTIONS

Q131 Because g is the same for all objects near the Earth’s surface.
The larger mass needs a larger force to give it just the same
acceleration.

Q13.2  Toa good first approximation, your bathroom scale reading is
unaffected because you, the Earth, and the scale are all in free
fall in the Sun’s gravitational field, in orbit around the Sun. To
a precise second approximation, you weigh slightly less at
noon and at midnight than you do at sunrise or sunset. The
Sun’s gravitational field is a little weaker at the center of the
Earth than at the surface subsolar point, and a little weaker still
on the far side of the planet. When the Sun is high in your sky,
its gravity pulls up on you a little more strongly than on the
Earth as a whole. At midnight the Sun pulls down on you a
little less strongly than it does on the Earth below you. So you
can have another doughnut with lunch, and your bedsprings
will still last a little longer.

Kepler's second law states that the angular momentum of the Earth is constant as the Earth orbits
the sun. Since L =mar, as the orbital radius decreases from June to December, then the orbital speed
must increase accordingly.

Because both the Earth and Moon are moving in orbit about the Sun. As described by

Fyravitational = 14 the gravitational force of the Sun merely keeps the Moon (and Earth) in a

centripetal /
nearly circular orbit of radius 150 million kilometers. Because of its velocity, the Moon is kept in its
orbit about the Earth by the gravitational force of the Earth. There is no imbalance of these forces, at

new moon or full moon.

Air resistance causes a decrease in the energy of the satellite-Earth system. This reduces the diameter
of the orbit, bringing the satellite closer to the surface of the Earth. A satellite in a smaller orbit,
however, must travel faster. Thus, the effect of air resistance is to speed up the satellite!

Kepler's third law, which applies to all planets, tells us that the period of a planet is proportional to
r¥/% . Because Saturn and Jupiter are farther from the Sun than Earth, they have longer periods. The
Sun’s gravitational field is much weaker at a distant Jovian planet. Thus, an outer planet experiences
much smaller centripetal acceleration than Earth and has a correspondingly longer period.
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Q13.7

Q13.8

Q13.9

Q13.10

Q13.11

Q13.12

Q13.13

Q13.14

Q13.15

Universal Gravitation

Ten terms are needed in the potential energy:
U=Up +Upz +Upyy +Ups + Uz + Uy +Uos +Ugy +Uzs +U 5.

Y N?-N
With N particles, you need > (i—-1)= 5 terms.
i-1

No, the escape speed does not depend on the mass of the rocket. If a rocket is launched at escape

speed, then the total energy of the rocket-Earth system will be zero. When the separation distance

becomes infinite (U =0) the rocket will stop (K =0). In the expression %mv2 _GMgm _ 0, the mass
r

m of the rocket divides out.

It takes 100 times more energy for the 10° kg spacecraft to reach the moon than the 10° kg
spacecraft. Ideally, each spacecraft can reach the moon with zero velocity, so the only term that need
be analyzed is the change in gravitational potential energy. U is proportional to the mass of the
spacecraft.

The escape speed from the Earth is 11.2 km/s and that from the Moon is 2.3 km/s, smaller by a factor
of 5. The energy required—and fuel—would be proportional to v, or 25 times more fuel is required
to leave the Earth versus leaving the Moon.

The satellites used for TV broadcast are in geosynchronous orbits. The centers of their orbits are the
center of the Earth, and their orbital planes are the Earth’s equatorial plane extended. This is the
plane of the celestial equator. The communication satellites are so far away that they appear quite
close to the celestial equator, from any location on the Earth’s surface.

For a satellite in orbit, one focus of an elliptical orbit, or the center of a circular orbit, must be located
at the center of the Earth. If the satellite is over the northern hemisphere for half of its orbit, it must
be over the southern hemisphere for the other half. We could share with Easter Island a satellite that
would look straight down on Arizona each morning and vertically down on Easter Island each
evening.

The absolute value of the gravitational potential energy of the Earth-Moon system is twice the
kinetic energy of the moon relative to the Earth.

In a circular orbit each increment of displacement is perpendicular to the force applied. The dot
product of force and displacement is zero. The work done by the gravitational force on a planet in an
elliptical orbit speeds up the planet at closest approach, but negative work is done by gravity and
the planet slows as it sweeps out to its farthest distance from the Sun. Therefore, net work in one
complete orbit is zero.

Every point g on the sphere that does not lie q

along the axis connecting the center of the

sphere and the particle will have companion

point g for which the components of the Fpq
gravitational force perpendicular to the axis
will cancel. Point q” can be found by rotating
the sphere through 180° about the axis. The
forces will not necessarily cancel if the mass is
not uniformly distributed, unless the center of
mass of the non-uniform sphere still lies along FIG. Q13.15
the axis.

q’ (behind the sphere)
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Speed is maximum at closest approach. Speed is minimum at farthest distance.

GMym
R%
where My and Ry are the mass and radius of planet X, respectively, and m is the

Set the universal description of the gravitational force, F, = , equal to the local description,

F ¢ = MAgravitational

mass of a “test particle.” Divide both sides by m.

The gravitational force of the Earth on an extra particle at its center must be zero, not infinite as one
interpretation of Equation 13.1 would suggest. All the bits of matter that make up the Earth will pull
in different outward directions on the extra particle.

Cavendish determined G. Then from g = %' one may determine the mass of the Earth.

The gravitational force is conservative. An encounter with a stationary mass cannot permanently
speed up a spacecraft. Jupiter is moving. A spacecraft flying across its orbit just behind the planet
will gain kinetic energy as the planet’s gravity does net positive work on it.

Method one: Take measurements from an old kinescope of Apollo astronauts on the moon. From the
motion of a freely falling object or from the period of a swinging pendulum you can find the
acceleration of gravity on the moon’s surface and calculate its mass. Method two: One could
determine the approximate mass of the moon using an object hanging from an extremely sensitive
balance, with knowledge of the position and distance of the moon and the radius of the Earth. First
weigh the object when the moon is directly overhead. Then weigh of the object when the moon is
just rising or setting. The slight difference between the measured weights reveals the cause of tides
in the Earth’s oceans, which is a difference in the strength of the moon’s gravity between different
points on the Earth. Method three: Much more precisely, from the motion of a spacecraft in orbit
around the moon, its mass can be determined from Kepler’s third law.

The spacecraft did not have enough fuel to stop dead in its high-speed course for the Moon.

SOLUTIONS TO PROBLEMS

Section 13.1 Newton’s Law of Universal Gravitation

P13.1

P13.2

For two 70-kg persons, modeled as spheres,

o Gmmy _ (6.67x107" N-m?/kg?)(70 kg)(70 kg)

~107 N |.
& rz (2 m)z

Gmym,

1’2

F=mg=

) GVZZ ) (6.67><10_11 N.mZ/ng)(;L,OO><104 x103 kg) :| 267 x10~7 m/sz |
r (100 m)
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P13.3 (@) At the midpoint between the two objects, the forces exerted by the 200-kg and 500-kg objects
are oppositely directed,

Gmym,
and from  F =42
G(50.0 kg)(500 kg —200 k
we have > F= ( 8l 8 8) =] 2.50x10™ N | toward the 500-kg object.

(0.200 m)?

(b) At a point between the two objects at a distance 4 from the 500-kg objects, the net force on
the 50.0-kg object will be zero when
G(50.0 kg)(200 kg)  G(50.0 kg)(500 kg)

(0.400 m—d)* d?
or d=|0.245m

P13.4 my +m, =5.00 kg m, =5.00 kg —m,

my(5.00 kg —m;)
(0.200 m)*

F=GT2 = 100x10® N=(667x10™" N -m?*/kg?)

1’2

- ) (1.00 x1078 N)(0.040 0 mz) 00 ke
5, —m? = —6.
(500 kg my =y == o N-m?/kg? 8

Thus, m{ —(5.00 kg)m; +6.00 kg =0
or  (m;—3.00kg)(m; —2.00 kg)=0

giving | my =3.00 kg, som, =2.00 kg | The answer m; =2.00 kg and m, =3.00 kg is physically

equivalent.
P13.5 The force exerted on the 4.00-kg mass by the 2.00-kg mass is S| 4
directed upward and given by R
Ptttk 200kg ()3
(400 kg)(2.00 kg) oot (0,300 mE
By =GP 2= (6.67x107 Nem?/kg? i —Soo 80 by
24 (3.00 m) S S S S I
14 Fodod ot bt b bos By g
=593x10"""jN }-L.%(%-UO,O)IH%__%_% F64+'+' 0

The force exerted on the 4.00-kg mass by the 6.00-kg mass is ;_6J:r -5- 6.00kg _?’ . +_2 + _‘1 '4%06 kz‘g

directed to the left s s S s e S [

N N I

F, =G i FIG. P13.5

M () (67107 N-m? i) H0 K8 )O00 ke)
Yea (400 m)

—-10.0x10iN

Therefore, the resultant force on the 4.00-kg mass is F; =F,, + F;, = (—10.0§ + 5.933) x107 N |.
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Section 13.2

P13.7

@)

(b)

(©

F

_ GMm

7’2
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The Sun-Earth distance is 1.496 x 10'! m and the Earth-Moon distance is 3.84 x10® m, so the
distance from the Sun to the Moon during a solar eclipse is

1.496 x 10" m-3.84x10% m=1.492x 10" m

The mass of the Sun, Earth, and Moon are Mg =1.99 x 103 kg
Mg =598 x10* kg
and M, =7.36x10% kg

Gmym, (667x1071)(199x10™)(7.36 x10%)

We have Fg =——
;

=1439x10®° N

(1492 10“)2

(6:67x107" N-m?/kg?)(5.98x10**)(7.36 x 107

FEM:

=11.99x10® N

(3:84x 108)2

. (6:67x10™" N-m*/kg?)(1.99x10%)(5.98 x10**)
SE =

=1 355x10% N

(1.496 x 10" )2

Note that the force exerted by the Sun on the Moon is much stronger than the force of the
Earth on the Moon. In a sense, the Moon orbits the Sun more than it orbits the Earth. The
Moon’s path is everywhere concave toward the Sun. Only by subtracting out the solar
orbital motion of the Earth-Moon system do we see the Moon orbiting the center of mass of
this system.

Measuring the Gravitational Constant

(150 kg)(15.0x10~° kg)

(450x10°2 m)2
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P13.8 Let Orepresent the angle each cable makes with the vertical, L the T
cable length, x the distance each ball scrunches in, and d =1 m the
original distance between them. Then r =d — 2x is the separation of F,
the balls. We have

Y. F,=0: Tcos@-mg=0

mg
Gmm
F.=0: Tsind- -0
2 e FIG. P13.8
Then tan9=G2mm x . Gm 3 x(d—2x)2:G—m\/L2—x2.
g T gd-20 g

The factor G—mis numerically small. There are two possibilities: either x is small or else d — 2x is
g

small.

Possibility one: We can ignore x in comparison to d and L, obtaining

6.67 x10™1 N-m?/kg? (100 k
x(lm)2=( - m’/ kg )( g)45m x=3.06x10"% m.
(9.8 m/sz)

The separation distance is 7 =1 m— 2(3.06 x107® m) =/1.000 m-61.3 nm |.

Possibility two: If d — 2x is small, x 0.5 m and the equation becomes

(6:67x10™" N-m*/kg?)(100 kg)

(0.5 m)r? = 55N (45 m)? - (0.5 m)* r=[274x10% m]|.

For this answer to apply, the spheres would have to be compressed to a density like that of the
nucleus of atom.

Section 13.3 Free-Fall Acceleration and the Gravitational Force

2
P13.9 a= MG _9.8(;61.1(;/8 =| 0.613 m/s* | toward the Earth.

(4Rp)*
G 47R? )
GM p( 3 4
P13.10 e S e

SRRz 37

472Gpy R
o Sm_1_ 5
gr 6 47zG§ERE
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Chapter 13
(@) At the zero-total field point, GmZZVIE = GmJZVIM
TE ™
o ro—r My _, [736x102 1,
M7 M FV598x10%  9.01
T,
g +71y =3.84x10° m=rp +—E—
BT = oo F 901
8
p =280 M 0 m
1.11
(b)

At this distance the acceleration due to the Earth’s gravity is

oM, (667x107" N-m?/kg?)(598 x 10* kg)
T (346 x10° m)2

SE =| 3.34x107° m/s? directed toward the Earth |

Section 13.4  Kepler’s Laws and the Motion of Planets
27(384400)x10° m
P12 () 0=2F- 4l ) —[1.02x10° mys .
T 27.3x(86 400 s)
(b)

In one second, the Moon falls a distance

x:lgtz :lvz 2
r

(102 103)2
2 27

1 2 -3

— 1.00)" =1.35x10 =|1.35 .
2(3‘844“08)“ ) x m -m
path.

P13.13  Applying Newton’s 2nd Law, Y F =ma yields F, = ma, for each star:

GMM Mv?

220 km/s
40%r /
(2r)2 . or M= .

We can write r in terms of the period, T, by considering the time and
distance of one complete cycle. The distance traveled in one orbit is the
circumference of the stars’ common orbit, so 2zr = vT. Therefore

]\& ——————
220km/s
B 4%y B 49> (vTj

TG G \2r

FIG. P13.13
so, M =

20°T  2(220x10° m/s)3(14.4 d)(86 400 s/d)
° -

7(6.67x10™" N-m?/kg?)

= | 1.26 x10* kg = 63.3 solar masses

The Moon only moves inward 1.35 mm for every 1020 meters it moves along a straight-line

387
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P13.14  Since speed is constant, the distance traveled between ¢; and ¢, is equal to the distance traveled
between t; and f,. The area of a triangle is equal to one-half its (base) width across one side times its
(height) dimension perpendicular to that side.

1 1

states that the particle’s radius vector sweeps out equal areas in equal times.

23
P13.15 T?= 421\; (Kepler’s third law with m << M)
3
PRy 47%(4.22x10% m)

M= e =[1.90x10% kg

(667 x107" N-m?/kg?)(1.77 x 86 400 s)*

(Approximately 316 Earth masses)

P13.16 By conservation of angular momentum for the satellite,

&

2289km+6.37x10° km 8659 km

"pOp =Ta? == = =[127].
e v, 1, 459km+637x10° km  6829km

We do not need to know the period.

P13.17 By Kepler's Third Law, T? = ka’ (a= semi-major axis) <>
x

For any object orbiting the Sun, with T in years and a in A.U., |
k=1.00. Therefore, for Comet Halley O

fe——Yy——*
3
0.570
(75.6)% = (1.00)(—+y)
2 «—2a=x+y—>
The farthest distance the comet gets from the Sun is FIG. P13.17
y=2(75.6)"> 0570 =[ 35.2 A.U. | (out around the orbit of Pluto)
P13.18 ZF —ma: GmplanetMstar _ Wlplanetv2 @ // g h ~ N
: ' r? r / < ON \
r/ o¥e)
GMstar .22 2 \ \ /
; =0 =r o \\ N . / /
/
GMstar:r3a)3:rX3w§:r;w§ N~ -
3/2
.0° 468° (b) ~ ~
R e X0
r, 5.00 yr 5.00 yr VPN
{/ // N
Vo
So | planet Y has turned through 1.30 revolutions | LY b@// /
\ /
N
~ ~ — -

FIG. P13.18
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GM;  47’(R;+d)
(R] +d)2 T?

P13.19

GM,T? = 47*(R; +d)’
(667 x107" N-m?/kg?)(1.90 x 107 kg)(9.84x3600)" =47%(699 x 10 + d)3

d=|8.92x10" m |=| 89200 km | above the planet

P13.20  The gravitational force on a small parcel of material at the star’s equator supplies the necessary
centripetal force:

GM;m mo?

=mR,w*
R R «

S

\/m (667 x107™ N-mz/kgz)[2(1.99x1030 kg)]
SO = £ =

CNER T (10.0x10° m)3

w=|1.63x10* rad/s
| /s

*P13.21  The speed of a planet in a circular orbit is given by

GMom _ mo? GM,,,

F=ma: =
> F=ma 3 ; v -

(6.67 x1071 )(1.99 x 1030) m?

For Mercury the speed is = =479%x10* m/s
e M (579x10) 2 /

(6.67 x1071 )(1.99 X 1030) m?
(5.91 x 1012) 52

and for Pluto, Up = =4.74x10° m/s.

With greater speed, Mercury will eventually move farther from the Sun than Pluto. With original
distances rp and r,; perpendicular to their lines of motion, they will be equally far from the Sun

after time t where

\/rg +Ulzat2 = \/r]\z/I +vlzwif2

2_ 2 2 2),2
P — Ty =(UM —vp)t

(5:91x10 m)’ ~(5.79x10" m)’ 349 % 10% m2
— _ . _ 8 o _
t= \/2.27“09 e 124x10° s=[393 yr |

(479x10* m/s)z—(4.74><103 m/s)2
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2 2
For the Earth, > F=ma: GMzsm _Ine_ E(Z_m’) .
T r r\T

Then GM,T? = 47%r°.
Also the angular momentum L=mvr=m szr is a constant for the Earth.

- LT .
We eliminate r =.|—— between the equations:

27mm
32 3/2
GM,T? = 4ﬂ2(£j GM,TY?* = 4;;2(L) :
27m 27mm

Now the rate of change is described by
GM( T de G( aM, Tl/z) o AL__dMf, T ) AT

2 dt dt dt dt M, T

7
aT~-at Pl 2 L) 5000 yof 210N | 564510% kg s 2
dat | M, 1yr 1.991x10™ kg

AT=]182x107s

Section 13.5 The Gravitational Field

P13.23

P13.24

Gm, Gm, Gm 0t . A
g:l_21+ 2 ]+21 (cos45.0 1+sm45.0])

S0 g:G—M 1+L (i+;) or
12 242

g= %(ﬁ + %) toward the opposite corner

FIG. P13.23

G (6 67x10™" N-m”/kg”)[100(1.99 x 10 kg)(10° kg)]

(@) F= =|131x107 N
r? (100><104m+500m)
black hole
GMm GMm G
(b) AF = 222 SV =
rf%ont rbzack LT NGRRE =
AF GM (rbzack - rf%ont) l«—100 m le——10 km—!
T T R
rontback FIG. P13.24
2 2
(6.67x10’“)[100(1.99 ><1030)]|:(l.01 x10* m)” ~ (100 x 10* m) }
Ag=

(1.00x10* m)z(l.Ol «10* m)2

Ag=| 2.62x10" N/kg |
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MG
P1325 g =g,=— M
r°+a T
81y =82y 8y =81y T &2y a g
’
81x = 82, =82 €080 COS@:( 5 2)1/2 i - i>p
a+r
- &2
8=282.(-i) N
or g= 2MG1’3 7 toward the center of mass
(rz +a2)
FIG. P13.25

Section 13.6  Gravitational Potential Energy

GMym  (667x107" N-m?/kg?)(5.98 x10* kg)(100 kg)

P13.26 (a) U= - =| -4.77x10° T |.
r (6.37+2.00)x 10° m

(b), (c) Planet and satellite exert forces of equal magnitude on each other, directed downward on
the satellite and upward on the planet.

_GMgm _ (6:67x107" N-m?/kg?)(5.98 x10 kg)(100 kg)

F=—j - =[569 N
r (8.37x10° m)
P1327  U--GM™ and g:GNZIE
r Ri
so that AU =-GMm 11 =%ngE
3R, R;) 3

AU=§(1 000 kg)(9.80 m/s?)(6.37x10° m)=[417x10" J |.

P13.28  The height attained is not small compared to the radius of the Earth, so U =mgy does not apply;
U= _CMM, does. From launch to apogee at height /,

.
GM M GM;M
K; +U;+ AE, =K +U,: O B I O Bl s
2 7 Rp Rp+h
1 3 2 T 5 o[ 5.98x10* kg
=(10.0x10% m/s) —(6.67x107" N-m?/kg?) ————2
z( /s [k )[ 6.37x10° m

6.37x10° m+h

14 __3/.2
(500107 m?/s?) (626 x107 m?/s?)= ol /s
6.37 x10° m+h

24
=—(667x107" N,mZ/kgz)[ 598 x10% kg j

) 1 14 3/.2
_ 39910 mz/sz =316x10" m
1.26x107 m?/s

h=252x10" m
| |

6.37x10° m+h
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30
P1329 (a) o= 4M52 = {19910 kgl =|1.84x10° kg/m’ |
37E 47(637x10° m)

6.67x10"" N-m?/kg?)(1.99 x10% k.
® g:Gj?S:( X (63r7nxi()§n)1()2 - g)=|3-27xl06 /s |

6.67x10™ N-m?/kg?)(1.99 x 10*° kg )(1.00 k
R e ET
6.37 x10° m

e

P13.30 W:_Au:_(_cmlmz _0)
r

(+667x10™" N-m?*/kg*)(7.36 x 10 kg)(1.00x 10° kg)

_ _ 9
W= 174x10° m -[282a07]]

P13.31 (a) Uy =Uyy +Uys + Uy =3Uj, = 3(_ Gmqym, )
"2

3(667 10" N-m?/kg?)(5.00x10°° kg)’

Up, =— =| -1.67x107
Tot 0.300 m <107]
(b) of the equilateral triangle

*P13.32  (a) Energy conservation of the object-Earth system from release to radius r:

(K + Ug )altitude ho (K g )radius r
0 GMpm _ 1 0% GMpm

Rp+h 2 r

1 1 2 dr
r Rp+h dt

f f i
(b) dt = _dr = ﬂ The time of fall is
v v
i i f

Ry +h 1 1 -1/2
At= | (ZGME(—— D dr
r Rp+h

R

6.87x10° m

1 1 -1/2
At= | [z x 6.67 x 107 x 5.98 x 1024(———6)} dr
6.37x10° m r 6.87x10° m

We can enter this expression directly into a mathematical calculation program.
Alternatively, to save typing we can change variables to u = # Then

12687 -1/2 6 687 -1/2
At=(7.977x1014) / j( 1 1 ) 106ulu=3.541x10-8Lj(l 1 ) du

;4\ 10% 687 x10° (10) 7 o\ 687

A mathematics program returns the value 9.596 for this integral, giving for the time of

fall At =3.541x107° x10° x 9.596 = 339.8 = .
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Section 13.7  Energy Considerations in Planetary and Satellite Motion

P13.33

P13.34

P13.35

P13.36

lmviZ+GMEm L1 =lmv; lv,-2+GME 0—L :lz)j%
2 reon 2 2 Rg 2
or 0o 2GM;
Rg
12
and 0, :(Ulz ~ ZGMEJ
E

2 1/2
Uf:[(2.00><104) —1.25x108} ~[1.66x10% m/s
2‘]VISunG
(a) Usolar escape — —>H0— =421 krn/s

RE Sun

(b) Let r = Rpgx represent variable distance from the Sun, with x in astronomical units.

2Mg, G 421
v= |[—=2an - —
Rpsx Jx
0o 125000 km - 147 AU.<[220x10% m
3600 s

(at or beyond the orbit of Mars, 125 000 km/h is sufficient for escape).

2
To obtain the orbital velocity, we use ZF = m}gG = m;}

[MG
or v= |72

R
We can obtain the escape velocity from %mv?sc = %
2MG
. o= P [T
v? GM,

2 _ 10
2 (637 x10° m)+(0.500 x 10° m) 145107

1, 1[GMEmj 1] (6:67x107™" N-m?/kg?)(5.98 x10* kg)(500 kg)

The change in gravitational potential energy of the satellite-Earth system is

sy GMem_GMgm_ o (1 1
R, R; R, R,

1

=(6.67x107" N-m?/kg?)(5.98 x10** kg)(500 kg)(-1.14x10* m™)=-2.27x10° |

1 1 2
Also, Ky =—mvf =—(500 kg)(200x10> m/s)" =1.00x10° .

The energy transformed due to friction is

AE., =K, —-K, - AU =(145-1.00+2.27)x10° J=| 1.58 x10'° J |.
int i f
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2
P1337 F,=F gives "0 - G"Me
r r

r

and period = 2m 27 |—— ..
v GM¢

(@) r =R +200 km =6 370 km+ 200 km = 6 570 km

which reduces to v =

Thus,

(657x10° m)
(6:67x10™" N-m*/kg?)(5.98x10** kg)

T=530x10 s=883 min=[1.47 h

(oM, |(667x107" N-m*/kg?)(5.98x10% kg)
N - [775 Ko

(6.57>< 10° m)

period = 2.7z(6.57 x10° m)

© K; +U; =K; +U; + energy input, gives

input :%m; _%mviz +[—GMEm]_[—GMEmJ o

r f r;

7, =Rp =637x10° m

v; __2Re 4634102 m/s
86400 s

Substituting the appropriate values into (1) yields the

minimum energy input =| 6.43 x10° J



P13.38

P13.39

P13.40

Chapter 13
The gravitational force supplies the needed centripetal acceleration.
2
Thus, GMEmZ . or o2 = GMe
(R +h)*  (Rg+h) Rp+h
27(Rg +h Rg +1)’
(a) T2 _ M T=| 2, u
(Rg+h)
) e J GM;
Rp+h
(c) Minimum energy input is AE i, = (K 5 Uy ) - (Kl- -u gi).

It is simplest to
| launch the satellite from a location on the equator, and launch it toward the east. |

This choice has the object starting with energy K;= %mv,2
Wlth Ui = ZﬂRE = ZﬂRE and U i = —W—Em.
1.00 day 86400 s 8 Rg
252
2 \Rg+h) Rpg+h 2 (86 400 s) Rg
2712
or AE,. =| GMym Rg+2h | 2z REm2
2Rp(Rg +h) | (86400 s)
GMm
Eiot =— 2
;
6.67x107")(5.98 x10**) 103
apo G (1 1) (7050 100 kg( 1
2 (o7 2 10° m | 6370+100 6370+ 200
AE=4.69x10% T=[ 469 M]
Gm Gm
8E = ZE Su = zu
rg "u

395

2 2
Su _myrg 1 B _ 2\ 2
(@  SL="UL _14.0(3%) ~1.02 gu =(1.02)(9.80 m/s?)=| 10.0 m/s

8 Mgl

2Gm 2Gm Usc E m,r 14.0
(b) Uesc,E = E; Uesc 1 = € S = ok :‘ =195
g gy Vese I Mgty 3.70

For the Earth, from the text’s table of escape speeds, v, p =112 km/s

Ve =(1.95)(11.2 km/s) =
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P13.41  The rocket is in a potential well at Ganymede’s surface with energy

Gmym,  667x10™" N-m’m, (1495 <107 kg
r kg2(2.64x 10° m)

U1:

U, =-3.78x10°m, m?/s*
The potential well from Jupiter at the distance of Ganymede is
Gmym,  6:67x107" N-m?m,(190x107 kg)

r kg?(1.071x10° m)

U, =-118x10%m, mz/s2
To escape from both requires

uZ:

%mzvgsc =+{(3.78x10° + 118 x10° m, m?/s”

Dewe =9/2%122x10° m?/s? =[15.6 knys |

P13.42  We interpret “lunar escape speed” to be the escape speed from the surface of a stationary moon
alone in the Universe:

1 GM, m
mvesc = R
m
’ZGM
Uese = R =
m
2GM

Now for the flight from moon to Earth

(K+U)i=(K+U)f
1 5, GmM,, GmMgp 1 , GmM,, GmMg

—mo - —mu; -
” launch Rm ry ” impact rmz RE
4GM,, GM, GM; 1 , GM,, GM;
- - :_Uimpact T T T
Rm Rm Tel 2 rmz RE

- 1/2
R 7, R 7

m my el

1/2
_ zc(g x736x10% kg 7.36x10% kg 598x10% kg 598 <10 kgﬂ /

1.74x10° m 384x108 m  637x10°m  3.84x10® m

r 1/2
2G(1.27x10'7 +1.92x10™ +9.39 10" ~1.56 x 10'°) kg/m] /

2(667x10" N-m?/kg?)105x107 kg /m]l/ ‘o




*P13.43  (a)
(b)
(©
(d)
P13.44

GM,
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Energy conservation for the object-Earth system from firing to apex:

(K+Ug)i=(K+Ug)f

1 o, GmMg _O_GmME
Rp+h

Ui
2 Rg

2 GmMg

esc

. Then

where l mo
2 E

6.37 x10° m (8.76) .
h= 27676 1.00x107 m

The fall of the meteorite is the time-reversal of the upward flight of the projectile, so it is
described by the same energy equation

2 7
S UL S G (11.2510° nys) 251310 m
Rp+h Rp+h 6.37x10° m+251x10" m

=1.00x10% m?/s?

v; =| .00 x10* m/s

R.v2  R.v%R 2
escr B= Ezvl = E%TE Byt g= GAEE , SO hzv—’, in agreement with
2GMg Rg 2g

zJQSC

02 =07 +2(~g)(h-0).

With v; <<v

For a satellite in an orbit of radius r around the Earth, the total energy of the satellite-Earth system is

E=-—

. Thus, in changing from a circular orbit of radius = 2R to one of radius » =3Rg, the
;

required work is

W=AE=

_GMgm  GMgm_ oy, [ 1 1) [CMem
2r, 2r, 4R, 6R; | | 12R;

1
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*P13.45 (a) The major axis of the orbit is 2a=505 AU SO a=2525AU
Further, in Figure 13.5, a+c=50AU ) c=2475 AU
c 2475
Th =—=—-—=|0980
o “ a5
(b) In T? =K a® for objects in solar orbit, the Earth gives us
2
1yr
(1yr)” =K, (1 AUY’ K, =%
(Lyr)’
Then T2="2"2 (2525 AU)’ T=[127yr
o
6.67 x10™ N-m?/kg?)(1.991x10* kg)(1.2x 10" kg
© u=-SMm__ ( 7] _ X ) 2 J
r 50(1.496 x 10" m)

2
GmM¢ _ mup

2

*P13.46 (a) For the satellite D F =ma
r r

172
- :(GMEJ

7

(b) Conservation of momentum in the forward direction for the exploding satellite:
(X mo), =(Xmo),
Smuvy = 4mv; + m0

5 S(GMEJI/Z
Ui:—vo =| —
4 4

r

() With velocity perpendicular to radius, the orbiting fragment is at perigee. Its apogee
distance and speed are related to r and v; by 4mrov; = 4mr;v; and

4 4 .

l4mvi2 —GM—Em:lélmvj% —GM—Em. Substituting v = T we have
2 r 2 T T
1, GMp 10r* 25 GM
- —E-Z Ui Z ——"E Further, substituting v} == —"—E gives
2 2 Tf rf 16

25GMg  GMp _ 25 GMgr GMg

32 r r 32 rfz rs

-7 25r 1

32r 3uf 1

2
r r

Clearing of fractions, —7er =25r% - 32rry or 7(—f] - 32[—fj +25=0 giving
r r

rp 43244327 -4(7)(25) 50 14

- 7 2" The latter root describes the starting point. The outer

r
end of the orbit has —f=2—75,' rfzy .
r
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Additional Problems

P13.47 Let m represent the mass of the spacecraft, r; the radius of the Earth’s orbit, and x the distance from
Earth to the spacecraft.

GM
The Sun exerts on the spacecraft a radial inward force of F = ﬁ
while the Earth exerts on it a radial outward force of F = GMZE T
x

The net force on the spacecraft must produce the correct centripetal acceleration for it to have an
orbital period of 1.000 year.

Thus F._F. = GMgm__ GMgm _ mo®  m {Zﬂ(rE—x)T
’ S E (rE _x)Z xZ (rE _x) (VE _x) T
4% (rp -
which reduces to GMs GMp _4x (7 x)‘ @
2 2 2
(rg — x) x T

Cleared of fractions, this equation would contain powers of x ranging from the fifth to the zeroth.
We do not solve it algebraically. We may test the assertion that x is between 1.47 x 10’ m and
1.48 x10° m by substituting both of these as trial solutions, along with the following data:

Mg =1.991x10% kg, M, =5.983 x10** kg, r; =1.496 x 10" m, and T =1.000 yr=3.156x10" s.

With x =1.47 x10° m substituted into equation (1), we obtain
6.052x107° m/s? -1.85x107 m/s? ~5.871x10~° m/s?

or  5868x107° m/s* ~5.871x10 m/s?

With x =1.48 x10° m substituted into the same equation, the result is
6.053x107° m/s? -1.82x107° m/s? ~5.8708x 107> m/s>

or  58709x107° m/s*~5.8708x107° m/s.

Since the first trial solution makes the left-hand side of equation (1) slightly less than the right hand
side, and the second trial solution does the opposite, the true solution is determined as between the

trial values. To three-digit precision, it is 1.48 x 10’ m.

As an equation of fifth degree, equation (1) has five roots. The Sun-Earth system has five Lagrange
points, all revolving around the Sun synchronously with the Earth. The SOHO and ACE satellites
are at one. Another is beyond the far side of the Sun. Another is beyond the night side of the Earth.
Two more are on the Earth’s orbit, ahead of the planet and behind it by 60°. Plans are under way to
gain perspective on the Sun by placing a spacecraft at one of these two co-orbital Lagrange points.
The Greek and Trojan asteroids are at the co-orbital Lagrange points of the Jupiter-Sun system.
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P13.48  The acceleration of an object at the center of the Earth due Earth Moon
to the gravitational force of the Moon is given by r\
My R
a=G —d ;on B @A O
At the point A nearest the Moon, a, =G My 3 ‘ ‘
(d-r) e d !
. Mum
At the point B farthest from the Moon, a_ =G der)? FIG. P13.48
+r
1 1
MA=a, -a=CGMy|————-—
+ M [(d _ 1’)2 d2 }
Ford>>r, Atzz%:l.llxw_6 m/s?
Ag 2A1 2.22x107° m/s? —~
Across the planet, — = = =|2.26x10
p g g 9.80 m/ g2
*P13.49  Energy conservation for the two-sphere system from release to contact:
Gmm Gmm 1 , 1 5
—-—=- +—mv° +—mv
R 2r 2 2
1/2
Gm(i—l)zvz v= Gm[i—l}
2r R 2r R
(@) The injected impulse is the final momentum of each sphere,
1 1T\ 1 1\
mo =m*? Gm[———} = Gm3(———j .
2r R 2r R
(b) If they now collide elastically each sphere reverses its velocity to receive impulse
12
mo—(—mv)=2mov =| 2 Gm3(i—1j
2r R
P13.50 Momentum is conserved:
MV + My Vo =M Vg +1M5 Vo
0 :lef +2MV2f
1

Vor =~ 5 Viy

Energy is conserved:
(K+U)i+AE:(K+U)f
0- GM1mz +0= lmlvlzf +lmzv§f - Gm1m2
r; 2 2 T’f
GM(2M) 1 M(2M)

1 1 2 G
=—Mvi +=(2M) = -
R 2 M5l )(zvlfj AR

2 |GM 1 1 |GM
BV R | TR BV R
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6 2
) (125x10° m/s

o _ ) _ 2
PI351 (@)  a.= 8= ii

v

GM
2

(b) diff =10.2-9.90=0.312 m/s” =

(0312 m/s?)(153x 10" m)’

M= =[110x10* k
6.67x107"" N-m?/kg? 5

FIG. P13.51

P13.52 (a) The free-fall acceleration produced by the Earthis g= CMg _ GMr~2 (directed downward)

2
Its rate of change is Z—g =GM(-2)r =-2GMr>.
r
The minus sign indicates that ¢ decreases with increasing height.
d
At the Earth’s surface, a8 __ ZGA;IE
dr Rg
(b) For small differences,
A A
ﬁ = ﬁ = —ZG];/IE Thus, |Ag| = ZGAgEh
Ar h Rp R

2(667x10™"" N-m?/kg?)(598 x10* kg)(6.00 m

) =|1.85x10° m/s? |

©  |ag=

(637 x10° m)3

*P13.53  (a) Each bit of mass dm in the ring is at the same distance from the object at A. The separate
mdm

G GmMring
contributions — to the system energy add up to ——————=. When the object is at A,

r
this is

B 11 N2 20
6.67x10"" N-m 1200 kg2-36><12 K8 _[704x107]].
kg [110 )"+ (2510 m)

(b) When the object is at the center of the ring, the potential energy is

6.67 x107'1 N-m? 1000 kg 2.36 x 10%° k
B o 8o PrT B[ 1s7x10° 7.
kg“1x10° m

() Total energy of the object-ring system is conserved:
(K+Uy) =(K+Uy),

0-7.04x10* ]:%1 000 kgog —1.57x10° J

1/2
2x870x10*J
=222 2 =[132
Y ( 1000 kg ]
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P13.54  To approximate the height of the sulfur, set
mo* GM

S = MSh h=70000 m 8§ =—75 =179 m/s?
r

0=2gh v=/2(1.79)(70 000) ~500 m/s (over 1000 mi/h)

A more precise answer is given by
1 UZ_GMm __GMm

41 )

%vz = (6.67x107")(8.90 x 1022)(1.821 o 1.891106 ) v=[492 m/s]

25000 m

P13.55  From the walk, 27r = 25000 m. Thus, the radius of the planetis r = — =398x10° m
T
From the drop: Ay :%gt2 = %g(29.2 s)* =140 m
2(1.40
s0, g=(—”;):3.28x10-3 m/s’ :M—ZG ~M=[779x10" kg
(29.25) r
*P13.56 The distance between the orbiting stars is d = 2r cos 30°= \/gr since
cos30°= ﬁ The net inward force on one orbiting star is
2
szm cos 30°+ GNZIm + szm cos30°= "2
d r d r
Gm2cos30° GM 4r*r?
2 to = 2
3r r rT e
m 473
Gl—=+M |=—5—
V3 T
T 2 _ 472'27’ 3 .
G-y
12 O
3
T=2r G—m FIG. P13.56
(M+2%)

P13.57  For a 6.00 km diameter cylinder, » =3 000 m and to simulate 1g =9.80 m/ s?

gzv—za)zr
r
a):\/gz 0.057 2 rad/s
7
1 rev

The required rotation rate of the cylinder is

110 s

(For a description of proposed cities in space, see Gerard K. O’Neill in Physics Today, Sept. 1974.)



P13.58

P13.59

@)

(b)
1
Emov

esc

2
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2 2 3
G has units N nz1 :kgzm n; = 21’11
kg s*-kg s*-kg
L3
and dimensions [G] = ——.
T°-M

The speed of light has dimensions of [c] = %, and Planck’s constant has the same dimensions

M-L?
as angular momentum or [h]= .

We require [G¥¢'h"| =L, or P TPM PLIT M L T~ =L'M"T°.

Thus, 3p+q+2r=1
—2p—q-1r=0
—-p+r=0

which reduces (using r =p) to 3p+q+2p=1
—2p-q-p=0
These equations simplify to Sp+g=1land g=-3p.

Then, 5p—3p =1, yielding p = % g- _%, and 7 — %

Therefore, Planck length = .
(6.67x 107" )1/ *(3x10° )73/ *(6.63 % 10*34)1/ "= (164x10° )1/ 2 _405x107 m[~10 ¥ m]

Gm,m,

esc
R

2Gmp

R

4
With m, = pgiZ'Ra, we have

Q!

_ [26p4 83
esc R

S0, Vg € R.
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*P13.60

For both circular orbits,

> F=ma:

(@)

(b)

(©)

(d)

(©)

(®)

v
//’,‘Q*E
GMpm muv* / /’\4 N
2 / AN

7 r E \
/ \ \

[ . \
| \ / J

FIG. P13.60

(6:67x10™" N-m?/kg?})(5.98 x10** kg)

The original speed is v, = =1 7.79x10% m/s |.
smatep (6:37x10° m+2x10° m) /

(6:67x10™" N-m?/kg?})(5.98 x10** kg)

The final speed is v; = =|7.85%x10% m/s |.
P : (6.47 x10° m) /

The energy of the satellite-Earth system is

K+l :lmvz_GMEm:lmGME _GME :_GMEm
$ 2 r 2 r r 2r

667x10™"" N-m*/kg”)(598x10* kg)(100 kg

Orgnsty £, uLLs S S ETTg)
)

6.67 107 N-m?/kg?)(5.98 x10%* kg)(100 k
Finally Ef:—( - m’/kg )( - g)( & -3.08x10° J |.
2(6.47><1o6 m)

Thus the object speeds up as it spirals down to the planet. The loss of gravitational energy is
so large that the total energy decreases by

E,-E;=-304x10" J- (—3.08 x10° ]) = 469%x107 J|.

The only forces on the object are the backward force of air resistance R, comparatively very
small in magnitude, and the force of gravity. Because the spiral path of the satellite is not

perpendicular to the gravitational force, | one component of the gravitational force | pulls

forward on the satellite to do positive work and make its speed increase.



P13.61

P13.62

(@)

(b)

(@)

(b)

(©
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At infinite separation U =0 and at rest K =0. Since energy of the two-planet system is
conserved we have,

» Gmym,

1

0=—m v} +—m,vs - 1
5 MU T 5 M0, J M

The initial momentum of the system is zero and momentum is conserved.
Therefore, 0=myv; —myv, 2)

2 2
Combine equations (1) and (2): | vy =m, 6 and vy =My 6
d(my +m,) d(my +m,)
2G(my+m
Relative velocity v, =v; —(-0,)= J %

Substitute given numerical values into the equation found for v; and v, in part (a) to find

v; =1.03x10* m/s and v, =258x10° m/s

Therefore, K; :%mlvl2 =|1.07x10%*J and K, :%mzvg = 267x10% J

The net torque exerted on the Earth is zero. Therefore, the angular momentum of the Earth
is conserved;

r 1.471
- _ Pl 4 _ 1
mr,v, =mr,v, and v, = vp[r ) = (3.027 x10 m/s)( 1.521) = | 2.93x10% m/s |

a

K, = %mvﬁ - %(5.98 x10%)(3.027 x 104)Z -

GmM  (6:673x107")(5.98 x10%)(1.99 x 10%)

_ 33
r 1.471 x 101! =[ 540107 ]

p

Using the same form as in part (b), K, =| 2.57x10% J | and U, =| -5.22x10% J |.
Compare to find that K, + U, =| —2.66 x 10% J| and K, +U, =| -2.65x10% J |. They agree.

u, =
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P13.63 (a) The work must provide the increase in gravitational energy
W:Aug :ugf —Ugi

~ GMM,, . GMM,,

rf 1;
_ GMM,, . GMM,,
R +y R
_ GMEMP(L_ ! j
Rg Rp+y
11 2
_[6.67x10 i N-m (5.9810% kg)(100 kg)( 1 . 1 : )
kg 6.37x10° m 7.37x10° m
W =| 850 MJ
(b) In a circular orbit, gravity supplies the centripetal force:

2
GMiM, Mo

(Rg +y)2 (Re +)
GMM
Then, lM v? =l#
2 7 2 (Rg+y)
So, additional work = kinetic energy required

(6.67x107" N-m*)(5.98 x10** kg)(100 kg)
(kg)(7.37x10° m)

_1
2

AW =| 2.71x10° ]

P13.64  Centripetal acceleration comes from gravitational acceleration.

0? MG 47%r?

r 2 T
GM,T? = 47%r°

(6.67x1071)(20)(1.99 x 10* )(5.00 x 10 = 4%

Torbit =

2w 27z(30 000 x 9.46 x 101 m)

15 8
v 250105 mps 0 STl

3
23 472(30000 x 9.46 x 10" m
b M= ( ) = 2.66x10% kg

GT*  (667x10" N-m?/kg?)(7.13x10% s’

P13.65 (a) T

M =1.34x10" solar masses| ~10" solar masses |

The number of stars is | on the order of 10" |




P13.66

@)

(b)

(©

(d

()

Chapter 13
From the data about perigee, the energy of the satellite-Earth system is
(6:67x107")(5.98 x 107 )(1.60)
7.02x10°

2
E:lmvz—GM—Em:l(1.60)(8.23><103) -
27 r 2

or E=|-367x10"]

L =morsin@=mo,r, sin90.0°= (1.60 kg)(8.23 x 10> mys)(7.02x10° m)

=9.24x10" kg m?/s |

407

Since both the energy of the satellite-Earth system and the angular momentum of the Earth

are conserved,

at apogee we must have lmv,f - CMim =E
2 7,
and mo,r, sin90.0°=L.
6.67 x1071)(5.98 x 10%*)(1.60)
Thus, l(1.60)0,3 - ( )( ) =-367x107 J
2 T
and (1.60 kg)v,r, =9.24x10" kg-m?/s.
1 (6.67x107")(5.98 x10*)(1.60)(1.60)o, .
Solving simultaneously, —(1.60)v; — o =-3.67x10
2 9.24x10
which reduces to 0.80002 — 110460, +3.6723x 107 =0

11046 % /(11 046)° ~ 4(0.800)(3.6723 <107
SO V.=

“ 2(0.800)

This gives v, =8 230 m/s or | 5580 m/s |. The smaller answer refers to the velocity at the

apogee while the larger refers to perigee.

10 1o 2
Thus, = L _ 9.24x10" kg-m /S :.
mo, (160 kg)(5.58x10° mys)

The major axis is 22 = 1y +7,, 50 the semi-major axis is

u=%(7.02><106 m+1.04x107 m): 8.69x10° m

[z 47°(8.69x10° m)’
VOMe | (667x10 " N-m?/kg?)(598x10% kg)

T:80605:
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*P13.67

*P13.68

P13.69

Let m represent the mass of the meteoroid and v; its speed when far away. J; e
No torque acts on the meteoroid, so its angular momentum is conserved as @
it moves between the distant point and the point where it grazes the Earth,

moving perpendicular to the radius:

FIG. P13.67
Li=L: M, X V; = Mry XV
m(3Rgv;) =mRgv,
vy =3v;
Now energy of the meteoroid-Earth system is also conserved:
(K+uy) =(k+uy) - L +0=lmv]% _GMpm
8i 8y 2 2 R
Loz :l(gvg)_%
2 2 Rg
GMg - 407 v = GM
R 4Ry

From Kepler's third law, minimum period means minimum orbit size. The “treetop satellite” in
Figure P13.35 has minimum period. The radius of the satellite’s circular orbit is essentially equal to
the radius R of the planet.

D> F=ma: GMm _ mo® m(ZﬂR)Z

R* R R\T
R?(47°R?)
GpV=—-"——-"~
p RT?
4 5\ 4r°R?
Gp| =7R? |=
& (3” ) T2
. P 2 3z
The radius divides out: T°Gp=3x T= o
0

If we choose the coordinate of the center of mass at the origin, then

My, —mr
0= u and Mr, =mr;
M+m
(Note: this is equivalent to saying that the net torque must be zero and
the two experience no angular acceleration.) For each mass F =ma so

MGm MGm
5 2
mnoi=—z;— and  Mno;=—y; FIG. P13.69
M+m)G

Combining these two equations and using d =7, +1, gives (r; + Vz)wz = '( dzm )
Wlth D1 =Wy =0
and T = 2

w

23

we find | T? = drd

GM+m) |
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P13.70 (a) The gravitational force exerted on m, by the Earth (mass m,) accelerates m, according to:
My, = Gy, . The equal magnitude force exerted on the Earth by m, produces negligible
acceleration of the Earth. The acceleration of relative approach is then

-11 2 /102 2%
Gm. (667x10™" N-m?/kg?)(5.98 x10* kg
g = 21:( . )(2 ): 2.77m/s2 .
r (120x107 m)
(b) Again, m, accelerates toward the center of mass with g, =2.77 m/ s*. Now the Earth
accelerates toward m, with an acceleration given as
Gmym
mi&1 = 12 2
B
Gm, (667107 N-m’/kg?)(2.00x10* kg) ,
g1=—7%"= 5 =0.926 m/s
r (120x107 m)
The distance between the masses closes with relative acceleration of
$rel =1 + 82 =0.926 m/s* +2.77 m/s* =| 3.70 m/s* |.
P13.71  Initial Conditions and Constants:
Mass of planet: 5.98 x10* kg y (1oin})vv R
Radius of planet: 6.37 x10° m }g RIS NG
Initial x: 0.0 planet radii 5f-+-4- £§§}+
Initial y: 2.0 planet radii _g ++\\§§§/+ B
Initial v, : +5 000 m/s e
Initial v, 0.0 m/s e B R
Y EE R )
Time interval: 10.9s r
FIG. P13.71
Dy Uy Ay u]/
£(s) x (m) y (m) r(m) ms) () (m/s?) (m/s?)
0.0 0.0 12740000.0 12740 000.0 5 000.0 0.0 0.0000 -2.4575
10.9 543153  12740000.0 12740115.8 4999.9 -26.7 -0.0100 -2.4574
21.7 1086294 12739710.0 12740173.1 4999.7 -534 -0.0210 -24573
32.6 162941.1 12739130.0 12740172.1 4999.3 -80.1 -0.0310 -2.4572
54316 1128438 -84668160 84675679  -75230 399 00740 55625
54424 311214 -8467249.7 8 467 306.9 —-7523.2 20.5 -0.0200 5.563 3
5453.3 -50603.4 -8467026.9 84671782  -7522.8 80.9 0.0330 5.563 4
5464.1 -132324.3 -8466147.7 8 467 181.7 -7 521.9 141.4 0.087 0 5.562 8
108413 1086290 127391344 127395975 49999 533 00210 -24575
10 852.2 -543149 127397134  12739829.2 5 000.0 26.6 0.0100 -2.4575
10 863.1 04 12740002.4 12740 002.4 5 000.0 -0.1 0.0000 -2.4575

The | object does not hit the Earth

; its minimum radius is | 1.33R; |.

Its period is | 1.09x 10* s |. A circular orbit would require a speed of | 5.60 km/s |.
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ANSWERS TO EVEN PROBLEMS

P13.2

P13.4

P13.6

P13.8

P13.10

P13.12

P13.14

P13.16

P13.18

P13.20

P13.22

P13.24

P13.26

P13.28

P13.30

P13.32

P13.34

P13.36

P13.38

2.67x107 m/s?
3.00 kg and 2.00 kg

a) 4.39x10%° N toward the Sun;
(a)

(b) 1.99 x10% N toward the Earth;
(c) 3.55x10% N toward the Sun

see the solution; either 1 m-61.3 nm or
2.74x10* m

2

3

(a) 1.02 km/s; (b) 1.35 mm
see the solution

1.27

Planet Y has turned through
1.30 revolutions

1.63x10* rad/s
18.2 ms

(a) 1.31x10" N toward the center;
(b) 2.62x10" N/kg

(a) —4.77 x10° J; (b) 569 N down;
(c) 569 N up

2.52x107 m

2.82x107 |

(a) see the solution; (b) 340 s
(a) 42.1 km/s; (b) 2.20x 10" m

158 x101 ]

(a) 27(R; +h)V*(GM) V2
() (GM)"* (R +h)"%;

Rg +2h }_ 272R2m
2Rg(Rg+h) | (86400 s)°
The satellite should be launched from the
Earth’s equator toward the east.

(c) GMEm{

P13.40

P13.42

P13.44

P13.46

P13.48

P13.50

P13.52

P13.54

P13.56

P13.58

P13.60

P13.62

P13.64

P13.66

P13.68

P13.70

(a) 10.0 m/s2 ; (b) 21.8 km/s

11.8 km/s

GMpm

12R;

oM 1/2

GM; )" 5(“)

@) vo=( Ej ) 0=
25r

(C) rf —7

2.26x1077

2 [GM 1 [GM

3V R "3V R

(@), (b) see the solution;

(€) 1.85x107° m/s?

492 m/s

see the solution

() GY2c"¥24Y2; (b) ~10* m

(@) 7.79 km/s; (b) 7.85 km/s;(c) -3.04 GJ;
(d) -3.08 GJ; (e) loss = 46.9 MJ;

(f) A component of the Earth’s gravity
pulls forward on the satellite in its
downward banking trajectory.

() 29.3 km/s; (b) K, = 2.74x10% J;
U, =-5.40x10% J;(c) K, =257 x10% J;
U, =-5.22x10% J; yes

119 km

(@) -36.7 MJ; (b) 9.24x 10" kg-m?/s;
(c) 5.58 km/s; 10.4 Mm; (d) 8.69 Mm;
(e) 134 min

see the solution

(@) 277 m/s?; (b) 3.70 m/s?
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Fluid Mechanics

ANSWERS TO QUESTIONS

Q141 The weight depends upon the total volume of glass. The
pressure depends only on the depth.

Q14.2 Both must be built the same. The force on the back of each dam
is the average pressure of the water times the area of the dam.
If both reservoirs are equally deep, the force is the same.

FIG. Q14.2

If the tube were to fill up to the height of several stories of the building, the pressure at the bottom of
the depth of the tube of fluid would be very large according to Equation 14.4. This pressure is much
larger than that originally exerted by inward elastic forces of the rubber on the water. As a result,
water is pushed into the bottle from the tube. As more water is added to the tube, more water
continues to enter the bottle, stretching it thin. For a typical bottle, the pressure at the bottom of the
tube can become greater than the pressure at which the rubber material will rupture, so the bottle
will simply fill with water and expand until it bursts. Blaise Pascal splintered strong barrels by this
method.

About 1 000 N: that’s about 250 pounds.

The submarine would stop if the density of the surrounding water became the same as the average
density of the submarine. Unfortunately, because the water is almost incompressible, this will be
much deeper than the crush depth of the submarine.

Yes. The propulsive force of the fish on the water causes the scale reading to fluctuate. Its average
value will still be equal to the total weight of bucket, water, and fish.

The boat floats higher in the ocean than in the inland lake. According to Archimedes’s principle, the
magnitude of buoyant force on the ship is equal to the weight of the water displaced by the ship.
Because the density of salty ocean water is greater than fresh lake water, less ocean water needs to
be displaced to enable the ship to float.
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Q14.8

Q14.9

Q14.10

Q14.11

Q14.12

Q14.13

Q14.14

Q14.15

Q14.16

Q14.17

Q14.18

Q14.19

Fluid Mechanics

In the ocean, the ship floats due to the buoyant force from salt water. Salt water is denser than fresh
water. As the ship is pulled up the river, the buoyant force from the fresh water in the river is not
sufficient to support the weight of the ship, and it sinks.

Exactly the same. Buoyancy equals density of water times volume displaced.

At lower elevation the water pressure is greater because pressure increases with increasing depth
below the water surface in the reservoir (or water tower). The penthouse apartment is not so far
below the water surface. The pressure behind a closed faucet is weaker there and the flow weaker
from an open faucet. Your fire department likely has a record of the precise elevation of every fire
hydrant.

As the wind blows over the chimney, it creates a lower pressure at the top of the chimney. The
smoke flows from the relatively higher pressure in front of the fireplace to the low pressure outside.
Science doesn’t suck; the smoke is pushed from below.

The rapidly moving air above the ball exerts less pressure than the atmospheric pressure below the
ball. This can give substantial lift to balance the weight of the ball.

The ski—jumper gives her body the shape of an airfoil. She
deflects downward the air stream as it rushes past and it
deflects her upward by Newton's third law. The air exerts
on her a lift force, giving her a higher and longer trajectory.
To say it in different words, the pressure on her back is less
than the pressure on her front.

FIG. Q14.13

The horizontal force exerted by the outside fluid, on an area element of the object’s side wall, has
equal magnitude and opposite direction to the horizontal force the fluid exerts on another element
diametrically opposite the first.

The glass may have higher density than the liquid, but the air inside has lower density. The total
weight of the bottle can be less than the weight of an equal volume of the liquid.

Breathing in makes your volume greater and increases the buoyant force on you. You instinctively
take a deep breath if you fall into the lake.

No. The somewhat lighter barge will float higher in the water.

The level of the pond falls. This is because the anchor displaces more water while in the boat. A
floating object displaces a volume of water whose weight is equal to the weight of the object. A
submerged object displaces a volume of water equal to the volume of the object. Because the density
of the anchor is greater than that of water, a volume of water that weighs the same as the anchor will
be greater than the volume of the anchor.

The metal is more dense than water. If the metal is sufficiently thin, it can float like a ship, with the
lip of the dish above the water line. Most of the volume below the water line is filled with air. The
mass of the dish divided by the volume of the part below the water line is just equal to the density of
water. Placing a bar of soap into this space to replace the air raises the average density of the
compound object and the density can become greater than that of water. The dish sinks with its
cargo.
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The excess pressure is transmitted undiminished throughout the container. It will compress air
inside the wood. The water driven into the wood raises its average density and makes if float lower
in the water. Add some thumbtacks to reach neutral buoyancy and you can make the wood sink or
rise at will by subtly squeezing a large clear—plastic soft-drink bottle. Bored with graph paper and
proving his own existence, René Descartes invented this toy or trick.

The plate must be horizontal. Since the pressure of a fluid increases with increasing depth, other
orientations of the plate will give a non-uniform pressure on the flat faces.

The air in your lungs, the blood in your arteries and veins, and the protoplasm in each cell exert
nearly the same pressure, so that the wall of your chest can be in equilibrium.

Use a balance to determine its mass. Then partially fill a graduated cylinder with water. Immerse the
rock in the water and determine the volume of water displaced. Divide the mass by the volume and
you have the density.

When taking off into the wind, the increased airspeed over the wings gives a larger lifting force,
enabling the pilot to take off in a shorter length of runway.

Like the ball, the balloon will remain in front of you. It will not bob up to the ceiling. Air pressure
will be no higher at the floor of the sealed car than at the ceiling. The balloon will experience no
buoyant force. You might equally well switch off gravity.

Styrofoam is a little more dense than air, so the first ship floats lower in the water.

We suppose the compound object floats. In both orientations it displaces its own weight of water, so
it displaces equal volumes of water. The water level in the tub will be unchanged when the object is
turned over. Now the steel is underwater and the water exerts on the steel a buoyant force that was
not present when the steel was on top surrounded by air. Thus, slightly less wood will be below the
water line on the block. It will appear to float higher.

A breeze from any direction speeds up to go over the mound and the air pressure drops. Air then
flows through the burrow from the lower entrance to the upper entrance.

Regular cola contains a considerable mass of dissolved sugar. Its density is higher than that of water.
Diet cola contains a very small mass of artificial sweetener and has nearly the same density as water.
The low—density air in the can has a bigger effect than the thin aluminum shell, so the can of diet
cola floats.

(@) Lowest density: oil; highest density: mercury
(b) The density must increase from top to bottom.
(@) Since the velocity of the air in the right-hand section of the pipe is lower than that in the

middle, the pressure is higher.

(b) The equation that predicts the same pressure in the far right and left-hand sections of the
tube assumes laminar flow without viscosity. Internal friction will cause some loss of
mechanical energy and turbulence will also progressively reduce the pressure. If the
pressure at the left were not higher than at the right, the flow would stop.
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Q14.32

Clap your shoe or wallet over the hole, or a seat cushion, or your hand. Anything that can sustain a
force on the order of 100 N is strong enough to cover the hole and greatly slow down the escape of
the cabin air. You need not worry about the air rushing out instantly, or about your body being
“sucked” through the hole, or about your blood boiling or your body exploding. If the cabin pressure
drops a lot, your ears will pop and the saliva in your mouth may boil—at body temperature—but
you will still have a couple of minutes to plug the hole and put on your emergency oxygen mask.
Passengers who have been drinking carbonated beverages may find that the carbon dioxide
suddenly comes out of solution in their stomachs, distending their vests, making them belch, and all
but frothing from their ears; so you might warn them of this effect.

SOLUTIONS TO PROBLEMS

Section 14.1 Pressure

P14.1

P14.2

P14.3

P14.4

P14.5

M = pyonV = (7860 kg/m® )E (0.0150 m):"}

= [01iTig]

The density of the nucleus is of the same order of magnitude as that of one proton, according to the
assumption of close packing:

-27
p:ﬂ~1.67><10 kg|~1018 kg/m3|

V' 42(10%° m)

With vastly smaller average density, a macroscopic chunk of matter or an atom must be mostly
empty space.

P:E:M:M.Mxloé N/m” |

n(o.soo x 10‘2)

F
Let F, be its weight. Then each tire supports Tg'
p-E_h
A 4A
yielding F, =4AP=4{0.0240 m*)(200x 10> N/m?)=| 192x10* N

SO

The Earth’s surface area is 47R?. The force pushing inward over this area amounts to
F=PyA="Py(47R?).

This force is the weight of the air:
F, =mg =Py (47R?)

so the mass of the air is

Py(47R) (1.013x10° N/mz)[47r(6.37><106 m)z:l

"= - =1527x10" ke |.
g 9.80 m/s> &
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Section 14.2  Variation of Pressure with Depth

Pl46  (a)  P=P+pgh=1013x10° Pa+(1024 kg/m*)(9.80 m/s)(1000 m)

P=|1.01x107 Pa

(b) The gauge pressure is the difference in pressure between the water outside and the air
inside the submarine, which we suppose is at 1.00 atmosphere.

Pyuge = P— Py = pgh=1.00x 10 Pa

The resultant inward force on the porthole is then

F = PypygeA=1.00x 10 Pa[;z(O.lSO m)z] ~[7.09x10° N |.

P14.7 F,; = Fauid or kx = pghA

Vacuum

. (1000 N/m?)(5.00x107° m)

2}:

(10° kg/m’)(9.80 m/52)|:7z(1.00><10_2 m)
FIG. P14.7

. . F F
P14.8 Since the pressure is the same on both sides, 1 -2

A Ay
15000 F,

200 300 o F=[25N]

P149  F, =800kg(9.80 m/s*)=784 N

In this case,

When the cup barely supports the student, the normal force of the
ceiling is zero and the cup is in equilibrium.

F,=F=PA= (1.013 x10° Pa)A

F
A=—g=7—845= 7.74x107° m?
P 1.013x10

FIG. P14.9

P1410 (a) Suppose the “vacuum cleaner” functions as a high-vacuum pump. The air below the brick
will exert on it a lifting force

F=PA=1013x10° Pa[ﬂ(1.43 x1072 m)z] - .

(b) The octopus can pull the bottom away from the top shell with a force that could be no larger
than

F=PA=(Py+pgh)A= [1.013 x10° Pa+(1030 kg/m’)(9.80 m/s”)(32.3 m)][ﬁ(1.43 x1072 m)z}
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P14.12

P14.13

P14.14
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The excess water pressure (over air pressure) halfway down is
Pyauge = Pgh=(1000 kg/m*)(9.80 m/s?)(1.20 m)=1.18x 10" Pa.
The force on the wall due to the water is
F = Pypyge = (118 x10* Pa)(2.40 m)(9.60 m)=| 2.71x10° N

horizontally toward the back of the hole.

The pressure on the bottom due to the water is P, = pgz =1.96 x 10* Pa

So, F,=P,A=|588x10° N

On each end, F=PA=980x10° Pa(zo 0m ) 196 kKN
On the side, F=PA=9.80x10° Pa(6o 0m ) 588 kN

In the reference frame of the fluid, the cart’s acceleration causes a fictitious force to act backward, as if

the acceleration of gravity were /g2 +a* directed downward and backward at 6 = tan ™' (E
g

vertical. The center of the spherical shell is at depth % below the air bubble and the pressure there is

1
P=Py+ pgh= P0+Epdw/82+’12 .

The air outside and water inside both exert atmospheric pressure,
so only the excess water pressure pgh counts for the net force. Take

j from the

a strip of hatch between depth i and h+dh. It feels force B2
2.00 m ==, 00m
dF = PdA = pgh(2.00 m)dh. :
x
(a) The total force is I‘%O'Im
2.00 m
F=[dF= [ pgh(2.00 m)dh FIG. P14.14
h=1.00 m
21200 m
2.
F=pg(200m)—{ = (1000 kg/m?)(9.80 m/sz)%[(z.oo m)? —(1.00 m)z]

1.00 m
F :| 29.4 kN (to the right) |

(b) The lever arm of dF is the distance (4—1.00 m) from hinge to strip:

2.00 m
r=[dr=" [ pgh(2.00 m)(h—1.00 m)dh
h=1.00 m
h3 hz 2.00 m
7 =pg(2.00 m) ——(1.00 m)—
|: 3 }1‘00 m

= (1000 kg/m®)(9.80 m/s*)(2.00 m)

(7.00 m® 300 m’ ]
2

T :| 16.3 kN -m counterclockwise |
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P14.15  The bell is uniformly compressed, so we can model it with any shape. We choose a sphere of
diameter 3.00 m.
The pressure on the ball is given by: P = P, + p,,8h so the change in pressure on the ball from
when it is on the surface of the ocean to when it is at the bottom of the ocean is AP = p,,gh.
In addition:

_-VAP _ p,ghV _ 4mp,, ghr®
B B 3B

47(1030 kg/m?)(9.80 2)(10 000 m)(1.50 m)*
AV =— ﬁ( B/m )( /s )( m)(1.50 m) =-0.0102 m?
(3)(140x10' Pa)

AV

, where B is the Bulk Modulus.

Therefore, the volume of the ball at the bottom of the ocean is
VAV = %72’(1.50 m)’ —0.010 2 m® =14.137 m® —0.010 2 m® =14.127 m®.

This gives a radius of 1.499 64 m and a new diameter of 2.999 3 m. Therefore the diameter decreases

Section 14.3 Pressure Measurements

P1416 (a) We imagine the superhero to produce a perfect vacuum in the straw. Take point 1 at the
water surface in the basin and point 2 at the water surface in the straw:

Py + pgy, =P, + pgy,
1013x10° N/m*+0=0+(1000 kg/m*)(9.80 m/s* )y, y2=[103 m ]|

(b) No atmosphere can lift the water in the straw through height difference.

P14.17 P, =pgh N

@
B 10.13x10° Pa _
h_pg (0.984><103 kg/m3)(9_80 m/sz)

=

| No. Some alcohol and water will evaporate. | The equilibrium

vapor pressures of alcohol and water are higher than the vapor B

pressure of mercury. ¥ @

FIG. P14.17
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P1418 (a) Using the definition of density, we have

hw _ Myater  _ 100 g ) :

 ArPuater 5.00cm?(L00 g/em’

(b) Sketch (b) at the right represents the situation after
the water is added. A volume (A,h,) of mercury

has been displaced by water in the right tube. The

additional volume of mercury now in the left tube (a) (b)
is Ah. Since the total volume of mercury has not
changed, FIG. P14.18
Ayhy = Al or EL (1)
Ay

At the level of the mercury—water interface in the right tube, we may write the absolute
pressure as:
P= pO + pwaterghw

The pressure at this same level in the left tube is given by
P= PO +pHgg(h+h2) = PO +pwaterghw
which, using equation (1) above, reduces to
A
pth|:1 + A_1:| = pwaterhw
2

orh: pwaterhw
A .
'DHg(1+A2)

(1.00 g/cm3 )(20.0 cm)

e gl i)

Thus, the level of mercury has risen a distance of 1=

above the original level.

P14.19 AP, =pgAh=-266x10° Pa: P=P,+AP, =(1.013-0.026 6)x 10> Pa=| 0.986 x 10° Pa

P14.20  Let & be the height of the water column added to the right

side of the U-tube. Then when equilibrium is reached, the “h

situation is as shown in the sketch at right. Now consider .

two points, A and B shown in the sketch, at the level of the ' S
water—mercury interface. By Pascal’s Principle, the absolute "h """" water
pressure at B is the same as that at A. But, / S

hh [ Mercury
Py =By + pygh+ prggh, and B ! A

Py =Py +p,8(h +h+hy).

Thus, from P, = Py,p. hy + p.. h+p, h,=p h+ h,, or
A =B Pylly T Pyt + Pylly = Pyt + Prghy, FIG. P14.20

hy {p il -1}112 = (13.6-1)(1.00 cm):.

pw
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(@  P=PR+pgh
The gauge pressure is

5 3 1 atm
P-P, = pgh=1000 kg(9.8 m/s )(0.160 m):: 1.57x10 Pa(—m13 T Paj

It would lift a mercury column to height

h:P_POZ 1568 Pa ):‘

pS (13600 kg/m’)(9.8 m/s?

(b) Increased pressure of the cerebrospinal fluid will raise the level of the fluid in the
spinal tap.

() Blockage of the fluid within the spinal column or between the skull and the spinal
column would prevent the fluid level from rising.

Section 14.4  Buoyant Forces and Archimede’s Principle

P14.22

P14.23

P14.24

(@) The balloon is nearly in equilibrium:
ZFy - muy =B- (Fg)helium a (Fg)payload -

or Pair8V — Phetium8V — Mpayload8 = 0

This reduces to

mpayload = (pair ~ Phelium )V = (12‘9 kg/m3 -0.179 kg/m3 )(400 m3)
Mpayload =

(b) Similarly,
M payioad = (Pair — Phydrogen )V =(1:29 kg/m* =0.0899 kg/m?)(400 m?)

mpayload =

The air does the lifting, nearly the same for the two balloons.

At equilibrium ) F=0 or E,, +mg =B 'Fapp
where B is the buoyant force.

The applied force, Fopp =B—mg
where B=Vol(pyaer)S B

and m=(Vol)ppa -

So, Fopp = (Vol)(Pwater =~ Pbant) = %”T 38 (Pwater = Pban) FIG. P14.23

E,p =§n(1.90 x1072 m)3(9.80 m/s?)(10° kg/m’ -840 kg/m’)=[0258 N |

F, = (m+ p,V)g mustbe equal to F, = p,, Vg

Since V = Ah, m+ p,Ah= p,Ah

m psVg

and A=| ———
(pw _ps)h

FIG. P14.24
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P14.25 (a)
(b)
*P14.26 (a)
(e)
®

Before the metal is immersed:

2 F, =T, -Mg=0or

T, = Mg = (1.00 kg)(9:80 m/s”)

5N, |

T, T,
After the metal is immersed:
> F,=T,+B-Mg=0 or . Mg
M
T,=Mg-B=Mg—(p,V)g 9
M 100kg
p 2700 kg/m? a b
Thus, FIG. P14.25
1.00 kg )
T, =Mg-B=9.80 N—(1000 kg/m?) ———2((9.80 m/s?)=[617 N |.
- 000 kg 888 Yoo ) -[G17N
|E, (b) Y F,=0: -15N-10N+B=0

*

Ty [B (©)

The oil pushes | horizontally inward | on each side of the block.

FIG. P14.26(a) (d) | String tension increases |. The oil causes the water below to be

under greater pressure, and the water pushes up more strongly
on the bottom of the block.

Consider the equilibrium just before the string breaks: 15N |
-15N-60N+25N+B_; =0 L
By =50 N | 1
For the buoyant force of the water we have 6ONY ’s IN [ Bait

B=pVg 25N =(1000 kg/m®)(0.25V14.)9-8 m/s”

FIG. P14.26(e)
VblOCk =1.02 x 10_2 m3
For the buoyant force of the oil

50 N =(800 kg/m’)f,(1.02x102 m?)9.8 m/s?

f,=0.625=

~15 N +(800 kg/m’)f(1.02x10™ m*}9.8 m/s* =0 15N |
f7 =0.187=[ 18.7% | #
IBoiI

FIG. P14.26(f)
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(a) P =Py + pgh
Taking P, =1.013x10° N/m? and h=5.00 cm

we find Pyp =10179x10° N/m? }

For h=17.0 cm, we get Ppor =1.0297x10° N/m?

Since the areas of the top and bottom are A =(0.100 m)2 =107 m? F, ' tr

op

we find Fop =PopA=| 10179x10° N | [l mi

and Fpot =| 10297 10° N | 4
bot

T+B-Mg=

(b) +B-Mg=0 FIG. P14.27
where B=p,Vg=(10" kg/m’)(120x10~° m’)(9.80 m/s*)=118 N
and Mg =10.0(9.80)=98.0 N

Therefore, ~T=Mg-B=98.0-118=
© Foot = Fiop =(1.0297-1.0179)x10°> N =

which is equal to B found in part (b).

Consider spherical balloons of radius 12.5 cm containing helium at STP and immersed in air at 0°C
and 1 atm. If the rubber envelope has mass 5.00 g, the upward force on each is

B- Fg,He - Fg,env = pairVg_pHeVg_ Mepy§
4
Pup = (pair _pHe)(gma)g_menvg

F, =[(129-0.179) kg/m’ ]E;z(o.lzs m)3}(9.80 m/s?)-5.00x10" kg(9.80 m/s*}=0.0401 N

If your weight (including harness, strings, and submarine sandwich) is

70.0 kg(9.80 m/s*) =686 N

. 686 N -
d th balloons: ————=17000| ~10* |.
you nee 1S many alloons 0040 1 N

(@) According to Archimedes, B = paer Vivater§ = (1.00 g/cm® )[20.0 x 20.0 x (20.0 — h)] g

But B=Weight of block =g = 0 v00dVwood § = (0.650 g/cm? )(20.0 cm)3 g
0.650(20.0)° ¢ = 1.00(20.0)(20.0)(20.0 — )g

20.0 — 11 = 20.0(0.650) so h =20.0(1—0.650) =

(b) B=F, + Mg where M =mass of lead
1.00(20.0)° g = 0.650(20.0)° g + Mg

M =(1.00 - 0.650)(20.0)" = 0.350(20.0)° =2.800 g =[ 2.80 kg
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*P14.30  (a) The weight of the ball must be equal to the buoyant force of the water:

4
1.26 kgg = Pwater 5 m(?uterg

13
3x1.26 kg
Touter =| ———7—=| =|670cm
oute (4;:1 000 kg/m’ J
(b) The mass of the ball is determined by the density of aluminum:

4 4
m :pAlvszl(gﬂTg _57”1'3)

1.26 kg =2700 kg/m’ (g n)((0.067 m)’ -1 )
111x107* m® =3.01x107* m® -7}

r=(189x10% m?)"” =[574 cm |

*P14.31 Let A represent the horizontal cross-sectional area of the rod, which we presume to be constant. The
rod is in equilibrium:

Z Fy =0: —mg+ B=0= _pOthole rodS pﬂuidVimmersedg
PoALg = pA(L - h)g
. L poL
The density of the liquidis  p= T

*P14.32  We use the result of Problem 14.31. For the rod floating in a liquid of density 0.98 g/cm?,

L
L-h

0.98 g/cm3 =

P=Po

PoL
(L-0.2 cm)

098 g/cm’ L-(0.98 g/em*)0.2 em=p,L
For floating in the dense liquid,

L
114 g/cm® =— Lo~
g/ (L-1.8 cm)

1.14 g/cm3 —(1.14 g/cm3)1.8 cm = p,L

(@) By substitution,
1.14L —1.14(1.8 cm) = 0.98L — 0.2(0.98)
0.16L =1.856 cm

0.98 g/cm?® (11.6 cm—0.2 cm) = p,11.6 cm
Po =1 0.963 g/cm3
PoL

() The marks are not equally spaced. Because p = T 7 is not of the form p=a+bh, equal-size

(b) Substituting back,

steps of p do not correspond to equal-size steps of h.
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P14.34

P14.35

P14.36

P14.37
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The balloon stops rising when  (p,;, — ppe )V = Mg and (Pair — P )V =M,

M 400 5
Therefore, V= = V=[1430 m
Pair — Pre  1.25¢71—0.180

Since the frog floats, the buoyant force = the weight of the frog. Also, the weight of the displaced
water = weight of the frog, so

poozeVg = mfrogg

O Mpge = PoozeV = Pooze l(é 7[}’3) = (1.35 x10° kg/ms)z?ﬂ(&OO x1072 m)3

213
Hence, mg,,, =| 0.611kg |.

A
szOg% = pspheregv v

B
1
psphere :E'DHZO =500 kg/m3
4 FIG. P14.35
Pglycerin8) EV - pspheregv =0

P = (0 k) [ 180

Constant velocity implies zero acceleration, which means that the submersible is in equilibrium
under the gravitational force, the upward buoyant force, and the upward resistance force:

> F, =ma, =0 ~(1.20x10* kg +m)g+ p,gV +1100 N=0
where m is the mass of the added water and V is the sphere’s volume.
1.20 x 10* kg +m =1.03 x 103[é ;z(1.50)3}+L0N2
3 9.8 m/s

50 m=|2.67x10° kg

By Archimedes’s principle, the weight of the fifty planes is equal to the weight of a horizontal slice of
water 11.0 cm thick and circumscribed by the water line:

AB= pwaterg(Av)
50(2.90x10* kg)g =(1030 kg/m*)g(0.110 m)A

giving A=|1.28 x10* m? |. The acceleration of gravity does not affect the answer.
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Section 14.5

Section 14.6

P14.38

P14.39

*P14.40

Fluid Dynamics

Bernoulli’s Equation

By Bernoulli’s equation,

8.00x10* N/m? +%(1 000)0? =6.00x10* N/m? + %(1 000)160°

-V — 4V
2.00x10* N/m?* = 1000 150> —
v=163 m/s

d ]
S~ pAo=10007(500x10 ) (1.63 mys)=

FIG. P14.38

Assuming the top is open to the atmosphere, then

Note

@)

(b)

Take point @ at the free surface of the water in the tank and @ inside the nozzle.

(@)

(b)

Pl :Po.
Flow rate = 2.50 x 10~ m3/min =417x107° m3/s.
A >> A, SO U1 << Uy

Assuming v; =0,

2 2
Py +%+ng1 :Pz+%+,08]/2

0, =(2g1)"* =[2(9.80)(16.0)]"* =

2
Flow ratezszz—(mi ](17 7)=417x107° m>/s

d=[173x10"° m |=1.73 mm

water Fair
With the cork in place P, + pgy; + l,ovl2 =P, +pgy, + lpv% becomes
2 2 «—f
Py +1000 kg/m®9.8 m/s*75m+0="P, +0+0; P, - P, =7.35x10* Pa.
For the stopper > F, =0 FIG. P14.40
Fuater —Fair = f=0
PA-PA=f

f=735x10* Par(0.011 m)* =[ 279 N

Now Bernoulli’s equation gives
P, +7.35x10* Pa+0=DP, +0+%(1 000 kg/m’)o3
v, =121 m/s

The quantity leaving the nozzle in 2 h is

PV = pAvyt=(1000 kg/m*)z(0.011 m)*(12.1 mys)7200 s=[332x10" kg |-

continued on next page
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*P14.42

*P14.43

Chapter 14

() Take point 1 in the wide hose and 2 just outside the nozzle. Continuity:
Alvl = szz
2 2
7{6.62ch oy ﬂ(z.zzcmj 121 m/s

121 m/s
9

vy =135 m/s

1 1
P, + gy +§pvf =P, +pgY, +Epv§

%(1 000 kg/m?)(121 nys)*

P, - B, =7.35x10* Pa—9.07x10* Pa=| 7.26 x 10* Pa

Flow rate Q=0.0120 m®/s=0v,A, = v,A,

0.0120
v, :Ag: . 316 m/s
2 2

P +0+%(1 000 kg/m*)(1.35 m/s)” =Py +0+

(a) P

_AE _ Amgh_(Am
- - At

2 ) oh= Rgh
A A jg §

(b) % =085(85x10°)(9.8)(87)=

The volume flow rate is

125 cm® 0.96 cm
———=Av, =71 vyg.
163 s 2

The speed at the top of the falling column is

7.67 Cm3/s

=072 o =10.6 cm/s.

U1

Take point 2 at 13 cm below:

1 1
P + pgy, +EP012 =P, + gy, +EPU%
Py +(1000 kg/m*)(9.8 m/s*)0.13 m+%(l 000 kg/m?)(0.106 mys)*
1
=P0+0+E(1 000 kg/m’Jo3

v, :\/2(9.8 m/s?)013 m+(0.106 mys)’ =1.60 m/s
The volume flow rate is constant:

2
7.67 cm3/s=7z(§j 160 cm/s

425
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*P14.44  (a) Between sea surface and clogged hole: P +% ot + pgy, = P, +% U5 + Py,

Tatm+0+(1030 kg/m®)(9.8 m/s*)2m)=P,+0+0 P, =1atm+20.2kPa

The air on the back of his hand pushes opposite the water, so the net force on his hand is
_pA_ 3 2\ 7 2 )2 _
F=PA=(202x10° N/m )(4)(1.%10 m) F=[228N

(b) Now, Bernoulli’s theorem is

1atm+0+20.2 kPa=1 atm+%(1 030 kg/m’Jo3 +0 v, =626 m/s

2
The volume rate of flowis  A,v, = %(1.2 x1072 m) (6.26 m/s)=7.08x10~* m?/s

One acre—foot is 4047 m? x0.3048 m=1234 m®

iy 1234 m°
Requiring 708 %10~ ms =| 1.74x10° s |=20.2 days

P14.45 (a) Suppose the flow is very slow: (P +%pv2 + pgyj = (P+ %pvz + pgyj

river rim

P+0+ pg(564 m)=1 atm+0+ pg(2096 m)

P=1atm+(1000 kg/m’)(9.8 m/s>)(1532 m)=[1atm+15.0 MPa |

md?o

(b) The volume flow rate is 4500 m® / d=Av=

1d 4
o=(aso0 w2/ i s)[ #(0.150 m)” J )

() Imagine the pressure as applied to stationary water at the bottom of the pipe:

1 1
(P+§pvz +pgyj =(P+§pvz +pgyj

bottom top

P+0=1 atm+%(1 000 kg/m*)(2.95 mys)” +1000 kg(9.8 m/s?)(1532 m)
P=1atm+15.0 MPa + 4.34 kPa

The additional pressure is | 4.34 kPa |.
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P14.47
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(@) For upward flight of a water-drop projectile from geyser vent to fountain—top,

2 _ .2
Vyp =0y + 20, Ay

Then 0 =07 + 2(—9.80 m/ sz)(+40.0 m) and v; =

1 1
(b) Between geyser vent and fountain—top: P+ 5 Pt + pgyy =Py + 5 PU5 + PRy,
Air is so low in density that very nearly P, =P, =1atm
Then, %v? +0=0+(9.80 m/s”)(40.0 m)

() Between the chamber and the fountain-top: P, +% Pt + PRy, = P, +% U5 + Py,

P, +0+(1000 kg/m®)(9.80 m/s>)(<175 m)= Py +0+(1000 kg/m*)(9.80 m/s*)(+40.0 m)
P =Py =(1000 kg/m®)(9.80 m/s*})(215 m) =[211MPa |

2 2
A
P+ % =P, +’D—22 (Bernoulli equation), v;A; = v,A, where —L =4
2

AZ 2
AP=P, - P, =2 (03 —vf):ﬁvf(—lz—lJ and AP =115 =21000 Pa
2 2 A2 2

v; =2.00 m/s; v, =4v; =8.00 m/s:

The volume flow rate is 1A =| 2.51x107° m3/s |

Section 14.7  Other Applications of Fluid Dynamics

P14.48

P14.49

16 000(9.80
Mg=(P, -P,)A for a balanced condition 16000680

where A=80.0m? 5P, =7.0x10* -0.196 x 10* =| 6.80 x 10* Pa

=7.00x10* - P,

4

Ah

T

Il
N
)
jasi
aQ
oq
|
—_
=)
S8}
!
s
//D\
i

Mercury

FIG. P14.49
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P14.50

P14.51

*P14.52

P14.53

Fluid Mechanics

The assumption of incompressibility is surely unrealistic, but allows an estimate of the speed:

1 1
P, + o8y +Epv12 =D, +pgY, +5pv§

1.00 atm +0+0 = 0.287 atm+0+%(1.20 kg/m’ Jo3

J 2(1.00 - 0.287)(1.013 x10° N/mz)
Uz =

1.20 kg/m? :

(a) P0+pgh+0=P0+0+%pU§ v; =4[2gh @
y
If 7=1.00 m, vy =|4.43 m/s
oL,
(b) P+pgy+%w§=1’o +0+%pv§ P ®

Since v, = v;, P=P, - pgy FIG. P14.51

Since P> 0 yg&: 1.013x10° Pa ):

pg (10° kg/m’)(9.8 m/s’

Take points 1 and 2 in the air just inside and outside the window pane.
1 1
P+ poi + pgyy = Py +— pv3 + PRy
P,+0=P, +%(1.30 kg/m®)(11.2 mys)* P,=P,—815Pa

(@) The total force exerted by the air is outward,

PA-P,A=PA-PyA+(815 N/m*)(4 m)(15 m)= 489 N outward |

(b)  PA-PA= % pviA= %(1.30 kg/m’)(22.4 m/s)” (4 m)(15 m) =[ 1.96 kN outward

2.00 N

In the reservoir, the gauge pressure is AP=————=800x 10* Pa
2.50x107° m

From the equation of continuity: Avy = Ay,

(250107 m*Jo; =(100x 10 m*Jo, v, =(4.00x10™Jo,

Thus, v{ is negligible in comparison to v3.

Then, from Bernoulli’s equation: (P -P,)+ % poT + PRy, = % U5 + Py,

8.00x10* Pa+0+0:0+%(1 000 kg/m’)o3

2(8.00 x10* Pa)

v2 = W:
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Additional Problems

P14.54

P14.55

Consider the diagram and apply Bernoulli’s
equation to points A and B, taking y =0 at
the level of point B, and recognizing that v 4
is approximately zero. This gives:

Pa+2pu(0) + pug(h=Lsing)

1
= PB +Epwvlz3 +pwg(0)

Now, recognize that P, =P; =D,

atmosphere

since both points are open to the atmosphere -
(neglecting variation of atmospheric
pressure with altitude). Thus, we obtain

v =4[2g(h—Lsin@) = \/2(9.80 m/s?)[10.0 m - (2.00 m)sin30.0°]

vp =133 m/s

FIG. P14.54

Now the problem reduces to one of projectile motion with v,; = v sin30.0°=6.64 m/s. Then,

vy =y +2a(Ay) gives at the top of the arc (where = Y., and v, =0)

0=(664 mys)” +2(-9.80 m/s)( 0)

Ymax =

OF Yyrax :| 2.25 m (above the level where the water emerges) |

When the balloon comes into equilibrium, we must have
sz :B_Fg,balloon _Fg,He _Fg, string =0

F is the weight of the string above the ground, and B

g, string
is the buoyant force. Now

F g, balloon = Mpalloon&

429

Fg, He = pHeVg
B= pairVg
h =
and Fg, string = Mstring fg

Therefore, we have FIG. P14.55

h
pairVg ~ Mpalloon§ ~ pHeVg - mstring fg =0

(pair ~ PHe )V ~ Mpalloon
m

or h= L

string
giving,

(1.29-0179)(kg/m’ )(M) ~0.250 kg

h= 2.00 m)=[191m].
0.050 0 kg (2,00 m)
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P14.56  Assume vj,g4. =0

P+0+0=1atm+ %(1 000)(30.0)* +1 000(9.80)(0.500)

Puge = P—1atm =450 x 10° + 4,90 x 10* = 455 kPa

P14.57  The “balanced” condition is one in which the apparent weight of the
body equals the apparent weight of the weights. This condition can be

written as:

Fg—B:Fg’,—B’

where B and B’ are the buoyant forces on the body and weights
respectively. The buoyant force experienced by an object of volume V

. FIG. P14.57
in air equals:

Buoyant force = (Volume of object)p,;,. ¢
sowehave B=Vp,.g and B'= (ij Pair S -
Therefore F,=F +(V—ijp S

, ¢ = kg o [

P14.58 The cross—sectional area above water is

2.46 rad

T
Ay = 7(0.600)* =113 cm?
Pwater gAunder = pwoodAallg

Puood =”31_%=0.709 g/em® =| 709 kg/m?

At equilibrium, } F, =0:

7(0.600 Cm)2 —(0.200 cm)(0.566 cm) = 0.330 cm?

FIG. P14.58

P14.59 B-F F, e —F -0

spring ~ g g, balloon

P14.60

giving
But
and

Therefore, we have:

or

From the data given,
Thus, this gives

P=pgh

Fopring =kL=B— (M6 + Mpglioon )§ -
B =weight of displaced air = p,; Vg
Myge = PreV -

kL = pair V8 = PHeVE — Mpalloon§

Pair — PHe )V ~ Mpalloon
k

L

(129 kg/m*-0.180 kg/m’}5.00 m’ -

FIG. P14.59

2.00x107 kg

90.0 N/m

1.013 x 10° =1.29(9.80)

For Mt. Everest, 29 300 ft = 8.88 km

(9.80 m/s?).

Yes
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P14.62

P14.63
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The torque is T= Jd T= J'rdF
H 1 h
From the figure =] y[pg(H - y)wdy] =3 pgwH? it Y
0
L 1 2
The total force is given as 5 pgwH N
dy
If this were applied at a height y,; such that the torque remains w A
unchanged, we have \ 5
1 1 1 ©
3 2
—pgwH” =y [—png } and ys=|-H|
6 72 713 FIG. P14.61

(@) The pressure on the surface of the two hemispheres is constant
at all points, and the force on each element of surface area is
directed along the radius of the hemispheres. The applied force
along the axis must balance the force on the “effective” area,
which is the projection of the actual surface onto a plane
perpendicular to the x axis,

A=7R?

FIG. P14.62

Therefore, F=| (R - P)aR?

(b)  For the values given F=(P,~0.100F, | z(0.300 m)*| = 0254, =| 258 x 10" N

Looking first at the top scale and the iron block, we have:
T, +B=F

g, iron

where Tj is the tension in the spring scale, B is the buoyant force, and F, ., is the weight of the iron

block. Now if m;,, is the mass of the iron block, we have

m

Miron = P ironV SO V= % = Vdisplaced oil
iron
Then, B= P oilVirong
m.
Therefore/ Tl = Fg, iron — poilvirong =Miron& ~ Poil — 8
iron

or T, = (1 - 5—°ﬂjmir0n g= (1 - %}(2.00)(9.80) -[173N

iron

Next, we look at the bottom scale which reads T, (i.e., exerts an upward force T, on the system).
Consider the external vertical forces acting on the beaker—oil-iron combination.

2. F, =0 gives
Tl +T2_Fg,beaker _Fg,oil_Fg,iron =0

Of Ty = (Myeqier + Mot + Miron ) — Ty =(5.00 kg)(9.80 m/s*)-173 N

Thus, T, =| 31.7 N | is the lower scale reading.
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P14.64 Looking at the top scale and the iron block:

Ti+B=F re where B=poVre8 = /DO(mFe )8

Fe

is the buoyant force exerted on the iron block by the oil.
m
Thus, T =F, ke _B:mFeg_pO( e Jg
Fe
or T = (1 - &ije g | is the reading on the top scale.
Pre
Now, consider the bottom scale, which exerts an upward force of T, on the beaker—oil-iron
combination.
ZF]/:O: Tl+T2_Fg,beaker_Fg,oil_Fg,Fezo
P
TZ = Fg, beaker T Fg, oil T Fg, Fe — Tl = (mb +my + Mg )g - (1 _p_oijeg
Fe
or T, =||m, +my+ (&jmpe ¢ | is the reading on the bottom scale.
PrFe

P14.65 pc,V=3083 g
pZn(xv)+ pCu(1 - X)V =2.517 g

pZn(3'083 jx +3.083(1-x)=2517

Pcu
( 7.133) ( 2.517)
1-1220 = 1-2222
8.960 3.083
x=0.900 4

iz = 0087

P14.66 (a) From ) F=ma

B—tye§ = Mpge§ = Myl = (mshell + 1My )ﬂ 1)
Where B=pyaterV8 and Mige = PreV
4: 3 7Z'd3

Also, V=—mr’=—
3 6

Putting these into equation (1) above,

d® d® md®
Mghen +pHeT A=\ Pwater —, ~ Mshell “PHe —, |8

6 6
which gives
a= (pwater B pHe)ﬂdf3 ~ Mghelnt
3
Ml + Prie "6
(1000 - 0.180)( kg /m® ) "0 ™" _ 400 kg , i
or a= 7(0.200 m)° 9.80 m/s -

4.00 kg +(0.180 kg/m?) 02

2x _ [2(h—d) _ [2(4.00 m—0.200 m)
b b= =\/ = =[4.06 s
® a a \/ 0.461 m/s’



P14.67

P14.68

P14.69

Inertia of the disk: I = %MRZ = %(10.0 kg)(0.250 m)* = 0.312 kg -m>

Angular acceleration: @ =, +at

e 0-300 rev/min (Z;rrad)(l minj B
B 60.0 s lrev \60.0s)

~la

Braking torque: Y. r=la=-fd=Ia,so f=

d
(0312 kg-m*)(0.524 rad/s?)

Friction force: f = =0.744 N
0.220 m
Normal force: f=yn=n= S 074N _ 149N
e 0.500
149 N

gauge pressure: P = L 5 =| 758 Pa

(250x1072 m)
The incremental version of P—F; = pgy is

We assume that the density of air is proportional to pressure, or

Combining these two equations we have

and integrating gives

so where a = pLg,

0

Energy for the fluid-Earth system is conserved.

mgL

(K+U), +AE pecn :(K+U)f: O+T+O:%mvz+0

Chapter 14
~0.524 rad/s?
dP = - pgdy
P_h
P Po
Po
dP=-P—gqd
P, 84y
P h
dpP e,
PSR
Py 00
n| 2 | = _Posh
) )
P=Pye ™

o= 3L = /200 m(9.8 m/s?) =[ 443 s |

433
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P14.70  Let s stand for the edge of the cube, / for the depth of immersion, p;. stand for the density of the
ice, p,, stand for density of water, and p, stand for density of the alcohol.

(@) According to Archimedes’s principle, at equilibrium we have
piceg53 = pwghSZ =h= S&
Puw
With Pice =0917 x10° kg/m°

P, =1.00x10° kg/m?

and $=20.0 mm

we get h=20.0(0.917) =18.34 mm ~

(b) We assume that the top of the cube is still above the alcohol surface. Letting &, stand for the
thickness of the alcohol layer, we have

pugszhu + pwgszhw = picegs3 S0 hw = (@js - [&jhu

Pw Puw
With P, =0.806x10° kg/m°
and h, =5.00 mm
weobtain  h,, =18.34—0.806(5.00) = 14.31 mm ~
() Here h;, =s—h}, so Archimedes’s principle gives

pﬂgszhl; +pwgsz(s_ht;):piceg53 :puh; +pw(s_h¢;):pice5
(Pw = Pice) (1.000—0.917)

. 200 _8.557~[856
"= (pu—p2) (1,000 — 0.806)
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P14.71  Note: Variation of atmospheric pressure with altitude is included in
this solution. Because of the small distances involved, this effect is
unimportant in the final answers.

(@

(@) Consider the pressure at points A and B in part (b) of the
figure:
Using the left tube: Py = P, + p,8h+ p,, (L —h) where the

al

Water ;

second term is due to the variation of air pressure with
altitude.

. . (b)
Using the right tube: P =P, + pogL

But Pascal’s principle says that P, = P;. Qil

Therefore, Py, +00SL = Py + 028N+ P, §(L — 1)

or (Pw = Pa)h=(pPu — po)L, giving
P —Po 1000750
h= L= 5.00 cm =[1.25
(pw—pﬂj (1000—1.29 o

(b) Consider part (c) of the diagram showing the situation (©)
when the air flow over the left tube equalizes the fluid
levels in the two tubes. First, apply Bernoulli’s equation to
points A and B (y, =y, v4 =v, and vy =0)

o 1 1
This gives: Py +—p,0" +PugYa =P+ P4(0) + pugys

L o

and since vy, =y, this reduces to: P — P, = 5 Pa? ) FIG. P14.71

Now consider points C and D, both at the level of the
oil-water interface in the right tube. Using the variation of
pressure with depth in static fluids, we have:

Po =Py +p,8H + py, gL and Pp =Py + p,gH + pogL

But Pascal’s principle says that P- = P,. Equating these two gives:

Py +pa8H + po8L =Py + pogH + py, L or Py — Py =(pyw —po)SL 2)
Substitute equation (1) for Py — P, into (2) to obtain % £.0> =(py — Po)8L

2¢L(p,, - —
or U= \/@ — \/2(9.80 m/sz)(0_050 0 m)(l 000 750)
Pa 1.29
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P14.72 (a)
(b)
P14.73  (a)
(b)
(©

The flow rate, Av, as given may be expressed as follows:

25.0 liters

=0.833 liters/s =833 cm’/s.
30.0's

The area of the faucet tap is 7cm?, so we can find the velocity as

833 cm’
o ﬂOV;rate S22 /s =265 cm/s=[ 2.65 m/s |.

7 cm

We choose point 1 to be in the entrance pipe and point 2 to be at the faucet tap. A;v; = A,v,
gives v; =0.295 m/s. Bernoulli's equation is:

P -P, =%p(v§ ~o})+pg(y2 ~y1)
and gives
P, P, =%(103 kg /m? )[(2.65 m/s)? - (0.295 m/s)2]+(103 kg/m?)(9.80 m/s?)(2.00 m)

or Pgaugezpl_Pzz 2.31x10* Pa |.

Since the upward buoyant force is balanced by the weight of the sphere,

4
mlgszgzp(gﬂR3jg.

In this problem, p=0.78945 g / cm? at 20.0°C, and R =1.00 cm so we find:

my = p@d@) =(0.78945 g/em’ )E 7(1.00 cm)?’} =[3307 g ].

Following the same procedure as in part (a), with p'=0.78097 g / em® at 30.0°C, we find:

", = p'(%ﬂst =(0.78097 g/cm? )Eﬂ(l.oo cm)s} =[3271g].
When the first sphere is resting on the bottom of the tube,
n+B=F, =m;g, where n is the normal force.
Since B=p'Vg

n=mg-p'Vg= [3.307 g~ (078097 g/cm®)(1.00 Cm)3]980 cm//s>

n=348 g-cm/s? = 3.48x107* N
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*P14.74  (a) Take point @ at the free water surface in the tank and point @ at the bottom end of the tube:

1 1
P, + psy +EP@12:P2 + P8V, +5pv§

B, +pgd+0=P0+0+%pr§

v, =4/2¢d

The volume flow rate is 4 = A—h =0v,A'.Then t= A :i.
t t UZA' A’ ng
(0.5 m)*0.5 m
CIE -[455]
2x10% m? [2(98 m/s?)10 m [245<]
*P14.75  (a) For diverging stream lines that pass just above and just below the hydrofoil we have

1 1
Py + pgys + pui =By + pgyy +— oo

Ignoring the buoyant force means taking v, ~y,

1 2 1
Pﬁzp(mb) =Pb+§pv§

B =L pni (1)

The lift force is (P, — P,)A = %pvf(nz - 1)A.

(b) For liftoff,

%pvf(nz —1)A:Mg
1/2
v, =| —2Mg
’ p(n2 —1)A

The speed of the boat relative to the shore must be nearly equal to this speed of the water
below the hydrofoil relative to the boat.

(c) vz(nz —1)Ap: 2Mg

2
i 2(800 kg)9.8 m/s _

(95 mys)*(1.052 -1)1000 kg/m’
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Fluid Mechanics

ANSWERS TO EVEN PROBLEMS

P14.2

P14.4

P14.6

P14.8

P14.10

P14.12

P14.14

P14.16

P14.18

P14.20

P14.22

P14.24

P14.26

P14.28

P14.30

P14.32

P14.34

P14.36

~10" kg / m? ; matter is mostly empty
space

192x10* N

(a) 1.01x 107 Pa;
(b)7.09 x10° N outward

255N
(@) 65.1N; (b) 275 N

5.88 x10° N down; 196 kN outward;
588 kN outward

(a) 29.4 kN to the right;
(b) 16.3 kN - m counterclockwise

(a) 10.3 m; (b) zero

(a) 20.0 cm; (b) 0.490 cm
12.6 cm

(a) 444 kg; (b) 480 kg

_m

(pw ~Ps )h

(a) see the solution; (b) 25.0 N up;

(c) horizontally inward;

(d) tension increases; see the solution;
(e) 62.5%; (f) 18.7%

~10* balloons of 25-cm diameter

(a) 6.70 cm; (b) 5.74 cm

(a) 11.6 cm; (b) 0.963 g/cm®;
(c) no; see the solution

0.611 kg

2.67 x10° kg

P14.38

P14.40

P14.42

P14.44

P14.46

P14.48

P14.50

P14.52

P14.54

P14.56

P14.58

P14.60

P14.62

P14.64

P14.66

P14.68

P14.70

P14.72

P14.74

12.8 kg/s

(a) 27.9N; (b) 3.32x10* kg;
(c) 7.26 x10* Pa

(a) see the solution; (b) 616 MW

(a) 2.28 N toward Holland; (b) 1.74x10° s
(a), (b) 28.0 m/s; (c) 2.11 MPa

6.80x10* Pa

347 m/s

(a) 489 N outward; (b) 1.96 kN outward

2.25 m above the level where the water
emerges

455 kPa
709 kg/m?
8.01 km; yes

(a) see the solution; (b) 2.58 x10* N

top scale: ( —&Jm}:e g;

Fe

m
bottom scale: (mb +mg + PoMEe jg
PFe

(a) 0.461 m/s*; (b) 4.06 s

see the solution

(a) 18.3 mm; (b) 14.3 mm; (c) 8.56 mm
(a) 2.65 m/s; (b) 231x10* Pa

(a) see the solution; (b) 44.6 s
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Q15.6

Oscillatory Motion

ANSWERS TO QUESTIONS

Q15.1  Neither are examples of simple harmonic motion, although
they are both periodic motion. In neither case is the acceleration
proportional to the position. Neither motion is so smooth as
SHM. The ball’s acceleration is very large when it is in contact
with the floor, and the student’s when the dismissal bell rings.

Q15.2  You can take ¢ = 7, or equally well, §=—7z. At t =0, the particle
is at its turning point on the negative side of equilibrium, at
x=-A.

Q15.3 The two will be equal if and only if the position of the particle

at time zero is its equilibrium position, which we choose as the
origin of coordinates.

(@) In simple harmonic motion, one-half of the time, the velocity is in the same direction as the
displacement away from equilibrium.

(b) Velocity and acceleration are in the same direction half the time.

(c) Acceleration is always opposite to the position vector, and never in the same direction.

No. It is necessary to know both the position and velocity at time zero.

The motion will still be simple harmonic motion, but the period of oscillation will be a bit larger. The

12
] will need to include a certain fraction of the mass of the
m off

effective mass of the system in @ = {

spring.

439
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Q15.7

Q15.8

Q15.9

Q15.10

Q15.11

Q15.12

Q15.13

Q15.14

Q15.15

We assume that the coils of the spring do not hit one another. The frequency will be higher than f by
the factor /2. When the spring with two blocks is set into oscillation in space, the coil in the center
of the spring does not move. We can imagine clamping the center coil in place without affecting the
motion. We can effectively duplicate the motion of each individual block in space by hanging a
single block on a half-spring here on Earth. The half-spring with its center coil clamped—or its other
half cut off—has twice the spring constant as the original uncut spring, because an applied force of
the same size would produce only one-half the extension distance. Thus the oscillation frequency in

1/2
space is (Zij(z—k) =+/2f . The absence of a force required to support the vibrating system in
T\ m

orbital free fall has no effect on the frequency of its vibration.

. ) 1
No; Kinetic, Yes; Potential, No. For constant amplitude, the total energy 5 kA? stays constant. The

N 1 . .
kinetic energy Emv2 would increase for larger mass if the speed were constant, but here the greater
mass causes a decrease in frequency and in the average and maximum speed, so that the kinetic and

potential energies at every point are unchanged.

Since the acceleration is not constant in simple harmonic motion, none of the equations in Table 2.2
are valid.

Equation Information given by equation
x(t) = Acos(awt + ¢) position as a function of time
o(t) = —wAsin(ot + ¢) velocity as a function of time

v(x)= ia)(Az - x2)1/2

a(t)=-w*Acos(ot + ¢)  acceleration as a function of time

velocity as a function of position

a(t) = —w?x(t) acceleration as a function of position

The angular frequency wappears in every equation. Itis a good idea to figure out the value of angular
frequency early in the solution to a problem about vibration, and to store it in calculator memory.

. /L [2L.
We have T, = \/% and Ty = ?f = ZT? =/2T;. The period gets larger by +/2 times. Changing the

mass has no effect on the period of a simple pendulum.

(@) Period decreases. (b) Period increases. (c) No change.

No, the equilibrium position of the pendulum will be shifted (angularly) towards the back of the car.
The period of oscillation will increase slightly, since the restoring force (in the reference frame of the
accelerating car) is reduced.

The motion will be periodic—that is, it will repeat. The period is nearly constant as the angular
amplitude increases through small values; then the period becomes noticeably larger as #increases
farther.

Shorten the pendulum to decrease the period between ticks.

No. If the resistive force is greater than the restoring force of the spring (in particular, if b* > 4mk),
the system will be overdamped and will not oscillate.



Q15.16

Q15.17

Q15.18

Q15.19

Q15.20

Q15.21
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Yes. An oscillator with damping can vibrate at resonance with amplitude that remains constant in
time. Without damping, the amplitude would increase without limit at resonance.

The phase constant must be zrad.

Higher frequency. When it supports your weight, the center of the diving board flexes down less
than the end does when it supports your weight. Thus the stiffness constant describing the center of

the board is greater than the stiffness constant describing the end. And then f = (Zij\/z is greater
7 )\m

for you bouncing on the center of the board.

The release of air from one side of the parachute can make the parachute turn in the opposite
direction, causing it to release air from the opposite side. This behavior will result in a periodic driving
force that can set the parachute into side-to-side oscillation. If the amplitude becomes large enough,
the parachute will not supply the needed air resistance to slow the fall of the unfortunate skydiver.

An imperceptibly slight breeze may be blowing past the leaves in tiny puffs. As a leaf twists in the
wind, the fibers in its stem provide a restoring torque. If the frequency of the breeze matches the
natural frequency of vibration of one particular leaf as a torsional pendulum, that leaf can be driven
into a large-amplitude resonance vibration. Note that it is not the size of the driving force that sets
the leaf into resonance, but the frequency of the driving force. If the frequency changes, another leaf
will be set into resonant oscillation.

We assume the diameter of the bob is not very small compared to the length of the cord supporting
it. As the water leaks out, the center of mass of the bob moves down, increasing the effective length
of the pendulum and slightly lowering its frequency. As the last drops of water dribble out, the
center of mass of the bob hops back up to the center of the sphere, and the pendulum frequency
quickly increases to its original value.

SOLUTIONS TO PROBLEMS

Section 15.1 Motion of an Object Attached to a Spring

P15.1

(@) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m and then

repeat the motion over and over again. Thus, the | motion is periodic |

(b) To determine the period, we use: x =

2(4.00
The time for the ball to hit the ground is ¢ = ( m _ =0.909 s
9.80 m/s®

This equals one-half the period, so T =2(0.909 s)=| 1. 82 s

(c) . The net force acting on the ball is a constant given by F =—mg (except when it is in

contact with the ground), which is not in the form of Hooke’s law.
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Section 15.2  Mathematical Representation of Simple Harmonic Motion
T T
P15.2 (@) x=(5.00 cm) cos(Zt + EJ Att=0, x=(5.00 cm) cos(g) =
dx . T
(b) v=—r= —(10.0 cm/s)sm(Zt +g) Att=0, ov=|-5.00 cm/s
() a= % = —(20.0 cm/sz)cos(Zt +%) Att=0, a=|-17.3 cm/s2
2r  2r;

(@ A=[500cm| and =" =" =|314s]
P15.3 x =(4.00 m)cos(3.007 + ) Compare this with x = Acos(«wt + ¢) to find

(@) o=2rf=3007

1
or f=150Hz | T=—=|0.667s
[[=130Ha] T=—

B a-

O

(d) x(t =0.250 s) = (4.00 m)cos(1.757) =

*P15.4 (@) The spring constant of this spring is

(d

(b)

()

(©

_F_045kg98 m/s’
x  035m

k

=12.6 N/m

we take the x-axis pointing downward, so ¢=0

’ 12.6 kg
x=Acoswt =18.0 cmcos |———=2-84.4 s=18.0 cmcos446.6 rad =| 15.8 cm
045 kg . SZ

Now 446.6 rad =71 x 277+ 0.497 rad. In each cycle the object moves 4(18) =72 cm, so it has

moved 71(72 cm) + (18 —15.8) cm = .

0.44 kg 9.8 m/s*
0.355 m

k /12.1
x = Acos \/%t =18.0 cmcos @84.4 =18.0 cm cos443.5 rad =

443.5 rad =70(27) + 3.62 rad

Distance moved =70(72 cm)+18+15.9 cm =

The answers to (d) and (e) are not very different given the difference in the data about the
two vibrating systems. But when we ask about details of the future, the imprecision in our
knowledge about the present makes it impossible to make precise predictions. The two
oscillations start out in phase but get completely out of phase.

By the same steps, k = =121 N/m
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P15.5 (@) At t=0, x=0 and v is positive (to the right). Therefore, this situation corresponds to
x=Asinot
and v =10, Cos wt
Since f=1.50 Hz, w=2rf=300x
Also, A =2.00 cm, so that | x=(2.00 cm)sin3.007 ¢
(b) Upax = 0; = Ao = 2.00(3.007) = 6.007 cm/s =| 18.8 cm/s
The particle has this speed at ¢t =0 and next at t= % = % s
© Ay = Aw? = 2.00(3.007)” =18.07% cm/s? =| 178 cm/s>
. s N 3
This positive value of acceleration first occurs at t= ZT =|0.500 s
2
(d) Since T = R s and A =2.00 cm, the particle will travel 8.00 cm in this time.
. 3 . .
Hence, in 1.00 s(— ETJ , the particle will travel 8.00 cm+4.00 cm = .
P15.6 The proposed solution x(t) = x; cos wt + (&j sin ot
®
N . dx .
implies velocity v="r= —x;0sin ot + v; cos wt
. dv 2 . 2 Ui . 2
and acceleration a= T =-x;0" coswt —v;wsinwt =—-w”| x; coswt +| — |sinwt |=-w"x
®
(@) The acceleration being a negative constant times position means we do have SHM, and its
angular frequency is m. At t =0 the equations reduce to x = x; and v =v; so they satisfy all
the requirements.
(b) 0% —ax = (-xosinot +v; cos o) - (—xia)z cos wt —v; sin a)t)(xi cos wt + (ﬂ) sin a)t)
®
v? —ax = x*w* sin® ot — 2x,0,0 sin ot cos wt + v? cos® ot
+x7w? cos® ot + x;v;0 cos wt sin wt + X, v, sin wt cos wt + v7 sin® ot = x?w* + v}
So this expression is constant in time. On one hand, it must keep its original value 7 —a;x;.
On the other hand, if we evaluate it at a turning point where v=0 and x= A4, itis
A’w? +0% = A’0w®. Thus it is proved.
PI57 () T=122°_[2405
. 5 .
1 1
b =—=——=|0417Hz
®  f=7=3
(©) o =27 f=27(0.417)=| 2.62 rad/s
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*P15.8 The mass of the cube is

m=pV=(27x10° kg/m*)0.015 m)’ =9.11x10"° kg

The spring constant of the strip of steel is

k=L BN 50 N/m
x 0.0275m

o 1 [k 1 52 kg
-9 o2 22 _T10H
f 27 2z \'m 27z\/529.11x10-3 kg

piso  f- - L |k or T:lzzﬂ\/ﬁ
27 2z \m f k

4x’m  47°(7.00 kg)

Solving for k, k =|409 N/m |.
g TZ (260 S)Z
*P15.10 x = Acos ot A=0.05m v=—-Awsin ot a=-Aw? coswt

If f=3600 rev/min =60 Hz, then @ =1207s™"

0 = 0.05(12077) mfs = Ao =0.05(1207)° m/s? =

P15.11 (a) ®= \/E _ (800 N/m _ 400s™  soposition is given by x=10.0sin(4.00¢) cm.
m 0.500 kg

From this we find that v=40.0cos(4.00t) cm/s Vax =| 40.0 cm/s
a=-160sin(4.00t) cm/s2 Aoy =| 160 cm/s2 .

®)  t= (4%)0) sin”! (ﬁj and when  x=6.00 cm, t=0.161 s.

We find v =40.0cos[4.00(0.161)] =
a=-1605in[400(0161)] = -96.0 cm/s” |.

(o) Using t = (ﬁj sin ™! (ﬁj

when x=0, t =0 and when x=8.00cm, t=0.232s.

Therefore, At = .
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P15.12 m=1.00kg, k=25.0 N/m,and A=3.00 cm. At t=0, x=-3.00 cm

(@)

(b)

(©

:\/z: /—25'0 =5.00 rad/s
m  \ 100

27 27
so that, T=—=—-=[126s
00"

(0]

Umax = A® =3.00 x 10 m(5.00 rad/s)=
i = A® =3.00x 107 m(5.00 rad/s)” =[ 0.750 m/s>

Because x =-3.00 cm and v=0 at ¢ =0, the required solution is x = —A cos ot

or | x =-3.00cos(5.00t) cm |

v= % = | 15.0sin(5.00¢) cm/s |

a= Z—z; = | 75.0c0s(5.00¢) cm/s? |

P15.13  The 0.500 s must elapse between one turning point and the other. Thus the period is 1.00 s.

0=2"_6.28/s
T

and v,,,, = @A =(6.28/5)(0.100 m) :.

P1514 (a)

(b)
Section 15.3
P1515 (a)

(b)

(©

Vpmax = @A
A= Pmax _| U
w o)

x=-Asinot = —(lj sin wt
w

Energy of the Simple Harmonic Oscillator

Energy is conserved for the block-spring system between the maximum-displacement and
the half-maximum points:

(K+U), =(K+U), kAZ:Emv +2kx

%(6.50 N/m)(0.100 m)* =%m(0.300 mys)’ +§(6.50 N/m)(5.00 x 10~ m)2

1 ) 2(24.4 m))
32.5 mJ =—m(0.300 +8.12 = =|0.542 k
mJ B m m/s) mJ M= 5 0x102 m?/sE

=\/E= 650 N/ _ 5 46 rad/s ar=2m _2rmad e
m 0.542 kg © 346 rad/s

e = Aw® =0.100 m(3.46 rad/s)’ =
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P15.16

P15.17

P15.18

P15.19

P15.20

m=200g, T=0250s, E=2.00]; o=

(@)

2

—mo- =

2

@)

(b)

(©

(@)

(b)

(©

(d

(@)

(b)

(©

(d)

()

(®)

(8)

2z _ 27
T  0.250

k=m? =0.200 kg(25.1 rad/s)* =[ 126 N/m
kA? 2E  [2(2.00)
E=C A= |22 ~[0178
e e

Choose the car with its shock-absorbing bumper as the system; by conservation of energy,

1 k ~ 5.00 x 10°
Ekxz: sz\/%=(3.16x102m) %:

ka2 250 N/m(350x10% m)’

2

Vmax =A@

a.. =Aw>=350x10"> ml

max

=251 rad/s

where = \/z = @ =224
m  0.500

(a5} <[5

1 1 _ 2
E=_kA®=—(350 N/m)(400x10 m)" =[28.0 m] |

o] = oV A% — X2 :\/E\/A2 —x?
m

|o]= ,/ﬁ\/(wo x 10*2)2 ~ (100 10*2)2 =[102 m/s |

%mvz = %kAz —%kxz = %(35.0)[(4.00 x 10*2)2 ~(3.00% 10*2)2} =

%kx2 :E—%mv2 =

[F 200N

k=11

x  0.200m

SEC

o= \/z =+/50.0 rad/s SO
m

Vo = @A =+/50.0(0.200)=[ 1.41 m/s | at x=0

A = ©2A =50.0(0.200) =| 10.0 m/s? | at x=+A
12 1 2 _

E=—kA? =—(100)(0.200)" =[ 2.00]

o] = oV A% - x =\/50.0,/§(0.200)2 =[133 mys |

o= 0*x = 50.0(

0.200

REEX

f

T
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*P15.22

(@)

(b)

(©

(d

(@)

(b)

(©

()

(©)

(®)
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1 1

E=LkA2 soif A'=24, F' =1 k(A)? = Lr24)? =
2 2 2

Therefore | E increases by factor of 4 |

k
Umax =4/ 41/
m

max =

is doubled |

Umax

... also doubles |

T= 27[\/% is independent of A, so | the period is unchanged |.

1
Ye=Yyi+ vyit+5ayif2

~11m= 0+0+1( 9.8 m/s” )t*

22 m-s?
= 150
=g =105

Take the initial point where she steps off the bridge and the final point at the bottom of her
motion.

(K+Ug+Us)i=(K+Ug+Us)f
0+mgy+0=0+0+%kx2

65 kg 9.8 m/s> 36m=%k(25 m)*
k=[734 N/m]

F_65kg9.8 m/s”
k734 N/m
11+8.68 m= | 19.7 m below the bridge | and the amplitude of her oscillation is

36-19.7=16.3 m.

kK [734N/m
:\/%: 5 Te =[1.06 rad/s |

Take the phase as zero at maximum downward extension. We find what the phase was 25 m
higher when x =-8.68 m:

The spring extension at equilibrium is x = =8.68 m, so this point is

In x=Acoswt, 16.3 m=16.3 mcos0

-8.68 m=16.3 mcos(1.06 i) 1.06i =-122°=-2.13 rad
S S

t=-2.01s

Then is the time over which the spring stretches.
total time =1.50 s +2.01 s =
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P15.23  Model the oscillator as a block-spring system.

From energy considerations, v? +0’x* = w?A?

2
... =wA and v :% SO (%) +o’xt =w?A?

max

From this we find x2 = %AZ and x= gA = where A =3.00 cm

P15.24  The potential energy is

The rate of change of potential energy is

au = lkA2 2 cos(a)t)[—a) sin(a)t)] = —lkAza) sin 2t .
dr 2 2
(@) This rate of change is maximal and negative at

20t = %, 20t = 27r+%, or in general, 2wt =2n7x +% for integer n.

dn+1
Then, t:i(4n+1):ﬂ(n—+1)
4o 4(3.60 s )

For n =0, this gives t =| 0.218 s | while n =1 gives t = .

All other values of n yield times outside the specified range.

- %kAza) = %(3.24 N/m)(5.00x 10~ m)2(3.60 s7)=

max

) ‘ du,

dt

Section 15.4  Comparing Simple Harmonic Motion with Uniform Circular Motion

P15.25 (a) The motion is simple harmonic because the tire is rotating with constant velocity and you
are looking at the motion of the bump projected in a plane perpendicular to the tire.

(b) Since the car is moving with speed v=3.00 m/s, and its radius is 0.300 m, we have:
® _300 mys _ 10.0 rad/s.
0.300 m

Therefore, the period of the motion is:

2z 2z
T=—=—+—"—-=|0628s|.
o  (10.0 rad/s)
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D)

The angle of the crank pin is 0 = wt.

Its x-coordinate is r
x=Acos@=Acoswt A‘
where A is the distance from the '

center of the wheel to the crank pin.
This is of the form x = Acos(wt + ¢),
so the yoke and piston rod move
with simple harmonic motion.

Piston

x=-A x(lt)

=T w

FIG. P15.26

Section 15.5 The Pendulum

P15.27

P15.28

P15.29

@) T=27z\/z
8

g (9:80 m/s?)(12.0 5)*

472 472 -
L 35.7 m
®) Toon = 27[\/ B 2‘7[\/1.67 m/s2 B

ngOI’l

L

L
The period in Tokyo is Tr =27 |-L

8T

. o Lo

and the period in Cambridge is Te =27 |—

8c
We know Tr =T-=2.00s
For which, we see Lr _Lc

&r 8¢

Sc L 09942

¢ Ly 0.9927:

or

The swinging box is a physical pendulum with period T =27 ’Ld .
mg.

The moment of inertia is given approximately by

1
I= gmL2 (treating the box as a rod suspended from one end).

Then, with L 1.0 m and d zé,

2
Lml? 2L 2(1.0 m)
T~2 f?’m =27 |== =2 /—:1.6 T~|10°s |.
i mg(%) ”\/; i 3(9.8 m/sz) o
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P15.30

P15.31

P15.32

2 2r 2«
= T= :T43:

Using the simple harmonic motion model:

A=rf= 1m15° —0262m

\f ,/98”‘/5 =313 rad/s
(a) Umax = A®=0.262 m 3.13/s=| 0.820 m/s

(b) i = Aw? =0.262 m(3.13/s)* =2.57 m/s?

2.57
Aian =70 o =2tan _ m/s =| 257 rad/s2
Im

4 FIG. P15.31
© F=ma=0.25kg 257 m/s* =] 0.641 N
More precisely,
(a) mgh = —=muv* and h=L(1-cosb)
U max 1/2.gL (1-cosb) = 0817 m/s

(b) la=mgLsin@

Lsin@

& max —w g no; =| 2.54 rad/s

mL
() Fax =mgsing; =0.250(9.80)(sin15.0°) = | 0.634 N
(@) The string tension must support the weight of the bob, accelerate it upward, and also provide

the restoring force, just as if the elevator were at rest in a gravity field (9.80 +5.00) m/ s

Toor L 5.00 m
14.8 m/s

= 3655

O T 2)=

9.80 m/s*-5.00 m/s

© S =\/ 9.80 m/sz)z +(5.00 m/sz)z =110 m/s?

5.00 m
T=2 = 424
= 110m/s n



P15.33

P15.34

P15.35

Referring to the sketch we have

F=—-mgsin@ and

For small displacements,

and

Since the restoring force is proportional to the displacement from
equilibrium, the motion is simple harmonic motion.

Comparing toF = —ma?*x shows |

X
tand=—

tan @ ~

r=_"

sin @

x=—kx

R

total measured time

@ T= 50

The measured periods are:

(b) T= 27z\/Z SO
8

The calculated values for g are:

Length, L (m) | 1.000 | 0.750 | 0.500

Period, T (s) |1.996 | 1.732 | 1.422
47’
=

Period, T (s)

1.996

1.732

1.422

g (m/s?)

9.91

9.87

9.76

Chapter 15 451

0.25 0.5 0.75 1.0
L,m

FIG. P15.34

Thus, g,y =| 9.85 m/ s? | this agrees with the accepted value of g =9.80 m/ s* within 0.5%.

() From T2 = (4 ]L the slope of T? versus L graph =
g

47*

Thus, §= slope

T:l;
f

T=2m |—

2
=401 s*/m.

=|9.85 m/ s? |. This is the same as the value in (b).

f=0.450 Hz, 4 =0.350 m, and m = 2.20 kg

I o 47l

m gd mgd

I:szgd:[lj mgd _ 2.20(9.80)( 0350)
47> (0.450 s-1

47 47[2

f

0 944 kg m?

FIG. P15.35
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P15.36 (a) The parallel-axis theorem:

1 1

I=1Icy +Md? :—ZMLZ +Md? =5 M(1.00 m)® + M(1.00 m)®

—M(B 2)
13m 13 m

T=2r / =[2.095s]|
12Mg100m 2(9.80 m/s ~[205]

FIG. P15.36

(b) For the simple pendulum
1.00 m 2095-2.01s
T=27r | ———F— =2.01s difference = —— =1 4.08
”\} 9.80 m/s* ) 2.01s

P1537 (a) The parallel axis theorem says directly I = Iy, + md*

Teng +md?
so  T=27|———|2z M
mgd mgd

(b) When dis very large T — 27 \/E gets large.
g

When dis very small T — 27z /IC—M gets large.
mgd

So there must be a minimum, found by

daT d 1/2 -1/2
EZOZEZﬂ'(ICM +md ) (mgd)
12

= 27{Icy +md’ )1/ ’ (—%j(mgd)"“/ ?mg +27(mgd) " G)(ICM +md?) " 2md

~ (e +md® mg . 2zmdmgd
(ICM +md2)1/2(mgd)3/2 (ICM +md2)1/2(mgd)

32

This requires
—ley —md? +2md* =0

P15.38  We suppose the stick moves in a horizontal plane. Then,

1 5 1 2 2
I =—mL* =—(2.00 kg)(1.00 =0.167 kg -

T:27z\/Z
K

4r?1  47%(0.167 kg-m?)
T (1805)

SECTEY



P15.39

T=0250s, [=mr’=(200x10" kg)(5.00x10~° m)2

() I1=]500x107 kg-m” |

d*e K 27
129 o |K =2
(b) e x0; . ) T

27 2 N-m
k=Iw?= (5.00 x 10-7) —|316x107% 22
0.250

Section 15.6 Damped Oscillations

P15.40

P15.41

P15.42

The total energy is E= %mv2 +%kx2
2
Taking the time-derivative, d—E = mvd—f + kxov
dt dt
2
Use Equation 15.31: mddtzx =—kx-bv
4k _ v(—kx —bv) + kvx
dt
Thus, d—E =-bv? <0
dt
0, =15.0° 6(t=1000) = 5.50°
X = Ap~bt/2m X1000 _ A H2m _ 5.50 _ 000)/2m
X, A 150
—-b(1000
ln(@) =-1.00= M
15.0 2m
.Y _[T00x107 57
2m
Show that x = Ae V2 cos(ot + ¢)
2
is a solution of —kx—b ﬂ =m d—;
dt dt
2
where = ﬁ - (L) .
m 2m

x=Ae " cos(wt + ¢)
dx
dt

2
ax_ —L[Ae_bt/zm (—Zij cos(wt + ¢) — Ae "™ @ sin(wt + ¢)}

= Ae~H2m (_Zi) cos(wt + @) - Ae™t2m g sin(ot + @)
m

dt? 2m m

—[Aeht/ am (—Zija) sin(wt + @)+ Ae"*" »? cos(wt + ¢)}
m

continued on next page
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FIG. P15.39

ey

(2)
)
4)

)
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Substitute (3), (4) into the left side of (1) and (5) into the right side of (1);

*P15.43

2

—kAe 2™ cos(wt + ¢) +§_Ae’bt/2’” cos(at +¢) +bade™">" sin(wt + §)
m

= —%{Aebt/z’” (—%) cos(wt + @) — Ae "> @ sin( ot + ¢)}

+%Ae‘bt/2ma) sin(wt + ¢) — mw>Ae ™" cos(wt + )

Compare the coefficients of Ae™"/*" cos(wt +¢) and Ae /" sin(wt + ¢):

2 2 2 2
cosine-term: —k+b—:—2(—ij—ma)2:b——m(£— b ]:—k+b

om 2 4m 2m

sine-term:  bw = +%(a)) +%(a)) =bw

Since the coefficients are equal, x = Ae

The frequency if undamped would be w, = \/E =
m

@)

(b)

(©

H2m cos( et + ¢) is a solution of the equation.

2.05x10* N/m

= 44.0/s.
106 kg

With damping

2 2 2
W= w(z)_(i) = (44 1) [ 3kg
2m ] s210.6 kg
=,/1933.96-0.02 =44.0 1
s

o 440
f=%7 " 3ms -0 Hz]

2
~bt/2m cos(a)t + ¢) over one cycle, a time T = —”, the amplitude changes from A, to
(4]

In x=Ape
Aye V¥2m for a fractional decrease of
A=A Ty x00640) g 002 1 (979,98 0.0200 - [2.00% |.
Ay

The energy is proportional to the square of the amplitude, so its fractional rate of decrease is
twice as fast:

E :lkAz :lkAge—th/Zm — Eoe—bt/m .
2 2
We specify
0.05E, = Eje /10
0.05 = ¢ 3106
e+3i‘/10.6 — 20

3—t6 =In20=3.00
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Section 156.7  Forced Oscillations
P1544 (a) For resonance, her frequency must match
w1 [k 1 [430x10° N/m
—=— = 2 95 H
fo= o =2\ m " 2x 125 kg =[295 Hz].
dx . do 2 . .
(b) From x=Acoswt, v= s =—-Awsinwt,and a = m =-Aw* coswt, the maximum acceleration
is Aw®. When this becomes equal to the acceleration due to gravity, the normal force
exerted on her by the mattress will drop to zero at one point in the cycle:
9.80 m/s?)(125 kg)
PP [
& 0 koK 430x10° N/m
P1545  F=3.00cos(27t) N and k=20.0 N/m
2z
(@) a):T:Zﬁ rad/s S0 T:
(b) In this case, W, = \/z = W/w =3.16 rad/s
m 2.00
The equation for the amplitude of a driven oscillator,
-1 -1
with b =0, gives A= (F—Oj(wz ~0) = 3[4;:2 - (3.16)2]
m 2
Thus A=00509 m=|509 cm |-
d*x k
P1546  Fycoswt—kx=m—— Wy =.— (1)
dt m
x = Acos(awt + ¢) @)
ax =—Awsin(ot + ¢) (3)
dt
2
d—; = —Aw? cos(wt + ¢) 4)
dt
Substitute (2) and (4) into (1): F, cos wt — kA cos(at + ¢) = m(—Aw2 ) cos(at + @)
Solve for the amplitude: (kA ~-mAo* ) cos(ot + ¢) = F, cos wt

These will be equal, provided only that ¢ must be zero and kA - mAw” = F,

Thus, A=

i
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P15.47  From the equation for the amplitude of a driven oscillator with no damping,

A Fy/m
(0* - o)
©=27f=(2007s") w2=X_ i?g =490572
m o (5%0)

F = mA(a)2 - a)g)

40.0 g
F, = (%)(2.00 x107)(3 950 - 49.0) =

P1548 A= Fexrz/m
Yo -i) +oarm’
Withb=0,  A-_fed/m _ Fefm _ Foq/m
’ 2 2 2\ 2_ 2
\/(a)z—a)g) i(a) a’o) 0" =
Thus wZZwSiFext/mzﬁ_{_h_ﬁin N/m 170N

A m mA 0150kg ~ (0.150 kg)(0.440 m)

This yields ®=8.23 rad/s or @ =4.03 rad/s

Then, f= Zﬂ gives either f = or f=
V3

P15.49  The beeper must resonate at the frequency of a simple pendulum of length 8.21 cm:

_L g_i 9.80 m/s2 _
f_Zﬂ\/:_Zﬂ \/ 0.0821m _'

*P15.50  For the resonance vibration with the occupants in the car, we have for the spring constant of the
suspension

Ly L3 k=47’ f*m=47"(18 s*l)z(l 130 kg +4(72.4 kg)) = 1.82x10° kg/s?

" 272 \'m

4(72.4kg)(9.8 m/s’)

Now as the occupants exit x= F_ = 5—=| 1.56 % 102 m
k  182x10° kg/s
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Additional Problems

P15.51

P15.52

Let F represent the tension in the rod.

(@)

(b)

(@)

At the pivot, F = Mg+ Mg =

A fraction of the rod’s weight Mg(lj as well as the L
L

weight of the ball pulls down on point P. Thus, the y
tension in the rod at point P is

=
VR
—_
+
|
N—
La
=1
|
|

F :Mg(%j+Mg=

FIG. P15.51

4

Relative to the pivot, [ = I, 4 + Iy = %MLZ +MIL* == MI?

For the physical pendulum, T =27 /Ld where m =2M and d is the distance from the
m:

pivot to the center of mass of the rod and ball combination. Therefore,

M ML 4172
d:—( )* 3L andToor | 2ME |4z 2L
M+M 4 (2M)g(3E) 3Vg

_ 47 2(2.00 m)
For L=2.00 m =[268s ]
31980 m/s® =[2685]

Total energy = %kA2 = %(100 N/m)(0.200 m)* =2.00 J

At equilibrium, the total energy is:
1 2 1 2 2
E(m1 +my)o 25(16.0 kg)o* =(8.00 kg)v

Therefore,

(8.00 kg)o? =2.00J,and v= 0500 mys |.

This is the speed of m; and m, at the equilibrium point. Beyond this point, the mass m,
moves with the constant speed of 0.500 m/s while mass m;, starts to slow down due to the
restoring force of the spring.

continued on next page
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P15.53

P15.54

P15.55

(b) The energy of the m,-spring system at equilibrium is:

%mlv ; (9.00 kg)(0.500 m/s) =11257.

This is also equal to %k(A’)Z, where A’ is the amplitude of the m;-spring system.

Therefore,

%(100)(14')2 =1.125 or A’ =0.150 m.

The period of the m;-spring systemis T = 27z1/ P =1885s

and it takes iT =0.471 s after it passes the equilibrium point for the spring to become fully

stretched the first time. The distance separating m; and m, at this time is:

T ’
D= U(Zj —A"=0.500 m/s(0.471 s)-0.150 m =0.085 6 =| 8.56 cm |.

2
d—; = Aw?
dt max

fmax =Hn=pHmg = mAw*

A=t =[66rem] "
@ f

B —>

lmg

FIG. P15.53

The maximum acceleration of the oscillating system is a,,,, = Aw® = 47> Af*. The friction force
exerted between the two blocks must be capable of accelerating block B at this rate. Thus, if Block B
is about to slip,

Hs&
A=
a2 f?

f:fmax :ﬂsn:ﬂsmg:m(‘LﬂZAfz) or

Deuterium is the isotope of the element hydrogen with atoms having nuclei consisting of one
proton and one neutron. For brevity we refer to the molecule formed by two deuterium atoms as D
and to the diatomic molecule of hydrogen-1 as H.

M f
Mp =2M / H 1/ =21 1 0919x10"* Hz
D H ,—MH M, fo > |
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The kinetic energy of the ball is K = %mv2 +%IQ2,

where Q is the rotation rate of the ball about its
center of mass. Since the center of the ball moves
along a circle of radius 4R, its displacement from
equilibrium is s = (4R)& and its speed is

U= % = 4R(%). Also, since the ball rolls without
slipping,
vzﬁzRQ SO Q:£=4(ﬁj
dt R dt

FIG. P15.56

The kinetic energy is then

2 2
K= lm(4Rﬁj +l(%mR2)(4ﬁj
2 dt 2\5 dt

_ 112mR? (ﬁ)z
C 10 \dt

When the ball has an angular displacement 6, its center is distance & =4R(1 - cos 6) higher than

when at the equilibrium position. Thus, the potential energy is U, = mgh=4mgR(1 —cos ¢). For small
2
angles, (1-cos6) = % (see Appendix B). Hence, U, ~ 2mgR6?, and the total energy is

2 2
E=K+U :mﬂ(%j +2mgRo?.

§10

2 2

Since E = constant in time, 4B =0= %(ﬁjd_f +4mgR Q(ﬁj .
dt 5 dt ) dt dt
2 2
This reduces to ﬁd—f +g0=0,0r d_f - _(5_37),9_
dt 28R

With the angular acceleration equal to a negative constant times the angular position, this is in the
defining form of a simple harmonic motion equation with o = 1/_2583;2 .

The period of the simple harmonic motion is then T = 27 _ 2 \/258—R .
@ s
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P1557 (a) r—

FIG. P15.57(a)

)  T=2z /% ar_z 14 1)

g dt \/EWE

We need to find L(t) and % From the diagram in (a),

L:Li+£_k;d_L:_(l)d_h‘
2 27 dt 2) dt
But M = pd—V =- pA%. Therefore,
dt dt dt
dh__ 1AM dL_( 1 )dM o)
dt  pA dt " dt \2pA) dt
k 1 Y aMm
Also, [dL=|— (—jt:L—Li 3)
i 2pA N\ dt

Substituting Equation (2) and Equation (3) into Equation (1):

ar_ L[ 1 J(dﬂ) 1
dat | Jg\2p® \ dt Li*leaz(M)t

dt

(c) Substitute Equation (3) into the equation for the period.

\/E 2pa° \ dt

Or one can obtain T by integrating (b):

for- e i e
| e

Zpaz

ButT, =27 |2, 50 T= 2% Li+%(dﬂ)t_
8 \/E 2pa° \ dt




P15.58

P15.59

*P15.60

Chapter 15
\/7 2z
w = - =
m T
4z°m K(T")? (T’)Z

k = 2 = = = e
(@) wm ) (b) m 2 m T
We draw a free-body diagram of the pendulum. H,
The force H exerted by the hinge causes no torque _
about the axis of rotation. H, |

hcos@
2
r=Ia and d—f =—«a Xy
: a0
r=MgLsin0+kxhcos @ =—1—-
dt Lsing
mg
For small amplitude vibrations, use the
approximations: sinf~ 6, cos@~1,and x~s="ho. FIG. P15.59
2 I +k 2 I 2
Therefore, d—f: | ML+ k™ 0=-w?0 _ | Ms +2kh 27 f
dt I ML
JE J Mgl + kh?
27\ MI?

(a) In x=Acos(wt+¢), v =—wAsin(ot + §)

we have at =0 v=-—wAsing=—-0v,,,

This requires ¢ =90°, so x = A cos(wt +90°)

And this is equivalent to x=—Asinot

50 N
Numerically we have ®= \/z = 50 Njm =10s™"
m 0.5 kg

and v, = @A 20 m/s = (10 st )A A=2m

So x=(-2m) sin-(lo s )t-
(b) In lmvz+lkx2:lkAz, lkx2 :3(117102)

2 2 2 2 2
implies llkx2 +lkx2 =lkA2 éx2 =A?
32 2 2 3

x:i\/EA:iO
4

continued on next page
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P15.61

Oscillatory Motion

(©

(d

(@)

(b)

2

o (10 s

In x=(-2m) sin[(lO s’l)t]
the particleisat x=0 at t=0, at 10f =7s, and so on.
The particle is at x=1m
when —l = sin[(lO g1 )t]
2
with solutions (10 st )t __Z
6

(1057 )= +%, and s0 on. FIG. P15.60(d)

The minimum time for the motion is At in 10Af = (%) s

=g s =[003245]

At equilibrium, we have

ZrzO—mg(%)+kx0L

where x is the equilibrium compression.

After displacement by a small angle, FIG. P15.61
L L 2
D r=-mg| By +kxL =-mg 5 +k(xg —LO)L = —k6L

1 _,d%0 d*0 3k
But, r=la=—ml*—-. So —-=-"=9.
2 3 dt? at> m

The angular acceleration is opposite in direction and proportional to the displacement, so

3
3]

o 1 Bk 1 /3(100 N/m)
SCAN S =, S ol el O ey P
f 2r 2z \m 2rx 5.00 kg

we have simple harmonic motion with | @




*P15.62

P15.63
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As it passes through equilibrium, the 4-kg object has speed

/ 100 N
VUpax = QA = L3 = —/mz m=10.0 m/s.
m 4 kg

In the completely inelastic collision momentum of the two-object system is conserved. So the new
10-kg object starts its oscillation with speed given by

@)

(b)

(©

(d)

@)

(b)

(©

4 kg(10 m/s)+(6 kg)0 = (10 kg)vax

Vnax =400 m/s
: o 1 - _1. .5
The new amplitude is given by Emvmax = EkA
10 kg(4 m/s)” =(100 N/m)A>
A=126m

Thus the amplitude has | decreased by 2.00 m-1.26 m=| 0.735 m

/ 4k
The old period was T=27 " =27 |——8 _ _1265s
k 100 N/m
C o 10 ,
The new period is T=2m 100 s =199 s

The period has 199 m-1.26 m=| 0.730 s

The old energy was %mvfmax = %(4 kg)(10 m/s)2 =200]

L (10 kg)(4 m/s)? =807

The new mechanical energy is 3

The energy has | decreased by 120 ] |

The missing mechanical energy has turned into internal energy in the completely inelastic
collision.

27 L
T="2=27|==[300s

s an -
E=Lmo? = L(67a)2.06)* =[123]

5 S (6742 .

1
At maximum angular displacement mgh = Emv2 h=—=0217 m

h [e]
h=L-Lcos@=L(1-cosO) cosezl—z 0=25.5
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P15.64

P15.65

One can write the following equations of motion: k
. . T —>| <«—R
T—kx=0 (describes the spring) ‘
g 2%

mg—T' =ma=m ?; (for the hanging object) T

d*0 1d°x "
RT'-T)=l—7F=—— for the pulle

(-T)=I— 7 =2 ( pulley)

R FIG. P15.64
with [ =—
2

Combining these equations gives the equation of motion

1 d*x
(m +5det—2+kx: mg.

The solution is x(t) = Asin wt +ng (where ng arises because of the extension of the spring due to
the weight of the hanging object), with frequency

f_a)_l k1 100 N/m
27 2r\m+iM 2710200 kg+iM

(a) For M =0 f=
(b)  For M =0.250 kg f=
© For M =0.750 kg f=

Suppose a 100-kg biker compresses the suspension 2.00 cm.

Then, k= £ = 980N

=———————=490x10* N/m
x 2.00x107™ m

If total mass of motorcycle and biker is 500 kg, the frequency of free vibration is

490x10* N/m

R =158 Hz
m 27 500 kg

If he encounters washboard bumps at the same frequency, resonance will make the motorcycle
bounce a lot. Assuming a speed of 20.0 m/s, we find these ridges are separated by

20.0 m/s T
———=127m| ~10" m|.
158 71

In addition to this vibration mode of bouncing up and down as one unit, the motorcycle can also

vibrate at higher frequencies by rocking back and forth between front and rear wheels, by having
just the front wheel bounce inside its fork, or by doing other things. Other spacing of bumps will

excite all of these other resonances.
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P15.66 (a) For each segment of the spring dx v
_1 2
Also, v, = %v and dm= %dx. FIG. P15.66

Therefore, the total kinetic energy of the block-spring system is

0f 2 2
K=1M02+lj S Loy l(M+ﬂ)vz .
2 200 ¢ 14 2 3
(b) = L and l711£,ff02:l(M+Ejvz
meff 2 2 3
M+
Therefore, T:2_7z: 272'\/ 3
@ k

9T cin g} —an-l Y =S,
P15.67 (a) > F=-2Tsin0j where 6 = tan (Lj e
L - L
Therefore, for a small displacement
FIG. P15.67
2Ty «
sind~tand=" and ZF:—yj
L L
(b) The total force exerted on the ball is opposite in direction and proportional to its
displacement from equilibrium, so the ball moves with simple harmonic motion. For a

spring system,

> F=-kx  becomeshere > F= —%y.

Therefore, the effective spring constant is 2 and o= \/z = JE .
L m mL
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P15.68 (a)

(b)

(©

Assuming a Hooke’s Law type spring,
F=Mg=kx
and empirically

Mg =1.74x 0113

so  k=|174 N/m+6% |.

M,kg x,m Mg, N
0.0200 0.17 0.196
0.0400 0.293 0.392
0.0500 0.353 0.49
0.0600 0.413 0.588
0.0700 0.471 0.686
0.0800 0.493 0.784

We may write the equation as theoretically

2 2
Tzz%M+43Lkms

and empirically
T%=21.7M +0.0589

47*
S0 k=E=| 1.82 N/m+3% |

Time,s T,s M,kg T?, 2
703 0.703 0.0200 0.494
9.62 0962 0.0400 0.925

10.67 1.067 0.0500 1.138
11.67 1.167 0.0600 1.362
1252 1252 0.0700 1.568
13.41 1.341 0.0800 1.798

The k values 1.74 N/m+6%
and 1.82 N/m=+3% differ by 4%

.

Utilizing the axis-crossing point, m, = 3(

0.058 9

Supported weight, N

Period squared, s?

Static stretching of a spring

g y=1.7386x-0.1128

r-T-T-T -T a
[

Extension, m

Squared period as a function
of the mass of an object
bouncing on a spring

21-v-T-ToTeToToTon

R R R B S =
Lo

R e
Lo i

-
-4-+-4
-

0 0.02 0.04 0.060.08
I\/TQCC ko

vidSS, Kg

FIG. P15.68

kg =| 8 grams £12%

n agreement | with 7.4 grams.
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P15.69 (a) AK+AU=0
Thus, Ky, + Uy

=Upo =0

top = Kbot + ubot

where K,

Therefore, mgh = %I »?, but
h=R—-Rcosf=R(1-cos0)

v
w=—
R
MR?*  mr? )
and = MR FIG. P15.69
Substituting we find
1{ MR* mr? 5 | *
R(1-cosf)=— +——+mR" |—
mgR(1 - cos6) 2[ 5 St 5
M mr® m|,
mgR(1-cosO)=| —+——=+—1v
s ) {4 4R? z}
1-cosd
and 02:4gR(C—(:S)
(M+’—2+2)
m R
Rg(1-cosd
SO v=2 R(1-cosh) ZCOS )
M rr+2
, I
(b) T=27|——
mr8dey
mR + M(0)
mr=m+M Aoy =
! o™ m+M
I MR? + Lmr? + mR?
T=|2rx
mgR
. ~bt/2m _ A +bt)2m _
P15.70 (a) We require Ae Y e =2

bt 0.100 kg/s
or —=In2 or ——>—1t=0.693 ~t=|520s
2m 2(0.375 kg)
The spring constant is irrelevant.

(b) We can evaluate the energy at successive turning points, where

cos(ot + ¢)=+1 and the energy is %kx2 = %kAze_bt/Z'". We require %kAze’bt/zm = %(%kAz)

_mIn2  0.375 kg(0.693)

+btfm _ o ot =[260s].
o ¢ b 0.100 kg/s

1
(c) From E = EkAZ, the fractional rate of change of energy over time is

d (1 2
& &(1kA ): 2KQAG W

2 2
E LkA 1kA A

two times faster than the fractional rate of change in amplitude.
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P15.71

P15.72

equilibrium, spring 1 is stretched a distance x; and

(@) When the mass is displaced a distance x from
spring 2 is stretched a distance x,. }‘

k'l k2
()

By Newton’s third law, we expect

ky ka
klxl = kzxz.
SRR
When this is combined with the requirement that .
(b)
rEn T, FIG. P15.71
we find Xq :{ ks }x
ki+k,
. o kyk,
The force on either spring is given by F=|—"—|x=ma
ki +k,
where g is the acceleration of the mass m.
This is in the form F=keyyx=ma
ki +k
and T=27 |- = 2;:\/M
keff klkz

(b) In this case each spring is distorted by the distance x which the mass is displaced. Therefore,
the restoring force is

so that T=|27z |—" |
(ky +k3)

Let ¢ represent the length below water at equilibrium and M the tube’s mass:
Y F, =0=>-Mg+prriig=0.
Now with any excursion x from equilibrium
~Mg + prr*(f—x)g=Ma.
Subtracting the equilibrium equation gives

—prrigx=Ma

2
a= —['Dﬁr ng: —w*x
M

The opposite direction and direct proportionality of a to x imply SHM with angular frequency

2
o P8
M

2T (E)\/ﬂ
[0 r pg
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P15.73  For 6,,,, =5.00°, the motion calculated by the Euler method Motion of a Simple Pendulum
agrees quite precisely with the prediction of 8., coswt. The
periodis T=2.20s.
Ange. Accel ) +: ol +: ) +: ) ﬁ:
Time, Angle, Ang. speed ng. che ) AU S Y el
t(s) 9(0) (O/S) (O/S ) Hmaxcoswt [ 17;7\71:1:1
0.000 5.000 0 0.000 0 —40.781 5 5.000 0 IR 4,;,%
0.004 4,999 3 -0.163 1 —40.776 2 4.999 7 ; b L Time
0.008 4,998 0 —0.326 2 —40.765 6 4.998 7 + %+§ 44 (s)
. -+ + -+ 4
0.544 0.056 0 -14.282 3 —0.457 6 0.081 0 -+ ot 1
0.548 —0.0011 —14.284 2 0.009 0 0.0239 H A A
0552  -0.0582  -14.2841 04756  -0.0333 I REERENEE
Small amplitude
1.092 —4.999 4 -0.3199 40.776 5 —4.998 9
1.096 -5.000 0 -0.156 8 40.781 6 —4.999 8
1.100 -5.000 0 0.006 3 40.781 4 -5.000 0
1.104 —4.999 3 0.169 4 40.7759 —4.999 6
1644  —0.0638 142824 04397  -0.0716
1.648 0.003 3 14.284 2 -0.027 0 -0.014 5
1.652 0.060 4 14.284 1 -0.493 6 0.042 7 L
Time
2192 49994 03137  —40.776 8 4.999 1 ()
2.196 5.000 0 0.150 6 —40.7817 4.9999
2.200 5.000 0 -0.012 6 —40.781 3 5.000 0
2.204 4,999 3 -0.1757 —40.775 6 4.999 4

For 6
0oy cOs ot diverges greatly from the Euler calculation. The
period is T = 2.71 s, larger than the small-angle period by 23%.

max = 100°, the simple harmonic motion approximation

FIG. P15.73

Time, Angle,  Ang.speed Ang. Azccel.
t(s) 0(°) (/s) (°/ s ) O max COs ot
0.000  100.000 0 0.0000  —460.6066  100.000 O
0.004  99.9926 -1.8432  —460.8173  99.9935
0.008  99.9776 -3.6865  —460.8382  99.9739

1096 847449  _1201910 4659488 -99.9954
1100 -852182 —1183272 4662869 —99.9998
1104 856840 —1164620 4665886 —99.991 1

1348 —99.996 0 30533 4608125 757979

1.352 -100.000 8 -1.2100 460.8057 -75.047 4
1.356  -99.998 3 0.6332 460.8093 -74.2870

2196 401509 2248677 3017132  99.997 1
2200 410455  223.6609 3072607  99.999 3
2004 419353 2224318  -3127035  99.988 5

2704 99.9985 24200 4608090  12.6422
2.708 100000 8 05768 4608057  11.507 5
2712 999957 12664 4608129  10.3712
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*P15.74  (a) The block moves with the board in what we take as the positive x direction, stretching the
spring until the spring force —kx is equal in magnitude to the maximum force of static
friction y,n = uymg . This occurs at x = ,usng

(b) Since v is small, the block is nearly at the rest at this break point. It starts almost immediately

to move back to the left, the forces on it being —kx and +x,mg. While it is sliding the net
force exerted on it can be written as

—kx+ ppmg = —kx +kﬂk% = —k(x - ﬂ";(ngj =—kx,,

m
where x,, is the excursion of the block away from the point ﬂkTg
Conclusion: the block goes into simple harmonic motion centered about the equilibrium

position where the spring is stretched by 'ukng

(d) The amplitude of its motion is its original displacement, A = ,usng_,ukng It first comes to

pmg _ (2uy — s )mg
k

rest at spring extension . Almost immediately at this point it

latches onto the slowly-moving board to move with the board. The board exerts a force of
static friction on the block, and the cycle continues.

(©) The graph of
the motion
looks like this:

with board

block in SHM
as it springs back

FIG. P15.74(c)

2. —
(e) The time during each cycle when the block is moving with the board is 24 _ M
v v
The time for which the block is springing back is one half a cycle of simple harmonic motion,

%[Zﬂ'\/%] = ﬂ'\/% . We ignore the times at the end points of the motion when the speed of

the block changes from v to 0 and from 0 to v. Since v is small compared to i, these

m
Nk

times are negligible. Then the period is

continued on next page



*P15.75

(®)

(8)

(h)

()

(@)

(b)
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2(0.4-0.25)(0.3 kg)(9.8 m/s?
T= ( )03 kg)(98 m/s”) i | 03K8 306640497 52356
(0.024 m/s)(12 N/m) 12 N/m

Ten  f=g=[0281He]

T= W + 71'\/% increases as m increases, so the frequency .
As kincreases, T decreases and f .

As vincreases, T decreases and f .

As (u; — py) increases, T increases and f .

Newton’s law of universal gravitation is F=- G]\/ZIm = —G—T(§m3 )p
r r
4
Thus, F= —(g ﬂme)r
Which is of Hooke’s law form with k= % pGm
The sack of mail moves without friction according to —(%)ﬂmer =ma

a= —(%)ﬁpGr =—w?r

Since acceleration is a negative constant times excursion from equilibrium, it executes SHM
with

a):"% and period T:Z—ﬂ: £
3 1) oG

Z_ 3z
2

4pG

_GM, G4rR3p _4
R? 3R> 3

4pG g T R 6.37 x10® m 3 .
SO ——= and —=gx |4 =g | —————=253%x10" s=| 42.2 min |.
3 (aR,) 2 \/ g 9.8 m/s?

The time for a one-way trip through the earth is

We have also

mpGR,

ANSWERS TO EVEN PROBLEMS

P15.2

P15.4

(a) 4.33 cm; (b) —5.00 cm/s; P15.6 see the solution
(c) -17.3 em/s?; (d) 3.14 5; 5.00 cm

P15.8 12.0 Hz

(a) 15.8 cm; (b) —~15.9 cm; 2
(c) see the solution; (d) 51.1 m; (e) 50.7 m P1510 188 m/s; 7.11 km/s
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P15.12

P15.14

P15.16

P15.18

P15.20

P15.22

P15.24

P15.26

P15.28

P15.30

P15.32

P15.34

P15.36

P15.38

P15.40

Oscillatory Motion

(a) 1.26 s; (b) 0.150 m/s; 0.750 m/s*;

1
5 Cm)sinSt‘;
S

(c) x =-3 cmcos5t; v:(
a—(75 cm
52

(@) ﬁ; (b) x= —(2) sin wt
o o

jcosSt

(a) 126 N/m; (b) 0.178 m

(a) 0.153 J; (b) 0.784 m/s; (c) 17.5 rn/s2
(a) 100 N/m; (b) 1.13 Hz;

(c) 1.41 m/s at x=0;

(d) 10.0 m/s* at x=+A; () 2.00J;
(f) 1.33 m/s; (g) 3.33 m/s2

(@) 1.50 s; (b) 73.4 N/m;

(c) 19.7 m below the bridge; (d) 1.06 rad/s;
(e) 2.01s; (f) 3.50 s

(a) 0.218 s and 1.09 s; (b) 14.6 mW

The position of the piston is given by
x=Acoswt.

8¢ _10015
8T

1.42's; 0.499 m

(a) 3.655s; (b) 6.41 s; (c) 4.24 s

(a) see the solution;

(b), (c) 9.85 m/ s*; agreeing with the
accepted value within 0.5%

(a) 2.09 s; (b) 4.08%

203 ;N -m

see the solution

P15.42

P15.44

P15.46

P15.48

P15.50

P15.52

P15.54

P15.56

P15.58

P15.60

P15.62

P15.64

P15.66

P15.68

P15.70

P15.72

P15.74

see the solution

(a) 2.95 Hz; (b) 2.85 cm
see the solution

either 1.31 Hz or 0.641 Hz
1.56 cm

(@) 0.500 m/s; (b) 8.56 cm

see the solution

4 2 T 2
(@) k= ’;Zm;(b)mem(?)

(@) x=(-2 m)sin(10¢); (b) at x£1.73 m;
(c) 98.0 mm; (d) 52.4 ms

(a) decreased by 0.735 m;
(b) increased by 0.730 s;
(c) decreased by 120 J; (d) see the solution

(a) 3.56 Hz; (b) 2.79 Hz; (c) 2.10 Hz

(@) %(M+%) 2, (b) T:ZﬂW/M;%

see the solution; (a) k =1.74 N/m£6%;
(b) 1.82 N/m=3%; they agree;
(c) 8 g£12%; it agrees

(@) 5.20 s; (b) 2.60 s; (c) see the solution

see the solution; T = (Ej ﬂ
r )\ pg

see the solution; (f) 0.281 Hz;
(g) decreases; (h) increases; (i) increases;
(j) decreases



Q16.5

Q16.6

Q16.7

Q16.8

Q16.9

Q16.10

Wave Motion

ANSWERS TO QUESTIONS

Q16.1 As the pulse moves down the string, the particles of the string
itself move side to side. Since the medium—here, the
string—moves perpendicular to the direction of wave
propagation, the wave is transverse by definition.

Q16.2  To use a slinky to create a longitudinal wave, pull a few coils
back and release. For a transverse wave, jostle the end coil
side to side.

’T
Q16.3 From v=_|—, we must increase the tension by a factor of 4.
7

Q16.4 It depends on from what the wave reflects. If reflecting from a
less dense string, the reflected part of the wave will be right
side up.

27 vA
Yes, among other things it depends on. v, =wA =27 fA= 7o

. Here v is the speed of the wave.

Since the frequency is 3 cycles per second, the period is % second = 333 ms.

Amplitude is increased by a factor of +/2 . The wave speed does not change.

The section of rope moves up and down in SHM. Its speed is always changing. The wave continues on
with constant speed in one direction, setting further sections of the rope into up-and-down motion.

Each element of the rope must support the weight of the rope below it. The tension increases with
’T

height. (It increases linearly, if the rope does not stretch.) Then the wave speed v=_|— increases
u

with height.
The difference is in the direction of motion of the elements of the medium. In longitudinal waves,

the medium moves back and forth parallel to the direction of wave motion. In transverse waves, the
medium moves perpendicular to the direction of wave motion.

473
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Q16.11

Q16.12

Q16.13

Q16.14

Q16.15

Q16.16

Q16.17

Slower. Wave speed is inversely proportional to the square root of linear density.

As the wave passes from the massive string to the less massive string, the wave speed will increase
. fT . . .
according to v=_|— . The frequency will remain unchanged. Since v = f4, the wavelength must
U

increase.

Higher tension makes wave speed higher. Greater linear density makes the wave move more
slowly.

The wave speed is independent of the maximum particle speed. The source determines the
maximum particle speed, through its frequency and amplitude. The wave speed depends instead on
properties of the medium.

Longitudinal waves depend on the compressibility of the fluid for their propagation. Transverse
waves require a restoring force in response to sheer strain. Fluids do not have the underlying
structure to supply such a force. A fluid cannot support static sheer. A viscous fluid can
temporarily be put under sheer, but the higher its viscosity the more quickly it converts input
work into internal energy. A local vibration imposed on it is strongly damped, and not a source of
wave propagation.

Let At =1, —t, represent the difference in arrival times of the two waves at a station at distance

-1
1 1 . . .
d=vgt,=v,t, from the hypocenter. Then d = At[— - —] . Knowing the distance from the first
(A
station places the hypocenter on a sphere around it. A measurement from a second station limits it
to another sphere, which intersects with the first in a circle. Data from a third non-collinear station

will generally limit the possibilities to a point.

The speed of a wave on a “massless” string would be infinite!

SOLUTIONS TO PROBLEMS

Section 16.1 Propagation of a Disturbance

P16.1

Replace x by x—vt=x—-45t
6
(x-45t)* +3

to get y=




P16.2

P16.3

P16.4

y (m)

0.8 T g~ T T T
LNt
AN SR N
Y AN S VA S T W

(] SN U G S A I A
SR N O 1 <
IR VAR A S S
N
I S N N N I N S N T

FIG. P16.2

5.00e~0*5)" s of the form f(x+0t)

so it describes a wave moving to the | left | at v :| 5.00 m/s |

The | longitudinal | wave travels a shorter distance and is moving faster, so it will arrive at

()

(b)

point B first.

The wave that travels through the Earth must travel

Chapter 16

a distance of 2Rsin30.0°= 2(6.37 x 10° m) sin30.0°= 6.37 x10° m
at a speed of 7 800 m/s
6
Therefore, it takes w =817 s
7800 m/s

The wave that travels along the Earth’s surface must travel

a distance of s=RO= R(% rad) =6.67x10° m
at a speed of 4 500 m/s
6
Therefore, it takes m =1482s
4500

The time difference is

: 11.1 min

475
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P16.5 The distance the waves have traveled is d =(7.80 km/s)t =(4.50 km/s)(t+17.3 s)
where t is the travel time for the faster wave.

Then, (7.80 —4.50)(km/s)t = (4.50 km/s)(17.3 s)

. (4.50 km/s)(17.3 s) 23k
(7.80—450) km/s

and the distance is d =(7.80 km/s)(23.6 s) = :

Section 16.2 Sinusoidal Waves

P16.6 Using data from the observations, we have 4 =1.20 m

and f = 8.00
12.0 s
8.00
Therefore, v=Af =(1.20 m)(m) =1 0.800 m/s

40.0 vibrations 4 425 cm
== — HZ D=
30.0s 3 10.0s

v 425 cm/s
AZTZW::‘BIQ cm=| 0.319 m
P16.8 v=fA=(4.00 Hz)(60.0 cm)=240 cm/s=| 2.40 m/s

P169  y=(0.0200 m)sin(211x-3.62t) in Slunits ~ A=
2
k=211 rad/m A==
w
®=3.62 rad/s f= Py 0.576 Hz
v—fl—ﬂﬁ—&— 172 m/s
T2 k211

P16.10  y=(0.0051 m)sin(310x —9.30¢) SI units

P16.7 f =425 cm/s

@ 930

= =0.0300 m/s
k310

s=0vt= | 0.300 m in positive x - direction
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*P16.11  From y=(12.0 cm)sin((1.57 rad/m)x - (31.4 rad/s)t)

0
(@) The transverse velocity is G_JZ =—Aw cos(kx — wt)
Its maximum magnitudeis ~ Aw =12 cm(31.4 rad/s)=| 3.77 m/s
(b) a _6&_3(_140) Cos(kx—a)t)) =—Aw?sin(kx — ot)
Yoot ot -

The maximum value is Aw* =(0.12 m)(31.4 s’l)2 =

P16.12 At time ¢t, the phase of y=(15.0 cm)cos(0.157x —50.3¢f) at coordinate x is

T

¢ =(0.157 rad/cm)x—(50.3 rad/s)t . Since 60.0°= 3 rad , the requirement for point B is that

Pp=0a i% rad , or (since x, =0),

(0.157 rad/cm)xy —(50.3 rad/s)t =0-(50.3 rad/s)ti% rad.

trrad
This reduces to xz =——————————=| +6.67 cm |.
¥ 3(0.157 rad/cm)

P16.13  y=0.250sin(0.300x — 40.0¢t) m

Compare this with the general expression y = Asin(kx — ot)

A-[0%0m]
®  o-[00wds)
@ k=[O0 ]

V4 27

[\

d A=

() v=fA= (Zﬂjz - [Mj(zo.9 m) =

4 V4

) The wave moves to the right, | in +x direction | .
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P16.14

P16.15

P16.16

Wave Motion

@)

(b)

@)

(b)

(@)

(b)

(©

See figure at right.

2r  2rm
T:;:%:

This agrees with the period found in the example

in the text.

A=y, =800 cm=00800m

Therefore,

Or (where y(0, t)=0 at t=0)

In general,
Assuming
then we require that

or

Therefore,

y(mm)

y (cm)

FIG. P16.14

_2m_ 2 _ 785 m-!
7~ (0800 m)

o =27 f=27(3.00)=6.007 rad/s
y = Asin(kx + ot)

| y=(0.0800)sin(7.85x + 67t m |

y=0.080 0sin(7.85x + 677 + ¢)
y(x, 0)=0 at x=0.100 m
0=0.080 0sin(0.785 + ¢)
$=—0785

| y=0.080 0sin(7.85x+ 677t —0.785) m |

0.2 t=0
SN

01 j ' \/021
0.2
FIG. P16.16(a)
2 2
k=""=—""_-[180 rad
7m0
11
T=-=——=[00833
1205
o=2rf=2712.0/s :
|o| = fA = (12.0/5)(0.350 m) =

y=Asin(kx + of + ¢) specializes to
y=0.200 msin(18.0 x/m +75.4t/s + ¢)
at x=0, t=0 we require
~3.00 x 107 m = 0.200 msin(+¢)
¢=-8.63°=-0.151 rad

so  y(x, t)=[ (0.200 m)sin(18.0x/m+75.4t/s - 0.151 rad) |
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P16.17  y=(0.120 m) sin(%x + 4;th

(@) v= 4y : x=(0.120)(4x) COS(ZJC +4r tj
dt 8
2(0.200 s, 1.60 m) =] —1.51 m/s
a= %: a=(-0.120 m)(4r)* sin(%x +4r t)

1(0.200 s, 1.60 m) = @

T 27
®)  k=g=":  A=[160m]
a):47z=2Tﬂ: T:
4 160m
UZF20.500s:

P16.18 (a) Let us write the wave function as y(x, t)= Asin(kx + ot + §)
(0, 0)=Asing=0.0200 m

d
ud =Awcos¢=-2.00 m/s
dtly, o
Also, 22T _g004)s
T 002505
2 2
: 2.
A2 =2 +(ﬂ) ~(0.0200 m)? +| 220 m/s
® 80.0 7/s

Asing 0.0200

= =-251=tan
Acosp i ¢

(b)

Your calculator’s answer tan ™ (-2.51)= ~1.19 rad has a negative sine and positive cosine,
just the reverse of what is required. You must look beyond your calculator to find

¢=rn-119rad =
© 0, max = A®=0.0215 m(80.07/s) =

d)  A=v,T=(30.0 m/s)(0.02505s)=0.750 m

2z __ 2«
A 0.750 m

=8.38/m ®=80.07/s

| y(x, £)=(0.0215 m)sin(8.38x rad/m+80.0xt rad/s+195 rad) |
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v (1.00 m/s)

P16.19 (a) f = E = m =
o =27 f =27(0.500/s) =

2z 27z
(b) k= 2 To00m 3.14 rad/m

(c) y = Asin(kx — ot + ¢) becomes

y={ (0.100 m)sin(3.14x/m - 3.14¢/5+0) |

(d) For x=0 the wave function requires

| y=(0.100 m)sin(-3.14¢/s) |

(@) | ¥=(0.100 m)sin(4.71 rad - 3.144/s) |
® v, = % =0.100 m(-3.14/s) cos(3.14x/m — 3.14/s)

The cosine varies between +1 and -1, so

v, (0314 m/s)

P16.20 (a) at x=2.00m, y=|(0.100 m)sin(1.00 rad - 20.0¢) |

(b) ¥ =(0.100 m)sin(0.500x — 20.0t) = A sin(kx — wt)

o
so w=20.0 rad/s and f ey 318 Hz

Section 16.3  The Speed of Waves on Strings

P16.21 The down and back distance is 4.00 m+4.00 m=8.00 m.

4(8.00
The speed is then v= Aoy _ 4800 m) _ 40.0 m/s = T
t  0800s 1
Now _0200Ks _ 500102 kg/m
’ AT 00m &

So T = =(5.00x107 kg/m)(40.0 mys)” =

0.060 0 k
P16.22  The mass per unit length is: u= 78 _120x1072 kg/m.

5.00 m
The required tension is: T = v* =(0.0120 kg/m)(50.0 m/s)2 = .



P16.23

P16.24

P16.25

P16.26

P16.27

P16.28

[T 1350 kg-m/s?
Iz \/5.00><103 kg/m [520 s

14
a w=27 f = 22(500)=3140 rad/s, k=== _160 rad/m
19
(9

y=(200x10"* m)sin(16.0x -3 140¢)

T
410x107° kg/m

(b) v=196 m/s:\/

M, [MgL
T = Mg is the tension; v= T_ Mg _ [MsL L is the wave speed.
U T m t

2
Then, % = L—Z
m t
Lm 160 m(400x107 kg) ~
and g= = = -1.64 m/s
Mt* 309 kg(3.61x10°° s)2
\/?
V= —
Y7,

. . T
Since u is constant, y=—%=—- and
v, U3

2 2

v 30.0 m/s
T,=|—2|T,=|=———| (600N)=|135N |.
2 (Ulj 1 (20.0 m/sj( )

The period of the pendulum is T =27 \/Z
g

Chapter 16

481

Let F represent the tension in the string (to avoid confusion with the period) when the pendulum is

vertical and stationary. The speed of waves in the string is then:
e \/? _ [Mg  [MgL
7 m
%

Since it might be difficult to measure L precisely, we eliminate /L = Ty

T
T
oo M TYs [ Tg M|
m 2r 27\ m
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P16.29 If the tension in the wire is T, the tensile stress is
T
Stress = " so T =A(stress).

The speed of transverse waves in the wire is

\/7 (Stress) Stress Stress B \/ Stress
/ —— =
Volume P

where pis the density. The maximum velocity occurs when the stress is a maximum:

2.70x10® Pa
v = 185 m/s
max 7 860 kg/m -

P16.30  From the free-body diagram mg =2Tsin 6@ T 3 T
s A
2sin@
T3
The angle 6 is found from cosf=--= " mg
2
0=414° FIG. P16.30

mg 3 \/ 9.80 m/s2

2usin41.4° 2(8.00 x107 kg/m) sin41.4°

m/s
or v=|1|30.4 \Nm
( Jkg}

(b) 0=60.0=30.4v/m and [m=3.89kg

P16.31 The total time is the sum of the two times.

In each wire t:E:L\/Z
v T

Let A represent the cross-sectional area of one wire. The mass of one wire can be written both as
m=pV = pAL and also as m = uL .

2
Then we have H=pA= ”Zd
N
Thus, t=L ﬂ
4r
- q1/2
(7)(8920)(1.00 x10°?)’
For copper, t=(20.0) =0.137 s
(4)(150)
- 1172
(x)(7860)(1.00x 103’
For steel, t=(30.0) =0.192s
(4)(150)

The total time is 0.137+0.192=| 0.329 s
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*P16.33
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Refer to the diagrams. From the free-body diagram of point A: D
> F,=0=T;sin0=Mg and > F,=0=T,cos0=T L/4 Lsa
oA B Ao
Combining these equations to eliminate T; gives the tension in the —d 2 |ede
tri ting points A and B as: T =3
string connecting points A and Bas: T = .
& &P tan@ | M | | M |
The speed of transverse waves in this segment of string is then -
1

Mg
U= Z: ﬂ: % 0 A T‘
u m \mtan6 T >

and the time for a pulse to travel from A to B is

i _| |mLtan@
v 4Mg | FIG. P16.32

1
(@) fhas units Hz=1/s,s0 T = 7 has units of seconds, . For the other T we have T = 10?,

kg m* kg-m
with units =2 —= =|N|.
m SZ SZ

(b) The first T is of time; the second is of tension.

Section 16.4 Reflection and Transmission

Problem 7 in Chapter 18 can be assigned with this section.

Section 16.5  Rate of Energy Transfer by Sinusoidal Waves on Strings

P16.34

P16.35

F=22300 600 Hz =27 f =1207 rad/s
A 0500

P szzv—l(M)(mﬁ)z(o100)2(300)— 1.07 kW

St 21360 ' g

Suppose that no energy is absorbed or carried down into the water. Then a fixed amount of power is
spread thinner farther away from the source, spread over the circumference 27 r of an expanding

circle. The power-per-width across the wave front

&

2rr

is proportional to amplitude squared so amplitude is proportional to

P
27
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P16.36 T = constant; v= \/f; P = %ya)zsz
U

(@) If L is doubled, v remains constant and .

(b) If A is doubled and wis halved, & «c 0*A* | remains constant | .

2

(c) If 2 and A are doubled, the product w*A? o« = remains constant, so

| % remains constant |

(d) If I and A are halved, then o? oc% is quadrupled, so | # is quadrupled |.

(Changing L doesn’t affect & ).

P1637 A=500x102m u=400x10"2 kg/m  9£=300 W T=100 N

Therefore, v= \/f =50.0 m/s
u
P 2(300
!/’zl,ua)zsz: = 2/2 = (300) 5
2 HATU(400x107)(5.00x107%)"(50.0)
® =346 rad/s

w
f=o-=[551Hz]

P1638 =300 g/m=30.0x10" kg/m
A=150m
. _ _ -1
f=50.0 Hz: w=27f=314s J!
24=0150m: A=750x10"7% m

(a) y=A sin(zfx - wtj

y=(7.50 10 )sin(4.19x - 314) FIG. P16.38
S DU | 5 2 \2( 314 ——
(b) 7= A% _5(30.0 x107)(314)*(7.50x10%) (E) W P=625 W

o 2r o 500
P16.39 A= 220 _  T625
@ A T T os ™
27 2rx
by  a=2L- -[785
®) -~ 0800 ™
© =2 79,
DY R

@) 9= % oA = %(12.0 x107)(50.0)*(0.150)*(62.5) W =[ 2LT W
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Comparing y=0.35 sin(lO;zt —3mx+ %) with y = Asin(kx — ot + ¢) = Asin(wt — kx— ¢+ ) we have

10
k=37 &=10x/s, A=035m . Then v= f1 =27 f 2= 2 - 1078
m 27k 3z/m

=333 m/s.

(@) The rate of energy transport is
9 =% A% :%(75 x107° kg/m)(10z/s)"(0.35 m)*3.33 mys=[ 151 W |.

(b) The energy per cycle is
o _1 2 42 _1 -3 2 227Z'm_
E,=9T=—uw’A’2 _5(75 x10 kg/m)(107/s)"(0.35 m) = =[302]]
Originally,
1 2,2
Ry == Av
075 HO
R :l,u(azz‘\z\/f
2 u
% =LA T
=50 u

The doubled string will have doubled mass-per-length. Presuming that we hold tension constant, it
can carry power larger by +/2 times.

\/E,‘/Z, :%a)ZAZ,/TZ,u

As for a strong wave, the rate of energy transfer is proportional to the square of the amplitude and to
the speed. We write 9= FvA? where F is some constant. With no absorption of energy,

2 2

F Z)bedrockAbeclrock =F Z)muclﬁllArmldﬁll

,Ubedrock _ Amudsin _ | 25%mudsin -5
Omudfill Abedrock Umudfill

The amplitude increases by 5.00 times. |
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Section 16.6  The Linear Wave Equation

P1643  (a) A=(7.00+3.00)4.00 yields [ A =40.0

(b) In order for two vectors to be equal, they must have the same magnitude and the same
direction in three-dimensional space. All of their components must be equal. Thus,

7.00i + Oj +3.00k = Ai + B} +Ck requires | A=7.00, B=0, and C=3.00 |.

(© In order for two functions to be identically equal, they must be equal for every value of
every variable. They must have the same graphs. In

A+ Bcos(Cx + Dt + E)=0+7.00 mmcos(3.00x + 4.00¢ + 2.00) ,

the equality of average values requires that . The equality of maximum values

requires | B=7.00 mm |. The equality for the wavelength or periodicity as a function of x

requires | C=3.00 rad/m | . The equality of period requires | D =4.00 rad/s |, and the
equality of zero-crossings requires | E=2.00 rad |.

2 2
10
*Pl6.44 The linear wave equation is —‘12/ = —2—;/
X v° Ot
If y= PCadd
then % = —boe? ) and ﬂ — pel(x-70)
ot ox
82]/ azy
—= b202e? ) and —2= p2el(x—0t)
ot ox
%y ’y
Therefore, o 0? P demonstrating that ¢!~ is a solution
X
1 0%y &*
P16.45 The linear wave equation is — 9y 7Y

v? ot? - ox?

To show that y= ln[b(x - Ut)] is a solution, we find its first and second derivatives with respect to x
and t and substitute into the equation.

ﬂz;(—bv) @: —1(—sz)2 _ v?
ot b(x—ot) ot* b (x-ovt)®  (x-ot)
oy -1 ?y b 2 1
——=|b(x—vt)| b —=——(x-0t) =————
ox [ ( )] ox? b( ) (x—ot)”
2 —p? 2
Then iza—;/ = iz ( ) == ! 5= 8—‘12/ so the given wave function is a solution.
v” ot v (x—ut) (x—ot)” Ox
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P16.46 (a) From y=x?+0%t?,

0 0
evaluate Y o ox —‘12/ =2
Ox Ox
62
Y _ o201 Z =202
ot ot
?*y 1 0%
Does —-=——5-7?
o> o ot
By substitution: 2= LZZUZ and this is true, so the wave function does satisfy the wave
v
equation.
1 1 1 1 1 1
(b) Note —(x+vt)* +E(x—vt)2 :Ex2 +xvt + =02t + = x% — xvt + — 02>
= x? +v%t? as required.

So f(x+vt):%(x+vt‘)2 and g(x—vz‘):%(x—m‘)2

(c) y =sinxcos vt makes
62y .

—= =C0s xcos vt —Zz—smxcosvt
ox ox

2

_ . . 07y 2.

——=-—psinxsinut —==—0"sin x cos vt
ot t2

*y 1 0%
Then —-=——-
ox* o o’

. -1 5. s .
becomes —sinxcosvt=— v sinxcos vt which is true as required.
v

Note sin(x + vt) = sin x cos vt + cos x sin vt
sin(x — vt) = sin x cos vt — cos x sin vt .

So sinxcosvt = f(x +vt)+ g(x —vt) with

f(x+ot)= %sin(x +vt) and g(x—ot)= %sin(x —ot)|.

Additional Problems

P16.47  Assume a typical distance between adjacent people ~1m.

Then the wave speedis v= A _1m 10 m/s

At 0.1s
Model the stadium as a circle with a radius of order 100 m. Then, the time for one circuit around the
stadium is

2rr 27(10%)

” mz&s-
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P16.48  Compare the given wave function y = 4.00sin(2.00x —3.00¢) cm to the general form
y=Asin(kx — ot) to find

(@) amplitude A=4.00cm=| 0.0400 m
27 -1
(b) k:7:2.00 cm™ and A=7zcm=| 0.0314 m
() w=27f=300s" and f=|0.477 Hz
1
(d) T===|209s
:

(e) The minus sign indicates that the wave is traveling in the | positive x-direction |.
7 du dx .
P16.49 (a) Let u=107t-37zx+ " i 107 - 37:; =0 ata point of constant phase

The velocity is in the | positive x-direction | .

. T
(b) ¥(0.100, 0)=(0.350 m) sm(—().?)OOﬁ + Zj =—0.0548 m=

27

() k:7:37z: A=|0.667 m w=27f=107: f=|5.00 Hz
(d) v, = % =(0.350)(10x) cos(lO;rt -37x+ %) 0y, max = (107)(0.350) =| 11.0 m/s

*P1650  (a) 0.175 m = (0.350 m)sin[(99.6 rad/s}t]
sin[(99.6 rad/s)t] =05

The smallest two angles for which the sine function is 0.5 are 30° and 150°, i.e., 0.523 6 rad
and 2.618 rad.

(99.6 rad/s)t; =0.523 6 rad , thus #; =5.26 ms
(99.6 rad/s)t, = 2.618 rad , thus t, =26.3 ms

At=t, —t; =263 ms—5.26 ms=| 21.0 ms |

[99.6 rad/s

mj(zm x1073 s) = .

(b) Distance traveled by the wave = (%)At

P16.51 The equation v=Af is a special case of

speed = (cycle length)(repetition rate).

Thus, v= (19.0 x1073 m/frame)(24.0 frames/s) = .



P16.52

P16.53

P16.54

Chapter 16

Assuming the incline to be frictionless and taking the positive x-direction to be up the incline:

> F,=T-Mgsinf=0 or the tension in the string is T =Mgsin®
Mgsin@  |MgLsin®
The speed of transverse waves in the string is then v= r_ \/ 8 Zm = J 3%sm
H T m
L . . L m mL
The time interval for a pulse to travel the string’s lengthis At=—=L — = -
v MgLsin 6 Mgsiné

Energy is conserved as the block moves down distance x:

K+U,+U,|] +AE=(K+U,+U
8 8

top ¥/ bottom
0+ng+0+0=0+0+%kx2

_2Mg
Tk

(@  T=kr=2Mg=2(200kg)(9.80 m/s*)=

2Mg
k

39.2N
L=0500 m+——F={0.892 m
100 N/m

(F

39.2 Nx0.892 m
50x107 kg

1
Mgx = =kx?
gxzx

(a) T:kx:

y7, m m k

489
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P1655 (a) o= L \/ ( 800N ] =[179 /s |

4 \(5.00x107 kg/2.00 m

(b) From Equation 16.21, & = % won*A* and o = Zn(%)
o=Lon (Zﬂ'vjz _ 227 pA Y
2 A 2

25 (i 00800 m (179 sy’

9= 5
(0.160 m)

?=177x10* W:

T . . ,uv2
P16.56 v=_|— andin this case T =mg ; therefore, m =——.
2 8

Now v = fA implies v:% so that

2 4 72
Ul o 0.250 kg/m| 18zs
m==|2 = = -14.7 kg |.
( j 0.7507rm_1 m

g\k 9.80 m/s*

2
*P16.57  Let M = mass of block, m = mass of string. For the block, > F = ma implies T = ™ - mor. The
r

speed of a wave on the string is then

R
i

m 0.003 2 kg
O0=ot=,|— =10.0843 d
o= \ar =\ oasokg L3

P1658 (a)  u= ‘Zi’z PA ch PA
\/7 VPA \/ p(ax+b \/[p 1072 x+1072 Cm ]
With all SI units, /s

\/[p 10-3x+ 102)107

® |J

(2700)(0-+107%)(107*)]

w100 = \/ |(2700)(1072 +1072)(104)]

ol
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v= \/f where T = uxg, the weight of a length x, of rope.
Y7,
Therefore, v=,/9x
dx dx
Butv=—,sothat dt=——
dt Jsx
L
dx L
and _[ 2 \/:
0 x/_ \/_ 8

mx
At distance x from the bottom, the tensionis T = ( gj + Mg, so the wave speed is:

(@)

(b)

(©

(@)

(b)

B4

y2 |k
t L xg+(MgL/m
Thentzjdt:_[{xg+(MgLH dx t:l[g ( ‘[’j/ )]
0 0 m 8 2 -
1/2 1/2 ~
t:z{(Lg+Mng (1) } 2 g[_WMM
8 m m g Jm
When M =0, as in the previous problem, =2 L Jm 0 =2 L
gl vm 8
— m\"? 1m 1m?
Asm—)OweeXpand m+M=\/M(1+M) :\/M 1+EM_5W+
L[V + L (VM) (/M2 5~ VB
to obtain t=2 |—
8 m

~o |E[L [m|_| |mL
“el2VM Mg

The speed in the lower half of a rope of length L is the same function of distance (from the

bottom end) as the speed along the entire length of a rope of length (%)

Thus, the time required =2 ’ L with L' :%

8

and the time required =2 L. 0.707| 2 \/Z .
V28 8

It takes the pulse more that 70% of the total time to cover 50% of the distance.

2
By the same reasoning applied in part (a), the distance climbed in ris given by d = &

4
t L . . . L
For r=—= |—, we find the distance climbed = .
2 \g 4

In half the total trip time, the pulse has climbed i of the total length.
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P16.62

P16.63

*P16.64

Wave Motion
(@) v=2= 150 = | 5.00 m/s in positive x-direction |
k  3.00
15.0 - - —
(b) v= 3.00 :| 5.00 m/s in negative x-direction |
15.0 - - —
(c) v= 200" | 7.50 m/s in negative x-direction |
12.0 - — —
(d) v=——= | 24.0 m/s in positive x-direction |
2
T
Young's modulus for the wire may be written as Y = %, where T is the tension maintained in the
L

wire and AL is the elongation produced by this tension. Also, the mass density of the wire may be

expressed as p = %

The speed of transverse waves in the wire is then

F T
7 p
2

.. . . AL
and the strain in the wire is T = pv_.

Y
If the wire is aluminum and v =100 m/s, the strain is

AL (270x10% kg/m?)(100 mys)®

_ 4
L 7.00x10° N/m? - '

(@) Consid?r a sho'rt section of chain at' the_ top of the l(?op. A fr?e- }7@\9“
body diagram is shown. Its length is s = R(26) and its mass is T V T
R

4R20. In the frame of reference of the center of the loop,
Newton’s second law is

2 2
R2 . .
Z Fy =ma, 2T sin@down = % down = ﬂ FIG. P16.64(a)

For a very short section, sin@=6 and | T = uv] |.
T
(b) The wave speedis v=_|—=| v, |.
I

() In the frame of reference of the center of the loop, each pulse moves with equal speed
clockwise and counterclockwise.

- - -
Yo Yo Yo

FIG. P16.64(c-1)

continued on next page
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P16.66

(@)

(b)

(@)

(b)

Chapter 16 493

In the frame of reference of the ground, once pulse moves backward at speed v + v =27,
and the other forward at v, —v=0. The one pulse makes two revolutions while the loop

makes one revolution and the other pulse does not move around the loop. If it is generated
at the six-o’clock position, it will stay at the six-o’clock position.

A NN

FIG. P16.64(c-2)

Assume the spring is originally stationary throughout, extended to have a length L much
greater than its equilibrium length. We start moving one end forward with the speed v at
which a wave propagates on the spring. In this way we create a single pulse of compression
that moves down the length of the spring. For an increment of spring with length dx and
mass dm, just as the pulse swallows it up, Y F = ma

becomes kdx = adm or % =a.

dx

Bu td—mzy SO uzk.
dx

2
Also, uz%z% when v; =0. But L =vt, so uzv—

: . k_ o kL
Equating the two expressions for a4, we have —= UT or|v=_[—|.
u

ka f 2 (100 N/m)(2.00 m)
U th f t = 31.6 .
sing the expression from part (a) v = \/ 0.400 kg
12

T 2Toj ( ]

v=|— v where vy =

(3) (5] Lzl wers

’ ( T jl/z (ZTO Jl/z >
U=l — =5 =| Y0457
H 3ug 3

= =——==0.354At, where At, = L

z%ﬁ 242 v,

1/2

At

L
right = Ui = =0.612At,

20, \/_ 2\/_
Atleft + Atright =
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P16.67

P16.68

*P16.69

(@)

(b)

(©

4450 km
"~ 950h

d:

(@)

(b)

2

v
8

2

3
P(x)= lya)zsz = %,ua)zAge_be (%) = &Age_m

3

2(0)= HO 4

2k

2
0

o]

(9.80 m/s

2k

(130 m/s)2

2):

4(x) is a linear function, so it is of the form u(x)=mx+b

To have x(0)=

SO

Then

Mo we require b= . Then u(L)=py; =mL+ p,

dx . . . dx . .
From v = Tl the time required to move from x to x +dx is —. The time required to move

from 0 to L is

At =

At =

(%

(yi/z i)
3\/_(/1L_/10)

2L(yrr —uo (111 +mag + o)
3T (= to )[our + ko)

2L (ﬂL TV HLH +/JOJ
N s
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ANSWERS TO EVEN PROBLEMS

P16.2

P16.4

P16.6

P16.8

P16.10

P16.12

P16.14

P16.16

P16.18

P16.20

P16.22

P16.24

P16.26

P16.28

P16.30

P16.32

P16.34

P16.36

see the solution

(a) the P wave; (b) 665 s

0.800 m/s

2.40 m/s

0.300 m in the positive x-direction
16.67 cm

(a) see the solution; (b) 0.125's; in
agreement with the example

(a) see the solution; (b) 18.0/m; 83.3 ms;

75.4 rad/s; 420 m/s;
(c) (0.2 m)sin(18x +75.4f — 0.151)

(a) 0.021 5m; (b) 1.95 rad; (c) 5.41 m/s;

(d) y(x, t)=
(0.021 5 m)sin(8.38x +80.07 t +1.95)

(a) see the solution; (b) 3.18 Hz
300N

(a) y = (0.2 mm)sin(16x — 3 140¢);
(b) 158 N

631 N

T
27 \m

m

@) v=(30.4 . @]M ; (b) 3.89 kg

mLtan @
4Mg

1.07 kW

(@), (b), (c) #is constant ;
(d) #is quadrupled

P16.38

P16.40

P16.42

P16.44

P16.46

P16.48

P16.50

P16.52

P16.54

P16.56

P16.58

P16.60

P16.62

P16.64

(a) y =(0.0750)sin(4.19x — 314t);
(b) 625 W

@) 151 W; (b) 3.02]

The amplitude increases by 5.00 times

see the solution

(a) see the solution;

(b) %(x+ 'ut)2 +%(x— vt)z;

() %sin(x +vt)+ %sin(x —vf)

(a) 0.0400 m; (b) 0.0314 m;
(c) 0.477 Hz; (d) 2.09 s;
(e) positive x-direction

(a) 21.0 ms; (b) 1.68 m

A= | L
Mgsing

(a) 2Mg; (b) Ly +

© \/ 2 o+ 22

m k

2Mg

7

147 kg

. r
p(107x+107°)
(b) 943 m/s; 66.7 m/s

(@) v= in SI units;

see the solution

(@) 5.00i m/s; (b) ~5.00i m/s;
() ~7.50i m/s; (d) 24.0i m/s

(@) uvg; (b) vy;

(c) One travels 2 rev and the other does

not move around the loop.
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oT 1/2
P16.66 (a) U:(_OJ =0o2;

Ho

12
2T,
» :[_o] = 0542 (b) 0.966A%,
31 3

P16.68

130 m/s; 1.73 km



Sound Waves

ANSWERS TO QUESTIONS

Sound waves are longitudinal because elements of the
medium—parcels of air—move parallel and antiparallel to the
direction of wave motion.

We assume that a perfect vacuum surrounds the clock. The
sound waves require a medium for them to travel to your ear.
The hammer on the alarm will strike the bell, and the vibration
will spread as sound waves through the body of the clock. If a
bone of your skull were in contact with the clock, you would
hear the bell. However, in the absence of a surrounding
medium like air or water, no sound can be radiated away. A
larger-scale example of the same effect: Colossal storms raging
on the Sun are deathly still for us.

What happens to the sound energy within the clock?
Here is the answer: As the sound wave travels through the
steel and plastic, traversing joints and going around corners, its
energy is converted into additional internal energy, raising the
temperature of the materials. After the sound has died away,
the clock will glow very slightly brighter in the infrared portion
of the electromagnetic spectrum.

| . .
Q17.3 If an object is 2 meter from the sonic ranger, then the sensor would have to measure how long it

would take for a sound pulse to travel one meter. Since sound of any frequency moves at about
343 m/s, then the sonic ranger would have to be able to measure a time difference of under

0.003 seconds. This small time measurement is possible with modern electronics. But it would be
more expensive to outfit sonic rangers with the more sensitive equipment than it is to print “do not

. 1 V/a 4
use to measure distances less than 2 meter” in the users’ manual.

Q17.4 The speed of sound to two significant figures is 340 m/s. Let’s assume that you can measure time to

% second by using a stopwatch. To get a speed to two significant figures, you need to measure a

time of at least 1.0 seconds. Since d = vt, the minimum distance is 340 meters.

Q17.5 The frequency increases by a factor of 2 because the wave speed, which is dependent only on the
medium through which the wave travels, remains constant.

497
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Q17.6

Q17.7

Q17.8

Q17.9

Q17.10

Q17.11

Q17.12

Q17.13

When listening, you are approximately the same distance from all of the members of the group. If
different frequencies traveled at different speeds, then you might hear the higher pitched
frequencies before you heard the lower ones produced at the same time. Although it might be
interesting to think that each listener heard his or her own personal performance depending on
where they were seated, a time lag like this could make a Beethoven sonata sound as if it were
written by Charles Ives.

Since air is a viscous fluid, some of the energy of sound vibration is turned into internal energy. At
such great distances, the amplitude of the signal is so decreased by this effect you re unable to hear
it.

We suppose that a point source has no structure, and radiates sound equally in all directions
(isotropically). The sound wavefronts are expanding spheres, so the area over which the sound
energy spreads increases according to A =4z r2. Thus, if the distance is tripled, the area increases by
a factor of nine, and the new intensity will be one-ninth of the old intensity. This answer according
to the inverse-square law applies if the medium is uniform and unbounded.

For contrast, suppose that the sound is confined to move in a horizontal layer. (Thermal
stratification in an ocean can have this effect on sonar “pings.”) Then the area over which the sound
energy is dispersed will only increase according to the circumference of an expanding circle:
A=2rrh,and so three times the distance will result in one third the intensity.

In the case of an entirely enclosed speaking tube (such as a ship’s telephone), the area
perpendicular to the energy flow stays the same, and increasing the distance will not change the
intensity appreciably.

He saw the first wave he encountered, light traveling at 3.00 x 10° m/s. At the same moment,
infrared as well as visible light began warming his skin, but some time was required to raise the
temperature of the outer skin layers before he noticed it. The meteor produced compressional waves
in the air and in the ground. The wave in the ground, which can be called either sound or a seismic
wave, traveled much faster than the wave in air, since the ground is much stiffer against
compression. Our witness received it next and noticed it as a little earthquake. He was no doubt
unable to distinguish the P and S waves. The first air-compression wave he received was a shock
wave with an amplitude on the order of meters. It transported him off his doorstep. Then he could
hear some additional direct sound, reflected sound, and perhaps the sound of the falling trees.

A microwave pulse is reflected from a moving object. The waves that are reflected back are Doppler
shifted in frequency according to the speed of the target. The receiver in the radar gun detects the
reflected wave and compares its frequency to that of the emitted pulse. Using the frequency shift,
the speed can be calculated to high precision. Be forewarned: this technique works if you are either
traveling toward or away from your local law enforcement agent!

As you move towards the canyon wall, the echo of your car horn would be shifted up in frequency;
as you move away, the echo would be shifted down in frequency.

Normal conversation has an intensity level of about 60 dB.

A rock concert has an intensity level of about 120 dB.

A cheering crowd has an intensity level of about 90 dB.

Normal conversation has an intensity level of about 50-60 dB.

Turning a page in the textbook has an intensity level of about 10-20 dB.
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One would expect the spectra of the light to be Doppler shifted up in frequency (blue shift) as the
star approaches us. As the star recedes in its orbit, the frequency spectrum would be shifted down
(red shift). While the star is moving perpendicular to our line of sight, there will be no frequency
shift at all. Overall, the spectra would oscillate with a period equal to that of the orbiting stars.

For the sound from a source not to shift in frequency, the radial velocity of the source relative to the
observer must be zero; that is, the source must not be moving toward or away from the observer.
The source can be moving in a plane perpendicular to the line between it and the observer. Other
possibilities: The source and observer might both have zero velocity. They might have equal
velocities relative to the medium. The source might be moving around the observer on a sphere of
constant radius. Even if the source speeds up on the sphere, slows down, or stops, the frequency
heard will be equal to the frequency emitted by the source.

Wind can change a Doppler shift but cannot cause one. Both v, and v, in our equations must be
interpreted as speeds of observer and source relative to the air. If source and observer are moving
relative to each other, the observer will hear one shifted frequency in still air and a different shifted
frequency if wind is blowing. If the distance between source and observer is constant, there will
never be a Doppler shift.

If the object being tracked is moving away from the observer, then the sonic pulse would never
reach the object, as the object is moving away faster than the wave speed. If the object being tracked
is moving towards the observer, then the object itself would reach the detector before reflected
pulse.

New-fallen snow is a wonderful acoustic absorber as it reflects very little of the sound that reaches it.
It is full of tiny intricate air channels and does not spring back when it is distorted. It acts very much
like acoustic tile in buildings. So where does the absorbed energy go? It turns into internal
energy—albeit a very small amount.

As a sound wave moves away from the source, its intensity decreases. With an echo, the sound must
move from the source to the reflector and then back to the observer, covering a significant distance.

The observer would most likely hear the sonic boom of the plane itself and then beep, baap, boop.
Since the plane is supersonic, the loudspeaker would pull ahead of the leading “boop” wavefront
before emitting the “baap”, and so forth.

“How are you?” would be heard as “?uoy era woH”

This system would be seen as a star moving in an elliptical path. Just like the light from a star in a
binary star system, described in the answer to question 14, the spectrum of light from the star would
undergo a series of Doppler shifts depending on the star’s speed and direction of motion relative to
the observer. The repetition rate of the Doppler shift pattern is the period of the orbit. Information
about the orbit size can be calculated from the size of the Doppler shifts.

SOLUTIONS TO PROBLEMS

Section 17.1 Speed of Sound Waves

P17.1

P17.2

Since Vg >> Ugouna: 4~ (343 m/s)(16.2 s) =| 5.56 km

10
. [B_ /2.80x103 145 s
p \136x10



500 Sound Waves

(20.0 m-1.75 m)
343 m/s

P17.3 Sound takes this time to reach the man: =532x107% s

so the warning should be shouted no later than ~ 0.300 s+5.32x107% s=0.353 s
before the pot strikes.

Since the whole time of fall is given by y = %gtzz 1825 m= %(9.80 m/sz)if2

t=193s
the warning needs to come 193 s-0.353 s=1.58 s
into the fall, when the pot has fallen %(9.80 m/ sz)(1.58 s)’=122m

to be above the ground by 200 m-122 m=

9000
P174  (a)  At9000m, AT = (Wj(—l.oooo =-60.0°C so T =-30.0°C.

Using the chain rule:

o_dedlis_ dodl_ o qpf 1
dt dT dx dt  dT dx 150
t vf
[dt=(2a7 5) [ 2
0 v

Y;

4 331.5+0.607(30.0
t=(247 s)In| L |= (247 5)In +0.607(30.0)
i 331.5+0.607(30.0)

t= for sound to reach ground.
h 9000
b f=—= =|25.7s
® v [3315+0.607(30.0)]

It takes longer when the air cools off than if it were at a uniform temperature.

j = L, so dt = (247 s)@
247 v

*P17.5 Let x; represent the cowboy’s distance from the nearer canyon wall and x, his distance from the
farther cliff. The sound for the first echo travels distance 2x;. For the second, 2x, . For the third,

M:ng s and M:1_47 s.

2x; + 2x,. For the fourth echo, 2x; + 2x, + 2x;. Then
0 m/s 340 m/s

2
Thus ¥, =~340 m/s 147 s=250 m and —=2— =192 5+147 s; x, =576 m.
) 340 m/s 2

(@) So x1+x2:

201 4225 + 21 — (227 +2x,)

() 340 m/s =[1475]




P17.6 It is easiest to solve part (b) first:

(b)

(@
Section 17.2
P17.7 A=

*P17.8 The sound speed is v =331 m/s,|1+

@)

(b)

(©

2
The distance the sound travels to the plane is d, = |h* + (—) =—.

The sound travels this distance in 2.00 s, so

5

d
)

=(343 m/s)(2.00 s) =686 m

(686 m)

2
iving the altitude of the plane as h=—————~=| 614 m |.
ging : ;-

The distance the plane has traveled in 2.00 s is v(2.00 s) = g =307 m.

. 307m _
Thus, the speed of the plane is: v = 2005 153 m/s |.

Periodic Sound Waves

340 m/s

T 600x10° 5! =[567 mm]

26°C
273°C

=346 m/s

Let t represent the time for the echo to return. Then

11 a3
d—Evt—E346m/s 24x107 s=| 416 m |.

Let At represent the duration of the pulse:

104 102 10 10
At=—F = = 10455 s |.
v fA f 22x10° 1/s

100 10(346 m/s)

L=101=—=—"——7=| 0157 mm
f 22 % 10° 1/5

1
“P17.9 IfleMHz,zz%%/“VS:
S

1500 m/s

Iff=20 MHZ, ﬂ:m:

P17.10 AP,

max

S

AP,

= PUO Syax

4.00x107 N/m?
( )

max

max —

poo (120 kg/m*)(343 m/s)(27)(10.0x10° s) - =

Chapter 17
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502 Sound Waves

P17.11  (a) A=
,1:125%:0.400 m=[40.0 cm |
®)  s=2.00 cos[(15.7)(0.050 0)- (858)(3.00x 10~ )] -
©) Oax = A =(2.00 zm)(858 57| =

4
P1712 (a)  AP=(127 Pa)sin(”—x— 3407
m

) (SI units)
The pressure amplitude is: AP, =|1.27 Pa |.

(b) =27 f =3407/s