
HINTS/SOLUTIONS TO SelectedExercises

Section 1.1 Review
1. A set is a collection of objects.

2. A set may be defined by listing the elements in it. For exam-
ple, {1, 2, 3, 4} is the set consisting of the integers 1, 2, 3, 4.
A set may also be defined by listing a property necessary for
membership. For example,

{x | x is a positive, real number}
defines the set consisting of the positive, real numbers.

3. Set Description Examples of Members

Z Integers −3, 2
Q Rational numbers −3/4, 2.13074
R Real numbers −2.13074,

√
2

Z+ Positive integers 2, 10
Q+ Positive rational numbers 3/4, 2.13074
R+ Positive real numbers 2.13074,

√
2

Z− Negative integers −12, −10
Q− Negative rational numbers −3/8, −2.13074
R− Negative real numbers −2.13074, −√2
Znonneg Nonnegative integers 0, 3
Qnonneg Nonnegative rational 0, 3.13074

numbers
Rnonneg Nonnegative real numbers 0,

√
3

4. The cardinality of X (i.e., the number of elements in X)

5. x ∈ X 6. x /∈ X 7. ∅

8. Sets X and Y are equal if they have the same elements. Set
equality is denoted X = Y .

9. Prove that for every x , if x is in X , then x is in Y , and if x is
in Y , then x is in X .

10. Prove one of the following: (a) There exists x such that x ∈ X
and x �∈ Y . (b) There exists x such that x �∈ X and x ∈ Y .

11. X is a subset of Y if every element of X is an element of Y. X
is a subset of Y is denoted X ⊆ Y .

12. To prove that X is a subset of Y , let x be an arbitrary element
of X and prove that x is in Y .

13. Find x such that x is in X , but x is not in Y .

14. X is a proper subset of Y if X ⊆ Y and X �= Y . X is a proper
subset of Y is denoted X ⊂ Y .

15. To prove that X is a proper subset of Y , prove that X is a subset
of Y and find x in Y such that x is not in X .

16. The power set of X is the collection of all subsets of X . It is
denoted P(X).

17. X union Y is the set of elements that belong to either X or Y or
both. It is denoted X ∪ Y .

18. The union of S is the set of elements that belong to at least one
set in S. It is denoted ∪S.

19. X intersect Y is the set of elements that belong to both X and
Y. It is denoted X ∩ Y .

20. The intersection of S is the set of elements that belong to every
set in S. It is denoted ∩S.

21. X ∩ Y = ∅

22. A collection of sets S is pairwise disjoint if, whenever X and
Y are distinct sets in S, X and Y are disjoint.

23. The difference of X and Y is the set of elements that are in X
but not in Y. It is denoted X − Y.

24. A universal set is a set that contains all of the sets under dis-
cussion.

25. The complement of X is U − X , where U is a given universal
set. The complement of X is denoted X .

26. A Venn diagram provides a pictorial view of sets. In a Venn
diagram, a rectangle depicts a universal set, and subsets of
the universal set are drawn as circles. The inside of a circle
represents the members of that set.

27.

X Y

Z

U

5

3 421

8

76

655

656 Hints and Solutions to Selected Exercises

Region 1 represents elements in none of X , Y , or Z . Region 2
represents elements in X , but in neither Y nor Z . Region 3 rep-
resents elements in X and Y , but not in Z . Region 4 represents
elements in Y , but in neither X nor Z . Region 5 represents ele-
ments in X , Y , and Z . Region 6 represents elements in X and Z ,
but not in Y . Region 7 represents elements in Y and Z , but not
in X . Region 8 represents elements in Z , but in neither X nor Y .

28. (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C)

29. A ∪ B = B ∪ A, A ∩ B = B ∩ A

30. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) =
(A ∪ B) ∩ (A ∪ C)

31. A ∪∅ = A, A ∩U = A

32. A ∪ A = U, A ∩ A = ∅

33. A ∪ A = A, A ∩ A = A

34. A ∪U = U, A ∩∅ = ∅

35. A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A

36. A = A 37. ∅ = U, U = ∅

38. (A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B

39. A collection S of nonempty subsets of X is a partition of X if
every element in X belongs to exactly one member of S.

40. The Cartesian product of X and Y is the set of all ordered pairs
(x , y) where x ∈ X and y ∈ Y . It is denoted X × Y.

41. The Cartesian product of X1, X2, . . . , Xn is the set of all
n-tuples (x1, x2, . . . , xn) where xi ∈ Xi for i = 1, . . . , n. It is
denoted X1 × X2 × · · · × Xn .

Section 1.1
1. {1, 2, 3, 4, 5, 7, 10} 4. {2, 3, 5}
7. ∅ 10. U

13. {6, 8}
16. {1, 2, 3, 4, 5, 7, 10}
17. 0 20. 5

21. If x ∈ A, then x is one of 3, 2, 1. Thus x ∈ B. If x ∈ B, then
x is one of 1, 2, 3. Thus x ∈ A. Therefore, A = B.

24. If x ∈ A, then x satisfies x2 − 4x + 4 = 1. Factoring x2−
4x + 4, we find that (x − 2)2 = 1. Thus (x − 2) = ±1. If
(x − 2) = 1, then x = 3. If (x − 2) = −1, then x = 1. Since
x = 3 or x = 1, x ∈ B. Therefore A ⊆ B.

If x ∈ B, then x = 1 or x = 3. If x = 1, then

x2 − 4x + 4 = 12 − 4 · 1 + 4 = 1

and thus x ∈ A. If x = 3, then

x2 − 4x + 4 = 32 − 4 · 3 + 4 = 1

and again x ∈ A. Therefore B ⊆ A. We conclude that A = B.

25. Since 1 ∈ A, but 1 �∈ B, A �= B.

28. Note that A= B ∩C ={2, 4}. Since 1 ∈ B, but 1 �∈ A, A �= B.

29. Equal 32. Not equal

33. Let x ∈ A. Then x = 1 or x = 2. In either case, x ∈ B.
Therefore A ⊆ B.

36. First note that B = Z+. Now let x ∈ A. Then x = 2n for some
n ∈ Z+. Since 2 ∈ Z+, 2n ∈ Z+ = B. Therefore A ⊆ B.

37. Since 3 ∈ A, but 3 �∈ B, A is not a subset of B.

40. Since 3 ∈ A, but 3 �∈ B, A is not a subset of B.

41.
A B

U

44. Same as Exercise 41

47.

A B

C

U

49. The shaded area represents the beverage, which has great taste
and is less filling.

50. 10 53. 64 55. 4

57. {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
60. {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a),

(c, b), (c, c)}
61. {(1, a, α), (1, a, β), (2, a, α), (2, a, β)}
64. {(a, 1, a, α), (a, 2, a, α), (a, 1, a, β), (a, 2, a, β)}
65. The entire xy-plane

68. Parallel horizontal lines spaced one unit apart. There is a
lowest line [passing through (0, 0)] but the lines continue
indefinitely above the lowest line.

71. Parallel planes stacked one above another one unit apart. The
planes continue indefinitely in both directions [above and
below the origin (0, 0, 0)].

73. {{1}}
76. {{a, b, c, d}}, {{a, b, c}, {d}},

{{a, b, d}, {c}}, {{a, c, d}, {b}}, {{b, c, d}, {a}},
{{a, b}, {c}, {d}}, {{a, c}, {b}, {d}},
{{a, d}, {b}, {c}},
{{b, c}, {a}, {d}}, {{b, d}, {a}, {c}}, {{c, d}, {a}, {b}},
{{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}},
{{a}, {b}, {c}, {d}}

77. True

80. True

83. ∅, {a}, {b}, {a, b}. All but {a, b} are proper subsets.

86. 2n − 1 87. A ⊆ B

90. B ⊆ A 91. {1, 4, 5}
94. The center of the circle

Hints and Solutions to Selected Exercises 657

Section 1.2 Review
1. A proposition is a sentence that is either true or false, but not

both.

2. The truth table of a proposition P made up of the individ-
ual propositions p1, . . . , pn lists all possible combinations of
truth values for p1, . . . , pn , T denoting true and F denoting
false, and for each such combination lists the truth value of P .

3. The conjunction of propositions p and q is the proposition p
and q. It is denoted p ∧ q.

4.
p q p ∧ q

T T T
T F F
F T F
F F F

5. The disjunction of propositions p and q is the proposition p
or q. It is denoted p ∨ q .

6.
p q p ∨ q

T T T
T F T
F T T
F F F

7. The negation of proposition p is the proposition not p. It is
denoted ¬p.

8.
p ¬p

T F
F T

Section 1.2
1. Is a proposition. Negation: 2 + 5 �= 19

4. Not a proposition; it is a question.

7. Not a proposition; it is a command.

10. Not a proposition; it is a description of a mathematical expres-
sion (i.e., p − q, where p and q are primes).

12. Ten heads were not obtained. (Alternative: At least one tail
was obtained.)

15. No heads were obtained. (Alternative: Ten tails were obtained.)

16. True

19. True

22.
p q p ∧ ¬q

T T F
T F T
F T F
F F F

25.
p q (p ∧ q) ∧ ¬q

T T F
T F F
F T F
F F F

28.
p q (p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q)

T T F
T F F
F T F
F F F

30. p ∧ q; false

33. Lee does not take computer science.

36. Lee takes computer science or Lee does not take mathematics.

39. You play football and you miss the midterm exam.

42. It is not the case that you play football or you miss the midterm
exam, or you pass the course.

44. Today is Monday or it is raining.

47. (Today is Monday and it is raining) and it is not the case that
(it is hot or today is Monday).

49. ¬p 52. ¬p ∧ ¬q

55. p ∧ ¬q 58. ¬p ∧ ¬r ∧ ¬q

60. p ∧ r 63. (p ∨ q) ∧ ¬r

67. Inclusive-or: To enter Utopia, you must show a driver’s license
or a passport or both. Exclusive-or: To enter Utopia, you must
show a driver’s license or a passport but not both. Exclusive-or
is the intended meaning.

70. Inclusive-or: The car comes with a cupholder that heats
or cools your drink or both. Exclusive-or: The car comes
with a cupholder that heats or cools your drink but not both.
Exclusive-or is the intended meaning.

73. Inclusive-or: The meeting will be canceled if fewer than 10
persons sign up or at least 3 inches of snow falls or both.
Exclusive-or: The meeting will be canceled if fewer than 10
persons sign up or at least 3 inches of snow falls but not both.
Inclusive-or is the intended meaning.

74. No, assuming the interpretation: It shall be unlawful for any
person to keep more than three [3] dogs and more than three
[3] cats upon his property within the city. A judge ruled that
the ordinance was “vague.” Presumably, the intended meaning
was: “It shall be unlawful for any person to keep more than
three [3] dogs or more than three [3] cats upon his property
within the city.”

75. "national park" "north dakota" OR "south dakota"

Section 1.3 Review
1. If p and q are propositions, the conditional proposition is the

proposition if p then q. It is denoted p → q.

658 Hints and Solutions to Selected Exercises

2.
p q p → q

T T T
T F F
F T T
F F T

3. In the conditional proposition p → q, p is the hypothesis.

4. In the conditional proposition p → q, q is the conclusion.

5. In the conditional proposition p→ q, q is a necessary
condition.

6. In the conditional proposition p→ q, p is a sufficient
condition.

7. The converse of p → q is q → p.

8. If p and q are propositions, the biconditional proposition is
the proposition p if and only if q. It is denoted p ↔ q.

9.
p q p ↔ q

T T T
T F F
F T F
F F T

10. If the propositions P and Q are made up of the propositions
p1, . . . , pn , P and Q are logically equivalent provided that
given any truth values of p1, . . . , pn , either P and Q are both
true or P and Q are both false.

11. ¬(p ∨ q) ≡ ¬p ∧ ¬q, ¬(p ∧ q) ≡ ¬p ∨ ¬q

12. The contrapositive of p → q is ¬q → ¬p.

Section 1.3
1. If Joey studies hard, then he will pass the discrete mathematics

exam.

4. If Katrina passes discrete mathematics, then she will take the
algorithms course.

7. If you inspect the aircraft, then you have the proper security
clearance.

10. If the program is readable, then it is well structured.

11. (For Exercise 1) If Joey passes the discrete mathematics exam,
then he studied hard.

13. True 16. False 19. False

21. True 24. True 27. True

30. True 31. True 34. False

37. True 40. p → q 43. q ↔ (p ∧ ¬r)

44. p → q

47. q ↔ (p ∧ r)

50. If today is Monday, then it is raining.

53. It is not the case that today is Monday or it is raining if and
only if it is hot.

56. Let p : 4 < 6 and q : 9 > 12.

Given statement: p → q; false.

Converse: q → p; if 9 > 12, then 4 < 6; true.

Contrapositive: ¬q → ¬p; if 9 ≤ 12, then 4 ≥ 6; false.

59. Let p : |4| < 3 and q : −3 < 4 < 3.

Given statement: q → p; true.

Converse: p → q; if |4| < 3, then −3 < 4 < 3; true.

Contrapositive:
¬p → ¬q, if |4| ≥ 3, then −3 ≥ 4 or 4 ≥ 3; true.

60. P �≡ Q 63. P �≡ Q

66. P �≡ Q 69. P �≡ Q

70. Pat will not use the treadmill and will not lift weights.

73. To make chili, you do not need red pepper or you do not need
onions.

74.
p q p imp1 q q imp1 p

T T T T
T F F F
F T F F
F F T T

Since p imp1 q is true precisely when q imp1 p is true,
p imp1 q ≡ q imp1 p.

77.
p q p → q ¬p ∨ q

T T T T
T F F F
F T T T
F F T T

Since p→ q is true precisely when ¬p∨ q is true, p → q ≡
¬p ∨ q.

Section 1.4 Review
1. Deductive reasoning refers to the process of drawing a con-

clusion from a sequence of propositions.

2. In the argument p1, p2, . . . , pn/∴ q, the hypotheses are
p1, p2, . . . , pn .

3. “Premise” in another name for hypothesis.

4. In the argument p1, p2, . . . , pn/∴ q, the conclusion is q.

5. The argument p1, p2, . . . , pn/∴ q is valid provided that if p1

and p2 and . . . and pn are all true, then q must also be true.

6. An invalid argument is an argument that is not valid.
7. p → q

p
∴ q

8. p → q
¬q
∴ ¬p

9. p
∴ p ∨ q

10. p ∧ q
∴ p

11. p
q
∴ p ∧ q

12. p → q
q → r
∴ p → r

Hints and Solutions to Selected Exercises 659

13. p ∨ q
¬p
∴ q

Section 1.4
1. Valid p → q

p
∴ q

4. Invalid (p ∨ r) → q
q
∴ ¬p → r

6. Valid. If 4 megabytes is better than no memory at all, then
we will buy a new computer. If 4 megabytes is better than no
memory at all, then we will buy more memory. Therefore, if
4 megabytes is better than no memory at all, then we will buy
a new computer and we will buy more memory.

9. Invalid. If we will not buy a new computer, then 4 megabytes is
not better than no memory at all. We will buy a new computer.
Therefore, 4 megabytes is better than no memory at all.

11. Invalid 14. Invalid

17. An analysis of the argument must take into account the fact
that “nothing” is being used in two very different ways.

18. Addition

21. Let p denote the proposition “there is gas in the car,” let q
denote the proposition “I go to the store,” and let r denote the
proposition “I get a soda.” Then the hypotheses are as follows:

p → q

q → r

p

From p → q and q → r , we may use the hypothetical syl-
logism to conclude p → r . From p → r and p, we may use
modus ponens to conclude r . Since r represents the propo-
sition “I get a soda,” we conclude that the conclusion does
follow from the hypotheses.

24. We construct a truth table for all the propositions involved:

p q p → q ¬q ¬p

T T T F F
T F F T F
F T T F T
F F T T T

We observe that whenever the hypotheses p → q and ¬q are
true, the conclusion ¬p is also true; therefore, the argument
is valid.

27. We construct a truth table for all the propositions involved:

p q p ∧ q

T T T
T F F
F T F
F F F

We observe that whenever the hypotheses p and q are true, the
conclusion p ∧ q is also true; therefore, the argument is valid.

Section 1.5 Review
1. If P(x) is a statement involving the variable x , we call P a

propositional function if for each x in the domain of discourse,
P(x) is a proposition.

2. A domain of discourse for a propositional function P is a set
D such that P(x) is defined for every x in D.

3. A universally quantified statement is a statement of the form
for all x in the domain of discourse, P(x).

4. A counterexample to the statement ∀x P(x) is a value of x for
which P(x) is false.

5. An existentially quantified statement is a statement of the form
for some x in the domain of discourse, P(x).

6. ¬(∀x P(x)) and ∃x ¬P(x) have the same truth values.
¬(∃x P(x)) and ∀x ¬P(x) have the same truth values.

7. To prove that the universally quantified statement ∀x P(x) is
true, show that for every x in the domain of discourse, the
proposition P(x) is true.

8. To prove that the existentially quantified statement ∃x P(x) is
true, find one value of x in the domain of discourse for which
the proposition P(x) is true.

9. To prove that the universally quantified statement ∀x P(x) is
false, find one value of x in the domain of discourse for which
the proposition P(x) is false.

10. To prove that the existentially quantified statement ∃x P(x)
is false, show that for every x in the domain of discourse, the
proposition P(x) is false.

11. ∀x P(x)
∴ P(d) if d ∈ D

12. P(d) for every d ∈ D
∴ ∀x P(x)

13. ∃x P(x)
∴ P(d) for some d ∈ D

14. P(d) for some d ∈ D
∴ ∃x P(x)

Section 1.5
1. Is a propositional function. The domain of discourse could be

taken to be all integers.

4. Is a propositional function. The domain of discourse is the set
of all movies.

7. 11 divides 77. True.

10. For every positive integer n, n divides 77. False.

12. True 15. False 18. False

21. P(1) ∧ P(2) ∧ P(3) ∧ P(4)

24. P(1) ∨ P(2) ∨ P(3) ∨ P(4)

27. P(2) ∧ P(3) ∧ P(4)

28. Every student is taking a math course.

31. Some student is not taking a math course.

34. (For Exercise 28) ∃x ¬P(x). Some student is not taking a
math course.

35. Every professional athlete plays soccer. False.

660 Hints and Solutions to Selected Exercises

38. Either someone does not play soccer or some soccer player is
a professional athlete. True.

41. Everyone is a professional athlete and plays soccer. False.

43. (For Exercise 35) ∃x(P(x) ∧ ¬Q(x)). Someone is a profes-
sional athlete and does not play soccer.

44. ∀x(P(x) → Q(x))

47. ∃x(P(x) ∧ Q(x))

48. (For Exercise 44) ∃x(P(x) ∧¬Q(x)). Some accountant does
not own a Porsche.

49. False. A counterexample is x = 0.

52. True. The value x = 2 makes (x > 1) → (x2 > x) true.

55. (For Exercise 49) ∃x(x2 ≤ x). There exists x such that x2 ≤ x .

57. The literal meaning is: No man cheats on his wife. The in-
tended meaning is: Some man does not cheat on his wife. Let
P(x) denote the statement “x is a man,” and Q(x) denote the
statement “x cheats on his wife.” Symbolically, the clarified
statement is ∃x(P(x) ∧ ¬Q(x)).

60. The literal meaning is: No environmental problem is a tragedy.
The intended meaning is: Some environmental problem is not
a tragedy. Let P(x) denote the statement “x is an environmen-
tal problem,” and Q(x) denote the statement “x is a tragedy.”
Symbolically, the clarified statement is ∃x(P(x) ∧ ¬Q(x)).

63. The literal meaning is: Everything is not sweetness and light.
The intended meaning is: Not everything is sweetness and
light. Let P(x) denote the statement “x is sweetness and
light.” Symbolically, the clarified statement is ∃x ¬P(x).

66. The literal meaning is: No circumstance is right for a formal
investigation. The intended meaning is: Some circumstance is
not right for a formal investigation. Let P(x) denote the state-
ment “x is a circumstance,” and Q(x) denote the statement “x
is right for a formal investigation.” Symbolically, the clarified
statement is ∃x(P(x) ∧ ¬Q(x)).

67. (a)
p q p → q q → p

T T T T
T F F T
F T T F
F F T T

One of p → q or q → p is true since in each row, one of
the last two entries is true.

(b) The statement, “All integers are positive or all positive
numbers are integers,” which is false, in symbols is

(∀x(I (x) → P(x))) ∨ (∀x(P(x) → I (x))).

This is not the same as the given statement

∀x((I (x) → P(x)) ∨ (P(x) → I (x))),

which is true. The ambiguity results from attempting to
distribute ∀ across the or.

70. Universal instantiation

71. Let P(x) denote the propositional function “x has a graphing
calculator,” and let Q(x) denote the propositional function
“x understands the trigonometric functions.” The hypotheses
are ∀x P(x) and ∀x(P(x) → Q(x)). By universal instanti-
ation, we have P(Ralphie) and P(Ralphie) → Q(Ralphie).
The modus ponens rule of inference now gives Q(Ralphie),
which represents the proposition “Ralphie understands the
trigonometric functions.” We conclude that the conclusion
does follow from the hypotheses.

74. By definition, the proposition ∀x P(x) is true when P(x) is
true for all x in the domain of discourse. We are given that
P(d) is true for any d in the domain of discourse D. Therefore,
∀x P(x) is true.

Section 1.6 Review
1. For every x and for every y, P(x , y). Let the domain of dis-

course be X × Y . The statement is true if, for every x ∈ X
and for every y ∈ Y , P(x , y) is true. The statement is false if
there is at least one x ∈ X and at least one y ∈ Y such that
P(x , y) is false.

2. For every x , there exists y such that P(x , y). Let the domain
of discourse be X × Y . The statement is true if, for every
x ∈ X , there is at least one y ∈ Y for which P(x , y) is true.
The statement is false if there is at least one x ∈ X such that
P(x , y) is false for every y ∈ Y .

3. There exists x such that for every y, P(x , y). Let the domain
of discourse be X × Y . The statement is true if there is at
least one x ∈ X such that P(x , y) is true for every y ∈ Y .
The statement is false if, for every x ∈ X , there is at least one
y ∈ Y such that P(x , y) is false.

4. There exists x and there exists y such that P(x , y). Let the
domain of discourse be X × Y . The statement is true if there
is at least one x ∈ X and at least one y ∈ Y such that P(x , y)
is true. The statement is false if, for every x ∈ X and for every
y ∈ Y , P(x , y) is false.

5. Let P(x , y) be the propositional function “x ≤ y” with do-
main of discourse Z×Z. Then ∀x∃y P(x , y) is true since, for
every integer x , there exists an integer y (e.g., y = x) such
that x ≤ y is true. On the other hand, ∃x∀y P(x , y) is false.
For every integer x , there exists an integer y (e.g., y = x − 1)
such that x ≤ y is false.

6. ∃x∃y¬P(x , y)

7. ∃x∀y¬P(x , y)

8. ∀x∃y¬P(x , y)

9. ∀x∀y¬P(x , y)

10. Given a quantified propositional function, you and your oppo-
nent, whom we call Farley, play a logic game. Your goal is to
try to make the propositional function true, and Farley’s goal
is to try to make it false. The game begins with the first (left)
quantifier. If the quantifier is ∀, Farley chooses a value for
that variable; if the quantifier is ∃, you choose a value for that
variable. The game continues with the second quantifier. After
values are chosen for all the variables, if the propositional
function is true, you win; if it is false, Farley wins. If you can

Hints and Solutions to Selected Exercises 661

always win regardless of how Farley chooses values for the
variables, the quantified propositional function is true, but if
Farley can choose values for the variables so that you cannot
win, the quantified propositional function is false.

Section 1.6
1. Everyone is taller than everyone.

4. Someone is taller than someone.

5. (For Exercise 1) In symbols: ∃x∃y¬T1(x , y). In words: Some-
one is not taller than someone.

6. (For Exercise 1) False; Garth is not taller than Garth.

9. (For Exercise 1) False; Pat is not taller than Pat.

10. Everyone is taller than or the same height as everyone.

13. Someone is taller than or the same height as someone.

14. (For Exercise 10) In symbols: ∃x∃y¬T2(x , y). In words:
Someone is shorter than someone.

15. (For Exercise 10) False; Erin is not taller than or the same
height as Garth.

18. (For Exercise 10) True

19. For any two people, if they are distinct, the first is taller than
the second.

22. There are two people and, if they are distinct, the first is taller
than the second.

23. (For Exercise 19) In symbols: ∃x∃y¬T3(x , y). In words: There
are two distinct people and the first is shorter than or the same
height as the second.

24. (For Exercise 19) False; Erin and Garth are distinct persons,
but Erin is not taller than Garth.

27. (For Exercise 19) False; Pat and Sandy are distinct persons,
but Pat is not taller than Sandy.

28. ∃x∀yL(x , y). True (think of a saint).

31. ∀x∃yL(x , y). True (according to Dean Martin’s song, “Ev-
erybody Loves Somebody Sometime”).

32. (For Exercise 28) Everyone does not love someone.
∀x∃y¬L(x , y)

33. ∃y A(Brit, y)

36. ∀y∃x A(x , y)

37. False 40. True

41. (For Exercise 37) ∃x∃y¬P(x , y) or ∃x∃y(x < y)

42. False. A counterexample is x = 2, y = 0.

45. True. Take x = y = 0.

48. False. A counterexample is x = y = 2.

51. True. Take x = 1, y = √
8.

54. True. Take x = 0. Then for all y, x2 + y2 ≥ 0.

57. True. For any x , if we set y = x − 1, the conditional propo-
sition, if x < y, then x2 < y2, is true because the hypothesis is
false.

60. (For Exercise 42) ∃x∃y(x2 ≥ y + 1)

63. (For Exercise 42) Since both quantifiers are ∀, Farley chooses
values for both x and y. Since Farley can choose values that
make x2 < y + 1 false (e.g., x = 2, y = 0), Farley can win
the game. Therefore, the proposition is false.

66. Since the first two quantifiers are ∀, Farley chooses values for
both x and y. The last quantifier is ∃, so you choose a value
for z. Farley can choose values (e.g., x = 1, y = 2) so that no
matter which value you choose for z, the expression

(x < y) → ((z > x) ∧ (z < y))

is false. Since Farley can choose values for the variables so
that you cannot win, the quantified statement is false.

68. ∀x ∃y P(x , y) must be true. Since ∀x ∀y P(x , y) is true, re-
gardless of which value of x is selected, P(x , y) is true for all
y. Thus for any x , P(x , y) is true for any particular y.

71. ∀x ∀y P(x , y) might be false. Let P(x , y) denote the ex-
pression x ≤ y. If the domain of discourse is Z+ × Z+,
∃x ∀y P(x , y) is true; however, ∀x ∀y P(x , y) is false.

74. ∀x ∀y P(x , y) might be false. Let P(x , y) denote the ex-
pression x ≤ y. If the domain of discourse is Z+ × Z+,
∃x ∃y P(x , y) is true; however, ∀x ∀y P(x , y) is false.

77. ∀x ∃y P(x , y) might be true. Let P(x , y) denote the expression
x ≤ y. If the domain of discourse is Z+ × Z+, ∀x ∃y P(x , y)
is true; however, ∀x ∀y P(x , y) is false.

80. ∀x ∀y P(x , y) must be false. Since ∀x ∃y P(x , y) is false,
there exists x , say x = x ′, such that for all y, P(x , y) is false.
Choose y = y′ in the domain of discourse. Then P(x ′, y′) is
false. Therefore ∀x ∀y P(x , y) is false.

83. ∀x ∀y P(x , y) must be false. Since ∃x ∀y P(x , y) is false, for
every x there exists y such that P(x , y) is false. Choose x = x ′
in the domain of discourse. For this choice of x , there exists y =
y′ such that P(x ′, y′) is false. Therefore∀x ∀y P(x , y) is false.

86. ∀x ∀y P(x , y) must be false. Since ∃x ∃y P(x , y) is false, for
every x and for every y, P(x , y) is false. Choose x = x ′ and
y = y′ in the domain of discourse. For these choices of x and
y, P(x ′, y′) is false. Therefore ∀x ∀y P(x , y) is false.

89. ∃x ¬(∀y P(x , y)) is not logically equivalent to ¬(∀x ∃y
P(x , y)). Let P(x , y) denote the expression x < y. If the
domain of discourse is Z × Z, ∃x ¬(∀y P(x , y)) is true;
however, ¬ (∀x ∃y P(x , y)) is false.

92. ∃x ∃y ¬P(x , y) is not logically equivalent to ¬(∀x ∃y
P(x , y)). Let P(x , y) denote the expression x < y. If the
domain of discourse is Z × Z, ∃x ∃y ¬P(x , y) is true; how-
ever, ¬ (∀x ∃y P(x , y)) is false.

93. ∀ε > 0 ∃δ > 0∀x ((0 < |x − a| < δ) → (| f (x) − L| < ε))

Chapter 1 Self-Test
1. ∅

2. A ⊆ B

3. Yes

4. Since |A| = 3 and |P(A)| = 23 = 8, |P(A)×A| = 8 · 3 = 24.

5. False

662 Hints and Solutions to Selected Exercises

6.
p q r ¬(p ∧ q) ∨ (p ∨ ¬r)

T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

7. I take hotel management and either I do not take recreation
supervision or I take popular culture.

8. p ∨ (q ∧ ¬r)

9. If Leah gets an A in discrete mathematics, then Leah studies
hard.

10. Converse: If Leah studies hard, then Leah gets an A in discrete
mathematics. Contrapositive: If Leah does not study hard,
then Leah does not get an A in discrete mathematics.

11. True

12. (¬r ∨ q) → ¬q

13. Hypothetical syllogism

14. Let

p: The Skyscrapers win.
q: I’ll eat my hat.
r : I’ll be quite full.

Then the argument symbolically is

p → q
q → r

∴ r → p

The argument is invalid. If p and q are false and r is true, the
hypotheses are true, but the conclusion is false.

15. The argument is invalid. If p and r are true and q is false, the
hypotheses are true, but the conclusion is false.

16. Let

p: The Council approves the funds.
q: New Atlantic gets the Olympic Games.
r : New Atlantic builds a new stadium.
s: The Olympic Games are canceled.

Then the argument symbolically is

p → q
q → r
¬r

∴ ¬p ∨ s

From p → q and q → r , we may use the hypothetical syllo-
gism to conclude p → r . From p → r and ¬r , we may use
the modus tollens to conclude ¬p. We may then use addition
to conclude ¬p ∨ s.

17. The statement is not a proposition. The truth value cannot be
determined without knowing what “the team” refers to.

18. The statement is a propositional function. When we substi-
tute a particular team for the variable “team,” the statement
becomes a proposition.

19. For all positive integers n, n and n+ 2 are prime. The propo-
sition is false. A counterexample is n = 7.

20. For some positive integer n, n and n+ 2 are prime. The propo-
sition is true. For example, if n = 5, n and n + 2 are prime.

21. ∃x∀y¬K (x , y)

22. ∀x∃yK (x , y); everybody knows somebody.

23. The statement is true. For every x , there exists y, namely the
cube root of x , such that x = y3. In words: Every real number
has a cube root.

24. ¬(∀x∃y∀z P(x , y, z)) ≡ ∃x¬(∃y∀z P(x , y, z))

≡ ∃x∀y¬(∀z P(x , y, z))

≡ ∃x∀y∃z¬P(x , y, z)

Section 2.1 Review
1. A mathematical system consists of axioms, definitions, and

undefined terms.

2. An axiom is a proposition that is assumed to be true.

3. A definition creates a new concept in terms of existing ones.

4. An undefined term is a term that is not explicitly defined but
rather is implicitly defined by the axioms.

5. A theorem is a proposition that has been proved to be true.

6. A proof is an argument that establishes the truth of a theorem.

7. A lemma is a theorem that is usually not too interesting in its
own right but is useful in proving another theorem.

8. A direct proof assumes that the hypotheses are true and then,
using the hypotheses as well as other axioms, definitions, and
previously derived theorems, shows directly that the conclu-
sion is true.

9. An integer n is even if there exists an integer k such that n = 2k.

10. An integer n is odd if there exists an integer k such that
n = 2k + 1.

11. Within a proof, a proof of an auxiliary result is called a
subproof.

12. To disprove the universally quantified statement ∀x P(x), we
need to find one member x in the domain of discourse that
makes P(x) false.

Section 2.1
1. If three points are not collinear, then there is exactly one plane

that contains them.

4. If x is a nonnegative real number and n is a positive integer,
x1/n is the nonnegative number y satisfying yn = x .

7. Let m and n be even integers. Then there exist k1 and k2 such
that m = 2k1 and n = 2k2. Now

m + n = 2k1 + 2k2 = 2(k1 + k2).

Therefore m + n is even.

Hints and Solutions to Selected Exercises 663

10. Let m and n be odd integers. Then there exist k1 and k2 such
that m = 2k1 + 1 and n = 2k2 + 1. Now

mn = (2k1 + 1)(2k2 + 1) = 4k1k2 + 2k1 + 2k2 + 1

= 2(2k1k2 + k1 + k2) + 1.

Therefore mn is odd.

13. Let x and y be rational numbers. Then there exist integers
m1, n1, m2, n2 such that x = m1/n1 and y = m2/n2. Now

x + y = m1

n1
+ m2

n2
= m1n2 + m2n1

n1n2
.

Since m1n2 +m2n1 and n1n2 are integers, x + y is a rational
number.

16. From the definition of max, it follows that d ≥ d1 and d ≥ d2.
From x ≥ d and d ≥ d1, we may derive x ≥ d1 from a pre-
vious theorem (the second theorem of Example 2.1.5). From
x ≥ d and d ≥ d2, we may derive x ≥ d2 from the same
previous theorem. Therefore, x ≥ d1 and x ≥ d2.

19. Let x ∈ X ∩ Y . From the definition of “intersection,” we
conclude that x ∈ X . Therefore X ∩ Y ⊆ X .

22. Let x ∈ X ∩ Z . From the definition of “intersection,” we con-
clude that x ∈ X and x ∈ Z . Since X ⊆ Y and x ∈ X , x ∈ Y .
Since x ∈ Y and x ∈ Z , from the definition of “intersection,”
we conclude that x ∈ Y ∩ Z . Therefore X ∩ Z ⊆ Y ∩ Z .

25. Let x ∈ Y . From the definition of “union,” we conclude that
x ∈ X ∪ Y . Since X ∪ Y = X ∪ Z , x ∈ X ∪ Z . From the defi-
nition of “union,” we conclude that x ∈ X or x ∈ Z . If x ∈ Z ,
we conclude that Y ⊆ Z . If x ∈ X , from the definition of “in-
tersection,” we conclude that x ∈ X∩Y . Since X∩Y = X∩Z ,
x ∈ X ∩ Z . Therefore x ∈ Z , and again Y ⊆ Z .

The argument that Z ⊆ Y is the same as that for Y ⊆ Z
with the roles of Y and Z reversed. Thus Y = Z .

28. Since X ∈ P(X), X ∈ P(Y). Therefore X ⊆ Y .

31. False. If X = {1, 2} and Y = {2, 3}, then X is not a subset of
Y since 1 ∈ X , but 1 /∈ Y . Also, Y is not a subset of X since
3 ∈ Y , but 3 /∈ X .

34. False. Let X = {1, a}, Y = {1, 2, 3}, and Z = {3}. Then
Y − Z = {1, 2} and (X ∪ Y) − (X ∪ Z) = {2}.

37. False. Let X = Y = {1} and U = {1, 2}. Then X ∩ Y = {2},
which is not a subset of X .

40. False. Let X = Y = {1} and U = {1, 2}. Then X × Y =
{(1, 2), (2, 1), (2, 2)} and X × Y = {(2, 2)}.

43. False. Let X = {1, 2}, Y = {1}, and Z = {2}. Then
X ∩ (Y × Z) = ∅ and (X ∩ Y) × (X ∩ Z) = {(1, 2)}.

44. We prove only (A∪B)∪C = A∪(B∪C). Let x ∈ (A∪B)∪C .
Then x ∈ A∪ B or x ∈ C . If x ∈ A∪ B, then x ∈ A or x ∈ B.
Thus x ∈ A or x ∈ B or x ∈ C . If x ∈ A, then x ∈ A∪(B∪C).
If x ∈ B or x ∈ C , then x ∈ B ∪C . Again, x ∈ A ∪ (B ∪C).

Now suppose that x ∈ A ∪ (B ∪ C). Then x ∈ A or
x ∈ B ∪ C . If x ∈ B ∪ C , then x ∈ B or x ∈ C . Thus x ∈ A
or x ∈ B or x ∈ C . If x ∈ A or x ∈ B, then x ∈ A ∪ B. Thus
x ∈ (A∪ B) ∪C . If x ∈ C , again x ∈ (A∪ B) ∪C . Therefore
(A ∪ B) ∪ C = A ∪ (B ∪ C).

47. We prove only A ∪ ∅ = A. Let x ∈ A ∪ ∅. Then x ∈ A or
x ∈ ∅. But x /∈ ∅, so x ∈ A.

Now suppose that x ∈ A. Then x ∈ A ∪∅. Therefore
A ∪∅ = A.

50. We prove only A ∪U = U . By definition, any set is a subset
of the universal set, so A ∪U ⊆ U .

If x ∈ U , then x ∈ A∪U . Thus U ⊆ A∪U. Therefore
A ∪U = U .

53. We prove only ∅ = U . By definition, any set is a subset of
the universal set, so ∅ ⊆ U .

Now suppose that x ∈ U . Then x /∈ ∅ (by the definition
of “empty set”). Thus x ∈ ∅ and U ⊆ ∅. Therefore ∅ = U .

55. Let x ∈ A�B. Then x ∈ A∪B and x /∈ A∩B. Since x ∈ A∪B,
x ∈ A or x ∈ B. Since x /∈ A ∩ B, x /∈ A or x /∈ B. If x ∈ A,
then x /∈ B. Thus x ∈ A − B; hence x ∈ (A − B) ∪ (B − A).
If x ∈ B, then x /∈ A. Thus x ∈ B − A and again
x ∈ (A−B)∪(B−A). Therefore A�B ⊆ (A−B)∪(B−A).

Now suppose that x ∈ (A − B) ∪ (B − A). Then
x ∈ A − B or x ∈ B − A. If x ∈ A − B, then x ∈ A
and x /∈ B. Thus x ∈ A ∪ B and x /∈ A ∩ B. Therefore
x ∈ (A ∪ B) − (A ∩ B) = A � B. If x ∈ B − A, then
x ∈ B and x /∈ A. Then x ∈ A ∪ B and x /∈ A ∩ B. Again
x ∈ (A∪B)−(A∩B) = A�B. Therefore (A−B)∪(B−A) ⊆
A � B. We have proved that (A − B) ∪ (B − A) = A � B.

58. False. Let A = {1, 2, 3}, B = {2, 3, 4}, and C = {1, 2, 4}.
Then A � (B ∪ C) = {4} and (A � B) ∪ (A � C) =
{1, 4} ∪ {3, 4} = {1, 3, 4}.

61. True. Using Example 2.1.11, we find that

A ∩ (B � C) = A ∩ [(B ∪ C) − (B ∩ C)]

= [A ∩ (B ∪ C)] − [A ∩ (B ∩ C)].

Using the distributive law and observing that (A ∩ B) ∩
(A ∩ C) = A ∩ (B ∩ C), we find that

(A∩ B) � (A∩C) = [(A∩ B) ∪ (A∩C)]− [(A∩ B) ∩ (A∩C)]

= [A ∩ (B ∪ C)] − [A ∩ (B ∩ C)].

Therefore

A ∩ (B � C) = (A ∩ B) � (A ∩ C).

Section 2.2 Review
1. A proof by contradiction assumes that the hypotheses are true

and that the conclusion is false and then, using the hypotheses
and the negated conclusion as well as other axioms, defini-
tions, and previously derived theorems, derives a contradiction.

2. Example 2.2.1

3. “Indirect proof” is another name for proof by contradiction.

4. To prove p → q, proof by contrapositive proves the equivalent
statement ¬q → ¬p.

5. Example 2.2.4

6. Instead of proving

(p1 ∨ p2 ∨ · · · ∨ pn) → q,

664 Hints and Solutions to Selected Exercises

in proof by cases, we prove

(p1 → q) ∧ (p2 → q) ∧ · · · ∧ (pn → q).

7. Example 2.2.5

8. Proof of equivalence shows that two or more statements are
all true or all false.

9. Example 2.2.9

10. If the statements are p, q, and r , we can show that they are
equivalent by proving that p → q, q → r , and r → p are all
true.

11. A proof of ∃x P(x) is called an existence proof.

12. An existence proof of ∃x P(x) that exhibits an element a
of the domain of discourse that makes P(a) true is called a
constructive proof.

13. Example 2.2.10

14. A proof of ∃x P(x) that does not exhibit an element a of the
domain of discourse that makes P(a) true, but rather proves
∃x P(x) some other way (e.g., using proof by contradiction),
is called a nonconstructive proof.

15. Example 2.2.12

Section 2.2
1. Suppose, by way of contradiction, that x is rational. Then there

exist integers p and q such that x = p/q. Now x2 = p2/q2

is rational, which is a contradiction.

4. Suppose, by way of contradiction, that n is even. Then there
exists k such that n = 2k. Now n2 = 2(2k2); thus n2 is even,
which is a contradiction.

7. Suppose, by way of contradiction, that 3
√

2 is rational. Then
there exist integers p and q such that 3

√
2 = p/q. We assume

that the fraction p/q is in lowest terms so that p and q are not
both even. Cubing 3

√
2 = p/q gives 2 = p3/q3, and multiply-

ing by q3 gives 2q3 = p3. It follows that p3 is even. An argu-
ment like that in Example 2.2.1 shows that p is even. Therefore,
there exists an integer k such that p = 2k. Substituting p = 2k
into 2q3 = p3 gives 2q3 = (2k)3 = 8k3. Canceling 2 gives
q3 = 4k3. Therefore q3 is even and, thus, q is even. Thus p
and q are both even, which contradicts our assumption that p
and q are not both even. Therefore, 3

√
2 is irrational.

10. Since the integers increase without bound, there exists n ∈ Z
such that 1/(b − a) < n. Therefore 1/n < b − a. Choose
m ∈ Z as large as possible satisfying m/n ≤ a. Then, by the
choice of m, a < (m + 1)/n. Also

m + 1

n
= m

n
+ 1

n
< a + (b − a) = b.

Therefore x = (m + 1)/n is a rational number satisfying
a < x < b.

13. True. Let a = b = 2. Then a and b are rational numbers and
ab = 4 is also rational. This is a constructive existence proof.

16. True. We give a proof by contradiction. Suppose that
(X − Y) ∩ (Y − X) is nonempty. Then there exists x ∈
(X − Y) ∩ (Y − X). Thus x ∈ X − Y and x ∈ Y − X . Since

x ∈ X − Y , x ∈ X and x /∈ Y . Since x ∈ Y − X , x ∈ Y
and x /∈ X . We now have x ∈ X and x /∈ X , which is a
contradiction. Therefore (X − Y) ∩ (Y − X) = ∅.

19. Suppose, by way of contradiction, that no two bags contain
the same number of coins. Suppose that we arrange the bags
in increasing order of the number of coins that they contain.
Then the first bag contains at least one coin; the second bag
contains at least two coins; and so on. Thus the total number
of coins is at least

1 + 2 + 3 + · · · + 9 = 45.

This contradicts the hypothesis that there are 40 coins. Thus
if 40 coins are distributed among nine bags so that each bag
contains at least one coin, at least two bags contain the same
number of coins.

22. We use proof by contradiction and assume the negation of the
conclusion

¬∃i(si ≤ A).

By the generalized De Morgan’s laws for logic, this latter
statement is equivalent to

∀i(si > A).

Thus we assume

s1 > A

s2 > A
...

sn > A.

Adding these inequalities yields

s1 + s2 + · · · + sn > n A.

Dividing by n gives

s1 + s2 + · · · + sn

n
> A,

which contradicts the hypothesis. Therefore, there exists i
such that si ≤ A.

25. Since si �= s j , either si �= A or s j �= A. By changing the nota-
tion, if necessary, we may assume that si �= A. Either si < A
or si > A. If si < A, the proof is complete; so assume that
si > A. We show that there exists k such that sk < A. Suppose,
by way of contradiction, that sm ≥ A for all m, that is,

s1 ≥ A

s2 ≥ A
...

sn ≥ A.

Adding these inequalities yields

s1 + s2 + · · · + si + · · · + sn > n A

Hints and Solutions to Selected Exercises 665

since si > A. Dividing by n gives

s1 + s2 + · · · + sn

n
> A,

which is a contradiction. Therefore there exists k such that
sk < A.

27. Notice that if n ≥ 2 and m ≥ 1,

2m + 5n2 ≥ 2m + 5 · 22 > 20,

so the only possible solution is if n = 1. However, if n = 1,

2m + 5n2 = 2m + 5,

which is odd being the sum of an even integer and an odd inte-
ger. Thus this sum cannot equal 20. Therefore, 2m+5n2 = 20
has no solution in positive integers.

30. We claim that if n and n + 1 are consecutive integers, one is
odd and one is even. Suppose that n is odd. Then there exists k
such that n = 2k + 1. Now n+ 1 = 2k + 2 = 2(k + 1), which
is even. If n is even, there exists k such that n = 2k. Now
n+1 = 2k+1, which is odd. Since one of n and n+1 is even
and the other is odd, their product is even (see Exercise 11,
Section 2.1).

32. We consider four cases: x ≥ 0, y ≥ 0; x < 0, y ≥ 0;
x ≥ 0, y < 0; and x < 0, y < 0.

First assume that x ≥ 0 and y ≥ 0. Then xy ≥ 0 and
|xy| = xy = |x ||y|. Next assume that x < 0 and y ≥ 0. Then
xy ≤ 0 and |xy| = −xy = (−x)(y) = |x ||y|. Next assume
that x ≥ 0 and y < 0. Then xy ≤ 0 and |xy| = −xy =
(x)(−y) = |x ||y|. Finally assume that x < 0 and y < 0. Then
xy > 0 and |xy| = xy = (−x)(−y) = |x ||y|.

34. We consider three cases: x > 0, x = 0, and x < 0.
If x > 0, |x | = x and sgn(x) = 1. Therefore,

|x | = x = 1 · x = sgn(x)x .

If x = 0, |x | = 0 and sgn(x) = 0. Therefore,

|x | = 0 = 0 · 0 = sgn(x)x .

If x < 0, |x | = −x and sgn(x) = −1. Therefore,

|x | = −x = −1 · x = sgn(x)x .

In every case, we have |x | = sgn(x)x .

37. We consider two cases: x ≥ y and x < y.
If x ≥ y,

max{x , y} = x and min{x , y} = y.

Therefore,

max{x , y} + min{x , y} = x + y.

If x < y,

max{x , y} = y and min{x , y} = x .

Therefore,

max{x , y} + min{x , y} = y + x = x + y.

In either case,

max{x , y} + min{x , y} = x + y.

41. We first prove that if n is even, then n + 2 is even. Assume
that n is even. Then there exists k such that n = 2k. Now
n + 2 = 2k + 2 = 2(k + 1) is even.

We next prove that if n + 2 is even, then n is even.
Assume that n + 2 is even. Then there exists k such that
n + 2 = 2k. Now n = 2k − 2 = 2(k − 1) is even.

43. We first prove that if A ⊆ B, then B ⊆ A. Assume that A ⊆ B.
Let x ∈ B. Then x /∈ B. If x ∈ A, then x ∈ B, which is not
the case. Therefore x /∈ A. Therefore x ∈ A. Thus B ⊆ A.

We next prove that if B ⊆ A, then A ⊆ B. Assume
that B ⊆ A. From the first part of the proof, we can deduce
A ⊆ B. Since A = A and B = B, A ⊆ B.

46. We first show that if (a, b) = (c, d), then a = c and b = d.
Assume that (a, b) = (c, d). Then

{{a}, {a, b}} = {{c}, {c, d}}. (∗)

First suppose that a �= b. Then the set on the left-hand side
of equation (*) contains two distinct sets: {a} and {a, b}. Thus
the set on the right-hand side of equation (*) also contains
two distinct sets: {c} and {c, d}. Therefore c �= d. (If c = d,
{c, d} = {c, c} = {c}.) Since a �= b and c �= d, we must have

{a} = {c} and {a, b} = {c, d}.
It follows that a = c and b = d.

Now suppose that a = b. Then

{{a}, {a, b}} = {{a}, {a, a}} = {{a}, {a}} = {{a}}.
Thus the set on the left-hand side of equation (*) contains
one set. Therefore the set on the right-hand side of equation
(*) also contains one set. We must have c = d; otherwise the
set on the right-hand side of equation (*) would contain two
distinct sets. Thus

{{c}, {c, d}} = {{c}}.
Equation (*) now becomes

{{a}} = {{c}}.
It follows that a = c and, hence, b = d. We have shown that
if (a, b) = (c, d), then a = c and b = d.

If a = c and b = d, then

(a, b) = {{a}, {a, b}} = {{c}, {c, d}} = (c, d).

The proof is complete.

47. [(a) → (b)] Assume that n is odd. Then there exists k′ such
that n = 2k′ + 1. Since n = 2(k′ + 1) − 1, taking k = k′ + 1,
we have n = 2k − 1.

[(b) → (c)] Assume that there exists k such that
n = 2k − 1. Then

n2+1 = (2k−1)2+1 = (4k2−4k+1)+1 = 2(2k2−2k+1).

Therefore n2 + 1 is even.
[(c) → (a)] We prove the contrapositive: If n is even,

then n2 + 1 is odd.

666 Hints and Solutions to Selected Exercises

Suppose that n is even. Then there exists k such that
n = 2k. Now

n2 + 1 = (2k)2 + 1 = 4k2 + 1 = 2(2k2) + 1.

Therefore n2 + 1 is odd.

Section 2.3 Review
1. p ∨ q, ¬p ∨ r/∴ q ∨ r

2. A clause consists of terms separated by or’s, where each term
is a variable or the negation of a variable.

3. A proof by resolution proceeds by repeatedly applying the rule
in Exercise 1 to pairs of statements to derive new statements
until the conclusion is derived.

Section 2.3
1.

p q r p ∨ q ¬p ∨ r q ∨ r

T T T T T T
T T F T F T
T F T T T T
T F F T F F
F T T T T T
F T F T T T
F F T F T T
F F F F T F

2. 1. ¬p ∨ q ∨ r

2. ¬q

3. ¬r

4. ¬p ∨ r From 1 and 2

5. ¬p From 3 and 4

5. First we note that p → q is logically equivalent to ¬p ∨ q.
We now argue as follows:

1. ¬p ∨ q

2. p ∨ q

3. q From 1 and 2

7. (For Exercise 2)

1. ¬p ∨ q ∨ r Hypothesis

2. ¬q Hypothesis

3. ¬r Hypothesis

4. p Negation of conclusion

5. ¬p ∨ r From 1 and 2

6. ¬p From 3 and 5

Now 4 and 6 combine to give a contradiction.

Section 2.4 Review
1. Suppose that we have propositional function S(n) whose do-

main of discourse is the set of positive integers. Suppose that
S(1) is true and, for all n ≥ 1, if S(n) is true, then S(n + 1) is
true. Then S(n) is true for every positive integer n.

2. We first verify that S(1) is true (Basis Step). We then assume
that S(n) is true and prove that S(n+1) is true (Inductive Step).

3.
n(n + 1)

2
4. The geometric sum is the sum

a + ar1 + ar2 + · · · + arn .

It is equal to

a(rn+1 − 1)

r − 1
.

Section 2.4
1. Basis Step 1 = 12

Inductive Step Assume true for n.

1 + · · · + (2n − 1) + (2n + 1) = n2 + 2n + 1 = (n + 1)2

4. Basis Step 12 = (1 · 2 · 3)/6

Inductive Step Assume true for n.

12 + · · · + n2 + (n + 1)2 = n(n + 1)(2n + 1)

6
+ (n + 1)2

= (n + 1)(n + 2)(2n + 3)

6

7. Basis Step 1/(1 · 3) = 1/3

Inductive Step Assume true for n.

1

1 · 3
+ · · · + 1

(2n − 1)(2n + 1)
+ 1

(2n + 1)(2n + 3)

= n

2n + 1
+ 1

(2n + 1)(2n + 3)
= n + 1

2n + 3

10. Basis Step cos x = cos[(x/2) · 2] sin(x/2)

sin(x/2)
Inductive Step Assume true for n. Then

cos x + · · · + cos nx + cos(n + 1)x

= cos[(x/2)(n + 1)] sin(nx/2)

sin(x/2)
+ cos(n + 1)x . (∗)

We must show that the right-hand side of (∗) is equal to

cos[(x/2)(n + 2)] sin[(n + 1)x/2]

sin(x/2)
.

This is the same as showing that [after multiplying by the term
sin(x/2)]

cos
[x

2
(n + 1)

]
sin

nx

2
+ cos(n + 1)x sin

x

2

= cos
[x

2
(n + 2)

]
sin

[
(n + 1)x

2

]
.

If we let α = (x/2)(n + 1) and β = x/2, we must show that

cos α sin(α − β) + cos 2α sin β = cos(α + β) sin α.

This last equation can be verified by reducing each side to
terms involving α and β.

Hints and Solutions to Selected Exercises 667

12. Basis Step 1/2 ≤ 1/2

Inductive Step Assume true for n.

1 · 3 · 5 · · · (2n − 1)(2n + 1)

2 · 4 · 6 · · · (2n)(2n + 2)
≥ 1

2n
· 2n + 1

2n + 2

= 2n + 1

2n
· 1

2n + 2
≥ 1

2n + 2

15. Basis Step (n = 4) 24 = 16 ≥ 16 = 42

Inductive Step Assume true for n.

(n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n + 1

≤ 2n + 2n by Exercise 14

= 2n+1

18. r0 + r1 + · · · rn = 1 − rn+1

1 − r
<

1

1 − r
21. Basis Step 71 − 1 = 6 is divisible by 6.

Inductive Step Suppose that 6 divides 7n − 1. Now

7n+1 − 1 = 7 · 7n − 1 = 7n − 1 + 6 · 7n .

Since 6 divides both 7n − 1 and 6 · 7n , it divides their sum,
which is 7n+1 − 1.

24. Basis Step 31 + 71 − 2 = 8 is divisible by 8.

Inductive Step Suppose that 8 divides 3n + 7n − 2. Now

3n+1 + 7n+1 − 2 = 3(3n + 7n − 2) + 4(7n + 1).

By the inductive assumption, 8 divides 3n + 7n − 2. We can
use mathematical induction to show that 2 divides 7n + 1 for
all n ≥ 1 (the argument is similar to that given in the hint for
Exercise 21). It then follows that 8 divides 4(7n + 1). Since
8 divides both 3(3n + 7n − 2) and 4(7n + 1), it divides their
sum, which is 3n+1 + 7n+1 − 2.

27. We prove the assertion using induction on n. The Basis Step
is n = 1. In this case, there is one subset of {1} with an even
number of elements, namely, ∅. Since 2n−1 = 20 = 1, the
assertion is true when n = 1.

Assume that the number of subsets of {1, . . . , n} con-
taining an even number of elements is 2n−1. We must prove
that the number of subsets of {1, . . . , n + 1} containing an
even number of elements is 2n .

Let E1, . . . , E2n−1 denote the subsets of {1, 2, . . . , n}
containing an even number of elements. Since there are 2n

subsets of {1, 2, . . . , n} altogether and 2n−1 contain an even
number of elements, there are 2n − 2n−1 = 2n−1 subsets of
{1, . . . , n} that contain an odd number of elements. Denote
these as O1, . . . , O2n−1 . Now E1, . . . , E2n−1 are the subsets of
{1, . . . , n + 1} containing an even number of elements that do
not contain n + 1, and

O1 ∪ {n + 1}, . . . , O2n−1 ∪ {n + 1}

are the subsets of {1, . . . , n+1} containing an even number of
elements that contain n + 1. Thus there are 2n−1 + 2n−1 = 2n

subsets of {1, . . . , n + 1} that contain an even number of
elements. The Inductive Step is complete.

29. At the Inductive Step when the (n+1)st line is added, because
of the assumptions, the line will intersect each of the other n
lines. Now, imagine traveling along the (n + 1)st line. Each
time we pass through one of the original regions, it is divided
into two regions.

32.

35. We denote the square in row i , column j by (i, j). Then, by
symmetry, we need only consider 7 × 7 boards with squares
(i, j) removed where i ≤ j ≤ 4. The solution when square
(1, 1) is removed is shown in the following figure.

2� 3

5� 5
3� 2

Not all trominoes of the tiling are shown. By Exercise 34, the
3 × 2 subboards have tilings. By Exercise 32, the 5 × 5 sub-
board with a corner square removed has a tiling. Essentially
the same figure gives tilings if square (1, 2) or (2, 2) is deleted.

A similar argument gives tilings for the remaining cases.

38. Basis Step (n = 1) The board is a tromino.

Inductive Step Assume that any 2n ×2n deficient board can
be tiled with trominoes. We must prove that any 2n+1 × 2n+1

deficient board can be tiled with trominoes.
Given a 2n+1 × 2n+1 deficient board, we divide the

board into four 2n × 2n subboards as shown in Figure 2.4.6.
By the inductive assumption, we can tile the subboard contain-
ing the missing square. The three remaining subboards form a
2n × 2n L-shape, which may be tiled using Exercise 37. Thus,
the 2n+1 × 2n+1 deficient board is tiled. The inductive step is
complete.

39. Number the squares as shown:

1 2 3 1

2 3 1 2

3 1 2 3

1 2 3 1

Notice that each tromino covers exactly one 1, one 2, and one
3. Therefore, if there is a tiling, five 2’s are covered. Since
five trominoes are required, the missing square cannot be a 2.
Similarly the missing square cannot be a 3.

668 Hints and Solutions to Selected Exercises

The same argument applied to

1 3 2 1

2 1 3 2

3 2 1 3

1 3 2 1

shows that the only possibility for the missing square is a
corner. Such a board can be tiled:

42. We prove that pow = ai−1 is a loop invariant for the while
loop. Just before the while loop begins executing, i = 1 and
pow = 1, so pow = a1−1. We have proved the Basis Step.

Assume that pow = ai−1. If i ≤ n (so that the loop
body executes again), pow becomes

pow ∗ a = ai−1 ∗ a = ai ,

and i becomes i + 1. We have proved the Inductive Step.
Therefore pow = ai−1 is an invariant for the while loop.

The while loop terminates when i = n + 1. Because
pow = ai−1 is an invariant, at this point pow = an .

46. (a) S1 = 0 �= 2;

2 + · · · + 2n + 2(n + 1) = Sn + 2n + 2

= (n + 2)(n − 1) + 2n + 2

= (n + 3)n = Sn+1.

(b) We must have S′n = S′n−1 + 2n; thus

S′n = S′n−1 + 2n

= [S′n−2 + 2(n − 1)] + 2n

= S′n−2 + 2n + 2(n − 1)

= S′n−3 + 2n + 2(n − 1) + 2(n − 2)

...

= S′1 + 2[n + (n − 1) + · · · + 2]

= C ′ + 2

[
n(n + 1)

2
− 1

]
= n2 + n + C.

50. If n = 2, each person throws a pie at the other and there are
no survivors.

53. The statement is false. In

1 2 3 4 5

1 and 5 are farthest apart, but neither is a survivor.

55. Let x and y be points in X ∩ Y . Then x is in X and y is in
X . Since X is convex, the line segment from x to y is in X .
Similarly, the line segment from x to y is in Y . Therefore, the
line segment from x to y is in X ∩ Y . Thus, X ∩ Y is convex.

58. Let x1, . . . , xn denote the n points, and let Xi be the circle of
radius 1 centered at xi . Apply Helly’s Theorem to X1, . . . , Xn .

60. 1

63. Basis Step (i = 1) Since 2 is eliminated, 1 survives. Thus
J (2) = 1.

Inductive Step Assume true for i . Now suppose that 2i+1

persons are arranged in a circle. We begin by eliminating
2, 4, 6, . . . , 2i+1. We then have 2i persons arranged in a cir-
cle, and, beginning with 1, we eliminate the second person,
then the fourth person, and so on. By the inductive assumption,
1 survives. Therefore,

J (2i+1) = J (2i) = 1.

66. The greatest power of 2 less than or equal to 100,000 is 216.
Thus, in the notation of Exercise 64, n = 100,000, i = 16, and

j = n − 2i = 100,000 − 216 = 100,000 − 65,536 = 34,464.

By Exercise 64,

J (100,000) = J (n) = 2 j + 1 = 2 · 34,464 + 1 = 68,929.

67.

b1 + b2 + · · · + bn = (a2 − a1) + (a3 − a2)

+ · · · + (an+1 − an)

= −a1 + an+1 = an+1 − a1

since a2, . . . , an cancel.

70. Let

an = 1

n
.

Then

an = an+1 − an = 1

n + 1
− 1

n
= −1

n(n + 1)
.

Let bn =
an . By Exercise 67,

−1

1 · 2
+ · · · + −1

n(n + 1)
=
a1 + · · · +
an

= b1 + · · · + bn

= an+1 − a1

= 1

n + 1
− 1 = −n

n + 1
.

Multiplying by −1 yields the desired formula.

Hints and Solutions to Selected Exercises 669

Section 2.5 Review
1. Suppose that we have a propositional function S(n) whose

domain of discourse is the set of integers greater than or equal
to n0. Suppose that S(n0) is true; and for all n > n0, if S(k) is
true for all k, n0 ≤ k < n, then S(n) is true. Then S(n) is true
for every integer n ≥ n0.

2. Every nonempty set of nonnegative integers has a least ele-
ment.

3. If d and n are integers, d > 0, there exist unique integers q
(quotient) and r (remainder) satisfying n = dq+r, 0 ≤ r < d.

Section 2.5
1. Basis Steps (n = 6, 7) We can make six cents postage by

using three 2-cent stamps. We can make seven cents postage
by using one 7-cent stamp.

Inductive Step We assume that n ≥ 8 and postage of k
cents or more can be achieved by using only 2-cent and 7-cent
stamps for 6 ≤ k < n. By the inductive assumption, we can
make postage of n − 2 cents. We may add a 2-cent stamp to
make n cents postage.

3. Basis Step (n = 4) We can make four cents postage by
using two 2-cent stamps.

Inductive Step We assume that we can make n cents
postage, and we prove that we can make n + 1 cents postage.

If among the stamps that make n cents postage there is
at least one 5-cent stamp, we replace one 5-cent stamp by three
2-cent stamps to make n + 1 cents postage. If there are no 5-
cent stamps among the stamps that make n cents postage, there
are at least two 2-cent stamps (because n ≥ 4). We replace two
2-cent stamps by one 5-cent stamp to make n+1 cents postage.

6. In the Inductive Step, we must have k = �n/2� ≥ 3. Since this
inequality fails for n = 4, 5, the Basis Steps are n = 3, 4, 5.

9. c2 = 4, c3 = 9, c4 = 20, c5 = 29

11. c2 = 2, c3 = 3, c4 = 12, c5 = 13

14. Notice that

c0 = 0

c1 = c0 + 3 = 3

c2 = c1 + 3 = 6

c3 = c1 + 3 = 6

c4 = c2 + 3 = 9.

Thus the assertion cn ≤ 2n fails for n = 4.
In the Inductive Step, we must have k = �n/2� ≥ 3.

Since this inequality fails for n = 4, 5, the Basis Steps are
n = 3, 4, 5. In the fallacious proof, only the case n = 3 was
proved in the Basis Steps. In fact, since the statement is false
for n = 4, the Basis Steps n = 3, 4, 5 cannot be proved.

16. q = 5, r = 2

19. q = −1, r = 2

22.
5

6
= 1

2
+ 1

3
= 1

2
+ 1

4
+ 1

12

26. We may assume that p/q > 1. Choose the largest integer n
satisfying

1

1
+ 1

2
+ · · · + 1

n
≤ p

q
.

(The previous Problem-Solving Corner shows that the sum

1

1
+ 1

2
+ · · · + 1

n

is unbounded; so such an n exists.) If we obtain an equality,
p/q is in Egyptian form, so suppose that

1

1
+ 1

2
+ · · · + 1

n
<

p

q
. (∗)

Set

D = p

q
−
(

1

1
+ · · · + 1

n

)
.

Clearly, D > 0. Since n is the largest integer satisfying (∗),

1

1
+ 1

2
+ · · · + 1

n
+ 1

n + 1
≥ p

q
.

Thus

D = p

q
−
(

1

1
+ · · · + 1

n

)

≤
(

1

1
+ · · · + 1

n
+ 1

n + 1

)
−
(

1

1
+ · · · + 1

n

)
= 1

n + 1
.

In particular, D < 1. By Exercise 24, D may be written in
Egyptian form:

D = 1

n1
+ · · · + 1

nk
,

where the ni are distinct. Since

1

ni
≤ D ≤ 1

1 + n
, for i = 1, . . . , k,

n < n + 1 ≤ ni for i = 1, . . . , k. It follows that

1, 2, . . . , n, n1, . . . , nk

are distinct. Thus

p

q
= D + 1

1
+ · · · + 1

n
= 1

n1
+ · · · + 1

nk
+ 1

1
+ · · · + 1

n

is represented in Egyptian form.

27. In this solution, the induction is over the set X of odd integers
n > 5, where 3 divides n2 − 1. Such an induction can be
justified by considering the first statement to be about the
smallest integer in X , the second statement to be about the
second smallest integer in X , and so on.

Basis Steps (n = 7, 11) Exercise 35, Section 2.4, gives a
solution if n = 7.

If n = 11, enclose the missing square in a corner 7× 7
subboard (see the following figure). Tile this subboard using
the result of Exercise 35, Section 2.4. Tile the two 6 × 4 sub-
boards using the result of Exercise 34, Section 2.4. Tile the

670 Hints and Solutions to Selected Exercises

5 × 5 subboard with a corner square missing using the result
of Exercise 32, Section 2.4. Thus the 11×11 board can be tiled.

7 � 7
6 � 4

6 � 4
5 � 5

11

11

Inductive Step Suppose that n > 11 and assume that if
k < n, k is odd, k > 5, and 3 divides k2 − 1, then a k × k
deficient board can be tiled with trominoes.

Consider an n × n deficient board. Enclose the missing
square in a corner (n−6)× (n−6) subboard. By the inductive
assumption, this board can be tiled with trominoes. Tile the
two 6 × (n − 7) subboards using the result of Exercise 34,
Section 2.4. Tile the deficient 7 × 7 subboard using the result
of Exercise 35, Section 2.4. The n × n board is tiled, and the
inductive step is complete.

n

(n – 6)�(n – 6)
6 � (n – 7)

6 � (n – 7)
7 � 7

n

31. Let X be a nonempty set of nonnegative integers. We must
prove that X has a least element. Using mathematical induc-
tion, we prove that for all n ≥ 0, if X contains an element less
than or equal to n, then X has a least element. Notice that this
proves that X has a least element. (Since X is nonempty, X
contains an integer n. Now X contains an element less than or
equal to n; so it follow that X has a least element.)

Basis Step (n = 0) If X contains an element less than or
equal to 0, then X contains 0 since X consists of nonnegative
integers. In this case, 0 is the least element in X .

Inductive Step Now we assume that if X contains an ele-
ment less than or equal to n, then X has a least element. We
must prove that if X contains an element less than or equal to
n + 1, then X has a least element.

Suppose that X contains an element less than or equal
to n + 1. We consider two cases: X contains an element less
than or equal to n, and X does not contain an element less than
or equal to n. If X contains an element less than or equal to n,
by the inductive assumption, X has a least element. If X does
not contain an element less than or equal to n, since X contains
an element less than or equal to n + 1, X must contain n + 1,
which is the least element in X . The inductive step is complete.

Chapter 2 Self-Test
1. Axioms are statements that are assumed to be true. Definitions

are used to create new concepts in terms of existing ones.

2. Suppose that m and m − n are odd. Then there exist integers
k1 and k2 such that m = 2k1 + 1 and m − n = 2k2 + 1. Now

n = m − (m − n) = (2k1 + 1) − (2k2 + 1) = 2(k1 − k2).

Therefore n is even.

3. Since x and y are rational numbers, there exist integers
m1, n1, m2, n2 such that x = m1/n1 and y = m2/n2. Since
y �= 0, m2 �= 0. Now

x

y
= m1/n1

m2/n2
= m1n2

n1m2
.

Since x/y is the quotient of integers, it is rational.

4. We first prove that X ⊆ Z . Let x ∈ X . Since X ⊆ Y , x ∈ Y .
Since Y ⊂ Z , x ∈ Z . Therefore X ⊆ Z .

We now show that X is a proper subset of Z . Since
Y ⊂ Z , there exists z ∈ Z such that z /∈ Y . Now z /∈ X ,
because if it were, we would have z ∈ Y . Therefore X ⊂ Z .

5. In a direct proof, the negated conclusion is not assumed,
whereas in a proof by contradiction, the negated conclusion is
assumed.

6. Suppose that if four teams play seven games, no pair of teams
plays at least two times; or, equivalently, if four teams play
seven games, each pair of teams plays at most one time. If the
teams are A, B, C , and D and each pair of teams plays at most
one time, the most games that can be played are:

A and B; A and C; A and D; B and C; B and D;
C and D.

Thus at most six games can be played. This is a contradiction.
Therefore, if four teams play seven games, some pair of teams
plays at least two times.

7. We consider two cases: a ≤ b and a > b. In each of these two
cases, we consider the two cases: b ≤ c and b > c.

First suppose that a ≤ b. If b ≤ c, then

min{min{a, b}, c} = min{a, c} = a = min{a, b}
= min{a, min{b, c}}.

If b > c, then

min{min{a, b}, c} = min{a, c} = min{a, min{b, c}}.
In either case,

min{min{a, b}, c} = min{a, min{b, c}}.

Hints and Solutions to Selected Exercises 671

Now suppose that a > b. If b ≤ c, then

min{min{a, b}, c} = min{b, c} = b = min{a, b}
= min{a, min{b, c}}.

If b > c, then

min{min{a, b}, c} = min{b, c} = c = min{a, c}
= min{a, min{b, c}}.

In either case,

min{min{a, b}, c} = min{a, min{b, c}}.
Therefore, for all a, b, c,

min{min{a, b}, c} = min{a, min{b, c}}.
8. [(a) → (b)] We prove the contrapositive: If A ∩ B �= ∅, then

A is not a subset of B. Since A ∩ B �= ∅, there exists x with
x ∈ A and x ∈ B. Thus there exists x with x ∈ A and x /∈ B.
Therefore A is not a subset of B.

[(b) → (c)] If x ∈ B, then x ∈ A ∪ B. Therefore
B ⊆ A ∪ B.

Let x ∈ A ∪ B. We must show that x ∈ B. Now x ∈ A
or x ∈ B. If x ∈ B, this part of the proof is complete; so
suppose that x ∈ A. Since A ∩ B = ∅, x /∈ B. Thus x ∈ B
and A ∪ B ⊆ B. Therefore A ∪ B = B.

[(c) → (a)] Let x ∈ A. Then x ∈ A∪ B. Since A∪ B =
B, x ∈ B. Therefore A ⊆ B.

9. (p ∨ q) → r ≡ ¬(p ∨ q) ∨ r

≡ ¬p¬q ∨ r

≡ (¬p ∨ r)(¬q ∨ r)

10. (p ∨ ¬q) → ¬rs ≡ ¬(p ∨ ¬q) ∨ ¬rs

≡ ¬pq ∨ ¬rs

≡ (¬p ∨ ¬r)(¬p ∨ s)(q ∨ ¬r)(q ∨ s)

11. 1. ¬p ∨ q

2. ¬q ∨ ¬r

3. p ∨ ¬r

4. ¬p ∨ ¬r From 1 and 2

5. ¬r From 3 and 4

12. 1. ¬p ∨ q

2. ¬q ∨ ¬r

3. p ∨ ¬r

4. r Negation of conclusion

5. ¬p ∨ ¬r From 1 and 2

6. ¬r From 3 and 5
Now 4 and 6 give a contradiction.

In Exercises 13–16, only the Inductive Step is given.

13. 2 + 4 + · · · + 2n + 2(n + 1) = n(n + 1) + 2(n + 1) =
(n + 1)(n + 2)

14.
22 + 42 + · · · + (2n)2 + [2(n + 1)]2 = 2n(n + 1)(2n + 1)

3

+ [2(n + 1)]2 = 2(n + 1)(n + 2)[2(n + 1) + 1]

3

15. 1

2!
+ 2

3!
+ · · · + n

(n + 1)!
+ n + 1

(n + 2)!

= 1 − 1

(n + 1)!
+ n + 1

(n + 2)!
= 1 − 1

(n + 2)!

16.
2n+2 = 2 · 2n+1 < 2[1 + (n + 1)2n] = 2 + (n + 1)2n+1

= 1 + [1 + (n + 1)2n+1]

< 1 + [2n+1 + (n + 1)2n+1]

= 1 + (n + 2)2n+1

17. q = 9, r = 2

18. c2 = 2, c3 = 3, c4 = 8, c5 = 9.

19. Basis Step (n = 1) c1 = 0 ≤ 0 = 1 lg 1

Inductive Step

cn = 2c�n/2� + n

≤ 2�n/2� lg�n/2� + n

≤ 2(n/2) lg(n/2) + n

= n(lg n − 1) + n = n lg n

20. Let X be a nonempty set of nonnegative integers that has an
upper bound. We must show that X contains a largest element.

Let Y be the set of integer upper bounds for X . By
assumption, Y is nonempty. Since X consists of nonnega-
tive integers, Y also consists of nonnegative integers. By the
Well-Ordering Property, Y has a least element, say n. Since
Y consists of upper bounds for X , k ≤ n for every k in X .
Suppose, by way of contradiction, that n is not in X . Then
k ≤ n − 1 for every k in X . Thus, n − 1 is an upper bound for
X , which is a contradiction. Therefore, n is in X . Since k ≤ n
for every k in X , n is the largest element in X .

Section 3.1 Review
1. Let X and Y be sets. A function f from X to Y is a subset of

the Cartesian product X × Y having the property that for each
x ∈ X , there is exactly one y ∈ Y with (x , y) ∈ f .

2. In an arrow diagram of the function f , there is an arrow from
i to j if (i, j) ∈ f .

3. The graph of a function f , whose domain and codomain are
subsets of the real numbers, consists of the points in the plane
that correspond to the elements in f .

4. A set S of points in the plane defines a function when each
vertical line intersects at most one point of S.

5. The remainder when x is divided by y

6. A hash function takes a data item to be stored or retrieved and
computes the first choice for a location for the item.

672 Hints and Solutions to Selected Exercises

7. A collision occurs for a hash function H if H (x)= H (y) but
x �= y.

8. When a collision occurs, a collision resolution policy deter-
mines an alternative location for one of the data items.

9. Pseudorandom numbers are numbers that appear random even
though they are generated by a program.

10. A linear congruential random number generator uses a formula
of the form

xn = (axn−1 + c) mod m.

Given the pseudorandom number xn−1, the next pseudoran-
dom number xn is given by the formula. A “seed” is used as the
first pseudorandom number in the sequence. As an example,
the formula

xn = (7xn−1 + 5) mod 11

with seed 3 gives a sequence that begins 3, 4, 0, 5,

11. The floor of x is the greatest integer less than or equal to x . It
is denoted �x�.

12. The ceiling of x is the least integer greater than or equal to x .
It is denoted �x�.

13. A function f from X to Y is said to be one-to-one if for each
y ∈ Y , there is at most one x ∈ X with f (x) = y. The function
{(a, 1), (b, 3), (c, 0)} is one-to-one. If a function from X to
Y is one-to-one, each element in Y in its arrow diagram will
have at most one arrow pointing to it.

14. A function f from X to Y is said to be onto Y if the range
of f is Y . The function {(a, 1), (b, 3), (c, 0)} is onto {0, 1, 3}.
If a function from X to Y is onto Y , each element in Y in its
arrow diagram will have at least one arrow pointing to it.

15. A bijection is a function that is one-to-one and onto. The func-
tion of Exercises 13 and 14 is one-to-one and onto {0, 1, 3}.

16. If f is a one-to-one, onto function from X to Y , the inverse
function is

f −1 = {(y, x) | (x , y) ∈ f }.
If f is the function of Exercises 13 and 14, we have

f −1 = {(1, a), (3, b), (0, c)}.
Given the arrow diagram for a one-to-one, onto function f
from X to Y , we can obtain the arrow diagram for f −1 by
reversing the direction of each arrow.

17. Suppose that g is a function from X to Y and f is a function
from Y to Z . The composition function from X to Z is defined
as

f ◦ g = {(x , z) | (x , y) ∈ g and (y, z) ∈ f for some y ∈ Y }.
If g = {(1, 2), (2, 2)} and f = {(2, a)}, f ◦ g = {(1, a),
(2, a)}. Given the arrow diagrams for functions g from X to Y
and f from Y to Z , we can obtain the arrow diagram of f ◦ g
by drawing an arrow from x ∈ X to z ∈ Z provided that there
are arrows from x to some y ∈ Y and from y to z.

18. A binary operator on X is a function from X × X to X . The
addition operator + is a binary operator on the set of integers.

19. A unary operator on X is a function from X to X . The minus
operator − is a unary operator on the set of integers.

Section 3.1
1. It is a function from X to Y ; domain = X , range = {a, b, c};

it is neither one-to-one nor onto. Its arrow diagram is

X Y

a

b

c

d

1
2
3
4

4. It is not a function (from X to Y).

6.

1
… …

�1 1 2

))))))

9.

……

[)

)

[)

[)
[)

)

[)

[)

�2 �1 1 2

2

1

�1

10. The function f is both one-to-one and onto. To prove that f is
one-to-one, suppose that f (n) = f (m). Then n + 1 = m + 1.
Thus n = m. Therefore f is one-to-one.

To prove that f is onto, let m be an integer. Then
f (m − 1) = (m − 1) + 1 = m. Therefore f is onto.

13. The function f is neither one-to-one nor onto. Since f (−1) =
| − 1| = 1 = f (1), f is not one-to-one. Since f (n) ≥ 0 for
all n ∈ Z, f (n) �= −1 for all n ∈ Z. Therefore f is not onto.

16. The function f is not one-to-one, but it is onto. Since f (2, 1) =
2 − 1 = 1 = 3 − 2 = f (3, 2), f is not one-to-one. Suppose
that k ∈ Z. Then f (k, 0) = k − 0 = k. Therefore f is onto.

19. The function f is neither one-to-one nor onto. Since f (2, 1) =
22 + 12 = 12 + 22 = f (1, 2), f is not one-to-one. Since
f (m, n) ≥ 0 for all m, n ∈ Z, f (m, n) �= −1 for all m, n ∈ Z.
Therefore f is not onto.

22. Suppose that f (a, b) = f (c, d). Then 2a3b = 2c3d . We claim
that a = c. If not, either a > c or a < c. We assume that
a > c. (The argument is the same if a < c.) We may then can-
cel 2c from both sides of 2a3b = 2c3d to obtain 2a−c3b = 3d .
Since a − c > 0, 2a−c3b is even. Since 3d is odd, we have a
contradiction. Therefore a = c.

We may now cancel 2a from both sides of 2a3b = 2c3d

to obtain 3b = 3d . An argument like that in the preceding

Hints and Solutions to Selected Exercises 673

paragraph shows that b = d. Since a = c and b = d, f is
one-to-one.

Since f (m, n) �= 5 for all m, n ∈ Z+, f is not onto.
(Note that f (m, n) ≥ 6 for all m, n ∈ Z+.)

23. f is both one-to-one and onto.

26. f is both one-to-one and onto.

29. Define a function f from {1, 2, 3, 4} to {a, b, c, d , e} as

f = {(1, a), (2, c), (3, b), (4, d)}.

Then f is one-to-one, but not onto.

32. f −1(y) = (y − 2)/4

35. f −1(y) = 1/(y − 3)

38. f ◦ g = {(1, x), (2, z), (3, x)}

1
2
3

w

x

y

z
f g

X Z

41. (f ◦ f)(x) = 2�2x�, (g ◦ g)(x) = x4, (f ◦ g)(x) = �2x2�,
(g ◦ f)(x) = �2x�2

42. Let g(x) = log2 x and h(x) = x2+2. Then f (x) = (g◦h)(x).

45. Let g(x) = 2x and h(x) = sin x . Then f (x) = (g ◦ h)(x).

48. f = {(−5, 25), (−4, 16), (−3, 9), (−2, 4), (−1, 1), (0, 0),
(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)}. f is neither one-to-one
nor onto. We omit the arrow diagram of f .

51. f = {(0, 0), (1, 4), (2, 3), (3, 2), (4, 1)}; f is one-to-one and
onto. The arrow diagram of f is

0
1
2
3
4

0
1
2
3
4

f
X X

54. 6

In the solutions to Exercises 55 and 58, a : b means “store item a
in cell b.”

55. 53 : 9, 13 : 2, 281 : 6, 743 : 7, 377 : 3, 20 : 10, 10 : 0,
796 : 4

58. 714 : 0, 631 : 6, 26 : 5, 373 : 1, 775 : 8, 906 : 13,
509 : 2, 2032 : 7, 42 : 4, 4 : 3, 136 : 9, 1028 : 10

61. During a search, if we stop the search at an empty cell, we
may not find the item even if it is present. The cell may be
empty because an item was deleted. One solution is to mark
deleted cells and consider them nonempty during a search.

62. False. Take g = {(1, a), (2, b)} and f = {(a, z), (b, z)}.

65. True. Let z ∈ Z . Since f is onto, there exists y ∈ Y such
that f (y) = z. Since g is onto, there exists x ∈ X such that
g(x) = y. Now f (g(x)) = f (y) = z. Therefore f ◦ g is onto.

68. True. Suppose that g(x1)= g(x2). Then f (g(x1))= f (g(x2)).
Since f ◦g is one-to-one, x1 = x2. Therefore, g is one-to-one.

70. g(S) = {a}, g(T) = {a, c}, g−1(U) = {1}, g−1(V) =
{1, 2, 3}

75. No. Let f (x) = x and g(x) = x2. Then

E1(f) = f (1) = 1 = g(1) = E1(g).

77. 101

80. Suppose that S(Y1) = s1s2s3 = S(Y2). Now a ∈ Y1 if and
only if s1 = 1 if and only if a ∈ Y2. Also b ∈ Y1 if and only if
s2 = 1 if and only if b ∈ Y2. Also c ∈ Y1 if and only if s3 = 1 if
and only if c ∈ Y2. It follows that Y1 = Y2 and S is one-to-one.

82. If x ∈ X ∩ Y, CX ∩ Y (x) = 1 = 1 · 1 = CX (x)CY (x).
If x /∈ X ∩ Y , then CX∩Y (x) = 0. Since either x /∈ X
or x /∈ Y , either CX (x) = 0 or CY (x) = 0. Thus
CX (x)CY (x) = 0 = CX∩Y (x).

85. If x ∈ X − Y , then

CX−Y (x) = 1 = 1 · [1 − 0] = CX (x)[1 − CY (x)].

If x /∈ X − Y , then either x /∈ X or x ∈ Y . In case x /∈ X ,

CX−Y (x) = 0 = 0 · [1 − CY (x)] = CX (x)[1 − CY (x)].

In case x ∈ Y ,

CX−Y (x) = 0 = CX (x)[1 − 1] = CX (x)[1 − CY (x)].

Thus the equation holds for all x ∈ U .

88. f is onto by definition. Suppose that f (X) = f (Y). Then
CX (x) = CY (x), for all x ∈ U . Suppose that x ∈ X . Then
CX (x) = 1. Thus CY (x) = 1. Therefore, x ∈ Y . This argu-
ment shows that X ⊆ Y . Similarly, Y ⊆ X . Therefore X = Y
and f is one-to-one.

90. f is a commutative, binary operator.

93. f is not a binary operator since f (x , 0) is not defined.

95. g(x) = −x

98. The statement is true. The least integer greater than or equal
to x is the unique integer k satisfying

k − 1 < x ≤ k.

Now

k + 2 < x + 3 ≤ k + 3.

Thus, k + 3 is the least integer greater than or equal to x + 3.
Therefore, k + 3 = �x + 3�. Since k = �x�, we have

�x + 3� = k + 3 = �x� + 3.

101. If n is an odd integer, n = 2k + 1 for some integer k. Now

n2

4
= (2k + 1)2

4
= 4k2 + 4k + 1

4
= k2 + k + 1

4
.

674 Hints and Solutions to Selected Exercises

Since k2 + k is an integer,⌊
n2

4

⌋
= k2 + k.

The result now follows because(
n − 1

2

)(
n + 1

2

)
=
[

(2k + 1) − 1

2

][
(2k + 1) + 1

2

]

= 2k(2k + 2)

4

= 4k2 + 4k

4
= k2 + k.

104. Let k = �x�. Then k − 1 < x ≤ k and 2x ≤ 2k. Thus
�2x� ≤ 2k = 2�x�. Now �x� = k < x + 1. Therefore
2�x� < 2x + 2 ≤ �2x� + 2, so 2�x� − 2 < �2x�. Therefore
2�x� − 1 ≤ �2x�.

107. April, July

Section 3.2 Review
1. A sequence is a function in which the domain consists of a set

of consecutive integers.

2. If sn denotes element n of the sequence, we call n the index
of the sequence.

3. A sequence s is increasing if sn < sn+1 for all n.

4. A sequence s is decreasing if sn > sn+1 for all n.

5. A sequence s is nonincreasing if sn ≥ sn+1 for all n.

6. A sequence s is nondecreasing if sn ≤ sn+1 for all n.

7. Let {sn} be a sequence defined for n = m, m + 1, . . . , and let
n1, n2, . . . be an increasing sequence whose values are in the
set {m, m + 1, . . .}. We call the sequence {snk } a subsequence
of {sn}.

8. am + am+1 + · · · + an 9. amam+1 · · · an

10. A string over X is a finite sequence of elements from X .

11. The null string is the string with no elements.

12. X∗ is the set of all strings over X .

13. X+ is the set of all nonnull strings over X .

14. The length of a string α is the number of elements in α. It is
denoted |α|.

15. The concatenation of strings α and β is the string consisting
of α followed by β. It is denoted αβ.

16. A string β is a substring of the string α if there are strings γ

and δ with α = γβδ.

Section 3.2
1. c 2. c

3. cddcdc 25. 52

26. 52 27. No

28. No 29. No

30. Yes 39. 12

40. 23 41. 7

42. 46 43. 1

44. 3 45. 3

46. 21 47. No

48. No 49. No

50. Yes 67. 15

68. 155 69. 2n + 3(n − 1)n/2

70. Yes 71. No

72. No 73. Yes

83. 1, 3, 5, 7, 9, 11, 13 84. 1, 5, 9, 13, 17, 21, 25

85. nk = 2k − 1 86. snk = 4k − 3

91. 88 92. 1140

93. 48 94. 3168

111. b1 = 1, b2 = 2, b3 = 3, b4 = 4, b5 = 5, b6 = 126

114. Let s0 = 0. Then

n∑
k=1

akbk =
n∑

k=1

(sk − sk−1)bk

=
n∑

k=1

skbk −
n∑

k=1

sk−1bk

=
n∑

k=1

skbk −
n∑

k=1

skbk+1 + snbn+1

=
n∑

k=1

sk (bk − bk+1) + snbn+1.

117. 00, 01, 10, 11

120. 000, 010, 001, 011, 100, 110, 101, 111, 00, 01, 11, 10, 0,
1, λ

123. Basis Step (n = 1) In this case, {1} is the only nonempty
subset of {1}, so the sum is

1

1
= 1 = n.

Inductive Step Assume that the statement is true for n. We
divide the subsets of

{1, . . . , n, n + 1}
into two classes:

C1 = class of nonempty subsets that do not contain n + 1

C2 = class of subsets that contain n + 1.

By the inductive assumption,∑
C1

1

n1 · · · nk
= n.

Since a set in C2 consists of n + 1 together with a subset
(empty or nonempty) of {1, . . . , n},∑

C2

1

(n + 1)n1 · · · nk
= 1

n + 1
+ 1

n + 1

∑
C1

1

n1 · · · nk
.

Hints and Solutions to Selected Exercises 675

[The term 1/(n + 1) results from the subset {n + 1}.] By the
inductive assumption,

1

n + 1
+ 1

n + 1

∑
C1

1

n1 · · · nk
= 1

n + 1
+ 1

n + 1
· n = 1.

Therefore, ∑
C2

1

(n + 1)n1 · · · nk
= 1.

Finally,∑
C1∪C2

1

n1 · · · nk
=
∑

C1

1

n1 · · · nk
+
∑

C2

1

(n + 1)n1 · · · nk
= n+1.

125. Since x1 ≤ x ≤ xn , |x− x1| = x− x1 and |x− xn | = xn − x .
Thus

n∑
i=1

|x − xi | = |x − x1| +
n−1∑
i=2

|x − xi | + |x − xn |

= (x − x1) +
n−1∑
i=2

|x − xi | + (xn − x)

=
n−1∑
i=2

|x − xi | + (xn − x1).

128. Using Exercise 4, Section 2.4, we have
n∑

i=1

n∑
j=1

(i − j)2 =
n∑

i=1

n∑
j=1

(i2 − 2i j + j2)

=
n∑

i=1

n∑
j=1

i2 − 2
n∑

i=1

n∑
j=1

i j +
n∑

i=1

n∑
j=1

j2

=
n∑

j=1

n∑
i=1

i2 − 2
n∑

i=1

i
n∑

j=1

j +
n∑

i=1

n∑
j=1

j2

=
n∑

j=1

n(n + 1)(2n + 1)

6
− 2

[
n(n + 1)

2

]2

+
n∑

i=1

n(n + 1)(2n + 1)

6

= n

[
n(n + 1)(2n + 1)

6

]
− n2(n + 1)2

2

+ n

[
n(n + 1)(2n + 1)

6

]
= 2n

[
n(n + 1)(2n + 1)

6

]
− n2(n + 1)2

2

= n2(n + 1)[2(2n + 1) − 3(n + 1)]

6

= n2(n + 1)[n − 1]

6
= n2(n2 − 1)

6
.

129. The function f is one-to-one. Suppose that f (α) = f (β).
Then αab = βab. Thus α = β.

The function f is not onto. Since | f (α)| ≥ 2 for all
α ∈ X∗, f (α) �= λ for all α ∈ X∗.

132. Let α= λ. Then α ∈ L and the first rule states that
ab= aαb ∈ L . Now β = ab ∈ L and the first rule states
that aabb= aβb ∈ L . Now γ = aabb ∈ L and the first rule
states that aaabbb= aγ b ∈ L .

135. We use strong induction on the length n of α to show that if
α ∈ L , α has an equal number of a’s and b’s.

The Basis Step is n = 0. In this case, α is the null string,
which has an equal number of a’s and b’s.

We turn now to the Inductive Step. We assume any
string in L of length k < n has an equal number of a’s and
b’s. We must show that any string in L of length n has an
equal number of a’s and b’s. Let α ∈ L and suppose that
|α| = n > 0. Now α is in L because of either rule 1 or rule 2.

Suppose that α is in L because of rule 1. In this case, α =
aβb or α = bβa, where β ∈ L . Since |β| < n, by the inductive
hypothesis β has an equal number of a’s and b’s. Since α =
aβb or α = bβa, α also has an equal number of a’s and b’s.

Suppose that α is in L because of rule 2. In this case,
α = βγ , where β ∈ L and γ ∈ L . Since |β| < n and |γ | < n,
by the inductive hypothesis β and γ each have equal numbers
of a’s and b’s. Since α = βγ , α also has an equal number of
a’s and b’s. The proof by induction is complete.

Section 3.3 Review
1. A binary relation from a set X to a set Y is a subset of the

Cartesian product X × Y .

2. In a digraph of a relation on X , vertices represent the elements
of X and directed edges from x to y represent the elements
(x , y) in the relation.

3. A relation R on a set X is reflexive if (x , x) ∈ R for every
x ∈ X . The relation {(1, 1), (2, 2)} is a reflexive relation on
{1, 2}. The relation {(1, 1)} is not a reflexive relation on {1, 2}.

4. A relation R on a set X is symmetric if for all x , y ∈ X , if
(x , y) ∈ R, then (y, x) ∈ R. The relation {(1, 2), (2, 1)} is
a symmetric relation on {1, 2}. The relation {(1, 2)} is not a
symmetric relation on {1, 2}.

5. A relation R on a set X is antisymmetric if for all x , y ∈ X ,
if (x , y) ∈ R and (y, x) ∈ R, then x = y. The relation
{(1, 2)} is an antisymmetric relation on {1, 2}. The relation
{(1, 2), (2, 1)} is not an antisymmetric relation on {1, 2}.

6. A relation R on a set X is transitive if for all x , y, z ∈ X , if
(x , y) and (y, z) ∈ R, then (x , z) ∈ R. The relation {(1, 2),
(2, 3), (1, 3)} is a transitive relation on {1, 2, 3}. The relation
{(1, 2), (2, 1)} is not a transitive relation on {1, 2}.

7. A relation R on a set X is a partial order if R is reflexive,
antisymmetric, and transitive. The relation

{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}
is a partial order on {1, 2, 3}.

8. If R is a relation from X to Y , the inverse of R is the relation
from Y to X :

R−1 = {(y, x) | (x , y) ∈ R}.
The inverse of the relation {(1, 2), (1, 3)} is {(2, 1), (3, 1)}.

676 Hints and Solutions to Selected Exercises

9. Let R1 be a relation from X to Y and R2 be a relation from Y to
Z . The composition of R1 and R2 is the relation from X to Z

R2◦R1 = {(x , z) | (x , y) ∈ R1 and (y, z) ∈ R2 for some y ∈ Y }.
The composition of the relations

R1 = {(1, 2), (1, 3), (2, 2)}
and

R2 = {(2, 1), (2, 3), (1, 4)}
is

R2 ◦ R1 = {(1, 1), (1, 3), (2, 1), (2, 3)}.

Section 3.3
1. {(8840, Hammer), (9921, Pliers), (452, Paint), (2207, Carpet)}
4. {(a, a), (b, b)}
5.

a 6
b 2
a 1
c 1

8.
Mercury 1
Venus 2
Earth 3
Mars 4
Jupiter 5
Saturn 6
Uranus 7
Neptune 8

9.

a b c

12.

21

43

13. {(a, b), (a, c), (b, a), (b, d), (c, c), (c, d)}
16. {(b, c), (c, b), (d, d)}
17. (Exercise 1) {(Hammer, 8840), (Pliers, 9921), (Paint, 452),

(Carpet, 2207)}
18. {(1, 1), (1, 4), (2, 2), (2, 5), (3, 3), (4, 1), (4, 4), (5, 2), (5, 5)}
20. R = R−1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),

(2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}

23. Antisymmetric

24. Antisymmetric

27. Reflexive, symmetric, antisymmetric, transitive, partial order

30. Antisymmetric

32. Reflexive, antisymmetric, transitive, partial order

35. Reflexive: Suppose that (x1, x2) is in X1 × X2. Since Ri is
reflexive, x1 R1x1 and x2 R2x2. Thus (x1, x2)R(x1, x2).

Antisymmetric: Suppose that (x1, x2)R(x ′1, x ′2) and
(x ′1, x ′2)R(x1, x2). Then x1 R1x ′1 and x ′1 R1x1. Since R1 is
antisymmetric, x1 = x ′1. Similarly, x2 = x ′2. Therefore
(x1, x2) = (x ′1, x ′2) and R is antisymmetric.

Transitivity is proved similarly.

37. {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3), (2, 1), (3, 2)}
40. {(1, 1), (1, 2), (2, 1), (2, 2)}
42. True. Let (x , y), (y, z) ∈ R−1. Then (z, y), (y, x) ∈ R. Since

R is transitive, (z, x) ∈ R. Thus (x , z) ∈ R−1. Therefore, R−1

is transitive.

45. True. We must show that (x , x) ∈ R ◦ S for all x ∈ X . Let
x ∈ X . Since R and S are reflexive, (x , x) ∈ R and (x , x) ∈ S.
Therefore, (x , x) ∈ R ◦ S and R ◦ S is reflexive.

48. True. Let (x , y) ∈ R ∩ S. Then (x , y) ∈ R and (x , y) ∈ S.
Since R and S are symmetric, (y, x) ∈ R and (y, x) ∈ S.
Therefore, (y, x) ∈ R ∩ S and R ∩ S is symmetric.

51. False. Let R = {(1, 2)}, S = {(2, 1)}.
54. True. Suppose that (x , y), (y, x) ∈ R−1. Then (y, x), (x , y) ∈

R. Since R is antisymmetric, y = x . Therefore R−1 is anti-
symmetric.

56. R is reflexive and symmetric. R is not antisymmetric, not
transitive, and not a partial order.

Section 3.4 Review
1. An equivalence relation is a relation that is reflexive, symmet-

ric, and transitive. The relation

{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
is an equivalence relation on {1, 2, 3}. The relation

{(1, 1), (3, 3), (1, 2), (2, 1)}
is not an equivalence relation on {1, 2, 3}.

2. Let R be an equivalence relation on X . The equivalence classes
of X given by R are sets of the form

{x ∈ X | x Ra},
where a ∈ X .

3. If R is an equivalence relation on X , the equivalence classes
partition X . Conversely, if S is a partition of X and we define
x Ry to mean that for some S ∈ S, both x and y belong to S,
then R is an equivalence relation.

Section 3.4
1. Equivalence relation: [1] = [3] = {1, 3}, [2] = {2}, [4] =

{4}, [5] = {5}

Hints and Solutions to Selected Exercises 677

4. Equivalence relation: [1] = [3] = [5] = {1, 3, 5}, [2] =
{2}, [4] = {4}

7. Not an equivalence relation (neither transitive nor reflexive)

9. The relation is an equivalence relation.

12. The relation is not an equivalence relation. It is neither reflexive
nor symmetric.

15. {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)},
[1] = [2] = {1, 2}, [3] = [4] = {3, 4}

18. {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2),
(3, 3), (4, 4)},
[1] = [2] = [3] = {1, 2, 3}, [4] = {4}

22. {1}, {1, 3}, {1, 4}, {1, 3, 4}
24. [Part(b)]

{San Francisco, San Diego, Los Angeles}, {Pittsburgh,
Philadelphia}, {Chicago}

26. R = {(x , x) | x ∈ X}
29. Suppose that x R y. Since R is reflexive, y R y. Taking z = y in

the given condition, we have y R x . Therefore R is symmetric.
Now suppose that x R y and y R z. The given condition

tells us that z R x . Since R is symmetric, x R z. Therefore R
is transitive. Since R is reflexive, symmetric, and transitive, R
is an equivalence relation.

31. [Part (b)]
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),
(1, 8), (1, 9), (1, 10), (2, 1), (3, 1), (4, 1), (5, 1),
(6, 1), (7, 1), (8, 1), (9, 1), (10, 1)

34. (a) We show symmetry only. Let (x , y) ∈ R1 ∩ R2. Then
(x , y) ∈ R1 and (x , y) ∈ R2. Since R1 and R2 are symmet-
ric, (y, x) ∈ R1 and (y, x) ∈ R2. Thus (y, x) ∈ R1 ∩ R2

and, therefore, R1 ∩ R2 is symmetric.

(b) A is an equivalence class of R1 ∩ R2 if and only if there
are equivalence classes A1 of R1 and A2 of R2 such that
A = A1 ∩ A2.

37. [Part (b)] Torus

40. If x ∈ X , then x ∈ f −1(f ({x})). Thus ∪{S | S ∈ S} = X .
Suppose that

a ∈ f −1({y}) ∩ f −1({z})
for some y, z ∈ Y . Then f (a) = y and f (a) = z. Thus y = z.
Therefore, S is a partition of X . The equivalence relation that
generates this partition is given in Exercise 38.

43. Suppose, by way of contradiction, that a ∈ [b]. Then
(a, b) ∈ R. Since R is symmetric, (b, a) ∈ R. Since R is tran-
sitive, (b, b) ∈ R, which is a contradiction. Therefore [b] = ∅.

46. Since R is not transitive, there exist (a, b), (b, c) ∈ R, but
(a, c) /∈ R. Then a ∈ [b], b ∈ [c], and a /∈ [c]. Since R is
reflexive, b ∈ [b]. Therefore [b] ∩ [c] �= ∅, but [b] �= [c].
Thus the collection of pseudo equivalence classes does not
partition X .

50. ρ(R1)={(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (3, 4), (4, 2)}
σ (R1)={(1, 1), (2, 1), (1, 2), (3, 4), (4, 3), (4, 2), (2, 4)}
τ (R1) = {(1, 1), (1, 2), (3, 4), (4, 2), (3, 2)}
τ (σ (ρ(R1))) = {(x , y) | x , y ∈ {1, 2, 3, 4}}

53. Let (x , y), (x , z) ∈ τ (R). Then (x , y) ∈ Rm and (y, z) ∈ Rn .
Thus (x , z) ∈ Rm+n . Therefore, (x , z) ∈ τ (R) and τ (R) is
transitive.

56. Suppose that R is transitive. If (x , y) ∈ τ (R) = ∪{Rn},
then there exist x = x0, . . . , xn = y ∈ X such that
(xi−1, xi) ∈ R for i = 1, . . . , n. Since R is transitive, it
follows that (x , y) ∈ R. Thus R ⊇ τ (R). Since we always
have R ⊆ τ (R), it follows that R = τ (R).

Suppose that τ (R) = R. By Exercise 53, τ (R) is
transitive. Therefore, R is transitive.

57. True. Let D = {(x , x) | x ∈ X}. Then, by definition, ρ(R) =
R ∪ D, where R is any relation on X . Now

ρ(R1 ∪ R2) = (R1 ∪ R2) ∪ D = (R1 ∪ D) ∪ (R2 ∪ D)

= ρ(R1) ∪ ρ(R2).

60. False. Let R1 = {(1, 2), (2, 3)}, R2 = {(1, 3), (3, 4)}.
63. True. Using the notation and hint for Exercise 57,

ρ(τ (R1)) = τ (R1) ∪ D

and

τ (ρ(R1)) = τ (R1 ∪ D).

So we must show that τ (R1) ∪ D = τ (R1 ∪ D).
We first note that if A ⊆ B, then τ (A) ⊆ τ (B).

Now R1 ⊆ R1 ∪ D. Therefore, τ (R1) ⊆ τ (R1 ∪ D). Also,
D ⊆ R1 ∪ D. Therefore, D = τ (D) ⊆ τ (R1 ∪ D). It follows
that τ (R1) ∪ D ⊆ τ (R1 ∪ D).

Since R1 ⊆ τ (R1), R1∪D ⊆ τ (R1)∪D. By the note in
the preceding paragraph, we have τ (R1∪D) ⊆ τ (τ (R1)∪D).
Since τ (R1) ∪ D is transitive, τ (τ (R1) ∪ D) = τ (R1) ∪ D
(Exercise 56). Therefore, τ (R1 ∪ D) ⊆ τ (R1) ∪ D.

64. A set is equivalent to itself by the identity function.
If X is equivalent to Y , there is a one-to-one, onto func-

tion f from X to Y . Now f −1 is a one-to-one, onto function
from Y to X .

If X is equivalent to Y , there is a one-to-one, onto
function f from X to Y . If Y is equivalent to Z , there is a
one-to-one, onto function g from Y to Z . Now g ◦ f is a
one-to-one, onto function from X to Z .

Section 3.5 Review
1. To obtain the matrix of a relation from X to Y , we label the

rows with the elements of X and the columns with the ele-
ments of Y . We then set the entry in row x and column y to 1
if x Ry and to 0 otherwise.

2. A relation is reflexive if and only if its matrix has 1’s on the
main diagonal.

3. A relation is symmetric if and only if its matrix A satisfies the
following: For all i and j , the i j th entry of A is equal to the
j i th entry of A.

4. See the paragraph following the proof of Theorem 3.5.6.

5. The matrix of the relation R2 ◦ R1 is obtained by replacing
each nonzero term in A1 A2 by 1.

678 Hints and Solutions to Selected Exercises

Section 3.5
1. (α β � δ

1 0 0 0 1
2 1 0 1 0
3 0 1 1 0

)

4. ⎛
⎜⎜⎜⎝

1 2 3 4 5

1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1
5 0 0 0 0 0

⎞
⎟⎟⎟⎠

8. R = {(a, w), (a, y), (c, y), (d, w), (d, x), (d, y), (d, z)}
11. The test is, whenever the i j th entry is 1, i �= j , then the j i th

entry is not 1.

14. (For Exercise 8)⎛
⎜⎝

a b c d

w 1 0 0 1
x 0 0 0 1
y 1 0 1 1
z 0 0 0 1

⎞
⎟⎠

16. (a) A1 =
(

1 1
1 0
1 0

)

(b) A2 =
(

0 1 0
1 1 1

)

(c) A1 A2 =
(

1 2 1
0 1 0
0 1 0

)
(d) We change each nonzero entry in part (c) to 1 to obtain

A1 A2 =
(

1 1 1
0 1 0
0 1 0

)
.

(e) {(1, b), (1, a), (1, c), (2, b), (3, b)}
19. Each column that contains 1 in row x corresponds to an

element of the equivalence class containing x .

21. Suppose that the i j th entry of A is 1. Then the i j th entry of
either A1 or A2 is 1. Thus either (i, j) ∈ R1 or (i, j) ∈ R2.
Therefore, (i, j) ∈ R1∪R2. Now suppose that (i, j) ∈ R1∪R2.
Then the i j th entry of either A1 or A2 is 1. Therefore, the i j th
entry of A is 1. It follows that A is the matrix of R1 ∪ R2.

25. Each row must contain exactly one 1 for the relation to be a
function.

Section 3.6 Review
1. An n-ary relation is a set of n-tuples.

2. A database management system is a program that helps users
access information in a database.

3. A relational database represents data as tables and provides
ways to manipulate the tables.

4. A single attribute or combination of attributes for a relation is
a key if the values of the attributes uniquely define an n-tuple.

5. A query is a request for information from a database.

6. The selection operator chooses certain n-tuples from a relation.
The choices are made by giving conditions on the attributes
(see Example 3.6.3).

7. The project operator chooses specified columns from a rela-
tion. In addition, duplicates are eliminated (see Example 3.6.4).

8. The join operation on relations R1 and R2 begins by examining
all pairs of tuples, one from R1 and one from R2. If the join
condition is satisfied, the tuples are combined to form a new
tuple. The join condition specifies a relationship between an
attribute in R1 and an attribute in R2 (see Example 3.6.5).

Section 3.6
1. {(1089, Suzuki, Zamora), (5620, Kaminski, Jones), (9354,

Jones, Yu), (9551, Ryan, Washington), (3600, Beaulieu, Yu),
(0285, Schmidt, Jones), (6684, Manacotti, Jones)}

5. EMPLOYEE [Name]

Suzuki, Kaminski, Jones, Ryan, Beaulieu,

Schmidt, Manacotti

8. BUYER [Name]

United Supplies, ABC Unlimited, JCN Electronics,

Danny’s, Underhanded Sales, DePaul University

11. TEMP := BUYER [Part No = 20A8]

TEMP [Name]

Underhanded Sales, Danny’s, ABC Unlimited

14. TEMP1 := BUYER [Name = Danny’s]

TEMP2 := TEMP1 [Part No = Part No] SUPPLIER

TEMP2 [Dept]

04, 96

17. TEMP1 := BUYER [Name = JCN Electronics]

TEMP2 := TEMP1 [Part No = Part No] SUPPLIER

TEMP3 := TEMP2 [Dept = Dept] DEPARTMENT

TEMP4 := TEMP3 [Manager = Manager] EMPLOYEE

TEMP4 [Name]

Kaminski, Schmidt, Manacotti

22. Let R1 and R2 be two n-ary relations. Suppose that the set
of elements in the i th column of R1 and the set of elements in
the i th column of R2 come from a common domain for i =
1, . . . , n. The union of R1 and R2 is the n-ary relation R1∪R2.

TEMP1 := DEPARTMENT [Dept = 23]

TEMP2 := DEPARTMENT [Dept = 96]

TEMP3 := TEMP1 union TEMP2

TEMP4 := TEMP3 [Manager = Manager] EMPLOYEE

TEMP4 [Name]

Kaminski, Schmidt, Manacotti, Suzuki

Chapter 3 Self-Test
1. f is not one-to-one. f is onto.

2. x = y = 2.3

3. Define f from X = {1, 2} to {3} by f (1) = f (2) = 3. Define
g from {1} to X by g(1) = 1.

Hints and Solutions to Selected Exercises 679

4. (a : b means “store item a in cell b.”) 1 : 1, 784 : 4, 18 : 5,
329 : 6, 43 : 7, 281 : 8, 620 : 9, 1141 : 10, 31 : 11, 684 : 12

5. (a) 14

(b) 18

(c) 192

(d) ank = 4k

6.
n−2∑

k=−1

(n − k − 2)rk+2

7. (a) b5 = 35, b10 = 120

(b) (n + 1)2 − 1

(c) Yes

(d) No

8. (a) ccddccccdd

(b) cccddccddc

(c) 5 (d) 20

9. Reflexive, symmetric, transitive

10. Symmetric

11. R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 3)}
12. All counterexample relations are on {1, 2, 3}.

(a) False. R = {(1, 1)}.
(b) True (c) True

(d) False. R = {(1, 1)}.
13. Yes. It is reflexive, symmetric, and transitive.

14. [3] = {3, 4}. There are two equivalence classes.

15. {(a, a), (b, b), (b, d), (b, e), (d, b), (d, d), (d, e), (e, b),
(e, d), (e, e), (c, c)}

16. (a) R is reflexive because any eight-bit string has the same
number of zeros as itself.

R is symmetric because, if s1 and s2 have the same
number of zeros, then s2 and s1 have the same number of
zeros.

To see that R is transitive, suppose that s1 and s2

have the same number of zeros and that s2 and s3 have
the same number of zeros. Then s1 and s3 have the same
number of zeros. Therefore, R is an equivalence relation.

(b) There are nine equivalence classes.

(c) 11111111, 01111111, 00111111, 00011111, 00001111,
00000111, 00000011, 00000001, 00000000

17.

(
1 0
1 1
0 1

)
18.
(

1 1 0
1 0 1

)

19.

(
1 1 0
2 1 1
1 0 1

)
20.

(
1 1 0
1 1 1
1 0 1

)
21. ASSIGNMENT [Team]

Blue Sox, Mutts, Jackalopes

22. PLAYER [Name, Age]

Johnsonbaugh, 22; Glover, 24; Battey, 18; Cage,
30; Homer, 37; Score, 22; Johnsonbaugh, 30; Singleton, 31

23. TEMP1 := PLAYER [Position = p]

TEMP2 := TEMP1 [ID Number = PID] ASSIGNMENT

TEMP2 [Team]

Mutts, Jackalopes

24. TEMP1 := PLAYER [Age ≥ 30]

TEMP2 := TEMP1 [ID Number = PID] ASSIGNMENT

TEMP2 [Team]

Blue Sox, Mutts

Section 4.1 Review
1. An algorithm is a step-by-step method of solving a problem.

2. Input—the algorithm receives input. Output—the algorithm
produces output. Precision—the steps are precisely stated.
Determinism—the intermediate results of each step of exe-
cution are unique and are determined only by the inputs and
the results of the preceding steps. Finiteness—the algorithm
terminates; that is, it stops after finitely many instructions
have been executed. Correctness—the output produced by the
algorithm is correct; that is, the algorithm correctly solves the
problem. Generality—the algorithm applies to a set of inputs.

3. A trace of an algorithm is a simulation of execution of the
algorithm.

4. The advantages of pseudocode over ordinary text are that
pseudocode has more precision, structure, and universality. It
is often readily converted to computer code.

5. An algorithm is made up of one or more pseudocode functions.

Section 4.1
2. The algorithm does not receive input (but, logically, it needs

none). If some even number greater than 2 is not the sum
of two prime numbers, the algorithm will stop and output
“no”. If every even number greater than 2 is the sum of two
prime numbers, lines 2 and 3 become an infinite loop—in
this case, the algorithm will not terminate and, therefore, will
not produce output. The algorithm lacks precision; in order to
execute line 2, we need to know how to check whether n is the
sum of two primes. The algorithm does have the determinism
property. The algorithm may lack the finiteness property. We
have already noted that if every even number greater than 2 is
the sum of two prime numbers (which is currently unsettled),
the algorithm will not terminate. The algorithm is not general;
that is, it does not apply to a set of inputs. Rather, it applies to
one set of inputs—namely, the empty set.

5. Input: s, n

Output: small, the smallest value in the sequence s

min(s, n) {
small = s1

for i = 2 to n
if (si < small) // smaller value found

small = si

return small
}

680 Hints and Solutions to Selected Exercises

8. Input: s, n

Output: small (smallest), large (largest)

small large(s, n, small, large) {
small = large = s1

for i = 2 to n {
if (si < small)

small = si

if (si > large)
large = si

}
}

11. Input: s, n

Output: sum

seq sum(s, n) {
sum = 0
for i = 1 to n

sum = sum + si

return sum
}

14. Input: s, n

Output: s (in reverse)

reverse(s, n) {
i = 1
j = n
while (i < j) {

swap(si , s j)
i = i + 1
j = j − 1

}
}

17. Input: A (an n × n matrix of a relation R), n

Output: true, if R is reflexive; false, if R is not reflexive

is reflexive(A, n) {
for i = 1 to n

if (Aii == 0)
return false

return true
}

20. Input: A (an n × n matrix of a relation R), n

Output: true, if R is antisymmetric; false, if R is not
antisymmetric

is reflexive(A, n) {
for i = 1 to n − 1

for j = i + 1 to n
if (Ai j == 1 ∧ A ji == 1)

return false
return true

}

23. Input: A (an m×k matrix of a relation R1), B (a k×n matrix
of a relation R2), m, k, n

Output: C (the m × n matrix of the relation R2 ◦ R1)

comp relation(A, B, m, k, n, C) {
// first compute the matrix product AB
for i = 1 to m

for j = 1 to n {
Ci j = 0
for t = 1 to k

Ci j = Ci j + Ait Bt j

}
// replace each nonzero entry in C by 1
for i = 1 to m

for j = 1 to n
if (Ci j > 0)

Ci j = 1
}

Section 4.2 Review
1. Finding web pages containing key words is a searching prob-

lem. The programs that perform the search are called search
engines. Finding medical records in a hospital is another
searching problem. Such a search may be carried out by
people or by a computer.

2. We are given text t and we want to find the first occurrence of
pattern p in t or determine that p does not occur in t .

3. We use the notation in the solution to Exercise 2. Determine
whether p is in t starting at index 1 in t . If so, stop. Otherwise,
determine whether p is in t starting at index 2 in t . If so,
stop. Continue in this way until finding p in t or determining
that p cannot be in t . In the latter case, the search can be
terminated when the index in t is so large that there are not
enough characters remaining in t to accommodate p.

4. Sorting a sequence s means to rearrange the data so that s is
in order (nonincreasing order or nondecreasing order).

5. The entries in a book’s index are sorted in increasing order,
thus making it easy to quickly locate an entry in the index.

6. To sort s1, . . . , sn using insertion sort, first insert s2 in s1 so
that s1, s2 is sorted. Next, insert s3 in s1, s2 so that s1, s2, s3 is
sorted. Continue until inserting sn in s1, . . . , sn−1 so that the
entire sequence s1, . . . , sn is sorted.

7. The time required by an algorithm is the number of steps to
termination. The space required by an algorithm is the amount
of storage required by the input, local variables, and so on.

8. Knowing or being able to estimate the time and space required
by an algorithm gives an indication of how the algorithm will
perform for input of various sizes when run on a computer.
Knowing or being able to estimate the time and space required
by two or more algorithms that solve the same problem makes
it possible to compare the algorithms.

9. Many practical problems are too difficult to be solved effi-
ciently, and compromises either in generality or correctness
are necessary.

Hints and Solutions to Selected Exercises 681

10. When a randomized algorithm executes, at some points it
makes random choices.

11. The requirement that the intermediate results of each step of
execution be uniquely defined and depend only on the inputs
and results of the preceding steps is violated.

12. To shuffle s1, . . . , sn , first swap s1 and a randomly chosen
element in s1, . . . , sn . Next, swap s2 and a randomly chosen
element in s2, . . . , sn . Continue until swapping sn−1 and a
randomly chosen element in sn−1, sn .

13. We might generate random arrangements of sequences to use
as input to test or time a sorting program.

Section 4.2
1. First i and j are set to 1. The while loop then compares

t1 · · · t4 = “bala” with p = “bala”. Since the comparison
succeeds, the algorithm returns i = 1 to indicate that p was
found in t starting at index 1 in t .

4. First 20 is inserted in

34

Since 20 < 34, 34 must move one position to the right

34

Now 20 is inserted

3420

Since 144 > 34, it is immediately inserted to 34’s right

34 14420

Since 55 < 144, 144 must move one position to the right

34 14420

Since 55 > 34, 55 is now inserted

34 55 14420

The sequence is now sorted.

7. Since each element is greater than or equal to the element to
its left, the element is always inserted in its original position.

8. We first swap ai and a j , where i = 1 and j = rand(1, 5) = 5.
After the swap we have

57 72 101 34135

i j

We next swap ai and a j , where i = 2 and j = rand(2, 5) = 4.
After the swap we have

101 72 57 34135

i j

We next swap ai and a j , where i = 3 and j = rand(3, 5) = 3.
The sequence is unchanged.

We next swap ai and a j , where i = 4 and j =
rand(4, 5) = 5. After the swap we have

101 72 34 57135

ji

11. The while loop tests whether p occurs at index i in t . If p
does occur at index i in t , ti+ j−1 will be equal to p j for all
j = 1, . . . , m. Thus j becomes m + 1 and the algorithm
returns i . If p does not occur at index i in t , ti+ j−1 will not be
equal to p j for some j . In this case the while loop terminates
(without executing return i).

Now suppose that p occurs in t and its first occurrence is
at index i in t . As noted in the previous paragraph, the algorithm
correctly returns i , the smallest index in t where p occurs.

If p does not occur in t , then the while loop terminates
for every i and i increments in the for loop. Therefore, the for
loop runs to completion, and the algorithm correctly returns 0
to indicate that p was not found in t .

14. Input: s (the sequence s1, . . . , sn), n, and key

Output: i (the index of the last occurrence of key in s, or 0 if
key is not in s

reverse linear search(s, n, key) {
i = n
while (i ≥ 1) {

if (si == key)
return i

i = i − 1
}
return 0

}

17. We measure the time of the algorithm by counting the number
of comparisons (ti+ j−1 == p j) in the while loop.

No comparisons will be made if n −m + 1 ≤ 0. In the
remainder of this solution, we assume that n − m + 1 > 0.

If p is in t , m comparisons must be performed to ver-
ify that p is, in fact, in t . We can guarantee that exactly m
comparisons are performed if p is at index 1 in t .

If p is not in t , at least one comparison must be per-
formed for each i . We can guarantee that exactly one com-
parison is performed for each i if the first character in p
does not occur in t . In this case, n − m + 1 comparisons are
made.

682 Hints and Solutions to Selected Exercises

If m < n−m+ 1, the best case is that p is at index 1 in
t . If n−m+1 < m, the best case is that the first character in p
does not occur in t . If m = n−m+1, either situation is the best
case.

20. Input: s (the sequence s1, . . . , sn) and n

Output: s (sorted in nondecreasing order)

selection sort(s, n) {
for i = 1 to n − 1 {

// find smallest in si , . . . , sn

small index = i
for j = i + 1 to n

if (s j < ssmall index)
small index = j

swap(si , ssmall index)
}

}

Section 4.3 Review
1. Analysis of algorithms refers to the process of deriving esti-

mates for the time and space needed to execute algorithms.

2. The worst-case time for input of size n of an algorithm is the
maximum time needed to execute the algorithm among all
inputs of size n.

3. The best-case time for input of size n of an algorithm is the
minimum time needed to execute the algorithm among all
inputs of size n.

4. The average-case time for input of size n of an algorithm is
the average time needed to execute the algorithm over some
finite set of inputs all of size n.

5. f (n) = O(g(n)) if there exists a positive constant C1 such that
| f (n)| ≤ C1|g(n)| for all but finitely many positive integers
n. This notation is called the big oh notation.

6. Except for constants and a finite number of exceptions, f is
bounded above by g.

7. f (n) = �(g(n)) if there exists a positive constant C2 such that
| f (n)| ≥ C2|g(n)| for all but finitely many positive integers
n. This notation is called the omega notation.

8. Except for constants and a finite number of exceptions, f is
bounded below by g.

9. f (n)=�(g(n)) if f (n)= O(g(n)) and f (n)=�(g(n)). This
notation is called the theta notation.

10. Except for constants and a finite number of exceptions, f is
bounded above and below by g.

Section 4.3
1. �(n) 4. �(n2)

7. �(n2) 10. �(n)

13. �(n2) 16. �(n)

19. �(n2) 22. �(n3)

25. �(n lg n) 28. �(1)

31. When n = 1, we obtain

1 = A + B + C.

When n = 2, we obtain

3 = 4A + 2B + C.

When n = 3, we obtain

6 = 9A + 3B + C.

Solving this system for A, B, C , we obtain

A = B = 1

2
, C = 0.

We obtain the formula

1 + 2 + · · · + n = n2

2
+ n

2
+ 0 = n(n + 1)

2
,

which can be proved using mathematical induction (see Sec-
tion 2.4).

33. n! = n(n − 1) · · · 2 · 1 ≤ n · n · · · n = nn

36. Since n = 2lg n , nn+1 = (2lg n)n+1 = 2(n+1) lg n . Thus, it
suffices to show that (n + 1) lg n ≤ n2 for all n ≥ 1. A
proof by induction shows that n ≤ 2n−1 for all n ≥ 1. Thus,
lg n ≤ n − 1 for all n ≥ 1. Therefore,

(n + 1) lg n ≤ (n + 1)(n − 1) = n2 − 1 < n2 for all n ≥ 1.

39. Since f (n) = O(g(n)), there exist constants C ′ > 0 and N
such that

f (n) ≤ C ′g(n) for all n ≥ N .

Let

C = max{C ′, f (1)/g(1), f (2)/g(2), . . . , f (N)/g(N)}.
For n ≤ N ,

f (n)/g(n) ≤ max{ f (1)/g(1), f (2)/g(2), . . . , f (N)/g(N)}
≤ C.

For n ≥ N ,

f (n) ≤ C ′g(n) ≤ Cg(n).

Therefore, f (n) ≤ Cg(n) for all n.

42. False. If the statement were true, we would have nn ≤ C2n for
some constant C and for all sufficiently large n. The preceding
inequality may be rewritten as(n

2

)n
≤ C

for some constant C and for all sufficiently large n. Since
(n/2)n becomes arbitrarily large as n becomes large, we can-
not have nn ≤ C2n for some constant C and for all sufficiently
large n.

44. True

46. False. A counterexample is f (n) = n and g(n) = 2n.

49. True

52. False. A counterexample is f (n) = 1 and g(n) = 1/n.

Hints and Solutions to Selected Exercises 683

53. f (n) �= O(g(n)) means that for every positive constant C ,
| f (n)| > C |g(n)| for infinitely many positive integers n.

56. We first find nondecreasing positive functions f0 and g0

such that for infinitely many n, f0(n)= n2 and g0(n)= n.
This implies that f0(n) �= O(g0(n)). Our functions also sat-
isfy f0(n)= n and g0(n)= n2 for infinitely many n [ob-
viously different n than those for which f0(n)= n2 and
g0(n)= n]. This implies that g0(n) �= O(f0(n)). If we then
set f (n)= f0(n)+ n and g(n)= g0(n) + n, we obtain in-
creasing positive functions for which f (n) �= O(g(n)) and
g(n) �= O(f (n)).

We begin by setting f0(2) = 2 and g0(2) = 22. Then

f0(n) = n, g0(n) = n2, if n = 2.

Because g0 is nondecreasing, the least n for which we may
have g0(n) = n is n = 22. So we define f0(22) = 24 and
g0(22) = 22. Then

f0(n) = n2, g0(n) = n, if n = 22.

The preceding discussion motivates defining

f0(22k
) =
{

22k
if k is even

22k+1
if k is odd

g0(22k
) =
{

22k+1
if k is even

22k
if k is odd.

Suppose that n = 22k
. If k is odd, f0(n) = n2 and g0(n) = n;

if k is even, f0(n) = n and g0(n) = n2. Now f0 and g0 are
defined only for n = 22k

, but they are nondecreasing on this
domain. To extend their domains to the set of positive integers,
we may simply define f0(1) = g0(1) = 1 and make them
constant on sets of the form {i | 22k ≤ i < 22k+1 }.

60. No

62. (a) The sum of the areas of the rectangles below the curve is
equal to

1

2
+ 1

3
+ · · · + 1

n
.

This area is less than the area under the curve, which is
equal to ∫ n

1

1

x
dx = loge n.

The given inequality now follows immediately.

(b) The sum of the areas of the rectangles whose bases are on
the x-axis and whose tops are above the curve is equal to

1 + 1

2
+ · · · + 1

n − 1
.

Since this area is greater than the area under the curve, the
given inequality follows immediately.

(c) Part (a) shows that

1 + 1

2
+ · · · + 1

n
= O(loge n).

Since loge n = �(lg n) (see Example 4.3.6),

1 + 1

2
+ · · · + 1

n
= O(lg n).

Similarly, we can conclude from part (b) that

1 + 1

2
+ · · · + 1

n
= �(lg n).

Therefore,

1 + 1

2
+ · · · + 1

n
= �(lg n).

64. Replacing a by b in the sum yields

bn+1 − an+1

b − a
=

n∑
i=0

ai bn−i <

n∑
i=0

bi bn−i

=
n∑

i=0

bn = (n + 1)bn .

67. By Exercise 65, the sequence {(1 + 1/n)n}∞n=1 is increasing.
Therefore

2 =
(

1 + 1

1

)1

≤
(

1 + 1

n

)n

for every positive integer n. Exercise 66 shows that(
1 + 1

n

)n

< 4

for every positive integer n. Taking logs to the base 2, we obtain

1 = lg 2 ≤ lg

(
1 + 1

n

)n

< lg 4 = 2.

Since

lg

(
1 + 1

n

)n

= n lg

(
1 + 1

n

)
= n lg

(
n + 1

n

)
= n[lg(n + 1) − lg n],

we have

1 ≤ n[lg(n + 1) − lg n] < 2.

Dividing by n gives the desired inequality.

70. Replacing b by a in the sum yields

bn+1 − an+1

b − a
=

n∑
i=0

ai bn−i >

n∑
i=0

ai an−i

=
n∑

i=0

an = (n + 1)an .

73. By Exercise 72, the sequence {(1+1/n)n+1}∞n=1 is decreasing.
Since (1 + 1/n)n+1 = 4, when n = 1,

4 ≥
(

1 + 1

n

)n+1

=
(

n + 1

n

)n+1

.

684 Hints and Solutions to Selected Exercises

Taking logs to the base 2, we obtain

2 = lg 4 ≥ lg

(
n + 1

n

)n+1

= (n + 1) lg

(
n + 1

n

)
= (n + 1)[lg(n + 1) − lg n].

Dividing by n + 1 gives the desired inequality.

75. True. Since limn→∞ f (n)/g(n) = 0, taking ε = 1, there
exists N such that∣∣∣∣ f (n)

g(n)

∣∣∣∣ < 1, for all n ≥ N .

Therefore, for all n≥ N , | f (n)|< |g(n)| and f (n)=O(g(n)).

78. True. Let d = |c|. Since limn→∞ | f (n)|/|g(n)| = d > 0,
taking ε = d/2, there exists N such that∣∣∣∣ | f (n)|

|g(n)| − d

∣∣∣∣ < d/2, for all n ≥ N .

This last inequality may be written

−d

2
<
| f (n)|
|g(n)| − d <

d

2
, for all n ≥ N ,

or

d

2
<
| f (n)|
|g(n)| <

3d

2
, for all n ≥ N ,

or

d

2
|g(n)| < | f (n)| < 3d

2
|g(n)|, for all n ≥ N .

Therefore, f (n) = �(g(n)).

83. Multiply both sides of the inequality in Exercise 82 by lg e
and use the change-of-base formula for logarithms.

Section 4.4 Review
1. An algorithm that contains a recursive function

2. A function that invokes itself

3.

factorial(n) {
if (n == 0)

return 1
return n ∗ factorial(n − 1)

}

4. The original problem is divided into two or more subprob-
lems. Solutions are then found for the subproblems (usually
by further subdivision). These solutions are then combined in
order to obtain a solution to the original problem.

5. In a base case, a solution is obtained directly, that is, without
a recursive call.

6. If a recursive function had no base case, it would continue to
call itself and never terminate.

7. f1 = 1, f2 = 1, fn = fn−1 + fn−2 for n ≥ 3

8. f1 = 1, f2 = 1, f3 = 2, f4 = 3

Section 4.4
1. (a) At line 2, since 4 �= 0, we proceed to line 4. The algorithm

is invoked with input 3.

(b) At line 2, since 3 �= 0, we proceed to line 4. The algorithm
is invoked with input 2.

(c) At line 2, since 2 �= 0, we proceed to line 4. The algorithm
is invoked with input 1.

(d) At line 2, since 1 �= 0, we proceed to line 4. The algorithm
is invoked with input 0.

(e) At lines 2 and 3, since 0 = 0, we return 1.
Execution resumes in part (d) at line 4 after computing

0! (= 1). We return 0! · 1 = 1.
Execution resumes in part (c) at line 4 after computing

1! (= 1). We return 1! · 2 = 2.
Execution resumes in part (b) at line 4 after computing

2! (= 2). We return 2! · 3 = 6.
Execution resumes in part (a) at line 4 after computing

3! (= 6). We return 3! · 4 = 24.

4. We use induction on i , where n = 2i . The Basis Step is i = 1.
In this case, the board is a tromino T . The algorithm correctly
tiles the board with T and returns. Thus the algorithm is correct
for i = 1.

Now assume that if n = 2i , the algorithm is cor-
rect. Let n= 2i+1. The algorithm divides the board into four
(n/2) × (n/2) subboards. It then places one right tromino
in the center as in Figure 1.7.5. It considers each of the
squares covered by the center tromino as missing. It then tiles
the four subboards, and, by the inductive assumption, these
subboards are correctly tiled. Therefore, the n×n board is cor-
rectly tiled. The Inductive Step is complete. The algorithm is
correct.

7. The proof is by strong induction on n. The Basis Steps
(n = 1, 2) are readily verified.

Assume that the algorithm is correct for all k < n. We
must show that the algorithm is correct for n > 2. Since n > 2,
the algorithm executes the return statement

return walk(n − 1) + walk(n − 2)

By the inductive assumption, the values of walk(n − 1)
and walk(n − 2) are correctly computed by the algorithm.
Since

walk(n) = walk(n − 1) + walk(n − 2),

the algorithm returns the correct value of walk(n).

10. (a) Input: n

Output: 2 + 4 + · · · + 2n

1. sum(s, n) {
2. if (n == 1)
3. return 2
4. return sum(n − 1) + 2n
5. }

(b) Basis Step (n=1) If n is equal to 1, we correctly return 2.

Hints and Solutions to Selected Exercises 685

Inductive Step Assume that the algorithm correctly
computes the sum when the input is n − 1. Now suppose
that the input to this algorithm is n > 1. At line 2, since
n �= 1, we proceed to line 4, where we invoke this algo-
rithm with input n − 1. By the inductive assumption, the
value returned, sum(n − 1), is equal to

2 + · · · + 2(n − 1).

At line 4, we then return

sum(n − 1) + 2n = 2 + · · · + 2(n − 1) + 2n,

which is the correct value.

13. Input: The sequence s1, . . . , sn and the length n of the
sequence

Output: The maximum value in the sequence

find max(s, n) {
if (n == 1)

return s1

x = find max(s, n − 1)
if (x > sn)

return x
else

return sn

}

We prove that the algorithm is correct using induction
on n. The base case is n = 1. If n = 1, the only item in the
sequence is s1 and the algorithm correctly returns it.

Assume that the algorithm computes the maximum for
input of size n − 1, and suppose that the algorithm receives
input of size n. By assumption, the recursive call

x = find max(s, n − 1)

correctly computes x as the maximum value in the sequence
s1, . . . , sn−1. If x is greater than sn , the maximum value in the
sequence s1, . . . , sn is x—the value returned by the algorithm.
If x is not greater than sn , the maximum value in the sequence
s1, . . . , sn is sn—again, the value returned by the algorithm.
In either case, the algorithm correctly computes the maximum
value in the sequence. The Inductive Step is complete, and we
have proved that the algorithm is correct.

16. To list all of the ways that a robot can walk n meters, set s to
the null string and invoke this algorithm.

Input: n, s (a string)

Output: All the ways the robot can walk n meters. Each
method of walking n meters includes the extra
string s in the list.

list walk1(n, s)
if (n == 1) {

println(s + “take one step of length 1”)
return

}
if (n == 2) {

println(s + “take two steps of length 1”)
println(s + “take one step of length 2”)
return

}
s′ = s + “take one step of length 2” // concatenation
list walk1(n − 2, s′)
s′ = s + “take one step of length 1” // concatenation
list walk1(n − 1, s′)

}

18. After one month, there is still just one pair because a pair
does not become productive until after one month. Therefore,
a1 = 1. After two months, the pair alive in the beginning be-
comes productive and adds one additional pair. Therefore,
a2 = 2. The increase in pairs of rabbits an − an−1 from month
n − 1 to month n is due to each pair alive in month n − 2
producing an additional pair. That is, an − an−1 = an−2. Since
{an} satisfies the same recurrence relation as { fn}, a1 = f2,
and a2 = f3, an = fn+1, n ≥ 1.

21. Basis Step (n = 2)

f 2
2 = 1 = 1 · 2 − 1 = f1 f3 + (−1)3

Inductive Step

fn fn+2 + (−1)n+2 = fn(fn+1 + fn) + (−1)n+2

= fn fn+1 + f 2
n + (−1)n+2

= fn fn+1 + fn−1 fn+1+ (−1)n+1+ (−1)n+2

= fn+1(fn + fn−1) = f 2
n+1

24. Basis Step (n=1) f 2
1 = 12 = 1 = 1 · 1 = f1 f2

Inductive Step
n+1∑
k=1

f 2
k =

n∑
k=1

f 2
k + f 2

n+1 = fn fn+1+ f 2
n+1

= fn+1(fn + fn+1) = fn+1 fn+2

27. We use strong induction.
Basis Steps (n = 6, 7) f6 = 8 > 7.59 = (3/2)5.
f7 = 13 > 11.39 = (3/2)6.

Inductive Step

fn = fn−1 + fn−2 >

(
3

2

)n−2

+
(

3

2

)n−3

=
(

3

2

)n−1
[(

3

2

)−1

+
(

3

2

)−2
]
=
(

3

2

)n−1 [
16

9

]
>

(
3

2

)n−1

30. We use strong induction on n.

Basis Step (n = 1) 1 = f1

Inductive Step Suppose that n > 2 and that every positive
integer less than n can be expressed as the sum of distinct
Fibonacci numbers, no two of which are consecutive. Let fk1

be the largest Fibonacci number satisfying n ≥ fk1 . If n = fk1 ,
then n is trivially the sum of distinct Fibonacci numbers, no
two of which are consecutive. Suppose that n > fk1 . By the
inductive assumption, n − fk1 can be expressed as the sum of
distinct Fibonacci numbers fk2 > fk3 > · · · > fkm , no two of

686 Hints and Solutions to Selected Exercises

which are consecutive:

n − fk1 =
m∑

i=2

fki .

Now n is expressed as the sum of Fibonacci numbers:

n =
m∑

i=1

fki . (∗)

We next show that fk1 > fk2 , so that, in particular, n is the sum
of distinct Fibonacci numbers.

Notice that fk2 < n. Since fk1 is the largest Fibonacci
number satisfying n ≥ fk1 , fk2 ≤ fk1 . If fk2 = fk1 ,

n ≥ fk1 + fk2 > fk1 + fk1−1 = fk1+1.

This last inequality contradicts the choice of fk1 as the largest
Fibonacci number satisfying n ≥ fk1 . Therefore fk1 > fk2 .

The only Fibonacci numbers in the sum (∗) that might
be consecutive are fk1 and fk2 . If they are consecutive, we
may also write (∗) as

n =
m∑

i=1

fki

= fk1 + fk2 +
m∑

i=3

fki

= fk1 + fk1−1 +
m∑

i=3

fki

= fk1+1 +
m∑

i=3

fki .

Now fk1+1 ≤ n and fk1+1 > fk1 . This contradicts the choice
of fk1 as the largest Fibonacci number satisfying n ≥ fk1 . The
inductive step is complete.

33. Using the formula fk fk+2 − f 2
k+1 = (−1)k+1 from Exercise

21, we obtain

1 +
n∑

k=1

(−1)k+1

fk fk+1
= 1 +

n∑
k=1

fk fk+2 − f 2
k+1

fk fk+1

= 1 +
n∑

k=1

(
fk+2

fk+1
− fk+1

fk

)

= 1 +
(

f3

f2
− f2

f1

)
+
(

f4

f3
− f3

f2

)
+ · · · +

(
fn+2

fn+1
− fn+1

fn

)
= 1 + fn+2

fn+1
− f2

f1
= fn+2

fn+1
.

35. Basis Step (n = 1)

dx

dx
= 1 = 1x1−1

Inductive Step

dxn+1

dx
= d(x · xn)

dx
= x

dxn

dx
+ xn dx

dx
= xnxn−1 + xn · 1 = (n + 1)xn

Chapter 4 Self-Test
1. At line 2, we set large to 12. At line 3, since b > large (3 > 12)

is false, we move to line 5. At line 5, since c > large (0 > 12)
is false, we move to line 7, where we return large (12), the
maximum of the given values.

2. sort(a, b, c, x , y, z) {
x = a
y = b
z = c
if (y < x)

swap(x , y)
if (z < x)

swap(x , z)
if (z < y)

swap(y, z)
}

3. test distinct(a, b, c) {
if (a == b ∨ a == c ∨ b == c)

return false
return true

}

4. If the set S is an infinite set, the algorithm will not terminate, so
it lacks the finiteness and output properties. Line 1 is not pre-
cisely stated since how to list the subsets of S and their sums is
not specified; thus the algorithm lacks the precision property.
The order of the subsets listed in line 1 depends on the method
used to generate them, so the algorithm lacks the determinism
property. Since line 2 depends on the order of the subsets gener-
ated in line 1, the determinism property is lacking here as well.

5. The while loop first tests whether “110” occurs in t at index 1.
Since “110” does not occur in t at index 1, the algorithm next
tests whether “110” occurs in t at index 2. Since “110” does
occur in t at index 2, the algorithm returns the value 2.

6. First 64 is inserted in

44

Since 64 > 44, it is immediately inserted to 44’s right

44 64

Next 77 is inserted. Since 77 > 64, it is immediately inserted
to 64’s right

44 64 77

Hints and Solutions to Selected Exercises 687

Next 15 is inserted. Since 15 < 77, 77 must move one position
to the right

44 64 77

Since 15 < 64, 64 must move one position to the right

44 64 77

Since 15 < 44, 44 must move one position to the right

44 64 77

Now 15 is inserted

4415 64 77

Finally 3 is inserted. Since 3 < 77, 77 must move one position
to the right

4415 64 77

Since 3 < 64, 64 must move one position to the right

4415 64 77

Since 3 < 44, 44 must move one position to the right

4415 64 77

Since 3 < 15, 15 must move one position to the right

4415 64 77

Now 3 is inserted

44153 64 77

The sequence is sorted.

7. We first swap ai and a j , where i = 1 and j = rand(1, 5) = 1.
The sequence is unchanged.

We next swap ai and a j , where i = 2 and j =
rand(2, 5) = 3. After the swap we have

5125 44 96

ji

We next swap ai and a j , where i = 3 and j = rand(3, 5) = 5.
After the swap we have

9625 44 51

i j

We next swap ai and a j , where i = 4 and j = rand(4, 5) = 5.
After the swap we have

9625 51 44

i j

8. repeaters(s, n) {
i = 1
while (i < n) {

if (si == si+1)
println(si)

// skip to next element not equal to si

j = i
while (i < n ∧ si == s j)

i = i + 1
}

}

9. �(n3) 10. �(n4) 11. �(n2)

12. Input: A and B (n × n matrices) and n

Output: true (if A = B); false (if A �= B)

equal matrices(A, B, n) {
for i = 1 to n

for j = 1 to n
if (Ai j¬ = Bi j)

return false
return true

}

The worst-case time is �(n2).

13. Since n �= 2, we proceed immediately to line 6, where we
divide the board into four 4×4 boards. At line 7, we rotate the
board so that the missing square is in the upper-left quadrant.
At line 8, we place one tromino in the center. We then proceed
to lines 9–12, where we call the algorithm to tile the subboards.
We obtain the tiling:

688 Hints and Solutions to Selected Exercises

14. t4 = 3, t5 = 5

15. Input: n, an integer greater than or equal to 1

Output: tn

tribonacci(n) {
1. if (n == 1 ∨ n == 2 ∨ n == 3)
2. return 1
3. return tribonacci(n − 1) + tribonacci(n − 2)

+ tribonacci(n − 3)
}

16. Basis Steps (n = 1, 2, 3) If n = 1, 2, 3, at lines 1 and 2 we
return the correct value, 1. Therefore, the algorithm is correct
in these cases.

Inductive Step Assume that n > 3 and that the algorithm
correctly computes tk , if k < n. Since n > 3, we proceed to
line 3. We then call this algorithm to compute tn−1, tn−2, and
tn−3. By the inductive assumption, the values computed are
correct. The algorithm then computes tn−1 + tn−2 + tn−3. But
the formula shows that this value is equal to tn . Therefore, the
algorithm returns the correct value for tn .

Section 5.1 Review
1. We say that d divides n if there exists an integer q satisfying

n = dq .

2. If d divides n, we say that d is a divisor of n.

3. If d divides n, n = dq, we call q the quotient.

4. An integer greater than 1 whose only positive divisors are
itself and 1 is called prime.

5. An integer greater than 1 that is not prime is called composite.

6. If n is composite, it must have a divisor d satisfying
2 ≤ d ≤ �√n� (see Theorem 5.1.7).

7. Algorithm 5.1.8 does not run in time polynomial in the size of
the input.

8. Any integer greater than 1 can be written as a product of
primes. Moreover, if the primes are written in nondecreasing
order, the factorization is unique.

9. See the proof of Theorem 5.1.12.

10. A common divisor of m and n, not both zero, is an integer that
divides both m and n.

11. The greatest common divisor of m and n, not both zero, is the
largest common divisor of m and n.

12. See Theorem 5.1.17.

13. A common multiple of m and n is an integer that is divisible
by both m and n.

14. The least common multiple of m and n is the smallest positive
common multiple of m and n.

15. See Theorem 5.1.22. 16. gcd(m, n) · lcm(m, n)=mn

Section 5.1
1. First d is set to 2. Since n mod d = 9 mod 2 = 1 is not equal

to 0, d is incremented and becomes 3.

Now n mod d = 9 mod 3 equals 0, so the algorithm
returns d = 3 to indicate that n = 9 is composite and 3 is a
divisor of 9.

4. When d is set to 2, . . . , 6, n mod d is not equal to zero. How-
ever, when d becomes 7, n mod d = 637 mod 7 equals 0,
so the algorithm returns d = 7 to indicate that n = 637 is
composite and 7 is a divisor of 637.

7. First d is set to 2. Since n mod d = 3738 mod 2 equals 0,
the algorithm returns d = 2 to indicate that n = 3738 is
composite and 2 is a divisor of 3738.

9. 47 12. 17

15. 1 18. 20

21. 13 24. 32 · 73 · 11

25. (For Exercise 13) 25

28. Since d divides m, there exists q such that m = dq. Multiply-
ing by n gives mn = d(qn). Therefore, d divides mn (with
quotient qn).

31. Since a divides b, there exists q1 such that b = aq1. Since b
divides c, there exists q2 such that c = bq2. Now

c = bq2 = (aq1)q2 = a(q1q2).

Therefore, a divides c (with quotient q1q2).

Section 5.2 Review

1.
n∑

i=0

di 10i 2.
n∑

i=0

bi 2
i

3.
n∑

i=0

hi 16i 4. �1 + lg n�

5. Perform the computation
∑n

i=0 bi 2i in decimal.

6. Divide the number to be converted to binary by 2. The remain-
der gives the 1’s bit. Divide the quotient by 2. The remainder
gives the 2’s bit. Continue.

7. Perform the computation
∑n

i=0 hi 16i in decimal.

8. Divide the number to be converted to hexadecimal by 16. The
remainder gives the number of 1’s. Divide the quotient by 16.
The remainder gives the number of 16’s. Continue.

9. Use the ordinary algorithm for adding decimal numbers to add
binary numbers—except replace the decimal addition table by
the binary addition table.

10. Use the ordinary algorithm for adding decimal numbers to add
hexadecimal numbers—except replace the decimal addition
table by the hexadecimal addition table.

11. Let

n =
m∑

i=0

bi 2
i

be the binary expansion of n. Using repeated squaring, com-
pute a1, a2, a4, a8, . . . , abm . Then

an = a�m
i=0bi 2i =

m∏
i=0

abi 2i
.

Hints and Solutions to Selected Exercises 689

12. Proceed as described in the solution to Exercise 11, only use
the formula

ab mod z = [(a mod z)(b mod z)] mod z.

Section 5.2
1. 6 4. 7 7. 1585

8. 9 11. 32 14. 100010

17. 110010000 20. 11000 23. 1001000

26. 58 29. 2563

32. (For Exercise 8) 9

35. FE 38. 3DBF9

40. 2010 cannot represent a number in binary because 2 is an
illegal symbol in binary. 2010 could represent a number in
either decimal or hexadecimal.

42. 51 45. 4570

48. (For Exercise 8) 11 51. (For Exercise 42) 33

54. 9450 cannot represent a number in binary because 9, 4, and 5
are illegal symbols in binary. 9450 cannot represent a number
in octal because 9 is an illegal symbol in octal. 9450 represents
a number in either decimal or hexadecimal.

56. The algorithm begins by setting result to 1 and x to a. Since
n = 16 > 0, the body of the while loop executes. Since
n mod 2 is not equal to 1, result is not modified. x becomes
a2, and n becomes 8.

Since n = 8 > 0, the body of the while loop executes.
Since n mod 2 is not equal to 1, result is not modified. x
becomes a4, and n becomes 4.

Since n = 4 > 0, the body of the while loop executes.
Since n mod 2 is not equal to 1, result is not modified. x
becomes a8, and n becomes 2.

Since n = 2 > 0, the body of the while loop executes.
Since n mod 2 is not equal to 1, result is not modified. x
becomes a16, and n becomes 1.

Since n = 1 > 0, the body of the while loop
executes. Since n mod 2 is equal to 1, result becomes
result ∗ x = 1 ∗ a16 = a16. x becomes a32, and n becomes 0.

Since n = 0 is not greater than 0, the while loop termi-
nates. The algorithm returns result, which is equal to a16.

59. The algorithm begins by setting result to 1 and x to a mod z =
5 mod 21 = 5. Since n = 10 > 0, the body of the while loop
executes. Since n mod 2 is not equal to 1, result is not modified.
x is set to x ∗ x mod z = 25 mod 21 = 4, and n is set to 5.

Since n = 5 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
4 mod 21 = 4. x is set to x ∗ x mod z = 16 mod 21 = 16,
and n is set to 2.

Since n = 2 > 0, the body of the while loop executes.
Since n mod 2 is not equal to 1, result is not modified. x is set
to x ∗ x mod z = 256 mod 21 = 4, and n is set to 1.

Since n = 1 > 0, the body of the while loop executes.
Since n mod 1 is equal to 1, result is set to (result∗x) mod z =
16 mod 21 = 16. x is set to x ∗ x mod z = 16 mod 21 = 16,
and n is set to 0.

Since n = 0 is not greater than 0, the while loop
terminates. The algorithm returns result, which is equal to
an mod z = 510 mod 21 = 16.

62. If mk is the highest power of 2 that divides m, then m = 2mk p,
where p is odd. Similarly, if nk is the highest power of 2 that di-
vides n, then n = 2nk q, where q is odd. Now mn = 2mk+nk pq.
Since pq is odd, mk +nk is the highest power of 2 that divides
mn, and the result follows.

Section 5.3 Review
1. See Algorithm 5.3.3.

2. If a is a nonnegative integer, b is a positive integer, and
r = a mod b, then gcd(a, b) = gcd(b, r).

3. a ≥ fn+2 and b ≥ fn+1

4. log3/2 2m/3

5. Write the nonzero remainders as found by the Euclidean
algorithm in the form

r = n − dq

in the order in which the Euclidean algorithm computes them.
Substitute the formula for the next-to-last remainder into the
last equation. Call the resulting equation E1. Substitute the
second-to-last formula for the remainder into E1. Call the
resulting equation E2. Substitute the third-to-last formula for
the remainder into E2. Continue until the first formula for the
remainder is substituted into the last Ek equation.

6. s is the inverse of n mod z if ns mod z = 1.

7. Find numberss′ and t ′ such that s′n + t ′φ = 1. Set
s = s′ mod φ.

Section 5.3
1. 90 mod 60 = 30; 60 mod 30 = 0; so gcd(60, 90) = 30.

4. 825 mod 315 = 195; 315 mod 195 = 120; 195 mod 120 =
75; 120 mod 75= 45; 75 mod 45= 30; 45 mod 30= 15;
30 mod 15= 0; so gcd(825, 315)= 15.

7. 4807 mod 2091= 625; 2091 mod 625= 216; 625 mod 216=
193; 216 mod 193= 23; 193 mod 23= 9; 23 mod 9= 5;
9 mod 5= 4; 5 mod 4= 1; 4 mod 1= 0; so gcd(2091,
4807)= 1.

10. 490256 mod 337= 258; 337 mod 258= 79; 258 mod 79=
21; 79 mod 21= 16; 21 mod 16= 5; 16 mod 5= 1; 5 mod
1= 0; so gcd(490256, 337)= 1.

11. (For Exercise 10) The nonzero remainders in the order they
are computed by the Euclidean algorithm are

490256 mod 337 = 258

337 mod 258 = 79

258 mod 79 = 21

79 mod 21 = 16

21 mod 16 = 5

16 mod 5 = 1.

690 Hints and Solutions to Selected Exercises

Writing these equations in the form r = n − dq, where r is
the remainder and q is the quotient, yields

258 = 490256 − 337 · 1454

79 = 337 − 258 · 1

21 = 258 − 79 · 3

16 = 79 − 21 · 3

5 = 21 − 16 · 1

1 = 16 − 5 · 3.

Substituting the next-to-last formula for 5 into the last equation
yields

1 = 16 − (21 − 16 · 1) · 3 = 16 · 4 − 21 · 3.

Substituting the second-to-last formula for 16 into the previous
equation yields

1 = (79 − 21 · 3)4 − 21 · 3 = 79 · 4 − 21 · 15.

Substituting the third formula for 21 into the previous equation
yields

1 = 79 · 4 − (258 − 79 · 3)15 = 79 · 49 − 258 · 15.

Substituting the second formula for 79 into the previous equa-
tion yields

1 = (337 − 258)49 − 258 · 15 = 337 · 49 − 258 · 64.

Finally, substituting the first formula for 258 into the previous
equation yields

1 = 337 · 49 − (490256 − 337 · 1454)64

= 337 · 93105 − 490256 · 64.

Thus, if we set s = −64 and t = 93105,

s · 490256 + t · 337 = gcd(490256, 337) = 1.

14. gcd recurs(a, b) {
make a largest
if (a < b)

swap(a, b)
return gcd recurs1(a, b)

}

gcd recurs1(a, b) {
if (b == 0)

return a
r = a mod b
return gcd recurs1(b, r)

}
17. gcd subtract(a, b) {

while (true) {
// make a largest
if (a < b)

swap(a, b)
if (b == 0)

return a
a = a − b

}
}

20. By Theorem 5.3.5, a pair a, b, a > b, would require n modulus
operations when input to the Euclidean Algorithm only if a ≥
fn+2 and b ≥ fn+1. Now f29 = 514229, f30 = 832040, and
f31 = 1346269. Thus, no pair can require more than 28 modu-
lus operations in the worst case because 29 modulus operations
would require one member of the pair to exceed 1000000. The
pair 514229, 832040 itself requires 28 modulus operations.

23. We prove the statement by induction on n.
Basis Step (n = 1) gcd(f1, f2) = gcd(1, 1) = 1

Inductive Step Assume that gcd(fn , fn+1) = 1. Now

gcd(fn+1, fn+2) = gcd(fn+1, fn+1+ fn) = gcd(fn+1, fn) = 1.

We use Exercise 16 with a = fn+1 + fn and b = fn+1 to
justify the second equality.

27. If m = 1, the result is immediate, so we assume that m > 1.
Suppose that f is one-to-one and onto. Since m > 1,

there exists x such that f (x)= nx mod m = 1. Thus there
exists q such that

nx = mq + 1.

Let g be the greatest common divisor of m and n. Then g di-
vides both m and n and also nx −mq = 1. Therefore, g = 1.

Now suppose that gcd(m, n)= 1. By Theorem 5.3.7,
there exist s and t such that

1 = sm + tn.

Let k ∈ X . Then

k = msk + ntk.

Therefore,

(ntk) mod m = (k − msk) mod m = k mod m = k.

We may argue as in the Computing an Inverse Modulo an
Integer subsection that if we set x = tk mod m, then f (x) =
(ntk) mod m. Therefore, f is onto. Since f is a function from
X to X , f is also one-to-one.

28. If a �= 0, a = 1 · a + 0 · b > 0. In this case, a ∈ X . Similarly,
if b �= 0, b ∈ X .

31. Suppose that g does not divide a. Then a = qg+r, 0 < r < g.
Since g ∈ X , there exist s and t such that g = sa + tb. Now

r = a − qg = a − q(sa + tb) = (1 − qs)a + (−qt)b.

Therefore r ∈ X . Since g is the least element in X and
0 < r < g, we have a contradiction. Therefore, g divides
a. Similarly, g divides b.

33. gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1, s = 2

36. gcd(47, 11)= gcd(11, 3)= gcd(3, 2)= gcd(2, 1)= gcd(1, 0)
= 1, s = 30

39. gcd(243, 100)= gcd(100, 43)= gcd(43, 14)= gcd(14, 1)=
gcd(1, 0)= 1, s = 226

40. We argue by contradiction. Suppose that 6 has an inverse mod-
ulo 15; that is, suppose that there exists s such that 6s mod
15 = 1. Then there exists q such that

15 − 6sq = 1.

Hints and Solutions to Selected Exercises 691

Since 3 divides 15 and 3 divides 6sq , 3 divides 1. We have
obtained the desired contradiction. Thus, 6 does not have an
inverse modulo 15.

That 6 does not have an inverse modulo 15 does not
contradict the result preceding Example 5.3.9. In order to
guarantee that n has an inverse modulo φ, the result preceding
Example 5.3.9 requires that gcd(n, φ) = 1. In this exercise,
gcd(6, 15) = 3.

Section 5.4 Review
1. Cryptology is the study of systems for secure communications.

2. A cryptosystem is a system for secure communications.

3. To encrypt a message is to transform the message so that only
an authorized recipient can reconstruct it.

4. To decrypt a message is to transform an encrypted message so
that it can be read.

5. Compute c = an mod z and send c.

6. Compute cs mod z. z is chosen as the product of primes p and
q. s satisfies ns mod (p − 1)(q − 1) = 1.

7. The security of the RSA encryption system relies mainly on
the fact that at present there is no efficient algorithm known
for factoring integers.

Section 5.4
1. FKKGEJAIMWQ

4. BUSHWHACKED

7. z = pq = 17 · 23 = 391

10. c = an mod z = 10131 mod 391 = 186

12. z = pq = 59 · 101 = 5959

15. c = an mod z = 58441 mod 5959 = 3237

Chapter 5 Self-Test
1. For d = 2, . . . , 6, 539 mod d is not equal to zero, so d incre-

ments. When d = 7, 539 mod d equals zero, so the algorithm
returns d = 7 to indicate that 539 is composite and 7 is a
divisor of 539.

2. 539 = 72 · 11 3. 72 · 132

4. 2 · 52 · 74 · 134 · 17 5. 150

6. 110101110, 1AE

7. The algorithm begins by setting result to 1 and x to a. Since
n = 30 > 0, the body of the while loop executes. Since
n mod 2 is not equal to 1, result is not modified. x becomes
a2, and n becomes 15.

Since n= 15 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
1 ∗ a2 = a2. x becomes a4, and n becomes 7.

Since n= 7 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
a2 ∗ a4 = a6. x becomes a8, and n becomes 3.

Since n= 3 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
a6 ∗ a8 = a14. x becomes a16, and n becomes 1.

Since n= 1 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
a14 ∗ a16 = a30. x becomes a32, and n becomes 0.

Since n = 0 is not greater than 0, the while loop termi-
nates. The algorithm returns result, which is equal to a30.

8. The algorithm begins by setting result to 1 and x to a mod z =
50 mod 11 = 6. Since n = 30 > 0, the body of the while loop
executes. Since n mod 2 is not equal to 1, result is not modified.
x is set to x ∗ x mod z = 36 mod 11 = 3, and n is set to 15.

Since n = 15 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
3 mod 11 = 3. x is set to x ∗ x mod z = 9 mod 11 = 9, and
n is set to 7.

Since n = 7 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
27 mod 11 = 5. x is set to x ∗ x mod z = 81 mod 11 = 4,
and n is set to 3.

Since n = 3 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
20 mod 11 = 9. x is set to x ∗ x mod z = 16 mod 11 = 5,
and n is set to 1.

Since n = 1 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
45 mod 11 = 1. x is set to x ∗ x mod z = 25 mod 11 = 3,
and n is set to 0.

Since n = 0 is not greater than 0, the while loop
terminates. The algorithm returns result, which is equal to
an mod z = 5030 mod 11 = 1.

9. gcd(480, 396)= gcd(396, 84)= gcd(84, 60)= gcd(60, 24)=
gcd(24, 12)= gcd(12, 0)= 12

10. Since

log3/2
2(100,000,000)

3
= log3/2 1004 + log3/2

2

3
= (4 log3/2 100) − 1

= 4(11.357747) − 1 = 44.430988,

an upper bound for the number of modulus operations re-
quired by the Euclidean algorithm for integers in the range 0
to 100,000,000 is 44.

11. The nonzero remainders in the order they are computed by the
Euclidean algorithm are

480 mod 396 = 84

396 mod 84 = 60

84 mod 60 = 24

60 mod 24 = 12.

Writing these equations in the form r = n − dq, where r is
the remainder and q is the quotient, yields

84 = 480 − 396 · 1

60 = 396 − 84 · 4

24 = 84 − 60 · 1

12 = 60 − 24 · 2.

692 Hints and Solutions to Selected Exercises

Substituting the next-to-last formula for 24 into the last equa-
tion yields

12 = 60 − 24 · 2 = 60 − (84 − 60) · 2 = 3 · 60 − 2 · 84.

Substituting the second formula for 60 into the previous equa-
tion yields

12 = 3 · (396 − 84 · 4) − 2 · 84 = 3 · 396 − 14 · 84.

Finally, substituting the first formula for 84 into the previous
equation yields

12 = 3 · 396 − 14 · (480 − 396) = 17 · 396 − 14 · 480.

Thus, if we set s = 17 and t = −14,

s · 396 + t · 480 = gcd(396, 480) = 12.

12. The nonzero remainders in the order they are computed by the
Euclidean algorithm are

425 mod 196 = 33

196 mod 33 = 31

33 mod 31 = 2

31 mod 2 = 1.

Writing these equations in the form r = n − dq, where r is
the remainder and q is the quotient, yields

33 = 425 − 196 · 2

31 = 196 − 33 · 5

2 = 33 − 31 · 1

1 = 31 − 2 · 15.

Substituting the next-to-last formula for 2 into the last equation
yields

1 = 31 − (33 − 31) · 15 = 16 · 31 − 15 · 33.

Substituting the second formula for 31 into the previous equa-
tion yields

1 = 16 · (196 − 33 · 5) − 15 · 33 = 16 · 196 − 95 · 33.

Finally, substituting the first formula for 33 into the previous
equation yields

1 = 16 · 196 − 95 · (425 − 196 · 2) = 206 · 196 − 95 · 425.

Thus, if we set s′ = 206 and t ′ = −95,

s′ · 196 + t ′ · 425 = gcd(196, 425) = 1.

Thus s = s′ mod 425 = 206 mod 425 = 206.

13. z = pq = 13 · 17 = 221, φ = (p − 1)(q − 1) = 12 · 16 =
192

14. s = 91

15. c = an mod z = 14419 mod 221 = 53

16. a = cs mod z = 2891 mod 221 = 63

Section 6.1 Review
1. If an activity can be constructed in t successive steps and step 1

can be done in n1 ways, step 2 can be done in n2 ways, . . . ,
and step t can be done in nt ways, then the number of different
possible activities is n1 · n2 · · · nt . As an example, if there are
two choices for an appetizer and four choices for a main dish,
the total number of dinners is 2 · 4 = 8.

2. Suppose that X1, . . . , Xt are sets and that the i th set Xi has
ni elements. If {X1, . . . , Xt } is a pairwise disjoint family, the
number of possible elements that can be selected from X1 or
X2 or . . . or Xt is n1 + n2 + · · · + nt . As an example, suppose
that within a set of strings, two start with a and four start with
b. Then 2 + 4 = 6 start with either a or b.

3. |X ∪ Y | = |X | + |Y | − |X ∩ Y |. An example of the use of
the Inclusion-Exclusion Principle for two sets is provided by
Example 6.1.13.

Section 6.1
1. 2 · 4 4. 8 · 4 · 5 7. 62

10. 6 + 12 + 9 13. m + n 16. 1 + 1

19. Since there are three kinds of cabs, two kinds of cargo beds,
and five kinds of engines, the correct number of ways to
personalize the big pickups is 3 · 2 · 5 = 30, not 32.

20. 3: (1, 3), (2, 2), (3, 1), where (b, r) means the blue die shows
b and the red die shows r .

23. 6: (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), where (b, r)
means the blue die shows b and the red die shows r .

26. Since each die can show any one of five values, by the Mul-
tiplication Principle there are 5 · 5 outcomes in which neither
die shows 2.

28. 10 · 5 31. 24 34. 8

37. 24. (Once the first four bits are assigned values, the last four
bits are determined.)

38. 5 · 4 · 3 41. 3 · 4 · 3 44. 53

47. 4 · 3 50. 53 − 43 52. 200 − 5 + 1

55. 40

58. One one-digit number contains 7. The distinct two-digit
numbers that contain 7 are 17, 27, . . . , 97 and 70, 71, . . . ,
76, 78, 79. There are 18 of these. The distinct three-digit num-
bers that contain 7 are 107 and 1xy, where xy is one of the
two-digit numbers listed above. The answer is 1 + 18 + 19.

61. 5 + (8 + 7 + · · · + 1) + (7 + 6 + · · · + 1)

64. 10! 67. (3!)(5!)(2!)(3!)

71. 210 74. 214(216 − 2)

77. We count the number of n × n matrices that represent sym-
metric relations on an n-element set. Example 6.1.7 showed
that there are n2 − n entries off the main diagonal. Of these,
half, (n2 − n)/2, are above the main diagonal. Since there are
n entries on the main diagonal, there are

n2 − n

2
+ n = n2 + n

2

Hints and Solutions to Selected Exercises 693

entries on or above the main diagonal. These entries can be
assigned values arbitrarily and there are 2(n2+n)/2 ways to as-
sign these values. Because the relation is symmetric, once these
values are assigned, the values below the main diagonal are de-
termined. (Entry i j is 1 if and only if entry j i is 1.) Therefore
there are 2(n2+n)/2 symmetric relations on an n-element set.

80. We count the number of n×n matrices that represent reflexive
and antisymmetric relations on an n-element set.

Since the relation is reflexive, the main diagonal must
consist of 1’s. For i and j satisfying 1 ≤ i < j ≤ n, we can
assign the entries in row i , column j and row j , column i in
three ways:

Row i , Column j Row j , Column i

0 0
1 0
0 1

Since there are (n2 − n)/2 values of i and j satisfying
1 ≤ i < j ≤ n, we can assign the off-diagonal values in
3(n2−n)/2 ways. Therefore there are 3(n2−n)/2 reflexive and
antisymmetric relations on an n-element set.

83. The truth table of an n-variable function has 2n rows since
each variable can be either T or F. Each row of the table
can assign the function the value T or F. Since there are 2n

rows, the function value assignments can be made in 22n

ways. Therefore there are 22n
truth tables for an n-variable

function.

86. By the Inclusion-Exclusion Principle, the total number of
possibilities = number of strings that begin 100+ number of
strings that have the fourth bit 1− number of strings that begin
100 and have the fourth bit 1, so the answer is 25 + 27 − 24.

89. By the Inclusion-Exclusion Principle, the total number of
possibilities = number in which Connie is chairperson +
number in which Alice is an officer − number in which
Connie is chairperson and Alice is an officer, so the answer is
5 · 4 + 3 · 5 · 4 − 2 · 4.

93. Let F be the set of students taking French, let B be the set of
students taking business, and let M be the set of students tak-
ing music. We are given that |F ∩ B∩M | = 10, |F ∩ B| = 36,
|F ∩ M | = 20, |B ∩ M | = 18, |F | = 65, |B| = 76, and
|M | = 63. By Exercise 92,

|F ∪ B ∪ M | = |F | + |B| + |M | − |F ∩ B| − |F ∩ M |
− |B ∩ M | + |F ∩ B ∩ M |

= 65 + 76 + 63 − 36 − 20 − 18 + 10 = 140.

Thus 140 students are taking French or business or music.
Since there are 191 students, 191 − 140 = 51 are not any of
the three courses.

96. Let X be the set of integers between 1 and 10,000 that are
multiples of 3, let Y be the set of integers between 1 and
10,000 that are multiples of 5, and let Z be the set of integers
between 1 and 10,000 that are multiples of 11.

A multiple of 3 is of the form 3k for some integer k, so
a multiple of 3 between 1 and 10,000 satisfies

1 ≤ 3k ≤ 10,000.

Dividing by 3, we obtain

0.333 . . . = 1

3
≤ k ≤ 10,000

3
= 3333.333

Thus the multiples of 3 between 1 and 10,000 correspond
to the values k = 1, 2, . . . , 3333. Therefore there are 3333
multiples of 3 between 1 and 10,000. Similarly, there are 2000
multiples of 5 between 1 and 10,000 and 909 multiples of 11
between 1 and 10,000. Therefore |X | = 3333, |Y | = 2000,
and |Z | = 909.

A number that is multiple of 3 and 5 is a multiple of 15.
Arguing as in the previous paragraph, we find that there are
666 multiples of 3 and 5 between 1 and 10,000. Similarly, there
are 303 multiples of 3 and 11 between 1 and 10,000, there
are 181 multiples of 5 and 11 between 1 and 10,000, and
there are 60 multiples of 3, 5, and 11 between 1 and 10,000.
Therefore |X ∩ Y | = 666, |X ∩ Z | = 303, |Y ∩ Z | = 181,
and |X ∩ Y ∩ Z | = 60. By Exercise 92,

|X ∪ Y ∪ Z | = |X | + |Y | + |Z | − |X ∩ Y | − |X ∩ Z |
− |Y ∩ Z | + |X ∩ Y ∩ Z |

= 3333 + 2000 + 909 − 666 − 303 − 181

+ 60 = 5152.

Therefore there are 5152 integers between 1 and 10,000 that
are multiples of 3 or 5 or 11 or any combination thereof.

Section 6.2 Review
1. An ordering of x1, . . . , xn

2. There are n! permutations of an n-element set. There are n
ways to choose the first item, n− 1 ways to choose the second
item, and so on. Therefore, the total number of permutations is

n(n − 1) · · · 2 · 1 = n!.

3. An ordering of r elements selected from x1, . . . , xn

4. There are n(n − 1) · · · (n − r + 1) r -permutations of an n-
element set. There are n ways to choose the first item, n − 1
ways to choose the second item, . . . , and n − r + 1 ways
to choose the r th element. Therefore, the total number of
r -permutations is

n(n − 1) · · · (n − r + 1).

5. P(n, r)

6. An r -element subset of {x1, . . . , xn}
7. There are

n!

(n − r)!r !

r -combinations of an n-element set.
There are P(n, r) ways to select an r -permutation of

an n-element set. This r -permutation can also be constructed
by first choosing an r -combination [C(n, r) ways] and then

694 Hints and Solutions to Selected Exercises

ordering it [r ! ways]. Therefore, P(n, r) = C(n, r)r !. Thus

C(n, r) = P(n, r)

r !
= n(n − 1) · · · (n − r + 1)

r !

= n!

(n − r)!r !
.

8. C(n, r)

Section 6.2
1. 4! = 24

4. abc, acb, bac, bca, cab, cba, abd, adb, bad,
bda, dab, dba, acd, adc, cad, cda, dac, dca,
bcd, bdc, cbd, cdb, dbc, dcb

7. P(11, 3) = 11 · 10 · 9 10. 3!

13. 4! contain the substring AE and 4! contain the substring EA;
therefore, the total number is 2 · 4!.

16. We first count the number N of strings that contain either the
substring AB or the substring BE. The answer to the exercise
will be: Total number of strings − N or 5! − N .

According to Exercise 65, Section 6.1, the number of
strings that contain AB or BE= number of strings that contain
AB + number of strings that contain BE − number of strings
that contain AB and BE. A string contains AB and BE if and
only if it contains ABE and the number of such strings is 3!.
The number of strings that contain AB = number of strings
that contain BE = 4!. Thus the number of strings that contain
AB or BE is 4! + 4! − 3!. The solution to the exercise is

5! − (2 · 4! − 3!).

19. 8!P(9, 5) = 8!(9 · 8 · 7 · 6 · 5)

21. 10!

24. Fix a seat for a Jovian. There are 7! arrangements for the
remaining Jovians. For each of these arrangements, we can
place the Martians in five of the eight in-between positions,
which can be done in P(8, 5) ways. Thus there are 7!P(8, 5)
such arrangements.

25. C(4, 3) = 4 28. C(11, 3)

31. C(17, 0) + C(17, 1) + C(17, 2) + C(17, 3) + 4

33. C(13, 5)

36. A committee that has at most one man has exactly one man
or no men. There are C(6, 1)C(7, 3) committees with exactly
one man. There are C(7, 4) committees with no men. Thus
the answer is C(6, 1)C(7, 3) + C(7, 4).

39. C(10, 4)C(12, 3)C(4, 2)

42. First, we count the number of eight-bit strings with no two 0’s in
a row. We divide this problem into counting the number of such
strings with exactly eight 1’s, with exactly seven 1’s, and so on.

There is one eight-bit string with no two 0’s in a row that
has exactly eight 1’s. Suppose that an eight-bit string with no
two 0’s in a row has exactly seven 1’s. The 0 can go in any one
of eight positions; thus there are eight such strings. Suppose
that an eight-bit string with no two 0’s in a row has exactly six

1’s. The two 0’s must go in two of the blanks shown:

1 1 1 1 1 1 ·
Thus the two 0’s can be placed in C(7, 2) ways. Thus there
are C(7, 2) such strings. Similarly, there are C(6, 3) eight-bit
strings with no two 0’s in a row that have exactly five 1’s and
there are C(5, 4) eight-bit strings with no two 0’s in a row that
have exactly four 1’s in a row. If a string has less than four
1’s, it will have two 0’s in a row. Therefore, the number of
eight-bit strings with no two 0’s in a row is

1 + 8 + C(7, 2) + C(6, 3) + C(5, 4).

Since there are 28 eight-bit strings, there are

28 − [1 + 8 + C(7, 2) + C(6, 3) + C(5, 4)]

eight-bit strings that contain at least two 0’s in a row.

43. 1 · 48 (The four aces can be chosen in one way and the fifth
card can be chosen in 48 ways.)

46. First, we count the number of hands containing cards in
spades and hearts. Since there are 26 spades and hearts, there
are C(26, 5) ways to select five cards from among these 26.
However, C(13, 5) contain only spades and C(13, 5) contain
only hearts. Therefore, there are

C(26, 5) − 2C(13, 5)

ways to select five cards containing cards in spades and hearts.
Since there are C(4, 2) ways to select two suits, the

number of hands containing cards of exactly two suits is

C(4, 2)[C(26, 5) − 2C(13, 5)].

49. There are nine consecutive patterns: A2345, 23456, 34567,
45678, 56789, 6789T, 789TJ, 89TJQ, 9TJQK. Corresponding
to the four possible suits, there are four ways for each pattern
to occur. Thus there are 9 · 4 hands that are consecutive and of
the same suit.

52. C(52, 13)

55. 1 · C(48, 9) (Select the aces, then select the nine remaining
cards.)

58. There are C(13, 4)C(13, 4)C(13, 4)C(13, 1) hands that con-
tain four spades, four hearts, four diamonds, and one club.
Since there are four ways to select the three suits to have four
cards each, there are 4C(13, 4)3C(13, 1) hands that contain
four cards of three suits and one card of the fourth suit.

60. 210 63. 29 65. C(50, 4)

68. C(50, 4) − C(46, 4) (Total number − number with no defec-
tives)

72. Order the 2n items. The first item can be paired in 2n − 1
ways. The next (not yet selected) item can be paired in 2n − 3
ways, and so on.

73. A list of votes where Wright is never behind Upshaw and
each receives r votes is a string of r W ’s and r U ’s where,
reading the string from left to right, the number of W ’s is
always greater than or equal to the number of U ’s. Such a
string can also be considered a path of the type described in

Hints and Solutions to Selected Exercises 695

Example 6.2.23, where W is a move right and U is a move up.
Example 6.2.23 proved that there are Cr such paths. Therefore,
the number of ways the votes can be counted in which Wright
is never behind Upshaw is Cr .

76. By Exercise 75, k vertical steps can occur in C(k, �k/2�) ways,
since, at any point, the number of up steps is greater than or
equal to the number of down steps. Then, n − k horizontal
steps can be inserted among the k vertical steps in C(n, k)
ways. Since each horizontal step can occur in two ways, the
number of paths containing exactly k vertical steps that never
go strictly below the x-axis is

C(k, �k/2�)C(n, k)2n−k .

Summing over all k, we find that the total number of paths is

n∑
k=0

C(k, �k/2�)C(n, k)2n−k .

82. The solution counts ordered hands.

84. Once—when we choose the five slots with 0’s and 1’s for the
remaining slots.

89. Use Theorems 3.4.1 and 3.4.8.

92. Note that

n − i

k − i
≥ n

k
,

for i = 0, 1, . . . , k − 1. Therefore,

C(n, k) = n!

(n − k)!k!
= n(n − 1) · · · (n − k + 1)

k(k − 1) · · · 1
= n

k

n − 1

k − 1
· · · n − k + 1

1

≥ n

k

n

k
· · · n

k

=
(n

k

)k
.

Also,

C(n, k) = n(n − 1) · · · (n − k + 1)

k!
≤ nn · · · n

k!
= nk

k!
.

Section 6.3 Review
1. n!/(n1! · · · nt !). The formula derives from the Multiplication

Principle. We first assign positions to the n1 items of type 1,
which can be done in C(n, n1) ways. Having made these
assignments, we next assign positions to the n2 items of type 2,
which can be done in C(n − n1, n2) ways, and so on. The
number of orderings is then

C(n, n1)C(n − n1, n2) · · ·C(n − n1 − · · · − nt−1, nt),

which, after applying the formula for C(n, k) and simplifica-
tion, gives n!/(n1! · · · nt !).

2. C(k + t − 1, t − 1). The formula is obtained by considering
k + t − 1 slots and k + t − 1 symbols consisting of k ×’s and
t −1 |’s. Each placement of these symbols into the slots deter-
mines a selection. The number n1 of ×’s between the first and
second | represents n1 copies of the first element in the set. The

number n2 of ×’s between the second and third | represents
n2 copies of the second element in the set, and so on. Since
there are C(k + t − 1, t − 1) ways to select the positions of
the |’s, there are also C(k + t − 1, t − 1) selections.

Section 6.3
1. 5!

4. Permute one token with four S’s and other tokens with one
letter each from among ALEPERON, which can be done in
9!/2! ways.

7. C(6 + 6 − 1, 6 − 1)

10. Each such route can be designated by a string of i X ’s, j Y ’s,
and k Z ’s, where an X means move one unit in the x-direction,
a Y means move one unit in the y-direction, and a Z means
move one unit in the z-direction. There are

(i + j + k)!

i! j!k!

such strings.

14. 10!/(5! · 3! · 2!)

15. C(10 + 3 − 1, 10) 18. C(9 + 2 − 1, 9)

21. Four, since the possibilities are (0, 0), (2, 1), (4, 2), and
(6, 3), where the pair (r, g) designates r red and g green balls.

22. C(15 + 3 − 1, 15) 25. C(13 + 2 − 1, 13)

28. C(12 + 4 − 1, 12)
− [C(7 + 4 − 1, 7) + C(6 + 4 − 1, 6)

+ C(3 + 4 − 1, 3) + C(2 + 4 − 1, 2)
− C(1 + 4 − 1, 1)]

33. 52!/(13!)4 36. C(20, 5) 39. C(20, 5)2

42. C(15 + 6 − 1, 15) 45. C(10 + 12 − 1, 10)

48. Apply the result of Example 6.3.9 to the inner k − 1 nested
loops of that example. Next, write out the number of iterations
for i1 = 1; then i1 = 2; and so on. By Example 6.3.9, this
sum is equal to C(k + n − 1, k).

Section 6.4 Review
1. Let α = s1 · · · sp and β = t1 · · · tq be strings over {1,

2, . . . , n}. Then α is lexicographically less than β if either
p < q and si = ti for all i = 1, . . . , p; or for some i , si �= ti
and for the smallest such i , we have si < ti .

2. Given a string s1 . . . sr , which represents the r -combination
{s1, . . . , sr }, to find the following string t1 . . . tr , find the
rightmost element sm that is not at its maximum value. (sr ’s
maximum value is n, sr−1’s maximum value is n − 1, etc.)
Then set ti = si for i = 1, . . . , m − 1; set tm = sm + 1; and
set tm+1 · · · tr = (sm + 2)(sm + 3) · · ·. Begin with the string
12 · · · r .

3. Given a string s, which represents a permutation, to find the
following string, find the rightmost digit d of s whose right
neighbor exceeds d. Find the rightmost element r that satisfies
d < r . Swap d and r . Finally, reverse the substring to the right
of d’s original position. Begin with the string 12 · · · n.

696 Hints and Solutions to Selected Exercises

Section 6.4
1. 1357 4. 12435

7. (For Exercise 1) At lines 8–12, we find the rightmost sm not
at its maximum value. In this case, m = 4. At line 14, we
increment sm . This makes the last digit 7. Since m is the right-
most position, at lines 16 and 17, we do nothing. The next
combination is 1357.

9. 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235,
236, 245, 246, 256, 345, 346, 356, 456

12. 12, 21

14. Input: r, n

Output: A list of all r -combinations of {1, 2, . . . , n} in
increasing lexicographic order

r comb(r, n) {
s0 = −1
for i = 1 to r

si = i
println(s1, . . . , sn)
while (true) {

m = r
max val = n
while (sm == max val) {

m = m − 1
max val = max val − 1

}
if (m == 0)

return
sm = sm + 1
for j = m + 1 to r

s j = s j−1 + 1
println(s1, . . . , sn)

}
}

17. Input: s1, . . . , sr (an r -combination of {1, . . . , n}),
r , and n

Output: s1, . . . , sr , the next r -combination (The first
r -combination follows the last r -combination.)

next comb(s, r, n) {
s0 = n + 1 // dummy value
m = r
max val = n
// loop test always fails if m = 0
while (sm == max val) {

// find rightmost element not at its maximum value
m = m − 1
max val = max val − 1

}
if (m == 0) // last r -combination detected

s1 = 0
m = 1

}
// increment rightmost element
sm = sm + 1

// rest of elements are successors of sm

for j = m + 1 to r
s j = s j−1 + 1

}

19. Input: s1, . . . , sr (an r -combination of {1, . . . , n}),
r , and n

Output: s1, . . . , sr , the previous r -combination (The last
r -combination precedes the first r -combination.)

prev comb(s, r, n) {
s0 = n // dummy value
// find rightmost element at least
// 2 larger than its left neighbor
m = r
// loop test always fails if m = 1
while (sm − sm−1 == 1)

m = m − 1
sm = sm − 1
if (m == 1 ∧ s1 == 0)

m = 0
// set elements to right of index m to max values
for j = m + 1 to r

s j = n + j − r
}

21. Input: r, sk , sk+1, . . . , sn , a string α, k, and n

Output: A list of all r -combinations of {sk , sk+1, . . . , sn}
each prefixed by α [To list all r -combinations of
{s1, s2, . . . , sn}, invoke this function as
r comb2(r, s, 1, n, λ), where λ is the null string.]

r comb2(r, s, k, n, α) {
if (r == 0) {

println(α)
return

}
if (k == n) {

println(α, sn)
return

}
β = α + “ ” + sk

// print r -combinations containing sk

r comb2(r − 1, s, k + 1, n, β)
// print r -combinations not containing sk

if (r ≤ n − k)
r comb2(r, s, k + 1, n, α)

}

Section 6.5 Review
1. An experiment is a process that yields an outcome.

2. An event is an outcome or combination of outcomes from an
experiment.

3. The sample space is the event consisting of all possible
outcomes.

4. The number of outcomes in the event divided by the number
of outcomes in the sample space

Hints and Solutions to Selected Exercises 697

Section 6.5
1. (H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2),

(T, 3), (T, 4), (T, 5), (T, 6)

4. (H, 1), (H, 2), (H, 3)

5. (1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3),
(3, 5), (4, 2), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2),
(6, 4), (6, 6)

8. Three dice are rolled. 11. 1/6

14. 1/52 17. 4/36

20. C(90, 4)/C(100, 4)

23. 1/103

26. 1/[C(50, 5) · 36]

28.
4 · C(13, 5) · 3 · C(13, 4)C(13, 2)2

C(52, 13)
30. 1/210

33. C(10, 5)/210

34. 210/310

37. 1/5!

38. 10/C(12, 3) 41. 18/38

44. 2/38 45. 1/3

49. 1/4

52. The possibilities are: A (correct), B (incorrect), C (incorrect);
and A (incorrect), B (incorrect), C (incorrect). In the first case,
if the student stays with A, the answer will be correct; but if
the student switches to B, the answer will be incorrect. In the
second case, if the student stays with A, the answer will be
incorrect; but if the student switches to B, the answer will be
correct. Thus, the probability of a correct answer is 1/2.

55. There are C(10+ 3− 1, 3− 1) ways to distribute 10 compact
discs to Mary, Ivan, and Juan. If each receives at least two
compact discs, we must distribute the remaining six discs,
and there are C(6 + 3 − 1, 3 − 1) ways to do this. Thus the
probability that each person receives at least two discs is

C(6 + 3 − 1, 3 − 1)

C(10 + 3 − 1, 3 − 1)
.

Section 6.6 Review
1. A probability function P assigns to each outcome x in a

sample space S a number P(x) so that

0 ≤ P(x) ≤ 1, for all x ∈ S

and ∑
x∈S

P(x) = 1.

2. P(x) = 1/n, where n is the size of the sample space.

3. The probability of E is

P(E) =
∑
x∈E

P(x).

4. P(E) + P(E) = 1

5. E1 or E2 (or both)

6. E1 and E2

7. P(E1∪E2) = P(E1)+P(E2)−P(E1∩E2). P(E1)+P(E2)
equals P(x) for all x ∈ E1 plus P(x) for all x ∈ E2, which is
equal to P(E1) + P(E2), except that P(x), for x ∈ E1 ∩ E2,
is counted twice. The formula now follows.

8. Events E1 and E2 are mutually exclusive if E1 ∩ E2 = ∅.

9. If we roll two dice, the events “roll doubles” and “the sum is
odd” are mutually exclusive.

10. P(E1 ∪ E2) = P(E1) + P(E2). This formula follows from
the formula of Exercise 7 because P(E1 ∩ E2) = 0.

11. E given F is the event E given that event F occurred.

12. E | F

13. P(E | F) = P(E ∩ F)/P(F)

14. Events E and F are independent if P(E ∩ F) = P(E) P(F).

15. If we roll two dice, the events “get an odd number on the
first die” and “get an even number on the second die” are
independent.

16. Pattern recognition places items into various classes based on
features of the items.

17. Suppose that the possible classes are C1, . . . , Cn . Suppose
further that each pair of classes is mutually exclusive and each
item to be classified belongs to one of the classes. For a feature
set F , we have

P(C j | F) = P(F |C j) P(C j)∑n
i=1 P(F |Ci) P(Ci)

.

The equation

P(C j | F) = P(C j ∩ F)

P(F)
= P(F |C j) P(C j)

P(F)

follows from the definition of conditional probability. The
proof is completed by showing that

P(F) =
n∑

i=1

P(F |Ci) P(Ci),

which follows from the fact that each pair of classes is mutu-
ally exclusive and each item to be classified belongs to one of
the classes.

Section 6.6
1. 1/8

4. P(2) = P(4) = P(6) = 1/12. P(1) = P(3) = P(5) =
3/12.

7. 1 − (1/4)

8. 3(1/12)2 + 3(3/12)2

11. Let E denote the event “sum is 6,” and let F denote the event
“at least one die shows 2.” Then

P(E ∩ F) = P((2, 4)) + P((4, 2)) = 2

(
1

12

)2

= 2

144
,

698 Hints and Solutions to Selected Exercises

and

P(F) = P((1, 2)) + P((2, 1)) + P((2, 2)) + P((2, 3))

+ P((2, 4)) + P((2, 5)) + P((2, 6)) + P((3, 2))

+ P((4, 2)) + P((5, 2)) + P((6, 2))

=
(

3

12

)(
1

12

)
+
(

1

12

)(
3

12

)
+
(

1

12

)2

+
(

1

12

)(
3

12

)
+
(

1

12

)2

+
(

1

12

)(
3

12

)

+
(

1

12

)2

+
(

3

12

)(
1

12

)
+
(

1

12

)2

+
(

3

12

)(
1

12

)
+
(

1

12

)2

= 23

144
.

Therefore,

P(E | F) = P(E ∩ F)

P(F)
=

2
144
23
144

= 2

23
.

14. (T,1), (T,2), (T,3), (T,4), (T,5), (T,6), (H,3)

17. Yes

19. C(90, 6)/C(100, 6)

22. 1/24

25.
1
24

24−1
24

= 1

15

28. Let E1 denote the event “children of both sexes,” and let E2

denote the event “at most one boy.” Then

P(E1) = 14

16
, P(E2) = 5

16
, and P(E1 ∩ E2) = 4

16
.

Now

P(E1 ∩ E2) = 1

4
�= 35

128
= P(E1) P(E2).

Therefore, the events E1 and E2 are not independent.

31. 1/210

34. 1 − (1/210)

37. Let E denote the event “four or five or six heads,” and let F
denote the event “at least one head.” Then

P(E ∩ F) = C(10, 4)

210
+ C(10, 5)

210
+ C(10, 6)

210

= 210 + 252 + 210

210
= 0.65625.

Since P(F) = 1 − (1/210) = 0.999023437,

P(E | F) = P(E ∩ F)

P(F)
= 0.65625

0.999023437
= 0.656891495.

40. Let E be the event “at least one person has a birthday on
April 1.” Then E is the event “no one has a birthday on April
1.” Now

P(E) = 1− P(E) = 1− 364 · 364 · · · 364

365 · 365 · · · 365
= 1−

(
364

365

)n

.

44. Let E1 denote the event “over 350 pounds,” and let E2 denote
the event “bad guy.” Then

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2)

= 35

90
+ 20

90
− 15

90
= 40

90
.

46. P(A) = 0.55, P(D) = 0.10, P(N) = 0.35

49. P(B) = P(B | A) P(A) + P(B | D) P(D) + P(B | N) P(N)

= (0.10)(0.55) + (0.30)(0.10) + (0.30)(0.35) = 0.19
50. We require that

P(H |Pos) = 0.5 = (0.95) P(H)

(0.95) P(H) + (0.02)(1 − P(H))
.

Solving for P(H) gives P(H) = .0206.

53. Yes. Suppose that E and F are independent, that is,
P(E) P(F) = P(E ∩ F). Now

P(E) P(F) = (1 − P(E))(1 − P(F))

= 1 − P(E) − P(F) + P(E) P(F)

= 1 − P(E) − P(F) + P(E ∩ F).

By De Morgan’s law for sets,

E ∩ F = E ∪ F;
thus,

P(E ∩ F) = P(E ∪ F)

= 1 − P(E ∪ F)

= 1 − [P(E) + P(F) − P(E ∩ F)]

= 1 − P(E) − P(F) + P(E ∩ F).

Therefore,

P(E) P(F) = P(E ∩ F),

and E and F are independent.

56. Let Ei be the event “runner completes the marathon on
attempt i .” The error in the reasoning is assuming that
P(E2) = 1/3 = P(E3). In fact, P(E2) �= 1/3 �= P(E3)
because, if the runner completes the marathon, it is not run
again. Although P(E1) = 1/3,

P(E2) = P(fail on attempt 1 and succeed on attempt 2)

= P(fail on attempt 1) P(succeed on attempt 2)

= 2

3
· 1

3
= 2

9
.

Similarly,

P(E3) = 2

3
· 2

3
· 1

3
= 4

27
.

Thus, the probability of completing the marathon is

P(E1 ∪ E2 ∪ E3) = P(E1) + P(E2) + P(E3)

= 1

3
+ 2

9
+ 4

27
= 19

27
= 0.704,

which means that there is about a 70 percent chance that
the runner will complete the marathon—not exactly a virtual
certainty!

Hints and Solutions to Selected Exercises 699

Section 6.7 Review
1. If a and b are real numbers and n is a positive integer, then

(a + b)n =
n∑

k=0

C(n, k)an−kbk .

2. In the expansion of

(a + b)n = (a + b)(a + b) · · · (a + b)︸ ︷︷ ︸
n factors

,

the term an−kbk arises from choosing b from k factors and a
from the other n − k factors, which can be done in C(n, k)
ways. Summing over all k gives the Binomial Theorem.

3. Pascal’s triangle is an arrangement of the binomial coefficients
in triangular form. The border consists of 1’s, and any interior
value is the sum of the two numbers above it:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
...

4. C(n, 0) = C(n, n) = 1, for all n ≥ 0; and C(n + 1, k) =
C(n, k − 1) + C(n, k), for all 1 ≤ k ≤ n

Section 6.7
1. x4 + 4x3 y + 6x2 y2 + 4xy3 + y4

3. C(11, 7)x4 y7 6. 5,987,520

9. C(7, 3) + C(5, 2), since

(a +√
ax + x)2(a + x)5 = [(a + x) +√

ax]2(a + x)5

= (a + x)7 + 2
√

ax(a + x)6 + ax(a + x)5.

10. C(10 + 3 − 1, 10) 13. 1 8 28 56 70 56 28 8 1

16. [Inductive Step only] Assume that the theorem is true
for n.

(a + b)n+1 = (a + b)(a + b)n

= (a + b)
n∑

k=0

C(n, k)an−kbk

=
n∑

k=0

C(n, k)an+1−kbk

+
n∑

k=0

C(n, k)an−kbk+1

=
n∑

k=0

C(n, k)an+1−kbk

+
n+1∑
k=1

C(n, k − 1)an+1−kbk

= C(n, 0)an+1b0 +
n∑

k=1

C(n, k)an+1−kbk

+ C(n, n)a0bn+1

+
n∑

k=1

C(n, k − 1)an+1−kbk

= C(n + 1, 0)an+1b0

+
n∑

k=1

[C(n, k) + C(n, k − 1)]an+1−kbk

+ C(n + 1, n + 1)a0bn+1

= C(n + 1, 0)an+1b0

+
n∑

k=1

C(n + 1, k)an+1−kbk

+ C(n + 1, n + 1)a0bn+1

=
n+1∑
k=0

C(n + 1, k)an+1−kbk

19. The number of solutions in nonnegative integers of

x1 + x2 + · · · + xk+2 = n − k

is C(k+2+n− k−1, n− k) = C(n+1, k+1). The number
of solutions is also the number of solutions C(k+1+n−k−1,
n − k) = C(n, k) with xk+2 = 0 plus the number of solutions

C(k + 1 + n − k − 1 − 1, n − k − 1) = C(n − 1, k)

with xk+2 = 1 plus · · · plus the number of solutions C(k+1+
0−1, 0) = C(k, k) with xk+2 = n−k. The result now follows.

22. Take a = 1 and b = 2 in the Binomial Theorem.

25. x3 + 3x2 y + 3x2z + 3xy2 + 6xyz + 3xz2 + y3 + 3y2z
+ 3yz2 + z3

28. Set a = 1 and b = x and replace n by n − 1 in the Binomial
Theorem to obtain

(1 + x)n−1 =
n−1∑
k=0

C(n − 1, k)xk .

Now multiply by n to obtain

n(1 + x)n−1 = n
n−1∑
k=0

C(n − 1, k)xk

= n
n∑

k=1

C(n − 1, k − 1)xk−1

=
n∑

k=1

n(n − 1)!

(n − k)! (k − 1)!
xk−1

=
n∑

k=1

n!

(n − k)! k!
kxk−1

=
n∑

k=1

C(n, k)kxk−1.

700 Hints and Solutions to Selected Exercises

31. The solution is by induction on k. We omit the Basis Step.
Assume that the statement is true for k. After k iterations, we
obtain the sequence defined by

a′j =
k−1∑
i=0

ai+ j
Bi

2n
.

Let B ′
0, . . . , B ′

k denote the row after B0, . . . , Bk−1 in Pascal’s
triangle. Smoothing a′ by c to obtain a′′ yields

a′′ j = 1

2
(a′j + a′j+1)

= 1

2n+1

(
k−1∑
i=0

ai+ j Bi +
k−2∑
i=0

ai+ j+1 Bi

)

= 1

2n+1

(
a j B0+

k−1∑
i=1

ai+ j Bi+
k−2∑
i=0

ai+ j+1 Bi + ak+ j Bk−1

)

= 1

2n+1

(
a j B0+

k−1∑
i=1

ai+ j Bi+
k−1∑
i=1

ai+ j Bi−1 + ak+ j Bk−1

)

= 1

2n+1

(
a j B ′

0 +
k−1∑
i=1

ai+ j B ′
i + ak+ j B ′

k

)

= 1

2n+1

k∑
i=0

ai+ j B ′
i ,

and the Inductive Step is complete.

34. [Inductive Step only] Notice that

C(n + 1, i)−1 + C(n + 1, i + 1)−1 = n + 2

n + 1
C(n, i)−1.

Now

n+1∑
i=1

C(n + 1, i)−1

= 1

2

(
n+1∑
i=1

C(n + 1, i)−1 +
n∑

i=0

C(n + 1, i + 1)−1

)

= 1

2

(
C(n + 1, 1)−1+ n + 2

n + 1

n∑
i=1

C(n, i)−1+ C(n + 1, n + 1)−1

)

= 1

2

(
n + 2

n + 1
+ n + 2

2n

n−1∑
i=0

2i

i + 1

)

= n + 2

2n+1

n∑
i=0

2i

i + 1
.

Section 6.8 Review
1. First Form: If n pigeons fly into k pigeonholes and k < n,

some pigeonhole contains at least two pigeons.
Second Form: If f is a function from a finite set X to

a finite set Y and |X | > |Y |, then f (x1) = f (x2) for some
x1, x2 ∈ X , x1 �= x2.

Third Form: Let f be a function from a finite set X
to a finite set Y . Suppose that |X | = n and |Y | = m. Let
k = �n/m�. Then there are at least k values a1, . . . , ak ∈ X
such that

f (a1) = f (a2) = · · · = f (ak).

2. First Form: If 20 persons (pigeons) go into six rooms
(pigeonholes), then some room contains at least two persons.

Second Form: In the previous example, let X be the
set of persons, and let Y be the set of rooms. If p is a person,
define a function f by letting f (p) be the room in which
person p is located. Then for some distinct persons p1 and p2,
f (p1) = f (p2); that is, the distinct persons p1 and p2 are in
the same room.

Third Form: Let X , Y , and f be as in the last example.
Then there are at least �20/6� = 4 persons p1, p2, p3, p4

such that

f (p1) = f (p2) = f (p3) = f (p4);

that is, there are at least four persons in the same room.

Section 6.8
1. Let the five cards be the pigeons and the four suits be the

pigeonholes. Assign each card (pigeon) to its suit (pigeon-
hole). By the Pigeonhole Principle, some pigeonhole (suit)
will contain at least two pigeons (cards), that is, at least two
cards are of the same suit.

4. Let the 35 students be the pigeons and the 24 letters of the
alphabet be the pigeonholes. Assign each student (pigeon) the
first letter of the first name (pigeonhole). By the Pigeonhole
Principle, some pigeonhole (letter) will contain at least two
pigeons (students), that is, at least two students have first
names that start with the same letter.

7. Let the 13 persons be the pigeons and the 12 = 3 · 4 possible
names be the pigeonholes. Assign each person (pigeon) that
person’s name (pigeonhole). By the Pigeonhole Principle,
some pigeonhole (name) will contain at least two pigeons
(persons), that is, at least two persons have the same first and
last names.

10. Yes. Connect processors 1 and 2, 2 and 3, 2 and 4, 3 and 4.
Processor 5 is not connected to any processors. Now only
processors 3 and 4 are directly connected to the same number
of processors.

13. Let ai denote the position of the i th unavailable item. Consider

a1, . . . , a30; a1 + 3, . . . , a30 + 3; a1 + 6, . . . , a30 + 6.

These 90 numbers range in value from 1 to 86. By the second
form of the Pigeonhole Principle, two of these numbers are
the same. If ai = a j + 3, two are three apart. If ai = a j + 6,
two are six apart. If ai + 3 = a j + 6, two are three apart.

17. n + 1

Hints and Solutions to Selected Exercises 701

18. Suppose that k ≤ m/2. Clearly, k ≥ 1. Since m ≤ 2n + 1,

k ≤ m

2
≤ n + 1

2
< n + 1.

Suppose that k > m/2. Then

m − k < m − m

2
= m

2
< n + 1.

Because m is the largest element in X , k < m. Thus k+1 ≤ m
and so 1 ≤ m − k. Therefore, the range of a is contained in
{1, . . . , n}.

19. The second form of the Pigeonhole Principle applies.

20. Suppose that ai = a j . Then either i ≤ m/2 and j > m/2 or
j ≤ m/2 and i > m/2. We may assume that i ≤ m/2 and
j > m/2. Now

i + j = ai + m − a j = m.

30. When we divide a by b, the possible remainders are 0, 1, . . . ,
b − 1. Consider what happens after b divisions.

34. We suppose that the board has three rows and seven columns.
We call two squares in one column that are the same color a
colorful pair. By the Pigeonhole Principle, each column con-
tains at least one colorful pair. Thus the board contains seven
colorful pairs, one in each column. Again by the Pigeonhole
Principle, at least four of these seven colorful pairs are the
same color, say red. Since there are three pairs of rows and
four red colorful pairs, a third application of the Pigeonhole
Principle shows that at least two columns contain red color-
ful pairs in the same rows. These colorful pairs determine a
rectangle whose four corner squares are red.

37. Suppose that it is possible to mark k squares in the upper-left
k × k subgrid and k squares in the lower-right k × k subgrid
so that no two marked squares are in the same row, column, or
diagonal of the 2k × 2k grid. Then the 2k marked squares are
contained in 2k − 1 diagonals. One diagonal begins at the top
left square and runs to the bottom right square; k−1 diagonals
begin at the k−1 squares immediately to the right of the top left
square and run parallel to the first diagonal described; and k−1
diagonals begin at the k−1 squares immediately under the top
left square and run parallel to the others described. By the first
form of the Pigeonhole Principle, some diagonal contains two
marked squares. This contradiction shows that it is impossible
to mark k squares in the upper-left k× k subgrid and k squares
in the lower-right k× k subgrid so that no two marked squares
are in the same row, column, or diagonal of the 2k × 2k grid.

Chapter 6 Self-Test
1. 24

2. 6 · 9 · 7 + 6 · 9 · 4 + 6 · 7 · 4 + 9 · 7 · 4

3. 2n − 2

4. 6 · 5 · 4 · 3 + 6 · 5 · 4 · 3 · 2

5. 6!/(3! 3!) = 20

6. We construct the strings by a three-step process. First, we
choose positions for A, C , and E [C(6, 3) ways]. Next, we
place A, C , and E in these positions. We can place C one way

(last), and we can place A and E two ways (AE or EA). Finally,
we place the remaining three letters (3! ways). Therefore, the
total number of strings is C(6, 3) · 2 · 3!.

7. Two suits can be chosen in C(4, 2) ways. We can choose three
cards of one suit in C(13, 3) ways and we can choose three
cards of the other suit in C(13, 3) ways. Therefore, the total
number of hands is C(4, 2)C(13, 3)2.

8. We must select either three or four defective discs. Thus the
total number of selections is C(5, 3)C(95, 1) + C(5, 4).

9. 8!/(3!2!)

10. We count the number of strings in which no I appears before
any L and then subtract from the total number of strings.

We construct strings in which no I appears before any
L by a two-step process. First, we choose positions for N , O ,
and S; then we place the I ’s and L’s. We can choose positions
for N , O , and S in 8 · 7 · 6 ways. The I ’s and L’s can then be
placed in only one way because the L’s must come first. Thus
there are 8 · 7 · 6 strings in which no I appears before any L .

Exercise 9 shows that there are 8!/(3! 2!) strings formed
by ordering the letters ILLINOIS. Therefore, there are

8!

3! 2!
− 8 · 7 · 6

strings formed by ordering the letters ILLINOIS in which some
I appears before some L .

11. 12!/(3!)4

12. C(11 + 4 − 1, 4 − 1)

13. 12567

14. 234567

15. 6427153

16. 631245

17. 1/4

18. 5/36

19.
C(7, 5)C(31 − 7, 2)

C(31, 7)
= 21 · 276

2629575
= 0.002204158

20.
4 · C(13, 6) · 3 · C(13, 5) · 2 · C(13, 2)

C(52, 13)
21. P(H) = 5/6, P(T) = 1/6

22. Let S denote the event “children of both sexes,” and let G
denote the event “at most one girl.” Then

P(S) = 6

8
= 3

4

P(G) = 4

8
= 1

2

P(S ∩ G) = 3

8
.

Therefore,

P(S) P(G) = 3

4
· 1

2
= 3

8
= P(S ∩ G),

and S and G are independent.

702 Hints and Solutions to Selected Exercises

23. Let J denote the event “Joe passes,” and let A denote the event
“Alicia passes.” Then

P(Joe fails) = P(J) = 1 − P(J) = 0.25

P(both pass) = P(J ∩ A) = P(J) P(A)

= (0.75)(0.80) = 0.6

P(both fail) = P(J ∩ A) = P(J ∪ A)

= 1 − P(J ∪ A)

= 1 − [P(J) + P(A) − P(J ∩ A)]

= 1 − [0.75 + 0.80 − 0.6] = 0.05

P(at least one passes) = 1 − P(both fail)

= 1 − 0.05 = 0.95.

24. Let B denote the event “bug present,” and let T , R, and J de-
note the events “Trisha (respectively, Roosevelt, José) wrote
the program.” Then

P(J | B) = P(B | J) P(J)

P(B | J) P(J) + P(B | T) P(T) + P(B | R) P(R)

= (0.05)(0.25)

(0.05)(0.25) + (0.03)(0.30) + (0.02)(0.45)

= 0.409836065.

25. (s − r)4 = C(4, 0)s4 + C(4, 1)s3(−r) + C(4, 2)s2(−r)2

+ C(4, 3)s(−r)3 + C(4, 4)(−r)4

= s4 − 4s3r + 6s2r2 − 4sr3 + r4

26. 23 · 8!/(3! 1! 4!)

27. If we set a = 2 and b = −1 in the Binomial Theorem, we
obtain

1 = 1n = [2 + (−1)]n =
n∑

k=0

C(n, k)2n−k (−1)k .

28. C(n, 1) = n

29. Let the 15 individual socks be the pigeons and let the 14 types
of pairs be the pigeonholes. Assign each sock (pigeon) to its
type (pigeonhole). By the Pigeonhole Principle, some pigeon-
hole will contain at least two pigeons (the matched socks).

30. There are 3 · 2 · 3 = 18 possible names for the 19 persons.
We can consider the assignment of names to people to be that
of assigning pigeonholes to the pigeons. By the Pigeonhole
Principle, some name is assigned to at least two persons.

31. Let ai denote the position of the i th available item. The 220
numbers

a1, . . . , a110; a1 + 19, . . . , a110 + 19

range from 1 to 219. By the Pigeonhole Principle, two are the
same.

32. Each point has an x-coordinate that is either even or odd and
a y-coordinate that is either even or odd. Since there are four
possibilities and there are five points, by the Pigeonhole Prin-
ciple at least two points, pi = (xi , yi) and p j = (x j , y j) have

■ Both xi and x j even or both xi and x j odd.

and

■ Both yi and y j even or both yi and y j odd.

Therefore, xi + x j is even and yi + y j is even. In particular,
(xi + x j)/2 and (yi + y j)/2 are integers. Thus the midpoint
of the pair pi and p j has integer coordinates.

Section 7.1 Review
1. A recurrence relation defines the nth term of a sequence in

terms of certain of its predecessors.

2. An initial condition for a sequence is an explicitly given value
for a particular term in the sequence.

3. Compound interest is interest on interest. If a person invests d
dollars at p percent compounded annually and we let An be the
amount of money earned after n years, the recurrence relation

An =
(

1 + p

100

)
An−1

together with the initial condition A0 = d defines the sequence
{An}.

4. The Tower of Hanoi puzzle consists of three pegs mounted on
a board and disks of various sizes with holes in their centers.
Only a disk of smaller diameter can be placed on a disk of larger
diameter. Given all the disks stacked on one peg, the problem is
to transfer the disks to another peg by moving one disk at a time.

5. If there is one disk, move it and stop. If there are n > 1 disks,
recursively move n−1 disks to an empty peg. Move the largest
disk to the remaining empty peg. Recursively move n−1 disks
on top of the largest disk.

6. We assume that at time n, the quantity qn sold at price pn

is given by the equation pn = a − bqn , where a and b are
positive parameters. We also assume that pn = kqn+1, where
k is another positive parameter. If we graph the price and
quantity over time, the graph resembles a cobweb (see, e.g.,
Figure 7.1.5).

7. Ackermann’s function A(m, n) is defined by the recurrence
relations

A(m, 0) = A(m − 1, 1), m ≥ 1

A(m, n) = A(m − 1, A(m, n − 1)), m ≥ 1, n ≥ 1

and initial conditions

A(0, n) = n + 1, n ≥ 0.

Section 7.1
1. an = an−1 + 4; a1 = 3

4. An = (1.14) An−1 5. A0 = 2000

6. A1 = 2280, A2 = 2599.20, A3 = 2963.088

7. An = (1.14)n2000

8. We must have An = 4000 or (1.14)n2000 = 4000 or
(1.14)n = 2. Taking the logarithm of both sides, we must
have n log 1.14= log 2. Thus

n = log 2

log 1.14
= 5.29.

Hints and Solutions to Selected Exercises 703

18. We count the number of n-bit strings not containing the pat-
tern 000.

■ Begin with 1. In this case, if the remaining (n − 1)-bit
string does not contain 000, neither will the n-bit string.
There are Sn−1 such (n − 1)-bit strings.

■ Begin with 0. There are two cases to consider.
1. Begin with 01. In this case, if the remaining (n−2)-

bit string does not contain 000, neither will the
n-bit string. There are Sn−2 such (n−2)-bit strings.

2. Begin with 00. Then the third bit must be a 1 and
if the remaining (n−3)-bit string does not contain
000, neither will the n-bit string. There are Sn−3

such (n − 3)-bit strings.

Since the cases are mutually exclusive and cover all
n-bit strings (n > 3) not containing 000, we have Sn =
Sn−1 + Sn−2 + Sn−3 for n > 3. S1 = 2 (there are two 1-bit
strings), S2 = 4 (there are four 2-bit strings), and S3 = 7 (there
are eight 3-bit strings but one of them is 000).

19. There are Sn−1 n-bit strings that begin 1 and do not contain the
pattern 00 and there are Sn−2 n-bit strings that begin 0 (since
the second bit must be 1) and do not contain the pattern 00.
Thus Sn = Sn−1+ Sn−2. Initial conditions are S1 = 2, S2 = 3.

22. S1 = 2, S2 = 4, S3 = 7, S4 = 12

25. C3 = 5, C4 = 14, C5 = 42

28. We first prove that if n ≥ 5, then Cn is not prime. Suppose,
by way of contradiction, that Cn is prime for some n ≥ 5. By
Exercise 27, n + 2 < Cn . Thus Cn does not divide n + 2. By
Exercise 26,

(n + 2)Cn+1 = (4n + 2)Cn .

Thus Cn divides (n + 2)Cn+1. By Exercise 25, Section 5.3,
Cn divides either n + 2 or Cn+1. Since Cn does not divide
n+2, Cn divides Cn+1. Therefore there exists an integer k ≥ 1
satisfying Cn+1 = kCn . Thus

(n + 2)kCn = (4n + 2)Cn .

Canceling Cn , we obtain

(n + 2)k = (4n + 2).

If k = 1, the preceding equation becomes n+2 = 4n+2, and
thus n = 0, which contradicts the fact that n ≥ 5. Similarly,
if k = 2, then n = 1, and if k = 3, then n = 4, both of which
contradict the fact that n ≥ 5. If k ≥ 4,

4n + 2 = k(n + 2) ≥ 4(n + 2) = 4n + 8.

Therefore 0 ≥ 6. Thus k does not exist. This contradiction
shows that if n ≥ 5, Cn is not prime.

Directly checking n = 0, 1, 2, 3, 4 shows that only
C2 = 2 and C3 = 5 are prime.

31. Let Pn denote the number of ways to divide a convex (n + 2)-
sided polygon, n ≥ 1, into triangles by drawing n − 1 lines
through the corners that do not intersect in the interior of the
polygon. We note that P1 = 1.

Suppose that n > 1 and consider a convex (n+2)-sided
polygon (see the following figure).

n + 2 – (k + 1) + 1 = n – k + 2 sides

a

b

k + 1 sides

We choose one edge ab and construct a partition of the polygon
by a two-step procedure. First we select a triangle to which
side ab belongs. This triangle divides the original polygon into
two polygons: one having k + 1 sides, for some k satisfying
1 ≤ k ≤ n; and the other having n − k + 2 sides (see the
preceding figure). By definition, the (k + 1)-sided polygon
can be partitioned in Pk−1 ways and the (n − k + 2)-sided
polygon can be partitioned in Pn−k ways. (For the degenerate
cases k = 1 and k = n, we set P0 = 1.) Therefore, the total
number of ways to partition the (n + 2)-sided polygon is

Pn =
n∑

k=1

Pk−1 Pn−k .

Since the sequence P1, P2, . . . satisfies the same recurrence
relation as the Catalan sequence C1, C2, . . . and P0 = P1 =
1 = C0 = C1, it follows that Pn = Cn for all n ≥ 1.

36. [For n = 3]

Step 1—move disk 3 from peg 1 to peg 3.

Step 2—move disk 2 from peg 1 to peg 2.

Step 3—move disk 3 from peg 3 to peg 2.

Step 4—move disk 1 from peg 1 to peg 3.

Step 5—move disk 3 from peg 2 to peg 1.

Step 6—move disk 2 from peg 2 to peg 3.

Step 7—move disk 3 from peg 1 to peg 3.

38. Let α and β be the angles shown in Figure 7.1.6. The geometry
of the situation shows that the price tends to stabilize if and
only if α + β > 180◦. This last condition holds if and only
if −tan β < tan α. Since b = −tan β and k = tan α, we
conclude that the price stabilizes if and only if b < k.

40. A(2, 2) = 7, A(2, 3) = 9 43. A(3, n) = 2n+3 − 3

46. If m = 0,

A(m, n + 1) = A(0, n + 1)

= n + 2 > n + 1

= A(0, n) = A(m, n).

The last inequality follows from Exercise 44.

47. Use Exercises 41 and 42.

50. We prove the statement by using induction on x . The inductive
step will itself require induction on y.

704 Hints and Solutions to Selected Exercises

Exercise 47 shows that the equation is true for
x = 0, 1, 2 and for all y.

Basis Step (x = 2) See Exercise 47.

Inductive Step (Case x implies case x + 1) Assume that
x ≥ 2 and

A(x , y) = AO(x , 2, y + 3) − 3 for all y ≥ 0.

We must prove that

A(x + 1, y) = AO(x + 1, 2, y + 3) − 3 for all y ≥ 0.

We establish this last equation by induction on y.

Basis Step (y = 0) We must prove that

A(x + 1, 0) = AO(x + 1, 2, 3) − 3.

Now

AO(x + 1, 2, 3) − 3

= AO(x , 2, AO(x + 1, 2, 2)) − 3 by definition

= AO(x , 2, 4) − 3 by Exercise 49

= A(x , 1) by the inductive
assumption on x

= A(x + 1, 0) by (7.1.11).

Inductive Step (Case y implies case y+ 1) Assume that

A(x + 1, y) = AO(x + 1, 2, y + 3) − 3.

We must prove that

A(x + 1, y + 1) = AO(x + 1, 2, y + 4) − 3.

Now

AO(x + 1, 2, y + 4) − 3

= AO(x , 2, AO(x + 1, 2, y + 3)) − 3 by definition

= AO(x , 2, A(x + 1, y) + 3) − 3 by the inductive
assumption on y

= A(x , A(x + 1, y)) by the inductive
assumption on x

= A(x + 1, y + 1) by (7.1.12).

53. Suppose that we have n dollars. If we buy orange juice the first
day, we have n − 1 dollars left, which may be spent in Rn−1

ways. Similarly, if the first day we buy milk or beer, there are
Rn−2 ways to spend the remaining dollars. Since these cases
are disjoint, Rn = Rn−1 + 2Rn−2.

56. S3 = 1/2, S4 = 3/4

58. A function f from X = {1, . . . , n} into X will be denoted
(i1, i2, . . . , in), which means that f (k) = ik . The problem
then is to count the number of ways to select i1, . . . , in so that
if i occurs, so do 1, 2, . . . , i − 1.

We shall count the number of such functions having
exactly j 1’s. Such functions can be constructed in two steps:
Pick the positions for the j 1’s; then place the other numbers.
There are C(n, j) ways to place the 1’s. The remaining num-
bers must be selected so that if i appears, so do 1, . . . , i − 1.
There are Fn− j ways to select the remaining numbers, since

the remaining numbers must be selected from {2, . . . , n}. Thus
there are C(n, j)Fn− j functions of the desired type having
exactly j 1’s. Therefore, the total number of functions from X
into X having the property that if i is in the range of f , then
so are 1, . . . , i − 1, is

n∑
j=1

C(n, j)Fn− j =
n∑

j=1

C(n, n − j)Fn− j

=
n−1∑
j=0

C(n, j)Fj .

61. {un} is not a recurrence relation because, if n is odd and greater
than 1, un is defined in terms of the successor u3n+1. ui , for
2 ≤ i ≤ 7, is equal to one. As examples,

u2 = u1 = 1

u3 = u10 = u5 = u16 = u8 = u4 = u2 = 1.

64. Use equation (7.7.4) to write

S(k, n) =
n∑

i=1

S(k − 1, i).

67. We use the terminology of Exercise 87, Section 6.2. Choose
one of n + 1 people, say P . There are sn, j−1 ways for P to
sit alone. (Seat the other n people at the other k − 1 tables.)
Next we count the number of arrangements in which P is not
alone. Seat everyone but P at k tables. This can be done in
sn,k ways. Now P can be seated to the right of someone in
n ways. Thus there are nsn,k arrangements in which P is not
alone. The recurrence relation now follows.

70. Let An denote the amount at the end of n years and let i be the
interest rate expressed as a decimal. The discussion following
Example 7.1.3 shows that

An = (1 + i)n A0.

The value of n required to double the amount satisfies

2A0 = (1 + i)n A0 or 2 = (1 + i)n .

If we take the natural logarithm (logarithm to the base e) of
both sides of this equation, we obtain

ln 2 = n ln(1 + i).

Thus

n = ln 2

ln(1 + i)
.

Since ln 2 = 0.6931472 . . . and ln(1 + i) is approximately
equal to i for small values of i , n is approximately equal to
0.69 . . . / i , which, in turn, is approximately equal to 70/r .

72. 1, 3, 2; 2, 3, 1; E3 = 2

75. We count the number of rise/fall permutations of 1, . . . , n
by considering how many have n in the second, fourth, . . . ,
positions.

Suppose that n is in the second position. Since any of the
remaining numbers is less than n, any of them may be placed in
the first position. Thus we may select the number to be placed

Hints and Solutions to Selected Exercises 705

in the first position in C(n − 1, 1) ways and, after selecting
it, we may arrange it in E1 = 1 way. The last n − 2 positions
can be filled in En−2 ways since any rise/fall permutation of
the remaining n − 2 numbers gives a rise/fall permutation of
1, . . . , n. Thus the number of rise/fall permutations of 1, . . . , n
with n in the second position is C(n − 1, 1)E1 En−2.

Suppose that n is in the fourth position. We may select
numbers to be placed in the first three positions in C(n− 1, 3)
ways. After selecting the three items, we may arrange them
in E3 ways. The last n − 4 numbers can be arranged in En−4

ways. Thus the number of rise/fall permutations of 1, . . . , n
with n in the fourth position is C(n − 1, 3)E3 En−4.

In general, the number of rise/fall permutations of
1, . . . , n with n in the (2 j)th position is

C(n − 1, 2 j − 1)E2 j−1 En−2 j .

Summing over all j gives the desired recurrence relation.

Section 7.2 Review
1. Use the recurrence relation to write the nth term in terms of cer-

tain of its predecessors. Then successively use the recurrence
relation to replace each of the resulting terms by certain of their
predecessors. Continue until an explicit formula is obtained.

2. An nth-order, linear homogeneous recurrence relation with
constant coefficients is a recurrence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k .

3. an = 6an−1 − 8an−2

4. To solve

an = c1an−1 + c2an−2,

first solve the equation

t2 = c1t + c2

for t . Suppose that the roots are t1 and t2 and that t1 �= t2.
Then the general solution is of the form

an = btn
1 + dtn

2 ,

where b and d are constants. The values of the constants can
be obtained from the initial conditions.

If t1 = t2 = t , the general solution is of the form

an = btn + dntn ,

where again b and d are constants. The values of the constants
can again be obtained from the initial conditions.

Section 7.2
1. Yes; order 1

4. No

7. No

10. Yes; order 3

11. an = 2(−3)n

15. an = 2n+1 − 4n

18. an = (22−n + 3n)/5

21. an = 2(−4)n + 3n(−4)n

24. Rn = [(−1)n + 2n+1]/3

28. Let dn denote the deer population at time n. The initial condi-
tion is d0 = 0. The recurrence relation is

dn = 100n + 1.2dn−1, n > 0.

dn = 100n + 1.2dn−1 = 100n + 1.2[100(n − 1) + 1.2dn−2]

= 100n + 1.2 · 100(n − 1) + 1.22dn−2

= 100n + 1.2 · 100(n − 1)

+ 1.22[100(n − 2) + 1.2dn−3]

= 100n + 1.2 · 100(n − 1)

+ 1.22 · 100(n − 2) + 1.23dn−3

...

=
n−1∑
i=0

1.2i · 100(n − i) + 1.2nd0

=
n−1∑
i=0

1.2i · 100(n − i)

= 100n
n−1∑
i=0

1.2i − 1.2 · 100
n−1∑
i=1

i · 1.2i−1

= 100n(1.2n − 1)

1.2 − 1

− 120
(n − 1)1.2n − n1.2n−1 + 1

(1.2 − 1)2
, n > 0.

29. From pn−1 = 1
2 pn + 1

2 pn−2, we obtain pn = 2pn−1 − pn−2.

32. pn = n/(S + T)

36. Set bn = an/n! to obtain bn = −2bn−1 + 3bn−2. Solving
gives an = n! bn = (n!/4)[5 − (−3)n].

39. We establish the inequality by using induction on n.
The base cases n = 1 and n = 2 are left to the reader.

Now assume that the inequality is true for values less than
n + 1. Then

fn+2 = fn+1 + fn

≥
(

1 +√
5

2

)n−1

+
(

1 +√
5

2

)n−2

=
(

1 +√
5

2

)n−2(
1 +√

5

2
+ 1

)

=
(

1 +√
5

2

)n−2(
1 +√

5

2

)2

=
(

1 +√
5

2

)n

,

and the Inductive Step is complete.

706 Hints and Solutions to Selected Exercises

41. an = b2n + d4n + 1

44. an = b/2n + d3n − (4/3)2n

47. The argument is identical to that given in Theorem 7.2.11.

50. Recursively invoking this algorithm to move the n − kn disks
at the top of peg 1 to peg 2 takes T (n − kn) moves. Moving
the kn disks on peg 1 to peg 4 requires 2kn − 1 moves (see
Example 7.2.4). Recursively invoking this algorithm to move
the n − kn disks on peg 2 to peg 4 again takes T (n − kn)
moves. The recurrence relation now follows.

53. From the inequality

kn(kn + 1)

2
≤ n,

we can deduce kn ≤
√

2n. Since

n − kn ≤ kn(kn + 1)

2
,

it follows that rn ≤ kn . Therefore,

T (n) = (kn + rn − 1)2kn + 1

< 2kn2kn + 1

≤ 2
√

2n2
√

2n + 1

= O(4
√

n).

Section 7.3 Review
1. Let bn denote the time required for input of size n. Simulate

the execution of the algorithm and count the time required by
the various steps. Then bn is equal to the sum of the times
required by the various steps.

2. Selection sort selects the largest element, places it last, and
then recursively sorts the remaining sequence.

3. �(n2)

4. Binary search examines the middle item in the sequence. If
the middle item is the desired item, binary search terminates.
Otherwise, binary search compares the middle item with the
desired item. If the desired item is less than the middle item,
binary search recursively searches in the left half of the se-
quence. If the desired item is greater than the middle item,
binary search recursively searches in the right half of the
sequence. The input must be sorted.

5. If an is the worst-case time for input of size n, an = 1+a�n/2�.
6. �(lg n)

7. Merge maintains two pointers to elements in the two input
sequences. Initially the pointers reference the first elements in
the sequences. Merge copies the smaller element to the output
and moves the pointer to the next element in the sequence that
contains the element just copied. It then repeats this process.
When a pointer moves off the end of one of the sequences,
merge concludes by copying the rest of the other sequence to
the output. Both input sequences must be sorted.

8. �(n), where n is the sum of the lengths of the input sequences

9. Merge sort first divides the input into two nearly equal parts.
It then recursively sorts each half and merges the halves to
produce sorted output.

10. an = a�n/2� + a�(n+1)/2� + n − 1

11. If the input size is a power of two, the size is always divisible
by 2 and the floors vanish.

12. An arbitrary input size falls between two powers of two. Since
we know the worst-case time when the input size is a power of
two, we may bound the worst-case time for input of arbitrary
size by the worst-case times for inputs whose sizes are the
powers of two that bound it.

13. �(n lg n)

Section 7.3
1. At line 2, since i > j (1 > 5) is false, we proceed to line 4,

where we set k to 3. At line 5, since key (‘G’) is not equal to
s3 (‘J ’), we proceed to line 7. At line 7, key < sk (‘G’ < ‘J ’)
is true, so at line 8 we set j to 2. We then invoke this algorithm
with i = 1, j = 2 to search for key in

s1 = ‘C’, s2 = ‘G’.

At line 2, since i > j (1 > 2) is false, we proceed
to line 4, where we set k to 1. At line 5, since key (‘G’) is
not equal to s1 (‘C’), we proceed to line 7. At line 7, key
< sk (‘G’ < ‘C’) is false, so at line 10 we set i to 2. We then
invoke this algorithm with i = j = 2 to search for key in

s2 = ‘G’.

At line 2, since i > j (2 > 2) is false, we proceed to
line 4, where we set k to 2. At line 5, since key (‘G’) is equal
to s2 (‘G’), we return 2, the index of key in the sequence s.

4. At line 2, since i > j (1 > 5) is false, we proceed to line 4,
where we set k to 3. At line 5, since key (‘Z ’) is not equal to
s3 (‘J ’), we proceed to line 7. At line 7, key < sk (‘Z ’ < ‘J ’) is
false, so at line 10 we set i to 4. We then invoke this algorithm
with i = 4, j = 5 to search for key in

s4 = ‘M’, s5 = ‘X ’.

At line 2, since i > j (4 > 5) is false, we proceed
to line 4, where we set k to 4. At line 5, since key (‘Z ’) is
not equal to s4 (‘M’) we proceed to line 7. At line 7, key
< sk (‘Z ’ < ‘M’) is false, so at line 10 we set i to 5. We then
invoke this algorithm with i = j = 5 to search for key in

s5 = ‘X ’.

At line 2, since i > j (5 > 5) is false, we proceed
to line 4, where we set k to 5. At line 5, since key (‘Z ’) is
not equal to s5 (‘X ’), we proceed to line 7. At line 7, key
< sk (‘Z ’ < ‘X ’) is false, so at line 10 we set i to 6. We then
invoke this algorithm with i = 6, j = 5.

At line 2, since i > j (6 > 5) is true, we return 0 to
indicate that we failed to find key.

7. Consider the input 10, 4, 2 and key = 10.

10. The idea is to repeatedly divide the sequence as nearly as
possible into two parts and retain the part that might contain
the key. Only after obtaining a subsequence of length 1 or

Hints and Solutions to Selected Exercises 707

2, do we test whether the subsequence contains the key. The
following algorithm implements this design.

binary search nonrecurs(s, n, key) {
i = 1
j = n
// the body of the loop executes only if the subsequence
// si , . . . , s j has length greater than or equal to 3
while (i < j − 1) {

k = �(i + j)/2�
if (sk < key)

i = k + 1
else

j = k
}
for k = i to j

if (sk == key)
return k

return 0
}

We first prove that if a sequence of length n is input to the while
loop, where n is a power of 2, say n = 2m , m ≥ 2, the loop
iterates m−1 times. The proof is by induction on m. The Basis
Step is m = 2. In this case n = 4. Assuming that i = 1 and
n = 4, in the while loop, k is first set to 2. Then either i is set to 3
or j is set to 2. Thus the loop does not execute again. Therefore
the loop iterates 1 = m − 1 time. The Basis Step is complete.

Now suppose that if a sequence of length n = 2m is
input to the while loop, the loop iterates m− 1 times. Suppose
that n = 2m+1. Assuming that i = 1 and n = 2m+1, in the
while loop, k is first set to 2m . Then either i is set to 2m + 1 or
j is set to 2m . Thus at the next iteration of the loop, a sequence
of length 2m is processed. By the inductive assumption, the
loop iterates an additional m − 1 times. Therefore the loop
iterates a total of m times. The Inductive Step is complete.

Next we prove that if a sequence of length n, where n
satisfies 2m−1 < n ≤ 2m , m ≥ 2, is input to the while loop, the
loop iterates at most m−1 times. The proof is by induction on
m. The Basis Step is m = 2. In this case we have 2 < n ≤ 4.
Thus n is either 3 or 4. In the preceding paragraphs, we proved
that if n = 4 the loop iterates one time. If n = 3, it is easy
to check that the loop iterates one time. The Basis Step is
complete.

Now assume that if a sequence of length n, where n
satisfies 2m−1 < n ≤ 2m , m ≥ 2, is input to the while loop, the
loop iterates at most m−1 times. Suppose that n satisfies 2m <

n ≤ 2m+1. When n is even, the sequence is divided evenly and
the next sequence processed by the loop has length n/2. Since
n/2 satisfies 2m−1 < n/2 ≤ 2m , by the inductive assumption
the loop iterates at most m− 1 more times. When n is odd, the
sequence is divided into two parts—one part of length (n−1)/2
and the other of length (n + 1)/2. Since n is odd, 2m < n <

2m+1. Therefore 2m < n+ 1≤ 2m+1. Thus 2m−1 < (n+1)/2 ≤
2m . In this case, the inductive assumption tells us that the loop
iterates at most m − 1 more times. We also have 2m ≤ n −
1 < 2m+1 and 2m−1 ≤ (n − 1)/2 < 2m . If 2m−1 < (n − 1)/2,
we may use the inductive assumption to conclude that the loop

iterates at most m − 1 more times. If 2m−1 = (n − 1)/2, we
may use the result proved just after the algorithm to conclude
that the loop iterates m − 2 more times. In every case the
loop iterates at most m − 1 more times. Together with the
first iteration, we conclude that if n satisfies 2m < n ≤ 2m+1,
the while loop iterates at most m times. The Inductive Step is
complete.

Suppose that n satisfies 2m−1 < n ≤ 2m . Then the while
loop iterates at most m−1 times. This accounts for m−1 tests
of the form sk < key. At the for loop, either i = j or i = j+1.
Thus there are at most two additional comparisons (of the form
sk == key). Thus if n satisfies 2m−1 < n ≤ 2m , the algorithm
uses at most m + 1 comparisons. Since 2m−1 < n ≤ 2m ,
m − 1 < lg n ≤ m. Therefore �lg n� = m. Thus the algorithm
uses at most 1 + m = 1 + �lg n� comparisons.

13. The algorithm is not correct. If s is a sequence of length 1,
s1 = 9, and key = 8, the algorithm does not terminate.

16. The algorithm is correct. The worst-case time is �(log n).

18. Algorithm B is superior if 2 ≤ n ≤ 15. (For n = 1 and n = 16,
the algorithms require equal numbers of comparisons.)

21. Suppose that the sequences are a1, . . . , an and b1, . . . , bn .
(a) a1 <b1 <a2 <b2 < · · · (b) an <b1

24. 11

28. Algorithm 7.3.11 computes an by using the formula an =
aman−m .

29. bn = b�n/2� + b�(n+1)/2� + 1, b1 = 0

30. b2 = 1, b3 = 2, b4 = 3 31. bn = n − 1

32. We prove the formula by using mathematical induction. The
Basis Step, n = 1, has already been established.

Assume that bk = k − 1 for all k < n. We show that
bn = n − 1. Now

bn = b�n/2� + b�(n+1)/2� + 1

=
⌊n

2

⌋
− 1 +

⌊n + 1

2

⌋
− 1 + 1

by the inductive assumption

=
⌊n

2

⌋
+
⌊n + 1

2

⌋
− 1 = n − 1.

45. If n = 1, then i = j and we return before reaching line 6b, 10,
or 14. Therefore, b1 = 0. If n = 2, then j = i + 1. There is
one comparison at line 6b and we return before reaching line
10 or 14. Therefore, b2 = 1.

46. b3 = 3, b4 = 4

47. When n > 2, b�(n+1)/2� comparisons are required for the first
recursive call and b�n/2� comparisons are required for the sec-
ond recursive call. Two additional comparisons are required
at lines 10 and 14. The recurrence relation now follows.

48. Suppose that n = 2k . Then (7.3.12) becomes

b2k = 2b2k−1 + 2.

708 Hints and Solutions to Selected Exercises

Now

b2k = 2b2k−1 + 2

= 2[2b2k−2 + 2] + 2

= 22b2k−2 + 22 + 2 = · · ·
= 2k−1b21 + 2k−1 + 2k−2 + · · · + 2

= 2k−1 + 2k−1 + · · · + 2

= 2k−1 + 2k − 2

= n − 2 + n

2
= 3n

2
− 2.

49. We use the following fact, which can be verified by considering
the cases x even and x odd:⌈

3x

2
− 2

⌉
+
⌈

3(x + 1)

2
− 2

⌉
= 3x − 2 for x = 1, 2,

Let an denote the number of comparisons required by
the algorithm in the worst case. The cases n = 1 and n = 2
may be directly verified. (The case n = 2 is the Basis Step.)

Inductive Step Assume that ak ≤ �(3k/2) − 2� for 2 ≤ k
< n. We must show that the inequality holds for k = n.

If n is odd, the algorithm partitions the array into sub-
classes of sizes (n − 1)/2 and (n + 1)/2. Now

an = a(n−1)/2 + a(n+1)/2 + 2

≤
⌈

(3/2)(n − 1)

2
− 2

⌉
+
⌈

(3/2)(n + 1)

2
− 2

⌉
+ 2

= 3(n − 1)

2
− 2 + 2 = 3n

2
− 3

2

=
⌈

3n

2
− 2

⌉
.

The case n even is treated similarly.

58. �(n)

59. If n = 1, sort just returns; therefore, all of the zeros precede
all of the ones. The Basis Step is proved.

Assume that for input of size n−1, after sort is invoked
all of the zeros precede all of the ones. Suppose that sort is
invoked with input of size n. If the first element is a one, it is
swapped with the last element. sort is then called recursively
on the first n−1 elements. By the inductive assumption, within
the first n− 1 elements all of the zeros precede all of the ones.
Since the last element is a one, all of the zeros precede all
of the ones for all n elements. If the first element is a zero,
sort is called recursively on the last n − 1 elements. By the
inductive assumption, within the last n − 1 elements all of the
zeros precede all of the ones. Since the first element is a zero,
all of the zeros precede all of the ones for all n elements. In
either case, sort does produce as output a rearranged version
of the input sequence in which all of the zeros precede all of
the ones, and the Inductive Step is complete.

64. If n = 2k ,

a2k = 3a2k−1 + 2k ,

so

an = a2k = 3a2k−1 + 2k

= 3[3a2k−2 + 2k−1] + 2k

= 32a2k−2 + 3 · 2k−1 + 2k

...

= 3ka20 + 3k−1 · 21 + 3k−2 · 22 + · · ·
+ 3 · 2k−1 + 2k

= 3k + 2(3k − 2k) (∗)
= 3 · 3k − 2 · 2k

= 3 · 3lg n − 2n.

Line (∗) results from the equation

(a − b)(ak−1b0 + ak−2b1 + · · · + a1bk−2 + a0bk−1)= ak−bk

with a = 3 and b = 2.

66. bn = b�(1+n)/2� + b�n/2� + 3

69. bn = 4n − 3

72. We will show that bn ≤ bn+1, n = 1, 2, We have the
recurrence relation

bn = b�(1+n)/2� + b�n/2� + c�(1+n)/2�,�n/2�.

Basis Step b2 = 2b1 + c1,1 ≥ 2b1 ≥ b1

Inductive Step Assume that the statement holds for k < n.
In case n is even, we have bn = 2bn/2 + cn/2,n/2; so

bn+1 = b(n+2)/2 + bn/2 + c(n+2)/2,n/2

≥ bn/2 + bn/2 + cn/2,n/2 = bn .

The case n is odd is similar.

74. ex74(s, i, j) {
if (i == j)

return
m = �(i + j)/2�
ex74(s, i, m)
ex74(s, m + 1, j)
combine(s, i, m, j)

}
77. We prove the inequality by using mathematical induction.

Basis Step a1 = 0 ≤ 0 = b1

Inductive Step Assume that ak ≤ bk for k < n. Then

an ≤ a�n/2� + a�(n+1)/2� + 2 lg n

≤ b�n/2� + b�(n+1)/2� + 2 lg n = bn .

80. Let c = a1. If n is a power of m, say n = mk , then

an = amk = amk−1 + d

= [amk−2 + d] + d

= amk−2 + 2d
...

= am0 + kd = c + kd.

Hints and Solutions to Selected Exercises 709

An arbitrary value of n falls between two powers of m, say

mk−1 < n ≤ mk .

This last inequality implies that

k − 1 < logm n ≤ k.

Since the sequence a is nondecreasing,

amk−1 ≤ an ≤ amk .

Now

�(logm n) = c + (−1 + logm n)d ≤ c + (k − 1)d

= amk−1 ≤ an

and

an ≤ amk = c + kd

≤ c + (1 + logm n)d = O(logm n).

Thus an = �(logm n). By Example 4.3.6, an = �(lg n).

Chapter 7 Self-Test
1. (a) 3, 5, 8, 12 (b) a1 = 3 (c) an = an−1 + n

2. An = (1.17) An−1, A0 = 4000

3. Let X be an n-element set and choose x ∈ X . Let k be a fixed
integer, 0 ≤ k ≤ n − 1. We can select a k-element subset Y
of X − {x} in C(n − 1, k) ways. Having done this, we can
partition Y in Pk ways. This partition together with X − Y
partitions X . Since all partitions of X can be generated in this
way, we obtain the desired recurrence relation.

4. If the first domino is placed as shown, there are an−1 ways to
cover the 2 × (n − 1) board that remains.

2 � 12

n

If the first two dominoes are placed as shown, there are
an−2 ways to cover the 2 × (n − 2) board that remains.

1 � 2

1 � 2
2

n

It follows that an = an−1 + an−2.
By inspection, a1 = 1 and a2 = 2. Since {an} satis-

fies the same recurrence relation as the Fibonacci sequence
and a1 = f2 and a2 = f3, it follows that ai = fi+1 for
i = 1, 2,

5. Yes

6. an = 2(−2)n − 4n(−2)n

7. an = 3 · 5n + (−2)n

8. Consider a string of length n that contains an even number
of 1’s that begins with 0. The string that follows the 0 may
be any string of length n − 1 that contains an even number
of 1’s, and there are cn−1 such strings. A string of length n

that contains an even number of 1’s that begins with 2 can be
followed by any string of length n − 1 that contains an even
number of 1’s, and there are cn−1 such strings. A string of
length n that contains an even number of 1’s that begins with
1 can be followed by any string of length n − 1 that contains
an odd number of 1’s. Since there are 3n−1 strings altogether
of length n − 1 and cn−1 of these contain an even number of
1’s, there are 3n−1 − cn−1 strings of length n − 1 that contain
an odd number of 1’s. It follows that

cn = 2cn−1 + 3n−1 − cn−1 = cn−1 + 3n−1.

An initial condition is c1 = 2, since there are two strings (0
and 2) that contain an even number (namely, zero) of 1’s.

We may solve the recurrence relation by iteration:

cn = cn−1 + 3n−1 = cn−2 + 3n−2 + 3n−1

...

= c1 + 31 + 32 + · · · + 3n−1

= 2 + 3n − 3

3 − 1
= 3n + 1

2
.

9. bn = bn−1 + 1, b0 = 0

10. b1 = 1, b2 = 2, b3 = 3

11. bn = n

12. n(n + 1)/2 = O(n2). The given algorithm is faster than the
straightforward technique and is, therefore, preferred.

Section 8.1 Review
1. An undirected graph consists of a set V of vertices and a set

E of edges such that each edge e ∈ E is associated with an
unordered pair of vertices.

2. Friendship can be modeled by an undirected graph by letting
the vertices denote the people and placing an edge between
two people if they are friends.

3. A directed graph consists of a set V of vertices and a set E of
edges such that each edge e ∈ E is associated with an ordered
pair of vertices.

4. Precedence can be modeled by a directed graph by letting the
vertices denote the tasks and placing a directed edge from task
ti to task t j if ti must be completed before t j .

5. If edge e is associated with vertices v and w , e is said to be
incident on v and w .

6. If edge e is associated with vertices v and w , v and w are said
to be incident on e.

7. If edge e is associated with vertices v and w , v and w are said
to be adjacent.

8. Parallel edges are edges that are incident on the same pair of
vertices.

9. An edge incident on a single vertex is called a loop.

10. A vertex that is not incident on any edge is called an isolated
vertex.

11. A simple graph is a graph with neither loops nor parallel edges.

12. A weighted graph is a graph with numbers assigned to the
edges.

710 Hints and Solutions to Selected Exercises

13. A map with distances can be modeled as a weighted graph.
The vertices are the cities, the edges are the roads between the
cities, and the numbers on the edges are the distances between
the cities.

14. The length of a path in a weighted graph is the sum of the
weights of its edges.

15. A similarity graph has a dissimilarity function s where s(v, w)
measures the dissimilarity of vertices v and w .

16. The n-cube has 2n vertices labeled 0, 1, . . . , 2n − 1. An edge
connects two vertices if the binary representation of their
labels differs in exactly one bit.

17. A serial computer executes one instruction at a time.

18. A serial algorithm executes one instruction at a time.

19. A parallel computer can execute several instructions at a time.

20. A parallel algorithm can execute several instructions at a time.

21. The complete graph on n vertices has one edge between each
distinct pair of vertices. It is denoted Kn .

22. A graph G = (V , E) is bipartite if there exist subsets V1

and V2 (either possibly empty) of V such that V1 ∩ V2 = ∅,
V1 ∪ V2 = V , and each edge in E is incident on one vertex in
V1 and one vertex in V2.

23. The complete bipartite graph on m and n vertices has disjoint
vertex sets V1 with m vertices and V2 with n vertices in which
the edge set consists of all edges of the form (v1, v2) with
v1 ∈ V1 and v2 ∈ V2.

Section 8.1
1. The graph is an undirected, simple graph.

Snow

Tuna

SkyscrapersPheasants

4. The graph is a directed, nonsimple graph.

Snow

Tuna

SkyscrapersPheasants

Snow

Tuna

SkyscrapersPheasants

Snow

Tuna

SkyscrapersPheasants

5. Since an odd number of edges touch some vertices (c and d),
there is no path from a to a that passes through each edge
exactly one time.

8. (a, c, e, b, c, d, e, f, d, b, a)

11. V = {v1, v2, v3, v4}. E = {e1, e2, e3, e4, e5, e6}. e1 and e6 are
parallel edges. e5 is a loop. There are no isolated vertices. G
is not a simple graph. e1 is incident on v1 and v2.

14.

K3 K5

17. Bipartite. V1 = {v1, v2, v5}, V2 = {v3, v4}.
20. Not bipartite

23. Bipartite. V1 = {v1}, V2 = {v2, v3}.
24.

K2, 3 K3, 3

27. (b, c, a, d, e)

32. Two classes

1 2

3

4
5

37.
00 01

1110

40. n

43.
0

1

1 1

1

0 0

0

1 0

1 0

01 00

11 10

Hints and Solutions to Selected Exercises 711

46.

a

b c

d

e

k

f

g

h

i

j

49.

b

a

f d

c

e

g

5

6
5 7

8 20

50.

x = 1

y = 2

z = x + y z = z + 1

53. f is not one-to-one. Let G1 be the graph with vertex set
{1, 2, 3} and edge set {(1, 2)}, and let G2 be the graph with
vertex set {1, 2, 3, 4} and edge set {(1, 2)}. Then G1 �= G2,
but f (G1) = 1 = f (G2).

f is onto. Let n be a nonnegative integer. If n = 0, let
G be the graph with vertex set {1, 2, 3} and edge set ∅. Then
f (G) = 0 = n. If n > 0, let G be the graph with vertex set
{1, 2, . . . , n, n + 1} and edge set

{(1, 2), (2, 3), . . . , (n, n + 1)}.

Then f (G) = n. Therefore f is onto.

Section 8.2 Review
1. A path is an alternating sequence of vertices and edges

(v0, e1, v1, e2, v2, . . . , vn−1, en , vn),

in which edge ei is incident on vertices vi−1 and vi for
i = 1, . . . , n.

2. A simple path is a path with no repeated vertices.

3. (1, 2, 3, 1)

4. A cycle is path of nonzero length from v to v with no repeated
edges.

5. A simple cycle is a cycle from v to v in which, except for the
beginning and ending vertices that are both equal to v, there
are no repeated vertices.

6. (1, 2, 3, 1, 4, 5, 1)

7. A graph is connected, if, given any vertices v and w , there is
a path from v to w .

8.
1 2

3

9.
1 2

3

4 5

10. Let G = (V , E) be a graph. (V ′, E ′) is a subgraph of G if
V ′ ⊆ V , E ′ ⊆ E , and, for every edge e′ ∈ E ′, if e′ is incident
on v′ and w ′, then v′, w ′ ∈ V ′.

11. The graph of Exercise 8 is a subgraph of the graph of Exercise 9.

12. Let G be a graph and let v be a vertex in G. The subgraph G ′ of
G consisting of all edges and vertices in G that are contained
in some path beginning at v is called the component of G
containing v.

13. The graph of Exercise 8 is a component of the graph of
Exercise 9.

14. One

15. The degree of vertex v is the number of edges incident on v.

16. An Euler cycle in a graph G is a cycle that includes all of the
edges and all of the vertices of G.

17. A graph G has an Euler cycle if and only if G is connected
and the degree of every vertex is even.

18. The graph of Exercise 8 has the Euler cycle (1, 2, 3, 1).

19. The graph of Exercise 9 does not have an Euler cycle because
it is not connected.

20. The sum of the degrees of the vertices in a graph equals twice
the number of edges in the graph.

21. Yes

22. The graph is connected and v and w are the only vertices
having odd degree.

23. Yes

Section 8.2
1. Cycle, simple cycle

4. Cycle, simple cycle

7. Simple path
10. 13.

16. Suppose that there is such a graph with vertices a, b, c, d,
e, f . Suppose that the degrees of a and b are 5. Since the

712 Hints and Solutions to Selected Exercises

graph is simple, the degrees of c, d, e, and f are each at least
2; thus there is no such graph.

19. (a, a), (b, c, g, b), (b, c, d, f, g, b),
(b, c, d, e, f, g, b), (c, g, f, d, c),
(c, g, f, e, d, c), (d, f, e, d)

22. Every vertex has degree 4.

24. G1 = ({v1}, ∅)

G2 = ({v2}, ∅)

G3 = ({v1, v2}, ∅)

G4 = ({v1, v2}, {e1})
27. There are 17 subgraphs. 28. No Euler cycle

31. No Euler cycle

34. For

1

2 3

654

7 10
98

an Euler cycle is (10, 9, 6, 5, 9, 8, 5, 4, 8, 7, 4, 2, 5, 3, 2, 1, 3,
6, 10). The method generalizes.

37. m = n = 2 or m = n = 1

39. d and e are the only vertices of odd degree.

42. The argument is similar to that of the proof of Theorem 8.2.23.

45. True. In the path, for all repeated a,

(. . . , a, . . . , b, a, . . .)

eliminate a, . . . , b.

47. Suppose that e = (v, w) is in a cycle. Then there is a path P
from v to w not including e. Let x and y be vertices in G−{e}.
Since G is connected, there is a path P ′ in G from v to w .
Replace any occurrence of e in P ′ by P . The resulting path
from v to w lies in G − {e}. Therefore, G − {e} is connected.

50. The union of all connected subgraphs containing G ′ is a
component.

53. Let G be a simple, disconnected graph with n vertices hav-
ing the maximum number of edges. Show that G has two
components. If one component has i vertices, show that the
components are Ki and Kn−i . Use Exercise 11, Section 8.1,
to find a formula for the number of edges in G as a function
of i . Show that the maximum occurs when i = 1.

55.

58. Modify the proofs of Theorems 8.2.17 and 8.2.18.

61. Use Exercises 58 and 60.

64. We first count the number of paths

(v0, v1, . . . , vk)

of length k ≥ 1. The first vertex v0 may be chosen in n ways.
Each subsequent vertex may be chosen in n − 1 ways (since
it must be different from its predecessor). Thus the number of
paths of length k is n(n − 1)k .

The number of paths of length k, 1 ≤ k ≤ n, is
n∑

k=1

n(n − 1)k = n(n − 1)
(n − 1)k − 1

(n − 1) − 1

= n(n − 1)[(n − 1)k − 1]

n − 2
.

68. If v is a vertex in V , the path consisting of v and no edges is a
path from v to v; thus vRv for every vertex v in V . Therefore,
R is reflexive.

Suppose that vRw . Then there is a path (v0, . . . , vn),
where v0 = v and vn = w . Now (vn , . . . , v0) is a path from
w to v, and thus w Rv. Therefore, R is symmetric.

Suppose that vRw and w Rx . Then there is a path P1

from v to w and a path P2 from w to x . Now P1 followed by P2

is a path from v to x , and thus vRx . Therefore, R is transitive.
Since R is reflexive, symmetric, and transitive on V , R

is an equivalence relation on V .

70. 2

73. Let sn denote the number of paths of length n from v1 to v1.
We show that the sequences s1, s2, . . . and f1, f2, . . . satisfy
the same recurrence relation, s1 = f2, and s2 = f3, from
which it follows that sn = fn+1 for n ≥ 1.

If n = 1, there is one path of length 1 from v1 to v1,
namely the loop on v1; thus, s1 = f2.

If n = 2, there are two paths of length 2 from v1 to
v1 : (v1, v1, v1) and (v1, v2, v1); thus, s2 = f3.

Assume that n > 2. Consider a path of length n from v1

to v1. The path must begin with the loop (v1, v1) or the edge
(v1, v2).

If the path begins with the loop, the remainder of the
path must be a path of length n − 1 from v1 to v1. Since there
are sn−1 such paths, there are sn−1 paths of length n from v1

to v1 that begin (v1, v1, . . .).
If the path begins with the edge (v1, v2), the next edge

in the path must be (v2, v1). The remainder of the path must
be a path of length n − 2 from v1 to v1. Since there are sn−2

such paths, there are sn−2 paths of length n from v1 to v1 that
begin (v1, v2, v1, . . .).

Since any path of length n > 2 from v1 to v1 begins
with the loop (v1, v1) or the edge (v1, v2), it follows that

sn = sn−1 + sn−2.

Because the sequences s1, s2, . . . and f1, f2, . . . satisfy
the same recurrence relation, s1 = f2, and s2 = f3, it follows
that sn = fn+1 for n ≥ 1.

75. Suppose that every vertex has an out edge. Choose a vertex
v0. Follow an edge out of v0 to a vertex v1. (By assumption,
such an edge exists.) Continue to follow an edge out of vi to a
vertex vi+1. Since there are a finite number of vertices, we will
eventually return to a previously visited vertex. At this point,
we will have discovered a cycle, which is a contradiction.
Therefore, a dag has at least one vertex with no out edges.

Hints and Solutions to Selected Exercises 713

Section 8.3 Review
1. A Hamiltonian cycle in a graph G is a cycle that contains each

vertex in G exactly once, except for the starting and ending
vertex that appears twice.

2. The graph of Figure 8.3.9 has a Hamiltonian cycle and an Euler
cycle. The Hamiltonian and Euler cycles are the graph itself.

3. The graph of Figure 8.3.2 has a Hamiltonian cycle, but not an
Euler cycle. The Hamiltonian cycle is shown in Figure 8.3.3.
The graph does not have an Euler cycle, because all of the
vertices have odd degree.

4. The graph

1 6

2

3

4

5

has an Euler cycle because it is connected and every vertex
has even degree. It does not have a Hamiltonian cycle. To
prove that it does not have a Hamiltonian cycle, we argue by
contradiction. Suppose that the graph has a Hamiltonian cycle.
Then, because vertices 2, 3, 4, and 5 all have degree 2, all the
edges in the graph would have to be included in a Hamilto-
nian cycle. Since the graph itself is not a cycle, we have a
contradiction.

5. The graph consisting of two vertices and no edges has nei-
ther a Hamiltonian cycle nor an Euler cycle because it is not
connected.

6. The traveling salesperson problem is: Given a weighted graph
G, find a minimum-length Hamiltonian cycle in G. The Hamil-
tonian cycle problem simply asks for a Hamiltonian cycle—
any Hamiltonian cycle will do. The traveling salesperson
problem asks not just for a Hamiltonian cycle, but for one of
minimum length.

7. A simple cycle

8. A Gray code is a sequence s1, s2, . . . , s2n , where each si is a
string of n bits, satisfying the following:

■ Every n-bit string appears somewhere in the sequence.

■ si and si+1 differ in exactly one bit, i = 1, . . . ,
2n − 1.

■ s2n and s1 differ in exactly one bit.

9. See Theorem 8.3.6.

Section 8.3
1. (d, a, e, b, c, h, g, f, j, i, d)

3. We would have to eliminate two edges each at b, d, i , and k,
leaving 19 − 8 = 11 edges. A Hamiltonian cycle would have
12 edges.

6. (a, b, c, j, i, m, k, d, e, f, l, g, h, a)

9.
a b

c

d e

12. If n is even and m > 1 or if m is even and n > 1, there is a
Hamiltonian cycle. The sketch shows the solution in case n is
even.

Start/finish

If n = 1 or if m = 1, there is no cycle and, in particular,
there is no Hamiltonian cycle. Suppose that n and m are both
odd and that the graph has a Hamiltonian cycle. Since there
are nm vertices, this cycle has nm edges; therefore, the Hamil-
tonian cycle contains an odd number of edges. However, we
note that in a Hamiltonian cycle, there must be as many “up”
edges as “down” edges and as many “left” edges as “right”
edges. Thus a Hamiltonian cycle must have an even number
of edges. This contradiction shows that if n and m are both
odd, the graph does not have a Hamiltonian cycle.

15. When m = n and n > 1

18. Any cycle C in the n-cube has even length since the vertices
in C alternate between an even and an odd number of 1’s.

Suppose that the n-cube has a simple cycle of length m.
We just observed that m is even. Now m > 0, by definition.
Since the n-cube is a simple graph, m �= 2. Therefore, m ≥ 4.

Now suppose that m ≥ 4 and m is even. Let G be the
first m/2 members of the Gray code Gn−1. Then 0G, 1G R

describes a simple cycle of length m in the n-cube.

21.

25. Yes. If (v1, . . . , vn−1, vn), v1 = vn , is a Hamiltonian cycle,
(v1, . . . , vn−1) is a Hamiltonian path.

28. Yes, (a, b, d, g, m, l, h, i, j, e, f, k, c)

31. Yes, (i, j, g, h, e, d, c, b, a, f)

34. Yes, (a, c, d, f, g, e, b)

714 Hints and Solutions to Selected Exercises

Section 8.4 Review
1. Label the start vertex 0 and all other vertices ∞. Let T be

the set of all vertices. Choose v ∈ T with minimum label and
remove v from T . For each x ∈ T adjacent to v, relabel x with
the minimum of its current label and the label of v +w(v, x),
where w(v, x) is the weight of edge (v, x). Repeat if z /∈ T .

2. See Example 8.4.2.

3. See the proof of Theorem 8.4.3.

Section 8.4
1. 7; (a, b, c, f)

4. 7; (b, c, f, j)

6. An algorithm can be modeled after Example 8.4.2.

9. Modify Algorithm 8.4.1 so that it begins by assigning the
weight ∞ to each nonexistent edge. The algorithm then con-
tinues as written. At termination, L(z) will be equal to ∞ if
there is no path from a to z.

Section 8.5 Review
1. Order the vertices and label the rows and columns of a matrix

with the ordered vertices. The entry in row i , column j , i �= j ,
is the number of edges incident on i and j . If i = j , the entry is
twice the number of loops incident on i . The resulting matrix
is the adjacency matrix of the graph.

2. The ijth entry in An is equal to the number of paths of length
n from vertex i to vertex j .

3. Order the vertices and edges and label the rows of a matrix
with the vertices and the columns with the edges. The entry in
row v and column e is 1 if e is incident on v and 0 otherwise.
The resulting matrix is the incidence matrix of the graph.

Section 8.5
1. ⎛

⎜⎜⎜⎝

a b c d e

a 0 1 1 1 1
b 1 0 1 0 0
c 1 1 0 1 1
d 1 0 1 0 1
e 1 0 1 1 0

⎞
⎟⎟⎟⎠

4. ⎛
⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6

v1 0 1 1 0 0 0
v2 1 0 1 0 0 0
v3 1 1 0 0 0 0
v4 0 0 0 0 0 0
v5 0 0 0 0 0 1
v6 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

7. ⎛
⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8

a 1 0 1 0 1 1 0 0
b 1 1 0 0 0 0 0 0
c 0 1 0 1 1 0 1 0
d 0 0 0 1 0 1 0 1
e 0 0 1 0 0 0 1 1

⎞
⎟⎟⎟⎠

10. ⎛
⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 e7 e8

1 1 0 0 0 0 0 0 0
2 1 1 0 1 1 1 0 0
3 0 1 1 0 0 0 0 0
4 0 0 1 1 0 0 0 0
5 0 0 0 0 1 0 1 0
6 0 0 0 0 0 1 1 1
7 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

13.
a b

c

d

e

16.

f a e
b

cd

19. [For K5]⎛
⎜⎜⎝

4 3 3 3 3
3 4 3 3 3
3 3 4 3 3
3 3 3 4 3
3 3 3 3 4

⎞
⎟⎟⎠

22. The graph is not connected.

24.
b

a

e

d

c

27. G is not connected.

28. Because of the symmetry of the graph, if v and w are vertices in
K5, there is the same number of paths of length n from v to v as
there is from w to w . Thus all the diagonal elements of An are
equal. Similarly, all the off-diagonal elements of An are equal.

31. If n ≥ 2,

dn = 4an−1 by Exercise 29

= 4

(
1

5

)
[4n−1 + (−1)n] by Exercise 30.

The formula can be directly verified for n = 1.

Section 8.6 Review
1. Graphs G1 and G2 are isomorphic if there is a one-to-one,

onto function f from the vertices of G1 to the vertices of G2

and a one-to-one, onto function g from the edges of G1 to the
edges of G2, so that an edge e is incident on v and w in G1 if

Hints and Solutions to Selected Exercises 715

and only if the edge g(e) is incident on f (v) and f (w) in G2.

2. The following graphs

a 1 2

43

b

dc

are isomorphic. An isomorphism is given by f (a) = 1,
f (b) = 2, f (c) = 4, f (d) = 3, and g(a, b) = (1, 2),
g(b, c) = (2, 4), g(c, d) = (4, 3), g(d, a) = (3, 1).

3. The following graphs

are not isomorphic; the first graph has two vertices, but the
second graph has three vertices.

4. A property P is an invariant if, whenever G1 and G2 are
isomorphic graphs, if G1 has property P , then G2 also has
property P .

5. To show that two graphs are not isomorphic, find an invariant
that one graph has and the other does not have.

6. Two graphs are isomorphic if and only if for some orderings
of their vertices, their adjacency matrices are equal.

7. A rectangular array of vertices

Section 8.6
1. Relative to the vertex orderings a, b, c, d, e, f, g for G1, and

1, 3, 5, 7, 2, 4, 6 for G2, the adjacency matrices of G1 and G2

are equal.

4. Relative to the vertex orderings a, b, c, d, e, f, g, h, i, j for
G1, and 5, 6, 1, 2, 7, 4, 10, 8, 3, 9 for G2, the adjacency ma-
trices of G1 and G2 are equal.

7. The graphs are not isomorphic since they do not have the same
number of vertices.

10. The graphs are not isomorphic since G1 has a simple cycle of
length 3 and G2 does not.

13. The graphs are not isomorphic. The edge (1, 4) in G2 has
δ(1) = 3 and δ(4) = 3 but there is no such edge in G1 (see
also Exercise 21).

In Exercises 17–23, we use the notation of Definition 8.6.1.

17. If (v0, v1, . . . , vk) is a simple cycle of length k in G1, then
(f (v0), f (v1), . . . , f (vk)) is a simple cycle of length k in G2.
[The vertices f (vi), i = 1, . . . , k − 1, are distinct, since f is
one-to-one.]

20. In the hint to Exercise 17, we showed that if C =
(v0, v1, . . . , vk) is a simple cycle of length k in G1, then
(f (v0), f (v1), . . . , f (vk)), which here we denote f (C), is
a simple cycle of length k in G1. Let C1, C2, . . . , Cn de-
note the n simple cycles of length k in G1. Then f (C1),
f (C2), . . . , f (Cn) are n simple cycles of length k in G2.

Moreover, since f is one-to-one, f (C1), f (C2), . . . , f (Cn)
are distinct.

23. The property is an invariant. If (v0, v1, . . . , vn) is an Euler
cycle in G1, then, since g is onto, (f (v0), f (v1), . . . , f (vn))
is an Euler cycle in G2.

26.

29.

31.
a

e

c

bd

34.

(a) (b)

37. Define g((v, w)) = (f (v), f (w)).

38. f (a) = 1, f (b) = 2, f (c) = 3, f (d) = 2

41. f (a) = 1, f (b) = 2, f (c) = 3, f (d) = 1

Section 8.7 Review
1. A graph that can be drawn in the plane without its edges

crossing

2. A contiguous region 3. f = e − v + 2

4. Edges of the form (v, v1) and (v, v2), where v has degree 2
and v1 �= v2

5. Given edges of the form (v, v1) and (v, v2), where v has de-
gree 2 and v1 �= v2, a series reduction deletes vertex v and
replaces (v, v1) and (v, v2) by (v1, v2).

6. Two graphs are homeomorphic if they can be reduced to iso-
morphic graphs by performing a sequence of series reductions.

716 Hints and Solutions to Selected Exercises

7. A graph is planar if and only if it does not contain a subgraph
homeomorphic to K5 or K3,3.

Section 8.7
1.

a

e

c

b

d

4.
a

f

c

b d

e

is K3, 3

6. Planar

a

f c

b

de

9. 2e = 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 5,
so e = 14. f = e − v + 2 = 14 − 9 + 2 = 7

12. A graph with five or fewer vertices and a vertex of degree 2 is
homeomorphic to a graph with four or fewer vertices. Such a
graph cannot contain a homeomorphic copy of K3,3 or K5.

15. If K5 is planar, e ≤ 3v − 6 becomes 10 ≤ 3 · 5 − 6 = 9.

18.

CBA

H

GF
E

D

22.

A

E
F

H

L

K

J

I

G

B
M

CD

25.

28. It contains

31. Assume that G does not have a vertex of degree 5. Show that
2e ≥ 6v. Now use Exercise 13 to deduce a contradiction.

Section 8.8 Review
1. Instant Insanity consists of four cubes each of whose faces is

painted one of the four colors, red, white, blue, or green. The
problem is to stack the cubes, one on top of the other, so that
whether the stack is viewed from front, back, left, or right, one
sees all four colors.

2. Draw a graph G, where the vertices represent the four colors
and an edge labeled i connects two vertices if the opposing
faces of cube i have those colors. Find two graphs where

■ Each vertex has degree 2.

■ Each cube represents an edge exactly once in each
graph.

■ The graphs have no edges in common.

One graph represents the front/back stacking, and the other
represents the left/right stacking.

Hints and Solutions to Selected Exercises 717

Section 8.8
1.

2

3 1 4 2

4

3 1

R B

W G

R B

W G

G1 G2

4.

1

2

3
4 3 1

2

4
R B

W G

R B

W G

G2G1

7. (a)
2

1

2

3 3

1 1

4 4�

2

4

1

3 4 1

3 2

1

3 2
3

4

2

1 3

2

R B

W G

R B

W G

R B

W G

R B

W G

R B

W G

R B

W G

R B

W G

G1 G2

G4G3

G5 G6

G7

4�

4�

(b) Solutions are G1, G5; G1, G7; G2, G4; G2, G6;
G3, G6; and G3, G7.

13. One edge can be chosen in C(2+4−1, 2) = 10 ways. The three
edges labeled 1 can be chosen in C(3+10−1, 3) = 220 ways.
Thus the total number of graphs is 2204.

15.

R B W G

3
4
1

2

4
3
2

1

19. According to Exercise 14, not counting loops, every vertex
must have degree at least 4. In Figure 8.8.5, not counting
loops, vertex W has degree 3 and, therefore, Figure 8.8.5 does

not have a solution to the modified version of Instant Insanity.
Figure 8.8.3 gives a solution to regular Instant Insanity for
Figure 8.8.5.

Chapter 8 Self-Test
1. V = {v1, v2, v3, v4}. E = {e1, e2, e3}. e1 and e2 are parallel

edges. There are no loops. v1 is an isolated vertex. G is not a
simple graph. e3 is incident on v2 and v4. v2 is incident on e1,
e2, and e3.

2. There are vertices (a and e) of odd degree.

3.

4. If we let V1 denote the set of vertices containing an even
number of 1’s and V2 the set of vertices containing an odd
number of 1’s, each edge is incident on one vertex in V1 and
one vertex in V2. Therefore, the n-cube is bipartite.

5. It is a cycle.

6.

e2

v2

v1

v3 v4 v2 v3

v1

v4 v2 v3

v1 v1 v1

v4v2 v3 v4v3v2

v4

v1

e1 e3e1 e3e2

e2e1 e3e1 e3e2

7. v1 v2 v3

v4v5

v7

v6

e1 e2

e3

e10

e8e11

8. No. There are vertices of odd degree.

9. (v1, v2, v3, v4, v5, v7, v6, v1)

10. (000, 001, 011, 010, 110, 111, 101, 100, 000)

11. A Hamiltonian cycle would have seven edges. Suppose that
the graph has a Hamiltonian cycle. We would have to elim-
inate three edges at vertex b and one edge at vertex f . This
leaves 10− 4 = 6 edges, not enough for a Hamiltonian cycle.
Therefore, the graph does not have a Hamiltonian cycle.

12. In a minimum-weight Hamiltonian cycle, every vertex must
have degree 2. Therefore, edges (a, b), (a, j), (j, i), (i, h),
(g, f), (f, e), and (e, d) must be included. We cannot include
edge (b, h) or we will complete a cycle. This implies that
we must include edges (h, g) and (b, c). Since vertex g now
has degree 2, we cannot include edge (c, g) or (g, d). Thus
we must include (c, d). This is a Hamiltonian cycle and the
argument shows that it is unique. Therefore, it is minimal.

13. 9 14. 11

718 Hints and Solutions to Selected Exercises

15. (a, e, f, i, g, z)

16. 12

17. ⎛
⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7

v1 0 1 0 0 0 1 0
v2 1 0 1 1 0 1 1
v3 0 1 0 1 0 0 0
v4 0 1 1 0 1 0 0
v5 0 0 0 1 0 1 1
v6 1 1 0 0 1 0 1
v7 0 1 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

18. ⎛
⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

v1 1 0 0 0 0 0 1 0 0 0 0
v2 1 1 0 1 1 1 0 0 0 0 0
v3 0 1 1 0 0 0 0 0 0 0 0
v4 0 0 1 1 0 0 0 0 0 1 0
v5 0 0 0 0 0 0 0 1 1 1 0
v6 0 0 0 0 0 1 1 0 1 0 1
v7 0 0 0 0 1 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

19. The number of paths of length 3 from v2 to v3

20. No. Each edge is incident on at least one vertex.

21. The graphs are isomorphic. The orderings v1, v2, v3, v4, v5

and w3, w1, w4, w2, w5 produce equal adjacency matrices.

22. The graphs are isomorphic. The orderings v1, v2, v3, v4, v5, v6

and w3, w6, w2, w5, w1, w4 produce equal adjacency matrices.

23.

24.

25. The graph is planar:

a d

f b

c
e

h
g

26. The graph is not planar; the following subgraph is homeomor-
phic to K5:

a d

e

i

g

f
b

c

h

27. A simple, planar, connected graph with e edges and v vertices
satisfies e ≤ 3v − 6 (see Exercise 13, Section 8.7). If e = 31
and v = 12, the inequality is not satisfied, so such a graph
cannot be planar.

28. For n = 1, 2, 3, it is possible to draw the n-cube in the plane
without having any of its edges cross:

n = 2n = 1 n = 3

We argue by contradiction to show that the 4-cube is
not planar. Suppose that the 4-cube is planar. Since every
cycle has at least four edges, each face is bounded by at least
four edges. Thus the number of edges that bound faces is at
least 4 f . In a planar graph, each edge belongs to at most two
bounding cycles. Therefore, 2e ≥ 4 f . Using Euler’s formula
for graphs, we find that

2e ≥ 4(e − v + 2).

For the 4-cube, we have e = 32 and v = 16, so Euler’s formula
becomes

64 = 2 · 32 ≥ 4(32 − 16 + 2) = 72,

which is a contradiction. Therefore, the 4-cube is not planar.
The n-cube, for n > 4, is not planar since it contains the 4-cube.

29.

R B

W G

4
3

2

3

21134
4

1

2

30. See the hints for Exercises 31 and 32.

Hints and Solutions to Selected Exercises 719

31.

G6

4 3 1 2 4 3 2 4 1

2

3

4 1�

2

3

1 4

2

3

3 2

4

1

G5G4

G3G2G1

1�

We denote the two edges incident on B and G labeled 1 in the
graph of Exercise 29 as 1 and 1′ here.

32. The puzzle of Exercise 29 has four solutions. Using the nota-
tion of Exercise 31, the solutions are G1, G5; G2, G5; G3, G6;
and G4, G6.

Section 9.1 Review
1. A free tree T is a simple graph satisfying the following: If v and

w are vertices in T , there is a unique simple path from v to w .

2. A rooted tree is a tree in which a particular vertex is designated
the root.

3. The level of a vertex v is the length of the simple path from
the root to v.

4. The height of a rooted tree is the maximum level number that
occurs.

5. See Figure 9.1.9.

6. In the rooted tree structure, each vertex represents a file or
a folder. Directly under a folder f are the folders and files
contained in f .

7. A Huffman code can be defined by a rooted tree. The code for
a particular character is obtained by following the simple path
from the root to that character. Each edge is labeled with 0 or
1, and the sequence of bits encountered on the simple path is
the code for that character.

8. Suppose that there are n frequencies. If n = 2, build the tree
shown in Figure 9.1.11 and stop. Otherwise, let fi and f j

denote the smallest frequencies, and replace them in the list by
fi + f j . Recursively construct an optimal Huffman coding tree
using the modified list. In the tree that results, add two edges
to a vertex labeled fi + f j , and label the added vertices fi

and f j .

Section 9.1
1. The graph is a tree. For any vertices v and w , there is a unique

simple path from v to w .

4. The graph is a tree. For any vertices v and w , there is a unique
simple path from v to w .

7. n = 1

8. a-1; b-1; c-1; d-1; e-2; f -3; g-3; h-4; i-2; j-3; k-0

11. Height = 4

a

b

c

d f

e

g

h
i

j

14. PEN 17. SALAD

18. 0111100010 21. 0110000100100001111

24.
1 0

1 0

1 0 1 0

27. Another tree is shown in the hint for Exercise 24.

1 0

1 0

1 0

1 0

32. Let T be a tree. Root T at some arbitrary vertex. Let V be the
set of vertices on even levels and let W be the set of vertices
on odd levels. Since each edge is incident on a vertex in V and
a vertex in W , T is a bipartite graph.

35. e, g

38. The radius is the eccentricity of a center. It is not necessarily
true that 2r = d (see Figure 9.1.5).

Section 9.2 Review
1. Let (v0, . . . , vn−1, vn) be a path from the root v0 to vn . We

call vn−1 the parent of vn .

2. Let (v0, . . . , vn) be a path from the root v0 to vn . We call
(vi , . . . , vn) descendants of vi−1.

3. v and w are siblings if they have the same parent.

4. A terminal vertex is one with no children.

5. If v is not a terminal vertex, it is an internal vertex.

6. An acyclic graph is a graph with no cycles.

7. See Theorem 9.2.3.

Section 9.2
1. Kronos

4. Apollo, Athena, Hermes, Heracles

7. b; d 10. e, f, g, j ; j

720 Hints and Solutions to Selected Exercises

13. a, b, c, d, e 17. They are siblings.
22. 25.

27. A single vertex is a “cycle” of length 0.

30. Each component of a forest is connected and acyclic and,
therefore, a tree.

33. Suppose that G is connected. Add parallel edges until the
resulting graph G∗ has n − 1 edges. Since G∗ is connected
and has n − 1 edges, by Theorem 9.2.3, G∗ is acyclic. But
adding an edge in parallel introduces a cycle. Contradiction.

36.

Section 9.3 Review
1. A tree T is a spanning tree of a graph G if T is a subgraph of

G that contains all of the vertices of G.

2. A graph G has a spanning tree if and only if G is connected.

3. Select an ordering of the vertices. Select the first vertex and
label it the root. Let T consist of this single vertex and no
edges. Add to the tree all edges incident on this single vertex
that do not produce a cycle when added to the tree. Also add
the vertices incident on these edges. Repeat this procedure
with the vertices on level 1, then those on level 2, and so on.

4. Select an ordering of the vertices. Select the first vertex and
label it the root. Add an edge incident on this vertex to the tree,
and add the additional vertex v incident on this edge. Next add
an edge incident on v that does not produce a cycle when added
to the tree, and add the additional vertex incident on this edge.
Repeat this process. If, at any point, we cannot add an edge in-
cident on a vertex w , we backtrack to the parent p of w and try
to add an edge incident on p. When we finally backtrack to the
root and cannot add more edges, depth-first search concludes.

5. Depth-first search

Section 9.3
1.

4. The path (h, f, e, g, b, d, c, a)

7.

10. The two-queens problem clearly has no solution. For the three-
queens problem, by symmetry, the only possible first column
positions are upper left and second from top. If the first move
is first column, upper left, the second move must be to the
bottom of the second column. Now no move is possible for
the third column. If the first move is first column, second from
top, there is no move possible in column two. Therefore, there
is no solution to the three-queens problem.

13.

�

�

�

�

�

17. False. Consider K4.

20. First, show that the graph T constructed is a tree. Now use
induction on the level of T to show that T contains all the
vertices of G.

23. Suppose that x is incident on vertices a and b. Removing x
from T produces a disconnected graph with two components,
U and V . Vertices a and b belong to different components—
say, a ∈ U and b ∈ V . There is a path P from a to b in T ′.
As we move along P , at some point we encounter an edge
y = (v, w) with v ∈ U , w ∈ V . Since adding y to T − {x}
produces a connected graph, (T − {x}) ∪ {y} is a spanning
tree. Clearly, (T ′ − {y}) ∪ {x} is a spanning tree.

26. Suppose that T has n vertices. If an edge is added to T , the
resulting graph T ′ is connected. If T ′ were acyclic, T ′ would
be a tree with n edges and n vertices. Thus T ′ contains a cycle.
If T ′ contains two or more cycles, we would be able to produce
a connected graph T ′′ by deleting two or more edges from T ′.
But now T ′′ would be a tree with n vertices and fewer than
n − 1 edges—an impossibility.

27. ⎛
⎜⎝

e1 e2 e6 e5 e3 e4 e7 e8

(abca) 1 0 0 0 1 1 0 0
(acda) 0 1 0 0 1 0 0 1
(acdb) 0 0 1 0 0 1 0 1
(bcdeb) 0 0 0 1 0 1 1 1

⎞
⎟⎠

30. Input: A graph G = (V , E) with n vertices

Output: true if G is connected
false if G is not connected

is connected(V , E) {
T = bfs(V , E)
// T = (V ′, E ′) is the spanning tree returned by bfs
if (|V ′| == n)

return true
else

return false
}

33. bfs track parent(V , E , parent) {
S = (v1)
// set v1’s parent to 0 to indicate that v1 has no parent
parent(v1) = 0
V ′ = {v1}

Hints and Solutions to Selected Exercises 721

E ′ = ∅

while (true) {
for each x ∈ S, in order,

for each y ∈ V − V ′, in order
if ((x , y) is an edge) {

add edge (x , y) to E ′ and y to V ′
parent(y) = x

}
if (no edges were added)

return T
S = children of S ordered consistently with the original

vertex ordering
}

}
34. print parents(V , parent) {

for each v ∈ V
println(v, parent(v))

}
37. An algorithm can be obtained by modifying the four-queens

algorithm. The array row is replaced by the array p, which
is the permutation. A conflict for p(k) now means that for
some i < k, p(i) = p(k), that is, the value p(k) has already
been assigned. To obtain all of the permutations, when we
find a permutation, we print it and continue (whereas in the
four-queens algorithm, being content with one solution, we
terminated the algorithm).

perm(n) {
k = 1
p(1) = 0
while (k > 0) {

p(k) = p(k) + 1
while (p(k) ≤ n ∧ p(k) conflicts)

p(k) = p(k) + 1
if (p(k) ≤ n)

if (k == n)
println(p)

else {
k = k + 1
p(k) = 0

}
else

k = k − 1
}

}

40. The idea of the backtracking algorithm is to scan the grid (we
chose to scan top to bottom, left to right), skipping positions
where numbers were preassigned, and, at the next available po-
sition, we try 1, then 2, then 3, and so on, until we find a legal
value (i.e., a value that does not conflict within its 3 × 3 sub-
square, within its row, or within its column). If such a value is
found, we continue with the next available position. If no such
value can be found, we backtrack to the last position where we
assigned a value; if that value was i , we try i+1, i+2 and so on.

In the following algorithm, the value s(i, j) is the value
in row i , column j , or 0 if no value is stored there. We assume

that initially all values in s are set to 0, except for those values
that are specified in the puzzle. Finally, show values prints the
array s.

sudoku(s) {
i = 0
j = 1
// advance advances i and j to the next position in which
// a value is not specified. It proceeds down a column first.
advance(i, j)
while (i ≥ 1 ∧ j ≥ 1) {

// search for a legal value
s(i, j) = s(i, j) + 1
// not valid(i, j) returns true if the value s(i, j)
// conflicts with the previously chosen and specified
// values, and false otherwise.
while (s(i, j) < 10 ∧ not valid(i, j))

s(i, j) = s(i, j) + 1
// if no value found, backtrack
if (s(i, j) == 10) {

s(i, j) = 0
// retreat moves i and j to the previous position in
// which a value is not specified. It proceeds up a
// column first.
retreat(i, j)

}
else

advance(i, j) // sets j to 10 if advanced off board
if (j == 10) {

// Solution!
show values()
return

}
}

}

Section 9.4 Review
1. A minimal spanning tree is a spanning tree with minimum

weight.

2. Prim’s Algorithm builds a minimal spanning tree by iteratively
adding edges. The algorithm begins with a single vertex. Then
at each iteration, it adds to the current tree a minimum-weight
edge that does not complete a cycle.

3. A greedy algorithm optimizes the choice at each iteration.

Section 9.4
1. 4.

722 Hints and Solutions to Selected Exercises

10. If v is the first vertex examined by Prim’s Algorithm, the
edge will be in the minimal spanning tree constructed by the
algorithm.

13. Suppose that G has two minimal spanning trees T1 and T2.
Then, there exists an edge x in T1 that is not in T2. By Exer-
cise 23, Section 9.3, there exists an edge y in T2 that is not in
T1 such that T3 = (T1 − {x}) ∪ {y} and T4 = (T2 − {y}) ∪ {x}
are spanning trees. Since x and y have different weights, either
T3 or T4 has weight less than T1. This is a contradiction.

14. False

1

4

6

2 5

a b

cd

16. False. Consider K5 with the weight of every edge equal to 1.

20. Input: The edges E of an n-vertex, connected, weighted
graph. If e is an edge, w(e) is equal to the weight
of e; if e is not an edge, w(e) is equal to ∞ (a value
greater than any actual weight).

Output: A minimal spanning tree.

kruskal(E , w , n) {
V ′ = ∅

E ′ = ∅

T ′ = (V ′, E ′)
while (|E ′| < n − 1) {

among all edges that if added to T ′ would not
complete a cycle, choose e = (vi , v j) of
minimum weight

E ′ = E ′ ∪ {e}
V ′ = V ′ ∪ {vi , v j }
T ′ = (V ′, E ′)

}
return T ′

}

23. Terminate Kruskal’s Algorithm after k iterations. This groups
the data into n − k classes.

27. We show that a1 = 7 and a2 = 3 provide a solution. We
use induction on n to show that the greedy solution gives an
optimal solution for n ≥ 1. The cases n = 1, 2, . . . , 8 may be
verified directly.

We first show that if n ≥ 9, there is an optimal solution
containing at least one 7. Let S′ be an optimal solution. Sup-
pose that S′ contains no 7’s. Since S′ contains at most two 1’s
(since S′ is optimal), S′ contains at least three 3’s. We replace
three 3’s by one 7 and two 1’s to obtain a solution S. Since
|S| = |S′|, S is optimal.

If we remove a 7 from S, we obtain a solution S∗ to the
(n−7)-problem. If S∗ were not optimal, S could not be optimal.
Thus S∗ is optimal. By the inductive assumption, the greedy so-
lution GS∗ to the (n−7)-problem is optimal, so |S∗| = |GS∗|.
Notice that 7 together with GS∗ is the greedy solution GS to
the n-problem. Since |GS| = |S|, GS is optimal.

29. Suppose that the greedy algorithm is optimal for all denomi-
nations less than am−1 + am . We use induction on n to show
that the greedy algorithm is optimal for all n. We may assume
that n ≥ am−1 + am .

Consider an optimal solution S for n. First suppose that
S uses at least one am coin. The solution, S with one am coin
removed, is optimal for n − am . (If there was a solution for
n − am using fewer coins, we could add one am coin to it to
obtain a solution for n using fewer coins than S, which is im-
possible.) By the inductive assumption, the greedy solution for
n−am is optimal. If we add one am coin to the greedy solution
for n−am , we obtain a solutionG for n that uses the same num-
ber of coins as S. Therefore, G is optimal. But G is also greedy
because the greedy solution begins by removing one am coin.

Now suppose thatS does not use an am coin. Let i be the
largest index such that S uses an ai coin. The solution, S with
one ai coin removed, is optimal for n − ai . By the inductive
assumption, the greedy solution for n − ai is optimal. Now

n ≥ am−1 + am ≥ ai + am ,

so n − ai ≥ am . Therefore, the greedy solution uses at least
one am coin. Thus there is an optimal solution for n − ai that
uses an am coin. If we add one ai coin to this optimal solution,
we obtain an optimal solution for n that uses an am coin. The
argument in the preceding paragraph can now be repeated to
show that the greedy solution is optimal.

Section 9.5 Review
1. A binary tree is a rooted tree in which each vertex has either

no children, one child, or two children.

2. A left child of vertex v is a child designated as “left.”

3. A right child of vertex v is a child designated as “right.”

4. A full binary tree is a binary tree in which each vertex has
either two children or zero children.

5. i + 1 6. 2i + 1

7. If a binary tree of height h has t terminal vertices, then lg t ≤ h.

8. A binary search tree is a binary tree T in which data are as-
sociated with the vertices. The data are arranged so that, for
each vertex v in T , each data item in the left subtree of v is
less than the data item in v, and each data item in the right
subtree of v is greater than the data item in v.

9. See Figures 9.5.4 and 9.5.5.

10. Insert the first data item in a vertex and label it the root. Insert
the next data items in the tree according to the following steps.
Begin at the root. If the data item to be added is less than
the data item at the current vertex, move to the left child and
repeat; otherwise, move to the right child and repeat. If there
is no child, create one, put an edge incident on it and the last
vertex visited, and store the data item in the added vertex.

Section 9.5
1. Example 9.5.5 showed that n−1 games are played. Since there

are two choices for the winner of each game, the tournament
can unfold in 2n−1 ways.

Hints and Solutions to Selected Exercises 723

4. No. Based on past performance, it is likely that certain teams
will defeat other teams. Someone knowledgeable about bas-
ketball will take this into account. For example, through 2007
a number 16 seed has never defeated a number 1 seed.

5.
FOUR

AND SCORE

BROUGHT YEARS

AGO SEVEN

FORTH

FOREFATHERS OUR

8. False. Consider

M

A Y

B Z

9.

12. mi + 1, (m − 1)i + 1

15. t − 1

18. Balanced

21. Balanced

22. A tree of height 0 has one vertex, so N0 = 1. In a balanced bi-
nary tree of height 1, the root must have at least one child. If the
root has exactly one child, the number of vertices will be min-
imized. Therefore, N1 = 2. In a balanced binary tree of height
2, there must be a path from the root to a terminal vertex of
length 2. This accounts for three vertices. But for the tree to be
balanced, the root must have two children. Therefore, N2 = 4.

25. Suppose that there are n vertices in a balanced binary tree of
height h. Then

n ≥ Nh = fh+3 − 1 >

(
3

2

)h+2

− 1,

for h ≥ 3. The equality comes from Exercise 24 and the last
inequality comes from Exercise 27, Section 4.4. Therefore,

n + 1 >

(
3

2

)h+2

.

Taking the logarithm to the base 3/2 of each side, we obtain

log3/2(n + 1) > h + 2.

Therefore,

h < [log3/2(n + 1)] − 2 = O(lg n).

Section 9.6 Review
1. Preorder traversal processes the vertices of a binary tree by be-

ginning at the root and recursively processing the current ver-
tex, the vertex’s left subtree, and then the vertex’s right subtree.

2. Input: PT , the root of a binary tree

Output: Dependent on how “process” is interpreted

preorder (PT) {
if (PT == null)

return
process PT
l = left child of PT
preorder(l)
r = right child of PT
preorder (r)

}

3. Inorder traversal processes the vertices of a binary tree by be-
ginning at the root and recursively processing the vertex’s left
subtree, the current vertex, and then the vertex’s right subtree.

4. Input: PT , the root of a binary tree

Output: Dependent on how “process” is interpreted

inorder (PT) {
if (PT == null)

return
l = left child of PT
inorder(l)
process PT
r = right child of PT
inorder (r)

}

5. Postorder traversal processes the vertices of a binary tree by be-
ginning at the root and recursively processing the vertex’s left
subtree, the vertex’s right subtree, and then the current vertex.

6. Input: PT , the root of a binary tree

Output: Dependent on how “process” is interpreted

postorder (PT) {
if (PT == null)

return
l = left child of PT
postorder (l)
r = right child of PT
postorder (r)
process PT

}

7. In the prefix form of an expression, an operator precedes its
operands.

8. Polish notation

9. In the infix form of an expression, an operator is between its
operands.

10. In the postfix form of an expression, an operator follows its
operands.

11. Reverse Polish notation

12. No parentheses are needed.

724 Hints and Solutions to Selected Exercises

13. In a tree representation of an expression, the internal vertices
represent operators, and the operators operate on the subtrees.

Section 9.6
1. preorder inorder postorder

ABDCE BDAEC DBECA
4. preorder inorder postorder

ABCDE EDCBA EDCBA
6.

*

+ –

A B C D

prefix: ∗ + AB − CD
postfix: AB + CD − ∗

9.

*

–

*

*

+

+

+

+

A

E

C

D

B

A B

C

D

prefix: − ∗ + ∗ +ABCDE + ∗ + ABCD
postfix: AB + C ∗ D + E ∗ AB + C ∗ D +−

11.

+

–

A B

C

prefix: −+ ABC
usual infix: A + B − C

parened infix: ((A + B) − C)

14.

*

/

–

+

*

B C

CA

D E

prefix: − ∗ A ∗ BC/C + DE
usual infix: A ∗ B ∗ C − C/(D + E)

parened infix: ((A ∗ (B ∗ C)) − (C/(D + E)))

16. −4 19. 0

22.
A

B

C

A

B

C

25.
A

B

A

B

28. Input: PT , the root of a binary tree

Output: PT , the root of the modified binary tree

swap children (PT) {
if (PT == null)

return
swap the left and right children of PT
l = left child of PT
swap children(l)
r = right child of PT
swap children(r)

}

31. If T is a binary tree, we let post(T) denote the order in which
the vertices of T are visited under postorder traversal. We
let revpost(T) denote the reverse of post(T). We prove by
induction on the number of nodes in a tree T that the order in
which funnyorder visits the nodes of T is revpost(T).

The assertion is evident if T has no nodes. Thus the
basis step is proved.

Now assume that the order in which funnyorder visits
the nodes of a tree T ′ having fewer than n nodes is revpost(T ′).
Let T be an n-node tree. We must prove that the order in which
funnyorder visits the nodes of T is revpost(T).

Let T1 be the left subtree of T , let T2 be the right
subtree of T , and let r be the root of T . By the inductive
assumption, the order in which funnyorder visits the nodes of
T1 is revpost(T1), and the order in which funnyorder visits the
nodes of T2 is revpost(T2). The pseudocode shows that the
order in which funnyorder visits the nodes of T is

r, revpost(T2), revpost(T1).

The reverse of this list is

post(T1), post(T2), r,

which is the order in which postorder visits the nodes of T .
The inductive step is complete.

32. Define an initial segment of a string to be the first i ≥ 1
characters for some i . Define r (x) = 1, for x = A, B, . . . , Z ;
and r (x) = −1, for x = +, −, ∗, /. If x1 · · · xn is a string over
{A, . . . , Z , +, −, ∗, /}, define

r (x1 · · · xn) = r (x1) + · · · + r (xn).

Then a string s is a postfix string if and only if r (s) = 1 and
r (s′) ≥ 1, for all initial segments s′ of s.

35. Let G be the graph with vertex set {1, 2, . . . , n} and edge set

{(1, i) | i = 2, . . . n}.

The {1} is a vertex cover of G of size 1.

Hints and Solutions to Selected Exercises 725

38. Input: PT , the root of a nonempty tree

Output: Each vertex of the tree has a field in cover that is
set to true if that vertex is in the vertex cover or to
false if that vertex is not in the vertex cover.

tree cover(PT) {
flag = false
ptr = first child of PT
while (ptr ! = null) {

tree cover(ptr)
if (in cover of ptr == false)

flag = true
ptr = next sibling of ptr

}
in cover of PT = flag

}

Section 9.7 Review
1. A decision tree is a binary tree in which the internal vertices

contain questions with two possible answers, the edges are
labeled with answers to the questions, and the terminal ver-
tices represent decisions. If we begin at the root, answer each
question, and follow the appropriate edges, we will eventually
arrive at a terminal vertex that represents a decision.

2. The worst-case time of an algorithm is proportional to the
height of the decision tree that represents the algorithm.

3. A decision tree that represents a sorting algorithm has n!
terminal vertices corresponding to the n! possible permuta-
tions of input of size n. If h is the height of the tree, then h
comparisons are required in the worst case. Since lg n! ≤ h
and lg n! = �(n lg n), worst-case sorting requires at least
�(n lg n) comparisons.

Section 9.7
1.

C4C1 C2 C3 C3 C2 C1

C1 : C2

C1 : C3C1 : C3C1 : C3

4. In this graph only, if the left pan is heavier, go right.

C1C2C3C4 : C5C6C7C8

C1C2C5 : C3C4C6

C1 : C2 C7 : C8 C3 : C4

C1, L
C6, H

C2, L C8, H C7, H C3, L
C5, H

C4, L

C5C6C1 : C7C8C2

C5 : C6 C3 : C4 C7 : C8

C5, L
C2, H

C6, L C4, H C3, H C7, L
C1, H

C8, L

C1C2C3 : C9C10C11

C9 : C10 C1 : C12 C9 : C10

C10, H
C11, H

C9, H C12, H C12, L C9, L
C11, L

C10, L

726 Hints and Solutions to Selected Exercises

7. There are 28 possible outcomes to the fourteen-coins puzzle.
A tree of height 3 has at most 27 terminal vertices; thus at least
four weighings are required in the worst case. In fact, there is
an algorithm that uses four weighings in the worst case: We
begin by weighing four coins against four coins. If the coins do
not balance, we proceed as in the solution given for Exercise 4
(for the 12-coins puzzle). In this case, at most three weigh-
ings are required. If the coins do balance, we disregard these
coins; our problem then is to find the bad coin from among the
remaining six coins. The six-coins puzzle can be solved in at
most three weighings in the worst case, which, together with
the initial weighing, requires four weighings in the worst case.

9. Let f (n) denote the number of weighings needed to solve the
n-coin problem in the worst case. Let T be the decision tree
that represents this algorithm for input of size n and let h de-
note the height of T . Then the algorithm requires h weighings
in the worst case so h = f (n). Since there are n − 1 possible
outcomes, T has at least n−1 terminal vertices. By the analog
of Theorem 9.5.6 for “trinary” trees, log3(n−1) ≤ h = f (n).

12. The decision tree analysis shows that at least �lg 5!� = 7 com-
parisons are required to sort five items in the worst case. The
following algorithm sorts five items using at most seven com-
parisons in the worst case.

Given the sequence a1, . . . , a5, we first sort a1, a2 (one
comparison) and then a3, a4 (one comparison). (We assume
now that a1 < a2 and a3 < a4.) We then compare a2 and a4.
Let us assume that a2 < a4. (The case a2 > a4 is symmetric
and for this reason that part of the algorithm is omitted.) At
this point we know that

a1 < a2 < a4 and a3 < a4.

Next we determine where a5 belongs among a1, a2, and a4 by
first comparing a5 with a2. If a5 < a2, we next compare a5

with a1; but if a5 > a2, we next compare a5 with a4. In either
case, two additional comparisons are required. At this point,
a1, a2, a4, a5 is sorted. Finally, we insert a3 in its proper place.
If we first compare a3 with the second-smallest item among
a1, a2, a4, a5, only one additional comparison will be required,
for a total of seven comparisons. To justify this last statement,
we note that the following arrangements are possible after we
insert a5 in its correct position:

a5 < a1 < a2 < a4

a1 < a5 < a2 < a4

a1 < a2 < a5 < a4

a1 < a2 < a4 < a5.

If a3 is less than the second item, only one additional compari-
son is needed (with the first item) to locate the correct position
for a3. If a3 is greater than the second item, at most one addi-
tional comparison is needed to locate the correct position for
a3. In the first three cases, we need only compare a3 with ei-
ther a2 or a5 to find the correct position for a3 since we already
know that a3 < a4. In the fourth case, if a3 is greater than a2,
we know that it goes between a2 and a4.

14. We can consider the numbers as contestants and the internal
vertices as winners where the larger value wins.

17. Suppose we have an algorithm that finds the largest value
among x1, . . . , xn . Let x1, . . . , xn be the vertices of a graph.
An edge exists between xi and x j if the algorithm compares
xi and x j . The graph must be connected. The least number of
edges necessary to connect n vertices is n − 1.

20. By Exercise 16, Tournament Sort requires 2k − 1 compar-
isons to find the largest element. By Exercise 18, Tournament
Sort requires k comparisons to find the second-largest element.
Similarly, Tournament Sort requires at most k comparisons to
find the third-largest, at most k comparisons to find the fourth-
largest, and so on. Thus the total number of comparisons is at
most

[2k − 1] + (2k − 1)k ≤ 2k + k2k

≤ k2k + k2k

= 2 · 2kk = 2n lg n.

Section 9.8 Review
1. Free trees T1 and T2 are isomorphic if there is a one-to-one,

onto function f from the vertex set of T1 to the vertex set of T2

satisfying the following: Vertices vi and v j are adjacent in T1

if and only if the vertices f (vi) and f (v j) are adjacent in T2.

2. Let T1 be a rooted tree with root r1 and let T2 be a rooted
tree with root r2. Then T1 and T2 are isomorphic if there is a
one-to-one, onto function f from the vertex set of T1 to the
vertex set of T2 satisfying the following:

(a) vi and v j are adjacent in T1 if and only if f (vi) and f (v j)
are adjacent in T2.

(b) f (r1) = f (r2).

3. Let T1 be a binary tree with root r1 and let T2 be a binary
tree with root r2. Then T1 and T2 are isomorphic if there is a
one-to-one, onto function f from the vertex set of T1 to the
vertex set of T2 satisfying the following:

(a) vi and v j are adjacent in T1 if and only if f (vi) and f (v j)
are adjacent in T2.

(b) f (r1) = f (r2).

(c) v is a left child of w in T1 if and only if f (v) is a left child
of f (w) in T2.

(d) v is a right child of w in T1 if and only if f (v) is a right
child of f (w) in T2.

4. C(2n, n)/(n + 1)

5. Given binary trees T1 and T2, we first check whether either is
empty (in which case it is immediate whether they are isomor-
phic). If both are nonempty, we first check whether the left
subtrees are isomorphic and then whether the right subtrees
are isomorphic. T1 and T2 are isomorphic if and only if their
left and right subtrees are isomorphic.

Section 9.8
1. Isomorphic. f (v1) = w1, f (v2) = w5, f (v3) = w3,

f (v4) = w4, f (v5) = w2, f (v6) = w6.

4. Not isomorphic. T2 has a simple path of length 2 from a vertex
of degree 1 to a vertex of degree 1, but T1 does not.

Hints and Solutions to Selected Exercises 727

7. Isomorphic as rooted trees. f (v1)=w1, f (v2)=w4,
f (v3)=w3, f (v4)=w2, f (v5)=w6, f (v6)=w5,
f (v7)=w7, f (v8)=w8. Also isomorphic as free trees.

10. Not isomorphic as binary trees. The root of T1 has a left child
but the root of T2 does not. Isomorphic as rooted trees and as
free trees.

13.

16.

19.

22. Let bn denote the number of nonisomorphic, n-vertex full bi-
nary trees. Since every full binary tree has an odd number of
vertices, bn = 0 if n is even. We show that if n = 2i+1 is odd,

bn = Ci ,

where Ci denotes the i th Catalan number.
The last equation follows from the fact that there is a

one-to-one, onto function from the set of i-vertex binary trees
to the set of (2i + 1)-vertex full binary trees. Such a function
may be constructed as follows. Given an i-vertex binary tree,
at every terminal vertex we add two children. At every vertex
with one child, we add an additional child. Since the tree that
is obtained has i internal vertices, there are 2i + 1 vertices
total (Theorem 9.5.4). The tree constructed is a full binary tree.
Notice that this function is one-to-one. Given a (2i+1)-vertex
full binary tree T ′, if we eliminate all the terminal vertices,
we obtain an i-vertex binary tree T . The image of T is T ′.
Therefore, the function is onto.

25. There are four comparisons at lines 1 and 3. By Exercise 24,
the call bin tree isom(lc r1, lc r2) requires 6(k − 1) + 2
comparisons. The call bin tree isom(rc r1, rc r2) requires
four comparisons. Thus the total number of comparisons is

4 + 6(k − 1) + 2 + 4 = 6k + 4.

27. Let T ∗ denote the tree constructed. Then T ∗ is a full binary
tree. Each vertex in T becomes an internal vertex in T ∗. Since
we added only terminal vertices, the original n − 1 vertices
in T are the only internal vertices in T ∗. By Theorem 9.5.4,
T ∗ has n terminal vertices. Therefore T ∗ ∈ X1. We leave
it to the reader to check that this mapping is a bijection. By
Theorem 9.8.12, there are Cn−1 (n − 1)-vertex binary trees.
Therefore |X1| = Cn−1.

29. By Theorem 9.5.4, a tree in X1 has n − 1 internal vertices
and 2n − 1 total vertices. Thus we may choose the vertex v in

2n − 1 ways and the vertex to mark (left or right) in 2 ways.
Therefore |XT | = 2(2n − 1).

33. Using iteration, we have

Cn = 2(2n − 1)

n + 1
Cn−1

= 2(2n − 1)

n + 1

2(2n − 3)

n
Cn−2

= 22(2n − 1)(2n − 3)

(n + 1)n
Cn−2

= 23(2n − 1)(2n − 3)(2n − 5)

(n + 1)n(n − 1)
Cn−3

...

= 2n−1(2n − 1)(2n − 3) · · · 3
(n + 1)n(n − 1) · · · 3 C1

= 1

n + 1

[
2n(2n − 1)(2n − 3) · · · 3

n(n − 1) · · · 3 · 2

]
= 1

n + 1

[
2nn!(2n − 1)(2n − 3) · · · 3

n!n!

]
= 1

n + 1

{
[(2n)(2n − 2) · · · 2][(2n − 1)(2n − 3) · · · 3]

n!n!

}
= 1

n + 1

(2n)!

n!n!
= 1

n + 1
C(2n, n).

Section 9.9 Review
1. In a game tree, each vertex shows a particular position in the

game. In particular, the root shows the initial configuration of
the game. The children of a vertex show all possible responses
by a player to the position shown in the vertex.

2. In the minimax procedure, values are first assigned to the ter-
minal vertices in a game tree. Then, working from the bottom
up, the value of a circle is set to the minimum of the values of
its children, and the value of a box is set to the maximum of
the values of its children.

3. A search that terminates n levels below the given vertex.

4. An evaluation function assigns to each possible game position
the value of the position to the first player.

5. Alpha-beta pruning deletes (prunes) parts of the game tree and
thus omits evaluating parts of it when the minimax procedure
is applied. Alpha-beta pruning works as follows. Suppose that
a box vertex v is known to have a value of at least x . When a
grandchild w of v has a value of at most x , the subtree whose
root is the parent of w is deleted. Similarly, suppose that a
circle vertex v is known to have a value of at most x . When a
grandchild w of v has a value of at least x , the subtree whose
root is the parent of w is deleted.

6. An alpha value is a lower bound for a box vertex.

7. An alpha cutoff occurs at a box vertex when a grandchild w
of v has a value less than or equal to the alpha value of v.

8. A beta value is an upper bound for a circle vertex.

9. A beta cutoff occurs at a circle vertex when a grandchild w of
v has a value greater than or equal to the beta value of v.

728 Hints and Solutions to Selected Exercises

Section 9.9
1.

3 0

1 0
2 1

4

0 12 1
0 1

1 0
1

0

02
0 1

1 0

0
0

0
0

1
1

0
0

0
0

001

1
0

31 1 2 1

11 001
1

0

5

0
1

02 1 0 11 00
0

1
1

0
1

0

01

3 21 1 1 0

0
0

1
0

00

4 3

6 1

0011 00

2 1

1
0

1 00 1

1 0 0

The first player always wins. The winning strategy is to first
take one token; then, whatever the second player does, leave
one token.

4. The second player always wins. If two piles remain, leave piles
with equal numbers of tokens. If one pile remains, take it.

7. Suppose that the first player can win in nim. The first player
can always win in nim′ by adopting the following strategy:
Play nim′ exactly like nim unless the move would leave an
odd number of singleton piles and no other pile. In this case,
leave an even number of piles.

Suppose that the first player can always win in nim′. The
first player can always win in nim by adopting the following

strategy: Play nim exactly like nim′ unless the move would
leave an even number of singleton piles and no other pile. In
this case, leave an odd number of piles.

9.

6 12 2 1 7 208 6 10 16

12

12

8 16 20

8 20

20

12. The value of the root is 3.

14. (For Exercise 11)

3

5

10

8 2 3412 9 5

12 9 5

10

11

10

1 10

15. 3 − 2 = 1

18. 4 − 1 = 3

19.

O X

X

O
X 3

X
O X

X
O

X
O

X
X O

O
X 4

X
O

4�1 � 3

X
O

5�1 � 4

X
X

O

4�1 � 3

X

O will move to a corner.

3

X
X

X
X

4�0 � 44�1 � 3 4�2 � 2 5�2 � 33�1 � 2

Hints and Solutions to Selected Exercises 729

22. Input: The root PT of a game tree; the type PT type
of PT (box or circle); the level PT level of PT;
the maximum level n to which the search is to
be conducted; an evaluation function E ; and
a number ab val (which is either the alpha- or
beta-value of the parent of PT). (The initial call
sets ab val to ∞ if PT is a box vertex or to
−∞ if PT is a circle vertex.)

Output: The game tree with PT evaluated

alpha beta prune(PT, PT type, PT level, n, E , ab val) {
if (PT level == n) {

contents(PT) = E(PT)
return

}
if (PT type == box) {

contents(PT) = −∞
for each child C of PT {

alpha beta prune(C, circle, PT level + 1, n,
E , content(PT))

c val = contents(C)
if (c val ≥ ab val) {

contents(PT) = ab val
return

}

if (c val > contents(PT))
contents(PT) = c val

}
}
else {

contents(PT) = ∞
for each child C of PT {

alpha beta prune(C, box, PT level + 1, n,
E , content(PT))

c val = contents(C)
if (c val ≤ ab val) {

contents(PT) = ab val
return

}
if (c val < contents(PT))

contents(PT) = c val
}

}
}

23. We first obtain the values 6, 6, 7 for the children of the root.
Then we order the children of the root with the rightmost child
first and use the alpha-beta procedure to obtain

4

8

8

8

8 9

8 8

12

12 39

7

1 7

4

4 4

7

9 1613

9 1

Chapter 9 Self-Test
1. c

a

b

d

e

g

f

h j k l

i

2. a-2, b-1, c-0, d-3, e-2, f -3, g-4, h-5, i-4, j-5, k-5, l-5

3. 5

4.

F D E

B

A C

01

0101

01

01

730 Hints and Solutions to Selected Exercises

5. (a) b

(b) a, c
f

e g i

lkjh
bd

a c

(c) d, a, c, h, j, k, l

(d)
e

d
b

a c

6. True. See Theorem 9.2.3.

7. True. A tree of height 6 or more must have seven or more
vertices.

8. False.

9. a b c

d
e

f

g h i

10. a b c

f

ihg

d e

11. a b c

d
e

f

g h i

12. a b c

d
e

f

g h i

13.
1 2 3

4
5

6

7 8 9

8 14

62 12

416

10

14. (1, 4), (1, 2), (2, 5), (2, 3), (3, 6), (6, 9), (4, 7), (7, 8)

15. (6, 9), (3, 6), (2, 3), (2, 5), (1, 2), (1, 4), (4, 7), (7, 8)

16. Consider a “shortest-path algorithm” in which at each step we
select an available edge having minimum weight incident on
the most recently added vertex (see the discussion preceding
Theorem 9.4.5).

17. 18. 16

19.
WORD

PROCESSING

CLEAN PRODUCES

BUT MANUSCRIPTS PROSE

CLEAR NOT

NECESSARILY

20. We first compare MORE with the word WORD in the root.
Since MORE is less than WORD, we go to the left child. Next,
we compare MORE with PROCESSING. Since MORE is less
than PROCESSING, we go to the left child. Since MORE is
greater than CLEAN, we go to the right child. Since MORE is
greater than MANUSCRIPTS, we go to the right child. Since
MORE is less than NOT, we go to the left child. Since MORE
is less than NECESSARILY, we attempt to go to the left child.
Since there is no left child, we conclude that MORE is not in
the tree.

21. ABFGCDE 22. BGFAEDC 23. GFBEDCA

24.

A

B

C

D

E

–

–

/

*

postfix: EBD/ ∗CA− −
parened infix: ((E ∗ (B/D)) − (C − A))

Hints and Solutions to Selected Exercises 731

25. An algorithm that requires at most two weighings can be rep-
resented by a decision tree of height at most 2. However,
such a tree has at most nine terminal vertices. Since there are

12 possible outcomes, there is no such algorithm. Therefore, at
least three weighings are required in the worst case to identify
the bad coin and determine whether it is heavy or light.

26.

C1C2 : C3C4

C1 : C2

C1, H

C3 : C1

C1 : C2

C3 : C1

C2, H C2, L C1, L

C4, L C3, L

C1 : C5

C1 : C6

C5, L C5, H

C6, L C6, H C3, H C4, H

27. According to Theorem 9.7.3, any sorting algorithm requires at
least Cn lg n comparisons in the worst case. Since Professor
Sabic’s algorithm uses at most 100n comparisons, we must
have Cn lg n ≤ 100n for all n ≥ 1. If we cancel n, we obtain
C lg n ≤ 100 for all n ≥ 1, which is false. Therefore, the pro-
fessor does not have a sorting algorithm that uses at most 100n
comparisons in the worst case for all n ≥ 1.

28. In the worst case, three comparisons are required to sort three
items using an optimal sort (see Example 9.7.2).

If n = 4, binary insertion sort sorts three items (three
comparisons—worst case) and then inserts the fourth item in
the sorted three-item list (two comparisons—worst case) for a
total of five comparisons in the worst case.

If n = 5, binary insertion sort sorts four items (five
comparisons—worst case) and then inserts the fifth item in
the sorted four-item list (three comparisons—worst case) for
a total of eight comparisons in the worst case.

If n = 6, binary insertion sort sorts five items (eight
comparisons—worst case) and then inserts the sixth item in
the sorted five-item list (three comparisons—worst case) for a
total of eleven comparisons in the worst case.

The decision tree analysis shows that any algorithm re-
quires at least five comparisons in the worst case to sort four
items. Thus binary insertion sort is optimal if n = 4.

The decision tree analysis shows that any algorithm re-
quires at least seven comparisons in the worst case to sort five
items. It is possible, in fact, to sort five items using seven com-
parisons in the worst case. Thus binary insertion sort is not
optimal if n = 5.

The decision tree analysis shows that any algorithm re-
quires at least ten comparisons in the worst case to sort six
items. It is possible, in fact, to sort six items using ten com-
parisons in the worst case. Thus binary insertion sort is not
optimal if n = 6.

29. True. If f is an isomorphism of T1 and T2 as rooted trees, f
is also an isomorphism of T1 and T2 as free trees.

30. False.

T1 T2

31. Isomorphic. f (v1) = w6, f (v2) = w2, f (v3) = w5, f (v4) =
w7, f (v5) = w4, f (v6) = w1, f (v7) = w3, f (v8) = w8.

32. Not isomorphic. T1 has a vertex (v3) on level 1 of degree 3,
but T2 does not.

33. 3 − 1 = 2

34. Let each row, column, or diagonal that contains one X and two
blanks count 1. Let each row, column, or diagonal that con-
tains two X’s and one blank count 5. Let each row, column,
or diagonal that contains three X’s count 100. Let each row,
column, or diagonal that contains one O and two blanks count
−1. Let each row, column, or diagonal that contains two O’s
and one blank count −5. Let each row, column, or diagonal
that contains three O’s count −100. Sum the values obtained.

35.

6 7 3

6 8 7 3 8

3 6 8 2 1 7 3 2 4 8

7

732 Hints and Solutions to Selected Exercises

36.

6 7

6 7 3

3 6 8 1 7 3 2

7

Section 10.1 Review
1. A network is a simple, weighted, directed graph with a des-

ignated vertex having no incoming edges, a designated vertex
having no outgoing edges, and nonnegative weights.

2. A source is a vertex with no incoming edges.

3. A sink is a vertex with no outgoing edges.

4. The weight of an edge is called its capacity.

5. A flow assigns each edge a nonnegative number that does not
exceed the capacity of the edge such that for each vertex v,
which is neither the source nor the sink, the flow into v equals
the flow out of v.

6. The flow in an edge is the nonnegative number assigned to it
as in Exercise 5.

7. If Fi j is the flow in edge (i, j), the flow into vertex j is
∑

i Fi j .

8. If Fi j is the flow in edge (i, j), the flow out of vertex i is∑
j Fi j .

9. Conservation of flow refers to the equality of the flow into and
out of a vertex.

10. They are equal.

11. If a network has multiple sources, they can be tied together
into a single vertex called the supersource.

12. If a network has multiple sinks, they can be tied together into
a single vertex called the supersink.

Section 10.1
1. (b, c) is 6, 3; (a, d) is 4, 2; (c, e) is 6, 1; (c, z) is 5, 2. The

value of the flow is 5.

4. Add edges (a, w1), (a, w2), (a, w3), (A, z), (B, z), and (C, z)
each having capacity ∞.

7.
3w1 4b 4c A

8 4

2 6 6 3

4
5

a z4

2

7

5 e 6f C

3

3
dw2 d� B

4

w3 2

2

10.
1 1

1 1

1
a z

Section 10.2 Review
1. A maximal flow is a flow with maximum value.

2. Ignoring the direction of edges, let P = (v0, . . . , vn) be a path
from the source to the sink. If an edge in P is directed from
vi−1 to vi , we say that it is properly oriented with respect to P .

3. Ignoring the direction of edges, let P = (v0, . . . , vn) be a path
from the source to the sink. If an edge in P is directed from
vi to vi−1, we say that it is improperly oriented with respect
to P .

4. We can increase the flow in a path when every properly ori-
ented edge is under capacity and every improperly oriented
edge has positive flow.

5. Let
 be the minimum of the numbers Ci j − Fi j , for properly
oriented edges (i, j) in the path, and Fi j , for improperly ori-
ented edges (i, j) in the path. Then the flow can be increased
by
 by adding
 to the flow in each properly oriented edge
and by subtracting
 from the flow in each improperly oriented
edge.

6. Start with a flow (e.g., assign each edge flow zero). Search for
a path as described in Exercise 4. Increase the flow in such a
path as described in Exercise 5.

Section 10.2
1. 1

4. (a, w1)−6, (a, w2)−0, (a, w3)−3, (w1, b)−6, (w2, b)−0,
(w3, d) − 3, (d, c) − 3, (b, c) − 2, (b, A) − 4, (c, A) − 2,
(c, B) − 3, (A, z) − 6, (B, z) − 3

7.
3, 2w1 4, 4b 4, 4c A

8, 0

2, 2 6, 6
, 8

5, 5

a z
4, 4

2, 2

7, 7

5, 2 e 6, 0f C

3, 2

3, 2
d

w2 B

4, 0

w3 2, 2

2, 1

, 4

, 1

10. (a, A− 7:00) − 3000, (a, A− 7:15) − 3000, (a, A− 7:30) −
2000, (A−7:00, B−7:30)−1000, (A−7:00, C−7:15)−2000,
(A − 7:15, B − 7:45) − 1000, (A − 7:15, C − 7:30) − 2000,
(A − 7:30, C − 7:45) − 2000, (B − 7:30, D − 7:45) − 1000,
(C − 7:15, D − 7:30) − 2000, (B − 7:45, D − 8:00) − 1000,
(C − 7:30, D − 7:45) − 2000, (C − 7:45, D − 8:00) − 2000,
(D − 7:45, z) − 3000, (D − 7:30, z) − 2000, (D − 8:00, z) −
3000. All other edges have flow equal to 0.

Hints and Solutions to Selected Exercises 733

13.

a

b c2, 2

3, 2 4, 4

5, 4 4, 2

2, 2

d e2, 2

z

16. The maximum flow is 9.

19. Suppose that the sum of the capacities of the edges incident on
a is U . Each iteration of Algorithm 10.2.5 increases the flow
by 1. Since the flow cannot exceed U , eventually the algorithm
must terminate.

Section 10.3 Review
1. A cut in a network consists of a set P of vertices and the

complement P of P , where the source is in P and the sink is
in P .

2. The capacity of a cut (P, P) is the number∑
i∈P

∑
j∈P

Ci j .

3. The capacity of any cut is greater than or equal to the value of
any flow.

4. A minimal cut is a cut having minimum capacity.

5. If the value of a flow equals the capacity of a cut, then the
flow is maximal and the cut is minimal. The value of a flow F
equals the capacity of a cut (P, P) if and only if Fi j = Ci j for
all i ∈ P , j ∈ P , and Fi j = 0 for all i ∈ P , j ∈ P .

6. Let P be the set of labeled vertices, and let P be the set of
unlabeled vertices at the termination of Algorithm 10.2.4. It
can be shown that the conditions

■ Fi j = Ci j for all i ∈ P , j ∈ P

■ Fi j = 0 for all i ∈ P , j ∈ P

of Exercise 5 hold. Thus the flow is maximal.

Section 10.3
1. 8; minimal

4. P = {a, b, d}
7. P = {a, d}

10. P = {a, w1, w2, w3, b, d , e}
13. P = {a, w1, w2, w3, b, c, d , d ′, e, f, A, B, C}
16. P = {a, b, c, f, g, h, j, k, l, m}
17.

a b z

1, 1 2, 1

with Cab = 1, Cbz = 2, mab = 1, mbz = 2.

20. Alter Algorithm 10.2.4.

23. False. Consider the flow

a b z

1, 1 2, 1

and the cut P = {a, b}.

Section 10.4 Review
In the solutions to Exercises 1–5, G is a directed, bipartite graph
with disjoint vertex sets V and W in which the edges are directed
from V to W .

1. A matching for G is a set of edges with no vertices in common.

2. A maximal matching for G is a matching containing the max-
imum number of edges.

3. A complete matching for G is a matching E having the prop-
erty that if v ∈ V , then (v, w) ∈ E for some w ∈ W .

4. Add a supersource a and edges from a to each vertex in V . Add
a supersink z and edges from each vertex in W to z. Assign
all edges capacity 1. We call the resulting network a matching
network. Then, a flow in the matching network gives a match-
ing in G [v is matched with w if and only if the flow in edge
(v, w) is 1]; a maximal flow corresponds to a maximal match-
ing; and a flow whose value is |V | corresponds to a complete
matching.

5. If S ⊆ V , let

R(S) = {w ∈ W | v ∈ S and (v, w) is an edge in G}.

Hall’s Marriage Theorem states that there exists a complete
matching in G if and only if |S| ≤ |R(S)| for all S ⊆ V .

Section 10.4
1. P = {a, A, B, D, J2, J5}
3. Finding qualified persons for jobs

6. Finding qualified persons for all jobs

9. All unlabeled edges are 1, 0. There is no complete matching.

A

B

C

D

E

F

J1

1, 1

1, 1

1, 1

1, 1
1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

a z

J2

J3

J4

J5

13. Each row and column has at most one label.

734 Hints and Solutions to Selected Exercises

17. If δ(G) = 0, then |S| − |R(S)| ≤ 0, for all S ⊆ V . By Theo-
rem 10.4.7, G has a complete matching.

If G has a complete matching, then |S| − |R(S)| ≤ 0,
for all S ⊆ V , so δ(G) ≤ 0. If S = ∅, |S| − |R(S)| = 0, so
δ(G) = 0.

Chapter 10 Self-Test
1. In each edge, the flow is less than or equal to the capacity and,

except for the source and sink, the flow into each vertex v is
equal to the flow out of v.

2. 3

3. 3

4. 3

5. (a, b, e, f, g, z)

6. Change the flows to Fa,b = 2, Fe,b = 1, Fe, f = 1, F f,g = 1,
Fg,z = 1.

7. Fa,b = 3, Fb,c = 3, Fc,d = 4, Fd,z = 4, Fa,e = 2, Fe, f = 2,
F f,c = 2, F f,g = 1, Fg,z = 1, and all other edge flows zero.

8. Fa,b = 0, Fb,c = 5, Fc,d = 5, Fd,z = 8, Fe,b = 3, Fg,d = 3,
Fa,e = 8, Fe, f = 3, F f,g = 3, Fa,h = 4, Fe,i = 2, Fj,z = 6,
Fh,i = 4, Fi, j = 6, and all other edge flows zero.

9. a—True, b—False, c—False, d—True

10. 6

11. No. The capacity of (P, P) is 6, but the capacity of
(P ′, P ′), P ′ = {a, b, c, e, f }, is 5.

12. P = {a, b, c, e, f, g, h, i}
13.

A

B

C

D

J1

a z

J2

J3

J4

J5

14. See the solution to Exercise 13.

15. A − J2, B − J1, C − J3, D − J5 is a complete matching.

16. P = {a}

Section 11.1 Review
1. A combinatorial circuit is a circuit in which the output is

uniquely defined for every combination of inputs.

2. A sequential circuit is a circuit in which the output is a function
of the input and state of the system.

3. An AND gate receives input x1 and x2, where x1 and x2 are
bits, and produces output 1 if x1 and x2 are both 1, and 0
otherwise.

4. An OR gate receives input x1 and x2, where x1 and x2 are bits,
and produces output 0 if x1 and x2 are both 0, and 1 otherwise.

5. A NOT gate receives input x , where x is a bit, and produces
output 1 if x is 0, and 0 if x is 1.

6. An inverter is a NOT gate.

7. A logic table of a combinatorial circuit lists all possible inputs
together with the resulting outputs.

8. Boolean expressions in the symbols x1, . . . , xn are defined re-
cursively as follows. 0, 1, x1, . . . , xn are Boolean expressions.
If X1 and X2 are Boolean expressions, then (X1), X1, X1∨X2,
and X1 ∧ X2 are Boolean expressions.

9. A literal is the symbol x or x that appears in a Boolean
expression.

Section 11.1
1. x1 ∧ x2

x1 x2 x1 ∧ x2

1 1 0
1 0 1
0 1 1
0 0 1

x1

x2

x1 x2 x1 x2

4.

x1 x2 x3 ((x1 ∧ x2) ∨ (x1 ∧ x3)) ∧ x3

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

7. If x = 1, the output y is undetermined: Suppose that x = 1
and y = 0. Then the input to the AND gate is 1, 0. Thus the
output of the AND gate is 0. Since this is then NOTed, y = 1.
Contradiction. Similarly, if x = 1 and y = 1, we obtain a
contradiction.

10. 0

13. 1

16. Is a Boolean expression. x1, x2, and x3 are Boolean expres-
sions by (11.1.2). x2∨x3 is a Boolean expression by (11.1.3c).
(x2 ∨ x3) is a Boolean expression by (11.1.3a). x1 ∧ (x2 ∨ x3)
is a Boolean expression by (11.1.3d).

19. Not a Boolean expression

22.

BA

Hints and Solutions to Selected Exercises 735

25. (A ∧ B) ∨ (C ∧ A)

A B C (A ∧ B) ∨ (C ∧ A)

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

27. (A ∧ (C ∨ (D ∧ C))) ∨ (B ∧ (D ∨ (C ∧ A) ∨ C))

29.

A B (A ∨ B) ∧ A

1 1 1
1 0 1
0 1 0
0 0 0

A

A

B

32.

A

A B C

B C

B C

Section 11.2 Review
1. (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c)

2. a ∨ b = b ∨ a, a ∧ b = b ∧ a

3. a∧ (b∨c) = (a∧b)∨ (a∧c), a∨ (b∧c) = (a∨b)∧ (a∨c)

4. a ∨ 0 = a, a ∧ 1 = a

5. a ∨ a = 1, a ∧ a = 0

6. Boolean expressions are equal if they have the same values for
all possible assignments of bits to the literals.

7. Combinatorial circuits are equivalent if, whenever the circuits
receive the same inputs, they produce the same outputs.

8. Let C1 and C2 be combinatorial circuits represented, respec-
tively, by the Boolean expressions X1 and X2. Then C1 and
C2 are equivalent if and only if X1 = X2.

Section 11.2
1.

x1 x2 x1 ∧ x2 x1 ∨ x2

1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 1

4.
x1 x2 x3 x1 ∨ (x2 ∨ x3) (x1 ∧ x2) ∨ x3

1 1 1 1 1
1 1 0 0 0
1 0 1 1 1
1 0 0 1 1
0 1 1 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 1 1

6.
x1 x1 ∨ x1

1 1
0 0

9.
x1 x2 x3 x1 ∧ (x2 ∧ x3) (x1 ∧ x2) ∨ (x1 ∧ x3)

1 1 1 0 0
1 1 0 1 1
1 0 1 1 1
1 0 0 1 1
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

11.
x x

1 1
0 0

14. False. Take x1 = 1, x2 = 1, x3 = 0.

16.
a b c a ∨ (b ∧ c) (a ∨ b) ∧ (a ∨ c)

1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 1 1
0 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

736 Hints and Solutions to Selected Exercises

18. The Boolean expressions that represent the circuits are
(A ∧ B) ∨ (A ∧ C) and A ∧ (B ∨ C). The expressions are
equal by Theorem 11.2.1(c). Therefore, the switching circuits
are equivalent.

21.

A

C D E

B

F

Section 11.3 Review
1. A Boolean algebra consists of a set S containing distinct ele-

ments 0 and 1, binary operators + and ·, and a unary operator′
on S satisfying the associative, commutative, distributive, iden-
tity, and complement laws.

2. x + x = x , xx = x 3. x + 1 = 1, x0 = 0

4. x + xy = x , x(x + y) = x 5. (x ′)′ = x

6. 0′ = 1, 1′ = 0

7. (x + y)′ = x ′y′, (xy)′ = x ′ + y′

8. The dual of a Boolean expression is obtained by replacing 0
by 1, 1 by 0, + by · , and · by +.

9. The dual of a theorem about Boolean algebras is also a theo-
rem.

Section 11.3
2. One can show that the Associative and Distributive Laws hold

for lcm and gcd directly. The Commutative Law clearly holds.
To see that the Identity Laws hold, note that

lcm(x , 1) = x and gcd(x , 6) = x .

Since

lcm(x , 6/x) = 6 and gcd(x , 6/x) = 1,

the Complement Laws hold. Therefore, (S, +, ·, ′ , 1, 6) is a
Boolean algebra.

4. We show only

x · (x + z) = (x · y) + (x · z) for all x , y, z ∈ Sn .

Now

x · (y + z) = min{x , max{y, z}}
(x · y) + (x · z) = max{min{x , y}, min{x , z}}.

We assume that y ≤ z. (The argument is similar if y > z.)
There are three cases to consider: x < y; y ≤ x ≤ z; and
z < x .

If x < y, we obtain

x · (y + z) = min{x , max{y, z}}
= min{x , z} = x = max{x , x}
= max{min{x , y}, min{x , z}}
= (x · y) + (x · z).

If y ≤ x ≤ z, we obtain

x · (y + z) = min{x , max{y, z}}
= min{x , z} = x = max{y, x}
= max{min{x , y}, min{x , z}}
= (x · y) + (x · z).

If z < x , we obtain

x · (y + z) = min{x , max{y, z}}
= min{x , z} = z = max{y, z}
= max{min{x , y}, min{x , z}}
= (x · y) + (x · z).

7. If X ∪ Y = U and X ∩ Y = ∅, then Y = X .

8. xy + x0 = x(x + y)y

11. x + y′ = 1 if and only if x + y = x .

14. x(x + y0) = x

15. (For Exercise 12)

0 = x + y = (x + x) + y

= x + (x + y) = x + 0 = x

Similarly, y = 0.

18. [For part (c)]

x(x + y) = (x + 0)(x + y)

= x + 0y = x + y0 = x + 0 = x

21. First, show that if ba = ca and ba′ = ca′, then b = c. Now
take a = x , b = x + (y+ z), and c = (x + y)+ z and use this
result.

23. If the prime p divides n, p2 does not divide n.

Section 11.4 Review
1. The exclusive-OR of x1 and x2 is 0 if x1 = x2, and 1 otherwise.

2. A Boolean function is a function of the form

f (x1, . . . , xn) = X (x1, . . . , xn),

where X is a Boolean expression.

3. A minterm is a Boolean expression of the form

y1 ∧ y2 ∧ · · · ∧ yn ,

where each yi is either xi or xi .

4. The disjunctive normal form of a not identically zero Boolean
function f is

f (x1, . . . , xn) = m1 ∨ m2 ∨ · · · ∨ mk ,

where each mi is a minterm.

5. Let A1, . . . , Ak denote the elements Ai of Zn
2 for which

f (Ai) = 1. For each Ai = (a1, . . . , an), set mi = y1∧· · ·∧yn ,
where y j = x j if a j = 1, and y j = x j if a j = 0. Then

f (x1, . . . , xn) = m1 ∨ m2 ∨ · · · ∨ mk .

Hints and Solutions to Selected Exercises 737

6. A maxterm is a Boolean expression of the form

y1 ∨ y2 ∨ · · · ∨ yn ,

where each yi is either xi or xi .

7. The conjunctive normal form of a not identically one Boolean
function f is

f (x1, . . . , xn) = m1 ∧ m2 ∧ · · · ∧ mk ,

where each mi is a maxterm.

Section 11.4
In these hints, a ∧ b is written ab.

1. xy ∨ x y ∨ x y

4. xyz ∨ xyz ∨ x y z ∨ x yz ∨ x yz

7. xyz ∨ x y z ∨ x y z

10. wx yz ∨ wx y z ∨ w x yz ∨ w x yz ∨ w x y z
∨ wxyz ∨ wx yz ∨ wx y z ∨ w x yz ∨ w x y z

11. xy ∨ x y 14. xyz

17. xyz ∨ x yz ∨ xyz ∨ x yz 20. 0

22. 22n

25. (For Exercise 3)

(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)

28. (For Exercise 3)

(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)

Section 11.5 Review
1. A gate is a function from Zn

2 into Z2.

2. A set of gates G is functionally complete if, given any positive
integer n and a function f from Zn

2 into Z2, it is possible to
construct a combinatorial circuit that computes f using only
the gates in G.

3. {AND, OR, NOT}
4. A NAND gate receives input x1 and x2, where x1 and x2 are

bits, and produces output 0 if x1 and x2 are both 1, and 1
otherwise.

5. Yes

6. The problem of finding the best circuit

7. Small components that are themselves entire circuits

8. See Figure 11.5.8.

9. See Figure 11.5.9.

Section 11.5
1. AND can be expressed in terms of OR and NOT: xy = x ∨ y.

2. A combinatorial circuit consisting only of AND gates would
always output 0 when all inputs are 0.

5. We use induction on n to show that there is no n-gate com-
binatorial circuit consisting of only AND and OR gates that
computes f (x) = x .

If n = 0, the input x equals the output x , and so it is
impossible for a 0-gate circuit to compute f . The Basis Step
is proved.

Suppose that there is no n-gate combinatorial circuit
consisting of only AND and OR gates that computes f . Con-
sider an (n + 1)-gate combinatorial circuit consisting of only
AND and OR gates. The input x first arrives at either an AND
or an OR gate. Suppose that x first arrives at an AND gate.
(The argument is similar if x first arrives at an OR gate and
is omitted.) Because the circuit is a combinatorial circuit, the
other input to the AND gate is either x itself, the constant 1,
or the constant 0. If both inputs to the AND gate are x itself,
then the output of the AND gate is equal to the input. In this
case, the behavior of the circuit is unchanged if we remove
the AND gate and connect x to what was the output line of
the AND gate. But we now have an equivalent n-gate circuit,
which, by the inductive hypothesis, cannot compute f . Thus
the (n + 1)-gate circuit cannot compute f .

If the other input to the AND gate is the constant 1, the
output of the AND gate is again equal to the input and we can
argue as in the previous case that the (n+1)-gate circuit cannot
compute f .

If the other input to the AND gate is the constant 0, the
AND gate always outputs 0 and, so, changing the value of x
does not affect the output of the circuit. In this case, the circuit
cannot compute f . The Inductive Step is complete. Therefore,
no n-gate combinatorial circuit consisting of only AND and
OR gates can compute f (x) = x . Thus {AND, OR} is not
functionally complete.

6.
x

y

9. y1 = x1x2 ∨ (x2 ∨ x3); y2 = x2 ∨ x3

12. (For Exercise 3) The dnf may be simplified to xy ∨ xz ∨ x y

and then rewritten as x(y∨ z)∨ x y = (x yz)∨ x y = x yz x y,
which gives the circuit

x

y

z

15.
x

y

s

c

738 Hints and Solutions to Selected Exercises

17. xy = (x ↓ x) ↓ (y ↓ y)
x ∨ y = (x ↓ y) ↓ (x ↓ y) x = x ↓ x
x ↑ y = [(x ↓ x) ↓ (y ↓ y)] ↓ [(x ↓ x) ↓ (y ↓ y)]

20. Since

x = x ↓ x , x ∨ y = (x ↓ y) ↓ (x ↓ y),

and {NOT, OR} is functionally complete, {NOR} is function-
ally complete.

23.

x

y

s

c

25. The logic table is

x y z Output

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

27. The logic table is

b FLAGIN c FLAGOUT

1 1 0 1
1 0 1 1
0 1 1 1
0 0 0 0

Thus c = b ⊕ FLAGIN and FLAGOUT = b ∨ FLAGIN. We
obtain the circuit

b

c

FLAGIN

FLAGOUT

28. 010100

31.

2's
b

c

2's
b

c

2's
b

c

FLAGIN
FLAGOUT/FLAGIN

FLAGOUT/FLAGIN

0 y1

x1
y2

x2
y3

x3

module

module

module

34. Writing the truth tables shows that

x = x → 0, x ∨ y = (x → 0) → y.

Therefore a NOT gate can be replaced by one → gate, and an
OR gate can be replaced by two → gates. Since the set {NOT,
OR} is functionally complete, it follows that the set {→} is
functionally complete.

Chapter 11 Self-Test
1.

x y z (x ∧ y) ∨ z

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

2. 1

3.
x1

x2

x3

4. Suppose that x is 1. Then the upper input to the OR gate is 0.
If y is 1, then the lower input to the OR gate is 0. Since both
inputs to the OR gate are 0, the output y of the OR gate is 0,
which is impossible. If y is 0, then the lower input to the OR
gate is 1. Since an input to the OR gate is 1, the output y of
the OR gate is 1, which is impossible. Therefore, if the input
to the circuit is 1, the output is not uniquely determined. Thus
the circuit is not a combinatorial circuit.

5. The circuits are equivalent. The logic table for either circuit is

x y Output

1 1 0
1 0 1
0 1 0
0 0 0

Hints and Solutions to Selected Exercises 739

6. The circuits are not equivalent. If x = 0, y = 1, and z = 0,
the output of circuit (a) is 1, but the output of circuit (b) is 0.

7. The equation is true. The logic table for either expression is

x y z Value

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

8. The equation is false. If x = 1, y = 0, and z = 1, then

(x ∧ y ∧ z) ∨ (x ∨ z) = 0,

but

(x ∧ z) ∨ (x ∧ z) = 1.

9. Bound laws:

X ∪U = U, X ∩∅ = ∅ for all X ∈ S.

Absorption laws:

X ∪ (X ∩ Y) = X, X ∩ (X ∪ Y) = X for all X, Y ∈ S.

10. (x(x + y · 0))′ = (x(x + 0))′ (Bound law)

= (x · x)′ (Identity law)

= x ′ (Idempotent law)

11. Dual: (x + x(y + 1))′ = x ′

(x + x(y + 1))′ = (x + x · 1)′ (Bound law)

= (x + x)′ (Identity law)

= x ′ (Idempotent law)

12. is not a unary operator on S. For example, {1, 2} /∈ S.

In Exercises 13–16, a ∧ b is written ab.

13. x1x2x3

x1

x2

x3

14. x1x2x3 ∨ x1x2x3

x1

x2

x3

15. x1x2x3 ∨ x1x2x3 ∨ x1x2x3

x1

x2

x3

16. x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3

17.

x y z Output

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 0

18. Disjunctive normal form: x yz ∨ x y z ∨ x yz ∨ x y z

(x yz ∨ x y z) ∨ x yz ∨ x y z = x y ∨ (x yz ∨ x y z)

= x y ∨ x z

x

y

z

19. x

y

x ⊕ y

740 Hints and Solutions to Selected Exercises

20.
x

y

z

Half
adder Half

adder

c�

s� c��

s��

c

s

Section 12.1 Review
1. A unit time delay accepts as input a bit xt at time t and outputs

xt−1, the bit received as input at time t − 1.

2. A serial adder inputs two binary numbers and outputs their
sum.

3. A finite-state machine consists of a finite set I of input sym-
bols, a finite set O of output symbols, a finite set S of states,
a next-state function f from S × I into S, an output function
g from S × I into O, and an initial state σ ∈ S.

4. Let M = (I, O, S, f, g, σ) be a finite-state machine. The
transition diagram of M is a digraph G whose vertices are the
states. An arrow designates the initial state. A directed edge
(σ1, σ2) exists in G if there exists an input i with f (σ1, i) = σ2.
In this case, if g(σ1, i) = o, the edge (σ1, σ2) is labeled i/o.

5. The SR flip-flop is defined by the table

S R Q

1 1 Not allowed
1 0 1
0 1 0

0 0
{

1 if S was last equal to 1
0 if R was last equal to 1

Section 12.1
1.

a/0

a/1

b/1

b/10 1

4.
a/0 a/1

b/1

a/1
b/0

c/0

c/0

c/1

b/1

0 1 2

6. I = {a, b}; O = {0, 1}; S = {σ0, σ1}; initial state = σ0

I a b a b
S
σ0 σ1 σ0 0 1
σ1 σ1 σ1 1 1

9. I ={a, b}; O={0, 1}; S ={σ0, σ1, σ2, σ3}; initial state = σ0

I a b a b
S
σ0 σ1 σ2 0 0
σ1 σ0 σ2 1 0
σ2 σ3 σ0 0 1
σ3 σ1 σ3 0 0

11. 1110 14. 001110

17. 001110001 20. 020022201020

21.

E O

1/0

1/1

0/0

0/1

24.

0/0
1/0

1/1

1/0 0/0

0/0

0 1 2

27. When γ is input, the machine outputs xn , xn−1, . . . until
xi = 1. Thereafter, it outputs xi . However, according to
Algorithm 11.5.16, this is the 2’s complement of α.

Section 12.2 Review
1. A finite-state automaton consists of a finite set I of input

symbols, a finite set S of states, a next-state function f from
S×I into S, a subset A of S of accepting states, and an initial
state σ ∈ S.

2. A string is accepted by a finite-state automaton A if, when the
string is input to A, the last state reached is an accepting state.

3. Finite-state automata are equivalent if they accept precisely
the same strings.

Section 12.2
1. All incoming edges to σ0 output 1 and all incoming edges

to σ1 output 0; hence the finite-state machine is a finite-state
automaton.

a

b

b

a0 1

4.

a/0

a/1

b/0

b/0

0 1

Hints and Solutions to Selected Exercises 741

7.
b

a
b

a

a

b

0 1 2

10. (For Exercise 1) I = {a, b}; S = {σ0, σ1}; A = {σ0}; initial state = σ0

I a b
S
σ0 σ0 σ1

σ1 σ1 σ0

13. Accepted

16. Accepted

18. No matter which state we are in, after an a we move to an accepting
state; however, after a b we move to a nonaccepting state.

21.

b

Even odd b

a

a

24.
b b b a

a a a

b

0 1 2 3

27. a

b a a

b
a

ba

b
b

0 1 2 3

4

30.

a b

b
a

b

a

b

a

0 1 2 3

742 Hints and Solutions to Selected Exercises

32. (For Exercise 1) This algorithm determines whether a string
over {a, b} is accepted by the finite-state automaton whose
transition diagram is given in Exercise 1.

Input: n, the length of the string (n = 0 designates the
null string); s1 · · · sn , the string

Output: “Accept” if the string is accepted
“Reject” if the string is not accepted

ex32(s, n) {
state = ‘σ0’
for i = 1 to n {

if (state == ‘σ0’ ∧ si == ‘b’)
state = ‘σ1’

if (state == ‘σ1’ ∧ si == ‘b’)
state = ‘σ0’

}
if (state == ‘σ0’)

return “Accept”
else

return “Reject”
}

35. Make each accepting state nonaccepting and each nonaccept-
ing state accepting.

38. Using the construction given in Exercises 36 and 37, we obtain
the following finite-state automaton that accepts L1∩ L2. (We
designate the states in Exercise 5 with primes.)

b

a

a

a

a b

b

b

a

a

b b

� �0, 1� � �1, 1�

� �1, 2�

� �1, 0� � �0, 1� � �0, 2�

The finite-state automaton that accepts L1 ∪ L2 is the
same as the finite-state automaton that accepts L1 ∩ L2 except
that the set of accepting states is

{(σ1, σ ′
0), (σ1, σ ′

1), (σ1, σ ′
2), (σ0, σ ′

2)}.

41. Use the construction of Exercises 36 and 37.

Section 12.3 Review
1. A “natural language” refers to ordinary written and spoken

words and combinations of words. A “formal language” is
an artificial language consisting of a specified set of strings.
Formal languages are used to model natural languages and to
communicate with computers.

2. A phrase-structure grammar consists of a finite set N of non-
terminal symbols, a finite set T of terminal symbols where
N ∩ T = ∅, a finite subset of [(N ∪ T)∗ − T ∗] × (N ∪ T)∗
called the set of productions, and a starting symbol in N .

3. If α → β is a production and xαy ∈ (N ∪ T)∗, we say that
xβy is directly derivable from xαy.

4. If αi ∈ (N ∪ T)∗ for i = 1, . . . , n, and αi+1 is directly deriv-
able from αi for i = 1, . . . , n − 1, we say that αn is derivable
from α1 and write α1 ⇒ αn .

5. We call α1 ⇒ α2 ⇒ · · · ⇒ αn a derivation of αn from α1.

6. The language generated by a grammar consists of all strings
in terminals derivable from the start symbol.

7. Backus normal form (BNF) is a way to write the productions
of a grammar. In BNF the nonterminal symbols typically begin
with “〈” and end with “〉”. Also the arrow → is replaced with
::=. Productions with the same left-hand side are combined
using the bar “|”. An example is

〈signed integer〉 ::=
+〈unsigned integer〉 | − 〈unsigned integer〉

8. In a context-sensitive grammar, every production is of the form
αAβ → αδβ, where α, β ∈ (N ∪ T)∗, A ∈ N , and δ ∈
(N ∪ T)∗ − {λ}.

9. In a context-free grammar, every production is of the form
A → δ, where A ∈ N and δ ∈ (N ∪ T)∗.

10. In a regular grammar, every production is of the form A → a,
A → aB, or A → λ, where A, B ∈ N and a ∈ T .

11. A context-sensitive grammar

12. A context-free grammar

13. A regular grammar

14. A language is context-sensitive if there is a context-sensitive
grammar that generates it.

15. A language is context-free if there is a context-free grammar
that generates it.

16. A language is regular if there is a regular grammar that gener-
ates it.

17. A context-free, interactive Lindenmayer grammar consists of
a finite set N of nonterminal symbols; a finite set T of terminal
symbols where N∩T = ∅; a finite set of productions A → B,
where A ∈ N ∪ T and B ∈ (N ∪ T)∗; and a starting symbol
in N .

18. The von Koch snowflake is generated by the context-free, in-
teractive Lindenmayer grammar

N = {D}
T = {d, +, −}
P = {D → D − D ++ D − D, D → d, +→ +,

−→ −}.

d means “draw a straight line of a fixed length in the current
direction,” + means “turn right by 60◦,” and − means “turn
left by 60◦.”

Hints and Solutions to Selected Exercises 743

19. Fractal curves are characterized by having a part of the whole
curve resemble the whole.

Section 12.3
1. Regular, context-free, context-sensitive

4. Context-free, context-sensitive

7. σ ⇒ bσ ⇒ bbσ ⇒ bba A ⇒ bbabA ⇒ bbabbA
⇒ bbabbaσ ⇒ bbabbab

10. σ ⇒ ABA ⇒ ABBA ⇒ ABBAA
⇒ ABBaAA ⇒ abBBaAA ⇒ abbBaAA
⇒ abbbaAA ⇒ abbbaabA ⇒ abbbaabab

12. (For Exercise 1)

<σ > ::= b<σ > | a < A> | b

< A > ::= a <σ > | b< A> | a

15. S → a A, A → a A, A → bA, A → a,
A → b, S → a

18. S → a A, S → bS, S → λ, A → a A,
A → bB, A → λ, B → a A, B → bS

21. <exp number> ::= < integer> E < integer> |
<float number> |
<float number> E < integer>

24. S → aSa, S → bSb, S → a, S → b, S → λ

25. If a derivation begins S ⇒ aSb, the resulting string begins with
a and ends with b. Similarly, if a derivation begins S ⇒ bSa,
the resulting string begins with b and ends with a. Therefore,
the grammar does not generate the string abba.

28. If a derivation begins S ⇒ abS, the resulting string begins
ab. If a derivation begins S ⇒ baS, the resulting string begins
ba. If a derivation begins S ⇒ aSb, the resulting string starts
with a and ends with b. If a derivation begins S ⇒ bSa, the
resulting string begins with b and ends with a. Therefore, the
grammar does not generate the string aabbabba.

31. The grammar does generate L , the set of all strings over {a, b}
with equal numbers of a’s and b’s.

Any string generated by the grammar has equal num-
bers of a’s and b’s since whenever any of the productions are
used in a derivation, equal numbers of a’s and b’s are added
to the string.

To prove the converse, we consider an arbitrary string
α in L , and we use induction on the length |α| of α to show
that α is generated by the grammar. The Basis Step is |α| = 0.
In this case, α is the null string, and S ⇒ λ is a derivation
of α.

Let α be a nonnull string, and suppose that any string in
L whose length is less than |α| is generated by the grammar.
We first consider the case that α starts with a. Then α can be
written α = aα1bα2, where α1 and α2 have equal numbers of
a’s and b’s. By the inductive hypothesis, there are derivations
S ⇒ α1 and S ⇒ α2 of α1 and α2. But now

S ⇒ aSbS ⇒ aα1bα2

is a derivation of α. Similarly, if α starts with b, there is a
derivation of α. The Inductive Step is finished, and the proof is
complete.

32. Replace each production

A → x1 · · · xn B,

where n > 1, xi ∈ T , and B ∈ N , with the productions

A → x1 A1

A1 → x2 A2

...

An−1 → xn B,

where A1, . . . , An−1 are additional nonterminal symbols.

35. S ⇒ D + D + D + D ⇒ d + d + d + d

S ⇒ D + D + D + D

⇒ D + D − D − DD + D + D − D

+ D + D − D − DD + D + D − D

+ D + D − D − DD + D + D − D

+ D + D − D − DD + D + D − D

⇒ d + d − d − dd + d + d − d

+ d + d − d − dd + d + d − d

+ d + d − d − dd + d + d − d

+ d + d − d − dd + d + d − d

START

Section 12.4 Review
1. Let σ be the start state, let T be the set of input symbols, and let

N be the set of states. Let P be the set of productions S → x S′,
if there is an edge labeled x from S to S′, and S → λ if S is an
accepting state. Let G be the regular grammar (N , T , P, σ).
Then the set of strings accepted by A is equal to L(G).

744 Hints and Solutions to Selected Exercises

2. A nondeterministic finite-state automaton consists of a finite
set I of input symbols, a finite set S of states, a next-state
function f from S×I into P(S), a subset A of S of accepting
states, and an initial state σ ∈ S.

3. A string α is accepted by a nondeterministic finite-state au-
tomaton A if there is some path representing α in the transition
diagram of A beginning at the initial state and ending in an
accepting state.

4. Nondeterministic finite-state automata are equivalent if they
accept precisely the same strings.

5. Let G = (N , T , P, σ) be a regular grammar. The finite-state
automaton A is constructed as follows. The set of input sym-
bols is T . The set of states is N together with an additional
state F /∈ N ∪ T . The next-state function f is defined as

f (S, x) = {S′ | S → x S′ ∈ P} ∪ {F | S → x ∈ P}.
The set of accepting states is F together with all S for which
S → λ is a production. Then A accepts precisely the strings
L(G).

Section 12.4
1.

a

a

b

b
b

b

0 1 2

4.

ab

a

c

a

c
b

c

a
a

0 1 2

6. I = {a, b}; S = {σ0, σ1, σ2}; A = {σ1, σ2};
initial state = σ0

I a b
S
σ0 {σ1, σ2} ∅

σ1 {σ1} {σ0, σ2}
σ2 ∅ ∅

9. I = {a, b}; S = {σ0, σ1, σ2, σ3}; A = {σ3};
initial state = σ0

I a b
S
σ0 {σ0} {σ0, σ1}
σ1 {σ2} ∅

σ2 ∅ {σ3}
σ3 {σ3} {σ3}

11. (For Exercise 5) N ={σ0, σ1, σ2}, T ={a, b},

σ0 → aσ1, σ0 → bσ0, σ1 → aσ0, σ1 → bσ2,

σ2 → bσ1, σ2 → aσ0, σ2 → λ

14. No. For the first three characters, bba, the moves are de-
termined and we end at C . From C , no edge contains an a;
therefore, bbabab is not accepted.

17. Yes. The path (σ, σ, σ, σ, C, C), which represents the string
aaaab, ends at C , which is an accepting state.

21.

a

a b b

b
b a

0 1 2 3

4

Hints and Solutions to Selected Exercises 745

24.

a

a b

b

b a

a b

b a

b

b

b

b

b

b

b

b

b

b

a

b

ab

ab

1

0

2 3

4 5 6

7 8 9 10

15

14131211

27.

a

a

a

b

bba
b

b

a

0 1 2 3 4 5

30. (For Exercise 21) σ0 → aσ1, σ0 → bσ4, σ1 → bσ2,
σ2 → bσ3, σ3 → aσ3, σ3 → bσ3, σ4 → aσ3, σ3 → λ

Section 12.5 Review
1. Let A = (I, S, f , A, σ) be a nondeterministic finite-state au-

tomaton. An equivalent deterministic finite-state automaton
can be constructed as follows. The set of states is the power
set of S. The set of input symbols is I (unchanged). The start

symbol is {σ } (essentially unchanged). The set of accepting
states consists of all subsets of S that contain at least one ac-
cepting state of A. The next state function is defined by the
rule

f ′(X, x) =
{

∅ if X = ∅⋃
S∈X f (S, x) if X �= ∅.

2. A language L is regular if and only if there exists a finite-state
automaton that accepts precisely the strings in L .

Section 12.5
1. (For Exercise 1)

a

a b

b

a

a

a

a

a

b

b
b

b

b

0

2

,0 2 ,0 1,1 2

,0 1, 2

746 Hints and Solutions to Selected Exercises

2.

 , F

A
a

a
b

b

a

b

5.

SBCF BC

SAF SACF

SABCFAC

S

C

A

a

a

b

a

b

ba

b

b

b

b

a

a

a

b

b

b

a
a

a

7. (For Exercise 21)

a

a b b

b
b a

aa

b

ba

0 1 2 3

4

5

Hints and Solutions to Selected Exercises 747

10. Figure 12.5.7 accepts the string ban , n ≥ 1, and strings that
end b2 or aban , n ≥ 1. Using Example 12.5.8, we see that Fig-
ure 12.5.9 accepts the string anb, n ≥ 1, and strings that start
b2 or anba, n ≥ 1.

11.
b

a

b

a

0 1

14.
a

a

b

a

b

0 1

17.

b

b

b

a

b

a b b a

a

a
a

1 2

4 3

20.

b

a

b

a

a a

b

b a

a

b

a

b
b

a

ab

b
b

a

0 1

2 3

0� 1�

2� 3�

22. σ0 → aσ1, σ0 → bσ2, σ0 → a, σ1 → aσ0,
σ1 → aσ2, σ1 → bσ1, σ1 → b, σ2 → bσ0

25. Suppose that L is regular. Then there exists a finite-state au-
tomaton A with L = Ac(A). Suppose that A has k states.
Consider the string akbbak and argue as in Example 12.5.6.

28. The statement is false. Consider the regular language L =
{anb | n ≥ 0}, which is accepted by the finite-state automaton

A B

a

b
b

S

a

a

b

The language

L ′ = {un | u ∈ L , n ∈ {1, 2, . . .}}
is not regular. Suppose that L ′ is regular. Then there is a finite-
state automaton A that accepts L ′. In particular, A accepts anb
for every n. It follows that for sufficiently large n, the path
representing anb contains a cycle of length k. Since A accepts
anbanb, A also accepts an+kbanb, which is a contradiction.

Chapter 12 Self-Test
1.

a/0

a/1

b/0b/1

0 1

2. I = {a, b}; O = {0, 1}; S = {S, A, B}; initial state = S

f g

I a b a b
S
S A A 0 0
A S B 1 1
B A B 1 0

3. 1101

4.

S A

0/1

1/1

1/1

B C

0/00/1

1/0

0/1 1/0

748 Hints and Solutions to Selected Exercises

5.

A B

1

0

S

0

0

1

1

6. Yes

7.

S A

B C

0

0

0

0

11 11

8. Every 0 is followed by a 1.

9. Context-free

10. S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaa Abbbb ⇒
aaaa Abbbb ⇒ aaaabbbb

11. ai b j , j ≤ 2 + i , j ≥ 1, i ≥ 0

12. S → ASB, S → AB, AB → B A, B A → AB, A → a,
B → b

13.

a

b

a

b

ba

a

0 1 2

14. I = {a, b}; S = {σ0, σ1, σ2}; A = {σ0}; initial state = σ0

I a b
S
σ0 {σ0, σ1} ∅

σ1 ∅ {σ2}
σ2 {σ0, σ2} {σ2}

15. Yes, since the path

(σ0, σ0, σ1, σ2, σ2, σ2, σ2, σ0)

represents aabaaba and σ0 is an accepting state.

16.

110 01

0

11

0 1

0 1 2 3 4 5

17.
a

b

a a

b

b� �0 � �2 � �0, 1

18.

a b

b
a

ba

b

a

ab

a

b� �0 � �2� �0, 1 � �0, 2 � �0, 1, 2

Hints and Solutions to Selected Exercises 749

19. Combine the nondeterministic finite-state automata that accept
L1 and L2 in the following way. Let S be the start state of L2.
For each edge of the form (S1, S2) labeled a in L1 where S2 is
an accepting state, add an edge (S1, S) labeled a. The start state
of the nondeterministic finite-state automaton is the start state
of L1. The accepting states of the nondeterministic finite-state
automaton are the accepting states of L2.

20. Let A′ be a nondeterministic finite-state automaton that accepts
a regular language that does not contain the null string. Add a
state F . For each edge, (σ, σ ′) labeled a in A′ where σ ′ is ac-
cepting, add the edge (σ, F) labeled a. Make F the only accept-
ing state. The resulting nondeterministic finite-state automaton
A has one accepting state. We claim that Ac(A) = Ac(A′).

We show that Ac(A)⊆Ac(A′). [The argument that
Ac(A′)⊆Ac(A) is similar and omitted.] Suppose that
α ∈Ac(A). There is a path

(σ0, σ1, . . . , σn−1, σn)

that represents α in A, with σn an accepting state. Since α �= λ,
there is a last symbol a in α. Thus the edge (σn−1, σn) is labeled
a. Now the path

(σ0, σ1, . . . , σn−1, F)

represents α in A′ and terminates in an accepting state. There-
fore, α ∈ Ac(A′).

To see that the statement is false for an arbitrary regular
language, consider the regular language

L = {λ} ∪ {0i | i is odd }
and a nondeterministic finite-state automaton A with start state
S that accepts L . Since λ ∈ L , S is an accepting state. If S has a
loop labeled 0, then A accepts all strings of 0’s; therefore, there
is no loop at S labeled 0. Since 0 ∈ L and there is no loop at S,
there is an edge from S to an accepting state S′ �= S, which is
a contradiction. Therefore, A has at least two accepting states.

Section 13.1 Review
1. Computational geometry is concerned with the design and

analysis of algorithms to solve geometry problems.

2. Given n points in the plane, find a closest pair.

3. Compute the distance between each pair of points and choose
the minimum distance.

4. Find a vertical line l that divides the points into two nearly
equal parts. Then recursively solve the problem for each of the
parts. Let δL be the distance between a closest pair in the left
part, and let δR be the distance between a closest pair in the
right part. Let δ = min{δL , δR}. Then examine the points that
lie within a vertical strip of width 2δ centered about l. Order
the points in this strip in increasing order of the y-coordinates
and examine the points in this order. Compute the distance be-
tween each point p and the following seven points. Anytime
there is a pair whose distance is less than δ, update δ. At the
conclusion, δ is the distance between a closest pair.

5. The worst-case time of the brute-force algorithm is �(n2).
The worst-case time of the divide-and-conquer algorithm is
�(n lg n).

Section 13.1
1. The 16 points sorted by x-coordinate are (1, 2), (1, 5), (1, 9),

(3, 7), (3, 11), (5, 4), (5, 9), (7, 6), (8, 4), (8, 7), (8, 9), (11, 3),
(11, 7), (12, 10), (14, 7), (17, 10), so the dividing point is (7, 6).
We next find δL =

√
8, the minimum distance among the left-

side points (1, 2), (1, 5), (1, 9), (3, 7), (3, 11), (5, 4), (5, 9), (7, 6),
and δR = 2, the minimum distance among the right-side points
(8, 4), (8, 7), (8, 9), (11, 3), (11, 7), (12, 10), (14, 7), (17, 10).
Thus δ = min{δL , δR} = 2. The points, sorted by y-coordinate
in the vertical strip, are (8, 4), (7, 6), (8, 7), (8, 9). In this case
we compare each point in the strip to all the following points.
The distances from (8, 4) to (7, 6), (8, 7), (8, 9) are not less than
2, so δ is not updated at this point. The distance from (7, 6) to
(8, 7) is

√
2, so δ is updated to

√
2. The distances from (7, 6) to

(8, 9) and from (8, 7) to (8, 9) are greater than
√

2, so δ remains√
2. Therefore, the distance between the closest pair is

√
2.

4. Consider the extreme case when all of the points are on the
vertical line.

7.

10. Let B be either of the left or right δ × δ squares that make
up the δ × 2δ rectangle (see Figure 13.1.2). We argue by
contradiction and assume that B contains four or more points.
We partition B into four δ/2 × δ/2 squares as shown in Fig-
ure 13.1.3. Then each of the four squares contains at most one
point, and therefore exactly one point. Subsequently we refer
to these four squares as the subsquares of B.

The figure

B

b

a

e c

p

ds

s�

750 Hints and Solutions to Selected Exercises

shows the following construction. We reduce the size of the
subsquares, if possible, so that

■ Each subsquare contains one point.

■ The subsquares are the same size.

■ The subsquares are as small as possible.

Since at least one point is not in a corner of B, the subsquares
do not collapse to points and so at least one point is on a side of
a subsquare s interior to B. We choose such a point and call it
p. We select a subsquare s′ nearest p. We label the two corner
points of s′ on the side farthest from p, e and c. We draw a
circle of radius δ with center at c and let a be the (noncorner)
point where this circle meets the side of s. Note that this circle
meets a side of s in a noncorner point. Choose a point b in s on
the same side as a between a and e. Let d be the corresponding
point on the opposite side of s. Now the length of the diameter
of rectangle R = bdce is less than δ; hence, R contains at
most one point. This is contradiction since R contains p and
the point in s′. Therefore, B contains at most three points.

13. In addition to p.x and p.y, we assume that each point p has
another field p.side, which we use to indicate whether p is
on the left side or the right side when the points are divided
into two nearly equal parts. The extra argument, label, to
rec find all 2δ once sets p.side to label for all points p.

find all 2δ once(p,n) {
δ = closest pair(p, n) // original procedure
if (δ > 0) {

sort p1, . . . , pn by x-coordinate
rec find all 2δ once(p, 1, n, δ, λ) // λ = empty string

}
}

rec find all 2δ once(p, i, j, δ, label)
if (j − i < 3) {

sort pi , . . . , p j by y-coordinate
directly find and output all distinct pairs less than

2δ apart
for k = i to j

pk .side = label
return

}
k = �(i + j)/2�
l = pk .x
rec find all 2δ once(p, i, k, δ, L)
rec find all 2δ once(p, k + 1, j, δ, R)
merge pi , . . . , pk and pk+1, . . . , p j by y-coordinate
t = 0
for k = i to j

if (pk .x > l − 2 ∗ δ ∧ pk .x < l + 2 ∗ δ) {
t = t + 1
vt = pk

}
for k = 1 to t − 1

for s = k + 1 to min{t , k + 31}
if (dist(vk , vs) < 2 ∗ δ ∧ vk .side¬ = vs .side)

println(vk + “ ” + vs)

for k = i to j
pk .side = label

}

16. We show that for each point p, there are at most 6 distinct
points whose distance to p is δ. It will then follow that the
number of pairs δ apart is less than or equal to 6n.

We argue by contradiction. Suppose that some point p
has 7 distinct neighbors p1, . . . , p7 whose distance to p is δ.
Then we have the situation

p2

d1

d7

d6

d5

d4

d3

d2
p3

p1

p7

p6

p5

p4
p

Let C be the circumference of this circle. Since each di is at
least δ, we have

2πδ = C >

7∑
i=1

di ≥ 7δ.

Therefore, π > 7/2 = 3.5, which is a contradiction. (A more
careful estimate shows that for each point p, there are at most
5 distinct points whose distance to p is δ.)

Section 13.2 Review
1. Given a finite set of points S in the plane, a point p ∈ S is a

hull point if there exists a line L through p such that all points
in S except p lie on one side of L .

2. The convex hull of a finite set of points S in the plane is
the sequence p1, p2, . . . , pn of hull points of S listed in the
following order. The point p1 is the point with minimum
y-coordinate. If several points have the same minimum y-
coordinate, p1 is the one with minimum x-coordinate. The
remaining points pi are listed in increasing order of the angle
from the horizontal to the line segment p1, pi .

3. Let point pi have coordinates (xi , yi). Then the cross product
of the points p0, p1, p2 is

cross(p0, p1, p2) = (y2 − y0)(x1 − x0)− (y1 − y0)(x2 − x0).

4. Graham’s Algorithm first finds the point p1 with mini-
mum y-coordinate. If several points have the same minimum
y-coordinate, the point chosen is the one with minimum
x-coordinate. It next sorts all of the remaining points pi on the
angle from the horizontal to the line segment p1, pi . It then ex-
amines successive triples of points. If these points make a left
turn, the middle point is retained. If these points make a right
turn, the middle point is discarded. At the conclusion of the
algorithm, the remaining points are, in order, the convex hull.

Hints and Solutions to Selected Exercises 751

5. �(n lg n)

6. Any convex hull algorithm can be used to sort real num-
bers whose values are between 0 and 1. The points are first
projected onto the unit circle (see Figure 13.2.11). Next the
convex hull algorithm is used to find the convex hull. Then
the y-coordinates of the convex hull (in order) give the sorted
order of the original points. Since the worst-case time of any
sorting algorithm is �(n lg n), the worst-case time of any
convex hull algorithm must also be �(n lg n).

Section 13.2
1. Let L be the horizontal line through p1. By the choice of p1, no

points of S lie below L . If p1 is the only point of S on L , p1 is
a hull point. If other points of S lie on L , they all lie to the right
of p1 (by the choice of p1). In this case, if we rotate L clock-
wise slightly about p1, L will contain only p1 and all other
points of S will lie above L . Again we conclude that p1 is a
hull point.

4. The points [sorted with respect to (7, 1)] are (7, 1),
(10, 1), (16, 4), (12, 3), (14, 5), (16, 10), (13, 8), (10, 5),
(10, 9), (10, 13), (7, 7), (7, 13), (6, 10), (3, 13), (4, 8), (1, 8),
(4, 4), (2, 2). The following table shows each triple that is
examined in the while loop, whether it makes a left turn, and
the action taken with respect to the triple:

Discard
Left Middle

Triple Turn? Point?

(7, 1), (10, 1), (16, 4) Yes No
(10, 1), (16, 4), (12, 3) Yes No
(16, 4), (12, 3), (14, 5) No Yes
(10, 1), (16, 4), (14, 5) Yes No
(16, 4), (14, 5), (16, 10) No Yes
(10, 1), (16, 4), (16, 10) Yes No
(16, 4), (16, 10), (13, 8) Yes No
(16, 10), (13, 8), (10, 5) Yes No
(13, 8), (10, 5), (10, 9) No Yes
(16, 10), (13, 8), (10, 9) No Yes
(16, 4), (16, 10), (10, 9) Yes No
(16, 10), (10, 9), (10, 13) No Yes
(16, 4), (16, 10), (10, 13) Yes No
(16, 10), (10, 13), (7, 7) Yes No
(10, 13), (7, 7), (7, 13) No Yes
(16, 10), (10, 13), (7, 13) Yes No
(10, 13), (7, 13), (6, 10) Yes No
(7, 13), (6, 10), (3, 13) No Yes
(10, 13), (7, 13), (3, 13) No Yes
(16, 10), (10, 13), (3, 13) Yes No
(10, 13), (3, 13), (4, 8) Yes No
(3, 13), (4, 8), (1, 8) No Yes
(10, 13), (3, 13), (1, 8) Yes No
(3, 13), (1, 8), (4, 4) Yes No
(1, 8), (4, 4), (2, 2) No Yes
(3, 13), (1, 8), (2, 2) Yes No

The convex hull is (7, 1), (10, 1), (16, 4), (16, 10), (10, 13),
(3, 13), (1, 8), (2, 2).

7. After finding p1, . . . , pi , Jarvis’s march finds the point pi+1

such that pi−1, pi , pi+1 make the smallest left turn. It follows
that if the line L through pi , pi+1 is rotated clockwise slightly
about pi , L will contain only pi , and all other points of S will
lie on one side of L . Thus pi is a hull point. By construction,
Jarvis’s march finds all hull points. Thus Jarvis’s march does
find the convex hull.

10. Yes. Jarvis’s march is faster when “most” points are not on
the convex hull.

Chapter 13 Self-Test
1. The 18 points sorted by the x-coordinate are (1, 8), (2, 2),

(3, 13), (4, 4), (4, 8), (6, 10), (7, 1), (7, 7), (7, 13), (10, 1),
(10, 5), (10, 9), (10, 13), (12, 3), (13, 8), (14, 5), (16, 4),
(16, 10), so the dividing point is (7, 13). We next find δL =

√
8,

the minimum distance among the left-side points (1, 8),
(2, 2), (3, 13), (4, 4), (4, 8), (6, 10), (7, 1), (7, 7), (7, 13), and
δR = √

5, the minimum distance among the right-side points
(10, 1), (10, 5), (10, 9), (10, 13), (12, 3), (13, 8), (14, 5), (16, 4),
(16, 10). Thus δ = min{δL , δR} =

√
5. The points, sorted

by y-coordinate in the vertical strip, are (7, 1), (7, 7), (6, 10),
(7, 13). In this case we compare each point in the strip to
all the following points. Since no pair is closer than

√
5, the

algorithm does not update δ. Therefore, the distance between
the closest pair is

√
5.

2. If we replace “three” by “two,” when there are three points,
the algorithm would be called recursively with inputs of sizes
1 and 2. But a set consisting of one point has no pair—let
alone a closest pair.

3. Each δ/2 × δ/2 box contains at most one point, so there are
at most four points in the lower half of the rectangle.

4. �(n(lg n)2)

5. Let L be the vertical line through p. By the choice of p,
no points of S lie to the right of L . If p is the only point
of S on L , p is a hull point. If other points of S lie on L ,
they all lie below p. In this case, if we rotate L clockwise
slightly about p, L will contain only p and all other points of
S will be to the left of L . Again we conclude that p is a hull
point.

6. Let L be the line segment joining p and q. Let L ′ be the line
through p perpendicular to L . There can be no other point r
of S on L ′ or on the side of L ′ opposite q, for if there were
such a point r , the distance from r to q would exceed the
distance from p to q, which is impossible. Thus p is a hull
point. Similarly, q is a hull point.

7. The points [sorted with respect to (1, 2)] are (1, 2), (11, 3),
(8, 4), (14, 7), (5, 4), (11, 7), (17, 10), (7, 6), (8, 7), (12, 10),
(8, 9), (5, 9), (3, 7), (3, 11), (1, 5), (1, 9). The following table
shows each triple that is examined in the while loop, whether

752 Hints and Solutions to Selected Exercises

it makes a left turn, and the action taken with respect to
the triple:

Discard
Left Middle

Triple Turn? Point?

(1, 2), (11, 3), (8, 4) Yes No
(11, 3), (8, 4), (14, 7) No Yes
(1, 2), (11, 3), (14, 7) Yes No
(11, 3), (14, 7), (5, 4) Yes No
(14, 7), (5, 4), (11, 7) No Yes
(11, 3), (14, 7), (11, 7) Yes No
(14, 7), (11, 7), (17, 10) No Yes
(11, 3), (14, 7), (17, 10) No Yes
(1, 2), (11, 3), (17, 10) Yes No
(11, 3), (17, 10), (7, 6) Yes No
(17, 10), (7, 6), (8, 7) No Yes
(11, 3), (17, 10), (8, 7) Yes No
(17, 10), (8, 7), (12, 10) No Yes
(11, 3), (17, 10), (12, 10) Yes No
(17, 10), (12, 10), (8, 9) Yes No
(12, 10), (8, 9), (5, 9) No Yes
(17, 10), (12, 10), (5, 9) Yes No
(12, 10), (5, 9), (3, 7) Yes No
(5, 9), (3, 7), (3, 11) No Yes
(12, 10), (5, 9), (3, 11) No Yes
(17, 10), (12, 10), (3, 11) No Yes
(11, 3), (17, 10), (3, 11) Yes No
(17, 10), (3, 11), (1, 5) Yes No
(3, 11), (1, 5), (1, 9) No Yes
(17, 10), (3, 11), (1, 9) Yes No

The convex hull is (1, 2), (11, 3), (17, 10), (3, 11), (1, 9).

8. Run the part of Graham’s Algorithm that follows the sort on
the remaining points.

Appendix A

1.
(

2 + a 4 + b 1 + c
6 + d 9 + e 3 + f
1 + g −1 + h 6 + i

)

2. (5 7 7
−7 10 −1

)
5. (3 18 27

0 12 −6

)
8. (−2 −35 −56

−7 −18 13

)
9.
(

18 10
14 −6
23 1

)

12. (−4)

14. (a) 2 × 3, 3 × 3, 3 × 2

(b) AB =
(

33 18 47
8 9 43

)
AC =

(
16 56
14 63

)
C A =

(
4 18 38
0 0 0
2 17 75

)

AB2 =
(

177 215 531
80 93 323

)
BC =

(
18 65
34 25
12 54

)
17. Let A = (bi j), In = (a jk), AIn = (cik). Then

cik =
n∑

j=1

bi j a jk = bikakk = bik .

Therefore, AIn = A. Similarly, In A = A.

20. The solution is X = A−1C .

Appendix B
1. −4x

4.
15x − 3b

3
= 5x − b

7.
1

n
− 1

n + 1
= n + 1 − n

n(n + 1)
= 1

n(n + 1)

We may use this equation to compute
∑n

i=1
1

i(i+1) as follows:

n∑
i=1

1

i(i + 1)

=
n∑

i=1

1

i
− 1

i + 1

=
(

1 − 1

2

)
+
(

1

2
− 1

3

)
+ · · · +

(
1

n − 1
− 1

n

)
+
(

1

n
− 1

n + 1

)
= 1 − 1

n + 1
= n + 1 − 1

n + 1
= n

n + 1
.

8. 81

11. 1/81

14. (a), (c), and (g) are equal. (b) and (f) are equal. (d) and (e) are
equal.

16. x2 + 8x + 15

19. x2 + 8x + 16

22. x2 − 4

25. (x + 5)(x + 1)

28. (x − 4)2

31. (2x + 1)(x + 5)

34. (2x + 3)(2x − 3)

Hints and Solutions to Selected Exercises 753

37. (n + 1)! + (n + 1)(n + 1)! = (n + 1)![1 + (n + 1)] =
(n + 1)!(n + 2) = (n + 2)!

40.

7(3 · 2n−1 − 4 · 5n−1) − 10(3 · 2n−2 − 4 · 5n−2)

= 2n−2(7 · 3 · 2 − 10 · 3) + 5n−2(−7 · 4 · 5 + 10 · 4)

= 2n−2 · 12 + 5n−2(−100)

= 2n−2(22 · 3) − 5n−2(52 · 4)

= 3 · 2n − 4 · 5n

42. Factoring gives (x − 4)(x − 2) = 0, which has solutions
x = 4, 2.

45. 2x ≤ 6, x ≤ 3

48. i ≤ n for i = 1, . . . , n. Summing these inequalities, we obtain
n∑

i=1

i ≤ n · n = n2.

51. Multiply by (n + 2)n2(n + 1)2 to get

(2n + 1)(n + 1)2 > 2(n + 2)n2

or

2n3 + 5n2 + 4n + 1 > 2n3 + 4n2

or

n2 + 4n + 1 > 0,

which is true if n ≥ 1.

54. 6 57. 10

59. 2.584962501 62. −0.736965594

64. 2.392231208 67. 0.480415248

68. 1.489896102

71. Let u = logb y and v = logb x . By definition, bu = y and
bv = x . Now

x logb y = xu = (bv)u = bvu = (bu)v = yv = ylogb x .

Appendix C
1. First large is set to 2 and i is set to 2. Since i ≤ n is true, the

body of the while loop executes. Since si > large is true, large
is set to 3. i is set to 3 and the while loop executes again.

Since i ≤ n is true, the body of the while loop executes.
Since si > large is true, large is set to 8. i is set to 4 and the
while loop executes again.

Since i ≤ n is true, the body of the while loop executes.
Since si > large is false, the value of large does not change.
i is set to 5 and the while loop executes again.

Since i ≤ n is false, the while loop terminates. The
value of large is 8, the largest element in the sequence.

4. First x is set to 4. Since b > x is false, x = b is not executed.
Since c > x is true, x = c executes, and x is set to 5. Thus x
is the largest of the numbers a, b, and c.

7. min(a, b) {
if (a < b)

return a
else

return b
}

10. odds(n) {
i = 1
while (i ≤ n) {

println(i)
i = i + 2

}
}

13. product(s, n) {
partial product = 1
for i = 1 to n

partial product = partial product ∗ si

return partial product
}

