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2 Chapter Number and Title

FLORENCE NIGHTINGALE

Using Statistics to Save Lives
Florence Nightingale (1820–1910) won fame as a founder
of the nursing profession and as a reformer of health care.
As chief nurse for the British army during the Crimean
War, from 1854 to 1856, she found that lack of sanitation

and disease killed large numbers of soldiers hospitalized by
wounds. Her reforms reduced the death rate at her military hospital from
42.7% to 2.2%, and she returned from the war famous. She at once began a
fight to reform the entire military health care system, with considerable
success.

One of the chief weapons Florence Nightingale used in her efforts was
data. She had the facts, because she reformed record keeping as well as med-
ical care. She was a pioneer in using graphs to present data in a vivid form that
even generals and members of Parliament could understand. Her inventive
graphs are a landmark in the growth of the new science of statistics. She con-
sidered statistics essential to understanding any social issue and tried to intro-
duce the study of statistics into higher education.

In beginning our study of statistics, we will follow Florence Nightingale’s
lead. This chapter and the next will stress the analysis of data as a path to
understanding. Like her, we will start with graphs to see what data can teach
us. Along with the graphs we will present numerical
summaries, just as Florence Nightingale calculated
detailed death rates and other summaries. Data for
Florence Nightingale were not dry or abstract, because
they showed her, and helped her show others, how to
save lives. That remains true today.

One of the chief
weapons Florence
Nightingale used 
in her efforts was 
data.
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INTRODUCTION
Statistics is the science of data. We begin our study of statistics by mastering
the art of examining data. Any set of data contains information about some
group of individuals. The information is organized in variables.
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ACTIVITY 1 How Fast Is Your Heart Beating?

Materials: Clock or watch with second hand
A person’s pulse rate provides information about the health of his or her
heart. Would you expect to find a difference between male and female
pulse rates? In this activity, you and your classmates will collect some data
to try to answer this question.

1. To determine your pulse rate, hold the fingers of one hand on the artery
in your neck or on the inside of the wrist. (The thumb should not be used,
because there is a pulse in the thumb.) Count the number of pulse beats in
one minute. Do this three times, and calculate your average individual
pulse rate (add your three pulse rates and divide by 3.) Why is doing this
three times better than doing it once?

2. Record the pulse rates for the class in a table, with one column for males
and a second column for females. Are there any unusual pulse rates?

3. For now, simply calculate the average pulse rate for the males and the
average pulse rate for the females, and compare.

INDIVIDUALS AND VARIABLES

Individuals are the objects described by a set of data. Individuals may be
people, but they may also be animals or things.

A variable is any characteristic of an individual. A variable can take 
different values for different individuals.

A college’s student data base, for example, includes data about every cur-
rently enrolled student. The students are the individuals described by the data
set. For each individual, the data contain the values of variables such as age,
gender (female or male), choice of major, and grade point average. In prac-
tice, any set of data is accompanied by background information that helps us
understand the data. 



When you meet a new set of data, ask yourself the following questions:

1. Who? What individuals do the data describe? How many individuals
appear in the data?

2. What? How many variables are there? What are the exact definitions of
these variables? In what units is each variable recorded? Weights, for example,
might be recorded in pounds, in thousands of pounds, or in kilograms. Is there
any reason to mistrust the values of any variable?

3. Why? What is the reason the data were gathered? Do we hope to answer
some specific questions? Do we want to draw conclusions about individuals
other than the ones we actually have data for?

Some variables, like gender and college major, simply place individuals
into categories. Others, like age and grade point average (GPA), take numeri-
cal values for which we can do arithmetic. It makes sense to give an average
GPA for a college’s students, but it does not make sense to give an “average”
gender. We can, however, count the numbers of female and male students and
do arithmetic with these counts.
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CATEGORICAL AND QUANTITATIVE VARIABLES

A categorical variable places an individual into one of several groups or
categories.

A quantitative variable takes numerical values for which arithmetic 
operations such as adding and averaging make sense.

Here is a small part of a data set that describes public education in the United States:

Teachers’ 
Population SAT SAT Percent Percent pay

State Region (1000) Verbal Math taking no HS ($1000)

�

CA PAC 33,871 497 514 49 23.8 43.7
CO MTN 4,301 536 540 32 15.6 37.1
CT NE 3,406 510 509 80 20.8 50.7
�

EXAMPLE 1.1 EDUCATION IN THE UNITED STATES



A variable generally takes values that vary. One variable may take values
that are very close together while another variable takes values that are quite
spread out. We say that the pattern of variation of a variable is its distribution.
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Let’s answer the three “W” questions about these data.

1. Who? The individuals described are the states. There are 51 of them, the 50 states
and the District of Columbia, but we give data for only 3. Each row in the table
describes one individual. You will often see each row of data called a case.

2. What? Each column contains the values of one variable for all the individuals. This is
the usual arrangement in data tables. Seven variables are recorded for each state. The first
column identifies the state by its two-letter post office code. We give data for California,
Colorado, and Connecticut. The second column says which region of the country the state
is in. The Census Bureau divides the nation into nine regions. These three are Pacific,
Mountain, and New England. The third column contains state populations, in thousands
of people. Be sure to notice that the units are thousands of people. California’s 33,871
stands for 33,871,000 people. The population data come from the 2000 census. They are
therefore quite accurate as of April 1, 2000, but don’t show later changes in population.

The remaining five variables are the average scores of the states’ high school
seniors on the SAT verbal and mathematics exams, the percent of seniors who take the
SAT, the percent of students who did not complete high school, and average teachers’
salaries in thousands of dollars. Each of these variables needs more explanation before
we can fully understand the data.

3. Why? Some people will use these data to evaluate the quality of individual states’
educational programs. Others may compare states on one or more of the variables.
Future teachers might want to know how much they can expect to earn.

DISTRIBUTION

The distribution of a variable tells us what values the variable takes and
how often it takes these values.

Statistical tools and ideas can help you examine data in order to describe
their main features. This examination is called exploratory data analysis. Like
an explorer crossing unknown lands, we first simply describe what we see.
Each example we meet will have some background information to help us, but
our emphasis is on examining the data. Here are two basic strategies that help
us organize our exploration of a set of data:

• Begin by examining each variable by itself. Then move on to study rela-
tionships among the variables.

• Begin with a graph or graphs. Then add numerical summaries of specific
aspects of the data.

case

exploratory data
analysis



We will organize our learning the same way. Chapters 1 and 2 examine
single-variable data, and Chapters 3 and 4 look at relationships among
variables. In both settings, we begin with graphs and then move on to nu-
merical summaries.
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EXERCISES 
1.1 FUEL-EFFICIENT CARS Here is a small part of a data set that describes the fuel econ-
omy (in miles per gallon) of 1998 model motor vehicles:

Make and Vehicle Transmission Number of City Highway 
Model type type cylinders MPG MPG

�

BMW 318I Subcompact Automatic 4 22 31
BMW 318I Subcompact Manual 4 23 32
Buick Century Midsize Automatic 6 20 29
Chevrolet Blazer Four-wheel drive Automatic 6 16 20
�

(a) What are the individuals in this data set?

(b) For each individual, what variables are given? Which of these variables are categorical
and which are quantitative?

1.2 MEDICAL STUDY VARIABLES Data from a medical study contain values of many vari-
ables for each of the people who were the subjects of the study. Which of the follow-
ing variables are categorical and which are quantitative?

(a) Gender (female or male)

(b) Age (years)

(c) Race (Asian, black, white, or other)

(d) Smoker (yes or no)

(e) Systolic blood pressure (millimeters of mercury)

(f) Level of calcium in the blood (micrograms per milliliter)

1.3 You want to compare the “size” of several statistics textbooks. Describe at least
three possible numerical variables that describe the “size” of a book. In what units
would you measure each variable? 

1.4 Popular magazines often rank cities in terms of how desirable it is to live and work
in each city. Describe five variables that you would measure for each city if you were
designing such a study. Give reasons for each of your choices.



1.1 DISPLAYING DISTRIBUTIONS WITH GRAPHS

Displaying categorical variables: bar graphs and pie charts
The values of a categorical variable are labels for the categories, such as
“male” and “female.” The distribution of a categorical variable lists the cat-
egories and gives either the count or the percent of individuals who fall in
each category. 
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The following table displays the sales figures and market share (percent of total sales)
achieved by several major soft drink companies in 1999. That year, a total of 9930 mil-
lion cases of soft drink were sold.1

Company Cases sold (millions) Market share (percent)

Coca-Cola Co. 4377.5 44.1
Pepsi-Cola Co. 3119.5 31.4
Dr. Pepper/7-Up (Cadbury) 1455.1 14.7
Cott Corp. 310.0 3.1
National Beverage 205.0 2.1
Royal Crown 115.4 1.2
Other 347.5 3.4

How to construct a bar graph:

Step 1: Label your axes and title your graph. Draw a set of axes. Label the horizontal
axis “Company” and the vertical axis “Cases sold.” Title your graph.

Step 2: Scale your axes. Use the counts in each category to help you scale your verti-
cal axis. Write the category names at equally spaced intervals beneath the horizontal
axis.

Step 3: Draw a vertical bar above each category name to a height that corresponds
to the count in that category. For example, the height of the “Pepsi-Cola Co.” bar
should be at 3119.5 on the vertical scale. Leave a space between the bars in a bar
graph.

Figure 1.1(a) displays the completed bar graph.

How to construct a pie chart: Use a computer! Any statistical software package and
many spreadsheet programs will construct these plots for you. Figure 1.1(b) is a pie
chart for the soft drink sales data. 

EXAMPLE 1.2 THE MOST POPULAR SOFT DRINK
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FIGURE 1.1 A bar graph (a) and a pie chart (b) displaying soft drink sales by companies in 1999.

The bar graph in Figure 1.1(a) quickly compares the soft drink sales of
the companies. The heights of the bars show the counts in the seven cate-
gories. The pie chart in Figure 1.1(b) helps us see what part of the whole
each group forms. For example, the Coca-Cola “slice” makes up 44.1% of
the pie because the Coca-Cola Company sold 44.1% of all soft drinks in
1999. 

Bar graphs and pie charts help an audience grasp the distribution quickly.
To make a pie chart, you must include all the categories that make up a whole.
Bar graphs are more flexible.
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In 1998, the National Highway and Traffic Safety Administration (NHTSA) conducted
a study on seat belt use. The table below shows the percentage of automobile drivers
who were observed to be wearing their seat belts in each region of the United States.2

Percent wearing 
Region seat belts

Northeast 66.4
Midwest 63.6
South 78.9
West 80.8

Figure 1.2 shows a bar graph for these data. Notice that the vertical scale is mea-
sured in percents.

EXAMPLE 1.3 DO YOU WEAR YOUR SEAT BELT?
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FIGURE 1.2 A bar graph showing the percentage of drivers who wear their seat belts in each of
four U.S. regions.

Drivers in the South and West seem to be more concerned about wearing seat
belts than those in the Northeast and Midwest. It is not possible to display these data
in a single pie chart, because the four percentages cannot be combined to yield a
whole (their sum is well over 100%).

EXERCISES
1.5 FEMALE DOCTORATES Here are data on the percent of females among people earning
doctorates in 1994 in several fields of study:3

Computer science 15.4% Life sciences 40.7%
Education 60.8% Physical sciences 21.7%
Engineering 11.1% Psychology 62.2%



Displaying quantitative variables: dotplots and stemplots
Several types of graphs can be used to display quantitative data. One of the sim-
plest to construct is a dotplot.
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(a) Present these data in a well-labeled bar graph.

(b) Would it also be correct to use a pie chart to display these data? If so, construct the
pie chart. If not, explain why not.

1.6 ACCIDENTAL DEATHS In 1997 there were 92,353 deaths from accidents in the United
States. Among these were 42,340 deaths from motor vehicle accidents, 11,858 from
falls, 10,163 from poisoning, 4051 from drowning, and 3601 from fires.4

(a) Find the percent of accidental deaths from each of these causes, rounded to the
nearest percent. What percent of accidental deaths were due to other causes?

(b) Make a well-labeled bar graph of the distribution of causes of accidental deaths.
Be sure to include an “other causes” bar.

(c) Would it also be correct to use a pie chart to display these data? If so, construct the
pie chart. If not, explain why not.

The number of goals scored by each team in the first round of the California
Southern Section Division V high school soccer playoffs is shown in the following
table.5

5 0 1 0 7 2 1 0 4 0 3 0 2 0
3 1 5 0 3 0 1 0 1 0 2 0 3 1

How to construct a dotplot:

Step 1: Label your axis and title your graph. Draw a horizontal line and label it with
the variable (in this case, number of goals scored). Title your graph.

Step 2: Scale the axis based on the values of the variable.

Step 3: Mark a dot above the number on the horizontal axis corresponding to each
data value. Figure 1.3 displays the completed dotplot.

EXAMPLE 1.4 GOOOOOOOOAAAAALLLLLLLLL!!!

0 1 2 3 4 5 6 7   
Number of Goals

Goals Scored in California Division 5 Soccer Playoffs

FIGURE 1.3 Goals scored by teams in the California Southern Section Division V high school soccer
playoffs.
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Making a statistical graph is not an end in itself. After all, a computer or graph-
ing calculator can make graphs faster than we can. The purpose of the graph is to
help us understand the data. After you (or your calculator) make a graph, always
ask, “What do I see?” Here is a general tactic for looking at graphs: Look for an
overall pattern and also for striking deviations from that pattern.

OUTLIERS

An outlier in any graph of data is an individual observation that falls outside
the overall pattern of the graph.

OVERALL PATTERN OF A DISTRIBUTION

To describe the overall pattern of a distribution:

• Give the center and the spread.

• See if the distribution has a simple shape that you can describe in a few
words.

Section 1.2 tells in detail how to measure center and spread. For now,
describe the center by finding a value that divides the observations so that
about half take larger values and about half have smaller values. In Figure 1.3,
the center is 1. That is, a typical team scored about 1 goal in its playoff soccer
game. You can describe the spread by giving the smallest and largest values.
The spread in Figure 1.3 is from 0 goals to 7 goals scored. 

The dotplot in Figure 1.3 shows that in most of the playoff games, Division V
soccer teams scored very few goals. There were only four teams that scored 4 or
more goals. We can say that the distribution has a “long tail” to the right, or that
its shape is “skewed right.” You will learn more about describing shape shortly.

Is the one team that scored 7 goals an outlier? This value certainly differs
from the overall pattern. To some extent, deciding whether an observation is
an outlier is a matter of judgment. We will introduce an objective criterion for
determining outliers in Section 1.2.

Once you have spotted outliers, look for an explanation. Many outliers are
due to mistakes, such as typing 4.0 as 40. Other outliers point to the special
nature of some observations. Explaining outliers usually requires some back-
ground information. Perhaps the soccer team that scored seven goals has some
very talented offensive players. Or maybe their opponents played poor defense.

Sometimes the values of a variable are too spread out for us to make a rea-
sonable dotplot. In these cases, we can consider another simple graphical dis-
play: a stemplot.
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TABLE 1.1 Caffeine content (in milligrams) for an 8-ounce serving of popular soft
drinks

Caffeine Caffeine
(mg per 8-oz. (mg per 8-oz.

Brand serving) Brand serving)

A&W Cream Soda 20 IBC Cherry Cola 16
Barq’s root beer 15 Kick 38
Cherry Coca-Cola 23 KMX 36
Cherry RC Cola 29 Mello Yello 35
Coca-Cola Classic 23 Mountain Dew 37
Diet A&W Cream Soda 15 Mr. Pibb 27
Diet Cherry Coca-Cola 23 Nehi Wild Red Soda 33
Diet Coke 31 Pepsi One 37
Diet Dr. Pepper 28 Pepsi-Cola 25
Diet Mello Yello 35 RC Edge 47
Diet Mountain Dew 37 Red Flash 27
Diet Mr. Pibb 27 Royal Crown Cola 29
Diet Pepsi-Cola 24 Ruby Red Squirt 26
Diet Ruby Red Squirt 26 Sun Drop Cherry 43
Diet Sun Drop 47 Sun Drop Regular 43
Diet Sunkist Orange Soda 28 Sunkist Orange Soda 28
Diet Wild Cherry Pepsi 24 Surge 35
Dr. Nehi 28 TAB 31
Dr. Pepper 28 Wild Cherry Pepsi 25

Source: National Soft Drink Association, 1999.

The caffeine levels spread from 15 to 47 milligrams for these soft drinks. You could
make a dotplot for these data, but a stemplot might be preferable due to the large
spread.

How to construct a stemplot:

Step 1: Separate each observation into a stem consisting of all but the rightmost digit
and a leaf, the final digit. A&W Cream Soda has 20 milligrams of caffeine per 8-ounce
serving. The number 2 is the stem and 0 is the leaf.

Step 2: Write the stems vertically in increasing order from top to bottom, and draw a
vertical line to the right of the stems. Go through the data, writing each leaf to the right
of its stem and spacing the leaves equally.

The U.S. Food and Drug Administration limits the amount of caffeine in a 12-ounce
can of carbonated beverage to 72 milligrams (mg). Data on the caffeine content of
popular soft drinks are provided in Table 1.1. How does the caffeine content of these
drinks compare to the USFDA’s limit?

EXAMPLE 1.5 WATCH THAT CAFFEINE!



1  5  5  6

2  0  3  9  3  3  8  7  4  6  8  4  8  8  7  5  7  9  6  8  5

3  1  5  7  8  6  5  7  3  7  5  1

4  7  7  3  3

Step 3: Write the stems again, and rearrange the leaves in increasing order out from
the stem.

Step 4: Title your graph and add a key describing what the stems and leaves represent.
Figure 1.4(a) shows the completed stemplot.

What shape does this distribution have? It is difficult to tell with so few stems. We can
get a better picture of the caffeine content in soft drinks by “splitting stems.” In Figure
1.4(a), the values from 10 to 19 milligrams are placed on the “1” stem. Figure 1.4(b) shows
another stemplot of the same data. This time, values having leaves 0 through 4 are placed
on one stem, while values ending in 5 through 9 are placed on another stem.

Now the bimodal (two-peaked) shape of the distribution is clear. Most soft drinks
seem to have between 25 and 29 milligrams or between 35 and 38 milligrams of caffeine
per 8-ounce serving. The center of the distribution is 28 milligrams per 8-ounce serving.
At first glance, it looks like none of these soft drinks even comes close to the USFDA’s caf-
feine limit of 72 milligrams per 12-ounce serving. Be careful! The values in the stemplot
are given in milligrams per 8-ounce serving. Two soft drinks have caffeine levels of 47 mil-
ligrams per 8-ounce serving. A 12-ounce serving of these beverages would have 1.5(47) =
70.5 milligrams of caffeine. Always check the units of measurement!
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FIGURE 1.4 Two stemplots showing the caffeine content (mg) of various soft drinks. Figure 1.4(b)
improves on the stemplot of Figure 1.4(a) by splitting stems.
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CAFFEINE CONTENT (MG) PER 8-OUNCE SERVING OF VARIOUS SOFT DRINKS

Key:
3|5 means the soft drink contains 35 mg of
caffeine per 8-ounce serving. Key:

2|8 means the soft drink con-
tains 28 mg of caffeine per 8-
ounce serving.

Here are a few tips for you to consider when you want to construct a stemplot:

• Whenever you split stems, be sure that each stem is assigned an equal num-
ber of possible leaf digits.

• There is no magic number of stems to use. Too few stems will result in a skyscraper-
shaped plot, while too many stems will yield a very flat “pancake” graph.



1.1 Displaying Distributions with Graphs 15

• Five stems is a good minimum.

• You can get more flexibility by rounding the data so that the final digit after
rounding is suitable as a leaf. Do this when the data have too many digits.

The chief advantages of dotplots and stemplots are that they are easy to con-
struct and they display the actual data values (unless we round). Neither will
work well with large data sets. Most statistical software packages will make dot-
plots and stemplots for you. That will allow you to spend more time making
sense of the data. 

TECHNOLOGY TOOLBOX Interpreting computer output

As cheddar cheese matures, a variety of chemical processes take place. The taste of mature cheese is re-
lated to the concentration of several chemicals in the final product. In a study of cheddar cheese from
the Latrobe Valley of Victoria, Australia, samples of cheese were analyzed for their chemical composi-
tion. The final concentrations of lactic acid in the 30 samples, as a multiple of their initial concentra-
tions, are given below.6

A dotplot and a stemplot from the Minitab statistical software package are shown in Figure 1.5. The
dots in the dotplot are so spread out that the distribution seems to have no distinct shape. The stemplot
does a better job of summarizing the data. 
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FIGURE 1.5 Minitab dotplot and stemplot for cheese data.
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TECHNOLOGY TOOLBOX Interpreting computer output (continued)

Notice how the data are recorded in the stemplot. The “leaf unit” is 0.01, which tells us that the
stems are given in tenths and the leaves are given in hundredths. We can see that the spread of the
lactic acid concentrations is from 0.86 to 2.01. Where is the center of the distribution? Minitab
counts the number of observations from the bottom up and from the top down and lists those
counts to the left of the stemplot. Since there are 30 observations, the “middle value” would fall
between the 15th and 16th data values from either end—at 1.45. The (3) to the far left of this stem
is Minitab’s way of marking the location of the “middle value.” So a typical sample of mature
cheese has 1.45 times as much lactic acid as it did initially. The distribution is roughly symmetrical
in shape. There appear to be no outliers.

EXERCISES
1.7 OLYMPIC GOLD Athletes like Cathy Freeman, Rulon Gardner, Ian Thorpe, Marion
Jones, and Jenny Thompson captured public attention by winning gold medals in
the 2000 Summer Olympic Games in Sydney, Australia. Table 1.2 displays the total
number of gold medals won by several countries in the 2000 Summer Olympics.

TABLE 1.2 Gold medals won by selected countries in the 2000 Summer Olympics

Country Gold medals Country Gold medals

Sri Lanka 0 Netherlands 12
Qatar 0 India 0
Vietnam 0 Georgia 0
Great Britain 28 Kyrgyzstan 0
Norway 10 Costa Rica 0
Romania 26 Brazil 0
Switzerland 9 Uzbekistan 1
Armenia 0 Thailand 1
Kuwait 0 Denmark 2
Bahamas 1 Latvia 1
Kenya 2 Czech Republic 2
Trinidad and Tobago 0 Hungary 8
Greece 13 Sweden 4
Mozambique 1 Uruguay 0
Kazakhstan 3 United States 39

Source: BBC Olympics Web site.

Make a dotplot to display these data. Describe the distribution of number of gold
medals won.

1.8 ARE YOU DRIVING A GAS GUZZLER? Table 1.3 displays the highway gas mileage for 32
model year 2000 midsize cars. 
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TABLE 1.3 Highway gas mileage for model year 2000 midsize cars

Model MPG Model MPG

Acura 3.5RL 24 Lexus GS300 24
Audi A6 Quattro 24 Lexus LS400 25
BMW 740I Sport M 21 Lincoln-Mercury LS 25
Buick Regal 29 Lincoln-Mercury Sable 28
Cadillac Catera 24 Mazda 626 28
Cadillac Eldorado 28 Mercedes-Benz E320 30
Chevrolet Lumina 30 Mercedes-Benz E430 24
Chrysler Cirrus 28 Mitsubishi Diamante 25
Dodge Stratus 28 Mitsubishi Galant 28
Honda Accord 29 Nissan Maxima 28
Hyundai Sonata 28 Oldsmobile Intrigue 28
Infiniti I30 28 Saab 9-3 26
Infiniti Q45 23 Saturn LS 32
Jaguar Vanden Plas 24 Toyota Camry 30
Jaguar S/C 21 Volkswagon Passat 29
Jaguar X200 26 Volvo S70 27

(a) Make a dotplot of these data. 

(b) Describe the shape, center, and spread of the distribution of gas mileages. Are
there any potential outliers?

1.9 MICHIGAN COLLEGE TUITIONS There are 81 colleges and universities in Michigan.
Their tuition and fees for the 1999 to 2000 school year run from $1260 at Kalamazoo
Valley Community College to $19,258 at Kalamazoo College. Figure 1.6 (next page)
shows a stemplot of the tuition charges.

(a) What do the stems and leaves represent in the stemplot? Have the data been
rounded?

(b) Describe the shape, center, and spread of the tuition distribution. Are there any
outliers?

1.10 DRP TEST SCORES There are many ways to measure the reading ability of chil-
dren. One frequently used test is the Degree of Reading Power (DRP). In a research
study on third-grade students, the DRP was administered to 44 students.7 Their
scores were:

40 26 39 14 42 18 25 43 46 27 19
47 19 26 35 34 15 44 40 38 31 46
52 25 35 35 33 29 34 41 49 28 52
47 35 48 22 33 41 51 27 14 54 45

Display these data graphically. Write a paragraph describing the distribution of DRP
scores.



3 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 9

0 1 2 5

0 1

1 6 9

7

1 3 9

3 9

2 4 4 5 7

3 9

1 6

0

2

3

1 3 6 7 8

1 3 3 4 6 6

1 5 5 6 6 6 8 9 9

8

0 1 4 5 6 7

1

4

5

8

9

1 0

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

1 1

6

3

2

7

18 Chapter 1 Exploring Data

FIGURE 1.6 Stemplot of the Michigan tuition and fee data, for Exercise 1.9.

Displaying quantitative variables: histograms
Quantitative variables often take many values. A graph of the distribution is
clearer if nearby values are grouped together. The most common graph of the
distribution of one quantitative variable is a histogram.

1.11 SHOPPING SPREE! A marketing consultant observed 50 consecutive shoppers at a
supermarket. One variable of interest was how much each shopper spent in the store.
Here are the data (in dollars), arranged in increasing order:

3.11 8.88 9.26 10.81 12.69 13.78 15.23 15.62 17.00 17.39
18.36 18.43 19.27 19.50 19.54 20.16 20.59 22.22 23.04 24.47
24.58 25.13 26.24 26.26 27.65 28.06 28.08 28.38 32.03 34.98
36.37 38.64 39.16 41.02 42.97 44.08 44.67 45.40 46.69 48.65
50.39 52.75 54.80 59.07 61.22 70.32 82.70 85.76 86.37 93.34

(a) Round each amount to the nearest dollar. Then make a stemplot using tens of dol-
lars as the stem and dollars as the leaves.

(b) Make another stemplot of the data by splitting stems. Which of the plots shows the
shape of the distribution better?

(c) Describe the shape, center, and spread of the distribution. Write a few sentences
describing the amount of money spent by shoppers at this supermarket.
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How old are presidents at their inaugurations? Was Bill Clinton, at age 46, unusually
young? Table 1.4 gives the data, the ages of all U.S presidents when they took office.

EXAMPLE 1.6 PRESIDENTIAL AGES AT INAUGURATION

TABLE 1.4 Ages of the Presidents at inauguration

President Age President Age President Age

Washington 57 Lincoln 52 Hoover 54
J. Adams 61 A. Johnson 56 F. D. Roosevelt 51
Jefferson 57 Grant 46 Truman 60
Madison 57 Hayes 54 Eisenhower 61
Monroe 58 Garfield 49 Kennedy 43
J. Q. Adams 57 Arthur 51 L. B. Johnson 55
Jackson 61 Cleveland 47 Nixon 56
Van Buren 54 B. Harrison 55 Ford 61
W. H. Harrison 68 Cleveland 55 Carter 52
Tyler 51 McKinley 54 Reagan 69
Polk 49 T. Roosevelt 42 G. Bush 64
Taylor 64 Taft 51 Clinton 46
Fillmore 50 Wilson 56 G. W. Bush 54
Pierce 48 Harding 55
Buchanan 65 Coolidge 51

How to make a histogram:
Step 1: Divide the range of the data into classes of equal width. Count the number of
observations in each class. The data in Table 1.4 range from 42 to 69, so we choose as our
classes

40 ≤ president’s age at inauguration < 45
45 ≤ president’s age at inauguration < 50

�

65 ≤ president’s age at inauguration < 70

Be sure to specify the classes precisely so that each observation falls into exactly one
class. Martin Van Buren, who was age 54 at the time of his inauguration, would fall
into the third class interval. Grover Cleveland, who was age 55, would be placed in the
fourth class interval.

Here are the counts:

Class Count

40–44 2
45–49 6
50–54 13
55–59 12
60–64 7
65–69 3
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FIGURE 1.7 The distribution of the ages of presidents at their inaugurations, from Table 1.4.
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Step 2: Label and scale your axes and title your graph. Label the horizontal axis
“Age at inauguration” and the vertical axis “Number of presidents.” For the classes
we chose, we should scale the horizontal axis from 40 to 70, with tick marks 5 units
apart. The vertical axis contains the scale of counts and should range from 0 to at
least 13.

Step 3: Draw a bar that represents the count in each class. The base of a bar should
cover its class, and the bar height is the class count. Leave no horizontal space between
the bars (unless a class is empty, so that its bar has height 0). Figure 1.7 shows the com-
pleted histogram.

Graphing note: It is common to add a “break-in-scale” symbol (//) on an axis that does
not start at 0, like the horizontal axis in this example.

Interpretation:
Center: It appears that the typical age of a new president is about 55 years, because

55 is near the center of the histogram. 
Spread: As the histogram in Figure 1.7 shows, there is a good deal of variation in

the ages at which presidents take office. Teddy Roosevelt was the youngest, at age 42,
and Ronald Reagan, at age 69, was the oldest.

Shape: The distribution is roughly symmetric and has a single peak (unimodal).
Outliers: There appear to be no outliers.
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You can also use computer software or a calculator to construct histograms.

TECHNOLOGY TOOLBOX Making calculator histograms

1. Enter the presidential age data from Example 1.6 in your statistics list editor.
TI-83 TI-89

• Press STAT and choose 1:Edit.... • Press APPS , choose 1:FlashApps, then select 
Stats/List Editor and press ENTER.

• Type the values into list L1. • Type the values into list1.

57
61
57
57
58
57
61

L1     L2     L3  1

L1={57,61,57,57…

57
61
57
57
58
57

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F7
Ints

list1  list2  list3  list4

list1 [1]=57
MAIN RAD AUTO FUNC 1/6

2. Set up a histogram in the statistics plots menu.
• Press 2nd  Y= (STAT PLOT). • Press F2 and choose 1:Plot Setup....
• Press ENTER to go into Plot1. • With Plot 1 highlighted, press F1 to define.
• Adjust your settings as shown. • Change Hist. Bucket Width to 5, as shown.

Plot2 Plot3

Type:

Xlist:L1
Freq:1

Off
Plot1
On

40
42
46
49
73

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

list1  list2  list3  list4

list1 [1]=57
USE ← AND → TO OPEN CHOICES

Define Plot 1

……Histogram→
 ∨2
list1

5

main\list2

<:

Enter=OK ESC=CANCEL

∨Plot Type
Mark
x
y
Hist.Bucket Width
Use Freq and Categories? NO→
Freq
Category
Include Categories

3. Set the window to match the class intervals chosen in Example 1.6.
• Press WINDOW . • Press ♦ F2 (WINDOW).
• Enter the values shown. • Enter the values shown.

WINDOW
 Xmin=35
 Xmax=75
 Xscl=5
 Ymin=-3
 Ymax=15
 Yscl=1
 Xres=1

xmin=35.
xmax=75.
xscl=5.
ymin=-3.
ymax=15.
yscl=1.
xres=1

F1
Tools

F2
Zoom

MAIN DEG AUTO FUNC

.

4. Graph the histogram. Compare with Figure 1.7.
• Press GRAPH. • Press ♦ F3 (GRAPH).
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TECHNOLOGY TOOLBOX Making calculator histograms (continued)

F1
Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

MAIN RAD AUTO FUNC

5. Save the data in a named list for later use.
• From the home screen, type the command L1→PREZ (list1→prez on the TI-89) 

and press ENTER . The data are now stored in a list called PREZ.

L1→PREZ
{57 61 57 57 58…

list1→prez
{57  61  57  57  58  57

F1
 Tools

F2
 Algebra

F3
 Calc

F4
Other

F5
ProgmIO

F6
 Clean Up

MAIN a DEGAUTO FUNC 1/30
list1→prez

EXERCISES
1.12 WHERE DO OLDER FOLKS LIVE? Table 1.5 gives the percentage of residents aged 65 or
older in each of the 50 states.

Histogram tips:

• There is no one right choice of the classes in a histogram. Too few classes
will give a “skyscraper” graph, with all values in a few classes with tall bars.
Too many will produce a “pancake” graph, with most classes having one or
no observations. Neither choice will give a good picture of the shape of the
distribution. 

• Five classes is a good minimum.

• Our eyes respond to the area of the bars in a histogram, so be sure to choose
classes that are all the same width. Then area is determined by height and all
classes are fairly represented. 

• If you use a computer or graphing calculator, beware of letting the device
choose the classes.
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Source: U.S. Census Bureau, 1998.

(a) Construct a histogram to display these data. Record your class intervals and counts.

(b) Describe the distribution of people aged 65 and over in the states.

(c) Enter the data into your calculator’s statistics list editor. Make a histogram using a
window that matches your histogram from part (a). Copy the calculator histogram and
mark the scales on your paper.

(d) Use the calculator’s zoom feature to generate a histogram. Copy this histogram
onto your paper and mark the scales.

(e) Store the data into the named list ELDER for later use.

TABLE 1.5 Percent of the population in each state aged 65 or older 

State Percent State Percent State Percent

Alabama 13.1
Alaska 5.5
Arizona 13.2
Arkansas 14.3
California 11.1
Colorado 10.1
Connecticut 14.3
Delaware 13.0
Florida 18.3
Georgia 9.9
Hawaii 13.3
Idaho 11.3
Illinois 12.4
Indiana 12.5
Iowa 15.1
Kansas 13.5
Kentucky 12.5

Louisiana 11.5
Maine 14.1
Maryland 11.5
Massachusetts 14.0
Michigan 12.5
Minnesota 12.3
Mississippi 12.2
Missouri 13.7
Montana 13.3
Nebraska 13.8
Nevada 11.5
New Hampshire 12.0
New Jersey 13.6
New Mexico 11.4
New York 13.3
North Carolina 12.5
North Dakota 14.4

Ohio 13.4
Oklahoma 13.4
Oregon 13.2
Pennsylvania 15.9
Rhode Island 15.6
South Carolina 12.2
South Dakota 14.3
Tennessee 12.5
Texas 10.1
Utah 8.8
Vermont 12.3
Virginia 11.3
Washington 11.5
West Virginia 15.2
Wisconsin 13.2
Wyoming 11.5

1.13 DRP SCORES REVISITED Refer to Exercise 1.10 (page 17). Make a histogram of the DRP
test scores for the sample of 44 children. Be sure to show your frequency table. Which do
you prefer: the stemplot from Exercise 1.10 or the histogram that you just constructed? Why?

1.14 CEO SALARIES In 1993, Forbes magazine reported the age and salary of the chief
executive officer (CEO) of each of the top 59 small businesses.8 Here are the salary
data, rounded to the nearest thousand dollars:

145 621 262 208 362 424 339 736 291 58 498 643 390 332
750 368 659 234 396 300 343 536 543 217 298 1103 406 254
862 204 206 250 21 298 350 800 726 370 536 291 808 543
149 350 242 198 213 296 317 482 155 802 200 282 573 388
250 396 572
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1.15 CHEST OUT, SOLDIER! In 1846, a published paper provided chest measurements (in
inches) of 5738 Scottish militiamen. Table 1.6 displays the data in summary form.

TABLE 1.6 Chest measurements (inches) of 5738 Scottish
militiamen 

Chest size Count Chest size Count

33 3 41 934
34 18 42 658
35 81 43 370
36 185 44 92
37 420 45 50
38 749 46 21
39 1073 47 4
40 1079 48 1

Source: Data and Story Library (DASL), http://lib.stat.cmu.edu/DASL/. 

(a) You can use your graphing calculator to make a histogram of data presented in
summary form like the chest measurements of Scottish militiamen.

• Type the chest measurements into L1/list1 and the corresponding counts into L2/list2.

• Set up a statistics plot to make a histogram with x-values from L1/list1 and y-values (bar
heights) from L2/list2.

Plot2 Plot3

Type:

Xlist:L1
Freq:L2

Off
Plot1
On

40
42
46
49
73

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

list1  list2  list3  list4

list1 [1]=57
TYPE + [ENTER]=OK AND [ESC]=CANCEL

Define Plot 1

……

Enter=OK ESC=CANCEL

∨Plot Type
Mark
x
y
Hist.Bucket Width
Use Freq and Categories? YES→
Freq
Category
Include Categories

Histogram→
 ∨ 
list1

1

main\list2

{}

• Adjust your viewing window settings as follows: xmin = 32, xmax = 49, xscl = 1, ymin =
–300, ymax = 1100, yscl = 100. From now on, we will abbreviate in this form: X[32,49]1
by Y[–300,1100]100. Try using the calculator’s built-in ZoomStat/ZoomData command.
What happens? 

• Graph.

F1
Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

MAIN RAD AUTO FUNC

(b) Describe the shape, center, and spread of the chest measurements distribution.
Why might this information be useful?

Construct a histogram for these data. Describe the shape, center, and spread of the dis-
tribution of CEO salaries. Are there any apparent outliers?
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More about shape
When you describe a distribution, concentrate on the main features. Look for
major peaks, not for minor ups and downs in the bars of the histogram. Look
for clear outliers, not just for the smallest and largest observations. Look for
rough symmetry or clear skewness.

In mathematics, symmetry means that the two sides of a figure like a
histogram are exact mirror images of each other. Data are almost never
exactly symmetric, so we are willing to call histograms like that in Exercise
1.15 approximately symmetric as an overall description. Here are more
examples.

SYMMETRIC AND SKEWED DISTRIBUTIONS

A distribution is symmetric if the right and left sides of the histogram are
approximately mirror images of each other.

A distribution is skewed to the right if the right side of the histogram (con-
taining the half of the observations with larger values) extends much far-
ther out than the left side. It is skewed to the left if the left side of the his-
togram extends much farther out than the right side.

Figure 1.8 comes from a study of lightning storms in Colorado. It shows the distribution
of the hour of the day during which the first lightning flash for that day occurred. The
distribution has a single peak at noon and falls off on either side of this peak. The two
sides of the histogram are roughly the same shape, so we call the distribution symmetric.

Figure 1.9 shows the distribution of lengths of words used in Shakespeare’s plays.9
This distribution also has a single peak but is skewed to the right. That is, there are
many short words (3 and 4 letters) and few very long words (10, 11, or 12 letters), so
that the right tail of the histogram extends out much farther than the left tail.

Notice that the vertical scale in Figure 1.9 is not the count of words but the percent
of all of Shakespeare’s words that have each length. A histogram of percents rather than
counts is convenient when the counts are very large or when we want to compare sever-
al distributions. Different kinds of writing have different distributions of word lengths, but
all are right-skewed because short words are common and very long words are rare.

EXAMPLE 1.7 LIGHTNING FLASHES AND SHAKESPEARE

The overall shape of a distribution is important information about a variable.
Some types of data regularly produce distributions that are symmetric or skewed.
For example, the sizes of living things of the same species (like lengths of
cockroaches) tend to be symmetric. Data on incomes (whether of individuals, com-
panies, or nations) are usually strongly skewed to the right. There are many moder-
ate incomes, some large incomes, and a few very large incomes. Do remember that
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many distributions have shapes that are neither symmetric nor skewed. Some data
show other patterns. Scores on an exam, for example, may have a cluster near the
top of the scale if many students did well. Or they may show two distinct peaks if a
tough problem divided the class into those who did and didn’t solve it. Use your
eyes and describe what you see.

EXERCISES
1.16 STOCK RETURNS The total return on a stock is the change in its market price
plus any dividend payments made. Total return is usually expressed as a percent of
the beginning price. Figure 1.10 is a histogram of the distribution of total returns
for all 1528 stocks listed on the New York Stock Exchange in one year.10 Like
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FIGURE 1.9 The distribution of lengths of words used in Shakespeare’s plays, for Example 1.7.
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FIGURE 1.8 The distribution of the time of the first lightning flash each day at a site in
Colorado, for Example 1.7.



1.1 Displaying Distributions with Graphs 27

–40
0

5

10

15

20

25

–20–60 0 20
Percent total return

Pe
rc

en
t 

of
 N

YS
E 

st
oc

ks

40 60 80 100

FIGURE 1.10 The distribution of percent total return for all New York Stock Exchange common
stocks in one year.

Figure 1.9, it is a histogram of the percents in each class rather than a histogram
of counts.

(a) Describe the overall shape of the distribution of total returns.

(b) What is the approximate center of this distribution? (For now, take the center to be the
value with roughly half the stocks having lower returns and half having higher returns.)

(c) Approximately what were the smallest and largest total returns? (This describes the
spread of the distribution.)

(d) A return less than zero means that an owner of the stock lost money. About what
percent of all stocks lost money?

1.17 FREEZING IN GREENWICH, ENGLAND Figure 1.11 is a histogram of the number of days
in the month of April on which the temperature fell below freezing at Greenwich,
England.11 The data cover a period of 65 years.

(a) Describe the shape, center, and spread of this distribution. Are there any outliers?

(b) In what percent of these 65 years did the temperature never fall below freezing in April?

1.18 How would you describe the center and spread of the distribution of first lightning
flash times in Figure 1.8? Of the distribution of Shakespeare’s word lengths in Figure 1.9?

Relative frequency, cumulative frequency, percentiles, and ogives
Sometimes we are interested in describing the relative position of an individual
within a distribution. You may have received a standardized test score report
that said you were in the 80th percentile. What does this mean? Put simply,
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PERCENTILE

The pth percentile of a distribution is the value such that p percent of the
observations fall at or below it.

80% of the people who took the test earned scores that were less than or equal
to your score. The other 20% of students taking the test earned higher scores
than you did.
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FIGURE 1.11 The distribution of the number of frost days during April at Greenwich, England, over
a 65-year period, for Exercise 1.17.

A histogram does a good job of displaying the distribution of values of a
variable. But it tells us little about the relative standing of an individual obser-
vation. If we want this type of information, we should construct a relative
cumulative frequency graph, often called an ogive (pronounced O-JIVE).

In Example 1.6, we made a histogram of the ages of U.S. presidents when they were
inaugurated. Now we will examine where some specific presidents fall within the age
distribution.

How to construct an ogive (relative cumulative frequency graph):

Step 1: Decide on class intervals and make a frequency table, just as in making a his-
togram. Add three columns to your frequency table: relative frequency, cumulative fre-
quency, and relative cumulative frequency.

EXAMPLE 1.8 WAS BILL CLINTON A YOUNG PRESIDENT?



1.1 Displaying Distributions with Graphs 29

Cumulative Relative 
Class Frequency Relative frequency frequency cumulative frequency

40–44 2 2—43 = 0.047, or 4.7% 2 2—43 = 0.047, or 4.7%
45–49 6 6—43 = 0.140, or 14.0% 8 8—43 = 0.186, or 18.6%
50–54 13 13—43 = 0.302, or 30.2% 21 21—43 = 0.488, or 48.8%
55–59 12 12—43 = 0.279, or 27.9% 33 33—43 = 0.767, or 76.7%
60–64 7 7—43 = 0.163, or 16.3% 40 40—43 = 0.930, or 93.0%
65–69 3 3—43 = 0.070, or 7.0% 43 43—43 = 1.000, or 100%

TOTAL 43

Step 2: Label and scale your axes and title your graph. Label the horizontal axis “Age at
inauguration” and the vertical axis “Relative cumulative frequency.” Scale the horizon-
tal axis according to your choice of class intervals and the vertical axis from 0% to 100%.

Step 3: Plot a point corresponding to the relative cumulative frequency in each class
interval at the left endpoint of the next class interval. For example, for the 40–44 inter-
val, plot a point at a height of 4.7% above the age value of 45. This means that 4.7% of
presidents were inaugurated before they were 45 years old. Begin your ogive with a
point at a height of 0% at the left endpoint of the lowest class interval. Connect con-
secutive points with a line segment to form the ogive. The last point you plot should
be at a height of 100%. Figure 1.12 shows the completed ogive.

How to locate an individual within the distribution:

What about Bill Clinton? He was age 46 when he took office. To find his relative stand-
ing, draw a vertical line up from his age (46) on the horizontal axis until it meets the
ogive. Then draw a horizontal line from this point of intersection to the vertical axis.
Based on Figure 1.13(a), we would estimate that Bill Clinton’s age places him at the 10%
relative cumulative frequency mark. That tells us that about 10% of all U.S. presidents
were the same age as or younger than Bill Clinton when they were inaugurated. Put
another way, President Clinton was younger than about 90% of all U.S. presidents based
on his inauguration age. His age places him at the 10th percentile of the distribution.

How to locate a value corresponding to a percentile:

• What inauguration age corresponds to the 60th percentile? To answer this question,
draw a horizontal line across from the vertical axis at a height of 60% until it meets the
ogive. From the point of intersection, draw a vertical line down to the horizontal axis.

• To get the values in the relative frequency column, divide the count in each class
interval by 43, the total number of presidents. Multiply by 100 to convert to a per-
centage.

• To fill in the cumulative frequency column, add the counts in the frequency column
that fall in or below the current class interval.

• For the relative cumulative frequency column, divide the entries in the cumulative
frequency column by 43, the total number of individuals.

Here is the frequency table from Example 1.6 with the relative frequency, cumu-
lative frequency, and relative cumulative frequency columns added.
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In Figure 1.13(b), the value on the horizontal axis is about 57. So about 60% of all
presidents were 57 years old or younger when they took office.

• Find the center of the distribution. Since we use the value that has half of the obser-
vations above it and half below it as our estimate of center, we simply need to find the
50th percentile of the distribution. Estimating as for the previous question, confirm
that 55 is the center.
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FIGURE 1.12 Relative cumulative frequency plot (ogive) for the ages of U.S. presidents at inauguration.
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FIGURE 1.13 Ogives of presidents’ ages at inauguration are used to (a) locate Bill Clinton
within the distribution and (b) determine the 60th percentile and center of the distribution.
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Time plots
Many variables are measured at intervals over time. We might, for example,
measure the height of a growing child or the price of a stock at the end of each
month. In these examples, our main interest is change over time. To display
change over time, make a time plot.
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FIGURE 1.14 Amount spent by grocery shoppers in Exercise 1.11.

TIME PLOT

A time plot of a variable plots each observation against the time at which it
was measured. Always mark the time scale on the horizontal axis and the
variable of interest on the vertical axis. If there are not too many points,
connecting the points by lines helps show the pattern of changes over time.

EXERCISES
1.19 OLDER FOLKS, II In Exercise 1.12 (page 22), you constructed a histogram of the
percentage of people aged 65 or older in each state. 

(a) Construct a relative cumulative frequency graph (ogive) for these data.

(b) Use your ogive from part (a) to answer the following questions:

• In what percentage of states was the percentage of “65 and older” less than 15%?

• What is the 40th percentile of this distribution, and what does it tell us?

• What percentile is associated with your state?

1.20 SHOPPING SPREE, II Figure 1.14 is an ogive of the amount spent by grocery shop-
pers in Exercise 1.11 (page 18).

(a) Estimate the center of this distribution. Explain your method.

(b) At what percentile would the shopper who spent $17.00 fall?

(c) Draw the histogram that corresponds to the ogive.
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trend

seasonal variation

Figure 1.15 is a time plot of the average price of fresh oranges over the period from
January 1990 to January 2000. This information is collected each month as part of the
government’s reporting of retail prices. The vertical scale on the graph is the orange
price index. This represents the price as a percentage of the average price of oranges
in the years 1982 to 1984. The first value is 150 for January 1990, so at that time
oranges cost about 150% of their 1982 to 1984 average price. 

Figure 1.15 shows a clear trend of increasing price. In addition to this trend, we
can see a strong seasonal variation, a regular rise and fall that occurs each year.
Orange prices are usually highest in August or September, when the supply is low-
est. Prices then fall in anticipation of the harvest and are lowest in January or
February, when the harvest is complete and oranges are plentiful. The unusually
large jump in orange prices in 1991 resulted from a freeze in Florida. Can you dis-
cover what happened in 1999?

EXAMPLE 1.9 ORANGE PRICES MAKE ME SOUR!
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FIGURE 1.15 The price of fresh oranges, January 1990 to January 2000.

When you examine a time plot, look once again for an overall pattern and
for strong deviations from the pattern. One common overall pattern is a trend,
a long-term upward or downward movement over time. A pattern that repeats
itself at regular time intervals is known as seasonal variation. The next exam-
ple illustrates both these patterns.
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EXERCISES
1.21 CANCER DEATHS Here are data on the rate of deaths from cancer (deaths per
100,000 people) in the United States over the 50-year period from 1945 to 1995:

Year: 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
Deaths: 134.0 139.8 146.5 149.2 153.5 162.8 169.7 183.9 193.3 203.2 204.7

(a) Construct a time plot for these data. Describe what you see in a few sentences.

(b) Do these data suggest that we have made no progress in treating cancer? Explain.

1.22 CIVIL UNREST The years around 1970 brought unrest to many U.S. cities. Here are
data on the number of civil disturbances in each three month period during the years
1968 to 1972:

Period Count Period Count

1968 Jan.–Mar. 6 1970 July–Sept. 20
Apr.–June 46 Oct.–Dec. 6
July–Sept. 25 1971 Jan.–Mar. 12
Oct.–Dec. 3 Apr.–June 21

1969 Jan.–Mar. 5 July–Sept. 5
Apr.–June 27 Oct.–Dec. 1
July–Sept. 19 1972 Jan.–Mar. 3
Oct.–Dec. 6 Apr.–June 8

1970 Jan.–Mar. 26 July–Sept. 5
Apr.–June 24 Oct.–Dec. 5

(a) Make a time plot of these counts. Connect the points in your plot by straight-line
segments to make the pattern clearer.

(b) Describe the trend and the seasonal variation in this time series. Can you suggest
an explanation for the seasonal variation in civil disorders?

SUMMARY
A data set contains information on a number of individuals. Individuals may
be people, animals, or things. For each individual, the data give values for one
or more variables. A variable describes some characteristic of an individual,
such as a person’s height, gender, or salary.

Exploratory data analysis uses graphs and numerical summaries to
describe the variables in a data set and the relations among them.

Some variables are categorical and others are quantitative. A categorical
variable places each individual into a category, like male or female. A quanti-
tative variable has numerical values that measure some characteristic of each
individual, like height in centimeters or annual salary in dollars.
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The distribution of a variable describes what values the variable takes and
how often it takes these values.

To describe a distribution, begin with a graph. Use bar graphs and pie
charts to display categorical variables. Dotplots, stemplots, and histograms
graph the distributions of quantitative variables. An ogive can help you deter-
mine relative standing within a quantitative distribution.

When examining any graph, look for an overall pattern and for notable
deviations from the pattern.

The center, spread, and shape describe the overall pattern of a distribu-
tion. Some distributions have simple shapes, such as symmetric and skewed.
Not all distributions have a simple overall shape, especially when there are few
observations.

Outliers are observations that lie outside the overall pattern of a distribu-
tion. Always look for outliers and try to explain them.

When observations on a variable are taken over time, make a time plot
that graphs time horizontally and the values of the variable vertically. A time
plot can reveal trends, seasonal variations, or other changes over time.

SECTION 1.1 EXERCISES

1.23 GENDER EFFECTS IN VOTING Political party preference in the United States depends
in part on the age, income, and gender of the voter. A political scientist selects a large
sample of registered voters. For each voter, she records gender, age, household
income, and whether they voted for the Democratic or for the Republican candidate
in the last congressional election. Which of these variables are categorical and which
are quantitative?

1.24 What type of graph or graphs would you plan to make in a study of each of the
following issues?

(a) What makes of cars do students drive? How old are their cars?

(b) How many hours per week do students study? How does the number of study
hours change during a semester?

(c) Which radio stations are most popular with students?

1.25 MURDER WEAPONS The 1999 Statistical Abstract of the United States reports FBI
data on murders for 1997. In that year, 53.3% of all murders were committed with
handguns, 14.5% with other firearms, 13.0% with knives, 6.3% with a part of the body
(usually the hands or feet), and 4.6% with blunt objects. Make a graph to display these
data. Do you need an “other methods” category?

1.26 WHAT’S A DOLLAR WORTH THESE DAYS? The buying power of a dollar changes over
time. The Bureau of Labor Statistics measures the cost of a “market basket” of goods and
services to compile its Consumer Price Index (CPI). If the CPI is 120, goods and services
that cost $100 in the base period now cost $120. Here are the yearly average values of the
CPI for the years between 1970 and 1999. The base period is the years 1982 to 1984.
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Year CPI Year CPI Year CPI Year CPI

1970 38.8 1978 65.2 1986 109.6 1994 148.2
1972 41.8 1980 82.4 1988 118.3 1996 156.9
1974 49.3 1982 96.5 1990 130.7 1998 163.0
1976 56.9 1984 103.9 1992 140.3 1999 166.6

(a) Construct a graph that shows how the CPI has changed over time.

(b) Check your graph by doing the plot on your calculator. 

• Enter the years (the last two digits will suffice) into L1/list1 and enter the CPI into
L2/list2. 

• Then set up a statistics plot, choosing the plot type “xyline” (the second type on the
TI-83). Use L1/list1 as X and L2/list2 as Y. In this graph, the data points are plotted and
connected in order of appearance in L1/list1 and L2/list2. 

• Use the zoom command to see the graph.

(c) What was the overall trend in prices during this period? Were there any years in
which this trend was reversed?

(d) In what period during these decades were prices rising fastest? In what period were
they rising slowest?

1.27 THE STATISTICS OF WRITING STYLE Numerical data can distinguish different types of
writing, and sometimes even individual authors. Here are data on the percent of words
of 1 to 15 letters used in articles in Popular Science magazine:12

Length: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Percent: 3.6 14.8 18.7 16.0 12.5 8.2 8.1 5.9 4.4 3.6 2.1 0.9 0.6 0.4 0.2

(a) Make a histogram of this distribution. Describe its shape, center, and spread.

(b) How does the distribution of lengths of words used in Popular Science compare
with the similar distribution in Figure 1.9 (page 26) for Shakespeare’s plays? Look
in particular at short words (2, 3, and 4 letters) and very long words (more than 10
letters).

1.28 DENSITY OF THE EARTH In 1798 the English scientist Henry Cavendish measured
the density of the earth by careful work with a torsion balance. The variable recorded
was the density of the earth as a multiple of the density of water. Here are Cavendish’s
29 measurements:13

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

Present these measurements graphically in a stemplot. Discuss the shape, center, and
spread of the distribution. Are there any outliers? What is your estimate of the density
of the earth based on these measurements?
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1.29 DRIVE TIME Professor Moore, who lives a few miles outside a college town, records
the time he takes to drive to the college each morning. Here are the times (in minutes)
for 42 consecutive weekdays, with the dates in order along the rows:

8.25 7.83 8.30 8.42 8.50 8.67 8.17 9.00 9.00 8.17 7.92
9.00 8.50 9.00 7.75 7.92 8.00 8.08 8.42 8.75 8.08 9.75
8.33 7.83 7.92 8.58 7.83 8.42 7.75 7.42 6.75 7.42 8.50
8.67 10.17 8.75 8.58 8.67 9.17 9.08 8.83 8.67

(a) Make a histogram of these drive times. Is the distribution roughly symmetric,
clearly skewed, or neither? Are there any clear outliers?

(b) Construct an ogive for Professor Moore’s drive times.

(c) Use your ogive from (b) to estimate the center and 90th percentile for the
distribution.

(d) Use your ogive to estimate the percentile corresponding to a drive time of 8.00
minutes.

1.30 THE SPEED OF LIGHT Light travels fast, but it is not transmitted instantaneously.
Light takes over a second to reach us from the moon and over 10 billion years to
reach us from the most distant objects observed so far in the expanding universe.
Because radio and radar also travel at the speed of light, an accurate value for that
speed is important in communicating with astronauts and orbiting satellites. An
accurate value for the speed of light is also important to computer designers because
electrical signals travel at light speed. The first reasonably accurate measurements of
the speed of light were made over 100 years ago by A. A. Michelson and Simon
Newcomb. Table 1.7 contains 66 measurements made by Newcomb between July
and September 1882.

Newcomb measured the time in seconds that a light signal took to pass from his
laboratory on the Potomac River to a mirror at the base of the Washington
Monument and back, a total distance of about 7400 meters. Just as you can compute
the speed of a car from the time required to drive a mile, Newcomb could compute
the speed of light from the passage time. Newcomb’s first measurement of the pas-
sage time of light was 0.000024828 second, or 24,828 nanoseconds. (There are 109

nanoseconds in a second.) The entries in Table 1.7 record only the deviation from
24,800 nanoseconds.

TABLE 1.7 Newcomb’s measurements of the passage time of light

28 26 33 24 34 –44 27 16 40 –2 29 22 24 21
25 30 23 29 31 19 24 20 36 32 36 28 25 21
28 29 37 25 28 26 30 32 36 26 30 22 36 23
27 27 28 27 31 27 26 33 26 32 32 24 39 28
24 25 32 25 29 27 28 29 16 23

Source: S. M. Stigler, “Do robust estimators work with real data?” Annals of Statistics, 5 (1977), pp. 1055–1078.

(a) Construct an appropriate graphical display for these data. Justify your choice of graph.

(b) Describe the distribution of Newcomb’s speed of light measurements.
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(c) Make a time plot of Newcomb’s values. They are listed in order from left to right,
starting with the top row.

(d) What does the time plot tell you that the display you made in part (a) does not? 

Lesson: Sometimes you need to make more than one graphical display to uncover
all of the important features of a distribution.

1.2 DESCRIBING DISTRIBUTIONS WITH NUMBERS
Who is baseball’s greatest home run hitter? In the summer of 1998, Mark
McGwire and Sammy Sosa captured the public’s imagination with their pursuit
of baseball’s single-season home run record (held by Roger Maris). McGwire
eventually set a new standard with 70 home runs. Barry Bonds broke Mark
McGwire’s record when he hit 73 home runs in the 2001 season. How does this
accomplishment fit Bonds’s career? Here are Bonds’s home run counts for the
years 1986 (his rookie year) to 2001 (the year he broke McGwire’s record):

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
16 25 24 19 33 25 34 46 37 33 42 40 37 34 49 73

The stemplot in Figure 1.16 shows us the shape, center, and spread of these
data. The distribution is roughly symmetric with a single peak and a possible
high outlier. The center is about 34 home runs, and the spread runs from 16 to
the record 73. Shape, center, and spread provide a good description of the over-
all pattern of any distribution for a quantitative variable. Now we will learn spe-
cific ways to use numbers to measure the center and spread of a distribution.
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FIGURE 1.16 Number of home runs hit by Barry Bonds in each of his 16 major league seasons.

Measuring center: the mean
A description of a distribution almost always includes a measure of its center
or average. The most common measure of center is the ordinary arithmetic
average, or mean.
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THE MEAN –x

To find the mean of a set of observations, add their values and divide by
the number of observations. If the n observations are x1, x2, ... , xn, their
mean is

or in more compact notation,

  
x

n
xi= ∑

1

  
x

x x x
n

n= + + +1 2
...

The mean number of home runs Barry Bonds hit in his first 16 major league sea-
sons is

We might compare Bonds to Hank Aaron, the all-time home run leader. Here are the
numbers of home runs hit by Hank Aaron in each of his major league seasons:

13 27 26 44 30 39 40 34 45 44 24
32 44 39 29 44 38 47 34 40 20

Aaron’s mean number of home runs hit in a year is 

Barry Bonds’s exceptional performance in 2001 stands out from his home run pro-
duction in the previous 15 seasons. Use your calculator to check that his mean home
run production in his first 15 seasons is –x =32.93. One outstanding season increased
Bonds’s mean home run count by 2.5 home runs per year.

  
x = + + + = =

1
21

13 27 20
733
21

34 9( ... ) .

x
x x x

n
n= + + + = + + + = =1 2 16 25 73

16
567
16

35 4375
... ...

.

EXAMPLE 1.10 BARRY BONDS VERSUS HANK AARON

The ∑ (capital Greek sigma) in the formula for the mean is short for “add them
all up.” The subscripts on the observations xi are just a way of keeping the n
observations distinct. They do not necessarily indicate order or any other special
facts about the data. The bar over the x indicates the mean of all the x-values.
Pronounce the mean as “x-bar.” This notation is very common. When writers
who are discussing data use - or , they are talking about a mean.yx

x
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Example 1.10 illustrates an important fact about the mean as a measure of
center: it is sensitive to the influence of a few extreme observations. These may
be outliers, but a skewed distribution that has no outliers will also pull the
mean toward its long tail. Because the mean cannot resist the influence of
extreme observations, we say that it is not a resistant measure of center.

Measuring center: the median
In Section 1.1, we used the midpoint of a distribution as an informal measure
of center. The median is the formal version of the midpoint, with a specific rule
for calculation.

Medians require little arithmetic, so they are easy to find by hand for small
sets of data. Arranging even a moderate number of observations in order is very
tedious, however, so that finding the median by hand for larger sets of data is
unpleasant. You will need computer software or a graphing calculator to auto-
mate finding the median.

THE MEDIAN M

The median M is the midpoint of a distribution, the number such that
half the observations are smaller and the other half are larger. To find the
median of a distribution:

1. Arrange all observations in order of size, from smallest to largest.

2. If the number of observations n is odd, the median M is the center
observation in the ordered list. 

3. If the number of observations n is even, the median M is the mean of
the two center observations in the ordered list. 

To find the median number of home runs Barry Bonds hit in his first 16 seasons, first
arrange the data in increasing order:

16 19 24 25 25 33 33 34 34 37 37 40 42 46 49 73

The count of observations n = 16 is even. There is no center observation, but there is
a center pair. These are the two bold 34s in the list, which have 7 observations to their
left in the list and 7 to their right. The median is midway between these two observa-
tions. Because both of the middle pair are 34, M = 34.

How much does the apparent outlier affect the median? Drop the 73 from the list
and find the median for the remaining n = 15 years. It is the 8th observation in the edited
list, M = 34.

EXAMPLE 1.11 FINDING MEDIANS

resistant measure
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Comparing the mean and the median
Examples 1.10 and 1.11 illustrate an important difference between the
mean and the median. The one high value pulls Bonds’s mean home run
count up from 32.93 to 35.4375. The median is not affected at all. The
median, unlike the mean, is resistant. If Bonds’s record 73 had been 703, his
median would not change at all. The 703 just counts as one observation
above the center, no matter how far above the center it lies. The mean uses
the actual value of each observation and so will chase a single large obser-
vation upward.

The mean and median of a symmetric distribution are close together. If
the distribution is exactly symmetric, the mean and median are exactly the
same. In a skewed distribution, the mean is farther out in the long tail than
is the median. For example, the distribution of house prices is strongly
skewed to the right. There are many moderately priced houses and a few very
expensive mansions. The few expensive houses pull the mean up but do not
affect the median. The mean price of new houses sold in 1997 was $176,000,
but the median price for these same houses was only $146,000. Reports
about house prices, incomes, and other strongly skewed distributions usually
give the median (“midpoint”) rather than the mean (“arithmetic average”).
However, if you are a tax assessor interested in the total value of houses in
your area, use the mean. The total value is the mean times the number of
houses; it has no connection with the median. The mean and median mea-
sure center in different ways, and both are useful.

EXERCISES

1.31 Joey’s first 14 quiz grades in a marking period were

86 84 91 75 78 80 74 87 76 96 82 90 98 93

(a) Use the formula to calculate the mean. Check using “one-variable statistics” on
your calculator.

How does Bonds’s median compare with Hank Aaron’s? Here, arranged in increas-
ing order, are Aaron’s home run counts:

13 20 24 26 27 29 30
32 34 34 38 39 39 40
40 44 44 44 44 45 47

The number of observations is odd, so there is one center observation. This is the medi-
an. It is the bold 38, which has 10 observations to its left in the list and 10 observations
to its right. Bonds now holds the single-season record, but he has hit fewer home runs
in a typical season than Aaron. Barry Bonds also has a long way to go to catch Aaron’s
career total of 733 home runs.
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1.32 SSHA SCORES The Survey of Study Habits and Attitudes (SSHA) is a psychological
test that evaluates college students’ motivation, study habits, and attitudes toward
school. A private college gives the SSHA to a sample of 18 of its incoming first-year
women students. Their scores are

154 109 137 115 152 140 154 178 101
103 126 126 137 165 165 129 200 148

(a) Make a stemplot of these data. The overall shape of the distribution is irregu-
lar, as often happens when only a few observations are available. Are there any
potential outliers? About where is the center of the distribution (the score with half
the scores above it and half below)? What is the spread of the scores (ignoring any
outliers)?

(b) Find the mean score from the formula for the mean. Then enter the data into your
calculator. You can find the mean from the home screen as follows:

TI-83 TI-89

• Press 2nd  STAT (LIST) � � (MATH). • Press CATALOG then 5 (M).

• Choose 3:mean( , enter list name, • Choose mean( , type list name, press
press ENTER . ENTER .

(c) Find the median of these scores. Which is larger: the median or the mean?
Explain why.

1.33 Suppose a major league baseball team’s mean yearly salary for a player is $1.2 mil-
lion, and that the team has 25 players on its active roster. What is the team’s annual
payroll for players? If you knew only the median salary, would you be able to answer
the question? Why or why not?

1.34 Last year a small accounting firm paid each of its five clerks $22,000, two junior
accountants $50,000 each, and the firm’s owner $270,000. What is the mean salary
paid at this firm? How many of the employees earn less than the mean? What is the
median salary? Write a sentence to describe how an unethical recruiter could use
statistics to mislead prospective employees.

1.35 U.S. INCOMES The distribution of individual incomes in the United States is
strongly skewed to the right. In 1997, the mean and median incomes of the top 1% of
Americans were $330,000 and $675,000. Which of these numbers is the mean and
which is the median? Explain your reasoning.

(b) Suppose Joey has an unexcused absence for the fifteenth quiz and he receives a
score of zero. Determine his final quiz average. What property of the mean does this
situation illustrate? Write a sentence about the effect of the zero on Joey’s quiz average
that mentions this property.

(c) What kind of plot would best show Joey’s distribution of grades? Assume an 8-point
grading scale (A: 93 to 100, B: 85 to 92, etc.). Make an appropriate plot, and be pre-
pared to justify your choice.
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range

THE QUARTILES Q1 and Q3

To calculate the quartiles

1. Arrange the observations in increasing order and locate the median M in
the ordered list of observations.

2. The first quartile Q1is the median of the observations whose position in
the ordered list is to the left of the location of the overall median.

3. The third quartile Q3is the median of the observations whose position in
the ordered list is to the right of the location of the overall median.

Measuring spread: the quartiles
The mean and median provide two different measures of the center of a dis-
tribution. But a measure of center alone can be misleading. The Census
Bureau reports that in 2000 the median income of American households
was $41,345. Half of all households had incomes below $41,345, and half
had higher incomes. But these figures do not tell the whole story. Two
nations with the same median household income are very different if one
has extremes of wealth and poverty and the other has little variation among
households. A drug with the correct mean concentration of active ingredi-
ent is dangerous if some batches are much too high and others much too
low. We are interested in the spread or variability of incomes and drug
potencies as well as their centers. The simplest useful numerical descrip-
tion of a distribution consists of both a measure of center and a measure of
spread.

One way to measure spread is to calculate the range, which is the differ-
ence between the largest and smallest observations. For example, the number
of home runs Barry Bonds has hit in a season has a range of 73 – 16 = 57. The
range shows the full spread of the data. But it depends on only the smallest
observation and the largest observation, which may be outliers. We can
improve our description of spread by also looking at the spread of the middle
half of the data. The quartiles mark out the middle half. Count up the ordered
list of observations, starting from the smallest. The first quartile lies one-quarter
of the way up the list. The third quartile lies three-quarters of the way up the
list. In other words, the first quartile is larger than 25% of the observations,
and the third quartile is larger than 75% of the observations. The second quar-
tile is the median, which is larger than 50% of the observations. That is the
idea of quartiles. We need a rule to make the idea exact. The rule for calcu-
lating the quartiles uses the rule for the median.

Here is an example that shows how the rules for the quartiles work for both
odd and even numbers of observations.
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Be careful when, as in these examples, several observations take the same
numerical value. Write down all of the observations and apply the rules just as if
they all had distinct values. Some software packages use a slightly different rule to
find the quartiles, so computer results may be a bit different from your own work.
Don’t worry about this. The differences will always be too small to be important.

The distance between the first and third quartiles is a simple measure of
spread that gives the range covered by the middle half of the data. This dis-
tance is called the interquartile range.

Barry Bonds’s home run counts (arranged in order) are

EXAMPLE 1.12 FINDING QUARTILES

16     19     24     25     25     33     33     34     34     37     37     40     42     46     49     73

Q 1 M Q3

There is an even number of observations, so the median lies midway between the middle
pair, the 8th and 9th in the list. The first quartile is the median of the 8 observations to the
left of M = 34. So Q1 = 25. The third quartile is the median of the 8 observations to 
the right of M. Q3 = 41. Note that we don’t include M when we’re computing the quartiles. 

The quartiles are resistant. For example, Q3 would have the same value if Bonds’s
record 73 were 703.

Hank Aaron’s data, again arranged in increasing order, are

13      20      24      26      27      29      3 0      32      34      34      3 8      39      39

4 0 4 0 4 4 4 4 4 4 4 4 4 5 4 7

Q 1

Q3

M

In Example 1.11, we determined that the median is the bold 38 in the list. The
first quartile is the median of the 10 observations to the left of M = 38. This is the mean
of the 5th and 6th of these 10 observations, so Q1 = 28. Q3 = 44. The overall median
is left out of the calculation of the quartiles.

THE INTERQUARTILE RANGE (IQR)

The interquartile range (IQR) is the distance between the first and third
quartiles,

IQR = Q3 – Q1
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OUTLIERS: THE 1.5 � IQR CRITERION

Call an observation an outlier if it falls more than 1.5 � IQR above the
third quartile or below the first quartile.

The five-number summary and boxplots
The smallest and largest observations tell us little about the distribution as a
whole, but they give information about the tails of the distribution that is miss-
ing if we know only Q1, M, and Q3. To get a quick summary of both center
and spread, combine all five numbers.

We suspect that Barry Bonds’s 73 home run season is an outlier. Let’s test.

IQR = Q3 – Q1 = 41 – 25 = 16
Q3 + 1.5 � IQR = 41 + (1.5 � 16) = 65 (upper cutoff)
Q1 – 1.5 � IQR = 25 – (1.5 � 16) = 1 (lower cutoff)

Since 73 is above the upper cutoff, Bonds’s record-setting year was an outlier.

EXAMPLE 1.13 DETERMINING OUTLIERS

THE FIVE-NUMBER SUMMARY

The five-number summary of a data set consists of the smallest observa-
tion, the first quartile, the median, the third quartile, and the largest obser-
vation, written in order from smallest to largest.

In symbols, the five-number summary is

Minimum Q1 M Q3 Maximum

These five numbers offer a reasonably complete description of center and
spread. The five-number summaries from Example 1.12 are

16 25 34 41 73

for Bonds and

13 28 38 44 47

for Aaron. The five-number summary of a distribution leads to a new graph,
the boxplot. Figure 1.17 shows boxplots for the home run comparison.

If an observation falls between Q1 and Q3, then you know it’s neither
unusually high (upper 25%) or unusually low (lower 25%). The IQR is the
basis of a rule of thumb for identifying suspected outliers. 

boxplot
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FIGURE 1.17 Side-by-side boxplots comparing the numbers of home runs per year by
Barry Bonds and Hank Aaron.

Because boxplots show less detail than histograms or stemplots, they are best
used for side-by-side comparison of more than one distribution, as in Figure 1.17.
You can draw boxplots either horizontally or vertically. Be sure to include a
numerical scale in the graph. When you look at a boxplot, first locate the medi-
an, which marks the center of the distribution. Then look at the spread. The
quartiles show the spread of the middle half of the data, and the extremes (the
smallest and largest observations) show the spread of the entire data set. We see
from Figure 1.17 that Aaron and Bonds are about equally consistent when we
look at the middle 50% of their home run distributions.

A boxplot also gives an indication of the symmetry or skewness of a distribu-
tion. In a symmetric distribution, the first and third quartiles are equally distant
from the median. In most distributions that are skewed to the right, however, the
third quartile will be farther above the median than the first quartile is below it.
The extremes behave the same way, but remember that they are just single obser-
vations and may say little about the distribution as a whole. In Figure 1.17, we
can see that Aaron’s home run distribution is skewed to the left. Barry Bonds’s dis-
tribution is more difficult to describe.

Outliers usually deserve special attention. Because the regular boxplot
conceals outliers, we will adopt the modified boxplot, which plots outliers
as isolated points. Figures 1.18(a) and (b) show regular and modified box-
plots for the home runs hit by Bonds and Aaron. The regular boxplot sug-
gests a very large spread in the upper 25% of Bonds’s distribution. The mod-
ified boxplot shows that if not for the outlier, the distribution would show
much less variability. Because the modified boxplot shows more detail,
when we say “boxplot” from now on, we will mean “modified boxplot.” Both
the TI-83 and the TI-89 give you a choice of regular or modified boxplot.
When you construct a (modified) boxplot by hand, extend the “whiskers”

modified boxplot
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(a) (b)

FIGURE 1.18 Regular (a) and modified (b) boxplots comparing the home run production
of Barry Bonds and Hank Aaron.

BOXPLOT (MODIFIED)

A modified boxplot is a graph of the five-number summary, with outliers
plotted individually.

• A central box spans the quartiles.

• A line in the box marks the median.

• Observations more than 1.5 × IQR outside the central box are plotted
individually.

• Lines extend from the box out to the smallest and largest observations that
are not outliers.

The TI-83 and TI-89 can plot up to three boxplots in the same viewing window. Both calculators can
also calculate the mean, median, quartiles, and other one-variable statistics for data stored in lists. In this
example, we compare Barry Bonds to Babe Ruth, the “Sultan of Swat.” Here are the numbers of home
runs hit by Ruth in each of his seasons as a New York Yankee (1920 to 1934):

TECHNOLOGY TOOLBOX Calculator boxplots and numerical summaries

54 59 35 41 46 25 47 60 54 46 49 46 41 34 22

1. Enter Bonds’s home run data in L1/list1 and Ruth’s in L2/list2.

2. Set up two statistics plots: Plot 1 to show a modified boxplot of Bonds’s data and Plot 2 to show a
modified boxplot of Ruth’s data.

out to the largest and the smallest data points that are not outliers. Then plot
outliers as isolated points.
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EXERCISES

1.36 SSHA SCORES Here are the scores on the Survey of Study Habits and Attitudes
(SSHA) for 18 first-year college women:

154 109 137 115 152 140 154 178 101 103 126 126 137 165 165 129 200 148

and for 20 first-year college men:

108 140 114 91 180 115 126 92 169 146 109 132 75 88 113 151 70 115 187 104

(a) Make side-by-side boxplots to compare the distributions.

TI-83 TI-89

TECHNOLOGY TOOLBOX Calculator boxplots and numerical summaries (continued)

Plot2 Plot3

Type:

Xlist:L1
Freq:1
Mark:

Off
Plot1
On

40
42
46
49
73

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

list1  list2  list3  list4

list1 [1]=57
USE ← AND → TO OPEN CHOICES

Define Plot 1

Mod Box Plot→
Box→
list1

5 

<:

Enter=OK ESC=CANCEL

Plot Type
Mark
x
y
Hist.Bucket Width
Use Freq and Categories? NO→
Freq
Category
Include Categories

3. Use the calculator’s zoom feature to display the side-by-side boxplots.

• Press ZOOM and select 9:ZoomStat. • Press F5 (ZoomData).

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

MAIN RAD APPROX FUNC

4. Calculate numerical summaries for each set of data.

• Press STAT � (CALC) and select 1:1-Var Stats

• Press ENTER. Now press 2nd  1 (L1) and ENTER .

• Press F4 (Calc) and choose 1:1-Var Stats.

• Type list1 in the list box. Press ENTER .

1-Var Stats
 x=35.4375
 ∑x=567
 ∑x2=22881
 Sx=13.63313977
 σx=13.20023082
 n=16

40
42
46
49
73

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

list1  list2  list3  list4

list1 [1]=57
MAIN RAD APPROX FUNC 1/10

1-Var Stats…

=35.4375
=567.
=22881.
=13.6331397704
=13.2002308218
=16.
=16.
=25.

x
Σx
Σx2
Sx
σx
n
MinX
Q1X

Enter=OK

→

σ

5. Notice the down arrow on the left side of the display. Press � to see Bonds’s other statistics. Repeat
the process to find the Babe’s numerical summaries.
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(b) Compute numerical summaries for these two distributions. 

(c) Write a paragraph comparing the SSHA scores for men and women.

1.37 HOW OLD ARE PRESIDENTS? Return to the data on presidential ages in Table 1.4
(page 19). In Example 1.6, we constructed a histogram of the age data.

(a) From the shape of the histogram (Figure 1.7, page 20), do you expect the mean to
be much less than the median, about the same as the median, or much greater than
the median? Explain.

(b) Find the five-number summary and verify your expectation from (a).

(c) What is the range of the middle half of the ages of new presidents?

(d) Construct by hand a (modified) boxplot of the ages of new presidents.

(e) On your calculator, define Plot 1 to be a histogram using the list named PREZ
that you created in the Technology Toolbox on page 22. Define Plot 2 to be a (modi-
fied) boxplot also using the list PREZ. Use the calculator’s zoom command to gener-
ate a graph. To remove the overlap, adjust your viewing window so that Ymin = –6 and
Ymax = 22. Then graph. Use TRACE to inspect values. Press the up and down cursor
keys to toggle between plots. Is there an outlier? If so, who was it?

1.38 Is the interquartile range a resistant measure of spread? Give an example of a
small data set that supports your answer.

1.39 SHOPPING SPREE, III Figure 1.19 displays computer output for the data on amount
spent by grocery shoppers in Exercise 1.11 (page 18). 

(a) Find the total amount spent by the shoppers.

(b) Make a boxplot from the computer output. Did you check for outliers?

Summaryof
No Selector

Percentile 25

50
34.7022
27.8550
21.6974
3.11000
93.3400
19.2700
45.4000

Descriptive Statistics

Variable N Mean Median TrMean StDev SEMean
spending 50 34.70 27.85 32.92 21.70 3.07

Variable Min Max Q1 Q3
spending 3.11 93.34 19.06 45.72

DataDesk

Minitab

spending

Count
Mean

Median
StdDev

Min
Max

Lowerith %tile
Upperith %tile

FIGURE 1.19 Numerical descriptions of the unrounded shopping data from the Data Desk and
Minitab software.
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THE STANDARD DEVIATION s

The variance s2 of a set of observations is the average of the squares of the
deviations of the observations from their mean. In symbols, the variance of
n observations x1, x2, ... , xn is

or, more compactly,

The standard deviation s is the square root of the variance s2:

  
s

n
x xi=

−
−∑

1
1

2( )

  
s

n
x xi

2 21
1

=
−

−∑( )

  
s

x x x x x x
n

n2 1
2

2
2 2

1
= − + − + + −

−
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Measuring spread: the standard deviation
The five-number summary is not the most common numerical description of a
distribution. That distinction belongs to the combination of the mean to mea-
sure center and the standard deviation to measure spread. The standard devia-
tion measures spread by looking at how far the observations are from their mean.

In practice, use software or your calculator to obtain the standard deviation
from keyed-in data. Doing a few examples step-by-step will help you under-
stand how the variance and standard deviation work, however. Here is such an
example.

EXAMPLE 1.14 METABOLIC RATE

A person’s metabolic rate is the rate at which the body consumes energy. Metabolic
rate is important in studies of weight gain, dieting, and exercise. Here are the metabolic
rates of 7 men who took part in a study of dieting. (The units are calories per 24 hours.
These are the same calories used to describe the energy content of foods.)

1792 1666 1362 1614 1460 1867 1439

The researchers reported –x and s for these men.
First find the mean:

To see clearly the nature of the variance, start with a table of the deviations of the
observations from this mean.

  
x =

+ + + + + +
= =

1792 1666 1362 1614 1460 1867 1439
7

11 200
7

1600
,

 calories
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Metabolic rate
1500

deviation = –161 deviation = 192

x = 1792

19001300 1800170016001400

x = 1439 –x = 1600

*

FIGURE 1.20 Metabolic rates for seven men, with their mean (*) and the deviations of
two observations from the mean.

Figure 1.20 displays the data of Example 1.14 as points above the number
line, with their mean marked by an asterisk (*). The arrows show two of the
deviations from the mean. These deviations show how spread out the data are
about their mean. Some of the deviations will be positive and some negative
because observations fall on each side of the mean. In fact, the sum of the devi-
ations of the observations from their mean will always be zero. Check that this
is true in Example 1.14. So we cannot simply add the deviations to get an
overall measure of spread. Squaring the deviations makes them all nonnega-
tive, so that observations far from the mean in either direction will have large
positive squared deviations. The variance s2 is the average squared deviation.
The variance is large if the observations are widely spread about their mean;
it is small if the observations are all close to the mean.

Observations Deviations Squared deviations
xi xi – –x (xi – –x)2

1792 1792 – 1600 = 192 1922 = 36,864
1666 1666 – 1600 = 66 662 = 4,356
1362 1362 – 1600 = –238 (–238)2 = 56,644
1614 1614 – 1600 = 14 142 = 196
1460 1460 – 1600 = –140 (–140)2 = 36,864
1867 1867 – 1600 = 267 2672 = 71,289
1439 1439 – 1600 = –161 (–161)2 = 25,921

sum = 0 sum = 214,870

The variance is the sum of the squared deviations divided by one less than the number
of observations:

The standard deviation is the square root of the variance:

Compare these results for s2 and s with those generated by your calculator or computer.

  s = =35 811 67 189 24, . .  calories

  
s2 214 870

6
35 811 67= =

,
, .
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Because the variance involves squaring the deviations, it does not have the
same unit of measurement as the original observations. Lengths measured in cen-
timeters, for example, have a variance measured in squared centimeters. Taking
the square root remedies this. The standard deviation s measures spread about the
mean in the original scale.

If the variance is the average of the squares of the deviations of the observa-
tions from their mean, why do we average by dividing by n – 1 rather than n?
Because the sum of the deviations is always zero, the last deviation can be found
once we know the other n – 1 deviations. So we are not averaging n unrelated
numbers. Only n – 1 of the squared deviations can vary freely, and we average by
dividing the total by n – 1. The number n – 1 is called the degrees of freedom of
the variance or of the standard deviation. Many calculators offer a choice
between dividing by n and dividing by n – 1, so be sure to use n – 1.

Leaving the arithmetic to a calculator allows us to concentrate on what we
are doing and why. What we are doing is measuring spread. Here are the basic
properties of the standard deviation s as a measure of spread.

degrees of freedom

PROPERTIES OF THE STANDARD DEVIATION

• s measures spread about the mean and should be used only when the
mean is chosen as the measure of center.

• s = 0 only when there is no spread. This happens only when all observa-
tions have the same value. Otherwise, s > 0. As the observations become
more spread out about their mean, s gets larger.

• s, like the mean –x, is not resistant. Strong skewness or a few outliers can
make s very large. For example, the standard deviation of Barry Bonds’s
home run counts is 13.633. (Use your calculator to verify this.) If we omit
the outlier, the standard deviation drops to 9.573. 

You may rightly feel that the importance of the standard deviation is not
yet clear. We will see in the next chapter that the standard deviation is the nat-
ural measure of spread for an important class of symmetric distributions, the
normal distributions. The usefulness of many statistical procedures is tied 
to distributions of particular shapes. This is certainly true of the standard 
deviation.

Choosing measures of center and spread
How do we choose between the five-number summary and and s to describe
the center and spread of a distribution? Because the two sides of a strongly
skewed distribution have different spreads, no single number such as s
describes the spread well. The five-number summary, with its two quartiles and
two extremes, does a better job.

x
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Do remember that a graph gives the best overall picture of a distribution.
Numerical measures of center and spread report specific facts about a distribu-
tion, but they do not describe its entire shape. Numerical summaries do not dis-
close the presence of multiple peaks or gaps, for example. Always plot your data.

EXERCISES
1.40 PHOSPHATE LEVELS The level of various substances in the blood influences our
health. Here are measurements of the level of phosphate in the blood of a patient, in
milligrams of phosphate per deciliter of blood, made on 6 consecutive visits to a clinic:

5.6 5.2 4.6 4.9 5.7 6.4

A graph of only 6 observations gives little information, so we proceed to compute the
mean and standard deviation.

(a) Find the mean from its definition. That is, find the sum of the 6 observations and
divide by 6.

(b) Find the standard deviation from its definition. That is, find the deviations of each
observation from the mean, square the deviations, then obtain the variance and the
standard deviation. Example 1.14 shows the method.

(c) Now enter the data into your calculator to obtain - and s. Do the results agree
with your hand calculations? Can you find a way to compute the standard deviation
without using one-variable statistics?

1.41 ROGER MARIS New York Yankee Roger Maris held the single-season home run
record from 1961 until 1998. Here are Maris’s home run counts for his 10 years in the
American League:

14 28 16 39 61 33 23 26 8 13

(a) Maris’s mean number of home runs is –x = 26.1. Find the standard deviation s from
its definition. Follow the model of Example 1.14.

(b) Use your calculator to verify your results. Then use your calculator to find –x and s
for the 9 observations that remain when you leave out the outlier. How does the outli-
er affect the values of and s? Is s a resistant measure of spread?

1.42 OLDER FOLKS, III In Exercise 1.12 (page 22), you made a histogram displaying the per-
centage of residents aged 65 or older in each of the 50 U.S. states. Do you prefer the
five-number summary or –x and s as a brief numerical description? Why? Calculate your
preferred description.

x

x

CHOOSING A SUMMARY

The five-number summary is usually better than the mean and standard devia-
tion for describing a skewed distribution or a distribution with strong outliers.
Use –x and s only for reasonably symmetric distributions that are free of outliers.



1.43 This is a standard deviation contest. You must choose four numbers from the
whole numbers 0 to 10, with repeats allowed.

(a) Choose four numbers that have the smallest possible standard deviation.

(b) Choose four numbers that have the largest possible standard deviation.

(c) Is more than one choice possible in either (a) or (b)? Explain.

Changing the unit of measurement
The same variable can be recorded in different units of measurement.
Americans commonly record distances in miles and temperatures in degrees
Fahrenheit. Most of the rest of the world measures distances in kilometers and
temperatures in degrees Celsius. Fortunately, it is easy to convert from one unit
of measurement to another. In doing so, we perform a linear transformation.
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LINEAR TRANSFORMATION

A linear transformation changes the original variable x into the new vari-
able xnew given by an equation of the form 

xnew = a + bx

Adding the constant a shifts all values of x upward or downward by the
same amount. 

Multiplying by the positive constant b changes the size of the unit of
measurement.

EXAMPLE 1.15 LOS ANGELES LAKERS’ SALARIES

Table 1.8 gives the approximate base salaries of the 14 members of the Los Angeles
Lakers basketball team for the year 2000. You can calculate that the mean is –x = $4.14
million and that the median is M = $2.6 million. No wonder professional basketball
players have big houses!

TABLE 1.8 Year 2000 salaries for the Los Angeles Lakers

Player Salary Player Salary

Shaquille O’Neal $17.1 million Ron Harper $2.1 million
Kobe Bryant $11.8 million A. C. Green $2.0 million
Robert Horry $5.0 million Devean George $1.0 million
Glen Rice $4.5 million Brian Shaw $1.0 million
Derek Fisher $4.3 million John Salley $0.8 million
Rick Fox $4.2 million Tyronne Lue $0.7 million
Travis Knight $3.1 million John Celestand $0.3 million
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(a) (b) (c)

FIGURE 1.21 Stemplots of the salaries of Los Angeles Lakers players, from Table 1.8.

Figure 1.21(a) is a stemplot of the salaries, with millions as stems. The distribution
is skewed to the right and there are two high outliers. The very high salaries of Kobe
Bryant and Shaquille O’Neal pull up the mean. Use your calculator to check that s =
$4.76 million, and that the five-number summary is

$0.3 million $1.0 million $2.6 million $4.5 million $17.1 million

(a) Suppose that each member of the team receives a $100,000 bonus for winning the
NBA Championship (which the Lakers did in 2000). How will this affect the shape,
center, and spread of the distribution?

Since $100,000 = $0.1 million, each player’s salary will increase by $0.1 mil-
lion. This linear transformation can be represented by xnew = 0.1 + 1x, where xnew
is the salary after the bonus and x is the player’s base salary. Increasing each value
in Table 1.8 by 0.1 will also increase the mean by 0.1. That is, –xnew = $4.24 
million. Likewise, the median salary will increase by 0.1 and become M = $2.7
million.

What will happen to the spread of the distribution? The standard deviation of the
Lakers’ salaries after the bonus is still s = $4.76 million. With the bonus, the five-number
summary becomes
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Linear transformations do not change the shape of a distribution. As you saw
in the previous example, changing the units of measurement can affect the
center and spread of the distribution. Fortunately, the effects of such changes
follow a simple pattern.

EFFECT OF A LINEAR TRANSFORMATION

To see the effect of a linear transformation on measures of center and
spread, apply these rules:

• Multiplying each observation by a positive number b multiplies both
measures of center (mean and median) and measures of spread (standard
deviation and IQR) by b.

• Adding the same number a (either positive or negative) to each observa-
tion adds a to measures of center and to quartiles but does not change
measures of spread.

$0.4 million $1.1 million $2.7 million $4.6 million $17.2 million

Both before and after the salary bonus, the IQR for this distribution is $3.5 mil-
lion. Adding a constant amount to each observation does not change the spread. The
shape of the distribution remains unchanged, as shown in Figure 1.21(b).

(b) Suppose that, instead of receiving a $100,000 bonus, each player is offered a 10%
increase in his base salary. John Celestand, who is making a base salary of $0.3 million,
would receive an additional (0.10)($0.3 million) = $0.03 million. To obtain his new
salary, we could have used the linear transformation xnew = 0 + 1.10x, since multiply-
ing the current salary (x) by 1.10 increases it by 10%. Increasing all 14 players’ salaries
in the same way results in the following list of values (in millions):

$0.33 $0.77 $0.88 $1.10 $1.10 $2.20 $2.31
$3.41 $4.62 $4.73 $4.95 $5.50 $12.98 $18.81

Use your calculator to check that –xnew = $4.55 million, snew = $5.24 million,
Mnew = $2.86 million, and the five-number summary for xnew is 

$0.33 $1.10 $2.86 $4.95 $18.81

Since $4.14(1.10) = $4.55 and $2.6(1.10) = $2.86, you can see that both mea-
sures of center (the mean and median) have increased by 10%. This time, the spread
of the distribution has increased, too. Check for yourself that the standard deviation
and the IQR have also increased by 10%. The stemplot in Figure 1.21(c) shows that
the distribution of salaries is still right-skewed.
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Comparing distributions
An experiment is carried out to compare the effectiveness of a new cholesterol-
reducing drug with the one that is currently prescribed by most doctors. A
survey is conducted to determine whether the proportion of males who are
likely to vote for a political candidate is higher than the proportion of
females who are likely to vote for the candidate. Students taking AP
Calculus AB and AP Statistics are curious about which exam is harder.
They have information on the distribution of scores earned on each exam
from the year 2000. In each of these situations, we are interested in com-
paring distributions. This section presents some of the more common methods
for making statistical comparisons.

EXERCISES
1.44 COCKROACHES! Maria measures the lengths of 5 cockroaches that she finds at
school. Here are her results (in inches):

1.4 2.2 1.1 1.6 1.2

(a) Find the mean and standard deviation of Maria’s measurements.

(b) Maria’s science teacher is furious to discover that she has measured the cockroach
lengths in inches rather than centimeters. (There are 2.54 cm in 1 inch.) She gives
Maria two minutes to report the mean and standard deviation of the 5 cockroaches in
centimeters. Maria succeeded. Will you?

(c) Considering the 5 cockroaches that Maria found as a small sample from the pop-
ulation of all cockroaches at her school, what would you estimate as the average length
of the population of cockroaches? How sure of your estimate are you?

1.45 RAISING TEACHERS’ PAY A school system employs teachers at salaries between
$30,000 and $60,000. The teachers’ union and the school board are negotiating the
form of next year’s increase in the salary schedule. Suppose that every teacher is given
a flat $1000 raise.

(a) How much will the mean salary increase? The median salary?

(b) Will a flat $1000 raise increase the spread as measured by the distance between
the quartiles?

(c) Will a flat $1000 raise increase the spread as measured by the standard deviation
of the salaries?

1.46 RAISING TEACHERS’ PAY, II Suppose that the teachers in the previous exercise each
receive a 5% raise. The amount of the raise will vary from $1500 to $3000, depending
on present salary. Will a 5% across-the-board raise increase the spread of the distribu-
tion as measured by the distance between the quartiles? Do you think it will increase
the standard deviation?
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TABLE 1.9 Colors of cars and trucks purchased in 1998

Color Full-sized or intermediate-sized car Light truck or van

Medium or dark green 16.4% 15.5%
White 15.6% 22.5%
Light brown 14.1% 6.1%
Silver 11.0% 6.2%
Black 8.9% 11.5%

Source: The World Almanac and Book of Facts, 2000.

Figure 1.22 is a graph that can be used to compare the color distributions for cars
and trucks. By placing the bars side-by-side, we can easily observe the similarities and
differences within each of the color categories. White seems to be the favorite color of
most truck buyers, while car purchasers favor medium or dark green. What other sim-
ilarities and differences do you see?

Color

Favorite Car and Truck Colors—1998
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FIGURE 1.22 Side-by-side bar graph of most-popular car and truck colors from 1998.

An effective graphical display for comparing two fairly small quantitative
data sets is a back-to-back stemplot. Example 1.17 shows you how.

EXAMPLE 1.17 SWISS DOCTORS

A study in Switzerland examined the number of cesarean sections (surgical deliveries
of babies) performed in a year by doctors. Here are the data for 15 male doctors:

27 50 33 25 86 25 85 31 37 44 20 36 59 34 28

The study also looked at 10 female doctors. The number of cesareans performed
by these doctors (arranged in order) were

EXAMPLE 1.16 COOL CAR COLORS

Table 1.9 gives information about the color preferences of vehicle purchasers in 1998.
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5 7 10 14 18 19 25 29 31 33

We can compare the number of cesarean sections performed by male and female
doctors using a back-to-back stemplot. Figure 1.23 shows the completed graph. As you
can see, the stems are listed in the middle and leaves are placed on the left for male
doctors and on the right for female doctors. It is usual to have the leaves increase in
value as they move away from the stem.

Male Female

0
1
2
3
4
5
6
7
8

5 7 
0 4 8 9
5 9 
1 3

8 7 5 5 0
7 6 4 3 1 

4
9 0

6 5

Key:
|2| 5 means that a female doctor performed 25
cesarean sections that year
0 |5| means that a male doctor performed 50
cesarean sections that year

FIGURE 1.23 Back-to-back stemplot of the number of cesarean sections performed by male and
female Swiss doctors. 

We have already seen that boxplots can be useful for comparing distributions
of quantitative variables. Side-by-side boxplots, like those in the Technology
Toolbox on page 47, help us quickly compare shape, center, and spread.

NUMBER OF CESAREAN SECTIONS PERFORMED BY MALE AND FEMALE DOCTORS

The distribution of the number of cesareans performed by female doctors is roughly
symmetric. For the male doctors, the distribution is skewed to the right. More than half of
the female doctors in the study performed fewer than 20 cesarean sections in a year. The
minimum number of cesareans performed by any of the male doctors was 20. Two male
physicians performed an unusually high number of cesareans, 85 and 86.

Here are numerical summaries for the two distributions:

-x s Min. Q1 M Q3 Max. IQR

Male 
doctors 41.333 20.607 20 27 34 50 86 23

Female 
doctors 19.1 10.126 5 10 18.5 29 33 19

The mean and median numbers of cesarean sections performed are higher for the
male doctors. Both the standard deviation and the IQR for the male doctors are much
larger than the corresponding statistics for the female doctors. So there is much greater
variability in the number of cesarean sections performed by male physicians. Due to the
apparent outliers in the male doctor data and the lack of symmetry of their distribution
of cesareans, we should use the medians and IQRs in our numerical comparisons.
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EXERCISES

1.47 GET YOUR HOT DOGS HERE! “Face it. A hot dog isn’t a carrot stick.” So said Consumer
Reports, commenting on the low nutritional quality of the all-American frank. Table 1.10
shows the magazine’s laboratory test results for calories and milligrams of sodium (mostly
due to salt) in a number of major brands of hot dogs. There are three types: beef, “meat”
(mainly pork and beef, but government regulations allow up to 15% poultry meat), and
poultry. Because people concerned about their health may prefer low-calorie, low-sodium
hot dogs, we ask: “Are there any systematic differences among the three types of hot dogs
in these two variables?” Use side-by-side boxplots and numerical summaries to help you
answer this question. Write a paragraph explaining your findings.

TABLE 1.10 Calories and sodium in three types of hot dogs

Beef hot dogs Meat hot dogs Poultry hot dogs

Calories Sodium Calories Sodium Calories Sodium

186 495 173 458 129 430
181 477 191 506 132 375
176 425 182 473 102 396
149 322 190 545 106 383
184 482 172 496 94 387
190 587 147 360 102 542
158 370 146 387 87 359
139 322 139 386 99 357
175 479 175 507 170 528
148 375 136 393 113 513
152 330 179 405 135 426
111 300 153 372 142 513
141 386 107 144 86 358
153 401 195 511 143 581
190 645 135 405 152 588
157 440 140 428 146 522
131 317 138 339 144 545
149 319
135 298
132 253

Source: Consumer Reports, June 1986, pp.366–367

1.48 WHICH AP EXAM IS EASIER: CALCULUS AB OR STATISTICS? The table below gives the distri-
bution of grades earned by students taking the Calculus AB and Statistics exams in 2000.14

5 4 3 2 1

Calculus AB 16.8% 23.2% 23.5% 19.6% 16.8%
Statistics 9.8% 21.5% 22.4% 20.5% 25.8%
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(a) Make a graphical display to compare the AP exam grades for Calculus AB and
Statistics.

(b) Write a few sentences comparing the two distributions of exam grades. Do you
now know which exam is easier? Why or why not?

1.49 WHO MAKES MORE? A manufacturing company is reviewing the salaries of its full-time
employees below the executive level at a large plant. The clerical staff is almost entirely
female, while a majority of the production workers and technical staff are male. As a
result, the distributions of salaries for male and female employees may be quite different.
Table 1.11 gives the frequencies and relative frequencies for women and men. 

(a) Make histograms for these data, choosing a vertical scale that is most appropriate
for comparing the two distributions. 

(b) Describe the shape of the overall salary distributions and the chief differences
between them.

(c) Explain why the total for women is greater than 100%.

TABLE 1.11 Salary distributions of female and male 
workers in a large factory

Women MenSalary
($1000) Number % Number %

10–15 89 11.8 26 1.1
15–20 192 25.4 221 9.0
20–25 236 31.2 677 27.9
25–30 111 14.7 823 33.6
30–35 86 11.4 365 14.9
35–40 25 3.3 182 7.4
40–45 11 1.5 91 3.7
45–50 3 0.4 33 1.4
50–55 2 0.3 19 0.8
55–60 0 0.0 11 0.4
60–65 0 0.0 0 0.0
65–70 1 0.1 3 0.1

Total 756 100.1 2451 100.0

1.50 BASKETBALL PLAYOFF SCORES Here are the scores of games played in the California
Division I-AAA high school basketball playoffs:15

71–38 52–47 55–53 76–65 77–63 65–63 68–54 64–62

87–47 64–56 78–64 58–51 91–74 71–41 67–62 106–46

On the same day, the final scores of games in Division V-AA were

98–45 67–44 74–60 96–54 92–72 93–46

98–67 62–37 37–36 69–44 86–66 66–58
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(a) Construct a back-to-back stemplot to compare the number of points scored by
Division I-AAA and Division V-AA basketball teams.

(b) Compare the shape, center, and spread of the two distributions. Which numerical
summaries are most appropriate in this case? Why?

(c) Is there a difference in “margin of victory” in Division I-AAA and Division V-AA
playoff games? Provide appropriate graphical and numerical support for your answer.

SUMMARY

A numerical summary of a distribution should report its center and its spread,
or variability.

The mean –x and the median M describe the center of a distribution in dif-
ferent ways. The mean is the arithmetic average of the observations, and the
median is the midpoint of the values.

When you use the median to indicate the center of a distribution, describe its
spread by giving the quartiles. The first quartile Q1 has one-fourth of the obser-
vations below it, and the third quartile Q3 has three-fourths of the observations
below it. An extreme observation is an outlier if it is smaller than Q1 – (1.5 � IQR)
or larger than Q3 + (1.5 � IQR).

The five-number summary consists of the median, the quartiles, and the high
and low extremes and provides a quick overall description of a distribution. The
median describes the center, and the quartiles and extremes show the spread.

Boxplots based on the five-number summary are useful for comparing two
or more distributions. The box spans the quartiles and shows the spread of the
central half of the distribution. The median is marked within the box. Lines
extend from the box to the smallest and the largest observations that are not
outliers. Outliers are plotted as isolated points.

The variance s2 and especially its square root, the standard deviation s,
are common measures of spread about the mean as center. The standard devi-
ation s is zero when there is no spread and gets larger as the spread increases.

The mean and standard deviation are strongly influenced by outliers or
skewness in a distribution. They are good descriptions for symmetric distribu-
tions and are most useful for the normal distributions, which will be intro-
duced in the next chapter.

The median and quartiles are not affected by outliers, and the two quartiles
and two extremes describe the two sides of a distribution separately. The five-
number summary is the preferred numerical summary for skewed distributions.

When you add a constant a to all the values in a data set, the mean and
median increase by a. Measures of spread do not change. When you multiply
all the values in a data set by a constant b, the mean, median, IQR, and stan-
dard deviation are multiplied by b. These linear transformations are quite
useful for changing units of measurement.

Back-to-back stemplots and side-by-side boxplots are useful for compar-
ing quantitative distributions.
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1.51 MEAT HOT DOGS Make a stemplot of the calories in meat hot dogs from
Exercise 1.47 (page 59). What does this graph reveal that the boxplot of these data
did not? Lesson: Be aware of the limitations of each graphical display.

1.52 EDUCATIONAL ATTAINMENT Table 1.12 shows the educational level achieved by
U.S. adults aged 25 to 34 and by those aged 65 to 74. Compare the distributions of
educational attainment graphically. Write a few sentences explaining what your
display shows.

TABLE 1.12 Educational attainment by U.S. 
adults aged 25 to 34 and 65 to 74

Number of people (thousands)

Ages 25–34 Ages 65–74

Less than high school 4474 4695
High school graduate 11,546 6649
Some college 7376 2528
Bachelor’s degree 8563 1849
Advanced degree 3374 1266

Total 35,333 16,987

Source: Census Bureau, Educational Attainment in the 
United States, March 2000.

1.53 CASSETTE VERSUS CD SALES Has the increasing popularity of the compact disc (CD)
affected sales of cassette tapes? Table 1.13 shows the number of cassettes and CDs sold
from 1990 to 1999.

TABLE 1.13 Sales (in millions) of full-length cassettes and CDs, 1990–1999

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Full-length cassettes 54.7 49.8 43.6 38.0 32.1 25.1 19.3 18.2 14.8 8.0
Full-length CDs 31.1 38.9 46.5 51.1 58.4 65.0 68.4 70.2 74.8 83.2

Source: The Recording Industry Association of America, 1999 Consumer Profile.

Make a graphical display to compare cassette and CD sales. Write a few sentences
describing what your graph tells you.

1.54 –x AND s ARE NOT ENOUGH The mean and standard deviation s measure center and
spread but are not a complete description of a distribution. Data sets with different
shapes can have the same mean and standard deviation. To demonstrate this fact, use
your calculator to find –x and s for the following two small data sets. Then make a stem-
plot of each and comment on the shape of each distribution.

x

SECTION 1.2 EXERCISES
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Data A: 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74
Data B: 6.58 5.76 7.71 8.84 8.47 7.04 5.25 5.56 7.91 6.89 12.50

1.55 In each of the following settings, give the values of a and b for the linear trans-
formation xnew = a + bx that expresses the change in measurement units. Then explain
how the transformation will affect the mean, the IQR, the median, and the standard
deviation of the original distribution.

(a) You collect data on the power of car engines, measured in horsepower. Your teacher
requires you to convert the power to watts. One horsepower is 746 watts.

(b) You measure the temperature (in degrees Fahrenheit) of your school’s swimming
pool at 20 different locations within the pool. Your swim team coach wants the sum-
mary statistics in degrees Celsius (° F = (9/5)° C + 32).

(c) Dr. Data has given a very difficult statistics test and is thinking about “curving” the
grades. She decides to add 10 points to each student’s score.

1.56 A change of units that multiplies each unit by b, such as the change xnew = 0 +
2.54x from inches x to centimeters xnew, multiplies our usual measures of spread by b.
This is true of the IQR and standard deviation. What happens to the variance when we
change units in this way?

1.57 BETTER CORN Corn is an important animal food. Normal corn lacks certain
amino acids, which are building blocks for protein. Plant scientists have developed
new corn varieties that have more of these amino acids. To test a new corn as an ani-
mal food, a group of 20 one-day-old male chicks was fed a ration containing the new
corn. A control group of another 20 chicks was fed a ration that was identical except
that it contained normal corn. Here are the weight gains (in grams) after 21 days:16

Normal corn New corn

380 321 366 356 361 447 401 375
283 349 402 462 434 403 393 426
356 410 329 399 406 318 467 407
350 384 316 272 427 420 477 392
345 455 360 431 430 339 410 326

(a) Compute five-number summaries for the weight gains of the two groups of chicks.
Then make boxplots to compare the two distributions. What do the data show about
the effect of the new corn?

(b) The researchers actually reported means and standard deviations for the two
groups of chicks. What are they? How much larger is the mean weight gain of chicks
fed the new corn?

(c) The weights are given in grams. There are 28.35 grams in an ounce. Use the
results of part (b) to compute the means and standard deviations of the weight gains
measured in ounces.
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Plot your data
Dotplot, Stemplot, Histogram

Choose numerical summary
x and s, Five-Number Summary

Interpret what you see
Shape, Center, Spread, Outliers

1.58 Which measure of center, the mean or the median, should you use in each of the
following situations?

(a) Middletown is considering imposing an income tax on citizens. The city govern-
ment wants to know the average income of citizens so that it can estimate the total tax
base.

(b) In a study of the standard of living of typical families in Middletown, a sociologist
estimates the average family income in that city.

CHAPTER REVIEW
Data analysis is the art of describing data using graphs and numerical summaries.
The purpose of data analysis is to describe the most important features of a set of
data. This chapter introduces data analysis by presenting statistical ideas and tools
for describing the distribution of a single variable. The figure below will help you
organize the big ideas. 

Here is a review list of the most important skills you should have acquired from
your study of this chapter.

A. DATA

1. Identify the individuals and variables in a set of data.

2. Identify each variable as categorical or quantitative. Identify the units in
which each quantitative variable is measured.

B. DISPLAYING DISTRIBUTIONS

1. Make a bar graph and a pie chart of the distribution of a categorical vari-
able. Interpret bar graphs and pie charts.

2. Make a dotplot of the distribution of a small set of observations.

3. Make a stemplot of the distribution of a quantitative variable. Round leaves
or split stems as needed to make an effective stemplot.

4. Make a histogram of the distribution of a quantitative variable.

5. Construct and interpret an ogive of a set of quantitative data.
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C. INSPECTING DISTRIBUTIONS (QUANTITATIVE VARIABLES)

1. Look for the overall pattern and for major deviations from the pattern.

2. Assess from a dotplot, stemplot, or histogram whether the shape of a distri-
bution is roughly symmetric, distinctly skewed, or neither. Assess whether the
distribution has one or more major peaks.

3. Describe the overall pattern by giving numerical measures of center and
spread in addition to a verbal description of shape.

4. Decide which measures of center and spread are more appropriate: the mean
and standard deviation (especially for symmetric distributions) or the five-
number summary (especially for skewed distributions).

5. Recognize outliers.

D. TIME PLOTS

1. Make a time plot of data, with the time of each observation on the hori-
zontal axis and the value of the observed variable on the vertical axis.

2. Recognize strong trends or other patterns in a time plot.

E. MEASURING CENTER

1. Find the mean - of a set of observations.

2. Find the median M of a set of observations.

3. Understand that the median is more resistant (less affected by extreme
observations) than the mean. Recognize that skewness in a distribution moves
the mean away from the median toward the long tail.

F. MEASURING SPREAD

1. Find the quartiles Q1 and Q3 for a set of observations.

2. Give the five-number summary and draw a boxplot; assess center, spread,
symmetry, and skewness from a boxplot. Determine outliers.

3. Using a calculator, find the standard deviation s for a set of observations.

4. Know the basic properties of s: s � 0 always; s = 0 only when all observa-
tions are identical; s increases as the spread increases; s has the same units as
the original measurements; s is increased by outliers or skewness.

G. CHANGING UNITS OF MEASUREMENT (LINEAR TRANSFORMATIONS)

1. Determine the effect of a linear transformation on measures of center and
spread.

2. Describe a change in units of measurement in terms of a linear transforma-
tion of the form xnew = a + bx.

x



66 Chapter 1 Exploring Data

H. COMPARING DISTRIBUTIONS

1. Use side-by-side bar graphs to compare distributions of categorical data.

2. Make back-to-back stemplots and side-by-side boxplots to compare distribu-
tions of quantitative variables.

3. Write narrative comparisons of the shape, center, spread, and outliers for
two or more quantitative distributions.

CHAPTER 1 REVIEW EXERCISES
1.59 Each year Fortune magazine lists the top 500 companies in the United States,
ranked according to their total annual sales in dollars. Describe three other variables
that could reasonably be used to measure the “size” of a company.

1.60 ATHLETES’ SALARIES Here is a small part of a data set that describes major league
baseball players as of opening day of the 1998 season:

Player Team Position Age Salary

�

Perez, Eduardo Reds First base 28 300
Perez, Neifi Rockies Shortstop 23 210
Pettitte, Andy Yankees Pitcher 25 3750
Piazza, Mike Dodgers Catcher 29 8000
�

(a) What individuals does this data set describe?

(b) In addition to the player’s name, how many variables does the data set contain?
Which of these variables are categorical and which are quantitative?

(c) Based on the data in the table, what do you think are the units of measurement
for each of the quantitative variables?

1.61 HOW YOUNG PEOPLE DIE The number of deaths among persons aged 15 to 24 years
in the United States in 1997 due to the seven leading causes of death for this age group
were accidents, 12,958; homicide, 5793; suicide, 4146; cancer, 1583; heart disease,
1013; congenital defects, 383; AIDS, 276.17

(a) Make a bar graph to display these data.

(b) What additional information do you need to make a pie chart?

1.62 NEVER ON SUNDAY? The Canadian Province of Ontario carries out statistical studies
of the working of Canada’s national health care system in the province. The bar graphs
in Figure 1.24 come from a study of admissions and discharges from community hospi-
tals in Ontario.18 They show the number of heart attack patients admitted and discharged
on each day of the week during a 2-year period.



Chapter Review 67

(a) Explain why you expect the number of patients admitted with heart attacks to be
roughly the same for all days of the week. Do the data show that this is true?

(b) Describe how the distribution of the day on which patients are discharged from
the hospital differs from that of the day on which they are admitted. What do you think
explains the difference?
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FIGURE 1.24 Bar graphs of the number of heart attack victims admitted and discharged on each
day of the week by hospitals in Ontario, Canada.

1.63 PRESIDENTIAL ELECTIONS Here are the percents of the popular vote won by the suc-
cessful candidate in each of the presidential elections from 1948 to 2000:

Year: 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000
Percent: 49.6 55.1 57.4 49.7 61.1 43.4 60.7 50.1 50.7 58.8 53.9 43.2 49.2 47.9

(a) Make a stemplot of the winners’ percents. (Round to whole numbers and use split
stems.)

(b) What is the median percent of the vote won by the successful candidate in presi-
dential elections? (Work with the unrounded data.)

(c) Call an election a landslide if the winner’s percent falls at or above the third quar-
tile. Find the third quartile. Which elections were landslides?

1.64 HURRICANES The histogram in Figure 1.25 (next page) shows the number of hur-
ricanes reaching the east coast of the United States each year over a 70-year period.19

Give a brief description of the overall shape of this distribution. About where does the
center of the distribution lie?
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Model MPG Model MPG

BMW X5 17 Kia Sportage 22
Chevrolet Blazer 20 Land Rover 17
Chevrolet Tahoe 18 Lexus LX470 16
Dodge Durango 18 Lincoln Navigator 17
Ford Expedition 18 Mazda MPV 19
Ford Explorer 20 Mercedes-Benz ML320 20
Honda Passport 20 Mitsubishi Montero 20
Infinity QX4 18 Nissan Pathfinder 19
Isuzu Amigo 19 Nissan Xterra 19
Isuzu Trooper 19 Subaru Forester 27
Jeep Cherokee 20 Suzuki Grand Vitara 20
Jeep Grand Cherokee 18 Toyota RAV4 26
Jeep Wrangler 19 Toyota 4Runner 21
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FIGURE 1.25 The distribution of the annual number of hurricanes on the U.S. east coast over a 70-
year period, for Exercise 1.64.

1.66 DR. DATA RETURNS! Dr. Data asked her students how much time they spent using a
computer during the previous week. Figure 1.26 is an ogive of her students’ responses.

TABLE 1.14 Highway gas mileages for model year 2000 four-wheel-
drive SUVs

1.65 DO SUVS WASTE GAS? Table 1.3 (page 17) gives the highway fuel consumption (in
miles per gallon) for 32 model year 2000 midsize cars. We constructed a dotplot for
these data in Exercise 1.8. Table 1.14 shows the highway mileages for 26 four-wheel-
drive model year 2000 sport utility vehicles.

(a) Give a graphical and numerical description of highway fuel consumption for
SUVs. What are the main features of the distribution?

(b) Make boxplots to compare the highway fuel consumption of midsize cars and
SUVs. What are the most important differences between the two distributions?
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(a) Construct a relative frequency table based on the ogive. Then make a histogram.

(b) Estimate the median, Q1, and Q3 from the ogive. Then make a boxplot. Are there
any outliers?

(c) At what percentile does a student who used her computer for 10 hours last week fall?

1.67 WAL-MART STOCK The rate of return on a stock is its change in price plus any div-
idends paid. Rate of return is usually measured in percent of the starting value. We
have data on the monthly rates of return for the stock of Wal-Mart stores for the years
1973 to 1991, the first 19 years Wal-Mart was listed on the New York Stock Exchange.
There are 228 observations.

Figure 1.27 (next page) displays output from statistical software that describes the
distribution of these data. The stems in the stemplot are the tens digits of the percent
returns. The leaves are the ones digits. The stemplot uses split stems to give a better dis-
play. The software gives high and low outliers separately from the stemplot rather than
spreading out the stemplot to include them.

(a) Give the five-number summary for monthly returns on Wal-Mart stock.

(b) Describe in words the main features of the distribution.

(c) If you had $1000 worth of Wal-Mart stock at the beginning of the best month dur-
ing these 19 years, how much would your stock be worth at the end of the month? If
you had $1000 worth of stock at the beginning of the worst month, how much would
your stock be worth at the end of the month?

(d) Find the interquartile range (IQR) for the Wal-Mart data. Are there any outliers
according to the 1.5 � IQR criterion? Does it appear to you that the software uses this
criterion in choosing which observations to report separately as outliers?
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FIGURE 1.26 Ogive of weekly computer use by Dr. Data’s statistics students. 
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Mean  =  3.064

Standard deviation  =  11.49

N  = 228   Median  =  3.4691

Quartiles  =  –2.950258,  8.4511

Decimal point is 1 place to the right of the colon

Low:  –34.04255  –31.25000  –27.06271  –26.61290
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High:  32.01923  41.80531  42.05607  57.89474  58.67769

FIGURE 1.27 Output from software describing the distribution of monthly returns from Wal-Mart
stock.

1.69 You want to measure the average speed of vehicles on the interstate highway on
which you are driving. You adjust your speed until the number of vehicles passing you
equals the number you are passing. Have you found the mean speed or the median
speed of vehicles on the highway?

1.68 A study of the size of jury awards in civil cases (such as injury, product liability,
and medical malpractice) in Chicago showed that the median award was about $8000.
But the mean award was about $69,000. Explain how this great difference between the
two measures of center can occur.

TABLE 1.15 Data on education in the United States for Exercises 1.70 to 1.73 

Percent
Population Percent no HS Teachers’ pay

State Region (1000) SAT Verbal SAT Math taking diploma ($1000)

AL ESC 4,447 561 555 9 33.1 32.8
AK PAC 627 516 514 50 13.4 51.7
AZ MTN 5,131 524 525 34 21.3 34.4
AR WSC 2,673 563 556 6 33.7 30.6
CA PAC 33,871 497 514 49 23.8 43.7
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TABLE 1.15 Data on education in the United States, for Exercises 1.70 to 1.73 
(continued)

Percent
Population Percent no HS Teachers’ pay

State Region (1000) SAT Verbal SAT Math taking diploma ($1000)

CO MTN 4,301 536 540 32 15.6 37.1
CT NE 3,406 510 509 80 20.8 50.7
DE SA 784 503 497 67 22.5 42.4
DC SA 572 494 478 77 26.9 46.4
FL SA 15,982 499 498 53 25.6 34.5
GA SA 8,186 487 482 63 29.1 37.4
HI PAC 1,212 482 513 52 19.9 38.4
ID MTN 1,294 542 540 16 20.3 32.8
IL ENC 12,419 569 585 12 23.8 43.9
IN ENC 6,080 496 498 60 24.4 39.7
IA WNC 2,926 594 598 5 19.9 34.0
KS WNC 2,688 578 576 9 18.7 36.8
KY ESC 4,042 547 547 12 35.4 34.5
LA WSC 4,469 561 558 8 31.7 29.7
ME NE 1,275 507 503 68 21.2 34.3
MD SA 5,296 507 507 65 21.6 41.7
MA NE 6,349 511 511 78 20.0 43.9
MI ENC 9,938 557 565 11 23.2 49.3
MN WNC 4,919 586 598 9 17.6 39.1
MS ESC 2,845 563 548 4 35.7 29.5
MO WNC 5,595 572 572 8 26.1 34.0
MT MTN 902 545 546 21 19.0 30.6
NE WNC 1,711 568 571 8 18.2 32.7
NV MTN 1,998 512 517 34 21.2 37.1
NH NE 1,236 520 518 72 17.8 36.6
NJ MA 8,414 498 510 80 23.3 50.4
NM MTN 1,819 549 542 12 24.9 30.2
NY MA 18,976 495 502 76 25.2 49.0
NC SA 8,049 493 493 61 30.0 33.3
ND WNC 642 594 605 5 23.3 28.2
OH ENC 11,353 534 568 25 24.3 39.0
OK WSC 3,451 567 560 8 25.4 30.6
OR PAC 3,421 525 525 53 18.5 42.2
PA MA 12,281 498 495 70 25.3 47.7
RI NE 1,048 504 499 70 28.0 44.3
SC SA 4,012 479 475 61 31.7 33.6
SD WNC 755 585 588 4 22.9 27.3
TN ESC 5,689 559 553 13 32.9 35.3
TX WSC 20,852 494 499 50 27.9 33.6
UT MTN 2,233 570 568 5 14.9 33.0
VT NE 609 514 506 70 19.2 36.3
VA SA 7,079 508 499 65 24.8 36.7
WA PAC 5,894 525 526 52 16.2 38.8
WV SA 1,808 527 512 18 34.0 33.4
WI ENC 5,364 584 595 7 21.4 39.9
WY MTN 494 546 551 10 17.0 32.0

Source: U.S. Census Bureau Web site, http://www.census.gov, 2001.
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Table 1.15 presents data about the individual states that relate to education. Study
of a data set with many variables begins by examining each variable by itself. Exercises
1.70 to 1.73 concern the data in Table 1.15.

1.70 POPULATION OF THE STATES Make a graphical display of the population of the states.
Briefly describe the shape, center, and spread of the distribution of population. Explain
why the shape of the distribution is not surprising. Are there any states that you con-
sider outliers?

1.71 HOW MANY STUDENTS TAKE THE SAT? Make a stemplot of the distribution of the per-
cent of high school seniors who take the SAT in the various states. Briefly describe the
overall shape of the distribution. Find the midpoint of the data and mark this value on
your stemplot. Explain why describing the center is not very useful for a distribution
with this shape.

1.72 HOW MUCH ARE TEACHERS PAID? Make a graph to display the distribution of average
teachers’ salaries for the states. Is there a clear overall pattern? Are there any outliers or
other notable deviations from the pattern?

1.73 PEOPLE WITHOUT HIGH SCHOOL EDUCATIONS The “Percent no HS” column gives the
percent of the adult population in each state who did not graduate from high school.
We want to compare the percents of people without a high school education in the
northeastern and the southern states. Take the northeastern states to be those in the MA
(Mid-Atlantic) and NE (New England) regions. The southern states are those in the SA
(South Atlantic) and ESC (East South Central) regions. Leave out the District of
Columbia, which is a city rather than a state.

(a) List the percents without high school for the northeastern and for the southern
states from Table 1.15. These are the two data sets we want to compare.

(b) Make numerical summaries and graphs to compare the two distributions. Write a
brief statement of what you find.

NOTES AND DATA SOURCES
1. Data from Beverage Digest, February 18, 2000.
2. Seat-belt data from the National Highway and Traffic Safety Administration,
NOPUS Survey, 1998.
3. Data from the 1997 Statistical Abstract of the United States.
4. Data on accidental deaths from the Centers for Disease Control Web site,
www.cdc.gov.
5. Data from the Los Angeles Times, February 16, 2001.
6. Based on experiments performed by G. T. Lloyd and E. H. Ramshaw of the
CSIRO Division of Food Research, Victoria, Australia, 1982–83.
7. Maribeth Cassidy Schmitt, from her Ph.D. dissertation, “The effects of an elabo-
rated directed reading activity on the metacomprehension skills of third graders,”
Purdue University, 1987.
8. Data from “America’s best small companies,” Forbes, November 8, 1993. 
9. The Shakespeare data appear in C. B. Williams, Style and Vocabulary:
Numerological Studies, Griffin, London, 1970.
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10. Data from John K. Ford, “Diversification: how many stocks will suffice?”
American Association of Individual Investors Journal, January 1990, pp. 14–16.
11. Data on frosts from C. E. Brooks and N. Carruthers, Handbook of Statistical
Methods in Meteorology, Her Majesty’s Stationery Office, London, 1953.
12. These data were collected by students as a class project.
13. Data from S. M. Stigler, “Do robust estimators work with real data?” Annals of
Statistics, 5 (1977), pp. 1055–1078.
14. Data obtained from The College Board.
15. Basketball scores from the Los Angeles Times, February 16, 2001.
16. Based on summaries in G. L. Cromwell et al., “A comparison of the nutritive
value of opaque-2, floury-2, and normal corn for the chick,” Poultry Science, 57
(1968), pp. 840–847.
17. Centers for Disease Control and Prevention, Births and Deaths: Preliminary
Data for 1997, Monthly Vital Statistics Reports, 47, No. 4, 1998.
18. Based on Antoni Basinski, “Almost never on Sunday: implications of the patterns
of admission and discharge for common conditions,” Institute for Clinical Evaluative
Sciences in Ontario, October 18, 1993.
19. Hurricane data from H. C. S. Thom, Some Methods of Climatological Analysis,
World Meteorological Organization, Geneva, Switzerland, 1966.
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JOHN W. TUKEY

The Philosopher of Data Analysis
He started as a chemist, became a mathematician, and was
converted to statistics by what he called “the real problems
experience and the real data experience” of war work dur-
ing the Second World War. John W. Tukey (1915–2000)

came to Princeton University in 1937 to study chemistry but took a doctorate
in mathematics in 1939. During the war, he worked on the accuracy of range
finders and of gunfire from bombers, among other problems. After the war he
divided his time between Princeton and nearby Bell Labs, at that time the
world’s leading industrial research group.

Tukey devoted much of his attention to the statistical study of messy problems
with complex data: the safety of anesthetics used by many doctors in many hospi-
tals on many patients, the Kinsey studies of human sexual behavior, monitoring
compliance with a nuclear test ban, and air quality and environmental pollution.

From this “real problems experience and real
data experience,” John Tukey developed exploratory
data analysis. He invented some of the tools we have
met, such as boxplots and stemplots. More important,
he developed a philosophy for data analysis that
changed the way statisticians think. In this chapter, as
in Chapter 1, the approach we take in examining
data follows Tukey’s path.

Tukey was converted to
statistics by “the real
problems experience and
the real data experience”
during the Second World
War.
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ACTIVITY 2A A Fine-Grained Distribution

Materials: Sheet of grid paper; salt; can of spray paint; paint easel;
newspapers

1. Place the grid paper on the easel with a horizontal fold as shown, at
about a 45° angle to the horizontal. Provide a “lip” at the bottom to catch
the salt. Place newspaper behind the grid and extending out on all sides so
you will not get paint on the easel.

ACTIVITY 2B Roll a Normal Distribution

Materials: Several marbles, all the same size; two metersticks for a “ramp”;
a ruled sheet of paper; a flat table about 4 feet long; carbon paper; Scotch
Tape or masking tape

45°

2. Pour a stream of salt slowly from a point near the middle of the top edge
of the grid. The grains of salt will hop and skip their way down the grid as
they collide with one another and bounce left and right. They will accu-
mulate at the bottom, piled against the grid, with the smooth profile of a
bell-shaped curve, known as a normal distribution. We will learn about the
normal distribution in this chapter.

3. Now carefully spray the grid--salt and all--with paint. Then discard the
salt. You should be able to easily measure the height of the curve at differ-
ent places by simply counting lines on the grid, or you could approximate
areas by counting small squares or portions of squares on the grid.

How could you get a tall, narrow curve? How could you get a short, broad
curve? What factors might affect the height and breadth of the curve? From
the members of the class, collect a set of normal curves that differ from one
another.
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ACTIVITY 2B Roll a Normal Distribution (continued)

1. At one end of the table prop up the two metersticks in a “V” shape to pro-
vide a ramp for the marbles to roll down. The marble will roll down the
chute, continue across the table, and fall off the table to the floor below.
Make sure that the ramp is secure and that the tabletop does not have any
grooves or obstructions.

2. Roll the marble down the ramp several times to get a good idea of the
area of the floor where the marble will fall.

3. Center the ruled sheet of paper (see Figure 2.1) over this area, face up,
with the bottom edge toward the table and parallel to the edge of the table.
The ruled lines should go in the same direction as the marble’s path. Tape
the sheet securely to the floor. Place the sheet of carbon paper, carbon side
down, over the ruled sheet.

4. Roll the marble for a class total of 200 times. The spots where it hits
the floor will be recorded on the ruled paper as black dots. When the mar-
ble hits the floor, it will probably bounce, so try to catch it in midair after
the impact so that you don’t get any extra marks. After the first 100 rolls,
replace the sheet of paper. This will make it easier for you to count the
spots. Make sure that the second sheet is in exactly the same position as
the first one.

5. When the marble has been rolled 200 times, make a histogram of the dis-
tribution of the points as follows. First, count the number of dots in each col-
umn. Then graph this number by drawing horizontal lines in the columns
at the appropriate level. Use the scale on the left-hand side of the sheet.

30

25

20

10

15

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FIGURE 2.1 Example of ruled sheet for Activity 2B.



2.1 DENSITY CURVES AND THE NORMAL DISTRIBUTIONS
We now have a kit of graphical and numerical tools for describing distributions.
What is more, we have a clear strategy for exploring data on a single quantitative
variable:

• Always plot your data: make a graph, usually a histogram or a stemplot.

• Look for the overall pattern (shape, center, spread) and for striking devia-
tions such as outliers.

• Calculate a numerical summary to briefly describe the center and spread.

Here is one more step to add to the strategy:

• Sometimes the overall pattern of a large number of observations is so regu-
lar that we can describe it by a smooth curve.

Density curves
Figure 2.2 is a histogram of the scores of all 947 seventh-grade students in Gary,
Indiana, on the vocabulary part of the Iowa Test of Basic Skills.1 Scores of many
students on this national test have a quite regular distribution. The histogram is
symmetric, and both tails fall off quite smoothly from a single center peak. There
are no large gaps or obvious outliers. The smooth curve drawn through the tops
of the histogram bars is a good description of the overall pattern of the data.
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2 4 6 8 10 12
Vocabulary scores

FIGURE 2.2 Histogram of the vocabulary scores of all seventh-grade students in Gary,
Indiana. The smooth curve shows the overall shape of the distribution.



The curve is a mathematical model for the distribution. A mathematical
model is an idealized description. It gives a compact picture of the overall pat-
tern of the data but ignores minor irregularities as well as any outliers.

We will see that it is easier to work with the smooth curve in Figure 2.2
than with the histogram. The reason is that the histogram depends on our
choice of classes, while with a little care we can use a curve that does not
depend on any choices we make. Here’s how we do it.
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mathematical model

Our eyes respond to the areas of the bars in a histogram. The bar areas represent pro-
portions of the observations. Figure 2.3(a) is a copy of Figure 2.2 with the leftmost bars
shaded. The area of the shaded bars in Figure 2.3(a) represents the students with
vocabulary scores 6.0 or lower. There are 287 such students, who make up the pro-
portion 287/947 = 0.303 of all Gary seventh graders.

Now concentrate on the curve drawn through the bars. In Figure 2.3(b), the
area under the curve to the left of 6.0 is shaded. Adjust the scale of the graph so
that the total area under the curve is exactly 1. This area represents the proportion
1, that is, all the observations. Areas under the curve then represent proportions of
the observations. The curve is now a density curve. The shaded area under the den-
sity curve in Figure 2.3(b) represents the proportion of students with score 6.0 or
lower. This area is 0.293, only 0.010 away from the histogram result. You can see
that areas under the density curve give quite good approximations of areas given by
the histogram.

EXAMPLE 2.1 FROM HISTOGRAM TO DENSITY CURVE

2 4 6 8 10 12
Vocabulary scores

FIGURE 2.3(a) The proportion of scores less than or equal to 6.0 from the histogram is 0.303.



The density curve in Figures 2.2 and 2.3 is a normal curve. Density curves,
like distributions, come in many shapes. In later chapters, we will encounter
important density curves that are skewed to the left or right, and curves that
may look like normal curves but are not.
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2 4 6 8 10 12
Vocabulary scores

FIGURE 2.3(b) The proportion of scores less than or equal to 6.0 from the density curve is 0.293.

DENSITY CURVE

A density curve is a curve that

• is always on or above the horizontal axis, and

• has area exactly 1 underneath it.

A density curve describes the overall pattern of a distribution. The area
under the curve and above any range of values is the proportion of all
observations that fall in that range.

normal curve

Figure 2.4 shows the density curve for a distribution that is slightly skewed to the left. The
smooth curve makes the overall shape of the distribution clearly visible. The shaded area
under the curve covers the range of values from 7 to 8. This area is 0.12. This means that
the proportion 0.12 of all observations from this distribution have values between 7 and 8.

EXAMPLE 2.2 A SKEWED-LEFT DISTRIBUTION



Figure 2.5 shows two density curves: a symmetric normal density curve
and a right-skewed curve. A density curve of the appropriate shape is often an
adequate description of the overall pattern of a distribution. Outliers, which are
deviations from the overall pattern, are not described by the curve. Of course,
no set of real data is exactly described by a density curve. The curve is an
approximation that is easy to use and accurate enough for practical use.
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7 8

Total area under
curve = 1

Area = 0.12

FIGURE 2.4 The shaded area under this density curve is the proportion of observations taking 
values between 7 and 8.

Median and mean Median
Mean

FIGURE 2.5(a) The median and mean of a
symmetric density curve.

FIGURE 2.5(b) The median and mean of a
right-skewed density curve.

The median and mean of a density curve
Our measures of center and spread apply to density curves as well as to actual
sets of observations. The median and quartiles are easy. Areas under a density
curve represent proportions of the total number of observations. The median
is the point with half the observations on either side. So the median of a den-
sity curve is the equal-areas point, the point with half the area under the curve
to its left and the remaining half of the area to its right. The quartiles divide the



area under the curve into quarters. One-fourth of the area under the curve is
to the left of the first quartile, and three-fourths of the area is to the left of the
third quartile. You can roughly locate the median and quartiles of any density
curve by eye by dividing the area under the curve into four equal parts.

Because density curves are idealized patterns, a symmetric density curve is
exactly symmetric. The median of a symmetric density curve is therefore at its
center. Figure 2.5(a) shows the median of a symmetric curve. It isn’t so easy to
spot the equal-areas point on a skewed curve. There are mathematical ways of
finding the median for any density curve. We did that to mark the median on
the skewed curve in Figure 2.5(b).

What about the mean? The mean of a set of observations is their arithmetic
average. If we think of the observations as weights strung out along a thin rod,
the mean is the point at which the rod would balance. This fact is also true of
density curves. The mean is the point at which the curve would balance if
made of solid material. Figure 2.6 illustrates this fact about the mean. A sym-
metric curve balances at its center because the two sides are identical. The
mean and median of a symmetric density curve are equal, as in Figure 2.5(a).
We know that the mean of a skewed distribution is pulled toward the long tail.
Figure 2.5(b) shows how the mean of a skewed density curve is pulled toward
the long tail more than is the median. It’s hard to locate the balance point by
eye on a skewed curve. There are mathematical ways of calculating the mean
for any density curve, so we are able to mark the mean as well as the median
in Figure 2.5(b).
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FIGURE 2.6 The mean is the balance point of a density curve.

MEDIAN AND MEAN OF A DENSITY CURVE

The median of a density curve is the equal-areas point, the point that
divides the area under the curve in half.

The mean of a density curve is the balance point, at which the curve
would balance if made of solid material.

The median and mean are the same for a symmetric density curve. They
both lie at the center of the curve. The mean of a skewed curve is pulled
away from the median in the direction of the long tail.



We can roughly locate the mean, median, and quartiles of any density curve
by eye. This is not true of the standard deviation. When necessary, we can once
again call on more advanced mathematics to learn the value of the standard
deviation. The study of mathematical methods for doing calculations with den-
sity curves is part of theoretical statistics. Though we are concentrating on sta-
tistical practice, we often make use of the results of mathematical study.

Because a density curve is an idealized description of the distribution of
data, we need to distinguish between the mean and standard deviation of the
density curve and the mean and standard deviation s computed from the
actual observations. The usual notation for the mean of an idealized distribu-
tion is � (the Greek letter mu). We write the standard deviation of a density
curve as � (the Greek letter sigma).

x
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mean �
standard deviation �

EXERCISES
2.1 DENSITY CURVES

(a) Sketch a density curve that is symmetric but has a shape different from that of the
curve in Figure 2.5(a).

(b) Sketch a density curve that is strongly skewed to the left.

2.2 A UNIFORM DISTRIBUTION Figure 2.7 displays the density curve of a uniform distribu-
tion. The curve takes the constant value 1 over the interval from 0 to 1 and is zero out-
side the range of values. This means that data described by this distribution take val-
ues that are uniformly spread between 0 and 1. Use areas under this density curve to
answer the following questions.

(a) Why is the total area under this curve equal to 1?

(b) What percent of the observations lie above 0.8?

(c) What percent of the observations lie below 0.6?

(d) What percent of the observations lie between 0.25 and 0.75?

(e) What is the mean � of this distribution?

0 1

FIGURE 2.7 The density curve of a uniform distribution.

2.3 A WEIRD DENSITY CURVE A line segment can be considered a density “curve,” as
shown in Exercise 2.2. A “broken line” graph can also be considered a density curve.
Figure 2.8 shows such a density curve.
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X

1

FIGURE 2.8 An unusual “broken line” density curve.

(a) Verify that the graph in Figure 2.8 is a valid density curve.

For each of the following, use areas under this density curve to find the proportion of
observations within the given interval:

(b) 0.6 � X � 0.8

(c) 0 � X � 0.4

(d) 0 � X � 0.2

(e) The median of this density curve is a point between X = 0.2 and X = 0.4. Explain why.

2.4 FINDING MEANS AND MEDIANS Figure 2.9 displays three density curves, each with
three points indicated. At which of these points on each curve do the mean and the
median fall?

A B C

(b)

A B C

(c)

ABC

(a)

FIGURE 2.9 Three density curves.

outcomes

simulation

2.5 ROLL A DISTRIBUTION In this exercise you will pretend to roll a regular, six-sided die
120 times. Each time you roll the die, you will record the number on the up-face. The
numbers 1, 2, 3, 4, 5, and 6 are called the outcomes of this chance experiment.

In 120 rolls, how many of each number would you expect to roll? The TI-83 and
TI-89 are useful devices for conducting chance experiments, especially ones like this
that involve performing many repetitions. Because you are only pretending to roll the
die repeatedly, we call this chance experiment a simulation. There will be a more for-
mal treatment of simulations in Chapter 5.



TI-89
• Press CATALOG F3 and choose randInt...

• Complete the command tistat.randint
(1,6,120) STO➡ list1.

TI-83
• Press MATH , choose PRB, then 5:RandInt.

• Complete the command RandInt(1,6,120)
STO➡ L1.

• Begin by clearing L1 or list1 on your calculator.

• Use your calculator’s random integer generator to generate 120 random whole num-
bers between 1 and 6 (inclusive), and then store these numbers in L1 or list1.
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• Set the viewing window parameters: X[1, 7]1 by Y[–5, 25]5.

• Specify a histogram using the data in L1/list1.

• Then graph. Are you surprised? This is called a frequency histogram because it
plots the frequency of each outcome (number of times each outcome occurred).

• Repeat the simulation several times. You can recall and reuse the previous com-
mand by pressing 2nd ENTER . It’s a good habit to clear L1/list1 before you roll the die
again.

In theory, of course, each number should come up 20 times. But in practice, there is
chance variation, so the bars in the histogram will probably have different heights.
Theoretically, what should the distribution look like?

Normal distributions
One particularly important class of density curves has already appeared in
Figures 2.2, 2.3, and 2.5(a) and the “fine-grained distribution” of Activity 2A.
These density curves are symmetric, single-peaked, and bell-shaped. They are
called normal curves, and they describe normal distributions. All normal dis-
tributions have the same overall shape. The exact density curve for a particu-
lar normal distribution is described by giving its mean � and its standard devi-
ation �. The mean is located at the center of the symmetric curve, and is the
same as the median. Changing � without changing � moves the normal curve
along the horizontal axis without changing its spread. The standard deviation
� controls the spread of a normal curve. Figure 2.10 shows two normal curves

normal distributions

µ

σ

σ

µ

 

FIGURE 2.10 Two normal curves, showing the mean � and standard deviation �.



with different values of �. The curve with the larger standard deviation is more
spread out.

The standard deviation � is the natural measure of spread for normal dis-
tributions. Not only do � and � completely determine the shape of a normal
curve, but we can locate � by eye on the curve. Here’s how. As we move out
in either direction from the center �, the curve changes from falling ever more
steeply
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to falling ever less steeply.

inflection points The points at which this change of curvature takes place are called inflection
points and are located at distance � on either side of the mean �. Figure 2.10
shows � for two different normal curves. You can feel the change as you run a
pencil along a normal curve, and so find the standard deviation. Remember
that � and � alone do not specify the shape of most distributions, and that the
shape of density curves in general does not reveal �. These are special prop-
erties of normal distributions.

Why are the normal distributions important in statistics? Here are three
reasons. First, normal distributions are good descriptions for some distribu-
tions of real data. Distributions that are often close to normal include scores
on tests taken by many people (such as SAT exams and many psychological
tests), repeated careful measurements of the same quantity, and characteris-
tics of biological populations (such as lengths of cockroaches and yields of
corn). Second, normal distributions are good approximations to the results of
many kinds of chance outcomes, such as tossing a coin many times. Third,
and most important, we will see that many statistical inference procedures
based on normal distributions work well for other roughly symmetric distri-
butions. However, even though many sets of data follow a normal distribu-
tion, many do not. Most income distributions, for example, are skewed to the
right and so are not normal. Nonnormal data, like nonnormal people, not
only are common but are sometimes more interesting than their normal
counterparts.

The 68–95–99.7 rule
Although there are many normal curves, they all have common properties. In
particular, all normal distributions obey the following rule.



Figure 2.11 illustrates the 68–95–99.7 rule. Some authors refer to it as the
“empirical rule.” By remembering these three numbers, you can think about
normal distributions without constantly making detailed calculations, and
when rough approximations will suffice.
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THE 68–95–99.7 RULE

In the normal distribution with mean � and standard deviation �:

• 68% of the observations fall within � of the mean �.

• 95% of the observations fall within 2� of �.

• 99.7% of the observations fall within 3� of �.

0–1–2–3 1 2 3

99.7% of data

95% of data

68% of data

FIGURE 2.11 The 68-95-99.7 rule for normal distributions.

The distribution of heights of young women aged 18 to 24 is approximately normal
with mean � = 64.5 inches and standard deviation � = 2.5 inches. Figure 2.12 shows
the application of the 68–95–99.7 rule in this example.

Two standard deviations is 5 inches for this distribution. The 95 part of the
68–95–99.7 rule says that the middle 95% of young women are between 64.5 – 5 and
64.5 + 5 inches tall, that is, between 59.5 and 69.5 inches. This fact is exactly true for
an exactly normal distribution. It is approximately true for the heights of young women
because the distribution of heights is approximately normal.

EXAMPLE 2.3 YOUNG WOMEN’S HEIGHTS
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The other 5% of young women have heights outside the range from 59.5 to 
69.5 inches. Because the normal distributions are symmetric, half of these women
are on the tall side. So the tallest 2.5% of young women are taller than 69.5 
inches.

The 99.7 part of the 68-95-99.7 rule says that almost all young women (99.7% of
them) have heights between � – 3� and � + 3�. This range of heights is 57 to 72
inches.

64.56259.557 67 69.5 72

99.7%

95%

68%

Height (in inches)

FIGURE 2.12 The 68–95–99.7 rule applied to the distribution of the heights of young women.
Here, � = 64.5 and � = 2.5.

Because we will mention normal distributions often, a short notation is
helpful. We abbreviate the normal distribution with mean � and standard devi-
ation � as N(�, �). For example, the distribution of young women’s heights is
N(64.5, 2.5).

National test scores are frequently reported in terms of percentiles,
rather than raw scores. If your score on the math portion of such a test was
reported as the 90th percentile, then 90% of the students who took the math
test scored lower than or equal to your score. Percentiles are used when we
are most interested in seeing where an individual observation stands relative
to the other individuals in the distribution. Typically, in practice, the num-
ber of observations is quite large so that it makes sense to talk about the dis-
tribution as a density curve. The median score would be the 50th percentile
because half the scores are to the left of (i.e., lower than) the median. The
first quartile is the 25th percentile and the third quartile is the 75th per-
centile.



EXERCISES
2.6 MEN’S HEIGHTS The distribution of heights of adult American men is approximately
normal with mean 69 inches and standard deviation 2.5 inches. Draw a normal curve
on which this mean and standard deviation are correctly located. (Hint: Draw the curve
first, locate the points where the curvature changes, then mark the horizontal axis.)

2.7 MORE ON MEN’S HEIGHTS The distribution of heights of adult American men is
approximately normal with mean 69 inches and standard deviation 2.5 inches. Use the
68–95–99.7 rule to answer the following questions.

(a) What percent of men are taller than 74 inches?

(b) Between what heights do the middle 95% of men fall?

(c) What percent of men are shorter than 66.5 inches?

(d) A height of 71.5 inches corresponds to what percentile of adult male American
heights?

2.8 IQ SCORES Scores on the Wechsler Adult Intelligence Scale (WAIS, a standard “IQ
test”) for the 20 to 34 age group are approximately normally distributed with � = 110
and � = 25. Use the 68–95–99.7 rule to answer these questions.

(a) About what percent of people in this age group have scores above 110?

(b) About what percent have scores above 160?

(c) In what range do the middle 95% of all IQ scores lie?

2.9 WOMEN’S HEIGHTS The distribution of heights of young women aged 18 to 24 is dis-
cussed in Example 2.3. Find the percentiles for the following heights.

(a) 64.5 inches

(b) 59.5 inches

(c) 67 inches

(d) 72 inches

2.10 FINE-GRAINED DISTRIBUTION You can do this exercise if you spray-painted a normal
distribution in Activity 2A. On your “fine-grained distribution,” first count the number
of whole squares and parts of squares under the curve. Approximate as best you can.
This represents the total area under the curve.

(a) Mark vertical lines at � – 1� and � + 1�. Count the number of squares or parts of
squares between these two vertical lines. Now divide the number of squares within one
standard deviation of � by the total number of squares under the curve and express
your answer as a percent. How does this compare with 68%? Why would you expect
your answer to differ somewhat from 68%?

(b) Count squares to determine the percent of area within 2� of �. How does your
answer compare with 95%?

(c) Count squares to determine the percent of area within 3� of �. How does your
answer compare with 99.7%?
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SUMMARY

We can sometimes describe the overall pattern of a distribution by a density
curve. A density curve always remains on or above the horizontal axis and has
total area 1 underneath it. An area under a density curve gives the proportion
of observations that fall in a range of values.

A density curve is an idealized description of the overall pattern of a distri-
bution that smooths out the irregularities in the actual data. Write the mean of
a density curve as � and the standard deviation of a density curve as � to dis-
tinguish them from the mean - and the standard deviation s of the actual data.

The mean, the median, and the quartiles of a density curve can be locat-
ed by eye. The mean � is the balance point of the curve. The median divides
the area under the curve in half. The quartiles with the median divide the area
under the curve into quarters. The standard deviation � cannot be located by
eye on most density curves.

The mean and median are equal for symmetric density curves. The mean
of a skewed curve is located farther toward the long tail than is the median.

The normal distributions are described by a special family of bell-shaped
symmetric density curves, called normal curves. The mean � and standard devi-
ation � completely specify a normal distribution N(�, �). The mean is the center
of the curve, and � is the distance from � to the inflection points on either side.

In particular, all normal distributions satisfy the 68–95–99.7 rule, which
describes what percent of observations lie within one, two, and three standard
deviations of the mean.

An observation’s percentile is the percent of the distribution that is at or to
the left of the observation.

x

SECTION 2.1 EXERCISES
2.11 ESTIMATING STANDARD DEVIATIONS Figure 2.13 shows two normal curves, both with
mean 0. Approximately what is the standard deviation of each of these curves?

2.12 HELMET SIZES The army reports that the distribution of head circumference
among male soldiers is approximately normal with mean 22.8 inches and standard
deviation 1.1 inches. Use the 68–95–99.7 rule to answer the following questions.

(a) What percent of soldiers have head circumference greater than 23.9 inches?

(b) A head circumference of 23.9 inches would be what percentile?

(c) What percent of soldiers have head circumference between 21.7 inches and 23.9
inches?

2.13 GESTATION PERIOD The length of human pregnancies from conception to birth
varies according to a distribution that is approximately normal with mean 266 days and
standard deviation 16 days. Use the 68–95–99.7 rule to answer the following questions.
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(a) Between what values do the lengths of the middle 95% of all pregnancies fall?

(b) How short are the shortest 2.5% of all pregnancies?

(c) How long are the longest 2.5% of all pregnancies?

2.14 IQ SCORES FOR ADULTS Wechsler Adult Intelligence Scale (WAIS) scores for young
adults are N(110, 25).

(a) If someone’s score were reported as the 16th percentile, about what score would
that individual have? 

(b) Answer the same question for the 84th percentile and the 97.5th percentile.

2.15 WEIGHTS OF DISTANCE RUNNERS A study of elite distance runners found a mean body
weight of 63.1 kilograms (kg), with a standard deviation of 4.8 kg.

(a) Assuming that the distribution of weights is normal, sketch the density curve of the
weight distribution with the horizontal axis marked in kilograms.

(b) Use the 68–95–99.7 rule to find intervals centered at the mean that will include
68%, 95%, and 99.7% of the weights of the runners.

2.16 CALCULATOR GENERATED DENSITY CURVE Like Minitab and similar computer utilities,
the TI-83/TI-89 has a “random number generator” that produces decimal numbers
between 0 and 1.

• On the TI-83, press MATH , then choose PRB and 1:Rand.

• On the TI-89, press 2nd 5 (MATH), then choose 7:Probability and
4:Rand(. Be sure to close the parentheses.

–1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6

FIGURE 2.13 Two normal curves with the same mean but different standard deviations, for
Exercise 2.11.



Press ENTER several times to see the results. The command 2rand (2rand() on the
TI-89) produces a random number between 0 and 2. The density curve of the out-
comes has constant height between 0 and 2, and height 0 elsewhere.

(a) What is the height of the density curve between 0 and 2? Draw a graph of the den-
sity curve.

(b) Use your graph from (a) and the fact that areas under the curve are relative fre-
quencies of outcomes to find the proportion of outcomes that are less than 1.

(c) What is the median of the distribution? What are the quartiles?

(d) Find the proportion of outcomes that lie between 0.5 and 1.3.

2.17 FLIP50 The program FLIP50 simulates flipping a fair coin 50 times and counts
the number of times the coin comes up heads. It prints the number of heads on the
screen. Then it repeats the experiment for a total of 100 times, each time displaying
the number of heads in 50 flips. When it finishes, it draws a histogram of the 100
results. (You have to set up the plot first on the TI-89.)

(a) What outcomes are likely? What outcome(s) are the most likely? If you made a
histogram of the results of the 100 replications, what shape distribution would you
expect?

(b) The program is listed below. Enter the program carefully, or link it from a class-
mate or your teacher. Run the program and observe the variations in the results of the
100 replications.

(c) When the histogram appears, TRACE to see the classes and frequencies. Record
the results in a frequency table.

(d) Describe the distribution: symmetric versus nonsymmetric; center; spread; num-
ber of peaks; gaps; suspected outliers. What shape density curve would best fit your
distribution?
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TI-83
prgm:FLIP50
100→DIM(L1)
For(I,1,100)
0→H
For(J,1,50)
randInt(0,1)→N
If N=1:H+1→H
End
Disp H
H→L1(I)
End
PlotsOff
10→Xmin
40→Xmax
2→Xscl
–6→Ymin

TI-89
flip50()
Prgm
tistat.clrlist(list1)
For i,1,100
0→h
For j,1,50
tistat.randint(0,1)→n
If n=1
h+1→h
EndFor
Disp h
h→list1[i]
EndFor
PlotsOff
10→xmin
40→xmax



2→xscl
–6→ymin
25→ymax
5→yscl
EndPrgm

Set up Plot 1 to be a histogram of list1
with a bucket width of 2. Then press ◆
F3 (GRAPH).
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25→Ymax
5→Yscl
Plot1(Histogram,L1)
DispGraph

2.18 NORMAL DISTRIBUTION ON THE CALCULATOR The normal density curves are defined by
a particular equation:

y e
x

=
− −



1

2

1
2

2

� �

�

�

We can obtain individual members of this family of curves by specifying particular val-
ues for the mean � and the standard deviation �. If we specify the values � = 0 and 
� = 1, then we have the equation for the standard normal distribution. This exercise
will explore two functions.

• Enter as Y1 the following equation for the standard normal distribution:

Y1=(1/√(2π))( e^(-.5x2)))

• For Y2, position your cursor after Y2=. On the TI-83, press 2nd VARS (DISTR) and
choose 1:normalpdf(. On the TI-89, press CATALOG F3 (Flash Apps) and choose
normpdf(. Finish defining Y2 as normPdf(x) (tistat.normPdf(x) on the TI-
89).

• Turn off all plots and any functions other than Y1 and Y2. Change the graph style for
Y2 to a thick line by highlighting the slash \ to the left of Y2 and pressing ENTER once.
(On the TI-89, press 2nd  F1 ([F6]) and choose 4:Thick.)

• Specify a viewing window X[–3,3]1 and Y[–0.1,0.5]0.1.

• Press GRAPH ( ◆ F3 on the TI-89.)

Write a sentence that describes the connection between these two functions.
Note: normalpdf stands for “normal probability density function.” We’ll learn more
about pdf’s in Chapter 8.

2.2 STANDARD NORMAL CALCULATIONS

The standard normal distribution
As the 68–95–99.7 rule suggests, all normal distributions share many common
properties. In fact, all normal distributions are the same if we measure in units



The heights of young women are approximately normal with � = 64.5 inches and � =
2.5 inches. The standardized height is

A woman’s standardized height is the number of standard deviations by which her
height differs from the mean height of all young women. A woman 68 inches tall, for
example, has standardized height 

or 1.4 standard deviations above the mean. Similarly, a woman 5 feet (60 inches) tall
has standardized height 

or 1.8 standard deviations less than the mean height.

z = − = −60 64 5
2 5

1 8
.

.
.

z = − =68 64 5
2 5

1 4
.

.
.

z = −height
2.5

64 5.

EXAMPLE 2.4 STANDARDIZING WOMEN’S HEIGHTS
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STANDARDIZING AND Z-SCORES

If x is an observation from a distribution that has mean � and standard
deviation �, the standardized value of x is

A standardized value is often called a z-score.

z
x= −�

�

of size � about the mean � as center. Changing to these units is called stan-
dardizing. To standardize a value, subtract the mean of the distribution and
then divide by the standard deviation.

A z-score tells us how many standard deviations the original observation
falls away from the mean, and in which direction. Observations larger than the
mean are positive when standardized, and observations smaller than the mean
are negative.

If the variable we standardize has a normal distribution, standardizing
does more than give a common scale. It makes all normal distributions into a
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STANDARD NORMAL DISTRIBUTION

The standard normal distribution is the normal distribution N(0, 1) with
mean 0 and standard deviation 1 (Figure 2.14).

If a variable x has any normal distribution N(�, �) with mean � and stan-
dard deviation �, then the standardized variable

has the standard normal distribution.

z
x= −�

�

–3.0 –1.0 0

.5

1.0 3.0

.4

.3

.2

.1

–2.0 2.0

FIGURE 2.14 Standard normal distribution.

EXERCISES
2.19 SAT VERSUS ACT Eleanor scores 680 on the mathematics part of the SAT. The dis-
tribution of SAT scores in a reference population is normal, with mean 500 and stan-
dard deviation 100. Gerald takes the American College Testing (ACT) mathematics
test and scores 27. ACT scores are normally distributed with mean 18 and standard
deviation 6. Find the standardized scores for both students. Assuming that both tests
measure the same kind of ability, who has the higher score?

2.20 COMPARING BATTING AVERAGES Three landmarks of baseball achievement are Ty
Cobb’s batting average of .420 in 1911, Ted Williams’s .406 in 1941, and George
Brett’s .390 in 1980. These batting averages cannot be compared directly because the
distribution of major league batting averages has changed over the years. The distri-
butions are quite symmetric and (except for outliers such as Cobb, Williams, and
Brett) reasonably normal. While the mean batting average has been held roughly
constant by rule changes and the balance between hitting and pitching, the standard
deviation has dropped over time. Here are the facts:

single distribution, and this distribution is still normal. Standardizing a vari-
able that has any normal distribution produces a new variable that has the
standard normal distribution.
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Table A, inside the front cover, gives areas under the standard normal
curve. The next two examples show how to use the table.

THE STANDARD NORMAL TABLE

Table A is a table of areas under the standard normal curve. The table
entry for each value z is the area under the curve to the left of z.

Table entry is area
to left of z 

z

Problem: Find the proportion of observations from the standard normal distribution
that are less than 1.4.

EXAMPLE 2.5 USING THE z TABLE

Decade Mean Std. dev.

1910s .266 .0371
1940s .267 .0326
1970s .261 .0317

Compute the standardized batting averages for Cobb, Williams, and Brett to compare
how far each stood above his peers.2

Normal distribution calculations
An area under a density curve is a proportion of the observations in a distribu-
tion. Any question about what proportion of observations lie in some range of
values can be answered by finding an area under the curve. Because all nor-
mal distributions are the same when we standardize, we can find areas under
any normal curve from a single table, a table that gives areas under the curve
for the standard normal distribution.
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FIGURE 2.15 The area under a standard normal curve to the left of the point z = 1.4 is 0.9192.
Table A gives areas under the standard normal curve.

z = 1.40

Table entry = 0.9192

Solution: To find the area to the left of 1.40, locate 1.4 in the left-hand column of Table A,
then locate the remaining digit 0 as .00 in the top row. The entry opposite 1.4 and under
.00 is 0.9192. This is the area we seek. Figure 2.15 illustrates the relationship between the
value z = 1.40 and the area 0.9192.

Problem: Find the proportion of observations from the standard normal distribution
that are greater than –2.15.
Solution: Enter Table A under z = –2.15. That is, find –2.1 in the left-hand column
and .05 in the top row. The table entry is 0.0158. This is the area to the left of –2.15.
Because the total area under the curve is 1, the area lying to the right of –2.15 is 1 –
0.0158 = 0.9842. Figure 2.16 illustrates these areas.

EXAMPLE 2.6 MORE ON USING THE z TABLE

z = –2.15

Area = 0.9842Table entry
= 0.0158

FIGURE 2.16 Areas under the standard normal curve to the right and left of z = –2.15. Table A
gives only areas to the left.

Caution! A common student mistake is to look up a z-value in Table A and
report the entry corresponding to that z-value, regardless of whether the problem
asks for the area to the left or to the right of that z-value. Always sketch the stan-
dard normal curve, mark the z-value, and shade the area of interest. And before
you finish, make sure your answer is reasonable in the context of the problem.



98 Chapter 2 The Normal Distributions

The area to the left of z = 1.4 in Figure 2.17(b) under the standard normal curve is the
same as the area to the left of x = 68 in Figure 2.17(a).

z
x= − = − =�

�

68 64 5
2 5

1 4
.

.
.

64.5 67 68
x

σ

µ

FIGURE 2.17(a) The area under the N(68,2.5) curve to the left of x = 68.

0 1 1.4
z

σ

FIGURE 2.17(b) The area to the left of z = 1.4 under the standard normal curve N(0,1). This area is
the same as the shaded area in Figure 2.17(a).

In Example 2.5, we found this area to be 0.9192. Our conclusion is that 91.92%
of all young women are less than 68 inches tall.

What proportion of all young women are less than 68 inches tall? This proportion is
the area under the N(64.5, 2.5) curve to the left of the point 68. Figure 2.17(a) shows
this area. The standardized height corresponding to 68 inches is

EXAMPLE 2.7 USING THE STANDARD NORMAL DISTRIBUTION

The value of the z table is that we can use it to answer any question about
proportions of observations in a normal distribution by standardizing and then
using the standard normal table.
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Here is an outline of the method for finding the proportion of the distri-
bution in any region.

FINDING NORMAL PROPORTIONS

Step 1: State the problem in terms of the observed variable x. Draw a 
picture of the distribution and shade the area of interest under the curve.

Step 2: Standardize x to restate the problem in terms of a standard 
normal variable z. Draw a picture to show the area of interest under the
standard normal curve.

Step 3: Find the required area under the standard normal curve, using
Table A and the fact that the total area under the curve is 1.

Step 4: Write your conclusion in the context of the problem.

The level of cholesterol in the blood is important because high cholesterol levels
may increase the risk of heart disease. The distribution of blood cholesterol levels in
a large population of people of the same age and sex is roughly normal. For 14-year-
old boys, the mean is � = 170 milligrams of cholesterol per deciliter of blood (mg/dl)
and the standard deviation is � = 30 mg/dl.3 Levels above 240 mg/dl may require
medical attention. What percent of 14-year-old boys have more than 240 mg/dl of
cholesterol?

Step 1: State the problem. Call the level of cholesterol in the blood x. The variable x
has the N(170,30) distribution. We want the proportion of boys with cholesterol level
x > 240. Sketch the distribution, mark the important points on the horizontal axis, and
shade the area of interest. See Figure 2.18(a).

EXAMPLE 2.8 IS CHOLESTEROL A PROBLEM FOR YOUNG BOYS?

170 200 240

FIGURE 2.18(a) Cholesterol levels for 14-year-old boys who may require medical attention.
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In a normal distribution, the proportion of observations with x � 240 is the
same as the proportion with x � 240. There is no area under the curve and
exactly over 240, so the areas under the curve with x � 240 and x � 240 are
the same. This isn’t true of the actual data. There may be a boy with exactly
240 mg/dl of blood cholesterol. The normal distribution is just an easy-to-use
approximation, not a description of every detail in the actual data.

The key to doing a normal calculation is to sketch the area you want, then
match that area with the areas that the table gives you. Here is another example.

Sketch a standard normal curve, and shade the area of interest. See Figure 2.18(b).

Area = 0.9901 Area = 0.0099

z = 2.33

FIGURE 2.18(b) Areas under the standard normal curve.

Step 3: Use the table. From Table A, we see that the proportion of observations less
than 2.33 is 0.9901. About 99% of boys have cholesterol levels less than 240. The area
to the right of 2.33 is therefore 1 – 0.9901=0.0099. This is about 0.01, or 1%.

Step 4: Write your conclusion in the context of the problem. Only about 1% of boys
have high cholesterol.

Step 2: Standardize x and draw a picture. On both sides of the inequality, subtract the
mean, then divide by the standard deviation, to turn x into a standard normal z:

x > 240

z > 2.33

x − > −170
30

240 170
30

What percent of 14-year-old boys have blood cholesterol between 170 and 240 mg/dl?

Step 1: State the problem. We want the proportion of boys with 170 � x � 240.

Step 2: Standardize and draw a picture.

EXAMPLE 2.9 WORKING WITH AN INTERVAL
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Step 3: Use the table. The area between 2.33 and 0 is the area below 2.33 minus the
area below 0. Look at Figure 2.19 to check this. From Table A,

area between 0 and 2.33 = area below 2.33 – area below 0.00 
= 0.9901 – 0.5000 = 0.4901

Step 4: State your conclusion in context. About 49% of boys have cholesterol levels
between 170 and 240 mg/dl.

170 240
170 170

30
170

30
240 170

30
0 2 33

≤ ≤
− ≤ − ≤ −

≤ ≤

x
x

z .

What if we meet a z that falls outside the range covered by Table A? For
example, the area to the left of z = –4 does not appear in the table. But since –4
is less than –3.4, this area is smaller than the entry for z = –3.40, which is 0.0003.
There is very little area under the standard normal curve outside the range cov-
ered by Table A. You can take this area to be zero with little loss of accuracy.

2.33

Area = 0.5

Area = 0.9901

0

Area = 0.4901

FIGURE 2.19 Areas under the standard normal curve.

Finding a value given a proportion
Examples 2.8 and 2.9 illustrate the use of Table A to find what proportion of
the observations satisfies some condition, such as “blood cholesterol between
170 mg/dl and 240 mg/dl.” We may instead want to find the observed value
with a given proportion of the observations above or below it. To do this, use

Sketch a standard normal curve, and shade the area of interest. See Figure 2.19.
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Table A backward. Find the given proportion in the body of the table, read the
corresponding z from the left column and top row, then “unstandardize” to get
the observed value. Here is an example.

Scores on the SAT Verbal test in recent years follow approximately the N(505,110) dis-
tribution. How high must a student score in order to place in the top 10% of all stu-
dents taking the SAT?

Step 1: State the problem and draw a sketch. We want to find the SAT score x with area
0.1 to its right under the normal curve with mean � = 505 and standard deviation � =
110. That’s the same as finding the SAT score x with area 0.9 to its left. Figure 2.20
poses the question in graphical form.

EXAMPLE 2.10 SAT VERBAL SCORES

z = 1.28
x = ?

z = 0
x = 505

Area = 0.10
Area = 0.90

FIGURE 2.20 Locating the point on a normal curve with area 0.10 to its right.

Because Table A gives the areas to the left of z-values, always state the problem in
terms of the area to the left of x.

Step 2: Use the table. Look in the body of Table A for the entry closest to 0.9. It is
0.8997. This is the entry corresponding to z = 1.28. So z = 1.28 is the standardized
value with area 0.9 to its left.

Step 3: Unstandardize to transform the solution from the z back to the original x scale.
We know that the standardized value of the unknown x is z � 1.28. So x itself satisfies

Solving this equation for x gives

x − =505
110

1 28.
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x � 505 � (1.28)(110) � 645.8

This equation should make sense: it finds the x that lies 1.28 standard deviations above
the mean on this particular normal curve. That is the “unstandardized” meaning of z �
1.28. We see that a student must score at least 646 to place in the highest 10%.

EXERCISES
2.21 TABLE A PRACTICE Use Table A to find the proportion of observations from a stan-
dard normal distribution that satisfies each of the following statements. In each case,
sketch a standard normal curve and shade the area under the curve that is the answer
to the question.

(a) z � 2.85

(b) z � 2.85

(c) z � –1.66

(d) –1.66 � z � 2.85

2.22 MORE TABLE A PRACTICE Use Table A to find the value z of a standard normal vari-
able that satisfies each of the following conditions. (Use the value of z from Table A
that comes closest to satisfying the condition.) In each case, sketch a standard normal
curve with your value of z marked on the axis.

(a) The point z with 25% of the observations falling below it.

(b) The point z with 40% of the observations falling above it.

2.23 HEIGHTS OF AMERICAN MEN The distribution of heights of adult American men is
approximately normal with mean 69 inches and standard deviation 2.5 inches.

(a) What percent of men are at least 6 feet (72 inches) tall?

(b) What percent of men are between 5 feet (60 inches) and 6 feet tall?

(c) How tall must a man be to be in the tallest 10% of all adult men?

2.24 IQ TEST SCORES Scores on the Wechsler Adult Intelligence Scale (a standard “IQ
test”) for the 20 to 34 age group are approximately normally distributed with � � 110
and � � 25.

(a) What percent of people age 20 to 34 have IQ scores above 100?

(b) What percent have scores above 150?

(c) How high an IQ score is needed to be in the highest 25%?

2.25 HOW HARD DO LOCOMOTIVES PULL? An important measure of the performance of a
locomotive is its “adhesion,” which is the locomotive’s pulling force as a multiple of its
weight. The adhesion of one 4400-horsepower diesel locomotive model varies in actu-
al use according to a normal distribution with mean � � 0.37 and standard deviation
� � 0.04.

(a) What proportion of adhesions measured in use are higher than 0.40?



104 Chapter 2 The Normal Distributions

(b) What proportion of adhesions are between 0.40 and 0.50?

(c) Improvements in the locomotive’s computer controls change the distribution of
adhesion to a normal distribution with mean � � 0.41 and standard deviation � �
0.02. Find the proportions in (a) and (b) after this improvement.

Assessing normality
In the latter part of this course we will want to invoke various tests of significance
to try to answer questions that are important to us. These tests involve sampling
people or objects and inspecting them carefully to gain insights into the popula-
tions from which they come. Many of these procedures are based on the assump-
tion that the host population is approximately normally distributed. Consequently,
we need to develop methods for assessing normality.

Method 1 Construct a frequency histogram or a stemplot. See if the graph is
approximately bell-shaped and symmetric about the mean.

A histogram or stemplot can reveal distinctly nonnormal features of a dis-
tribution, such as outliers, pronounced skewness, or gaps and clusters. You can
improve the effectiveness of these plots for assessing whether a distribution is
normal by marking the points , � s, and � 2s on the x axis. This gives
the scale natural to normal distributions. Then compare the count of observa-
tions in each interval with the 68–95–99.7 rule.

xxx

The histogram in Figure 2.2 (page 78) suggests that the distribution of the 947 Gary
vocabulary scores is close to normal. It is hard to assess by eye how close to normal a
histogram is. Let’s use the 68–95–99.7 rule to check more closely. We enter the scores
into a statistical computing system and ask for the mean and standard deviation. The
computer replies,

MEAN = 6.8585

STDEV = 1.5952

Now that we know that = 6.8585 and s = 1.5952, we check the 68–95–99.7 rule by
finding the actual counts of Gary vocabulary scores in intervals of length s about the
mean . The computer will also do this for us. Here are the counts:x

x

EXAMPLE 2.11 ASSESSING NORMALITY OF THE GARY VOCABULARY SCORES

_
x – 3s

_
x – 2s

_
x – s

_
x

_
x + s

_
x + 2s

_
x + 3s

2.07

1 21 129 331 318 125 21 1

3.67 5.26 6.86 8.45 10.05 11.64

The distribution is very close to symmetric. It also follows the 68–95–99.7 rule closely:
there are 68.5% of the scores (649 out of 947) within one standard deviation of the
mean, 95.4% (903 of 947) within two standard deviations, and 99.8% (945 of the 947
scores) within three. These counts confirm that the normal distribution with � � 6.86
and � � 1.595 fits these data well.
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Smaller data sets rarely fit the 68–95–99.7 rule as well as the Gary vocabulary
scores. This is true even of observations taken from a larger population that really
has a normal distribution. There is more chance variation in small data sets.

Method 2 Construct a normal probability plot. A normal probability plot provides
a good assessment of the adequacy of the normal model for a set of data. Most
statistics utilities, including Minitab and Data Desk, can construct normal proba-
bility plots from entered data. The TI-83/89 will also do normal probability plots.
You will need to be able to produce a normal probability plot (either with a calcu-
lator or with computer software) and interpret it. We will do this part first, and then
we will describe the steps the calculator goes through to produce the plot.

normal probability plot

If you ran the program FLIP50 in Exercise 2.17, and you still have the data (100 numbers mostly in the
20s) in L1/list1, then use these data. If you have not entered the program and run it, take a few minutes
to do that now. Duplicate this example with your data. Here is the histogram that was generated at the
end of one run of this simulation on each calculator.

TECHNOLOGY TOOLBOX Normal probability plots on the TI-83/89

TI-83 TI-89

P1:L1

min=24
max<26 n=28

P1

min:24.
max:26. n=29.

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

MAIN RAD AUTO FUNC

Ask for one-variable statistics:

1-Var Stats
 x=25.04
 ∑x=2504
 ∑x2=63732
 Sx=3.228409246
 σx=3.212226642
 n=100

–6
3.2
–2
–1
5.
1.

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

rest1  list2  list3  list

list1 [1]=57
MAIN RAD AUTO FUNC 4/4

1-Var Stats…

=24.45
=2445.
=60525.
=3.40635624142
=3.38532146602
=100.
=14.
=22.

x
Σx
Σx2
Sx
σx
n
MinX
Q1X

Enter=OK

→

σ

1-Var Stats
 n=100
 minX=18
 Q1=23
 Med=25
 Q3=27
 maxX=33

–6
3.2
–2
–1
5.
1.

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

rest1  list2  list3  list

list1 [1]=57
MAIN RAD AUTO FUNC 4/4

1-Var Stats…

=3.3853216602
=100.
=14.
=22.
=24.
=27.
=32.
=1148.75

ox
n
MinX
Q1X
MedX
Q3X
MaxX
Σ(x–x)2
Enter=OK

→ σ

This will give us the following:

• Press STAT , choose CALC, then 1:1-Var
Stats and 2nd 1 (L1)

• In the Statistics/List Editor, press F4 (Calc)
and choose 1:1-Var Stats for list1.
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TECHNOLOGY TOOLBOX Normal probability plots (continued)

P3:L1

Med=25

.

.

.

.

.

Mark:

Plot3

Type:

Data List:L1
Data Axis:X Y

Off
Plot1
On

Plot2

–
3
–
–
5
13

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

ret1  list2  list3  list4

zscores[20]=–.85961736186…
USE ← AND → TO OPEN CHOICES

Norm Prob Plot…

Plot1→
list1
x→
Box→
statvars\z

Enter=OK ESC=CANCEL

Plot Number:
List:
Data Axis:
Mark:
Store Zscores to:

8
5
1
6
5
6

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

USE ↔   ↓ OR TYPE+[ESC]=CANCEL
Med:24.

P1

↓

• Comparing the means and medians ( � 25.04 vs. M � 25 on the TI-83 and � 24.45 vs. M � 24
on the TI-89) suggests that the distributions are fairly symmetric. Boxplots confirm the roughly symmet-
ric shape.

xx

• To construct a normal probability plot of the data, define Plot 1 like this:

• Use ZoomStat (ZoomData on the TI-89) to see the finished graph.

Interpretation: If the data distribution is close to a normal distribution, the plotted points will lie close to a
straight line. Conversely, nonnormal data will show a nonlinear trend. Outliers appear as points that are
far away from the overall pattern of the plot. Since the above plot is quite linear, our conclusion is that it
is reasonable to believe that the data are from a normal distribution.

P1:L1

X=18 Y=–2.575829

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

RAD AUTOMAIN FUNC

The next example uses a very simple data set to illustrate how a normal
probability plot is constructed.

To show how the calculator constructs a normal probability plot, let’s look at a very sim-
ple data set: {1,2,2,3}. Here, n � 4 and a dotplot shows that the distribution is perfectly
symmetric if not exactly bell-shaped.

EXAMPLE 2.12 HOW NORMAL PROBABILITY PLOTS ARE CONSTRUCTED
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1 2 3

0 0
0

0

1/4 1/2 3/4 1

Step 1: Order the observations from smallest to largest. In this case, the points are
already ordered. Since n � 4, divide the interval [0,1] on the horizontal axis into four
subintervals.

Mark the midpoint of each subinterval: 1/8, 3/8, 5/8, and 7/8. In the general case, we
would mark the points corresponding to 1/2n, 3/2n, 5/2n, . . ., (2n – 1)/2n.

Step 2: For the first midpoint, 1/8, find the z-value that has area 1/8 � 0.125 lying to
the left of it. The closest value in the body of the table is 0.1251, and the correspond-
ing z-value is –1.15. Do the same for the other midpoints. Here is a table of our results:

x Midpoint y

1 1/8 � 0.1250 –1.15
2 3/8 � 0.3750 –0.319
3 5/8 � 0.6250 0.319
4 7/8 � 0.8750 1.15

Step 3: Plot the points (x,y). This is the normal probability plot for our simple data set.

P1:L1

X=1 Y=–1.150349

If an outlier were added, say 10, then the table would look like this:

x Midpoint y

1 0.1 –1.28
2 0.3 –0.52
2 0.5 0
3 0.7 0.52
10 0.9 1.28

and the normal probability plot becomes
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Any normal distribution produces a straight line on the plot because stan-
dardizing is a transformation that can change the slope and intercept of the
line in our plot but cannot change a line into a curved pattern.

EXERCISES
2.26 CAVENDISH AND THE DENSITY OF THE EARTH Repeated careful measurements of the
same physical quantity often have a distribution that is close to normal. Here are Henry
Cavendish’s 29 measurements of the density of the earth, made in 1798. (The data give
the density of the earth as a multiple of the density of water.)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

(a) Construct a stemplot to show that the data are reasonably symmetric. 

(b) Now check how closely they follow the 68–95–99.7 rule. Find and s, then count the
number of observations that fall between – s and � s, between – 2s and � 2s,
and between – 3s and � 3s. Compare the percents of the 29 observations in each of
these intervals with the 68–95–99.7 rule.

(c) Use your calculator to construct a normal probability plot for Cavendish’s density
of the earth data, and write a brief statement about the normality of the data. Does the
normal probability plot reinforce your findings in (a)?

We expect that when we have only a few observations from a normal distribution,
the percents will show some deviation from 68, 95, and 99.7. Cavendish’s measure-
ments are in fact close to normal.

2.27 GREAT WHITE SHARKS Here are the lengths in feet of 44 great white sharks:

18.7 12.3 18.6 16.4 15.7 18.3 14.6 15.8 14.9 17.6 12.1
16.4 16.7 17.8 16.2 12.6 17.8 13.8 12.2 15.2 14.7 12.4
13.2 15.8 14.3 16.6 9.4 18.2 13.2 13.6 15.3 16.1 13.5
19.1 16.2 22.8 16.8 13.6 13.2 15.7 19.7 18.7 13.2 16.8

(a) Use the methods of Chapter 1 to describe the distribution of these lengths.

(b) Compare the mean with the median. Does this comparison support your assess-
ment of the shape of the distribution in (a)? Explain.

xx
xxxx

x

P1:L1

X=1 Y=–1.281552

This last picture shows a normal probability plot for a data set that is clearly not approx-
imately normally distributed.
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(c) Is the distribution approximately normal? If you haven’t done this already, enter
the data into your calculator, and reorder them from smallest to largest. Then calcu-
late the percent of the data that lies within one standard deviation of the mean.
Within two standard deviations of the mean. Within three standard deviations of the
mean.

(d) Use your calculator to construct a normal probability plot. Interpret this plot.

(e) Having inspected the data from several different perspectives, do you think these
data are approximately normal? Write a brief summary of your assessment that com-
bines your findings from (a) to (d).

To standardize any observation x, subtract the mean of the distribution and
then divide by the standard deviation. The resulting z-score

says how many standard deviations x lies from the distribution mean.
All normal distributions are the same when measurements are transformed

to the standardized scale. If x has the N(�, �) distribution, then the standard-
ized variable z � (x – �)/� has the standard normal distribution N(0, 1) with
mean 0 and standard deviation 1. Table A gives the proportions of standard
normal observations that are less than z for many values of z. By standardizing,
we can use Table A for any normal distribution.

In order to perform certain inference procedures in later chapters, we will
need to know that the data come from populations that are approximately nor-
mally distributed. To assess normality, one can observe the shape of histograms,
stemplots, and boxplots and see how well the data fit the 68–95–99.7 rule for
normal distributions. Another good method for assessing normality is to con-
struct a normal probability plot.

z
x= −�

�

SUMMARY

SECTION 2.2 EXERCISES
2.28 TABLE A PRACTICE Use Table A to find the proportion of observations from a stan-
dard normal distribution that falls in each of the following regions. In each case,
sketch a standard normal curve and shade the area representing the region.

(a) z � –2.25

(b) z � –2.25

(c) z � 1.77

(d) –2.25 � z � 1.77

2.29 MORE TABLE A PRACTICE Use Table A to find the value z of a standard normal vari-
able that satisfies each of the following conditions. (Use the value of z from Table A
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that comes closest to satisfying the condition.) In each case, sketch a standard normal
curve with your value of z marked on the axis.

(a) The point z with 70% of the observations falling below it.

(b) The point z with 85% of the observations falling above it.

(c) Find the number z such that the proportion of observations that are less than z is 0.8.

(d) Find the number z such that 90% of all observations are greater than z.

2.30 THE STOCK MARKET The annual rate of return on stock indexes (which combine
many individual stocks) is approximately normal. Since 1945, the Standard & Poor’s 500
Index has had a mean yearly return of 12%, with a standard deviation of 16.5%. Take
this normal distribution to be the distribution of yearly returns over a long period.

(a) In what range do the middle 95% of all yearly returns lie?

(b) The market is down for the year if the return on the index is less than zero. In
what proportion of years is the market down?

(c) In what proportion of years does the index gain 25% or more?

2.31 GESTATION PERIOD The length of human pregnancies from conception to birth
varies according to a distribution that is approximately normal with mean 266 days and
standard deviation 16 days.

(a) What percent of pregnancies last less than 240 days (that’s about 8 months)?

(b) What percent of pregnancies last between 240 and 270 days (roughly between 
8 months and 9 months)?

(c) How long do the longest 20% of pregnancies last?

2.32 ARE WE GETTING SMARTER? When the Stanford-Binet “IQ test” came into use in
1932, it was adjusted so that scores for each age group of children followed roughly
the normal distribution with mean � � 100 and standard deviation � � 15. The test
is readjusted from time to time to keep the mean at 100. If present-day American chil-
dren took the 1932 Stanford-Binet test, their mean score would be about 120. The rea-
sons for the increase in IQ over time are not known but probably include better child-
hood nutrition and more experience in taking tests.4

(a) IQ scores above 130 are often called “very superior.” What percent of children
had very superior scores in 1932?

(b) If present-day children took the 1932 test, what percent would have very superior
scores? (Assume that the standard deviation � � 15 does not change.)

2.33 QUARTILES The quartiles of any density curve are the points with area 0.25 and
0.75 to their left under the curve.

(a) What are the quartiles of a standard normal distribution?

(b) How many standard deviations away from the mean do the quartiles lie in any
normal distribution? What are the quartiles for the lengths of human pregnancies?
(Use the distribution in Exercise 2.31.)
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2.34 DECILES The deciles of any distribution are the points that mark off the lowest 10%
and the highest 10%. The deciles of a density curve are therefore the points with area
0.1 and 0.9 to their left under the curve.

(a) What are the deciles of the standard normal distribution?

(b) The heights of young women are approximately normal with mean 64.5 inches
and standard deviation 2.5 inches. What are the deciles of this distribution?

2.35 LACTIC ACID IN CHEESE The taste of mature cheese is related to the concentration
of lactic acid in the cheese. The concentrations of lactic acid in 30 samples of ched-
dar cheese are given in the Technology Toolbox on page 15.

(a) Enter the data into your calculator. Make a histogram and overlay a boxplot.
Sketch the results on your paper. Compare the mean with the median. Describe the
distribution of these data in a sentence.

(b) Calculate the percent of the data that lies within one, two, and three standard
deviations of the mean. 

(c) Use your calculator to construct a normal probability plot. Sketch this plot on
your paper.

(d) Having inspected the data from several different perspectives, do you think these
data are approximately normal? Write a brief statement of your assessment that com-
bines your findings from (a) to (c).

2.36 ARE THE PRESIDENTS’ AGES NORMAL? The histogram for the ages of the 43 presi-
dents was very symmetric (see Figure 1.7, page 20). Use the list that we named
PREZ to construct a normal probability plot for this data set, and confirm the lin-
ear trend. Write a statement about your assessment of normality of the presidents’
ages.

2.37 STANDARDIZED VALUES BY CALCULATOR This exercise uses the TI-83/89 to calculate
standardized values for a familiar data set and then calculates the mean and standard
deviation for these transformed values. Without knowing the data set, can you guess
the mean and standard deviation?

Set up your Statistics/List Editor so that the list PREZ (the presidents’ ages from
Exercise 2.36) is the first list:

• TI-83: Press STAT , choose 5:SetUpEditor, then press 2nd STAT (LIST), choose
PREZ, and press ENTER .

• TI-89: Press CATALOG  F3 (Flash Apps), choose setupEd(, then type prez) and
press ENTER .

In the Statistics/List Editor, move your cursor to the header of the next (blank) list
and name it STDSC (for standardized scores). With the name of this list highlighted,
define the list by carefully entering (PREZ-mean(PREZ))/stdDev(PREZ). The mean and
stdDev commands are found under the LIST/MATH menu.

Scroll through the list STDSC to verify that the values range from about –3 to 3.
Then construct a histogram of STDSC, and calculate one-variable statistics for
STDSC. What are the mean and standard deviation? 



CHAPTER REVIEW
Here is a review list of the most important skills you should have acquired from
your study of this chapter.

A. DENSITY CURVES

1. Know that areas under a density curve represent proportions of all observa-
tions and that the total area under a density curve is 1.

2. Approximately locate the median (equal-areas point) and the mean (bal-
ance point) on a density curve.

3. Know that the mean and median both lie at the center of a symmetric density
curve and that the mean moves farther toward the long tail of a skewed curve.

B. NORMAL DISTRIBUTIONS

1. Recognize the shape of normal curves and be able to estimate both the
mean and standard deviation from such a curve.

2. Use the 68–95–99.7 rule and symmetry to state what percent of the obser-
vations from a normal distribution fall between two points when both points lie
at the mean or one, two, or three standard deviations on either side of the
mean.

3. Find the standardized value (z-score) of an observation. Interpret z-scores
and understand that any normal distribution becomes standard normal N(0, 1)
when standardized.

4. Given that a variable has the normal distribution with a stated mean � and
standard deviation �, use Table A and your calculator to calculate the propor-
tion of values above a stated number, below a stated number, or between two
stated numbers.

5. Given that a variable has the normal distribution with a stated mean � and
standard deviation �, calculate the point having a stated proportion of all val-
ues above it. Also calculate the point having a stated proportion of all values
below it.

C. ASSESSING NORMALITY

1. Plot a histogram, stemplot, and/or boxplot to determine if a distribution is
bell-shaped.

2. Determine the proportion of observations within one, two, and three stan-
dard deviations of the mean, and compare with the 68–95–99.7 rule for nor-
mal distributions.

3. Construct and interpret normal probability plots. 
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2.38 A certain density curve consists of a straight-line segment that begins at the ori-
gin, (0, 0), and has slope 1.

(a) Sketch the density curve. What are the coordinates of the right endpoint of the seg-
ment? (Note: The right endpoint should be fixed so that the total area under the curve
is 1. This is required for a valid density curve.)

(b) Determine the median, the first quartile (Q1), and the third quartile (Q3).

(c) Relative to the median, where would you expect the mean of the distribution?

(d) What percent of the observations lie below 0.5? Above 1.5?

2.39 A certain density curve looks like an inverted letter “V.” The first segment goes from
the point (0, 0.6) to the point (0.5, 1.4). The second segment goes from (0.5, 1.4) to (1, 0.6).

(a) Sketch the curve. Verify that the area under the curve is 1, so that it is a valid den-
sity curve.

(b) Determine the median. Mark the median and the approximate locations of the
quartiles Q1 and Q3 on your sketch.

(c) What percent of the observations lie below 0.3?

(d) What percent of the observations lie between 0.3 and 0.7?

2.40 STANDARDIZED TEST SCORES AS PERCENTILES Joey received a report that he scored in
the 97th percentile on a national standardized reading test but in the 72nd percentile
on the math portion of the test. Explain to Joey’s grandmother, who knows no statis-
tics, what these numbers mean.

2.41 TABLE A PRACTICE Use Table A to find the proportion of observations from a stan-
dard normal distribution that falls in each of the following regions. In each case, sketch
a standard normal curve and shade the area representing the region.

(a) z � 1.28

(b) z � –0.42

(c) –0.42 � z � 1.28

(d) z � 0.42

2.42 WORKING BACKWARD, FINDING z-VALUES

(a) Find the number z such that the proportion of observations that are less than z in
a standard normal distribution is 0.98.

(b) Find the number z such that 22% of all observations from a standard normal dis-
tribution are greater than z.

2.43 QUARTILES FROM A NORMAL DISTRIBUTION Find the quartiles for the distribution of
blood cholesterol levels for 14-year-old boys (see Example 2.8, page 99). This distribu-
tion is N(170 mg/dl, 30 mg/dl).

CHAPTER 2 REVIEW EXERCISES
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2.44 ARE YOU A GOOD JUDGE OF PEOPLE? The Chapin Social Insight Test evaluates how
accurately the subject appraises other people. In the reference population used to
develop the test, scores are approximately normally distributed with mean 25 and stan-
dard deviation 5. The range of possible scores is 0 to 41.

(a) What proportion of the population has scores below 20 on the Chapin test?

(b) What proportion has scores below 10?

(c) What proportion has scores above 35?

(d) How high a score must you have in order to be in the top quarter of the popula-
tion in social insight?

2.45 IQ SCORES FOR CHILDREN The scores of a reference population on the Wechsler
Intelligence Scale for Children (WISC) are normally distributed with � =100 and
� =15. A school district classified children as “gifted” if their WISC score exceeds
135. There are 1300 sixth-graders in the school district. About how many of them
are gifted?

2.46 CULTURE SHOCK The Acculturation Rating Scale for Mexican Americans
(ARSMA) is a psychological test that measures the degree to which Mexican
Americans are adapted to Mexican/Spanish versus Anglo/English culture. The range
of possible scores is 1.0 to 5.0, with higher scores showing more Anglo/English accul-
turation. The distribution of ARSMA scores in a population used to develop the test is
approximately normal with mean 3.0 and standard deviation 0.8. A researcher believes
that Mexicans will have an average score near 1.7 and that first-generation Mexican
Americans will average about 2.1 on the ARSMA scale. What proportion of the popu-
lation used to develop the test has scores below 1.7? Between 1.7 and 2.1?

2.47 HELMET SIZES The army reports that the distribution of head circumference
among soldiers is approximately normal with mean 22.8 inches and standard deviation
1.1 inches. Helmets are mass-produced for all except the smallest 5% and the largest
5% of head sizes. Soldiers in the smallest or largest 5% get custom-made helmets. What
head sizes get custom-made helmets?

2.48 ADAPTING CULTURALLY The ARSMA test is described in Exercise 2.46. How high a
score on this test must a Mexican American obtain to be among the 30% of the pop-
ulation used to develop the test who are most Anglo/English in cultural orientation?
What scores make up the 30% who are most Mexican/Spanish in their acculturation?

2.49 PROFESSOR MOORE’S DRIVING TIMES Exercise 1.29 (page 36) shows driving times
between home and college for Professor Moore.

(a) Make a histogram of these drive times. Is the distribution roughly symmetric,
clearly skewed, or neither? Are there any clear outliers?

(b) The data show three unusual situations: the day after Thanksgiving (no traffic on
campus); a delay due to an accident; and a day with icy roads. Identify and remove
these three observations. Are the remaining observations reasonably close to having a
normal distribution? Write a short statement that describes your analyses and your
conclusions.
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2.50 CORN-FED CHICKS Exercise 1.57 (page 63) presents data on the weight gains of
chicks fed two types of corn. The researchers use and s to summarize each of the
two distributions. Make a normal probability plot for each group and report your find-
ings. Is the use of and s justified?x

x

The TI-83/89 can be used to find the area to the left or right of a point or above an interval without refer-
ring to a standard normal table. Consider the WISC scores for children of Exercise 2.45. This distribu-
tion is N(100, 15). Suppose we want to find the percent of children whose WISC scores are above 125.
Begin by specifying a viewing window as follows: X[55, 145]15 and Y[–0.008, 0.028].01. You will generally
need to experiment with the y settings to get a good graph.

TECHNOLOGY TOOLBOX Finding areas with ShadeNorm 

Area=.04779
 low=125 UP=1E99

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

MAIN RAD APPROX FUNC

Area=.04779
low=125.

Area=.04779
up=1.E99

TI-83
• Press 2nd  VARS (DISTR), then choose
DRAW and 1:ShadeNorm(. 
• Complete the command ShadeNorm
(125,1E99,100,15) and press ENTER .

TI-89
• Press CATALOG  F3 (Flash Apps) and choose
shadNorm(. 
• Complete the command tistat.shadNorm
(125,1E99,100,15) and press ENTER.

You must always specify an interval. An area in the right tail of the distribution would theoretical-
ly be the interval (125, ∞). The calculator limitation dictates that we use a number that is at least
5 or 10 standard deviations to the right of the mean. To find the area to the left of 85, you would
specify ShadeNorm(–1E99,85,100,15). Or we could specify ShadeNorm(0,85,100,15) since
WISC scores can’t be negative. Both yield at least four-decimal-place accuracy. If you’re using
standard normal values, then you need only specify the endpoints of the interval; the mean 0 and
standard deviation1 will be understood. For example, use ShadeNorm(1,2) to find the area above
the interval z � 1 to z � 2.

2.51 MADE IN THE SHADE Use the calculator’s ShadeNorm feature to find the following
areas correct to four-decimal-place accuracy. Then write your findings in a sentence.

(a) The relative frequency of scores greater than 110.

(b) The relative frequency of scores lower than 85.

(c) Show two ways to find the relative frequency of scores within two standard devia-
tions of the mean.
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TECHNOLOGY TOOLBOX Finding areas with normalcdf 

TI-83
• Press 2nd  VARS (DISTR) and choose 2:nor-
malcdf(.
• Complete the command normal-
cdf(125, 1E99,100,15) and press
ENTER .

TI-89
• Press CATALOG  F3 (Flash Apps) and choose
normCdf(.
• Complete the command tistat.normCdf
(125,1E99,100,15) and press ENTER.

normalcdf(125,1E99,
100,15)
       .0477903304

F1
 Tools

F2
Algebra

F3
Ca1c

F4
Other

F5
PrgmIO

F6
Clean Up

MAIN

tistat.normcdf(125,1.E99  
.04779033036

RAD APPROX FUNC 1/30
…normCdf(125,1E99,100,15)

We can say that about 5% of the WISC scores are above 125. If the normal values have already been
standardized, then you need only specify the left and right endpoints of the interval. For example, nor-
malcdf(–1,1) returns 0.6827, meaning that the area from z � –1 to z � 1 is approximately 0.6827,
correct to four decimal places.

2.52 AREAS BY CALCULATOR Use the calculator’s normalcdf function to verify your
answers to Exercises  2.41 (page 113), and 2.46 (page 114). 

2.53 IQ SCORES FOR ADULTS Wechsler Adult Intelligence Scale (WAIS) scores for young
adults are N(110, 25). Use your calculator to show that the area under the entire curve
is equal to 1. Note that you can’t specify the interval (– ∞, �∞), so you’ll have to decide
on some endpoints that are far enough from the center (110) of the distribution to give
at least four-decimal-place accuracy. Record the interval that you use and the area that
the calculator reports. Will it suffice to go out four standard deviations on either side
of the center? Five standard deviations?

2.54 Use the calculator’s invNorm function to verify your answers to Exercises 2.42
(page 113) and 2.47 (page 114). Use the method described in the Technology Toolbox
on page 117.

The normalcdf command on the TI-83/89 can be used to find the area under a normal distribution and
above an interval. This method has the advantage over ShadeNorm of being quicker to do, and the dis-
advantage of not providing a picture of the area it is finding. Here are the keystrokes for the WISC scores
of Exercise 2.45:
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The TI-83/89 invNorm function calculates the raw or standardized normal value corresponding to a
known area under a normal distribution or a relative frequency. The following example uses the WISC
scores, which have a N(100, 15) distribution. Here are the keystrokes:

TECHNOLOGY TOOLBOX Finding z-values with invNorm

TI-83 
• Press 2nd  VARS (DISTR), then choose
3:invNorm(. 
• Complete the command invNorm(.9,
100,15) and press ENTER . Compare this with
the command invNorm(.9).

TI-89 
• Press CATALOG F3 (Flash Apps) and choose
invNorm(. 
• Complete the command
tistat.invNorm (.9,100,15) and
press ENTER. Compare this with the command
invNorm(.9).

The first command finds that the raw WISC score that has 90% of the scores below it from the N(100,
15) distribution is x = 119. The second command says that the standardized WISC score that has 90%
of the scores below it is z = 1.28.

F1
 Tools

F2
Algebra

F3
Ca1c

F4
Other

F5
PrgmIO

F6
Clean Up

MAIN

tistat.invnorm(.9)100,15)
1.28155

RAD APPROX FUNC 2/30
TIStat.invNorm(.9)

tistat.invnorm(.9,100,15)
119.223

invNorm(.9,100,15)
      119.2232735

invNorm(.9)100,15)
      1.281551567

1. Data from Gary Community School Corporation, courtesy of Celeste Foster,
Department of Education, Purdue University.
2. Data from Stephen Jay Gould, “Entropic homogeneity isn’t why no one hits 400
anymore,” Discover, August 1986, pp. 60–66. Gould does not standardize but gives a
speculative discussion instead. 
3. Detailed data appear in P. S. Levy et al., “Total serum cholesterol values for
youths 12–17 years,” Vital and Health Statistics Series 11, No. 150 (1975), U.S.
National Center for Health Statistics.
4. Ulric Neisser, “Rising scores on intelligence tests,” American Scientist,
September–October 1997, online edition.

NOTES AND DATA SOURCES
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SIR FRANCIS GALTON

Correlation, Regression, and Heredity
The least-squares method will happily fit a straight line to
any two-variable data. It is an old method, going back to the
French mathematician Legendre in about 1805. Legendre
invented least squares for use on data from astronomy and

surveying. It was Sir Francis Galton (1822–1911), however, who
turned “regression” into a general method for understanding relationships. He
even invented the word. While he was at it, he also invented “correlation,”
both the word and the definition of r.

Galton was one of the last gentleman scientists, an upper-class
Englishman who studied medicine at Cambridge and explored Africa before
turning to the study of heredity. He was well connected here also: Charles
Darwin, who published The Origin of Species in 1859, was his cousin.

Galton was full of ideas but was no mathematician. He didn’t even use
least squares, preferring to avoid unpleasant computations. But Galton was the
first to apply regression ideas to biological and psychological data. He asked:
If people’s heights are distributed normally in every
generation, and height is inherited, what is the rela-
tionship between generations? He discovered a
straight-line relationship between the heights of parent
and child and found that tall parents tended to have
children who were taller than average but less tall than
their parents. He called this “regression toward medi-
ocrity.” The name “regression” came to be applied to
the statistical method.

Galton was full of
ideas but was no
mathematician. He
didn’t even use least
squares, preferring to
avoid unpleasant 
computations.
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ACTIVITY 3 SAT/ACT Scores

Materials: Pencil, grid paper
Is there an association between SAT Math scores and SAT Verbal scores? If
a student performs well on the Math part of the SAT exam, will he or she
do well on the Verbal part, too? If a student performs well on one part, does
that suggest that the student will not do as well on the other? Is it rare or
fairly common for students to score about the same on both parts of the
SAT? In this activity you will collect, anonymously of course, the SAT Math
and SAT Verbal scores for each member of the class who has taken the SAT
exam. You will then plot these data and inspect the graph to see if a pattern
is evident. If your school is in a state where the ACT exam is the principal
college placement test, then use ACT scores.

1. Begin by writing your Math score and Verbal score on an index card or
similar uniform “ballot.” Label your Math score M, and your Verbal score
V. A selected student should collect the folded index cards in a box or other
container. When all of the index cards have been placed in the box, mix
them without looking, so that each student’s privacy is protected.

If the size of your class is “small,” then you may need to supplement
your data with the scores of students in other classes. Perhaps your teacher
can request that scores from other AP classes be provided to make a larger
data set. Try to obtain data from at least 25 or 30 students.

2. The scores should be called out by the student who collects the data
and recorded on the blackboard as ordered pairs in the form (Math,
Verbal).

3. Each student should construct a plot of the data with pencil and paper.
Since the Math scores appear first in the ordered pairs, label your horizon-
tal axis “Math” and label the vertical axis “Verbal.” Determine the range of
the Math scores and the range of the Verbal scores, and then construct
scales for both axes. Note that axes don’t have to intersect at the point (0,0),
but the scales on both axes should be uniform.

4. When you finish constructing your graph, look to see if there is any 
discernible pattern. If so, can you describe the pattern? Does the graph pro-
vide any insight into a possible association between SAT Math and SAT
Verbal scores?

We will return to analyze these data in more detail after we develop
some methodology.



INTRODUCTION
Most statistical studies involve more than one variable. Sometimes we want to
compare the distributions of the same variable for several groups. For example,
we might compare the distributions of SAT scores among students at several
colleges. Side-by-side boxplots, stemplots, or histograms make the comparison
visible. In this chapter, however, we concentrate on relationships among 
several variables for the same group of individuals. For example, Table 1.15
(page 71) records seven variables that describe education in the United States.
We have already examined some of these variables one at a time. Now we
might ask how SAT Mathematics scores are related to SAT Verbal scores or to
the percent of a state’s high school seniors who take the SAT or to what region
a state is in.

When you examine the relationship between two or more variables, first
ask the preliminary questions that are familiar from Chapters 1 and 2.

• What individuals do the data describe?

• What exactly are the variables? How are they measured?

• Are all the variables quantitative or is at least one a categorical variable?

We have concentrated on quantitative variables until now. When we have data
on several variables, however, categorical variables are often present and help
organize the data. Categorical variables will play a larger role in the next chap-
ter. There is one more question you should ask when you are interested in rela-
tions among several variables:

• Do you want simply to explore the nature of the relationship, or do you
think that some of the variables explain or even cause changes in others? That
is, are some of the variables response variables and others explanatory variables?
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RESPONSE VARIABLE, EXPLANATORY VARIABLE

A response variable measures an outcome of a study. An explanatory 
variable attempts to explain the observed outcomes.

You will often find explanatory variables called independent variables,
and response variables called dependent variables. The idea behind this lan-
guage is that the response variable depends on the explanatory variable.
Because the words “independent” and “dependent” have other, unrelated
meanings in statistics, we won’t use them here.

It is easiest to identify explanatory and response variables when we actually
set values of one variable in order to see how it affects another variable.

independent variable 
dependent variable 



In Example 3.1 alcohol actually causes a change in body temperature. There
is no cause-and-effect relationship between SAT Math and Verbal scores in
Example 3.2. Because the scores are closely related, we can nonetheless use a
state’s SAT Verbal score to predict its Math score. We will learn how to do the
prediction in Section 3.3. Prediction requires that we identify an explanatory
variable and a response variable. Some other statistical techniques ignore this dis-
tinction. Do remember that calling one variable explanatory and the other
response doesn’t necessarily mean that changes in one cause changes in the other.

The statistical techniques used to study relations among variables are more
complex than the one-variable methods in Chapters 1 and 2. Fortunately,
analysis of several-variable data builds on the tools used for examining individ-
ual variables. The principles that guide examination of data are also the same:

• First plot the data, then add numerical summaries.

• Look for overall patterns and deviations from those patterns.

• When the overall pattern is quite regular, use a compact mathematical
model to describe it.

EXERCISES

3.1 EXPLANATORY AND RESPONSE VARIABLES In each of the following situations, is it more
reasonable to simply explore the relationship between the two variables or to view one
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Alcohol has many effects on the body. One effect is a drop in body temperature. To
study this effect, researchers give several different amounts of alcohol to mice, then
measure the change in each mouse’s body temperature in the 15 minutes after taking
the alcohol. Amount of alcohol is the explanatory variable, and change in body tem-
perature is the response variable.

EXAMPLE 3.1 EFFECT OF ALCOHOL ON BODY TEMPERATURE

Jim wants to know how the median SAT Math and Verbal scores in the 51 states
(including the District of Columbia) are related to each other. He doesn’t think that
either score explains or causes the other. Jim has two related variables, and neither is
an explanatory variable.

Julie looks at some data. She asks, “Can I predict a state’s median SAT Math score
if I know its median SAT Verbal score?” Julie is treating the Verbal score as the explana-
tory variable and the Math score as the response variable.

EXAMPLE 3.2 ARE SAT MATH AND VERBAL SCORES LINKED?

When you don’t set the values of either variable but just observe both vari-
ables, there may or may not be explanatory and response variables. Whether
there are depends on how you plan to use the data.



of the variables as an explanatory variable and the other as a response variable? In the
latter case, which is the explanatory variable and which is the response variable?

(a) The amount of time a student spends studying for a statistics exam and the grade
on the exam

(b) The weight and height of a person

(c) The amount of yearly rainfall and the yield of a crop

(d) A student’s grades in statistics and in French

(e) The occupational class of a father and of a son

3.2 QUANTITATIVE AND CATEGORICAL VARIABLES How well does a child’s height at age 6 pre-
dict height at age 16? To find out, measure the heights of a large group of children at
age 6, wait until they reach age 16, then measure their heights again. What are the
explanatory and response variables here? Are these variables categorical or quantitative?

3.3 GENDER GAP There may be a “gender gap” in political party preference in the
United States, with women more likely than men to prefer Democratic candidates. A
political scientist selects a large sample of registered voters, both men and women.
She asks each voter whether they voted for the Democratic or for the Republican can-
didate in the last congressional election. What are the explanatory and response vari-
ables in this study? Are they categorical or quantitative variables?

3.4 TREATING BREAST CANCER The most common treatment for breast cancer was once
removal of the breast. It is now usual to remove only the tumor and nearby lymph nodes,
followed by radiation. The change in policy was due to a large medical experiment that
compared the two treatments. Some breast cancer patients, chosen at random, were
given each treatment. The patients were closely followed to see how long they lived fol-
lowing surgery. What are the explanatory and response variables? Are they categorical or
quantitative?

3.5 What are the variables in Activity 3 (page 120)? Is there an explanatory/response
relationship? If so, which is the explanatory variable and which is the response vari-
able? Are the variables quantitative or categorical?

3.1 SCATTERPLOTS
The most effective way to display the relation between two quantitative vari-
ables is a scatterplot. Here is an example of a scatterplot.
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Some people use average SAT scores to rank state or local school systems. This is not
proper, because the percent of high school students who take the SAT varies from
place to place. Let us examine the relationship between the percent of a state’s high
school graduates who take the exam and the state average SAT Mathematics score,
using data from Table 1.15 on page 70.

We think that “percent taking” will help explain “average score.” Therefore, “per-
cent taking” is the explanatory variable and “average score” is the response variable.

EXAMPLE 3.3 STATE SAT SCORES



Always plot the explanatory variable, if there is one, on the horizontal axis
(the x axis) of a scatterplot. As a reminder, we usually call the explanatory vari-
able x and the response variable y. If there is no explanatory-response distinc-
tion, either variable can go on the horizontal axis.
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We want to see how average score changes when percent taking changes, so we put
percent taking (the explanatory variable) on the horizontal axis. Figure 3.1 is the scat-
terplot. Each point represents a single state. In Alabama, for example, 9% take the
SAT, and the average SAT Math score is 555. Find 9 on the x (horizontal) axis and 555
on the y (vertical) axis. Alabama appears as the point (9, 555) above 9 and to the right
of 555. Figure 3.1 shows how to locate Alabama’s point on the plot.

SCATTERPLOT

A scatterplot shows the relationship between two quantitative variables
measured on the same individuals. The values of one variable appear on
the horizontal axis, and the values of the other variable appear on the 
vertical axis. Each individual in the data appears as the point in the plot
fixed by the values of both variables for that individual.
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FIGURE 3.1 Scatterplot of the average SAT Math score in each state against the percent of that
state’s high school graduates who take the SAT, from Table 1.15. The dotted lines intersect at the
point (9, 555), the data for Alabama.



EXERCISES
3.6 THE ENDANGERED MANATEE Manatees are large, gentle sea creatures that live along
the Florida coast. Many manatees are killed or injured by powerboats. Here are data
on powerboat registrations (in thousands) and the number of manatees killed by boats
in Florida in the years 1977 to 1990:

Powerboat Manatees Powerboat Manatees
Year registrations (1000) killed Year registrations (1000) killed

1977 447 13 1984 559 34
1978 460 21 1985 585 33
1979 481 24 1986 614 33
1980 498 16 1987 645 39
1981 513 24 1988 675 43
1982 512 20 1989 711 50
1983 526 15 1990 719 47

(a) We want to examine the relationship between number of powerboats and number
of manatees killed by boats. Which is the explanatory variable?

(b) Make a scatterplot of these data. (Be sure to label the axes with the variable names,
not just x and y.) What does the scatterplot show about the relationship between these
variables?

3.7 ARE JET SKIS DANGEROUS? Propelled by a stream of pressurized water, jet skis and
other so-called wet bikes carry from one to three people, retail for an average price
of $5,700, and have become one of the most popular types of recreational vehicle
sold today. But critics say that they’re noisy, dangerous, and damaging to the envi-
ronment. An article in the August 1997 issue of the Journal of the American
Medical Association reported on a survey that tracked emergency room visits at
randomly selected hospitals nationwide. Here are data on the number of jet skis in
use, the number of accidents, and the number of fatalities for the years
1987–1996:1

Year Number in use Accidents Fatalities

1987 92,756 376 5
1988 126,881 650 20
1989 178,510 844 20
1990 241,376 1,162 28
1991 305,915 1,513 26
1992 372,283 1,650 34
1993 454,545 2,236 35
1994 600,000 3,002 56
1995 760,000 4,028 68
1996 900,000 4,010 55
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(a) We want to examine the relationship between the number of jet skis in use and the
number of accidents. Which is the explanatory variable?

(b) Make a scatterplot of these data. (Be sure to label the axes with the variable names,
not just x and y.) What does the scatterplot show about the relationship between these
variables?

3.8 Make a scatterplot of the (Math SAT/ACT score, Verbal SAT/ACT score) data
from Activity 3, if you haven’t done so already. Does the scatterplot describe a strong
association, a moderate association, a weak association, or no association between these
variables?

Interpreting scatterplots
To interpret a scatterplot, apply the strategies of data analysis learned in
Chapters 1 and 2.
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EXAMINING A SCATTERPLOT

In any graph of data, look for the overall pattern and for striking 
deviations from that pattern.

You can describe the overall pattern of a scatterplot by the form, 
direction, and strength of the relationship.

An important kind of deviation is an outlier, an individual value that falls
outside the overall pattern of the relationship.

Figure 3.1 shows a clear form: there are two distinct clusters of states with
a gap between them. In the cluster at the right of the plot, 45% or more of high
school graduates take the SAT, and the average scores are low. The states in the
cluster at the left have higher SAT scores and lower percents of graduates tak-
ing the test. There are no clear outliers. That is, no points fall clearly outside
the clusters.

What explains the clusters? There are two widely used college entrance
exams, the SAT and the American College Testing (ACT) exam. Each state
favors one or the other. The left cluster in Figure 3.1 contains the ACT states,
and the SAT states make up the right cluster. In ACT states, most students who
take the SAT are applying to a selective college that requires SAT scores. This
select group of students has a higher average score than the much larger group
of students who take the SAT in SAT states.

The relationship in Figure 3.1 also has a clear direction: states in which a
higher percent of students take the SAT tend to have lower average scores. This
is a negative association between the two variables.

clusters



The strength of a relationship in a scatterplot is determined by how closely the
points follow a clear form. The overall relationship in Figure 3.1 is not strong—
states with similar percents taking the SAT show quite a bit of scatter in their aver-
age scores. Here is an example of a stronger relationship with a clearer form.

3.1 Scatterplots 127

POSITIVE ASSOCIATION, NEGATIVE ASSOCIATION

Two variables are positively associated when above-average values of one
tend to accompany above-average values of the other and below-average
values also tend to occur together.

Two variables are negatively associated when above-average values of one
tend to accompany below-average values of the other, and vice versa.

The Sanchez household is about to install solar panels to reduce the cost of heating their
house. In order to know how much the solar panels help, they record their consumption
of natural gas before the panels are installed. Gas consumption is higher in cold weather,
so the relationship between outside temperature and gas consumption is important.

Table 3.1 gives data for 16 months. The response variable y is the average amount
of natural gas consumed each day during the month, in hundreds of cubic feet. The
explanatory variable x is the average number of heating degree-days each day during
the month. (Heating degree-days are the usual measure of demand for heating. One
degree-day is accumulated for each degree a day’s average temperature falls below 65°
F. An average temperature of 20° F, for example, corresponds to 45 degree-days.)

EXAMPLE 3.4 HEATING DEGREE-DAYS

TABLE 3.1 Average degree-days and natural gas consumption for the Sanchez household

Gas Gas
Month Degree-days (100 cu. ft.) Month Degree-days (100 cu. ft.)

Nov. 24 6.3 July 0 1.2 
Dec. 51 10.9 Aug. 1 1.2 
Jan. 43 8.9 Sept. 6 2.1
Feb. 33 7.5 Oct. 12 3.1
Mar. 26 5.3 Nov. 30 6.4
Apr. 13 4.0 Dec. 32 7.2
May 4 1.7 Jan. 52 11.0
June 0 1.2 Feb. 30 6.9

Source: Data provided by Robert Dale, Purdue University.

linear
The scatterplot in Figure 3.2 shows a strong positive association. More degree-days

means colder weather and so more gas consumed. The form of the relationship is linear.
That is, the points lie in a straight-line pattern. It is a strong relationship because the points



Of course, not all relationships are linear in form. What is more, not all
relationships have a clear direction that we can describe as positive association
or negative association. Exercise 3.11 gives an example that is not linear and
has no clear direction.

Tips for drawing scatterplots

1. Scale the horizontal and vertical axes. The intervals must be uniform;
that is, the distance between tick marks must be the same. If the scale does
not begin at zero at the origin, then use the symbol shown to indicate a
break.

2. Label both axes.

3. If you are given a grid, try to adopt a scale so that your plot uses the whole
grid. Make your plot large enough so that the details can be easily seen. Don’t
compress the plot into one corner of the grid.
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FIGURE 3.2 Scatterplot of the average amount of natural gas used per day by the Sanchez house-
hold in 16 months against the average number of heating degree-days per day in those months,
from Table 3.1.

lie close to a line, with little scatter. If we know how cold a month is, we can predict gas
consumption quite accurately from the scatterplot. That strong relationships make accu-
rate predictions possible is an important point that we will soon discuss in more detail.



EXERCISES
3.9 MORE ON THE ENDANGERED MANATEE In Exercise 3.6 (page 125) you made a scatter-
plot of powerboats registered in Florida and manatees killed by boats.

(a) Describe the direction of the relationship. Are the variables positively or negatively
associated?

(b) Describe the form of the relationship. Is it linear?

(c) Describe the strength of the relationship. Can the number of manatees killed be
predicted accurately from powerboat registrations? If powerboat registrations remained
constant at 719,000, about how many manatees would be killed by boats each year?

3.10 MORE JET SKIS In Exercise 3.7 (page 125) you made a scatterplot of jet skis in use
and number of accidents.

(a) Describe the direction of the relationship. Are the variables positively or negatively
associated?

(b) Describe the form of the association. Is it linear?

3.11 DOES FAST DRIVING WASTE FUEL? How does the fuel consumption of a car change
as its speed increases? Here are data for a British Ford Escort. Speed is measured in
kilometers per hour, and fuel consumption is measured in liters of gasoline used per
100 kilometers traveled.2

Speed (km/h) Fuel used (liters/100 km) Speed (km/h) Fuel used (liters/100 km)

10 21.00 90 7.57
20 13.00 100 8.27
30 10.00 110 9.03
40 8.00 120 9.87
50 7.00 130 10.79 
60 5.90 140 11.77 
70 6.30 150 12.83 
80 6.95 
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(a) Make a scatterplot. (Which is the explanatory variable?)

(b) Describe the form of the relationship. Why is it not linear? Explain why the form
of the relationship makes sense.

(c) It does not make sense to describe the variables as either positively associated or
negatively associated. Why?

(d) Is the relationship reasonably strong or quite weak? Explain your answer.

Adding categorical variables to scatterplots
The South has long lagged behind the rest of the United States in the perfor-
mance of its schools. Efforts to improve education have reduced the gap. We
wonder if the South stands out in our study of state average SAT scores.
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Figure 3.3 enhances the scatterplot in Figure 3.1 by plotting the southern states with
plus signs. (We took the South to be the states in the East South Central and South
Atlantic regions.) Most of the southern states blend in with the rest of the country.
Several southern states do lie at the lower edges of their clusters, along with the District
of Columbia, which is a city rather than a state. Georgia, South Carolina, and West
Virginia have lower SAT scores than we would expect from the percent of their high
school graduates who take the examination.

EXAMPLE 3.5 IS THE SOUTH DIFFERENT?

FIGURE 3.3 Average SAT Math score and percent of high school graduates who take the test, by
state, with the southern states highlighted.

Dividing the states into “southern” and “nonsouthern” introduces a third variable
into the scatterplot. This is a categorical variable that has only two values. The two val-
ues are displayed by the two different plotting symbols. Use different colors or symbols to
plot points when you want to add a categorical variable to a scatterplot.3



Our gas consumption example suffers from a common problem in drawing
scatterplots that you may not notice when a computer does the work. When sev-
eral individuals have exactly the same data, they occupy the same point on the
scatterplot. Look at June and July in Table 3.1. Table 3.1 contains data for 16
months, but there are only 15 points in Figure 3.2. June and July both occupy
the same point. You can use a different plotting symbol to call attention to points
that stand for more than one individual. Some computer software does this
automatically, but some does not. We recommend that you do use a different
symbol for repeated observations when you plot a small number of observations
by hand.
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After the Sanchez household gathered the information recorded in Table 3.1 and
Figure 3.2 (pages 127 and 128), they added solar panels to their house. They then
measured their natural gas consumption for 23 more months. To see how the solar
panels affected gas consumption, add the degree-days and gas consumption for these
months to the scatterplot. Figure 3.4 is the result. We use different symbols to dis-
tinguish before from after. The “after” data form a linear pattern that is close to the
“before” pattern in warm months (few degree-days). In colder months, with more
degree-days, gas consumption after installing the solar panels is less than in similar
months before the panels were added. The scatterplot shows the energy savings from
the panels.

EXAMPLE 3.6 DO SOLAR PANELS REDUCE GAS USAGE?
A
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FIGURE 3.4 Natural gas consumption against degree-days for the Sanchez household. The observations
indicated by filled circles are for 16 months before installing solar panels. The observations indicated by
open circles are for 23 months with the panels in use.



EXERCISES
3.12 DO HEAVIER PEOPLE BURN MORE ENERGY? Metabolic rate, the rate at which the body
consumes energy, is important in studies of weight gain, dieting, and exercise. Table
3.2 gives data on the lean body mass and resting metabolic rate for 12 women and 7
men who are subjects in a study of dieting. Lean body mass, given in kilograms, is a
person’s weight leaving out all fat. Metabolic rate is measured in calories burned per
24 hours, the same calories used to describe the energy content of foods. The
researchers believe that lean body mass is an important influence on metabolic rate.

TABLE 3.2 Lean body mass and metabolic rate

Subject Sex Mass (kg) Rate (cal) Subject Sex Mass (kg) Rate (cal)

1 M 62.0 1792 11 F 40.3 1189
2 M 62.9 1666 12 F 33.1 913 
3 F 36.1 995 13 M 51.9 1460 
4 F 54.6 1425 14 F 42.4 1124 
5 F 48.5 1396 15 F 34.5 1052 
6 F 42.0 1418 16 F 51.1 1347 
7 M 47.4 1362 17 F 41.2 1204 
8 F 50.6 1502 18 M 51.9 1867 
9 F 42.0 1256 19 M 46.9 1439 
10 M 48.7 1614

(a) Make a scatterplot of the data for the female subjects. Which is the explanatory
variable?

(b) Is the association between these variables positive or negative? What is the form of
the relationship? How strong is the relationship?

(c) Now add the data for the male subjects to your graph, using a different color or a dif-
ferent plotting symbol. Does the pattern of relationship that you observed in (b) hold for
men also? How do the male subjects as a group differ from the female subjects as a group?
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We will use the gas consumption data from Example 3.4 to show how to construct a scatterplot on the
TI-83/89.
• Begin by entering the degree-days data and assigning the values to a list named DEGDA, as
shown. Then press ENTER .

TECHNOLOGY TOOLBOX Making a calculator scatterplot

{24,51,43,33,26,
13,4,0,0,1,6,12,
30,32,52,30}→DEG
DA

1/30

F1
 Tools

F2
Algebra

F3
Ca1c

F4
Other

F5
PrgmID

F6
Clean Up

MAIN RAD APPROX FUNC

{24  51   43  33 26  13
{24.  51.  43.  33.  26

…,6,12,30,32,52,30)→degda

TI-83 TI-89
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• Then enter the gas consumption data and assign them to the list GAS. Press ENTER .

TECHNOLOGY TOOLBOX Making a calculator scatterplot (continued)

{6.3,10.9,8.9,7.
5,5.3,4.0,1.7,1.
2,1.2,1.2,2.1,3.
1,6.4,7.2,11.0,6
.9} →GAS

1/30

F1
 Tools

F2
Algebra

F3
Ca1c

F4
Other

F5
PrgmID

F6
Clean Up

MAIN aRAD APPROX FUNC
….1,6.4,7.2,11.0,6.9}→gas

• These two lists are now saved in the calculator for later use. To make things easier, let’s transfer
the DEGDA data into list1 (L1 on the TI-83) and the GAS data into list2. The named lists can be
found in the LIST menu on the TI-83 and in the VAR-LINK menu on the TI-89.

LDEGDA→L1:LGAS→L2.
 {6.3 10.9 8.9 7…

F1
 Tools

F2
Algebra

F3
Ca1c

F4
Other

F5
PrgmID

F6
Clean Up

MAIN RAD APPROX FUNC 1/30
degda→list1:gas→list2→

degda  list1 : gas  list2
{6.3 10.9 8.9 7.5 5

→→

• You can verify that the two lists of data are now in L1/list1 and L2/list2 in the Statistics/List Editor.

L1

L1(1)=24

24
51
43
33
26
13
4

L2
6.3
10.9
8.9
7.5
5.3
4
1.7

L3    1

24.
51.
43.
33.
26.
13.

6.3
10.9
8.9
7.5
5.3
4.

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F7
Ints

list1  list2

list2[1]=6.3
MAIN RAD APPROX FUNC 2/2

• Next, define a scatterplot in the statistics plot menu (press F2 on the TI-89). Specify the set-
tings shown.

Mark:

Plot3

Type:

Xlist:L1
Ylist:L2

Off
Plot1
On

Plot2

+

40
42
46
49
73

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

list1  list2  list3  list4

list1 [1]=57
USE ← AND → TO OPEN CHOICES

Define Plot1

Scatter→
Box→
list1
list2
s 

<:

Enter=OK ESC=CANCEL

Plot Type
Mark
x
y
Hist.Bucket Width
Use Freq and Categories? NO→
Freq
Category
Include Categories



3.13 SCATTERPLOT BY CALCULATOR, I Rework Exercise 3.11 (page 129) using your calcula-
tor. The command seq(10X,X,1,15)→SPEED will create a list named SPEED
and assign the numbers 10, 20, . . ., 150 to the list. (Note that seq is found under 2nd
/ LIST / OPS on the TI-83 and under CATALOG on the TI-89). Then assign the fuel
data to the list FUEL, and copy the list SPEED to L1/list1 and the list FUEL to
L2/list2. Define Plot 1 to be a scatterplot, and then ZOOM / 9:ZoomStat (ZoomData
on the TI-89) to graph it. Verify your answers to Exercise 3.11.

3.14 SCATTERPLOT BY CALCULATOR, II Rework Exercise 3.12 (page 132) using your calcu-
lator. Verify your answers to Exercise 3.12.
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• Notice that there are no scales on the axes, and that the axes are not labeled. If you copy a scatter-
plot from your calculator onto your paper, make sure that you scale and label the axes. You can use
TRACE to help you get started.

TECHNOLOGY TOOLBOX Making a calculator scatterplot (continued)

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

RAD APPROXMAIN FUNC

• Use ZoomStat (ZoomData on the TI-89) to obtain the graph. The calculator will set the window
dimensions automatically by looking at the values in L1/list1 and L2/list2.

SUMMARY
To study relationships between variables, we must measure the variables on the
same group of individuals.

If we think that a variable x may explain or even cause changes in another
variable y, we call x an explanatory variable and y a response variable.

A scatterplot displays the relationship between two quantitative variables
measured on the same individuals. Mark values of one variable on the hori-
zontal axis (x axis) and values of the other variable on the vertical axis (y axis).
Plot each individual’s data as a point on the graph.

Always plot the explanatory variable, if there is one, on the x axis of a scat-
terplot. Plot the response variable on the y axis.

Plot points with different colors or symbols to see the effect of a categori-
cal variable in a scatterplot.



In examining a scatterplot, look for an overall pattern showing the form,
direction, and strength of the relationship, and then for outliers or other devi-
ations from this pattern.

Form: Linear relationships, where the points show a straight-line pattern,
are an important form of relationship between two variables. Curved relation-
ships and clusters are other forms to watch for.

Direction: If the relationship has a clear direction, we speak of either pos-
itive association (high values of the two variables tend to occur together) or
negative association (high values of one variable tend to occur with low values
of the other variable).

Strength: The strength of a relationship is determined by how close the
points in the scatterplot lie to a simple form such as a line.
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FIGURE 3.5 Scatterplot of school grade point average versus IQ test score for seventh-grade 
students.

SECTION 3.1 EXERCISES
3.15 IQ AND SCHOOL GRADES Do students with higher IQ test scores tend to do better in
school? Figure 3.5 is a scatterplot of IQ and school grade point average (GPA) for all
78 seventh-grade students in a rural Midwest school.4

(a) Say in words what a positive association between IQ and GPA would mean. Does
the plot show a positive association?

(b) What is the form of the relationship? Is it roughly linear? Is it very strong? Explain
your answers.



(c) At the bottom of the plot are several points that we might call outliers. One stu-
dent in particular has a very low GPA despite an average IQ score. What are the
approximate IQ and GPA for this student?

3.16 CALORIES AND SALT IN HOT DOGS Are hot dogs that are high in calories also high in
salt? Figure 3.6 is a scatterplot of the calories and salt content (measured as milligrams
of sodium) in 17 brands of meat hot dogs.5

(a) Roughly what are the lowest and highest calorie counts among these brands?
Roughly what is the sodium level in the brands with the fewest and with the most
calories?

(b) Does the scatterplot show a clear positive or negative association? Say in words
what this association means about calories and salt in hot dogs.

(c) Are there any outliers? Is the relationship (ignoring any outliers) roughly linear in
form? Still ignoring outliers, how strong would you say the relationship between calo-
ries and sodium is?
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FIGURE 3.6 Scatterplot of milligrams of sodium and calories in each of 17 brands of meat hot dogs.

3.17 RICH STATES, POOR STATES One measure of a state’s prosperity is the median income
of its households. Another measure is the mean personal income per person in the
state. Figure 3.7 is a scatterplot of these two variables, both measured in thousands of
dollars. Because both variables have the same units, the plot uses equally spaced scales
on both axes.6

(a) We have labeled the point for New York on the scatterplot. What are the
approximate values of New York’s median household income and mean income per
person?



(b) Explain why you expect a positive association between these variables. Also explain
why you expect household income to be generally higher than income per person.

(c) Nonetheless, the mean income per person in a state can be higher than the medi-
an household income. In fact, the District of Columbia has median income $30,748
per household and mean income $33,435 per person. Explain why this can happen.

(d) Alaska is the state with the highest median household income. What is the approx-
imate median household income in Alaska? We might call Alaska and the District of
Columbia outliers in the scatterplot.

(e) Describe the form, direction, and strength of the relationship, ignoring the outliers.

3.18 THE PROFESSOR SWIMS Professor Moore swims 2000 yards regularly in a vain
attempt to undo middle age. Here are his times (in minutes) and his pulse rate after
swimming (in beats per minute) for 23 sessions in the pool:

Time: 34.12 35.72 34.72 34.05 34.13 35.72 36.17 35.57 35.37
Pulse: 152 124 140 152 146 128 136 144 148

Time: 35.57 35.43 36.05 34.85 34.70 34.75 33.93 34.60 34.00
Pulse: 144 136 124 148 144 140 156 136 148

Time: 34.35 35.62 35.68 35.28 35.97 
Pulse: 148 132 124 132 139
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(a) Make a scatterplot. (Which is the explanatory variable?)

(b) Is the association between these variables positive or negative? Explain why you
expect the relationship to have this direction.

(c) Describe the form and strength of the relationship.

3.19 MEET THE ARCHAEOPTERYX Archaeopteryx is an extinct beast having feathers like a
bird but teeth and a long bony tail like a reptile. Only six fossil specimens are known.
Because these specimens differ greatly in size, some scientists think they are different
species rather than individuals from the same species. We will examine some data. If
the specimens belong to the same species and differ in size because some are younger
than others, there should be a positive linear relationship between the lengths of a pair
of bones from all individuals. An outlier from this relationship would suggest a differ-
ent species. Here are data on the lengths in centimeters of the femur (a leg bone) and
the humerus (a bone in the upper arm) for the five specimens that preserve both
bones:7

Femur: 38 56 59 64 74
Humerus: 41 63 70 72 84

Make a scatterplot. Do you think that all five specimens come from the same species?

3.20 DO YOU KNOW YOUR CALORIES? A food industry group asked 3368 people to guess the
number of calories in each of several common foods. Here is a table of the average of
their guesses and the correct number of calories:8

Food Guessed calories Correct calories

8 oz. whole milk 196 159 
5 oz. spaghetti with tomato sauce 394 163 
5 oz. macaroni with cheese 350 269 
One slice wheat bread 117 61 
One slice white bread 136 76 
2-oz. candy bar 364 260 
Saltine cracker 74 12 
Medium-size apple 107 80 
Medium-size potato 160 88 
Cream-filled snack cake 419 160

(a) We think that how many calories a food actually has helps explain people’s guess-
es of how many calories it has. With this in mind, make a scatterplot of these data.
(Because both variables are measured in calories, you should use the same scale on
both axes. Your plot will be square.)

(b) Describe the relationship. Is there a positive or negative association? Is the rela-
tionship approximately linear? Are there any outliers?

3.21 MAXIMIZING CORN YIELDS How much corn per acre should a farmer plant to obtain
the highest yield? Too few plants will give a low yield. On the other hand, if there are
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too many plants, they will compete with each other for moisture and nutrients, and
yields will fall. To find the best planting rate, plant at different rates on several plots of
ground and measure the harvest. (Be sure to treat all the plots the same except for the
planting rate.) Here are the data from such an experiment:9

Plants per acre Yield (bushels per acre)

12,000 150.1 113.0 118.4 142.6
16,000 166.9 120.7 135.2 149.8
20,000 165.3 130.1 139.6 149.9
24,000 134.7 138.4 156.1 
28,000 119.0 150.5

(a) Is yield or planting rate the explanatory variable?

(b) Make a scatterplot of yield and planting rate.

(c) Describe the overall pattern of the relationship. Is it linear? Is there a positive or
negative association, or neither?

(d) Find the mean yield for each of the five planting rates. Plot each mean yield
against its planting rate on your scatterplot and connect these five points with lines.
This combination of numerical description and graphing makes the relationship
clearer. What planting rate would you recommend to a farmer whose conditions were
similar to those in the experiment?

3.22 TEACHERS’ PAY Table 1.15 (page 70) gives data for the states. We might expect that
states with less educated populations would pay their teachers less, perhaps because
these states are poorer.

(a) Make a scatterplot of average teachers’ pay against the percent of state residents
who are not high school graduates. Take the percent with no high school degree as the
explanatory variable.

(b) The plot shows a weak negative association between the two variables. Why do we
say that the association is negative? Why do we say that it is weak?

(c) Circle on the plot the point for the state your school is in.

(d) There is an outlier at the upper left of the plot. Which state is this?

(e) We wonder about regional patterns. There is a relatively clear cluster of nine states
at the lower right of the plot. These states have many residents who are not high school
graduates and pay low salaries to teachers. Which states are these? Are they mainly
from one part of the country?

3.23 CATEGORICAL EXPLANATORY VARIABLE A scatterplot shows the relationship between
two quantitative variables. Here is a similar plot to study the relationship between a cat-
egorical explanatory variable and a quantitative response variable.

The presence of harmful insects in farm fields is detected by putting up boards
covered with a sticky material and then examining the insects trapped on the board.
Which colors attract insects best? Experimenters placed six boards of each of four col-
ors in a field of oats and measured the number of cereal leaf beetles trapped.10
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Board color Insects trapped

Lemon yellow 45 59 48 46 38 47
White 21 12 14 17 13 17 
Green 37 32 15 25 39 41 
Blue 16 11 20 21 14 07

(a) Make a plot of the counts of insects trapped against board color (space the four
colors equally on the horizontal axis). Compute the mean count for each color, add
the means to your plot, and connect the means with line segments.

(b) Based on the data, what do you conclude about the attractiveness of these colors
to the beetles?

(c) Does it make sense to speak of a positive or negative association between board
color and insect count?

3.2 CORRELATION
A scatterplot displays the direction, form, and strength of the relationship
between two quantitative variables. Linear relations are particularly impor-
tant because a straight line is a simple pattern that is quite common. We say
a linear relation is strong if the points lie close to a straight line, and weak
if they are widely scattered about a line. Our eyes are not good judges of
how strong a linear relationship is. The two scatterplots in Figure 3.8 depict
exactly the same data, but the lower plot is drawn smaller in a large field.
The lower plot seems to show a stronger linear relationship. Our eyes can
be fooled by changing the plotting scales or the amount of white space
around the cloud of points in a scatterplot.11 We need to follow our strategy
for data analysis by using a numerical measure to supplement the graph.
Correlation is the measure we use.
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CORRELATION r

The correlation measures the direction and strength of the linear rela-
tionship between two quantitative variables. Correlation is usually written
as r.

Suppose that we have data on variables x and y for n individuals. The 
values for the first individual are x1 and y1, the values for the second 
individual are x2 and y2, and so on. The means and standard deviations of
the two variables are –x and sx for the x-values, and and sy for the y-values.
The correlation r between x and y is
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FIGURE 3.8 Two scatterplots of the same data; the straight-line pattern in the lower plot
appears stronger because of the surrounding white space.

As always, the summation sign ∑ means “add these terms for all the
individuals.” The formula for the correlation r is a bit complex. It helps us
see what correlation is, but in practice you should use software or a calcu-
lator that finds r from keyed-in values of two variables x and y. Exercise 3.24
asks you to calculate a correlation step-by-step from the definition to solid-
ify its meaning.

The formula for r begins by standardizing the observations. Suppose,
for example, that x is height in centimeters and y is weight in kilograms and
that we have height and weight measurements for n people. Then –x and sx
are the mean and standard deviation of the n heights, both in centimeters.
The value

x x
s

i

x

−



is the standardized height of the ith person, familiar from Chapter 2. The stan-
dardized height says how many standard deviations above or below the mean a
person’s height lies. Standardized values have no units—in this example, they
are no longer measured in centimeters. Standardize the weights also. The cor-
relation r is an average of the products of the standardized height and the stan-
dardized weight for the n people.

EXERCISE

3.24 CLASSIFYING FOSSILS Exercise 3.19 (page 138) gives the lengths of two bones in five
fossil specimens of the extinct beast Archaeopteryx:

Femur: 38 56 59 64 74
Humerus: 41 63 70 72 84

(a) Find the correlation r step-by-step. That is, find the mean and standard deviation
of the femur lengths and of the humerus lengths. Then find the five standardized val-
ues for each variable and use the formula for r.

(b) Duplicate the steps in the Technology Toolbox below to obtain the correlation for
the Archaeopteryx data, and compare your result with that calculated by hand in (a).
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We will use the Archaeopteryx data to show how to calculate the correlation using the definition
and the list features of the TI-83/89.

TECHNOLOGY TOOLBOX Using the definition to calculate correlation

TI-83
• Press STAT , choose CALC, then 2:2-Var
Stats.
• Complete the command 2-Var Stats L1,
L2, and press ENTER.

TI-89
• In the Statistics/List Editor, press F4 and choose
2:2-Var Stats.

• In the new window, enter list1 as the Xlist and
list2 as the Ylist, then press ENTER.

2-Var Stats
 x=58.2
 ∑x=291
 ∑x2=17633
 Sx=13.19848476
 σx=11.80508365
 n=5

40
42
46
49
73

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

list1

list1
MAIN       RAD APPROX     FUNC     2/2

2-Var Stats…

Enter=OK

x
Σx
Σx2
sx
x

Σ

= 58.2
= 291.
= 17633.
= 13.1984847615
= 11.8050836507
= 5.
= 66.
= 330.unf03.14.yates

σ
n
y
y

• Begin by entering the femur lengths (x-values) in L1/list1 and the humerus lengths (y-values) in
L2/list2. Then calculate two-variable statistics for the x- and y-values. The calculator will remember all
of the computed statistics until the next time you calculate one- or two-variable statistics.



Facts about correlation
The formula for correlation helps us see that r is positive when there is a posi-
tive association between the variables. Height and weight, for example, have a
positive association. People who are above average in height tend to also be
above average in weight. Both the standardized height and the standardized
weight are positive. People who are below average in height tend to also have
below-average weight. Then both standardized height and standardized weight
are negative. In both cases, the products in the formula for r are mostly posi-
tive and so r is positive. In the same way, we can see that r is negative when the
association between x and y is negative. More detailed study of the formula
gives more detailed properties of r. Here is what you need to know in order to
interpret correlation.

1. Correlation makes no distinction between explanatory and response vari-
ables. It makes no difference which variable you call x and which you call y in
calculating the correlation.

2. Correlation requires that both variables be quantitative, so that it makes
sense to do the arithmetic indicated by the formula for r. We cannot calculate
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TECHNOLOGY TOOLBOX Using the definition to calculate correlation (continued)

• Next, define L3/list3 = ((list1 – –x)/sx)((list2 – –y)/sy) from the home screen as shown. Note that –x, –y,
sx, and sy can be found under VARS/5:Statistics (in the VAR-LINK menu on the TI-89).

((L1–x)/Sx)((L2–
y)/Sy) L3
{2.407889825.0…

→

F1
 Tools

F2
Algebra

F3
Ca1c

F4
Other

F5
Prgm10

F6
Clean Up

MAIN RAD APPROX FUNC 1/30

…_)(list2-statvars\y_bar

list1-statvars\x_bar 1
statvars\sx_

{2.40788982511 .0314694

• To complete the formula for the correlation , enter the command

shown in the (two) calculator screens. Press ENTER to see the correlation.

r
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x x
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sx y

=
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−
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
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
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(1/(n-1)❉sum(L3
)
  .994148571358
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F2
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F4
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PrgmIO
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Clean Up

MAIN RAD APPROX FUNC 1/30

…tatvars\n-1))❉sum(list3)

❉sum(list3)
1

statvars\n – 1
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a correlation between the incomes of a group of people and what city they live
in, because city is a categorical variable.

3. Because r uses the standardized values of the observations, r does not
change when we change the units of measurement of x, y, or both. Measuring
height in inches rather than centimeters and weight in pounds rather than kilo-
grams does not change the correlation between height and weight. The corre-
lation r itself has no unit of measurement; it is just a number.

4. Positive r indicates positive association between the variables, and negative
r indicates negative association.

5. The correlation r is always a number between –1 and 1. Values of r near 0
indicate a very weak linear relationship. The strength of the linear relationship
increases as r moves away from 0 toward either –1 or 1. Values of r close to –1
or 1 indicate that the points in a scatterplot lie close to a straight line. The
extreme values r = –1 and r = 1 occur only in the case of a perfect linear rela-
tionship, when the points lie exactly along a straight line.

6. Correlation measures the strength of only a linear relationship between two
variables. Correlation does not describe curved relationships between vari-
ables, no matter how strong they are.

7. Like the mean and standard deviation, the correlation is not resistant: r is
strongly affected by a few outlying observations. The correlation for Figure 3.7
(page 137) is r = 0.634 when all 51 observations are included, but rises to r =
0.783 when we omit Alaska and the District of Columbia. Use r with caution
when outliers appear in the scatterplot.

The scatterplots in Figure 3.9 illustrate how values of r closer to 1 or –1 cor-
respond to stronger linear relationships. To make the meaning of r clearer, the
standard deviations of both variables in these plots are equal and the horizontal
and vertical scales are the same. In general, it is not so easy to guess the value of r
from the appearance of a scatterplot. Remember that changing the plotting scales
in a scatterplot may mislead our eyes, but it does not change the correlation.

The real data we have examined also illustrate how correlation measures
the strength and direction of linear relationships. Figure 3.2 (page 128) shows
a very strong positive linear relationship between degree-days and natural gas
consumption. The correlation is r = 0.9953. Check this on your calculator
using the data in Table 3.1. Figure 3.1 (page 124) shows a clear but weaker
negative association between percent of students taking the SAT and the medi-
an SAT Math score in a state. The correlation is r = –0.868.

Do remember that correlation is not a complete description of two-
variable data, even when the relationship between the variables is linear.
You should give the means and standard deviations of both x and y along
with the correlation. (Because the formula for correlation uses the means
and standard deviations, these measures are the proper choice to accompany
a correlation.) Conclusions based on correlations alone may require rethink-
ing in the light of a more complete description of the data.
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Correlation r = 0

Correlation r = 0.5

Correlation r = 0.9

Correlation r = –0.3

Correlation r = –0.7

Correlation r = –0.99

FIGURE 3.9 How correlation measures the strength of a linear relationship. Patterns
closer to a straight line have correlations closer to 1 or –1.

Competitive divers are scored on their form by a panel of judges who use a scale from
1 to 10. The subjective nature of the scoring often results in controversy. We have the
scores awarded by two judges, Ivan and George, on a large number of dives. How well
do they agree? We do some calculation and find that the correlation between their
scores is r = 0.9. But the mean of Ivan’s scores is 3 points lower than George’s mean.

These facts do not contradict each other. They are simply different kinds of infor-
mation. The mean scores show that Ivan awards much lower scores than George. But
because Ivan gives every dive a score about 3 points lower than George, the correlation
remains high. Adding or subtracting the same number to all values of either x or y does
not change the correlation. If Ivan and George both rate several divers, the contest is
fairly scored because Ivan and George agree on which dives are better than others. The
high r shows their agreement. But if Ivan scores one diver and George another, we
must add 3 points to Ivan’s scores to arrive at a fair comparison.

EXAMPLE 3.7 SCORING DIVERS



EXERCISES

3.25 THINKING ABOUT CORRELATION Figure 3.5 (page 135) is a scatterplot of school grade
point average versus IQ score for 78 seventh-grade students.

(a) Is the correlation r for these data near –1, clearly negative but not near –1, near 0,
clearly positive but not near 1, or near 1? Explain your answer.

(b) Figure 3.6 (page 136) shows the calories and sodium content in 17 brands of meat
hot dogs. Is the correlation here closer to 1 than that for Figure 3.5, or closer to zero?
Explain your answer.

(c) Both Figures 3.5 and 3.6 contain outliers. Removing the outliers will increase the
correlation r in one figure and decrease r in the other figure. What happens in each
figure, and why?

3.26 If women always married men who were 2 years older than themselves, what
would be the correlation between the ages of husband and wife? (Hint: Draw a scat-
terplot for several ages.)

3.27 RETURN OF THE ARCHAEOPTERYX Exercise 3.19 (page 138) gives the lengths of two
bones in five fossil specimens of the extinct beast Archaeopteryx. You found the corre-
lation r in Exercise 3.24 (page 142).

(a) Make a scatterplot if you did not do so earlier. Explain why the value of r match-
es the scatterplot.

(b) The lengths were measured in centimeters. If we changed to inches, how would r
change? (There are 2.54 centimeters in an inch.)

3.28 STRONG ASSOCIATION BUT NO CORRELATION The gas mileage of an automobile first
increases and then decreases as the speed increases. Suppose that this relationship is
very regular, as shown by the following data on speed (miles per hour) and mileage
(miles per gallon):

Speed: 20 30 40 50 60
MPG: 24 28 30 28 24

Make a scatterplot of mileage versus speed. Show that the correlation between speed
and mileage is r = 0. Explain why the correlation is 0 even though there is a strong rela-
tionship between speed and mileage.
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SUMMARY
The correlation r measures the strength and direction of the linear association
between two quantitative variables x and y. Although you can calculate a cor-
relation for any scatterplot, r measures only straight-line relationships.

Correlation indicates the direction of a linear relationship by its sign: 
r � 0 for a positive association and r � 0 for a negative association.



Correlation always satisfies –1 � r � 1 and indicates the strength of a rela-
tionship by how close it is to –1 or 1. Perfect correlation, r = �1, occurs only
when the points on a scatterplot lie exactly on a straight line.

Correlation ignores the distinction between explanatory and response vari-
ables. The value of r is not affected by changes in the unit of measurement of
either variable. Correlation is not resistant, so outliers can greatly change the
value of r.

3.29 THE PROFESSOR SWIMS Exercise 3.18 (page 137) gives data on the time to swim
2000 yards and the pulse rate after swimming for a middle-aged professor.

(a) If you did not do Exercise 3.18, do it now. Find the correlation r. Explain from
looking at the scatterplot why this value of r is reasonable.

(b) Suppose that the times had been recorded in seconds. For example, the time 34.12
minutes would be 2047 seconds. How would the value of r change?

3.30 BODY MASS AND METABOLIC RATE Exercise 3.12 (page 132) gives data on the lean
body mass and metabolic rate for 12 women and 7 men.

(a) Make a scatterplot if you did not do so in Exercise 3.12. Use different symbols or
colors for women and men. Do you think the correlation will be about the same for
men and women or quite different for the two groups? Why?

(b) Calculate r for women alone and also for men alone. (Use your calculator.)

(c) Calculate the mean body mass for the women and for the men. Does the fact that
the men are heavier than the women on the average influence the correlations? If so,
in what way?

(d) Lean body mass was measured in kilograms. How would the correlations change
if we measured body mass in pounds? (There are about 2.2 pounds in a kilogram.)

3.31 HOW MANY CALORIES? Exercise 3.20 (page 138) gives data on the true calorie
counts in ten foods and the average guesses made by a large group of people.

(a) Make a scatterplot if you did not do so in Exercise 3.20. Then calculate the
correlation r (use your calculator). Explain why your r is reasonable based on the
scatterplot.

(b) The guesses are all higher than the true calorie counts. Does this fact influence the
correlation in any way? How would r change if every guess were 100 calories higher?

(c) The guesses are much too high for spaghetti and snack cake. Circle these points
on your scatterplot. Calculate r for the other eight foods, leaving out these two points.
Explain why r changed in the direction that it did.

3.32 BRAIN SIZE AND IQ SCORE Do people with larger brains have higher IQ scores? A
study looked at 40 volunteer subjects, 20 men and 20 women. Brain size was measured
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by magnetic resonance imaging. Table 3.3 gives the data. The MRI count is the num-
ber of “pixels” the brain covered in the image. IQ was measured by the Wechsler test.13

TABLE 3.3 Brain size (MRI count) and IQ score

Men Women

MRI IQ MRI IQ MRI IQ MRI IQ

1,001,121 140 1,038,437 139 816,932 133 951,545 137
965,353 133 904,858 89 928,799 99 991,305 138
955,466 133 1,079,549 141 854,258 92 833,868 132
924,059 135 945,088 100 856,472 140 878,897 96
889,083 80 892,420 83 865,363 83 852,244 132
905,940 97 955,003 139 808,020 101 790,619 135
935,494 141 1,062,462 103 831,772 91 798,612 85
949,589 144 997,925 103 793,549 77 866,662 130
879,987 90 949,395 140 857,782 133 834,344 83
930,016 81 935,863 89 948,066 133 893,983 88

Source: There are some of the data from the EESEE story “Brain Size and Intelligence.” The study is
described in L. Willerman, R. Schultz, J.N. Rutledge, and E. Bigler, “In vivo brain size and intelligence,”
Intelligence, 15 (1991), pp. 223–228.

(a) Make a scatterplot of IQ score versus MRI count, using distinct symbols for men
and women. In addition, find the correlation between IQ and MRI for all 40 subjects,
for the men alone, and for the women alone.
(b) Men are larger than women on the average, so they have larger brains. How is this
size effect visible in your plot? Find the mean MRI count for men and women to ver-
ify the difference.
(c) Your result in (b) suggests separating men and women in looking at the relation-
ship between brain size and IQ. Use your work in (a) to comment on the nature and
strength of this relationship for women and for men.

3.33 Changing the units of measurement can dramatically alter the appearance of a
scatterplot. Consider the following data:

x –4 –4 –3 3 4 4
y 0.5 –0.6 –0.5 0.5 0.5 –0.6

(a) Enter the data into L1/list1 and L2/list2. Then use Plot1 to define and plot the scat-
terplot. Use the box ( ) as your plotting symbol.

(b) Use L3/list3 and the technique described in the Technology Toolbox on page 142
to calculate the correlation.

(c) Define new variables x* = x/10 and y* = 10y, and enter these into L4/list4 and L5/list5
as follows: list4 = list1/10 and list5 = 10 � list2. Define Plot2 to be a scatterplot with Xlist:
list4 and Ylist: list5, and Mark: +. Plot both scatterplots at the same time, and on the same
axes, using ZoomStat/ZoomData. The two plots are very different in appearance.

148 Chapter 3 Examining Relationships



(d) Use L6/list6 and the technique described in the Technology Toolbox to calculate
the correlation between x* and y*. How are the two correlations related? Explain why
this isn’t surprising.

3.34 TEACHING AND RESEARCH A college newspaper interviews a psychologist about stu-
dent ratings of the teaching of faculty members. The psychologist says, “The evidence
indicates that the correlation between the research productivity and teaching rating of
faculty members is close to zero.” The paper reports this as “Professor McDaniel said
that good researchers tend to be poor teachers, and vice versa.” Explain why the paper’s
report is wrong. Write a statement in plain language (don’t use the word “correlation”)
to explain the psychologist’s meaning.

3.35 INVESTMENT DIVERSIFICATION A mutual fund company’s newsletter says, “A well-
diversified portfolio includes assets with low correlations.” The newsletter includes a
table of correlations between the returns on various classes of investments. For exam-
ple, the correlation between municipal bonds and large-cap stocks is 0.50 and the cor-
relation between municipal bonds and small-cap stocks is 0.21.12

(a) Rachel invests heavily in municipal bonds. She wants to diversify by adding an
investment whose returns do not closely follow the returns on her bonds. Should she
choose large-cap stocks or small-cap stocks for this purpose? Explain your answer.

(b) If Rachel wants an investment that tends to increase when the return on her bonds
drops, what kind of correlation should she look for?

3.36 DRIVING SPEED AND FUEL CONSUMPTION The data in Exercise 3.28 were made up to
create an example of a strong curved relationship for which, nonetheless, r = 0.
Exercise 3.11 (page 129) gives actual data on gas used versus speed for a small car.
Make a scatterplot if you did not do so in Exercise 3.11. Calculate the correlation, and
explain why r is close to 0 despite a strong relationship between speed and gas used.

3.37 SLOPPY WRITING ABOUT CORRELATION Each of the following statements contains a
blunder. Explain in each case what is wrong.

(a) “There is a high correlation between the gender of American workers and their
income.”

(b) “We found a high correlation (r = 1.09) between students’ ratings of faculty teach-
ing and ratings made by other faculty members.”

(c) “The correlation between planting rate and yield of corn was found to be r = 0.23
bushel.”

3.3 LEAST-SQUARES REGRESSION
Correlation measures the strength and direction of the linear relationship
between any two quantitative variables. If a scatterplot shows a linear relation-
ship, we would like to summarize this overall pattern by drawing a line through
the scatterplot. Least-squares regression is a method for finding a line that sum-
marizes the relationship between two variables, but only in a specific setting.
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REGRESSION LINE

A regression line is a straight line that describes how a response variable y
changes as an explanatory variable x changes. We often use a regression line
to predict the value of y for a given value of x. Regression, unlike correla-
tion, requires that we have an explanatory variable and a response variable.

The least-squares regression line, which we will occasionally abbreviate
LSRL, is a model—or more formally, a mathematical model—for the data. If
we believe that the data show a linear trend, then it would be appropriate to
try to fit an LSRL to the data. In the next chapter, we will explore data that are
not linear and for which a curve is a more appropriate model. At the begin-
ning, though, we will focus our discussion on linear trends.
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FIGURE 3.10 The Sanchez household gas consumption data, with a regression line for 
predicting gas consumption from degree-days. The dashed lines illustrate how to use the 
regression line to predict gas consumption for a month averaging 20 degree-days per day.

A scatterplot shows that there is a strong linear relationship between the average outside
temperature (measured by heating degree-days) in a month and the average amount of
natural gas that the Sanchez household uses per day during the month. The Sanchez
household wants to use this relationship to predict their natural gas consumption. “If a
month averages 20 degree-days per day (that’s 45° F), how much gas will we use?

In Figure 3.10 we have drawn a regression line on the scatterplot. To use this line
to predict gas consumption at 20 degree-days, first locate 20 on the x axis. Then go “up

EXAMPLE 3.8 PREDICTING NATURAL GAS CONSUMPTION
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FIGURE 3.11(a) The least-squares idea. For each observation, find the vertical distance
of each point on the scatterplot from a regression line. The least-squares regression line
makes the sum of the squares of these distances as small as possible.

The least-squares regression line
Different people might draw different lines by eye on a scatterplot. This is
especially true when the points are more widely scattered than those in
Figure 3.10. We need a way to draw a regression line that doesn’t depend on
our guess as to where the line should go. No line will pass exactly through all
the points, so we want one that is as close as possible. We will use the line to
predict y from x, so we want a line that is as close as possible to the points in
the vertical direction. That’s because the prediction errors we make are errors
in y, which is the vertical direction in the scatterplot. If we predict 4.9 hun-
dreds of cubic feet for a month with 20 degree-days and the actual usage
turns out to be 5.1 hundreds of cubic feet, our error is

error = observed – predicted

= 5.1 – 4.9 = 0.2

We want a regression line that makes the vertical distances of the points in
a scatterplot from the line as small as possible. Figure 3.11(a) illustrates the
idea. For clarity, the plot shows only three of the points from Figure 3.10,
along with the line, on an expanded scale. The line passes above two of the
points and below one of them. The vertical distances of the data points from
the line appear as vertical line segments. A “good” regression line makes these
distances as small as possible. There are many ways to make “as small as pos-
sible” precise. The most common is the least-squares idea.

and over” as in the figure to find the gas consumption y that corresponds to x = 20.
We predict that the Sanchez household will use about 4.9 hundreds of cubic feet of
gas each day in such a month.



One reason for the popularity of the least-squares regression line is that the
problem of finding the line has a simple answer. We can give the recipe for the
least-squares line in terms of the means and standard deviations of the two vari-
ables and their correlation.

Figure 3.11(b) gives a geometric interpretation to the phrase “sum of the
squares of the vertical distances of the data points from the line.”
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LEAST-SQUARES REGRESSION LINE

The least-squares regression line of y on x is the line that makes the sum
of the squares of the vertical distances of the data points from the line as
small as possible.
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FIGURE 3.11(b) Equivalently, the least-squares regression line is the line that minimizes
the total area in the squares.

EQUATION OF THE LEAST-SQUARES REGRESSION LINE

We have data on an explanatory variable x and a response variable y for n
individuals. From the data, calculate the means –x, and –y and the standard
deviations sx and sy of the two variables, and their correlation r. The least-
squares regression line is the line

ŷ = a + bx
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Although you are probably used to the form y = mx + b for the equation of
a line from your study of algebra, statisticians have adopted ŷ = a + bx as the
form for the equation of the least-squares line. We will adopt this form, too, in
the interest of good communication. The variable y denotes the observed value
of y, and the term ŷ means the predicted value of y. We write ŷ (read “y hat”) in
the equation of the regression line to emphasize that the line gives a predicted
response ŷ for any x. When you are solving regression problems, make sure you
are careful to distinguish between y and ŷ.

To determine the equation of a least-squares line, we need to solve for the
intercept a and the slope b. Since there are two unknowns, we need two con-
ditions in order to solve for the two unknowns. It can be shown that every least-
squares regression line passes through the point (–x, –y). This is one important
piece of information about the least-squares line. The other fact that is known
is that the slope of the least-squares line is equal to the product of the correla-
tion and the quotient of the standard deviations:

Commit these two facts to memory, and you will be able to find equations of
least-squares lines.

b r
s

s
y

x

=

EQUATION OF THE LEAST-SQUARES REGRESSION LINE (continued)

with slope

and intercept

a = –y – b–x

b r
s

s
y

x

=

Suppose we have explanatory and response variables and we know that –x = 17.222, 
–y = 161.111, sx = 19.696, sy = 33.479, and the correlation r = 0.997. Even though we
don’t know the actual data, we can still construct the equation for the least-squares line
and use it to make predictions. The slope and intercept can be calculated as

a = -–y – b–x = 161.111 – (1.695)(17.222) = 131.920

so that the least-squares line has equation ŷ = 131.920 + 1.695x

b r
s

s
y

x

= = =0 997
33 479
19 696

1 695.
.
.

.

EXAMPLE 3.9 CONSTRUCTING THE LEAST-SQUARES EQUATION



Note: If r2 and r do not appear on your TI-83 screen, then do this one-time series of keystrokes: Press
2nd 0 (CATALOG), scroll down to DiagnosticOn and press ENTER. Press ENTER again to execute the
command. The screen should say “Done.” Then press 2nd ENTER (ENTRY) to recall the regression
command and ENTER again to calculate the LSRL. The r2- and r-values should now appear.

In practice, you don’t need to calculate the means, standard deviations,
and correlation first. Statistical software or your calculator will give the slope
b and intercept a of the least-squares line from keyed-in values of the vari-
ables x and y. You can then concentrate on understanding and using the
regression line.
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We will use the gas consumption and degree-days data from Example 3.8 to show how to use the
TI-83/89 to determine the equation of the least-squares line.

TECHNOLOGY TOOLBOX Least-squares lines on the calculator

LinReg
 y=a+bx
 a=1.089210843
 b=.1889989538
 r2=.9905504416
 r=.995264006

 

MAIN RAD AUTO FUNC

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

24
512
43
331.
26
13.

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F7
Ints 

list1  list2  list3  list

list2 = [ 1]=6.3
MAIN RAD APPROX FUNC 2/2

LinReg(a+ bx)

=1.08921084345
=.188998953795
=.990550441634
=.995264005997

y = a + bx
a
b
r
r2

Enter=OK

To determine the LSRL:
• Press STAT , choose CALC, then 8:LinReg (a+bx). Finish the command to read LinReg
(a+bx)L1,L2,Y1. (Y1 is found under VARS/Y-VARS/1:Function.)
• In the Statistics/ListEditor, press F4 (CALC), choose 3:Regressions, then
1:LinReg(a+bx).

• Enter list1 for the Xlist, list2 for the Ylist, choose to store the RegEqn to y1(x) and press ENTER .

TI-83 TI-89

• Enter the degree-days data into L1/list1 and the gas consumption data into L2/list2. (Recall that you saved
these lists as DEGDA and GAS, respectively.) Refer to the Technology Toolbox on page 132 for details on
copying these lists of data into L1/list1 and L2/list2.
• Define a scatterplot using L1/list1 and L2/list2, and then use ZoomStat (ZoomData) to plot the scatter-
plot.



Figure 3.12 displays the regression output for the gas consumption data from
two statistical software packages. Each output records the slope and intercept
of the least-squares line, calculated to more decimal places than we need. The
software also provides information that we do not yet need—part of the art of
using software is to ignore the extra information that is almost always present.
We will make use of other parts of the output in Chapters 14 and 15.

The slope of a regression line is usually important for the interpretation of
the data. The slope is the rate of change, the amount of change in ŷ when x
increases by 1. The slope b = 0.1890 in this example says that, on the average,
each additional degree-day predicts consumption of 0.1890 more hundreds of
cubic feet of natural gas per day.

The intercept of the regression line is the value of ŷ when x = 0. Although
we need the value of the intercept to draw the line, it is statistically meaning-
ful only when x can actually take values close to zero. In our example, x = 0
occurs when the average outdoor temperature is at least 65° F. We predict that
the Sanchez household will use an average of a = 1.0892 hundreds of cubic
feet of gas per day when there are no degree-days. They use this gas for cook-
ing and heating water, which continue in warm weather.

The equation of the regression line makes prediction easy. Just substitute
an x-value into the equation. To predict gas consumption at 20 degree-days,
substitute x = 20.

ŷ = 1.0892 + (0.1890)(20)

= 1.0892 + 3.78 = 4.869

3.3 Least-Squares Regression 155

• Deselect all other equations in the Y=screen and press GRAPH (♦ F3 on the TI-89) to overlay the
LSRL on the scatterplot.

TECHNOLOGY TOOLBOX Least-squares lines on the calculator (continued)

MAIN RAD APPROX FUNC

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

Although the calculator will report the values for a and b to nine decimal places, we usually round
off to four decimal places. You would write the LSRL equation as

ŷ = 1.0892 + 0.1890x

When you write the equation, don’t forget the hat symbol over the y; this means predicted value.

slope

intercept



To plot the line on the scatterplot by hand, use the equation to find ŷ for two
values of x, one near each end of the range of x in the data. Plot each ŷ above
its x and draw the line through the two points.

EXERCISES
3.38 GAS CONSUMPTION The Technology Toolbox (page 154) gives the equation of the
regression line of gas consumption y on degree-days x for the data in Table 3.1 as

ŷ = 1.0892 + 0.1890x

Use your calculator to find the mean and standard deviation of both x and y and
their correlation r. Find the slope b and the intercept a of the regression line from
these, using the facts in the box Equation of the least-squares regression line. (page
152) Verify that you get the equation above. (Results may differ slightly because of
rounding off.)
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(a)

(b)

FIGURE 3.12 Least-squares regression output for the gas consumption data from two
statistical software packages: (a) Minitab and (b) Data Desk.

plot the line



3.39 ARE SAT SCORES CORRELATED? If you previously plotted a scatterplot for the ordered-
pairs (Math SAT scores, Verbal SAT scores) data collected by the class in Activity 3,
then ask yourself, “Do these data describe a linear trend?” If so, then use your calcu-
lator to determine the LSRL equation and correlation coefficient. Overlay this regres-
sion line on your scatterplot. Considering the appearance of the scatterplot, the regres-
sion line, and the correlation, write a brief statement about the appropriateness of this
regression line to model the data. Is the line useful?

3.40 ACID RAIN Researchers studying acid rain measured the acidity of precipitation in
a Colorado wilderness area for 150 consecutive weeks. Acidity is measured by pH.
Lower pH values show higher acidity. The acid rain researchers observed a linear pat-
tern over time. They reported that the least-squares regression line

pH = 5.43 – (0.0053 � weeks)

fit the data well.13

(a) Draw a graph of this line. Is the association positive or negative? Explain in plain
language what this association means.

(b) According to the regression line, what was the pH at the beginning of the study
(weeks = 1)? At the end (weeks = 150)?

(c) What is the slope of the regression line? Explain clearly what this slope says about
the change in the pH of the precipitation in this wilderness area.

3.41 THE ENDANGERED MANATEE Exercise 3.6 (page 125) gives data on the number of
powerboats registered in Florida and the number of manatees killed by boats in the
years from 1977 to 1990.

(a) Use your calculator to make a scatterplot of these data.

(b) Find the equation of the least-squares line and overlay that line on your scatterplot.

(c) Predict the number of manatees that will be killed by boats in a year when 716,000
powerboats are registered.

(d) Here are four more years of manatee data, in the same form as in Exercise 3.6:

1991 716 53 1993 716 35
1992 716 38 1994 735 49

Add these points to your scatterplot. Florida took stronger measures to protect mana-
tees during these years. Do you see any evidence that these measures succeeded? 

(e) In part (c) you predicted manatee deaths in a year with 716,000 powerboat regis-
trations. In fact, powerboat registrations were 716,000 for three years. Compare the
mean manatee deaths in these three years with your prediction from part (c). How
accurate was your prediction?

The role of r2 in regression
Calculator and computer output for regression report a quantity called r2.
Some computer packages call it “R-sq.” For examples, look at the calculator
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screen shots in the Technology Toolbox on page 154 and the computer output
in Figure 3.12(a) on page 156. Although it is true that this quantity is equal to
the square of r, there is much more to this story.

To illustrate the meaning of r2 in regression, the next two examples use two
simple data sets and in each case calculate the quantity r2. In the first example,
a line would be a poor model, and the r2-value turns out to be small (closer to
0). In the second example, a straight line would fit the data fairly well, and the
r2 value is larger (closer to 1).
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One way to determine the usefulness of the least-squares regression model is to mea-
sure the contribution of x in predicting y. A simple example will help clarify the rea-
soning. Consider data set A:

x 0 3 6
y 0 10 2

and its scatterplot in Figure 3.13(a). The association between x and y appears to be
positive but weak. The sample means are easily calculated to be –x = 3 and
–y = 4. Knowing that x is 0 or 3 or 6 gives us very little information to predict y,
and so we have to fall back to –y as a predictor of y. The deviations of the three
points about the mean –y are shown in Figure 3.13(b). The horizontal line in
Figure 3.13(b) is at height –y = 4. The sum of the squares of the deviations for the
prediction equation ŷ = –y is

SST = ∑ (y – –y)2

EXAMPLE 3.10 SMALL r2
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FIGURE 3.13(a) Scatterplot for data set A.
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FIGURE 3.13(b) Squares of deviations about y-.

Geometric squares have been constructed on the graph with the deviations from
the mean as one side. The total area of these three squares is a measure of the total
sample variability. So we call this quantity SST for “total sum of squares about the
mean –y.”

The LSRL has equation ŷ = 3 + (1/3)x; see Figure 3.13(c). It has y intercept 3 and
passes through the point (–x, –y) = (3, 4).
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FIGURE 3.13(c) Squares of deviations about ŷ.

Now we want to consider the sum of the squares of the deviations of the points
about this regression line. We call this SSE for “sum of squares for error.”

SSE = ∑ (y – ŷ)2



For contrast, the next example shows a simple data set where the least-squares
line is a much better model.
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Figure 3.13(c) also shows geometric squares with deviations from the regression
line as one side. The calculations can be summarized in a table:

x y (y – –y)2 (y – ŷ)2

0 0 16 9
3 10 36 36
6 2  4 9

56 54
SST SSE

If x is a poor predictor of y, then the sum of squares of deviations about the mean
If x is a poor predictor of y, then the sum of squares of deviations about the mean –y and
the sum of squares of deviations about the regression line ŷ would be approximately the
same. This is the case in our example. If SST = 56 measures the total sample variation
of the observations about the mean –y, then SSE = 54 is the remaining “unexplained
sample variability” after fitting the regression line. The difference, SST – SSE, mea-
sures the amount of variation of y that can be explained by the regression line of y on
x. The ratio of these two quantities

is interpreted as the proportion of the total sample variability that is explained by
the least-squares regression of y on x. It can be shown algebraically that this fraction
is equal to the square of the correlation coefficient. For this reason, we call this
fraction r2 and refer to it as the coefficient of determination. For data set A,

We say that 3.57% of the variation in y is explained by least-squares regression of y on x.

r2 56 54
56

0 0357=
−

=
−

=
SST SSE

SST
.

SST SSE
SST

−

coefficient of 
determination

Consider data set B and its accompanying scatterplot in Figure 3.14(a):

x 0 5 10
y 0 7 8

The association between x and y appears to be positive and strong. The sample means
are –x = 5 and –y = 5. The squares of the deviations about the mean –y are shown in
Figure 3.14(b), and the squares of the deviations about the regression line ŷ are shown
in Figure 3.14(c).

EXAMPLE 3.11 LARGE r2
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FIGURE 3.14(a) Scatterplot for data set B.
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FIGURE 3.14(b) Squares of deviations about -y.
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FIGURE 3.14(c) Squares of deviations about ŷ.



Facts about least-squares regression
Regression is one of the most common statistical settings, and least-squares is
the most common method for fitting a regression line to data. Here are some
facts about least-squares regression lines.

Fact 1. The distinction between explanatory and response variables is
essential in regression. Least-squares regression looks at the distances of the
data points from the line only in the y direction. If we reverse the roles of the
two variables, we get a different least-squares regression line.
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r2 IN REGRESSION

The coefficient of determination, r2, is the fraction of the variation in the
values of y that is explained by least-squares regression of y on x.

Figure 3.15 is a scatterplot of data that played a central role in the discovery that the uni-
verse is expanding. They are the distances from earth of 24 spiral galaxies and the speed
at which these galaxies are moving away from us, reported by the astronomer Edwin
Hubble in 1929.14 There is a positive linear relationship, r = 0.7842, so that more dis-
tant galaxies are moving away more rapidly. Astronomers believe that there is in fact a
perfect linear relationship, and that the scatter is caused by imperfect measurements.

EXAMPLE 3.12 THE EXPANDING UNIVERSE

The LSRL has equation ŷ = 1 + 0.8x. It has y intercept 1 and passes through the points
(–x, –y) = (5,5) and (10,9). Here are the calculations:

x y (y – -y)2 (y – ŷ)2

0 0 25 1
5 7 4 4
10 8  9 1

38 6
SST SSE

If x is a good predictor of y, then the deviations and hence the SSE would be small; in
fact, if all of the points fell exactly on the regression line, SSE would be 0. For data set
B, we have

We say that 84% of the variation in y is explained by least-squares regression of y on x.

r2 38 6
38

0 842=
−

=
−

=
SST SSE

SST
.
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The two lines on the plot are the two least-squares regression lines. The regression
line of velocity on distance is solid. The regression line of distance on velocity is dashed.
Regression of velocity on distance and regression of distance on velocity give different lines.
In the regression setting you must know clearly which variable is explanatory.

Fact 2. There is a close connection between correlation and the slope of
the least-squares line. The slope is

This equation says that along the regression line, a change of one standard
deviation in x corresponds to a change of r standard deviations in y. When
the variables are perfectly correlated (r = 1 or r = –1), the change in the pre-
dicted response ŷ is the same (in standard deviation units) as the change in x.
Otherwise, because –1 � r � 1, the change in ŷ is less than the change in x.
As the correlation grows less strong, the prediction ŷ moves less in response to
changes in x.

Fact 3. The least-squares regression line always passes through the point
(–x, –y) on the graph of y against x. So the least-squares regression line of y on x
is the line with slope rsy/sx that passes through the point (–x, –y). We can describe
regression entirely in terms of the basic descriptive measures -–x, sx, 

–y, sy, and r.
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FIGURE 3.15 Scatterplot of Hubble’s data on the distance from earth of 24 galaxies and the velo-
city at which they are moving away from us. The two lines are the two least-squares regression
lines: of velocity on distance (solid) and of distance on velocity (dashed).



Fact 4. The correlation r describes the strength of a straight-line relation-
ship. In the regression setting, this description takes a specific form: the square
of the correlation, r2, is the fraction of the variation in the values of y that is
explained by the least-squares regression of y on x.
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First consider the Sanchez gas consumption data in Figure 3.16(a). There is a lot
of variation in the observed y’s, the gas consumption data. They range from a low
of about 1 to a high of 11. The scatterplot shows that most of this variation in y is
accounted for by the fact that outdoor temperature (measured by degree-days x) was
changing and pulled gas consumption along with it. There is only a little remain-
ing variation in y, which appears in the scatter of points about the line.The corre-
lation is very strong: r = 0.9953, and r2 = 0.9906. Our interpretation is that over 99%
of the variation in gas consumption is accounted for by the linear relationship with
degree-days.

EXAMPLE 3.13 COMPARING r2 VALUES
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FIGURE 3.16(a) The Sanchez household gas consumption data.

The points in Figure 3.16(b), on the other hand, are more scattered. Linear
dependence on distance does explain some of the observed variation in velocity. You
would guess a higher value for the velocity y knowing that x = 2 than you would if you
were told that x = 0. But there is still considerable variation in y even when x is held
fixed—look at the four points in Figure 3.16(b) with x = 2. For the Hubble data, r =
0.7842 and r2 = 0.6150. The linear relationship between distance and velocity explains
61.5% of the variation in either variable. There are two regression lines, but just one
correlation, and r2 helps interpret both regressions.



When you report a regression, give r2 as a measure of how successful the
regression was in explaining the response. When you see a correlation, square
it to get a better feel for the strength of the association. Perfect correlation (r =
–1 or r = 1) means the points lie exactly on a line. Then r2 = 1 and all of the
variation in one variable is accounted for by the linear relationship with the
other variable. If r = –0.7 or r = 0.7, r2 = 0.49 and about half the variation is
accounted for by the linear relationship. In the r2 scale, correlation �0.7 is
about halfway between 0 and �1.

These connections with correlation are special properties of least-squares
regression. They are not true for other methods of fitting a line to data. Another
reason that least-squares is the most common method for fitting a regression
line to data is that it has many of these convenient special properties.

EXERCISES
3.42 CLASS ATTENDANCE AND GRADES A study of class attendance and grades among first-
year students at a state university showed that in general students who attended a high-
er percent of their classes earned higher grades. Class attendance explained 16% of the
variation in grade index among the students. What is the numerical value of the cor-
relation between percent of classes attended and grade index?

3.43 THE PROFESSOR SWIMS Here are Professor Moore’s times (in minutes) to swim 2000
yards and his pulse rate after swimming (in beats per minute) for 23 sessions in the pool:
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FIGURE 3.16(b) Hubble’s data on the distance from earth of 24 galaxies and the velocity at which
they are moving away from us.



Time: 34.12 35.72 34.72 34.05 34.13 35.72 36.17 35.57
Pulse: 152 124 140 152 146 128 136 144

Time: 35.37 35.57 35.43 36.05 34.85 34.70 34.75 33.93
Pulse: 148 144 136 124 148 144 140 156

Time: 34.60 34.00 34.35 35.62 35.68 35.28 35.97 
Pulse: 136 148 148 132 124 132 139

(a) A scatterplot shows a moderately strong negative linear relationship. Use your cal-
culator or software to verify that the least-squares regression line is

pulse = 479.9 – (9.695 � time)

(b) The next day’s time is 34.30 minutes. Predict the professor’s pulse rate. In fact, his
pulse rate was 152. How accurate is your prediction?

(c) Suppose you were told only that the pulse rate was 152. You now want to predict
swimming time. Find the equation of the least-squares regression line that is appropri-
ate for this purpose. What is your prediction, and how accurate is it?

(d) Explain clearly, to someone who knows no statistics, why there are two different
regression lines.

3.44 PREDICTING THE STOCK MARKET Some people think that the behavior of the stock
market in January predicts its behavior for the rest of the year. Take the explanato-
ry variable x to be the percent change in a stock market index in January and the
response variable y to be the change in the index for the entire year. We expect a
positive correlation between x and y because the change during January con-
tributes to the full year’s change. Calculation from data for the years 1960 to 1997
gives

–x = 1.75% sx = 5.36% r = 0.596
–y = 9.07% sy = 15.35%

(a) What percent of the observed variation in yearly changes in the index is explained
by a straight-line relationship with the change during January?

(b) What is the equation of the least-squares line for predicting full-year change from
January change?

(c) The mean change in January is = 1.75%. Use your regression line to predict
the change in the index in a year in which the index rises 1.75% in January. Why
could you have given this result (up to roundoff error) without doing the calcula-
tion?

3.45 BEAVERS AND BEETLES Ecologists sometimes find rather strange relationships in our
environment. One study seems to show that beavers benefit beetles. The researchers
laid out 23 circular plots, each four meters in diameter, in an area where beavers were
cutting down cottonwood trees. In each plot, they counted the number of stumps from
trees cut by beavers and the number of clusters of beetle larvae. Here are the data:15

x
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Stumps: 2 2 1 3 3 4 3 1 2 5 1 3 
Beetle larvae: 10 30 12 24 36 40 43 11 27 56 18 40

Stumps: 2 1 2 2 1 1 4 1 2 1 4 
Beetle larvae: 25 8 21 14 16 6 54 9 13 14 50

(a) Make a scatterplot that shows how the number of beaver-caused stumps influences
the number of beetle larvae clusters. What does your plot show? (Ecologists think that
the new sprouts from stumps are more tender than other cottonwood growth, so that
beetles prefer them.)

(b) Find the least-squares regression line and draw it on your plot.

(c) What percent of the observed variation in beetle larvae counts can be explained
by straight-line dependence on stump counts?

Residuals
A regression line is a mathematical model for the overall pattern of a linear
relationship between an explanatory variable and a response variable.
Deviations from the overall pattern are also important. In the regression
setting, we see deviations by looking at the scatter of the data points about
the regression line. The vertical distances from the points to the least-
squares regression line are as small as possible, in the sense that they have
the smallest possible sum of squares. Because they represent “left-over”
variation in the response after fitting the regression line, these distances are
called residuals.
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RESIDUALS

A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is,

residual = observed y – predicted y

= y – ŷ

Does the age at which a child begins to talk predict later score on a test of mental abil-
ity? A study of the development of young children recorded the age in months at which
each of the 21 children spoke their first word and Gesell Adaptive Score, the result of
an aptitude test taken much later. The data appear in Table 3.4.

EXAMPLE 3.14 GESELL SCORES
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TABLE 3.4 Age at first word and Gesell score

Child Age Score Child Age Score Child Age Score

1 15 95 8 11 100 15 11 102
2 26 71 9 8 104 16 10 100 
3 10 83 10 20 94 17 12 105 
4 9 91 11 7 113 18 42 57 
5 15 102 12 9 96 19 17 121
6 20 87 13 10 83 20 11 86 
7 18 93 14 11 84 21 10 100

Source: These data were originally collected by L. M. Linde of UCLA but were first published by M. R. Mickey,
O. J. Dunn, and V. Clark, “Note on the use of stepwise regression in detecting outliers,” Computers and Biomedical
Research, 1 (1967), pp. 105–111. The data have been used by several authors. We found them in N. R. Draper and
J. A. John, “Influential observations and outliers in regression,” Technometrics, 23 (1981), pp. 21–26.

Figure 3.17 is a scatterplot, with age at first word as the explanatory variable x and
Gesell score as the response variable y. Children 3 and 13, and also Children 16 and 21,
have identical values of both variables. We use a different plotting symbol to show that one
point stands for two individuals. The plot shows a negative association. That is, children
who begin to speak later tend to have lower test scores than early talkers. The overall pat-
tern is moderately linear. The correlation describes both the direction and strength of the
linear relationship. It is r = –0.640.
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FIGURE 3.17 Scatterplot of Gesell Adaptive Scores versus the age at first word for 21 children from
Table 3.4. The line is the least-squares regression line for predicting Gesell score from age at first word.

The line on the plot is the least-squares regression line of Gesell score on age at
first word. Its equation is

ŷ = 109.8738 –1.1270x

For Child 1, who first spoke at 15 months, we predict the score

ŷ = 109.8738 – (1.1270)(15) = 92.97



There is a residual for each data point. Here are the 21 residuals for the
Gesell data, from Example 3.14, as output by a statistical software package:

residuals:
2.0310 –9.5721 –15.6040 –8.7309 9.0310 –0.3341 3.4120
2.5230 3.1421 6.6659 11.0151 -3.7309 –15.6040 –13.4770
4.5230 1.3960 8.6500 –5.5403 30.2850 –11.4770 1.3960

Because the residuals show how far the data fall from our regression line,
examining the residuals helps assess how well the line describes the data.
Although residuals can be calculated from any model fitted to the data, the
residuals from the least-squares line have a special property: the mean of the
least-squares residuals is always zero. You can check that the sum of the resid-
uals above is –0.0002. The sum is not exactly 0 because the software rounded
the residuals to four decimal places. This is roundoff error.

Compare the scatterplot in Figure 3.17 with the residual plot for the same
data in Figure 3.18. The horizontal line at zero in Figure 3.18 helps orient us.
It corresponds to the regression line in Figure 3.17.
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roundoff error

This child’s actual score was 95. The residual is

residual = observed y – predicted y
= 95 – 92.97 = 2.03

The residual is positive because the data point lies above the line.
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FIGURE 3.18 Residual plot for the regression of Gesell score on age at first word. Child
19 is an outlier, and Child 18 is an influential observation that does not have a large
residual.



Here are some things to look for when you examine the residuals, using
either a scatterplot of the data or a residual plot.

• A curved pattern shows that the relationship is not linear. Figure 3.19(b) is
a simplified example. A straight line is not a good summary for such data.

You should be aware that some computer utilities, such as Data Desk, pre-
fer to plot the residuals against the fitted values ŷi instead of against the values
xi of the explanatory variable. The information in the two plots is the same
because ŷ is linearly related to x.

If the regression line captures the overall relationship between x and y, the
residuals should have no systematic pattern. The residual plot will look something
like the simplified pattern in Figure 3.19(a). That plot shows a uniform scatter of
the points about the fitted line, with no unusual individual observations.
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RESIDUAL PLOTS

A residual plot is a scatterplot of the regression residuals against the explana-
tory variable. Residual plots help us assess the fit of a regression line.
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FIGURE 3.19(a) The uniform scatter of points indicates that the regression line fits the
data well, so the line is a good model.
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FIGURE 3.19(b) The residuals have a curved pattern, so a straight line is an inappropri-
ate model.
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• Increasing or decreasing spread about the line as x increases indicates that
prediction of y will be less accurate for larger x. Figure 3.19(c) is a simplified
example.
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FIGURE 3.19(c) The response variable y has more spread for larger values of the
explanatory variable x, so prediction will be less accurate when x is large.

• Individual points with large residuals, like Child 19 in Figures 3.17 and
3.18 are outliers in the vertical (y) direction because they lie far from the line
that describes the overall pattern.

• Individual points that are extreme in the x direction, like Child 18 in
Figures 3.17 and 3.18, may not have large residuals, but they can be very
important. We address such points next.

Influential observations
Children 18 and 19 are both unusual in the Gesell example. They are unusu-
al in different ways. Child 19 lies far from the regression line. This child’s
Gesell score is so high that we should check for a mistake in recording it. In
fact, the score is correct. Child 18 is close to the line but far out in the x direc-
tion. He or she began to speak much later than any of the other children.
Because of its extreme position on the age scale, this point has a strong influence
on the position of the regression line. Figure 3.20 adds a second regression line,
calculated after leaving out Child 18. You can see that this one point moves
the line quite a bit. We call such points influential.

OUTLIERS AND INFLUENTIAL OBSERVATIONS IN REGRESSION

An outlier is an observation that lies outside the overall pattern of the
other observations.

An observation is influential for a statistical calculation if removing it
would markedly change the result of the calculation. Points that are 
outliers in the x direction of a scatterplot are often influential for the 
least-squares regression line.



172 Chapter 3 Examining Relationships

Children 18 and 19 are both outliers in Figure 3.20. Child 18 is an outli-
er in the x direction and influences the least-squares line. Child 19 is an out-
lier in the y direction. It has less influence on the regression line because the
many other points with similar values of x anchor the line well below the out-
lying point. Influential points often have small residuals, because they pull the
regression line toward themselves. If you just look at residuals, you will miss
influential points. Influential observations can greatly change the interpreta-
tion of data.
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FIGURE 3.20 Two least-squares regression lines of Gesell score on age at first word. The
solid line is calculated from all the data. The dashed line is calculated leaving out Child
18. Child 18 is an influential observation because leaving out this point moves the 
regression line quite a bit.

The strong influence of Child 18 makes the original regression of Gesell score on age
at first word misleading. The original data have r2 = 0.41. That is, the age at which a
child begins to talk explains 41% of the variation on a later test of mental ability. This
relationship is strong enough to be interesting to parents. If we leave out Child 18, r2

drops to only 11%. The apparent strength of the association was largely due to a single
influential observation.

What should the child development researcher do? She must decide whether
Child 18 is so slow to speak that this individual should not be allowed to influence the
analysis. If she excludes Child 18, much of the evidence for a connection between the
age at which a child begins to talk and later ability score vanishes. If she keeps Child
18, she needs data on other children who were also slow to begin talking, so that the
analysis no longer depends so heavily on just one child.

EXAMPLE 3.15 AN INFLUENTIAL OBSERVATION



EXERCISES
3.46 DRIVING SPEED AND FUEL CONSUMPTION Exercise 3.11 (page 129) gives data on the
fuel consumption y of a car at various speeds x. Fuel consumption is measured in liters
of gasoline per 100 kilometers driven and speed is measured in kilometers per hour. A
statistical software package gives the least-squares regression line and also the residu-
als. The regression line is

ŷ = 11.058 – 0.01466x

The residuals, in the same order as the observations, are

10.09 2.24 –0.62 –2.47 –3.33 –4.28 –3.73 –2.94
–2.17 –1.32 –0.42 0.57 1.64 2.76 3.97

(a) Make a scatterplot of the observations and draw the regression line on your plot.

(b) Would you use the regression line to predict y from x? Explain your answer.

(c) Check that the residuals have sum zero (up to roundoff error).

(d) Make a plot of residuals against the values of x. Draw a horizontal line at height
zero on your plot. Notice that the residuals show the same pattern about this line as
the data points show about the regression line in the scatterplot in (a). What do you
conclude about the residual plot?

3.47 HOW MANY CALORIES? Exercise 3.20 (page 138) gives data on the true calories in ten
foods and the average guesses made by a large group of people. Exercise 3.31 (page 147)
explored the influence of two outlying observations on the correlation.

(a) Make a scatterplot suitable for predicting guessed calories from true calories.
Circle the points for spaghetti and snack cake on your plot. These points lie outside
the linear pattern of the other eight points.

(b) Use your calculator to find the least-squares regression line of guessed calories on
true calories. Do this twice, first for all ten data points and then leaving out spaghetti
and snack cake.

(c) Plot both lines on your graph. (Make one dashed so that you can tell them apart.)
Are spaghetti and snack cake, taken together, influential observations? Explain your
answer.

3.48 INFLUENTIAL OR NOT? The discussion of Example 3.15 shows that Child 18 in the
Gesell data in Table 3.4 is an influential observation. Now we will examine the effect
of Child 19, who is also an outlier in Figure 3.20.

(a) Find the least-squares regression line of Gesell score on age at first word, leaving
out Child 19. Example 3.14 gives the regression line from all the children. Plot both
lines on the same graph. (You do not have to make a scatterplot of all the points—just
plot the two lines.) Would you call Child 19 very influential? Why?

(b) How does removing Child 19 change the r2 for this regression? Explain why r2

changes in this direction when you drop Child 19.
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Here is a procedure for calculating residuals on your TI-83/89 and then displaying a residual plot.

TECHNOLOGY TOOLBOX Residual plots by calculator

LinReg
 y=a+bx
 a=109.8738406
 b=–1.126988915
 r2=.4099712614
 r=–.6402899823

L1

L3(1)=2.030993137...

15
26
10
9
15
20
18

L2
95
71
83
91
102
87
93

L3 3
2.031
–9.572
–15.6
–8.731
9.031
–.3341
3.412

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

RAD APPROXMAIN FUNC

15
262
10
9.
15.
20.

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F7
Ints

list1  list2  list3  list4

list3 = {}
MAIN RAD APPROX FUNC 3/6

LinReg(a+ bx)

=109.873840585
=-1.12698891486
=.409971261413
=-.640289982284

y = a+ bx
a
b
r2
r

Enter=OK

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

RAD APPROXMAIN FUNC

15.
26.
10.
9.
15.
20.

95.
71.
83.
91.
102.
87.

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F6
Ints

list1  list2 list3 list4

list3[1]=2.030994
MAIN RAD APPROX FUNC 3/7

2.031
–9.572
–15.6
–8.731
9.031
–.3341

This sets the stage. To graph the residual plot:
• Restore the six default lists using the SetUpEditor command.

• Define L3/list3 as the observed value minus the predicted value.

• Press STAT , choose 5:SetUpEditor, and press ENTER .
• Press CATALOG, choose SetUpEd( , type ), and press ENTER.

• With L3 highlighted, enter the command L2-Y1(L1). Press ENTER to show the residuals.
• With list3 highlighted, enter the command list2 -y1(list1). Press ENTER to show the residuals.

TI-83 TI-89

• Enter the ages and Gesell scores from Table 3.4 (page 168). Plot the scatterplot and perform the
linear regression. Store the regression equation in Y1 (y1(x) on the TI-89) and superimpose the
LSRL on the scatterplot.
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TECHNOLOGY TOOLBOX Residual plots by calculator (continued)

• Turn off Plot1 and deselect the regression equation. Specify Plot2 with L1/list1 as the x variable and
L3/list3 as the y variable. Use ZoomStat (ZoomData) to see the residual plot.

P1:L1,L3

X=17 Y=30.284971

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

RAD APPROXMAIN FUNC

1-Var Stats
 x=3.857143E–12
 ∑x=8.1E–11
 ∑x2=2308.58578
 Sx=10.74380235
 σx=10.4848775
 n=21

15
26
10
9.
15
20.

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F7
Ints 

list1  list2  list3  list4

list2 = {1}=6.3
MAIN RAD APPROX FUNC 3/7

Enter=OK

 x  
 ∑x 
 ∑x2
 Sx
 σx
 n
 MinX
 Q1X

=8.09523809524E…
=1.7E–5
=2308.58577784
=10.743802348
=10.4848774951
=21.
=–15.603951
=–9.1515335

1-Var Stats

Note that the calculator is showing some roundoff error. You should recognize these peculiar looking
numbers as equivalent to 0.

3.49 LEAN BODY MASS AS A PREDICTOR OF METABOLIC RATE Exercise 3.12 (page 132) pro-
vides data from a study of dieting for 12 women and 7 men subjects. We will explore
the women’s data further.

(a) Define two lists on your calculator, MASSF for female mass and METF for female
metabolic rate. Then transfer the data to lists 1 and 2. Define Plot1 using the plot-
ting symbol, and plot the scatterplot.

(b) Perform least-squares regression on your calculator and record the equation and
the correlation. Lean body mass explains what percent of the variation in metabolic
rate for the women?

(c) Does the least-squares line provide an adequate model for the data? Define
Plot2 to be a residual plot on your calculator with residuals on the vertical axis and
lean body mass (x-values) on the horizontal axis. Use the plotting symbol. Use
ZoomStat/ZoomData to see the plot. Copy the plot onto your paper. Label both
axes appropriately.

The x axis in the residual plot serves as a reference line, with points above this line corresponding
to positive residuals and points below the line corresponding to negative residuals. We used
TRACE to see the regression outlier at x = 17.

• Finally, we have previously noted that an important property of residuals is that their sum is zero.
Calculate one-variable statistics on the residuals list to verify that ∑(residuals) = 0 and that, conse-
quently, the mean of the residuals is also 0.
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A regression line is a straight line that describes how a response variable y
changes as an explanatory variable x changes.

The most common method of fitting a line to a scatterplot is least squares.
The least-squares regression line is the straight line ŷ = a + bx that minimizes the
sum of the squares of the vertical distances of the observed points from the line.

You can use a regression line to predict the value of y for any value of x by
substituting this x into the equation of the line.

The slope b of a regression line ŷ = a + bx is the rate at which the predicted
response ŷ changes along the line as the explanatory variable x changes.
Specifically, b is the change in ŷ when x increases by 1.

The intercept a of a regression line ŷ = a + bx is the predicted response ŷ
when the explanatory variable x = 0. This prediction is of no statistical use
unless x can actually take values near 0.

The least-squares regression line of y on x is the line with slope rsy/sx and
intercept a = – b . This line always passes through the point ( , ).

Correlation and regression are closely connected. The correlation r is the
slope of the least-squares regression line when we measure both x and y in stan-
dardized units. The square of the correlation r2 is the fraction of the variance of
one variable that is explained by least-squares regression on the other variable.

You can examine the fit of a regression line by studying the residuals,
which are the differences between the observed and predicted values of y. Be
on the lookout for outlying points with unusually large residuals and also for
nonlinear patterns and uneven variation about the line.

Also look for influential observations, individual points that substantially
change the regression line. Influential observations are often outliers in the x
direction, but they need not have large residuals.

3.50 REVIEW OF STRAIGHT LINES Fred keeps his savings under his mattress. He began
with $500 from his mother and adds $100 each year. His total savings y after x years
are given by the equation

y = 500 + 100x

(a) Draw a graph of this equation. (Choose two values of x, such as 0 and 10.
Compute the corresponding values of y from the equation. Plot these two points on
graph paper and draw the straight line joining them.)

yxxy

(d) Define list3 to be the predicted y-values: Y1(L1) on the TI-83 or Y1(list1) on the
TI-89. Define Plot3 to be a residual plot on your calculator with residuals on the ver-
tical axis and predicted metabolic rate on the horizontal axis. Use the + plotting sym-
bol. Use ZoomStat/ZoomData to see the plot. Copy the plot onto your paper. Label
both axes. Compare the two residual plots.

SUMMARY

SECTION 3.3 EXERCISES



3.3 Least-Squares Regression 177

(b) After 20 years, how much will Fred have under his mattress?

(c) If Fred had added $200 instead of $100 each year to his initial $500, what is the
equation that describes his savings after x years?

3.51 REVIEW OF STRAIGHT LINES During the period after birth, a male white rat gains
exactly 40 grams (g) per week. (This rat is unusually regular in his growth, but 40 g per
week is a realistic rate.)

(a) If the rat weighed 100 g at birth, give an equation for his weight after x weeks.
What is the slope of this line?

(b) Draw a graph of this line between birth and 10 weeks of age.

(c) Would you be willing to use this line to predict the rat’s weight at age 2 years? Do
the prediction and think about the reasonableness of the result. (There are 454 grams
in a pound. To help you assess the result, note that a large cat weighs about 10
pounds.)

3.52 IQ AND SCHOOL GPA Figure 3.5 (page 135) plots school grade point average (GPA)
against IQ test score for 78 seventh-grade students. Calculation shows that the mean
and standard deviation of the IQ scores are

= 108.9 sx = 13.17

For the grade point averages,

= 7.447 sy = 2.10

The correlation between IQ and GPA is r = 0.6337.

(a) Find the equation of the least-squares line for predicting GPA from IQ.

(b) What percent of the observed variation in these students’ GPAs can be explained
by the linear relationship between GPA and IQ?

(c) One student has an IQ of 103 but a very low GPA of 0.53. What is the pre-
dicted GPA for a student with IQ = 103? What is the residual for this particular
student?

3.53 TAKE ME OUT TO THE BALL GAME What is the relationship between the price charged
for a hot dog and the price charged for a 16-ounce soda in major league baseball sta-
diums? Here are some data:16

Team Hot dog Soda Team Hot dog Soda Team Hot dog Soda

Angels 2.50 1.75 Giants 2.75 2.17 Rangers 2.00 2.00
Astros 2.00 2.00 Indians 2.00 2.00 Red Sox 2.25 2.29
Braves 2.50 1.79 Marlins 2.25 1.80 Rockies 2.25 2.25
Brewers 2.00 2.00 Mets 2.50 2.50 Royals 1.75 1.99
Cardinals 3.50 2.00 Padres 1.75 2.25 Tigers 2.00 2.00
Dodgers 2.75 2.00 Phillies 2.75 2.20 Twins 2.50 2.22
Expos 1.75 2.00 Pirates 1.75 1.75 White Sox 2.00 2.00

y

x



(a) Make a scatterplot appropriate for predicting soda price from hot dog price.
Describe the relationship that you see. Are there any outliers?

(b) Find the correlation between hot dog price and soda price. What percent of the
variation in soda price does a linear relationship account for?

(c) Find the equation of the least-squares line for predicting soda price from hot dog
price. Draw the line on your scatterplot. Based on your findings in (b), explain why it
is not surprising that the line is nearly horizontal (slope near zero).

(d) Circle the observation that is potentially the most influential. What team is this?
Find the least-squares line without this one observation and draw it on your scatterplot.
Was the observation in fact influential?

3.54 KEEPING WATER CLEAN Keeping water supplies clean requires regular measurement
of levels of pollutants. The measurements are indirect—a typical analysis involves
forming a dye by a chemical reaction with the dissolved pollutant, then passing light
through the solution and measuring its “absorbence.” To calibrate such measure-
ments, the laboratory measures known standard solutions and uses regression to relate
absorbence to pollutant concentration. This is usually done every day. Here is one
series of data on the absorbence for different levels of nitrates. Nitrates are measured
in milligrams per liter of water.17

Nitrates: 50 50 100 200 400 800 1200 1600 2000 2000
Absorbence: 7.0 7.5 12.8 24.0 47.0 93.0 138.0 183.0 230.0 226.0

(a) Chemical theory says that these data should lie on a straight line. If the corre-
lation is not at least 0.997, something went wrong and the calibration procedure is
repeated. Plot the data and find the correlation. Must the calibration be done
again?

(b) What is the equation of the least-squares line for predicting absorbence from con-
centration? If the lab analyzed a specimen with 500 milligrams of nitrates per liter,
what do you expect the absorbence to be? Based on your plot and the correlation, do
you expect your predicted absorbence to be very accurate?

3.55 A GROWING CHILD Sarah’s parents are concerned that she seems short for her age.
Their doctor has the following record of Sarah’s height:

Age (months): 36 48 51 54 57 60
Height (cm): 86 90 91 93 94 95

(a) Make a scatterplot of these data. Note the strong linear pattern.
(b) Using your calculator, find the equation of the least-squares regression line of
height on age.
(c) Predict Sarah’s height at 40 months and at 60 months. Use your results to draw the
regression line on your scatterplot.
(d) What is Sarah’s rate of growth, in centimeters per month? Normally growing
girls gain about 6 cm in height between ages 4 (48 months) and 5 (60 months). What
rate of growth is this in centimeters per month? Is Sarah growing more slowly than
normal?
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3.56 INVESTING AT HOME AND OVERSEAS Investors ask about the relationship between
returns on investments in the United States and on investments overseas. Table 3.5
gives the total returns on U.S. and overseas common stocks over a 26-year period. (The
total return is change in price plus any dividends paid, converted into U.S. dollars.
Both returns are averages over many individual stocks.)

TABLE 3.5 Annual total return on overseas and U.S. stocks

Overseas U.S. Overseas U.S. Overseas U.S.
Year % return % return Year % return % return Year % return % return

1971 29.6 14.6 1980 22.6 32.3 1989 10.6 31.5
1972 36.3 18.9 1981 –2.3 –5.0 1990 –23.0 –3.1
1973 –14.9 –14.8 1982 –1.9 21.5 1991 12.8 30.4
1974 –23.2 –26.4 1983 23.7 22.4 1992 –12.1 7.6
1975 35.4 37.2 1984 7.4 6.1 1993 32.9 10.1
1976 2.5 23.6 1985 56.2 31.6 1994 6.2 1.3
1977 18.1 –7.4 1986 69.4 18.6 1995 11.2 37.6
1978 32.6 6.4 1987 24.6 5.1 1996 6.4 23.0
1979 4.8 18.2 1988 28.5 16.8 1997 2.1 33.4

Source: The U.S. returns are for the Standard & Poor’s 500 Index. The overseas returns are for the Morgan
Stanley Europe, Australasia, Far East (EAFE) index.

(a) Make a scatterplot suitable for predicting overseas returns from U.S. returns.

(b) Find the correlation and r2. Describe the relationship between U.S. and overseas
returns in words, using r and r2 to make your description more precise.

(c) Find the least-squares regression line of overseas returns on U.S. returns. Draw the
line on the scatterplot.

(d) In 1997, the return on U.S. stocks was 33.4%. Use the regression line to predict the
return on overseas stocks. The actual overseas return was 2.1%. Are you confident that
predictions using the regression line will be quite accurate? Why?

(e) Circle the point that has the largest residual (either positive or negative). What
year is this? Are there any points that seem likely to be very influential?

3.57 WHAT’S MY GRADE? In Professor Friedman’s economics course the correlation
between the students’ total scores prior to the final examination and their final
examination scores is r = 0.6. The pre-exam totals for all students in the course have
mean 280 and standard deviation 30. The final exam scores have mean 75 and stan-
dard deviation 8. Professor Friedman has lost Julie’s final exam but knows that her
total before the exam was 300. He decides to predict her final exam score from her
pre-exam total.

(a) What is the slope of the least-squares regression line of final exam scores on pre-
exam total scores in this course? What is the intercept?

(b) Use the regression line to predict Julie’s final exam score.
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(c) Julie doesn’t think this method accurately predicts how well she did on the final
exam. Calculate r2 and use the value you get to argue that her actual score could have
been much higher (or much lower) than the predicted value.

3.58 A NONSENSE PREDICTION Use the least-squares regression line for the data in
Exercise 3.55 to predict Sarah’s height at age 40 years (480 months). Your predic-
tion is in centimeters. Convert it to inches using the fact that a centimeter is 0.3937
inch.

The prediction is impossibly large. It is not reasonable to use data for 36 to 60
months to predict height at 480 months.

3.59 INVESTING AT HOME AND OVERSEAS Exercise 3.56 examined the relationship between
returns on U.S. and overseas stocks. Investors also want to know what typical returns
are and how much year-to-year variability (called volatility in finance) there is.
Regression and correlation do not answer these questions.

(a) Find the five-number summaries for both U.S. and overseas returns, and make
side-by-side boxplots to compare the two distributions.

(b) Were returns generally higher in the United States or overseas during this period?
Explain your answer.

(c) Were returns more volatile (more variable) in the United States or overseas during
this period? Explain your answer.

3.60 WILL I BOMB THE FINAL? We expect that students who do well on the midterm exam
in a course will usually also do well on the final exam. Gary Smith of Pomona College
looked at the exam scores of all 346 students who took his statistics class over a 10-year
period.18 The least-squares line for predicting final exam score from midterm exam
score was ŷ = 46.6 + 0.41x.

Octavio scores 10 points above the class mean on the midterm. How many points
above the class mean do you predict that he will score on the final? (Hint: Use the fact
that the least-squares line passes through the point ( , ) and the fact that Octavio’s
midterm score is + 10. This is an example of the phenomenon that gave “regression”
its name: students who do well on the midterm will on the average do less well, but still
above average, on the final.)

3.61 NAHYA INFANT WEIGHTS A study of nutrition in developing countries collected data
from the Egyptian village of Nahya. Here are the mean weights (in kilograms) for 170
infants in Nahya who were weighed each month during their first year of life.

Age (months): 1 2 3 4 5 6 7 8 9 10 11 12
Weight (kg): 4.3 5.1 5.7 6.3 6.8 7.1 7.2 7.2 7.2 7.2 7.5 7.8

(a) Plot the weight against time.

(b) A hasty user of statistics enters the data into software and computes the least-
squares line without plotting the data. The result is

THE REGRESSION EQUATION IS
WEIGHT = 4.88 + 0.267 AGE

x
yx
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Plot this line on your graph. Is it an acceptable summary of the overall pattern of
growth? Remember that you can calculate the least-squares line for any set of two-
variable data. It’s up to you to decide if it makes sense to fit a line.

(c) Fortunately, the software also prints out the residuals from the least-squares line.
In order of age along the rows, they are

–0.85 –0.31 0.02 0.35 0.58 0.62
0.45 0.18 –0.08 –0.35 –0.32 –0.28

Verify that the residuals have sum 0 (except for roundoff error). Plot the residuals
against age and add a horizontal line at 0. Describe carefully the pattern that you see.

CHAPTER REVIEW
Chapters 1 and 2 dealt with data analysis for a single variable. In this chap-
ter, we have studied analysis of data for two or more variables. The proper
analysis depends on whether the variables are categorical or quantitative
and on whether one is an explanatory variable and the other a response
variable.

Data analysis begins with graphs and then adds numerical summaries of
specific aspects of the data.

This chapter concentrates on relations between two quantitative variables.
Scatterplots show the relationship, whether or not there is an explanatory-
response distinction. Correlation describes the strength of a linear relationship,
and least-squares regression fits a line to data that have an explanatory-response
relation.
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Plot your data.
Scatterplot

Interpret what you see:
direction, form, strength. Linear?

Mathematical model?
Regression line?

Numerical summary?
x, y, sx, sy, and r?
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Here is a review list of the most important skills you should have gained
from studying this chapter.

A. DATA

1. Recognize whether each variable is quantitative or categorical.

2. Identify the explanatory and response variables in situations where one vari-
able explains or influences another.

B. SCATTERPLOTS

1. Make a scatterplot to display the relationship between two quantitative vari-
ables. Place the explanatory variable (if any) on the horizontal scale of the plot.

2. Add a categorical variable to a scatterplot by using a different plotting sym-
bol or color.

3. Describe the form, direction, and strength of the overall pattern of a scatter-
plot. In particular, recognize positive or negative association and linear (straight-
line) patterns. Recognize outliers in a scatterplot.

C. CORRELATION

1. Using a calculator, find the correlation r between two quantitative variables.

2. Know the basic properties of correlation: r measures the strength and direction
of only linear relationships; –1 � r � 1 always; r = �1 only for perfect straight-
line relations; r moves away from 0 toward �1 as the linear relation gets stronger.

D. STRAIGHT LINES

1. Explain what the slope b and the intercept a mean in the equation y = a �
bx of a straight line.

2. Draw a graph of the straight line when you are given its equation.

E. REGRESSION

1. Using a calculator, find the least-squares regression line of a response vari-
able y on an explanatory variable x from data.

2. Find the slope and intercept of the least-squares regression line from the
means and standard deviations of x and y and their correlation.

3. Use the regression line to predict y for a given x. Recognize extrapolation
and be aware of its dangers.

4. Use r2 to describe how much of the variation in one variable can be
accounted for by a straight-line relationship with another variable.
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5. Recognize outliers and potentially influential observations from a scatter-
plot with the regression line drawn on it.

6. Calculate the residuals and plot them against the explanatory variable x or
against other variables. Recognize unusual patterns.
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FIGURE 3.21 Scatterplot of the heights of the mother and father in 53 pairs of parents.

(a) What is the smallest height of any mother in the group? How many mothers have
that height? What are the heights of the fathers in these pairs?

(b) What is the greatest height of any father in the group? How many fathers have that
height? How tall are the mothers in these pairs?

(c) Are there clear explanatory and response variables, or could we freely choose
which variable to plot horizontally?

(d) Say in words what a positive association between these variables means. The
scatterplot shows a weak positive association. Why do we say the association is
weak?

3.63 IS WINE GOOD FOR YOUR HEART? Table 3.6 below gives data on average per capita
wine consumption and heart disease death rates in 19 countries.

CHAPTER 3 REVIEW EXERCISES
3.62 Figure 3.21 is a scatterplot that displays the heights of 53 pairs of parents. The mother’s
height is plotted on the vertical axis and the father’s height on the horizontal axis.20
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TABLE 3.6 Wine consumption and heart disease

Alcohol Heart disease Alcohol Heart disease 
from wine death rate from wine death rate

Country (liters/year) (per 100,000) Country (liters/year) (per 100,000)

Australia 2.5 211 Netherlands 1.8 167
Austria 3.9 167 New Zealand 1.9 266
Belgium/Lux. 2.9 131 Norway 0.8 227
Canada 2.4 191 Spain 6.5 86
Denmark 2.9 220 Sweden 1.6 207
Finland 0.8 297 Switzerland 5.8 115
France 9.1 71 United Kingdom 1.3 285
Iceland 0.8 211 United States 1.2 199
Ireland 0.7 300 West Germany 2.7 172
Italy 7.9 107

Source: M. H. Criqui, University of California, San Diego, reported in the New York Times, December 28,
1994.

(a) Construct a scatterplot for these data. Describe the relationship between the two
variables.

(b) Determine the equation of the least-squares line for predicting heart disease death
rate from wine consumption using the data in Table 3.6. Determine the correlation.

(c) Interpret the correlation. About what percent of the variation among countries in
heart disease death rates is explained by the straight-line relationship with wine con-
sumption?

(d) Predict the heart disease death rate in another country where adults average 4 liters
of alcohol from wine each year.

(e) The correlation and the slope of the least-squares line in (b) are both negative. Is
it possible for these two quantities to have opposite signs? Explain your answer.

3.64 AGE AND EDUCATION IN THE STATES Because older people as a group have less edu-
cation than younger people, we might suspect a relationship between the percent of
state residents aged 65 and over and the percent who are not high school graduates.
Figure 3.22 is a scatterplot of these variables. The data appear in Tables 1.5 and 1.15
(pages 23 and 70).

(a) There are at least two and perhaps three outliers in the plot. Identify these states,
and give plausible reasons for why they might be outliers.

(b) If we ignore the outliers, does the relationship have a clear form and direction?
Explain your answer.

(c) If we calculate the correlation with and without the three outliers, we get r = 0.067
and r = 0.267. Which of these is the correlation without the outliers? Explain your answer.

3.65 ALWAYS PLOT YOUR DATA! Table 3.7 presents four sets of data prepared by the statisti-
cian Frank Anscombe to illustrate the dangers of calculating without first plotting the data.



TABLE 3.7 Four data sets for exploring correlation and regression

Data Set A

x 10 8 13 9 11 14 6 4 12 7 5
y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Data Set B

x 10 8 13 9 11 14 6 4 12 7 5
y 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74

Data Set C

x 10 8 13 9 11 14 6 4 12 7 5
y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Data Set D

x 8 8 8 8 8 8 8 8 8 8 19
y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 5.56 7.91 6.89 12.50

Source: Frank J. Anscombe, “Graphs in statistical analysis,” American Statistician, 27 (1973), pp. 17–21.

(a) Without making scatterplots, find the correlation and the least-squares regression line
for all four data sets. What do you notice? Use the regression line to predict y for x = 10.

(b) Make a scatterplot for each of the data sets and add the regression line to each plot.

(c) In which of the four cases would you be willing to use the regression line to
describe the dependence of y on x? Explain your answer in each case.
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FIGURE 3.22 Scatterplot of the percent of residents who are not high school graduates against
the percent of residents aged 65 and over in the 50 states, for Exercise 3.64.



3.66 FOOD POISONING Here are data on 18 people who fell ill from an incident of food
poisoning.21 The data give each person’s age in years, the incubation period (the time
in hours between eating the infected food and the first signs of illness), and whether
the victim survived (S) or died (D).

Person: 1 2 3 4 5 6 7 8 9 
Age: 29 39 44 37 42 17 38 43 51
Incubation: 13 46 43 34 20 20 18 72 19
Outcome: D S S D D S D S D

Person: 10 11 12 13 14 15 16 17 18
Age: 30 32 59 33 31 32 32 36 50
Incubation: 36 48 44 21 32 86 48 28 16
Outcome: D D S D D S D S D

(a) Make a scatterplot of incubation period against age, using different symbols for
people who died and those who survived.

(b) Is there an overall relationship between age and incubation period? If so, describe it.

(c) More important, is there a relationship between either age or incubation period
and whether the victim survived? Describe any relations that seem important here.

(d) Are there any unusual cases that may require individual investigation?

3.67 NEMATODES AND TOMATOES Nematodes are microscopic worms. Here are data from an
experiment to study the effect of nematodes in the soil on plant growth. The experimenter
prepared 16 planting pots and introduced different numbers of nematodes. Then he placed
a tomato seedling in each pot and measured its growth (in centimeters) after 16 days.22

Nematodes Seedling growth (cm)

0 10.8 9.1 13.5 9.2
1,000 11.1 11.1 8.2 11.3
5,000 5.4 4.6 7.4 5.0

10,000 5.8 5.3 3.2 7.5

Analyze these data and give your conclusions about the effects of nematodes on plant
growth.

3.68 A HOT STOCK? It is usual in finance to describe the returns from investing in a sin-
gle stock by regressing the stock’s returns on the returns from the stock market as a
whole. This helps us see how closely the stock follows the market. We analyzed the
monthly percent total return y on Philip Morris common stock and the monthly return
x on the Standard & Poor’s 500 Index, which represents the market, for the period
between July 1990 and May 1997. Here are the results:

= 1.304 sx = 3.392 r = 0.5251 
= 1.878 sy = 7.554

A scatterplot shows no very influential observations.

y

x
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(a) Find the equation of the least-squares line from this information. What percent of
the variation in Philip Morris stock is explained by the linear relationship with the
market as a whole?

(b) Explain carefully what the slope of the line tells us about how Philip Morris stock
responds to changes in the market. This slope is called “beta” in investment theory.

(c) Returns on most individual stocks have a positive correlation with returns on the
entire market. That is, when the market goes up, an individual stock tends to also go
up. Explain why an investor should prefer stocks with beta � 1 when the market is ris-
ing and stocks with beta � 1 when the market is falling.

3.69 HUSBANDS AND WIVES The mean height of American women in their early twen-
ties is about 64.5 inches and the standard deviation is about 2.5 inches. The mean
height of men the same age is about 68.5 inches, with standard deviation about 2.7
inches. If the correlation between the heights of husbands and wives is about r = 0.5,
what is the slope of the regression line of the husband’s height on the wife’s height in
young couples? Draw a graph of this regression line. Predict the height of the husband
of a woman who is 67 inches tall.

3.70 MEASURING ROAD STRENGTH Concrete road pavement gains strength over time as it
cures. Highway builders use regression lines to predict the strength after 28 days (when
curing is complete) from measurements made after 7 days. Let x be strength after 7
days (in pounds per square inch) and y the strength after 28 days. One set of data gives
this least-squares regression line:

ŷ = 1389 + 0.96x

(a) Draw a graph of this line, with x running from 3000 to 4000 pounds per square inch.

(b) Explain what the slope b = 0.96 in this equation says about how concrete gains
strength as it cures.

(c) A test of some new pavement after 7 days shows that its strength is 3300 pounds
per square inch. Use the equation of the regression line to predict the strength of this
pavement after 28 days. Also draw the “up and over” lines from x = 3300 on your graph
(as in Figure 3.10. page 150).

3.71 COMPETITIVE RUNNERS Good runners take more steps per second as they speed up.
Here are the average numbers of steps per second for a group of top female runners at
different speeds. The speeds are in feet per second.23

Speed (ft/s): 15.86 16.88 17.50 18.62 19.97 21.06 22.11
Steps per second: 3.05 3.12 3.17 3.25 3.36 3.46 3.55

(a) You want to predict steps per second from running speed. Make a scatterplot of the
data with this goal in mind.

(b) Describe the pattern of the data and find the correlation.

(c) Find the least-squares regression line of steps per second on running speed. Draw
this line on your scatterplot.
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(d) Does running speed explain most of the variation in the number of steps a runner
takes per second? Calculate r2 and use it to answer this question.

(e) If you wanted to predict running speed from a runner’s steps per second, would
you use the same line? Explain your answer. Would r2 stay the same?

3.72 RESISTANCE REVISITED

(a) Is correlation a resistant measure? Give an example to support your answer.

(b) Is the least-squares regression line resistant? Give an example to support your answer.

3.73 BANK FAILURES The Franklin National Bank failed in 1974. Franklin was one of
the 20 largest banks in the nation, and the largest ever to fail. Could Franklin’s weak-
ened condition have been detected in advance by simple data analysis? The table
below gives the total assets (in billions of dollars) and net income (in millions of dol-
lars) for the 20 largest banks in 1973, the year before Franklin failed.24 Franklin is
bank number 19.

Bank: 1 2 3 4 5 6 7 8 9 10
Assets: 49.0 42.3 36.3 16.4 14.9 14.2 13.5 13.4 13.2 11.8 
Income: 218.8 265.6 170.9 85.9 88.1 63.6 96.9 60.9 144.2 53.6

Bank: 11 12 13 14 15 16 17 18 19 20
Assets: 11.6 9.5 9.4 7.5 7.2 6.7 6.0 4.6 3.8 3.4 
Income: 42.9 32.4 68.3 48.6 32.2 42.7 28.9 40.7 13.8 22.2

(a) We expect banks with more assets to earn higher income. Make a scatterplot of
these data that displays the relation between assets and income. Mark Franklin (Bank
19) with a separate symbol.

(b) Describe the overall pattern of your plot. Are there any banks with unusually high
or low income relative to their assets? Does Franklin stand out from other banks in
your plot?

(c) Find the least-squares regression line for predicting a bank’s income from its assets.
Draw the regression line on your scatterplot.

(d) Use the regression line to predict Franklin’s income. Was the actual income high-
er or lower than predicted? What is the residual?

3.74 CAN YOU THINK OF A SCATTERPLOT?

(a) Draw a scatterplot that has a positive correlation such that when one point is
added, the correlation becomes negative. Circle the influential point.

(b) Draw a scatterplot that has a correlation close to 0 (say less than 0.1) such that when one
point is added, the correlation is close to 1 (say greater than 0.9). Circle the influential point.

3.75 WILL WOMEN SOON OUTRUN MEN? Table 3.8 shows the men’s and women’s world
records in the 800-meter run.
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TABLE 3.8 Men’s and women’s world records in the 800-meter run

Year Men’s record Women’s record Year Men’s record Women’s record

1905 113.4 — 1955 105.7 125.0
1915 111.9 — 1965 104.3 118.0
1925 111.9 144.0 1975 104.1 117.5
1935 109.7 135.6 1985 101.73 113.28
1945 106.6 132.0 1995 101.73 113.28

Source: This exercise was suggested in an article by Edward Wallace in Mathematics Teacher,
86, no. 9 (December 1993), p. 741.

(a) For each gender separately, do the following: Enter the data into your calculator
or computer package and then plot a scatterplot. (Use the box plotting symbol for the
men, and use the � plotting symbol for the women.) Describe the trend, if there is
one. Perform least-squares regression and calculate the correlation. Comment on the
suitability of the LSRL as a model for the data and interpret the correlation. Identify
any regression outliers and influential observations.

(b) Brian Whipp and Susan Ward wrote an article based on the 800-meter run data
entitled “Will Women Soon Outrun Men?” which appeared in the British journal
Nature in 1992. They suggested in the article that women have made more progress in
track events over the last half-century than men, hence the title of the article. Extend
your calculator viewing window so that you can see both data sets and least-squares
lines, and determine the intersection of the two LSRLs. Then comment on the
premise of the Nature article.

3.76 MORE ON MANATEES Exercises 3.6 (page 125), 3.9 (page 129) and 3.41 (page 157)
investigated the association between manatees killed and the number of powerboat
registrations. For this exercise, you are to use the data for the years 1977 to 1994. Here
is part of the output from the regression command in the Minitab statistical software:

The regression equation is
Killed = –35.2 + 0.113 Boats

Unusual Observations
Obs. Boats Killed Fit Stdev.Fit Residual St.Resid
17 716 35.00 45.51 1.92 –10.51 –2.08R

R denotes an obs. with a large st. resid.

(a) Minitab checks for large residuals and influential observations. It calls attention to
one observation that has a somewhat large residual. Circle this observation on your
plot. We have no reason to remove it.

(b) Residuals from least-squares regression often have a distribution that is roughly nor-
mal. So Minitab reports the standardized residuals—that’s what St.Resid means. Use
the 68–95–99.7 rule for normal distributions to say how surprising a residual with stan-
dardized value –2.08 is.
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3.77 JET SKI FATALITIES Exercise 3.7 (page 125) examined the association between the
number of jet ski accidents and the number of jet skis in use during the period 1987
to 1996. The data also included the number of fatalities during those years.

(a) Use the methods of this chapter to investigate a possible association between the
number of fatalities and the number of jet skis in use. Report your findings and sup-
port them with the appropriate numerical and graphical analyses.
(b) Use a search engine on the Internet to see which states have passed laws to regu-
late the use of jet skis in an attempt to reduce the number of accidents and fatalities.
Are there any federal regulations for the operation of jet skis?
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NOTES AND DATA SOURCES
1. Data from Personal Watercraft Industry Association, U.S. Coast Guard.
2. Based on T. N. Lam, “Estimating fuel consumption from engine size,” Journal of
Transportation Engineering, 111 (1985), pp. 339–357. The data for 10 to 50 km/h are
measured; those for 60 and higher are calculated from a model given in the paper
and are therefore smoothed.
3. A sophisticated treatment of improvements and additions to scatterplots is W. S.
Cleveland and R. McGill, “The many faces of a scatterplot,” Journal of the American
Statistical Association, 79 (1984), pp. 807–822.
4. Data provided by Darlene Gordon, Purdue University.
5. Data from Consumer Reports, June 1986, pp. 366–367.
6. Data for 1995, from the 1997 Statistical Abstract of the United States.
7. The data are from M. A. Houck et al., “Allometric scaling in the earliest fossil
bird, Archaeopteryx lithographica,” Science, 247 (1990), pp. 195–198. The authors
conclude from a variety of evidence that all specimens represent the same species.
8. From a survey by the Wheat Industry Council reported in USA Today, October
20, 1983. 
9. The data are from W. L. Colville and D. P. McGill, “Effect of rate and method of
planting on several plant characters and yield of irrigated corn,” Agronomy Journal,
54 (1962), pp. 235–238.
10. Modified from M. C. Wilson and R. E. Shade, “Relative attractiveness of various
luminescent colors to the cereal leaf beetle and the meadow spittlebug,” Journal of
Economic Entomology, 60 (1967), pp. 578–580.
11. A careful study of this phenomenon is W. S. Cleveland, P. Diaconis, and R.
McGill, “Variables on scatterplots look more highly correlated when the scales are
increased,” Science, 216 (1982), pp. 1138–1141.
12. T. Rowe Price Report, winter 1997, p. 4.
13. From W. M. Lewis and M. C. Grant, “Acid precipitation in the western United
States,” Science, 207 (1980), pp. 176–177.
14. Data from E. P. Hubble, “A relation between distance and radial velocity among
extra-galactic nebulae,” Proceedings of the National Academy of Sciences, 15 (1929),
pp. 168–173.
15. Based on a plot in G. D. Martinsen, E. M. Driebe, and T. G. Whitham,
“Indirect interactions mediated by changing plant chemistry: beaver browsing bene-
fits beetles,” Ecology, 79 (1998), pp. 192–200.



16. From the Philadelphia City Paper, May 23–29, 1997. Because the sodas served
vary in size, we have converted soda prices to the price of a 16-ounce soda at each
price per ounce.
17. From a presentation by Charles Knauf, Monroe County (New York)
Environmental Health Laboratory.
18. Gary Smith, “Do statistics test scores regress toward the mean?” Chance, 10, No.
4(1997), pp. 42–45.
19. Data provided by Peter Cook, Purdue University.
20. The data are a random sample of 53 from the 1079 pairs recorded by K. Pearson
and A. Lee, “On the laws of inheritance in man,” Biometrika, November 1903, 
p. 408.
21. Modified from data provided by Dana Quade, University of North Carolina.
22. Data provided by Matthew Moore.
23. Data from R.C. Nelson, C.M. Brooks, and N.L. Pike, “Biomechanical compari-
son of male and female distance runners,” in P. Milvy (ed.), The Marathon:
Physiological, Medical, Epidemiological, and Psychological Studies, New York
Academy of Sciences, 1977, pp. 793–807.
24. Data from D.E. Booth, Regression Methods and Problem Banks, COMAP, Inc.,
1986.
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CARL FRIEDRICH GAUSS

The Gaussian Distributions
By age 18, Carl Friedrich Gauss (1777–1855) had indepen-
dently discovered the binomial theorem, the arithmetic-
geometric mean, the law of quadratic reciprocity, and the
prime-number theorem. By age 21, he had made one of his

most important discoveries: the construction of a regular 17-sided polygon by ruler
and compasses, the first advance in the field since the early Greeks. 

Gauss’s contributions to the field of statistics include the method of least
squares and the normal distribution, frequently called a Gaussian distribution
in his honor. The normal distribution arose as a result of his attempts to
account for the variation in individual observations of stellar locations. In
1801, Gauss predicted the position of a newly discovered asteroid, Ceres.
Although he did not disclose his methods at the time, Gauss had used his
least-squares approximation method. When the French mathematician
Legendre published his version of the method of least-squares in 1805,
Gauss’s response was that he had known the method for years but had never
felt the need to publish. This was his frequent response to the discoveries of
fellow scientists. Gauss was not being boastful; rather, he cared little for fame.

In 1807, Gauss was appointed director of the
University of Göttingen Observatory, where he worked
for the rest of his life. He made important discoveries in
number theory, algebra, conic sections and elliptic
orbits, hypergeometric functions, infinite series, differ-
ential equations, differential geometry, physics, and
astronomy. Five years before Samuel Morse, Gauss built
a primitive telegraph device that could send messages
up to a mile away. It is probably fair to say that
Archimedes, Newton, and Gauss are in a league of their
own among the great mathematicians.

Gauss’s contributions to
the field of statistics
include the method of
least-squares and the 
normal distribution, 
frequently called a
Gaussian distribution in
his honor.
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ACTIVITY 4 Modeling the Spread of Cancer in the Body

Materials: a regular six-sided die for each student; transparency grid; copy
of grid for each student
Cancer begins with one cell, which divides into two cells.1 Then these two cells
divide and produce four cells. All the cancer cells produced are exactly like the
original cell. This process continues until there is some intervention such as radi-
ation or chemotherapy to interrupt the spread of the disease or until the patient
dies. In this activity you will simulate the spread of cancer cells in the body.

1. Select one student to represent the original bad cell. That person rolls
the die repeatedly, each roll representing a year. The number 5 will signal
a cell division. When a 5 is rolled, a new student from the class will receive
a die and join the original student (bad cell), so that there are now two can-
cer cells. These two students should be physically separated from the rest of
the class, perhaps in a corner of the room.

2. As the die is rolled, another student will plot points on a transparency
grid on the overhead projector. “Time,” from 0 to 25 years, is marked on the
horizontal axis, and the “Number of cancer cells,” from 0 to 50, is on the
vertical axis. The points on the grid will form a scatterplot.

3. At a signal from the teacher, each “cancer cell” will roll his or her die. If
anyone rolls the number 5, a new student from the class receives a die and
joins the circle of cancer cells. The total number of cancer cells is counted,
and the next point on the grid is plotted. The simulation continues until all
students in the class have become cancer cells.

Questions:
Do the points show a pattern? If so, is the pattern linear? Is it a curved pattern?
What mathematical function would best describe the pattern of points? 

Each student should keep a copy of the transparency grid with the plotted
points. We will analyze the results later in the chapter, after establishing some
principles.
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4.1 TRANSFORMING RELATIONSHIPS
How is the weight of an animal’s brain related to the weight of its body? Figure
4.1 is a scatterplot of brain weight against body weight for 96 species of mam-
mals.2 This line is the least-squares regression line for predicting brain weight
from body weight. The outliers are interesting. We might say that dolphins and
humans are smart, hippos are dumb, and elephants are just big. That’s because
dolphins and humans have larger brains than their body weights suggest, hip-
pos have smaller brains, and the elephant is much heavier than any other
mammal in both body and brain.
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FIGURE 4.1 Scatterplot of brain weight against body weigth for 96 species of mammals.

The plot in Figure 4.1 is not very satisfactory. Most mammals are so small relative to
elephants and hippos that their points overlap to form a blob in the lower-left corner
of the plot. The correlation between brain weight and body weight is r = 0.86, but this
is misleading. If we remove the elephant, the correlation for the other 95 species is r =
0.50. Figure 4.2 is a scatterplot of the data with the four outliers removed to allow a
closer look at the other 92 observations. We can now see that the relationship is not lin-
ear. It bends to the right as body weight increases.

EXAMPLE 4.1 MODELING MAMMAL BRAIN WEIGHT VERSUS BODY WEIGHT
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Biologists know that data on sizes often behave better if we take logarithms before
doing more analysis. Figure 4.3 plots the logarithm of brain weight against the loga-
rithm of body weight for all 96 species. The effect is almost magical. There are no
longer any extreme outliers or very influential observations. The pattern is very linear,
with correlation r = 0.96. The vertical spread about the least-squares line is similar
everywhere, so that predictions of brain weight from body weight will be about equally
precise for any body weight (in the log scale).
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FIGURE 4.2 Brain weight against body weight for mammals, with outliers removed.

FIGURE 4.3 Scatterplot of the logarithm of brain weight against the logarithm of body weight for
96 species of mammals.



Example 4.1 shows that working with a function of our original measurements
can greatly simplify statistical analysis. Applying a function such as the logarithm
or square root to a quantitative transforming variable is called transforming or 
reexpressing the data. We will see in this section that understanding how simple
functions work helps us choose and use transformations. Because we may want to
transform either the explanatory variable x or the response variable y in a scatterplot,
or both, we will call the variable t when talking about transforming in general.

First steps in transforming
Transforming data amounts to changing the scale of measurement that was
used when the data were collected. We can choose to measure temperature in
degrees Fahrenheit or in degrees Celsius, distance in miles or in kilometers.
These changes of units are linear transformations, discussed on pages 53 to 55.
Linear transformations cannot straighten a curved relationship between two
variables. To do that, we resort to functions that are not linear. The logarithm,
applied in Example 4.1, is a nonlinear function. Here are some others.

• How shall we measure the size of a sphere or of such roughly spherical
objects as grains of sand or bubbles in a liquid? The size of a sphere can be
expressed in terms of the diameter t, in terms of surface area (proportional to
t2), or in terms of volume (proportional to t3). Any one of these powers of the
diameter may be natural in a particular application.

• We commonly measure the fuel consumption of a car in miles per gallon, which
is how many miles the car travels on 1 gallon of fuel. Engineers prefer to measure
in gallons per mile, which is how many gallons of fuel the car needs to travel 1 mile.
This is a reciprocal transformation. A car that gets 25 miles per gallon uses

The reciprocal is a negative power 1/t = t–1.

The transformations we have mentioned—linear, positive and negative
powers, and logarithms—are those used in most statistical problems. They are
all monotonic.

1 1
25

0 04
miles per gallon

gallons per mile= = .
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transforming
reexpressing

MONOTONIC FUNCTIONS

A monotonic function f(t) moves in one direction as its argument t
increases.

A monotonic increasing function preserves the order of data. That is, if 
a � b, then f(a) � f(b).

A monotonic decreasing function reverses the order of data. That is, if 
a � b, then f(a) � f(b).



The graph of a linear function is a straight line. The graph of a monotonic
increasing function is increasing everywhere. A monotonic decreasing function
has a graph that is decreasing everywhere. A function can be monotonic over
some range of t without being everywhere monotonic. For example, the square
function t2 is monotonic increasing for t � 0. If the range of t includes both pos-
itive and negative values, the square is not monotonic—it decreases as t increases
for negative values of t and increases as t increases for positive values.

Figure 4.4 compares three monotonic increasing functions and three
monotonic decreasing functions for positive values of the argument t. Many
variables take only 0 or positive values, so we are particularly interested in how
functions behave for positive values of t. The increasing functions for t � 0 are

Linear a + bt, slope b � 0

Square t2

Logarithm log t
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Linear, positive slope Square Logarithm

Linear, negative slope Reciprocal square root Reciprocal

FIGURE 4.4 Three monotonic increasing functions and three monotonic decreasing functions.



The decreasing functions for t � 0 in the lower panel of Figure 4.4 are

Linear a + bt, slope b � 0

Reciprocal square root

Reciprocal 1/t, or t–1

Nonlinear monotonic transformations change data enough to alter the
shape of distributions and the form of relations between two variables, yet are
simple enough to preserve order and allow recovery of the original data. We
will concentrate on powers and logarithms. The even-numbered powers t2, t4,
and so on are monotonic increasing for t � 0, but not when t can take both
negative and positive values. The logarithm is not even defined unless t � 0.
Our strategy for transforming data is therefore as follows:

1. If the variable to be transformed takes values that are 0 or negative, first
apply a linear transformation to make the values all positive. Often we just add
a constant to all the observations.

2. Then choose a power or logarithmic transformation that simplifies the data,
for example, one that approximately straightens a scatterplot.

EXERCISES
4.1 Which of these transformations are monotonic increasing? Monotonic decreasing?
Not monotonic? Give an equation for each transformation.

(a) You transform height in inches to height in centimeters.

(b) You transform typing speed in words per minute into seconds needed to type a word.

(c) You transform the diameter of a coin to its circumference.

(d) A composer insists that her new piece of music should take exactly 5 minutes to
play. You time several performances, then transform the time in minutes into squared
error, the square of the difference between 5 minutes and the actual time.

4.2 Suppose that t is an angle, measured in degrees between 0° and 180°. On
what part of this range is the function sin t monotonic increasing? Monotonic
decreasing?

The ladder of power transformations
Though simple in algebraic form and easy to compute with a calculator, the
power and logarithm functions are varied in their behavior. It is natural to
think of powers such as

. . . , t–1, t–1/2, t1/2, t, t2, . . .

1 1 2/ , /t tor −
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as a hierarchy or ladder. Some facts about this ladder will help us choose
transformations. In all cases, we look only at positive values of the argu-
ment t.

200 Chapter 4 More on Two-Variable Data

MONOTONICITY OF POWER FUNCTIONS

Power functions tp for positive powers p are monotonic increasing for values 
t � 0. They preserve the order of observations. This is also true of the logarithm.

Power functions tp for negative powers p are monotonic decreasing for values 
t > 0. They reverse the order of the observations.

It is hard to interpret graphs when the order of the original observations
has been reversed. We can make a negative power such as the reciprocal 1/t
monotonic increasing rather than monotonic decreasing by using –1/t instead.
Figure 4.5 takes this idea a step farther. This graph compares the ladder of
power functions in the form

The reciprocal (power p = –1), for example, is graphed as

This linear transformation does not change the nature of the power func-
tions tp, except that all are now monotonic increasing. It is chosen so that
every power has the value 0 at t = 1 and also has slope 1 at that point. So
the graphs in Figure 4.5 all touch at t = 1 and go through that point at the
same slope.

Look at the p = 0 graph in Figure 4.5. The 0th power t0 is just the con-
stant 1, which is not very useful. The p = 0 entry in the figure is not constant.
In fact, it is the logarithm, log t. That is, the logarithm fits into the ladder of
power transformations at p = 0.3

Figure 4.5 displays another key fact about these functions. The graph of
a linear function (power p = 1) is a straight line. Powers greater than 1 give
graphs that bend upward. That is, the transformed variable grows ever faster
as t gets larger. Powers less than 1 give graphs that bend downward. The
transformed values continue to grow with t, but at a rate that decreases as t
increases. What is more, the sharpness of the bend increases as we move
away from p = 1 in either direction.

1 1
1

1
1/ x
x

−
−

= −

t
p

p −1
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CONCAVITY OF POWER FUNCTIONS

Power transformations tp for powers p greater than 1 are concave up; that
is, they have the shape . These transformations push out the right tail of
a distribution and pull in the left tail. This effect gets stronger as the power
p moves up away from 1.

Power transformations tp for powers p less than 1 (and the logarithm for 
p = 0) are concave down; that is, they have the shape . These transforma-
tions pull in the right tail of a distribution and push out the left tail. This
effect gets stronger as the power p moves down away from 1.

Figure 4.6(a) is a scatterplot of data from the World Bank.4 The individuals are all the
world’s nations for which data are available. The explanatory variable x is a measure of

EXAMPLE 4.2 A COUNTRY’S GDP AND LIFE EXPECTANCY
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FIGURE 4.5 The ladder of power functions in the form (tp – 1)/p.
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Life expectancy does not have a large range, but we can see that the distribution
of GDP is right-skewed and very spread out. So GDP is a better candidate for trans-
formation. We want to pull in the long right tail, so we try transformations with p � 1.
Figures 4.6(b), (c), and (d) show the results of three transformations of GDP. The r-
value in each figure is the correlation when the three outliers are omitted.

The square root , with p = 1/2, reduces the curvature of the scatterplot, but
not enough. The logarithm log x (p = 0) straightens the pattern more, but it still 
bends to the right. The reciprocal square root , with p = –1/2, gives a pattern
that is quite straight except for the outliers. To avoid reversing the order of the obser-
vations, we actually used .−1/ x

1/ x

x

FIGURE 4.6 The ladder of transformations at work. The data are life expectancy and gross domes-
tic product (GDP) for 115 nations. Panel (a) displays the original data. Panels (b), (c), and (d)
transform GDP, moving down the ladder away from linear functions.

how rich a country is: the gross domestic product (GDP) per person. GDP is the total
value of the goods and services produced in a country, converted into dollars. The
response variable y is life expectancy at birth.

Life expectancy increases in richer nations, but only up to a point. The pattern in
Figure 4.6(a) at first rises rapidly as GDP increases but then levels out. Three African
nations (Botswana, Gabon, and Namibia) are outliers with much lower life expectancy
than the overall pattern suggests. Can we straighten the overall pattern by transforming?
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EXERCISES
4.3 MUSCLE STRENGTH AND WEIGHT, I Bigger people are generally stronger than smaller
people, though there’s a lot of individual variation. Let’s find a theoretical model. Body
weight increases as the cube of height. The strength of a muscle increases with its cross-
sectional area, which we expect to go up as the square of height. Put these together:
What power law should describe how muscle strength increases with weight?

4.4 MUSCLE STRENGTH AND WEIGHT, II Let’s apply your result from the previous problem.
Graph the power law relation between strength and body weight for weights from (say)
1 to 1000. (Constants in the power law just reflect the units of measurement used, so
we can ignore them.) Use the graph to explain why a person 1 million times as heavy
as an ant can’t lift a million times as much as an ant can lift.

4.5 HEART RATE AND BODY RATE Physiologists say that resting heart rate of humans is related
to our body weight by a power law. Specifically, average heart rate y (beats per minute)
is found from body weight x (kilograms) by5

y = 241 � x–1/4

Let’s try to make sense of this. Kleiber’s law says that energy use in animals, including
humans, increases as the 3/4 power of body weight. But the weight of human hearts
and lungs and the volume of blood in the body are directly proportional to body
weight. Given these facts, you should not be surprised that heart rate is proportional to
the –1/4 power of body weight. Why not?

Example 4.2 shows the ladder of powers at work. As we move down the ladder
from linear transformations (power p = 1), the scatterplot gets straighter. Moving
farther down the ladder, to the reciprocal 1/x = x–1, begins to bend the plot in the
other direction. But this “try it and see’’ approach isn’t very satisfactory. That life
expectancy depends linearly on does not increase our understanding of
the relationship between the health and wealth of nations. We don’t recommend
just pushing buttons on your calculator to try to straighten a scatterplot.

It is much more satisfactory to begin with a theory or mathematical model
that we expect to describe a relationship. The transformation needed to make
the relationship linear is then a consequence of the model. One of the most
common models is exponential growth.

Exponential growth
A variable grows linearly over time if it adds a fixed increment in each equal time
period. Exponential growth occurs when a variable is multiplied by a fixed num-
ber in each time period. To grasp the effect of multiplicative growth, consider a
population of bacteria in which each bacterium splits into two each hour.
Beginning with a single bacterium, we have 2 after one hour, 4 at the end of two
hours, 8 after three hours, then 16, 32, 64, 128, and so on. These first few num-
bers are deceiving. After 1 day of doubling each hour, there are 224 (16,777,216)
bacteria in the population. That number then doubles the next hour! Try successive
multiplications by 2 on your calculator to see for yourself the very rapid increase
after a slow start. Figure 4.7 shows the growth of the bacteria population over 24

1/ GDP
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A dollar invested at an annual rate of 6% turns into $1.06 in a year. The original dollar
remains and has earned $0.06 in interest. That is, 6% annual interest means that any
amount on deposit for the entire year is multiplied by 1.06. If the $1.06 remains invest-
ed for a second year, the new amount is therefore 1.06 � 1.06, or 1.062. That is only
$1.12, but this in turn is multiplied by 1.06 during the third year, and so on. After x
years, the dollar has become 1.06x dollars.

If the Native Americans who sold Manhattan Island for $24 in 1626 had deposit-
ed the $24 in a savings account at 6% annual interest, they would now have almost $80
billion. Our savings accounts don’t make us billionaires, because we don’t stay around
long enough. A century of growth at 6% per year turns $24 into $8143. That’s 1.06100

times $24. By 1826, two centuries after the sale, the account would hold a bit over $2.7
million. Only after a patient 302 years do we finally reach $1 billion. That’s real
money, but 302 years is a long time.

EXAMPLE 4.3 THE GROWTH OF MONEY

exponential growth model
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FIGURE 4.7 Growth of a bacteria population over a 24-hour period.

LINEAR VERSUS EXPONENTIAL GROWTH

Linear growth increases by a fixed amount in each equal time period.
Exponential growth increases by a fixed percentage of the previous total.

Populations of living things—like bacteria and the malignant cancer cells
in Activity 4—tend to grow exponentially if not restrained by outside limits
such as lack of food or space. More pleasantly, money also displays exponen-
tial growth when returns to an investment are compounded. Compounding
means that last period’s income earns income this period.

hours. For the first 15 hours, the population is too small to rise visibly above the
zero level on the graph. It is characteristic of exponential growth that the increase
appears slow for a long period, then seems to explode.

The count of bacteria after x hours is 2x. The value of $24 invested for x years
at 6% interest is 24 � 1.06x. Both are examples of the exponential growth model
y = a � bx for different constants a and b. In this model, the response y is mul-
tiplied by b in each time period.
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The logarithm transformation
The growth curve for the number of cell phone subscribers does look some-
what like the exponential curve in Figure 4.7, but our eyes are not very good
at comparing curves of roughly similar shape. We need a better way to check
whether growth is exponential. If you suspect exponential growth, you should
first calculate ratios of consecutive terms. In Table 4.2, we have divided each
entry in the “Subscribers” column (the y variable) by its predecessor, leaving
out both the first value of y, because it doesn’t have a predecessor, and the sec-
ond value, because the x increment is not 1. Notice that the ratios are not
exactly the same, but they are approximately the same. 

There is an increasing trend, but the overall pattern is not linear. The number of
cell phone subscribers has increased much faster than linear growth. The pattern of
growth follows a smooth curve, and it looks a lot like an exponential curve. Is this expo-
nential growth?
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FIGURE 4.8 Scatterplot of cell phone growth versus year, 1990–1999.

Does the exponential growth model sometimes describe real data that don’t arise
from any obvious process of multiplying by a fixed number over and over again? Let’s
look at the cell phone phenomenon in the United States. Cell phones have revolu-
tionized the communications industry, the way we do business, and the way we stay
in touch with friends and family. The industry enjoyed substantial growth in the
1990s. One way to measure cell phone growth in the 1990s is to look at the number
of subscribers. Table 4.1 and Figure 4.8 show the growth of cell phone subscribers
from 1990 to 1999.

TABLE 4.1 The number of cell phone subscribers in the United States, 1990–1999

Year 1990 1993 1994 1995 1996 1997 1998 1999
Subscribers
(thousands) 5283 16,009 24,134 33,786 44,043 55,312 69,209 86,047

Source: Statistical Abstract of the United States, 2000 and the Cellular Telecommunications Industry
Association, Washington, D.C.

EXAMPLE 4.4 GROWTH OF CELL PHONE USE
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TABLE 4.2 Ratios of consecutive y-values
and the logarithms of the y-values for the
cell phone data of Example 4.4

Year Subscribers Ratios log(y)

1990 5,283 — 3.72288
1993 16,009 — 4.20436
1994 24,134 1.51 4.38263
1995 33,786 1.40 4.52874
1996 44,043 1.30 4.64388
1997 55,312 1.26 4.74282
1998 69,209 1.25 4.84016
1999 86,047 1.24 4.93474

The next step is to apply a mathematical transformation that changes
exponential growth into linear growth—and patterns of growth that are not
exponential into something other than linear. But before we do the transfor-
mation, we need to review the properties of logarithms. The basic idea of a log-
arithm is this: log28 = 3 because 3 is the exponent to which the base 2 must be
raised to yield 8. Here is a quick summary of algebraic properties of logarithms:

ALGEBRAIC PROPERTIES OF LOGARITHMS

logbx = y if and only if by = x

The rules for logarithms are

1. log(AB) = logA + logB

2. log(A/B) = logA – logB

3. log Xp = p logX

Returning to the cell phone growth model, we hypothesize an exponential model of
the form y = abx where a and b represent constants. The necessary transformation is
carried out by taking the logarithm of both sides of this equation:

log y = log(abx)
= log a + log bx using Rule 1
= log a + (log b)x using Rule 3

EXAMPLE 4.5 TRANSFORMING CELL PHONE GROWTH
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The plot appears to be slightly concave down, but it is more linear than our origi-
nal scatterplot. Applying least-squares regression to the transformed data, Minitab
reports:

LOG(Y) = - 263 + 0.134 YEAR

Predictor Coef Stdev t-ratio p
Constant -263.20 14.63 -17.99 0.000
YEAR 0.134170 0.007331 18.30 0.000

s = 0.05655 R-sq = 98.2% R-sq(adj) = 97.9%

As is usually the case, Minitab tells us more than we want to know, but observe that the
value of r2 is 0.982. That means that 98.2% of the variation in log y is explained by least-
squares regression of log y on x. That’s pretty impressive. Let’s continue. Figure 4.10 is
a plot of the transformed data along with the fitted line.
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FIGURE 4.10 Plot of transformed data with least-squares line.
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FIGURE 4.9 Scatterplot of log(subscribers) versus year.

Notice that log a and log b are constants because a and b are constants. So the right
side of the equation looks like the form for a straight line. That is, if our data really are
growing exponentially and we plot log y versus x, we should observe a straight line for
the transformed data. Table 4.2 includes the logarithms of the y-values. Figure 4.9
plots points in the form (x, log y).
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This is a surprise. But it also suggests an adjustment. The very regular pattern of
the last four points really does look linear. So if the purpose is to be able to predict the
number of subscribers in the year 2000, then one approach would be to discard the
first four points, because they are the oldest and furthest removed from the year 2000,
and retain the last four points. If you do this, the least-squares line for the four trans-
formed points (years 1996 through 1999) is

log NewY = -189 + 0.0970 NewX

and the r2-value improves to 1. The actual r2-value is 0.999897 to six decimal places.
The residual plot is shown in Figure 4.12.
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FIGURE 4.12 Residual plot for reduced transformed data set.

Although there is still a slight pattern in the residual plot, the residuals are very small
in magnitude, and the r2 value is nearly 1.

This appears to be a useful model for prediction purposes. Although the r2-value
is high, one should always inspect the residual plot to further assess the quality of the
model. Figure 4.11 is a residual plot.
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FIGURE 4.11 Residual plot for transformed cell phone growth data.
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Postscript: The stock market tumbled in 2000, the economy floundered, unem-
ployment increased, and the cell phone industry in particular had a very poor year.
So predicting the number of cell phone subscribers in 2000 is risky indeed.

Make sure that you understand the big idea here. The necessary transfor-
mation is carried out by taking the logarithm of the response variable. Your
calculator and most statistical software will calculate the logarithms of all the
values of a variable with a single command. The essential property of the log-
arithm for our purposes is that it straightens an exponential growth curve. If a
variable grows exponentially, its logarithm grows linearly.

Prediction in the exponential growth model
Regression is often used for prediction. When we fit a least-squares regres-
sion line, we find the predicted response y for any value of the explanatory
variable x by substituting our x-value into the equation of the line. In the
case of exponential growth, the logarithms rather than the actual responses
follow a linear pattern. To do prediction, we need to “undo” the logarithm
transformation to return to the original units of measurement. The same
idea works for any monotonic transformation. There is always exactly one
original value behind any transformed value, so we can always go back to
our original scale.

Our examination of cell phone growth left us with four transformed data points and a
least-squares line with equation

log(subscribers) = -189 + 0.0970(year)

To perform the back-transformation, we need to do the inverse operation. The inverse
operation of the logarithmic function is raising 10 to a power. If we raise 10 to the left
side of the equation, and set that equal to 10 raised to the right side of the equation,
we will eliminate the log() on the left;

10log (subscribers) = 10–189 + 0.0970(year)

Then

subscribers = (10–189)(100.0970(year))

To then predict the number of subscribers in the year 2000, we substitute 2000 for year
and solve for number of subscribers. The problem is that the first factor is too small a
quantity for the calculator, and it will evaluate to 0. To get around this machine diffi-
culty, if you have installed the equation of the least-squares line in the calculator as Y1,
then define Y2 to be 10^Y1. Doing this, we find that the predicted number of sub-
scribers for the year 2000 is Y2(2000) = 10,7864.5. Alternatively, we could have coded
the years to avoid the overflow problem.

EXAMPLE 4.6 PREDICTING CELL PHONE GROWTH FOR 2000



210 Chapter 4 More on Two-Variable Data

Year: 1950 1960 1970 1980 1990
Population 

(thousands): 1131 1620 2557 5150 9534

TECHNOLOGY TOOLBOX Modeling exponential growth with the TI-83/89
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Figure 4.13 plots the logarithms of the bacteria counts in Figure 4.7 (page 204). Sure
enough, exact exponential growth turns into an exact straight line when we plot the
logarithms. After 15 hours, for example, the population contains 215 = 32,768 bacte-
ria. The logarithm of 32,768 is 4.515, and this point appears above the 15-hour mark
in Figure 4.13.

EXAMPLE 4.7 TRANSFORMING BACTERIA COUNTS
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FIGURE 4.13 Logarithms of the bacteria counts.

• Assuming an exponential model, here is a plot of log(POP), in L3, versus YEAR on the TI-83. We’ll
plot ln(POP) versus YEAR on the TI-89 since the natural logarithm key is more accessible on the TI-89.
The pattern is the same, but the regression equation numbers will be different.

• Code the years using 1900 as the reference year, 0. Then 1950 is coded as 50, and so forth. Enter the
coded years and population, in thousands, in L1/list1 and L2/list2. Then plot the scatterplot.

The Census Bureau classifies residents of the United States as being either white; black; Hispanic ori-
gin; American Indian, Eskimo, Aleut; or Asian, Pacific Islander. The population totals for these last
two categories, from 1950 to 1990, are6
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• Notice that the values of a and b in the equation of the least-squares line are different for the two
calculators. That’s because we use base 10 (log) on the TI-83 and we used base e (ln) on the TI-89.
The final predicted values will be the same regardless of which route we take. Here are the scatter-
plots with the least-squares lines:

• Despite the high r2-value, you should always inspect the residual plot. Here it is: 
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• The plot still shows a little upward concavity, and the residual plot will confirm this. Next, we
perform least-squares regression on the transformed data.

Ideally, the residual plot should show random scatter about the y = 0 reference line. The fact that the
residual plot still shows a clearly curved pattern tells us that some improvement is still possible. For
now, though, we will accept the exponential model on the basis of the high r2-value (r2 = 0.992). 

• Now we’re ready to predict the population of American Indians, Eskimos, Aleuts, Asians, and
Pacific Islanders for the year 2000. With the regression equation installed as Y1, define Y2 = 10^Y1
on the TI-83, and Y2 = e^Y1 on the TI-89. The predicted population in year 2000 is then Y2(100)
= 15,084.584 on the TI-83,  and 15,084.7 on the TI-89. The difference is due to roundoff error.
Since the table entries are in thousands, the actual predicted population is approximately
15,085,000. Looking at the plots, do you think this prediction will be too high or too low? Why?
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EXERCISES
4.6 GYPSY MOTHS Biological populations can grow exponentially if not restrained by preda-
tors or lack of food. The gypsy moth outbreaks that occasionally devastate the forests of the
Northeast illustrate approximate exponential growth. It is easier to count the number of
acres defoliated by the moths than to count the moths themselves. Here are data on an
outbreak in Massachusetts:7

Year Acres

1978 63,042
1979 226,260
1980 907,075
1981 2,826,095

(a) Plot the number of acres defoliated y against the year x. The pattern of growth
appears exponential.

(b) Verify that y is being multiplied by about 4 each year by calculating the ratio of
acres defoliated each year to the previous year. (Start with 1979 to 1978, when the ratio
is 226,260/63,042 = 3.6.)

(c) Take the logarithm of each number y and plot the logarithms against the year x.
The linear pattern confirms that the growth is exponential.

(d) Verify that the least-squares line fitted to the transformed data is

log ŷ = –1094.51 + 0.5558 � year

(e) Construct and interpret a residual plot for log ŷ on year.

(f) Perform the inverse transformation to express ŷ as an exponential equation.
Display a scatterplot of the original data with the exponential curve model super-
imposed. Is your exponential function a satisfactory model for the data?

(g) Use your model to predict the number of acres defoliated in 1982.

(Postscript: A viral disease reduced the gypsy moth population between the readings in
1981 and 1982. The actual count of defoliated acres in 1982 was 1,383,265.)

4.7 MOORE’S LAW, I Gordon Moore, one of the founders of Intel Corporation, predicted
in 1965 that the number of transistors on an integrated circuit chip would double every
18 months.  This is “Moore’s law,’’ one way to measure the revolution in computing.
Here are data on the dates and number of transistors for Intel microprocessors:8

Processor Date Transistors Processor Date Transistors

4004 1971 2,250 486 DX 1989 1,180,000
8008 1972 2,500 Pentium 1993 3,100,000
8080 1974 5,000 Pentium II 1997 7,500,000
8086 1978 29,000 Pentium III 1999 24,000,000
286 1982 120,000 Pentium 4 2000 42,000,000
386 1985 275,000 

(a) Explain why Moore’s law says that the number of transistors grows exponentially
over time.
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(b) Make a plot suitable to check for exponential growth. Does it appear that the num-
ber of transistors on a chip has in fact grown approximately exponentially?

4.8 MOORE’S LAW, II Return to Moore’s law, described in Exercise 4.7.

(a) Find the least-squares regression line for predicting the logarithm of the number
of transistors on a chip from the date. Before calculating your line, subtract 1970 from
all the dates so that 1971 becomes year 1, 1972 is year 2, and so on.

(b) Suppose that Moore’s law is exactly correct.  That is, the number of transistors is 2250
in year 1 (1971) and doubles every 18 months (1.5 years) thereafter. Write the model for
predicting transistors in year x after 1970. What is the equation of the line that, according
to your model, connects the logarithm of transistors with x? Explain why a comparison of
this line with your regression line from (a) shows that although transistor counts have
grown exponentially, they have grown a bit more slowly than Moore’s law predicts.

4.9 E. COLI (Exact exponential growth) The common intestinal bacterium E. coli is
one of the fastest-growing bacteria. Under ideal conditions, the number of E. coli in a
colony doubles about every 15 minutes until restrained by lack of resources. Starting
from a single bacterium, how many E. coli will there be in 1 hour? In 5 hours?

4.10 GUN VIOLENCE (Exact exponential growth) A paper in a scholarly journal once
claimed (I am not making this up), “Every year since 1950, the number of American
children gunned down has doubled.’’9 To see that this is silly, suppose that in 1950 just
1 child was “gunned down’’ and suppose that the paper’s claim is exactly right.

(a) Make a table of the number of children killed in each of the next 10 years, 1951 to 1960.

(b) Plot the number of deaths against the year and connect the points with a smooth
curve. This is an exponential curve.

(c) The paper appeared in 1995, 45 years after 1950. How many children were killed
in 1995, according to the paper?

(d) Take the logarithm of each of your counts from (a). Plot these logarithms against
the year. You should get a straight line.

(e) From your graph in (d) find the approximate values of the slope b and the inter-
cept a for the line. Use the equation y = a + bx to predict the logarithm of the count
for the 45th year. Check your result by taking the logarithm of the count you found
in (c).

4.11 U.S. POPULATION The following table gives the resident population of the United
States from 1790 to 2000, in millions of persons:

Date Pop. Date Pop. Date Pop. Date Pop.

1790 3.9 1850 23.2 1910 92.0 1970 203.3
1800 5.3 1860 31.4 1920 105.7 1980 226.5
1810 7.2 1870 39.8 1930 122.8 1990 248.7
1820 9.6 1880 50.2 1940 131.7 2000 281.4
1830 12.9 1890 62.9 1950 151.3
1840 17.1 1900 76.0 1960 179.3
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(a) Plot population against time. The growth of the American population appears
roughly exponential.

(b) Plot the logarithms of population against time. The pattern of growth is now clear.
An expert says that “the population of the United States increased exponentially from
1790 to about 1880. After 1880 growth was still approximately exponential, but at a
slower rate.’’ Explain how this description is obtained from the graph.

(c) Use part or all the data to construct  an exponential model for the purpose of
predicting the population in 2010. Justify your modeling decision. Then predict the
population in the year 2010. Do you think your prediction will be too low or too
high? Explain.

(d) Construct a residual plot for the transformed data. What is the value of r2 for the
transformed data?

(e) Comment on the quality of your model.

Power law models
When you visit a pizza parlor, you order a pizza by its diameter, say 10 inches,
12 inches, or 14 inches. But the amount you get to eat depends on the area of
the pizza. The area of a circle is � times the square of its radius.  So the area
of a round pizza with diameter x is

area = �r2 = �(x/2)2 = �(x2/4) = (�/4)x2

This is a power law model of the form

y = a � xp

When we are dealing with things of the same general form, whether circles or
fish or people, we expect area to go up with the square of a dimension such as
diameter or height.  Volume should go up with the cube of a linear dimension.
That is, geometry tells us to expect power laws in some settings.

Biologists have found that many characteristics of living things are
described quite closely by power laws.  There are more mice than elephants,
and more flies than mice—the abundance of species follows a power law with
body weight as the explanatory variable. So do pulse rate, length of life, the
number of eggs a bird lays, and so on. Sometimes the powers can be predicted
from geometry, but sometimes they are mysterious. Why, for example, does the
rate at which animals use energy go up as the 3/4 power of their body weight?
Biologists call this relationship Kleiber’s law. It has been found to work all the
way from bacteria to whales. The search goes on for some physical or geomet-
rical explanation for why life follows power laws. There is as yet no general
explanation, but power laws are a good place to start in simplifying relation-
ships for living things.

power law model
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Exponential growth models become linear when we apply the logarithm
transformation to the response variable y. Power law models become linear when
we apply the logarithm transformation to both variables. Here are the details:

1. The power law model is

y = a � xp

2. Take the logarithm of both sides of this equation. You see that

log y = log a + p log x

That is, taking the logarithm of both variables straightens the scatterplot of y
against x.

3. Look carefully: The power p in the power law becomes the slope of the
straight line that links log y to log x.

Prediction in power law models
If taking the logarithms of both variables makes a scatterplot linear, a power law
is a reasonable model for the original data.  We can even roughly estimate what
power p the law involves by regressing log y on log x and using the slope of the
regression line as an estimate of the power. Remember that the slope is only an
estimate of the p in an underlying power model. The greater the scatter of the
points in the scatterplot about the fitted line, the smaller our confidence that
this estimate is accurate.

The magical success of the logarithm transformation in Example 4.1 on page 195
would not surprise a biologist. We suspect that a power law governs this relationship.
Least-squares regression for the scatterplot in Figure 4.3 on page 196 gives the line

log ŷ = 1.01 + 0.72 � log x

for predicting the logarithm of brain weight from the logarithm of body weight. To
undo the logarithm transformation, remember that for common logarithms with
base 10, y = 10log y. We see that

ŷ = 101.01 + 0.72 log x

= 101.01 � 100.72 log x

= 10.2 � (10log x)0.72

Because 10log x = x, the estimated power model connecting predicted brain weight ŷ
with body weight x for mammals is

EXAMPLE 4.8 PREDICTING BRAIN WEIGHT
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Imagine that you have been put in charge of organizing a fishing tournament in which
prizes will be given for the heaviest fish caught. You know that many of the fish caught
during the tournament will be measured and released. You are also aware that trying
to weigh a fish that is flipping around, in a boat that is rolling with the swells, using
delicate scales will probably not yield very reliable results.

It would be much easier to measure the length of the fish on the boat. What you
need is a way to convert the length of the fish to its weight. You reason that since length
is one-dimensional and weight is three-dimensional, and since a fish 0 units long
would weigh 0 pounds, the weight of a fish should be proportional to the cube of its
length. Thus, a model of the form weight = a � length3 should work. You contact the
nearby marine research laboratory and they provide the average length and weight
catch data for the Atlantic Ocean rockfish Sebastes mentella (Table 4.3).10 The lab also
advises you that the model relationship between body length and weight has been
found to be accurate for most fish species growing under normal feeding conditions.

TABLE 4.3 Average length and weight at different ages for Atlantic Ocean rockfish,
Sebastes mentella

Age (yr) Length (cm) Weight (g) Age (yr) Length (cm) Weight (g)

1 5.2 2 11 28.2 318
2 8.5 8 12 29.6 371
3 11.5 21 13 30.8 455
4 14.3 38 14 32.0 504
5 16.8 69 15 33.0 518
6 19.2 117 16 34.0 537
7 21.3 148 17 34.9 651
8 23.3 190 18 36.4 719
9 25.0 264 19 37.1 726

10 26.7 293 20 37.7 810

EXAMPLE 4.9 FISHING TOURNAMENT

ŷ = 10.2 � x0.72

Based on footprints and some other sketchy evidence, some people think that a
large apelike animal, called Sasquatch or Bigfoot, lives in the Pacific Northwest. His
weight is estimated to be about 280 pounds, or 127 kilograms. How big is Bigfoot’s
brain? Based on the power law estimated from data on other mammals, we predict

ŷ = 10.2 � 1270.72

= 10.2 � 32.7
= 333.7 grams

For comparison, gorillas have an average body weight of about 140 kilograms and an
average brain weight of about 406 grams. Of course, Bigfoot may have a larger brain
than his weight predicts—after all, he has avoided being captured, shot, or videotaped
for many years.
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FIGURE 4.15 Scatterplot of log(weight) versus log(length).
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FIGURE 4.14 Scatterplots of Atlantic Ocean rockfish weight versus length.

Figure 4.14 is a scatterplot of weight in grams versus height in centimeters. Although
the growth might appear to be exponential, we know that it is frequently misleading to
trust too much to the eye. Moreover, we have already decided on a model that makes
sense in this context: weight = a � length3.

If we take the log10 of both sides, we obtain

log(weight) = log a + [3 � log(length)]

This equation looks like a linear equation

Y = A + BX

so we plot log(weight) against log(length). See Figure 4.15.

We visually confirm that the relationship appears very linear. We perform a least-
squares regression on the transformed points [log(length), log(weight)].

The least-squares regression line equation is

log(weight) = –1.8994 + 3.0494 log(length) 

r = 0.99926 and r2 = 0.9985. We see that the correlation r of the logarithms of length
and weight is virtually 1. (Remember, however, that correlation was defined only for
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linear fits.) Despite the very high r-value, it’s still important to look at a residual plot.
The random scatter of the points in Figure 4.16 tells us that the line is a good model
for the logs of length and weight. 
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FIGURE 4.17 Atlantic Ocean rockfish data with power law model.
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FIGURE 4.16 Plot of residuals versus log(length).

The last step is to perform an inverse transformation on the linear regression equation:

log(weight) = –1.8994 + [3.0494 log(length)]  
= –1.8994 + log(length)3.0494

This is the critical step: to remember to use a property of logarithms to write the mul-
tiplicative constant 3.0494 as an exponent. Let’s continue. Raise 10 to the left side of
the equation and set this equal to 10 raised to the right side:

weight = 10–1.8994 � length3.0494

This is the final power equation for the original data. 
The scatterplot of the original data along with the power law model appears in

Figure 4.17. The fit of this model has visual appeal. We will leave it as an exercise to
calculate the sum of the squares of the deviations. It should be noted that the power
of x that we obtained for the model, 3.0494, is very close to the value 3 that we con-
jectured when we proposed the form for our model.

10 10 1 8994 3 0494log(weight) log(length)= − +. .
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EXERCISES
4.12 FISH WEIGHTS

(a) Use the model we derived for approximating the weight of Sebastes mentella,
ŷ = 10–1.8994x3.0494, to determine the sum of the squares of the deviations between
the observed weights (in grams) and the predicted values. Did we minimize
this quantity in the process of constructing our model? If not, what quantity was
minimized?

(b) When we performed least-squares regression of log(weight) on log(length) on
the calculator, residuals were calculated and stored in a list named RESID. Use
this list and the 1-Var Stats command to calculate the sum of the squares of the
residuals. Compare this sum of squares with the sum of squares you calculated 
in (a).

(c) Would you expect the answers in (a) and (b) to be the same or different?
Explain.

4.13 BODY WEIGHT AND LIFETIME Table 4.4 gives the average weight and average life
span in captivity for several species of mammals. Some writers on power laws in biol-
ogy claim that life span depends on body weight according to a power law with power

• Enter the x data (explanatory) into L1/list1 and
the y data (response) into L2/list2.

• Produce a scatterplot of y versus x. Confirm a
nonlinear trend that could be modeled by a power
function in the form y = axb.

• Define L3/list3 to be log(L1) or log(list1), and
define L4/list4 to be log(L2) or log(list2).

• Plot log y versus log x. Verify that the pattern is
approximately linear.

• Regress log y on log x. The command line
should read LinReg a+bx,L3,L4,Y1. This stores the
regression equation as Y1. Remember that Y1 is
really log y. Check the r2-value.

• Construct a residual plot, in the form of either
RESID versus x or RESID versus predicted values
(fits). Ideally, the points in a residual plot should
be randomly scattered above and below the y = 0
reference line.
• Perform the back-transformation to find the
power function y = axb that models the original
data. Define Y2 to be (10^a)(x^b). The calcula-
tor has stored the values of a and b for the most
recent regression performed. Deselect Y1 and
plot Y2 and the scatterplot for the original data
together. 
• To make a prediction for the value x = k, evalu-
ate Y2(k) in the Home screen.

TECHNOLOGY TOOLBOX Power law modeling

The original purpose for developing this model was to approximate the weight of
a fish given its length. Suppose your catch measured 36 centimeters. Our model pre-
dicts a weight of Y2(36) = 702.0836281, or about 702 grams. If you entered a fishing
contest, would you be comfortable with this procedure for determining the weights of
the fish caught, and hence for determining the winner of the contest?



TABLE 4.4 Body weight and lifetime for several species of mammals

Weight Life span Weight Life span
Species (kg) (years) Species (kg) (years)

Baboon 32 20 Guinea pig 1 4
Beaver 25 5 Hippopotamus 1400 41
Cat, domestic 2.5 12 Horse 480 20
Chimpanzee 45 20 Lion 180 15
Dog 8.5 12 Mouse, house 0.024 3
Elephant 2800 35 Pig, domestic 190 10
Goat, domestic 30 8 Red fox 6 7
Gorilla 140 20 Sheep, domestic 30 12
Grizzly bear 250 25

Source: G. A. Sacher and E. F. Staffelt, “Relation of gestation time to brain weight for placental mammals:
implications for the theory of vertebrate growth,” American Naturalist, 108 (1974),  pp. 593–613. We found
these data in F. L. Ramsey and D. W. Schafer, The Statistical Sleuth: A Course in Methods of Data Analysis,
Duxbury, 1997.

p = 0.2. Fit a power law model to these data (using logarithms). Does this small set of
data appear to follow a power law with power close to 0.2? Use your fitted model to pre-
dict the average life span for humans (average weight 143 kilograms). Humans are an
exception to the rule.

4.14 HEART WEIGHTS OF MAMMALS Use the methods discussed in this section to analyze
the following data on the hearts of various mammals.11 Write your findings and con-
clusions in a short narrative.

Heart weight Length of cavity of left 
Mammal (grams) ventricle (centimeters)

Mouse 0.13 0.55
Rat 0.64 1.0
Rabbit 5.8 2.2
Dog 102 4.0
Sheep 210 6.5
Ox 2030 12.0
Horse 3900 16.0

4.15 The U.S. Department of Health and Human Services characterizes adults as
“seriously overweight” if they meet certain criterion for their height as shown in the
table below (only a portion of the chart is reproduced here).

Height Height Severely Height Height Severely
(ft, in) (in) overweight (lb) (ft, in) (in) overweight (lb)

4�10� 58 138 5�8� 68 190
5�0� 60 148 6�0� 72 213
5�2� 62 158 6�2� 74 225
5�4� 64 169 6�4� 76 238
5�6� 66 179 6�6� 78 250

220 Chapter 4 More on Two-Variable Data
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Weights are given in pounds, without clothes. Height is measured without shoes.
There is no distinction between men and women; a note accompanying the table
states, “The higher weights apply to people with more muscle and bone, such as many
men.” Despite any reservations you may have about the department’s common stan-
dards for both genders, do the following:

(a) Without looking at the data, hypothesize a relationship between height and weight
of U.S. adults. That is, write a general form of an equation that you believe will model
the relationship.

(b) Which variable would you select as explanatory and which would be the response?
Plot the data from the table.

(c) Perform a transformation to linearize the data. Do a least-squares regression on the
transformed data and check the correlation coefficient.

(d) Construct a residual plot of the transformed data. Interpret the residual plot.

(e) Perform the inverse transformation and write the equation for your model. Use
your model to predict how many pounds a 5�10� adult would have to weigh in order
to be classified by the department as “seriously overweight.” Do the same for a 7-foot
tall individual.

4.16 THE PRICE OF PIZZAS The new manager of a pizza restaurant wants to add variety to
the pizza offerings at the restaurant. She also wants to determine if the prices for exist-
ing sizes of pizzas are consistent. Prices for plain (cheese only) pizzas are shown below:

Size Diameter (inches) Cost

Small 10 $4.00
Medium 12 $6.00
Large 14 $8.00 
Giant 18 $10.00

(a) Construct an appropriate model for these data. Comment on your choice of
model.

(b) Based on your analysis, would you advise the manager to adjust the price on any
of the pizza sizes? If so, explain briefly.

(c) Use your model to suggest a price for a new “personal pizza,” with a 6-inch diam-
eter.

(d) Use your model to suggest a price for a new “soccer team” size, with a 24-inch
diameter (assuming the oven is large enough to hold it).

SUMMARY

Nonlinear relationships between two quantitative variables can sometimes be
changed into linear relationships by transforming one or both of the variables.

The most common transformations belong to the family of power trans-
formations t p. The logarithm log t fits into the power family at position p = 0.

When the variable being transformed takes only positive values, the
power transformations are all monotonic. This implies that there is an
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inverse transformation that returns to the original data from the transformed
values. The effect of the power transformations on data becomes stronger as
we move away from linear transformations (p = 1) in either direction.

Transformation is particularly effective when there is reason to think that
the data are governed by some mathematical model. The exponential
growth model y = abx becomes linear when we plot log y against x. The
power law model y = axp becomes linear when we plot log y against log x.  

We can fit exponential growth and power models to data by finding the
least-squares regression line for the transformed data, then doing the inverse
transformation.

SECTION 4.1 EXERCISES

4.17 EXACT EXPONENTIAL GROWTH, I Maria is given a savings bond at birth. The bond is
initially worth $500 and earns interest at 7.5% each year. This means that the value is
multiplied by 1.075 each year.

(a) Find the value of the bond at the end of 1 year, 2 years, and so on up to 10 years.

(b) Plot the value y against years x. Connect the points with a smooth curve. This is
an exponential curve.

(c) Take the logarithm of each of the values y that you found in (a). Plot the logarithm
log y against years x. You should obtain a straight line.

4.18 EXACT EXPONENTIAL GROWTH, II Fred and Alice were born the same year, and each
began life with $500. Fred added $100 each year, but earned no interest. Alice added
nothing, but earned interest at 7.5% annually. After 25 years, Fred and Alice are get-
ting married. Who has more money?

4.19 FISH IN FINLAND, I Here are data for 12 perch caught in a lake in Finland:12

Weight Length Width Weight Length Width 
(grams) (cm) (cm) (grams) (cm) (cm) 

5.9 8.8 1.4 300.0 28.7 5.1
100.0 19.2 3.3 300.0 30.1 4.6
110.0 22.5 3.6 685.0 39.0 6.9 
120.0 23.5 3.5 650.0 41.4 6.0 
150.0 24.0 3.6 820.0 42.5 6.6 
145.0 25.5 3.8 1000.0 46.6 7.6

(a) Make a scatterplot of weight against length. Describe the pattern you see.

(b) How do you expect the weight of animals of the same species to change as their
length increases? Make a transformation of weight that should straighten the plot if
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your expectation is correct. Plot the transformed weights against length. Is the plot now
roughly linear?

4.20 FISH IN FINLAND, II Plot the widths of the 12 perch in the previous problem
against their lengths. What is the pattern of the plot? Explain why we should expect
this pattern.

4.21 HOW MOLD GROWS, I Do mold colonies grow exponentially? In an investigation of
the growth of molds, biologists inoculated flasks containing a growth medium with
equal amounts of spores of the mold Aspergillus nidulans. They measured the size of
a colony by analyzing how much remains of a radioactive tracer substance that is con-
sumed by the mold as it grows. Each size measurement requires destroying that colony,
so that the data below refer to 30 separate colonies. To smooth the pattern, we take the
mean size of the three colonies measured at each time.13

Hours Colony sizes Mean

0 1.25 1.60 0.85 1.23
3 1.18 1.05 1.32 1.18
6 0.80 1.01 1.02 0.94
9 1.28 1.46 2.37 1.70

12 2.12 2.09 2.17 2.13
15 4.18 3.94 3.85 3.99
18 9.95 7.42 9.68 9.02
21 16.36 13.66 12.78 14.27
24 25.01 36.82 39.83 33.89
36 138.34 116.84 111.60 122.26

(a) Graph the mean colony size against time. Then graph the logarithm of the mean
colony size against time.

(b) On the basis of data such as these, microbiologists divide the growth of mold
colonies into three phases that follow each other in time. Exponential growth occurs
during only one of these phases. Briefly describe the three phases, making specific
reference to the graphs to support your description.

(c) The exponential growth phase for these data lasts from about 6 hours to about 24
hours. Find the least-squares regression line of the logarithms of mean size on hours
for only the data between 6 and 24 hours. Use this line to predict the size of a colony
10 hours after inoculation. (The line predicts the logarithm. You must obtain the size
from its logarithm.)

4.22 DETERMINING TREE BIOMASS It is easy to measure the “diameter at breast height” of
a tree. It’s hard to measure the total “aboveground biomass” of a tree, because to do
this you must cut and weigh the tree. The biomass is important for studies of ecology,
so ecologists commonly estimate it using a power law. Combining data on 378 trees in
tropical rain forests gives this relationship between biomass y measured in kilograms
and diameter x measured in centimeters:14
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loge y = –2.00 + 2.42 loge x

Note that the investigators chose to use natural logarithms, with base e = 2.71828,
rather than common logarithms with base 10.

(a) Translate the line given into a power model. Use the fact that for natural loga-
rithms,

(b) Estimate the biomass of a tropical tree 30 centimeters in diameter.

4.23 HOW MOLD GROWS, II Find the correlation between the logarithm of mean size
and hours for the data between 6 and 24 hours in Exercise 4.21. Make a scatterplot
of the logarithms of the individual size measurements against hours for this same period
and find the correlation. Why do we expect the second r to be smaller? Is it in fact
smaller?

4.24 BE LIKE GALILEO Galileo studied motion by rolling balls down ramps. Newton
later showed how Galileo’s data fit his general laws of motion. Imagine that you are
Galileo, without Newton’s laws to guide you. He rolled a ball down a ramp at differ-
ent heights above the floor and measured the horizontal distance the ball traveled
before it hit the floor. Here are Galileo’s data when he placed a horizontal shelf at
the end of the ramp so that the ball is moving horizontally when it starts to fall. (We
won’t try to describe the obscure seventeenth-century units Galileo used to measure
distance.)15

Distance Height

1500 1000
1340 828
1328 800
1172 600

800 300

Plot distance y against height x. The pattern is very regular, as befits data described by
a physical law. We want to find distance as a function of height. That is, we want to
transform x to straighten the graph.

(a) Think before you calculate: Will powers xp for p � 1 or p � 1 tend to straighten
the graph. Why?

(b) Move along the ladder of transformations in the direction you have chosen until
the graph is nearly straight. What transformation do you suggest?

4.25 SEED PRODUCTION Table 4.5 gives data on the mean number of seeds produced in
a year by several common tree species and the mean weight (in milligrams) of the
seeds produced. (Some species appear twice because their seeds were counted in two
locations.) We might expect that trees with heavy seeds produce fewer of them, but
what is the form of the relationship?

y e e y= log
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TABLE 4.5 Count and weight of seeds produced by common tree species 

Seed Seed Seed Seed 
Tree species count weight (mg) Tree species count weight (mg)

Paper birch 27,239 0.6 American beech 463 247
Yellow birch 12,158 1.6 American beech 1,892 247
White spruce 7,202 2.0 Black oak 93 1,851
Engelmann spruce 3,671 3.3 Scarlet oak 525 1,930
Red spruce 5,051 3.4 Red oak 411 2,475
Tulip tree 13,509 9.1 Red oak 253 2,475
Ponderosa pine 2,667 37.7 Pignut hickory 40 3,423
White fir 5,196 40.0 White oak 184 3,669
Sugar maple 1,751 48.0 Chestnut oak 107 4,535
Sugar pine 1,159 216.0

Source: Data from many studies compiled in D. F. Greene and E. A. Johnson, “Estimating the mean annu-
al seed production of trees,” Ecology, 75 (1994), pp. 642–647.

(a) Make a scatterplot showing how the weight of tree seeds helps explain how many
seeds the tree produces. Describe the form, direction, and strength of the relationship.

(b) If a power law holds for this relationship, the logarithms of the original data will
display a linear pattern. Use your calculator or software to obtain the logarithms of both
the seed weights and the seed counts in Table 4.5. Make a new scatterplot using these
new variables. Now what are the form, direction, and strength of the relationship?

4.26 ACTIVITY 4: THE SPREAD OF CANCER CELLS

(a) Using the data you and your class collected in the chapter-opening activity, use
transformation methods to construct an appropriate model. Show the important
numerical and graphical steps you go through to develop your model, and tie these
together with explanatory narrative to support your choice of a model.

(b) A theoretical analysis might begin as follows: The probability that an individual
malignant cell reproduces is 1/6 each year. Let P = population of cancer cells at time t
and let P0 = population of cancer cells at time t = 0. At the end of Year 1, the popula-
tion is P = P0 + (1/6)P0 = P0(7/6). At the end of Year 2, the population is P = P0(7/6) +
P0(1/6)(7/6) = P0(7/6)2. Continue this line of reasoning to show that the growth equa-
tion after n years is P = P0(7/6)n.

(c) Enter the growth equation into your calculator as Y3, and plot it along with your
exponential model calculated in (a). Specify a thick plotting line for one of the curves.
How do the two exponential curves compare?

4.2 CAUTIONS ABOUT CORRELATION AND REGRESSION
Correlation and regression are powerful tools for describing the relationship
between two variables. When you use these tools, you must be aware of their lim-
itations, beginning with the fact that correlation and regression describe only lin-
ear relationships. Also remember that the correlation r and the least-squares
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regression line are not resistant. One influential observation or incorrectly
entered data point can greatly change these measures. Always plot your data before
interpreting regression or correlation. Here are some other cautions to keep in
mind when you apply correlation and regression or read accounts of their use.

Extrapolation
Suppose that you have data on a child’s growth between 3 and 8 years of age.
You find a strong linear relationship between age x and height y. If you fit a
regression line to these data and use it to predict height at age 25 years, you will
predict that the child will be 8 feet tall. Growth slows down and stops at matu-
rity, so extending the straight line to adult ages is foolish. Few relationships are
linear for all values of x. So don’t stray far from the domain of x that actually
appears in your data.

EXTRAPOLATION

Extrapolation is the use of a regression line for prediction far outside the
domain of values of the explanatory variable x that you used to obtain the
line or curve. Such predictions are often not accurate.

LURKING VARIABLE

A lurking variable is a variable that is not among the explanatory or
response variables in a study and yet may influence the interpretation of
relationships among those variables.

Studies show that men who complain of chest pain are more likely to get detailed tests
and aggressive treatment such as bypass surgery than are women with similar com-
plaints. Is this association between gender and treatment due to discrimination?

EXAMPLE 4.10 DISCRIMINATION IN MEDICAL TREATMENT?

Lurking variables
In our study of correlation and regression we looked at just two variables at a
time. Often the relationship between two variables is strongly influenced by
other variables. More advanced statistical methods allow the study of many
variables together, so that we can take other variables into account. But some-
times the relationship between two variables is influenced by other variables
that we did not measure or even think about. Because these variables are lurk-
ing in the background, we call them lurking variables.

A lurking variable can falsely suggest a strong relationship between x and y,
or it can hide a relationship that is really there. Here are examples of each of
these effects.
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FIGURE 4.18 The variables in this scatterplot have a small correlation even though there is a
strong correlation within each of the clusters.

A study of housing conditions in the city of Hull, England, measured a large number
of variables for each of the wards in the city. Two of the variables were a measure x of
overcrowding and a measure y of the lack of indoor toilets. Because x and y are both
measures of inadequate housing, we expect a high correlation. In fact the correlation
was only r = 0.08. How can this be?

Investigation found that some poor wards had a lot of public housing. These
wards had high values of x but low values of y because public housing always
includes indoor toilets. Other poor wards lacked public housing, and these wards
had high values of both x and y. Within wards of each type, there was a strong posi-
tive association between x and y. Analyzing all wards together ignored the lurking
variable—amount of public housing—and hid the nature of the relationship
between x and y.17

Figure 4.18 shows in simplified form how groups formed by a lurking variable can
make correlation and regression misleading. The groups appear as clusters of points in
the scatterplot. There is a strong relationship between x and y within each of the clus-
ters. In fact, r = 0.85 and r = 0.91 in the two clusters. However, because similar values
of x correspond to quite different values of y in the two clusters, x alone is of little value
for predicting y. The correlation for all the points together is only r = 0.14.

EXAMPLE 4.11 MEASURING INADEQUATE HOUSING

Perhaps not. Men and women develop heart problems at different ages—women
are on the average between 10 and 15 years older than men. Aggressive treatments are
more risky for older patients, so doctors may hesitate to advise them. Lurking variables—
the patient’s age and condition—may explain the relationship between gender and
doctors’ decisions. As the author of one study of the issue said, “When men and
women are otherwise the same and the only difference is gender, you find that treat-
ments are very similar.”16
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FIGURE 4.19 Enrollment in elementary math classes.

The mathematics department of a large state university must plan the number of sections
and instructors required for its elementary courses. The department hopes that the number
of students in these courses can be predicted from the number of first-year students, which
is known before the new students actually choose courses. The table below contains data for
several years.18 The explanatory variable x is the number of first-year students. The response
variable y is the number of students who enroll in elementary mathematics courses.

Year 1993 1994 1995 1996 1997 1998 1999 2000

x 4595 4827 4427 4258 3995 4330 4265 4351
y 7364 7547 7099 6894 6572 7156 7232 7450

A scatterplot (Figure 4.19) shows a reasonably linear pattern with a cluster of points
near the center. We use regression software to obtain the equation of the least-
squares regression line:

ŷ = 2492.69 + 1.0663x

EXAMPLE 4.12 PREDICTING ENROLLMENT

The software also tells us that r2 = 0.694. That is, linear dependence on x explains
about 70% of the variation in y. The line appears to fit reasonably well.

Never forget that the relationship between two variables can be strongly
influenced by other variables that are lurking in the background. Lurking vari-
ables can dramatically change the conclusions of a regression study. Because
lurking variables are often unrecognized and unmeasured, detecting their effect
is a challenge. Many lurking variables change systematically over time. One use-
ful method for detecting lurking variables is therefore to plot both the response
variable and the regression residuals against the time order of the observations
whenever the time order is available. An understanding of the background of the
data then allows you to guess what lurking variables might be present. Here is an
example of plotting and interpreting residuals that uncovered a lurking variable.
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A second plot of the residuals clarifies the situation. Figure 4.21 is a plot of the
residuals against year. We now see that the five negative residuals are from the years
1993 to 1997, and the three positive residuals represent the years 1998 to 2000. This
plot suggests that a change took place between 1997 and 1998 that caused a higher pro-
portion of students to take mathematics courses beginning in 1998. In fact, one of the
schools in the university changed its program to require that entering students take
another mathematics course. This change is the lurking variable that explains the pat-
tern we observed. The mathematics department should not use data from years before
1998 for predicting future enrollment.

FIGURE 4.20 Residual plot.

300

0Re
si

du
al

Year
1993 1994 1995 19971996 1998 1999 2000

FIGURE 4.21 Plot of residuals versus year.

A plot of the residuals against x (Figure 4.20) magnifies the vertical deviations of
the points from the line. We can see that a somewhat different line would fit the five
lower points well. The three points above the line represent a different relation
between the number of first-year students x and mathematics enrollments y.



Using averaged data
Many regression or correlation studies work with averages or other measures
that combine information from many individuals. You should note this care-
fully and resist the temptation to apply the results of such studies to individu-
als. We have seen, starting with Figure 3.2 (page 128), a strong relationship
between outside temperature and the Sanchez household’s natural gas con-
sumption. Each point on the scatterplot represents a month. Both degree-
days and gas consumed are averages over all the days in the month. Data for
individual days would show more scatter about the regression line and lower
correlation. Averaging over an entire month smooths out the day-to-day varia-
tion due to doors left open, houseguests using more gas to heat water, and so
on. Correlations based on averages are usually too high when applied to indi-
viduals. This is another reminder that it is important to note exactly what vari-
ables were measured in a statistical study.

EXERCISES
4.27 THE SIZE OF AMERICAN FARMS The number of people living on American farms has
declined steadily during this century. Here are data on the farm population (millions
of persons) from 1935 to 1980.

Year: 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980
Population: 32.1 30.5 24.4 23.0 19.1 15.6 12.4 9.7 8.9 7.2

(a) Make a scatterplot of these data and find the least-squares regression line of farm
population on year.

(b) According to the regression line, how much did the farm population decline each
year on the average during this period? What percent of the observed variation in farm
population is accounted for by linear change over time?

(c) Use the regression equation to predict the number of people living on farms in
1990. Is this result reasonable? Why?

4.28 THE POWER OF HERBAL TEA A group of college students believes that herbal tea has
remarkable powers. To test this belief, they make weekly visits to a local nursing home,
where they visit with the residents and serve them herbal tea. The nursing home staff
reports that after several months many of the residents are more cheerful and healthy.
A skeptical sociologist commends the students for their good deeds but scoffs at the
idea that herbal tea helped the residents. Identify the explanatory and response vari-
ables in this informal study. Then explain what lurking variables account for the
observed association.

4.29 STRIDE RATE The data in Exercise 3.71 (page 187) give the average steps per sec-
ond for a group of top female runners at each of several running speeds. There is a high
positive correlation between steps per second and speed. Suppose that you had the full
data, which record steps per second for each runner separately at each speed. If you
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plotted each individual observation and computed the correlation, would you expect
the correlation to be lower than, about the same as, or higher than the correlation for
the published data? Why?

4.30 HOW TO SHORTEN A HOSPITAL STAY A study shows that there is a positive correlation
between the size of a hospital (measured by its number of beds x) and the median
number of days y that patients remain in the hospital. Does this mean that you can
shorten a hospital stay by choosing a small hospital?

4.31 STOCK MARKET INDEXES The Standard & Poor’s 500-stock index is an average of the
price of 500 stocks. There is a moderately strong correlation (roughly r = 0.6) between
how much this index changes in January and how much it changes during the entire
year. If we looked instead at data on all 500 individual stocks, we would find a quite
different correlation. Would the correlation be higher or lower? Why?

4.32 GOLF SCORES Here are the golf scores of 11 members of a women’s golf team in
two rounds of tournament play:

Player 1 2 3 4 5 6 7 8 9 10 11

Round 1 89 90 87 95 86 81 105 83 88 91 79
Round 2 94 85 89 89 81 76 89 87 91 88 80

(a) Plot the data with the Round 1 scores on the x axis and the Round 2 scores on the
y axis. There is a generally linear pattern except for one potentially influential obser-
vation. Circle this observation on your graph.

(b) Here are the equations of two least-squares lines. One of them is calculated from
all 11 data points and the other omits the influential observation.

ŷ = 20.49 + 0.754x
ŷ = 50.01 + 0.410x

Draw both lines on your scatterplot. Which line omits the influential observation?
How do you know this?

The question of causation
In many studies of the relationship between two variables, the goal is to
establish that changes in the explanatory variable cause changes in the
response variable. Even when a strong association is present, the conclusion
that this association is due to a causal link between the variables is often elu-
sive. What ties between two variables (and others lurking in the background)
can explain an observed association? What constitutes good evidence for cau-
sation? We begin our consideration of these questions with a set of examples.
In each case, there is a clear association between an explanatory variable x
and a response variable y. Moreover, the association is positive whenever the
direction makes sense.
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Items 1 and 2 in Example 4.13 are examples of direct causation. Thinking about these
examples, however, shows that “causation” is not a simple idea.

EXAMPLE 4.14 CAUSATION?

Explaining association: causation
Figure 4.22 shows in outline form how a variety of underlying links between vari-
ables can explain association. The dashed line represents an observed association
between the variables x and y. Some associations are explained by a direct cause-
and-effect link between these variables. The first diagram in Figure 4.22 shows “x
causes y” by a solid arrow running from x to y.

x y x y
?

x y

z z

Common response

(b)

Causation

(a)

Confounding

(c)

FIGURE 4.22 Variables x and y show a strong association (dashed line). This association
may be the result of any of several causal relationships (solid arrow). (a) Causation:
Changes in x cause changes in y. (b) Common response: Changes in both x and y are
caused by changes in a lurking variable z. (c) Confounding: The effect (if any) of x on y is
confounded with the effect of a lurking variable z.

The following are some examples of observed associations between x and y:

1. x = mother’s body mass index 
y = daughter’s body mass index

2. x = amount of the artificial sweetener saccharin in a rat’s diet 
y = count of tumors in the rat’s bladder

3. x = a high school senior’s SAT score
y = the student’s first-year college grade point average

4. x = monthly flow of money into stock mutual funds 
y = monthly rate of return for the stock market

5. x = whether a person regularly attends religious services
y = how long the person lives

6. x = the number of years of education a worker has 
y = the worker’s income

EXAMPLE 4.13 ASSOCIATIONS
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Explaining association: common response
“Beware the lurking variable” is good advice when thinking about an association
between two variables. The second diagram in Figure 4.22 illustrates common
response. The observed association between the variables x and y is explained by
a lurking variable z. Both x and y change in response to changes in z. This com-
mon response creates an association even though there may be no direct causal
link between x and y. 

common response

The third and fourth items in Example 4.13 illustrate how common response can cre-
ate an association.

3. Students who are smart and who have learned a lot tend to have both high SAT
scores and high college grades. The positive correlation is explained by this common
response to students’ ability and knowledge.

4. There is a strong positive correlation between how much money individuals add to
mutual funds each month and how well the stock market does the same month. Is the
new money driving the market up? The correlation may be explained in part by com-
mon response to underlying investor sentiment: when optimism reigns, individuals
send money to funds and large institutions also invest more. The institutions would
drive up prices even if individuals did nothing. In addition, what causation there is may
operate in the other direction: when the market is doing well, individuals rush to add
money to their mutual funds.21

EXAMPLE 4.15 COMMON RESPONSE

1. A study of Mexican American girls aged 9 to 12 years recorded body mass index
(BMI), a measure of weight relative to height, for both the girls and their mothers.
People with high BMI are overweight or obese. The study also measured hours of
television, minutes of physical activity, and intake of several kinds of food. The
strongest correlation (r = 0.506) was between the BMI of daughters and the BMI of
their mothers.19

Body type is in part determined by heredity. Daughters inherit half their genes
from their mothers. There is therefore a direct causal link between the BMI of moth-
ers and daughters. Yet the mothers’ BMIs explain only 25.6% (that’s r2 again) of the
variation among the daughters’ BMIs. Other factors, such as diet and exercise, also
influence BMI. Even when direct causation is present, it is rarely a complete expla-
nation of an association between two variables.

2. The best evidence for causation comes from experiments that actually change x
while holding all other factors fixed. If y changes, we have good reason to think that x
caused the change in y. Experiments show conclusively that large amounts of saccha-
rin in the diet cause bladder tumors in rats. Should we avoid saccharin as a replace-
ment for sugar in food? Rats are not people. Although we can’t experiment with
people, studies of people who consume different amounts of saccharin show little asso-
ciation between saccharin and bladder tumors.20 Even well-established causal
relations may not generalize to other settings.
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Explaining association: confounding
We noted in Example 4.14 that inheritance no doubt explains part of the associ-
ation between the body mass indexes (BMIs) of daughters and their mothers. Can
we use r or r2 to say how much inheritance contributes to the daughters’ BMIs?
No. It may well be that mothers who are overweight also set an example of little
exercise, poor eating habits, and lots of television. Their daughters pick up these
habits to some extent, so the influence of heredity is mixed up with influences
from the girls’ environment. We call this mixing of influences confounding.

CONFOUNDING

Two variables are confounded when their effects on a response variable
cannot be distinguished from each other. The confounded variables may
be either explanatory variables or lurking variables.

When many variables interact with each other, confounding of several
variables often prevents us from drawing conclusions about causation. The
third diagram in Figure 4.22 illustrates confounding. Both the explanatory
variable x and the lurking variable z may influence the response variable y.
Because x is confounded with z, we cannot distinguish the influence of x from
the influence of z. We cannot say how strong the direct effect of x on y is. In
fact, it can be hard to say if x influences y at all.

The last two associations in Example 4.13 (Items 5 and 6) are explained in part by con-
founding.

5. Many studies have found that people who are active in their religion live longer
than nonreligious people. But people who attend church or mosque or synagogue also
take better care of themselves than nonattenders. They are less likely to smoke, more
likely to exercise, and less likely to be overweight. The effects of these good habits are
confounded with the direct effects of attending religious services.

6. It is likely that more education is a cause of higher income—many highly paid pro-
fessions require advanced education. However, confounding is also present. People
who have high ability and come from prosperous homes are more likely to get many
years of education than people who are less able or poorer. Of course, people who start
out able and rich are more likely to have high earnings even without much education.
We can’t say how much of the higher income of well-educated people is actually
caused by their education.

EXAMPLE 4.16 CONFOUNDING

Many observed associations are at least partly explained by lurking vari-
ables. Both common response and confounding involve the influence of a
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lurking variable (or variables) z on the response variable y. The distinction
between these two types of relationships is less important than the common
element, the influence of lurking variables. The most important lesson of these
examples is one we have already emphasized: even a very strong association
between two variables is not by itself good evidence that there is a cause-
and-effect link between the variables.

Establishing causation
How can a direct causal link between x and y be established? The best
method—indeed, the only fully compelling method—of establishing causa-
tion is to conduct a carefully designed experiment in which the effects of pos-
sible lurking variables are controlled. Much of Chapter 5 is devoted to the art
of designing convincing experiments.

Many of the sharpest disputes in which statistics plays a role involve ques-
tions of causation that cannot be settled by experiment. Does gun control
reduce violent crime? Does living near power lines cause cancer? Has
increased free trade helped to increase the gap between the incomes of more
educated and less educated American workers? All of these questions have
become public issues. All concern associations among variables. And all have
this in common: they try to pinpoint cause and effect in a setting involving
complex relations among many interacting variables. Common response and
confounding, along with the number of potential lurking variables, make
observed associations misleading. Experiments are not possible for ethical or
practical reasons. We can’t assign some people to live near power lines or com-
pare the same nation with and without free-trade agreements.

Electric currents generate magnetic fields. So living with electricity exposes people to
magnetic fields. Living near power lines increases exposure to these fields. Really
strong fields can disturb living cells in laboratory studies. What about the weaker fields
we experience if we live near power lines?

It isn’t ethical to do experiments that expose children to magnetic fields. It’s hard
to compare cancer rates among children who happen to live in more and less exposed
locations, because leukemia is rare and locations vary in many ways other than mag-
netic fields. We must rely on studies that compare children who have leukemia with
children who don’t.

A careful study of the effect of magnetic fields on children took five years and cost
$5 million. The researchers compared 638 children who had leukemia and 620 who
did not. They went into the homes and actually measured the magnetic fields in the
children’s bedrooms, in other rooms, and at the front door. They recorded facts about
nearby power lines for the family home and also for the mother’s residence when she
was pregnant. Result: no evidence of more than a chance connection between mag-
netic fields and childhood leukemia.22

EXAMPLE 4.17 DO POWER LINES INCREASE THE RISK OF LEUKEMIA?
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“No evidence” that magnetic fields are connected with childhood leukemia
doesn’t prove that there is no risk. It says only that a careful study could not find
any risk that stands out from the play of chance that distributes leukemia cases
across the landscape. Critics continue to argue that the study failed to measure
some lurking variables, or that the children studied don’t fairly represent all
children. Nonetheless, a carefully designed study comparing children with and
without leukemia is a great advance over haphazard and sometimes emotional
counting of cancer cases.

Despite the difficulties, it is sometimes possible to build a strong case for causation in
the absence of experiments. The evidence that smoking causes lung cancer is about as
strong as nonexperimental evidence can be. 

Doctors had long observed that most lung cancer patients were smokers.
Comparison of smokers and similar nonsmokers showed a very strong association
between smoking and death from lung cancer. Could the association be due to com-
mon response? Might there be, for example, a genetic factor that predisposes people
both to nicotine addiction and to lung cancer? Smoking and lung cancer would then
be positively associated even if smoking had no direct effect on the lungs. Or perhaps
confounding is to blame. It might be that smokers live unhealthy lives in other ways
(diet, alcohol, lack of exercise) and that some other habit confounded with smoking is
a cause of lung cancer. How were these objections overcome?

EXAMPLE 4.18 DOES SMOKING CAUSE LUNG CANCER?

Let’s answer this question in general terms: What are the criteria for estab-
lishing causation when we cannot do an experiment?

• The association is strong. The association between smoking and lung cancer
is very strong.

• The association is consistent. Many studies of different kinds of people in
many countries link smoking to lung cancer. That reduces the chance that a
lurking variable specific to one group or one study explains the association.

• Higher doses are associated with stronger responses. People who smoke more
cigarettes per day or who smoke over a longer period get lung cancer more
often. People who stop smoking reduce their risk.

• The alleged cause precedes the effect in time. Lung cancer develops after
years of smoking. The number of men dying of lung cancer rose as smoking
became more common, with a lag of about 30 years. Lung cancer kills more
men than any other form of cancer. Lung cancer was rare among women until
women began to smoke. Lung cancer in women rose along with smoking,
again with a lag of about 30 years, and has now passed breast cancer as the lead-
ing cause of cancer death among women.

• The alleged cause is plausible. Experiments with animals show that tars from
cigarette smoke do cause cancer. 



Medical authorities do not hesitate to say that smoking causes lung cancer.
The U.S. Surgeon General states that cigarette smoking is “the largest avoid-
able cause of death and disability in the United States.”23 The evidence for
causation is overwhelming---but it is not as strong as the evidence provided by
well-designed experiments.

EXERCISES
For Exercises 4.33 through 4.37, answer the question. State whether the rela-
tionship between the two variables involves causation, common response, or con-
founding. Identify possible lurking variable(s). Draw a diagram of the relation-
ship in which each circle represents a variable. Write a brief description of the
variable by each circle.

4.33 FIGHTING FIRES Someone says, “There is a strong positive correlation between the
number of firefighters at a fire and the amount of damage the fire does. So sending lots
of firefighters just causes more damage.” Why is this reasoning wrong?

4.34 HOW’S YOUR SELF-ESTEEM? People who do well tend to feel good about themselves.
Perhaps helping people feel good about themselves will help them do better in school
and life. Raising self-esteem became for a time a goal in many schools. California even
created a state commission to advance the cause. Can you think of explanations for the
association between high self-esteem and good school performance other than “Self-
esteem causes better work in school”?

4.35 SAT MATH AND VERBAL SCORES Table 1.15 (page 70) gives education data for the
states. The correlation between the average SAT math scores and the average SAT ver-
bal scores for the states is r = 0.962

(a) Find r2 and explain in simple language what this number tells us.

(b) If you calculated the correlation between the SAT math and verbal scores of a
large number of individual students, would you expect the correlation to be about 0.96
or quite different? Explain your answer.

4.36 BETTER READERS A study of elementary school children, ages 6 to 11, finds a high
positive correlation between shoe size x and score y on a test of reading comprehen-
sion. What explains this correlation?

4.37 THE BENEFITS OF FOREIGN LANGUAGE STUDY Members of a high school language club
believe that study of a foreign language improves a student’s command of English.
From school records, they obtain the scores on an English achievement test given to
all seniors. The mean score of seniors who studied a foreign language for at least two
years is much higher than the mean score of seniors who studied no foreign language.
These data are not good evidence that language study strengthens English skills.
Identify the explanatory and response variables in this study. Then explain what lurk-
ing variable prevents the conclusion that language study improves students’ English
scores.

4.2 Cautions about Correlation and Regression 237
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Correlation and regression must be interpreted with caution. Plot the data to
be sure that the relationship is roughly linear and to detect outliers and influ-
ential observations. Remember that correlation and regression describe only
linear relations.

Avoid extrapolation, which is the use of a regression line or curve for pre-
diction for values of the explanatory variable outside the domain of the data
from which the line was calculated.

Remember that correlations based on averages are usually too high when
applied to individuals.

Lurking variables may explain the relationship between the explanatory
and response variables. Correlation and regression can be misleading if you
ignore important lurking variables.

The effect of lurking variables can operate through common response if
changes in both the explanatory and response variables are caused by changes in
lurking variables. Confounding of two variables (either explanatory or lurking
variables) means that we cannot distinguish their effects on the response variable.

Most of all, be careful not to conclude that there is a cause-and-effect rela-
tionship between two variables just because they are strongly associated. The
relationship could involve common response or confounding. High correla-
tion does not imply causation. The best evidence that an association is due to
causation comes from an experiment in which the explanatory variable is
directly changed and other influences on the response are controlled.

In the absence of experimental evidence be cautious in accepting claims
of causation. Good evidence of causation requires a strong association that
appears consistently in many studies, a clear explanation for the alleged causal
link, and careful examination of possible lurking variables.

SUMMARY

SECTION 4.2 EXERCISES
For Exercises 4.38 through 4.45, carry out the instructions. Then state whether
the relationship between the two variables involves causation, common response,
or confounding. Then identify possible lurking variable(s). Draw a diagram of
the relationship in which each circle represents a variable. By each circle, write
a brief description of the variable.

4.38 DO ARTIFICIAL SWEETENERS CAUSE WEIGHT GAIN? People who use artificial sweeteners in
place of sugar tend to be heavier than people who use sugar. Does this mean that artifi-
cial sweeteners cause weight gain? Give a more plausible explanation for this association.

4.39 DOES EXPOSURE TO INDUSTRIAL CHEMICALS CAUSE MISCARRIAGES? A study showed that
women who work in the production of computer chips have abnormally high numbers
of miscarriages. The union claimed that exposure to chemicals used in production
causes the miscarriages. Another possible explanation is that these workers spend most
of their time standing up. 
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4.40 IS MATH THE KEY TO SUCCESS IN COLLEGE? Here is the opening of a newspaper account
of a College Board study of 15,941 high school graduates:

Minority students who take high school algebra and geometry succeed in college at
almost the same rate as whites, a new study says.

The link between high school math and college graduation is “almost magical,” says
College Board President Donald Stewart, suggesting “math is the gatekeeper for success
in college.”

“These findings,” he says, “justify serious consideration of a national policy to ensure
that all students take algebra and geometry.”24

What lurking variables might explain the association between taking several math
courses in high school and success in college? Explain why requiring algebra and
geometry may have little effect on who succeeds in college.

4.41 ARE GRADES AND TV WATCHING LINKED? Children who watch many hours of television get
lower grades in school on the average than those who watch less TV. Explain clearly why this
fact does not show that watching TV causes poor grades. In particular, suggest some other
variables that may be confounded with heavy TV viewing and may contribute to poor grades.

4.42 MOZART FOR MINORS In 1998, the Kalamazoo (Michigan) Symphony advertised a
“Mozart for Minors” program with this statement: “Question: Which students scored 51
points higher in verbal skills and 39 points higher in math? Answer: Students who had expe-
rience in music.”25 What do you think of the claim that “experience in music” causes
higher test scores?

4.43 RAISING SAT SCORES A study finds that high school students who take the SAT, enroll
in an SAT coaching course, and then take the SAT a second time raise their SAT math-
ematics scores from a mean of 521 to a mean of 561.26 What factors other than “taking
the course causes higher scores” might explain this improvement?

4.44 ECONOMISTS’ EDUCATION AND INCOME There is a strong positive correlation between
years of education and income for economists employed by business firms. (In particular,
economists with doctorates earn more than economists with only a bachelor’s degree.)
There is also a strong positive correlation between years of education and income for
economists employed by colleges and universities. But when all economists are consid-
ered, there is a negative correlation between education and income. The explanation for
this is that business pays high salaries and employs mostly economists with bachelor’s
degrees, while colleges pay lower salaries and employ mostly economists with doctorates.
Sketch a scatterplot with two groups of cases (business and academic) that illustrates how
a strong positive correlation within each group and a negative overall correlation can
occur together. (Hint: Begin by studying Figure 4.18 on page 227.)

4.45 TV AND OBESITY Over the last 20 years there has developed a positive association
between sales of television sets and the number of obese adolescents in the United
States. Do more TVs cause more children to put on weight, or are there other factors
involved? List some of the possible lurking variables.

4.46 THE S&P 500 The Standard & Poor’s 500-stock index is an average of the price of
500 stocks. There is a moderately strong correlation (roughly r = 0.6) between how
much this index changes in January and how much it changes during the entire year.
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FIGURE 4.23 Mortality of heart attack patients and number of heart attack cases treated for a
large group of hospitals.

If we looked instead at data on all 500 individual stocks, we would find a quite differ-
ent correlation. Would the correlation be higher or lower? Why?

4.47 THE LINK BETWEEN HEALTH AND INCOME An article entitled “The Health and Wealth of
Nations” says: ‘The positive correlation between health and income per capita is one of
the best-known relations in international development. This correlation is commonly
thought to reflect a causal link running from income to health. . . . Recently, however,
another intriguing possibility has emerged: that the health-income correlation is partly
explained by a causal link running the other way—from health to income.”27

Explain how higher income in a nation can cause better health. Then explain
how better health can cause higher income. There is no simple way to determine the
direction of the link.

4.48 RETURNS FOR U.S. AND OVERSEAS STOCKS Exercise 3.56 (page 179) examined the
relationship between returns on U.S. and overseas stocks. Return to the scatterplot and
regression line for predicting overseas returns from U.S. returns.

(a) Circle the point that has the largest residual (either positive or negative). What
year is this? Redo the regression without this point and add the new regression line to
your plot. Was this observation very influential?

(b) Whenever we regress two variables that both change over time, we should plot the
residuals against time as a check for time-related lurking variables. Make this plot for
the stock returns data. Are there any suspicious patterns in the residuals?

4.49 HEART ATTACKS AND HOSPITALS If you need medical care, should you go to a hospi-
tal that handles many cases like yours? Figure 4.23 presents some data for heart attacks.
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The figure plots mortality rate (the proportion of patients who died) against the num-
ber of heart attack patients treated for a large number of hospitals in a recent year. The
line on the plot is the least-squares regression line for predicting mortality from num-
ber of patients.
(a) Do the plot and regression generally support the thesis that mortality is lower at
hospitals that treat more heart attacks? Is the relationship very strong?

(b) In what way is the pattern of the plot nonlinear? Does the nonlinearity strengthen
or weaken the conclusion that heart attack patients should avoid hospitals that treat
few heart attacks? Why?

4.3 RELATIONS IN CATEGORICAL DATA
To this point we have concentrated on relationships in which at least the
response variable was quantitative. Now we will shift to describing relation-
ships between two or more categorical variables. Some variables—such as
sex, race, and occupation—are inherently categorical. Other categorical
variables are created by grouping values of a quantitative variable into classes.
Published data are often reported in grouped form to save space. To analyze
categorical data, we use the counts or percents of individuals that fall into
various categories.

Table 4.6 presents Census Bureau data on the years of school completed by Americans
of different ages. Many people under 25 years of age have not completed their educa-
tion, so they are left out of the table. Both variables, age and education, are grouped
into categories. This is a two-way table because it describes two categorical variables.
Education is the row variable because each row in the table describes people with one
level of education. Age is the column variable because each column describes one age
group. The entries in the table are the counts of persons in each age-by-education
class. Although both age and education in this table are categorical variables, both
have a natural order from least to most. The order of the rows and the columns in
Table 4.6 reflects the order of the categories.

TABLE 4.6 Years of school completed, by age, 2000 (thousands of persons)

Age group

Education 25 to 34 35 to 54 55+ Total

Did not complete high school 4,474 9,155 14,224 27,853
Completed high school 11,546 26,481 20,060 58,087
1 to 3 years of college 10,700 22,618 11,127 44,445
4 or more years of college 11,066 23,183 10,596 44,845

Total 37,786 81,435 56,008 175,230

EXAMPLE 4.19 EDUCATION AND AGE

two-way table
row variable

column variable
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Each marginal distribution from a two-way table is a distribution for a single
categorical variable. As we saw in Chapter 1, we can use a bar graph or a pie
chart to display such a distribution. Figure 4.24 is a bar graph of the distribu-

The percent of people 25 years of age or older who have at least 4 years of college is

Do three more such calculations to obtain the marginal distribution of education level
in percents. Here it is.

Education: Did not finish Completed 1–3 years ≥ 4 years
high school high school of college of college

Percent: 15.9 33.1 25.4 25.6

The total is 100% because everyone is in one of the four education categories.

total with four years of college
table total

= = =44 845
175 230

0 256 25 6
,
,

. . %

EXAMPLE 4.20 MARGINAL DISTRIBUTION

Marginal distributions
How can we best grasp the information contained in Table 4.6 First, look at the
distribution of each variable separately. The distribution of a categorical variable
just says how often each outcome occurred. The “Total” column at the right of
the table contains the totals for each of the rows. These row totals give the distri-
bution of education level (the row variable) among all people over 25 years of age:
27,853,000 did not complete high school, 58,087,000 finished high school but
did not attend college, and so on. In the same way, the “Total” row on the bottom
gives the age distribution. If the row and column totals are missing, the first thing
to do in studying a two-way table is to calculate them. The distributions of edu-
cation alone and age alone are often called marginal distributions because they
appear at the right and bottom margins of the two-way table.

If you check the column totals in Table 4.6, you will notice a few discrep-
ancies. For example, the sum of the entries in the “35 to 54” column is 81,437.
The entry in the “Total” row for that column is 81,435. The explanation is
roundoff error. The table entries are in the thousands of persons, and each is
rounded to the nearest thousand. The Census Bureau obtained the “Total”
entry by rounding the exact number of people aged 35 to 54 to the nearest
thousand. The result was 81,435,000. Adding the column entries, each of
which is already rounded, gives a slightly different result.

Percents are often more informative than counts. We can display the
marginal distribution of education level in terms of percents by dividing each
row total by the table total and converting to a percent.

marginal distributions

roundoff error
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FIGURE 4.24 A bar graph of the distribution of years of schooling completed among peo-
ple aged 25 years and over. This is one of the marginal distributions for Table 4.6.

tion of years of schooling. We see that people with at least some college edu-
cation make up about half of the 25-or-older population.

In working with two-way tables, you must calculate lots of percents. Here’s
a tip to help decide what fraction gives the percent you want. Ask, “What group
represents the total that I want a percent of?” The count for that group is the
denominator of the fraction that leads to the percent. In Example 4.20, we
wanted a percent “of people 25 or older years of age,” so the count of people
25 or older (the table total) is the denominator.

Describing relationships
The marginal distributions of age and of education separately do not tell us
how the two variables are related. That information is in the body of the table.
How can we describe the relationship between age and years of school com-
pleted? No single graph (such as a scatterplot) portrays the form of the rela-
tionship between categorical variables, and no single numerical measure (such
as the correlation) summarizes the strength of an association. To describe rela-
tionships among categorical variables, calculate appropriate percents from the
counts given. We use percents because counts are often hard to compare. For
example, 11,066,000 people age 25 to 34 have completed college, and only
10,596,000 people in the 55 and over age group have done so. But the older
age group is larger, so we can’t directly compare these counts.
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Although graphs are not as useful for describing categorical variables as
they are for quantitative variables, a graph still helps an audience to grasp the
data quickly. The bar graph in Figure 4.25 presents the information in
Example 4.20. 
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FIGURE 4.25 Bar graph comparing the percents of three age groups who have completed
4 or more years of college. The height of each bar is the percent of people in one age
group who have completed at least 4 years of college.

What percent of people aged 25 to 34 have completed 4 years of college? This is the
count who are 25 to 34 and have 4 years of college as a percent of the age group total:

“People aged 25 to 34” is the group we want a percent of, so the count for that group
is the denominator. In the same way, the percent of people in the 55 and over age
group who completed college is

Here are the results for all three age groups:

Age group: 25 to 34 35 to 54 55+
Percent with
4 years of college: 29.3 28.5 18.9

These percents help us see how the education of Americans varies with age. Older peo-
ple are less likely to have completed college.

10 596
56 008

0 189 18 9
,
,

. . %= =

11 066
37 786

0 293 29 3
,
,

. . %= =

EXAMPLE 4.21 HOW COMMON IS COLLEGE EDUCATION?
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Each bar represents one age group. The height of the bar is the percent of that age
group with at least 4 years of college. Although bar graphs look a bit like histograms,
their details and uses are different. A histogram shows the distribution of the values
of a quantitative variable. A bar graph compares the sizes of different items. The
horizontal axis of a bar graph need not have any measurement scale but may
simply identify the items being compared. The items compared in Figure 4.25
are the three age groups. Because each bar in a bar graph describes a different
item, we draw the bars with space between them.

EXERCISES
4.50 Sum the counts in the “55+” age column in Table 4.6 (page 241). Then explain
why the sum is not the same as the entry for this column in the “Total” row.

4.51 Give the marginal distribution of age among people 25 years of age or older in
percents, starting from the counts in Table 4.6 (page 241).

4.52 Using the counts in Table 4.6 (page 241), find the percent of people in each age
group who did not complete high school. Draw a bar graph that compares these per-
cents. State briefly what the data show.

4.53 SMOKING BY STUDENTS AND THEIR PARENTS Here are data from eight high schools on
smoking among students and among their parents:28

Neither parent One parent Both parents
smokes smokes smoke

Student does not smoke 1168 1823 1380
Student smokes 188 416 400

(a) How many students do these data describe?

(b) What percent of these students smoke?

(c) Give the marginal distribution of parents’ smoking behavior, both in counts and
in percents.

4.54 PYTHON EGGS How is the hatching of water python eggs influenced by the tem-
perature of the snake’s nest? Researchers assigned newly laid eggs to one of three
temperatures: hot, neutral, or cold. Hot duplicates the extra warmth provided by the
mother python, and cold duplicates the absence of the mother. Here are the data on
the number of eggs and the number that hatched:29

Cold Neutral Hot

Number of eggs 27 56 104
Number hatched 16 38 75

(a) Make a two-way table of temperature by outcome (hatched or not).

(b) Calculate the percent of eggs in each group that hatched. The researchers antici-
pated that eggs would not hatch in cold water. Do the data support that anticipation?



4.55 IS HIGH BLOOD PRESSURE DANGEROUS? Medical researchers classified each of a
group of men as “high” or “low” blood pressure, then watched them for 5 years. (Men
with systolic blood pressure 140 mm Hg or higher were “high”; the others, “low.”) The
following two-way table gives the results of the study:30

Died Survived

Low blood pressure 21 2655
High blood pressure 55 3283

(a) How many men took part in the study? What percent of these men died during
the 5 years of the study?

(b) The two categorical variables in the table are blood pressure (high or low) and out-
come (died or survived). Which is the explanatory variable?

(c) Is high blood pressure associated with a higher death rate? Calculate and compare
percents to answer this question.

Conditional distributions
Example 4.21 does not compare the complete distributions of years of school-
ing in the three age groups. It compares only the percents who finished col-
lege. Let’s look at the complete picture.
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Information about the 25 to 34 age group occupies the first column in Table 4.6. To
find the complete distribution of education in this age group, look only at that column.
Compute each count as a percent of the column total: 37,786. Here is the distribution:

Education: Did not finish Completed 1–3 years ≥ 4 years 
high school high school of college of college

Percent: 11.8 30.6 28.3 29.3

These percents add to 100% because all 25- to 34-year-olds fall in one of the educational
categories. The four percents together are the conditional distribution of education,
given that a person is 25 to 34 years of age. We use the term “conditional” because the dis-
tribution refers only to people who satisfy the condition that they are 25 to 34 years old.

For comparison, here is the conditional distribution of years of school completed
among people age 55 and over. To find these percents, look only at the “55+” column
in Table 4.6. The column total is the denominator for each percent calculation.

Education: Did not finish Completed 1–3 years ≥ 4 years 
high school high school of college of college

Percent: 25.4 35.8 19.9 18.9

EXAMPLE 4.22 CONDITIONAL DISTRIBUTION

conditional distribution
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Statistical software can speed the task of finding each entry in a two-way
table as a percent of its column total. Figure 4.26 displays the result. The soft-
ware found the row and column totals from the table entries, so they may dif-
fer slightly from those in Table 4.6.

The percent who did not finish high school is much higher in the older age group,
and the percents with some college and who finished college are much lower.
Comparing the conditional distributions of education in different age groups describes
the association between age and education. There are three different conditional dis-
tributions of education given age, one for each of the three age groups. All of these
conditional distributions differ from the marginal distribution of education found in
Example 4.20.

Each cell in this table contains a count from Table 4.6 along with that
count as a percent of the column total. The percents in each column form the
conditional distribution of years of schooling for one age group.

The percents in each column add to 100% because everyone in the age
group is accounted for. Comparing the conditional distributions reveals the
nature of the association between age and education. The distributions of edu-
cation in the two younger groups are quite similar, but higher education is less
common in the 55 and over group.

Bar graphs can help make the association visible. We could make three
side-by-side bar graphs, each resembling Figure 4.24 (page 243), to present the
three conditional distributions. Figure 4.27 shows an alternative form of bar
graph. Each set of three bars compares the percents in the three age groups
who have reached a specific educational level.

EDU

Total

AGE

37786 81435 56008

Frequency
Col Pct 25-34 35-54 55 over Total

NoHS 4474
11.84

9155
11.24

14224
25.40

27853

HSonly 11546
30.56

26481
32.52

20060
35.82

58087

SomeColl 10700
28.32

22618
27.77

11127
19.87

44445

Coll4yrs 11066
29.29

23183
28.47

10596
18.92

44845

175230

TABLE OF EDU BY AGE

FIGURE 4.26 SAS output of the two-way table of education by age with the three condi-
tional distributions of education, one for each age group. The percents in each column add
to 100%.
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We see at once that the “25 to 34” and “35 to 54” bars are similar for all four
levels of education, and that the “55 and over” bars show that many more
people  in this group did not finish high school and that many fewer have
any college.

No single graph (such as a scatterplot) portrays the form of the relationship
between categorical variables. No single numerical measure (such as the cor-
relation) summarizes the strength of the association. Bar graphs are flexible
enough to be helpful, but you must think about what comparisons you want to
display. For numerical measures, we rely on well-chosen percents. You must
decide which percents you need. Here is a hint: compare the conditional dis-
tributions of the response variable (education) for the separate values of the
explanatory variable (age). That’s what we did in Figure 4.26.

25 to 34 35 to 54
Age group

Age group Age group

Age group
55 and over 25 to 34 35 to 54 55 and over

25 to 34 35 to 54 55 and over 25 to 34 35 to 54 55 and over
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FIGURE 4.27 Bar graphs to compare the education levels of three age groups. Each graph 
compares the percents of three groups who fall in one of the four education levels.
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In Example 4.22 we compared the education of different age groups. That
is, we thought of age as the explanatory variable and education as the response
variable. We might also be interested in the distribution of age among persons
having a certain level of education. To do this, look only at one row in Table
4.6. Calculate each entry in that row as a percent of the row total, the total of
that education group. The result is another conditional distribution, the con-
ditional distribution of age given a certain level of education.

A two-way table contains a great deal of information in compact form.
Making that information clear almost always requires finding percents. You
must decide which percents you need. If you are studying trends in the train-
ing of the American workforce, comparing the distributions of education for
different age groups reveals the more extensive education of younger people.
If, on the other hand, you are planning a program to improve the skills of peo-
ple who did not finish high school, the age distribution within this educational
group is important information.

Simpson’s paradox
As is the case with quantitative variables, the effects of lurking variables can
change or even reverse relationships between two categorical variables. Here is
a hypothetical example that demonstrates the surprises that can await the
unsuspecting user of data.

To help consumers make informed decisions about health care, the government
releases data about patient outcomes in hospitals. You want to compare Hospital A and
Hospital B, which serve your community. Here is a two-way table of data on the sur-
vival of patients after surgery in these two hospitals. All patients undergoing surgery in
a recent time period are included. “Survived” means that the patient lived at least 6
weeks following surgery.

Hospital A Hospital B

Died 63 16
Survived 2037 784

Total 2100 800

The evidence seems clear: Hospital A loses 3% (63/2100) of its surgery patients, and
Hospital B loses only 2% (16/800). It seems that you should choose Hospital B if you
need surgery.

Not all surgery cases are equally serious, however. Patients are classified as being
in either “poor” or “good” condition before surgery. Here are the data broken down by
patient condition. Check that the entries in the original two-way table are just the sums
of the “poor” and “good” entries in this pair of tables.

EXAMPLE 4.23 PATIENT OUTCOMES IN HOSPITALS
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The patient’s condition is a lurking variable when we compare the death
rates at the two hospitals. When we ignore the lurking variable, Hospital B
seems safer, even though Hospital A does better for both classes of patients.
How can A do better in each group, yet do worse overall? Look at the data.
Hospital A is a medical center that attracts seriously ill patients from a wide
region. It had 1500 patients in poor condition. Hospital B had only 200 such
cases. Because patients in poor condition are more likely to die, Hospital A has
a higher death rate despite its superior performance for each class of patients.
The original two-way table, which did not take account of the condition of the
patients, was misleading. Example 4.23 illustrates Simpson’s paradox.

Good Condition Poor Condition

Hospital A Hospital B Hospital A Hospital B

Died 6 8 Died 57 8
Survived 594 592 Survived 1443 192

Total 600 600 Total 1500 200

Hospital A beats Hospital B for patients in good condition: only 1% (6/600) died 
in Hospital A, compared with 1.3% (8/600) in Hospital B. And Hospital A wins again
for patients in poor condition, losing 3.8% (57/1500) to Hospital B’s 4% (8/200). So
Hospital A is safer for both patients in good condition and patients in poor condition.
If you are facing surgery, you should choose Hospital A.

SIMPSON’S PARADOX

Simpson’s paradox refers to the reversal of the direction of a comparison
or an association when data from several groups are combined to form a
single group.

The lurking variables in Simpson’s paradox are categorical. That is, they
break the individuals into groups, as when surgery patients are classified as “good
condition” or “poor condition.” Simpson’s paradox is just an extreme form of the
fact that observed associations can be misleading when there are lurking variables. 

EXERCISES
4.56 Verify that the results for the conditional distribution of education level among
people aged 55 and over given in Example 4.22 (page 246) are correct.

4.57 Example 4.22 (page 246) gives the conditional distributions of education level
among 25- to 34-year-olds and among people 55 and over. Find the conditional distri-
bution of education level among 35- to 54-year-olds in percents. Is this distribution
more like the distribution for 25- to 34-year-olds or the distribution for people 55 and
over?
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4.58 Find the conditional distribution of age among people with at least 4 years of
college using the data from Example 4.22 (page 246).

4.59 MAJORS FOR MEN AND WOMEN IN BUSINESS A study of the career plans of young
women and men sent questionnaires to all 722 members of the senior class in the
College of Business Administration at the University of Illinois. One question asked
which major within the business program the student had chosen. Here are the data
from the students who responded:31

Female Male

Accounting 68 56
Administration 91 40
Economics 5 6
Finance 61 59

(a) Find the two conditional distributions of major, one for women and one for men.
Based on your calculations, describe the differences between women and men with a
graph and in words.

(b) What percent of the students did not respond to the questionnaire? The nonre-
sponse weakens conclusions drawn from these data.

4.60 COLLEGE ADMISSIONS PARADOX Upper Wabash Tech has two professional schools,
business and law. Here are two-way tables of applicants to both schools, categorized by
gender and admission decision. (Although these data are made up, similar situations
occur in reality.)32

Business Law

Admit Deny Admit Deny

Male 480 120 Male 10 90
Female 180 20 Female 100 200

(a) Make a two-way table of gender by admission decision for the two professional
schools together by summing entries in this table.

(b) From the two-way table, calculate the percent of male applicants who are admit-
ted and the percent of female applicants who are admitted. Wabash admits a higher
percent of male applicants.

(c) Now compute separately the percents of male and female applicants admitted by
the business school and by the law school. Each school admits a higher percent of
female applicants.

(d) This is Simpson’s paradox: both schools admit a higher percent of the women
who apply, but overall Wabash admits a lower percent of female applicants than of
male applicants. Explain carefully, as if speaking to a skeptical reporter, how it can
happen that Wabash appears to favor males when each school individually favors
females.



252 Chapter 4 More on Two-Variable Data

4.61 RACE AND THE DEATH PENALTY Whether a convicted murderer gets the death penalty
seems to be influenced by the race of the victim. Here are data on 326 cases in which
the defendant was convicted of murder:33

White defendant

White victim Black victim

Death 19 0
Not 132 9

Black defendant

White victim Black victim

Death 11 6
Not 52 97

(a) Use these data to make a two-way table of defendant’s race (white or black) versus
death penalty (yes or no).

(b) Show that Simpson’s paradox holds: a higher percent of white defendants are sen-
tenced to death overall, but for both black and white victims a higher percent of black
defendants are sentenced to death.

(c) Use the data to explain why the paradox holds in language that a judge could
understand.

SUMMARY
A two-way table of counts organizes data about two categorical variables.
Values of the row variable label the rows that run across the table, and values
of the column variable label the columns that run down the table. Two-way
tables are often used to summarize large amounts of data by grouping out-
comes into categories.

The row totals and column totals in a two-way table give the marginal
distributions of the two individual variables. It is clearer to present these dis-
tributions as percents of the table total. Marginal distributions tell us nothing
about the relationship between the variables.

To find the conditional distribution of the row variable for one specific
value of the column variable, look only at that one column in the table. Find
each entry in the column as a percent of the column total.

There is a conditional distribution of the row variable for each column in
the table. Comparing these conditional distributions is one way to describe the
association between the row and the column variables. It is particularly useful
when the column variable is the explanatory variable.

Bar graphs are a flexible means of presenting categorical data. There is no
single best way to describe an association between two categorical variables.

A comparison between two variables that holds for each individual value
of a third variable can be changed or even reversed when the data for all val-
ues of the third variable are combined. This is Simpson’s paradox.
Simpson’s paradox is an example of the effect of lurking variables on an
observed association.
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COLLEGE UNDERGRADUATES Exercises 4.62 to 4.66 are based on Table 4.7. This two-way
table reports data on all undergraduate students enrolled in U.S. colleges and univer-
sities in the fall of 1995 whose age was known.

TABLE 4.7 Undergraduate college enrollment, fall 1995 (thousands of students)

Age 2-year full-time 2-year part-time 4-year full-time 4-year part-time

under 18 41 125 75 45
18 to 24 1378 1198 4607 588
25 to 39 428 1427 1212 1321
40 and up 119 723 225 605

Total 1966 3472 6119 2559

Source: Digest of Education Statistics 1997, accessed on the National Center for Education Statistics Web
site, http://www.ed.gov/NCES.

4.62

(a) How many undergraduate students were enrolled in colleges and universities?

(b) What percent of all undergraduate students were 18 to 24 years old in the fall of
the academic year?

(c) Find the percent of the undergraduates enrolled in each of the four types of pro-
gram who were 18 to 24 years old. Make a bar graph to compare these percents.

(d) The 18 to 24 group is the traditional age group for college students. Briefly sum-
marize what you have learned from the data about the extent to which this group pre-
dominates in different kinds of college programs.

4.63

(a) An association of two-year colleges asks: “What percent of students enrolled part-
time at 2-year colleges are 25 to 39 years old?”

(b) A bank that makes education loans to adults asks: “What percent of all 25- to 39-
year-old students are enrolled part-time at 2-year colleges?”

4.64

(a) Find the marginal distribution of age among all undergraduate students, first in
counts and then in percents. Make a bar graph of the distribution in percents.

(b) Find the conditional distribution of age (in percents) among students enrolled
part-time in 2-year colleges and make a bar graph of this distribution.

(c) Briefly describe the most important differences between the two age distributions.

(d) The sum of the entries in the “2-year part-time” column is not the same as the total
given for that column. Why is this?

SECTION 4.3 EXERCISES



4.65 Call students aged 40 and up “older students.” Compare the presence of older
students in the four types of program with numbers, a graph, and a brief summary of
your findings.

4.66 With a little thought, you can extract from Table 4.7 information other than
marginal and conditional distributions. The traditional college age group is ages 18 to
24 years.

(a) What percent of all undergraduates fall in this age group?

(b) What percent of students at 2-year colleges fall in this age group?

(c) What percent of part-time students fall in this group?

4.67 FIREARM DEATHS Firearms are second to motor vehicles as a cause of nondisease
deaths in the United States. Here are counts from a study of all firearm-related deaths
in Milwaukee, Wisconsin, between 1990 and 1994.34 We want to compare the types of
firearms used in homicides and in suicides. We suspect that long guns (shotguns and
rifles) will more often be used in suicides because many people keep them at home for
hunting. Make a careful comparison of homicides and suicides, with a bar graph.
What do you find about long guns versus handguns?

Handgun Shotgun Rifle Unknown Total

Homicides 468 28 15 13 524
Suicides 124 22 24 5 175

4.68 HELPING COCAINE ADDICTS Cocaine addiction is hard to break. Addicts need
cocaine to feel any pleasure, so perhaps giving them an antidepressant drug will help.
A 3-year study with 72 chronic cocaine users compared an antidepressant drug called
desipramine with lithium and a placebo. (Lithium is a standard drug to treat cocaine
addiction. A placebo is a dummy drug, used so that the effect of being in the study but
not taking any drug can be seen.) One-third of the subjects, chosen at random,
received each drug. Here are the results:35

Desipramine Lithium Placebo

Relapse 10 18 20
No relapse 14 6 4

Total 24 24 24

(a) Compare the effectiveness of the three treatments in preventing relapse. Use per-
cents and draw a bar graph.

(b) Do you think that this study gives good evidence that desipramine actually causes
a reduction in relapses?

4.69 SEAT BELTS AND CHILDREN Do child restraints and seat belts prevent injuries to
young passengers in automobile accidents? Here are data on the 26,971 passengers
under the age of 15 in accidents reported in North Carolina during two years before
the law required restraints:36

254 Chapter 4 More on Two-Variable Data
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Restrained Unrestrained

Injured 197 3,844
Uninjured 1,749 21,181

(a) What percent of these young passengers were restrained?

(b) Do the data provide evidence that young passengers are less likely to be injured in
an accident if they wear restraints? Calculate and compare percents to answer this
question.

4.70 BASEBALL PARADOX Most baseball hitters perform differently against right-handed
and left-handed pitching. Consider two players, Joe and Moe, both of whom bat right-
handed. The table below records their performance against right-handed and 
left-handed pitchers.

Player Pitcher Hits At bats

Joe Right 40 100
Left 80 400

Moe Right 120 400
Left 10 100

(a) Make a two-way table of player (Joe or Moe) versus outcome (hit or no hit) by
summing over both kinds of pitcher.

(b) Find the overall batting average (hits divided by total times at bat) for each player.
Who has the higher batting average?

(c) Make a separate two-way table of player versus outcome for each kind of
pitcher. From these tables, find the batting averages of Joe and Moe against right-
handed pitching. Who does better? Do the same for left-handed pitching. Who
does better?

(d) The manager doesn’t believe that one player can hit better against both left-
handers and right-handers yet have a lower overall batting average. Explain in simple
language why this happens to Joe and Moe.

4.71 OBESITY AND HEALTH Recent studies have shown that earlier reports underestimat-
ed the health risks associated with being overweight. The error was due to overlooking
lurking variables. In particular, smoking tends both to reduce weight and to lead to ear-
lier death. Illustrate Simpson’s paradox by a simplified version of this situation. That
is, make up tables of overweight (yes or no) by early death (yes or no) by smoker (yes
or no) such that

• Overweight smokers and overweight nonsmokers both tend to die earlier than those
not overweight.

• But when smokers and nonsmokers are combined into a two-way table of overweight
by early death, persons who are not overweight tend to die earlier.
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CHAPTER REVIEW
In Chapter 3, we learned how to analyze two-variable data that show a linear
pattern. We learned about positive and negative associations and how to mea-
sure the strength of association between two variables. We also developed a
procedure for constructing a model (the least-squares regression line) that cap-
tures the trend of the data. This LSRL is useful for prediction purposes. A
recurring theme is that data analysis begins with graphs and then adds numer-
ical summaries of specific aspects of the data.

In this chapter we learned how to construct mathematical models for
data that fit a curve, such as an exponential function or a power function. We
also learned that although correlation and regression are powerful tools for
understanding two-variable data when both variables are quantitative, both
correlation and regression have their limitations. In particular, we are cau-
tioned that a strong observed association between two variables may exist
without a cause-and-effect link between them. If both variables are categori-
cal, there is no satisfactory graph for displaying the data, although bar graphs
can be helpful. We describe the relationship by comparing percents.

Here is a review list of the most important skills you should have gained
from studying this chapter.

A. MODELING NONLINEAR DATA

1. Recognize that when a variable is multiplied by a fixed number greater than
1 in each equal time period, exponential growth results; when the ratio is a pos-
itive number less than 1, it’s called exponential decay.

2. Recognize that when one variable is proportional to a power of a second
variable, the result is a power function.

3. In the case of both exponential growth and power function, perform a log-
arithmic transformation and obtain points that lie in a linear pattern. Then use
least-squares regression on the transformed points. An inverse transformation
then produces a curve that is a model for the original points.

4. Know that deviations from the overall pattern are most easily examined by
fitting a line to the transformed points and plotting the residuals from this line
against the explanatory variable (or fitted values).

B. INTERPRETING CORRELATION AND REGRESSION
1. Understand that both r and the least-squares regression line can be strongly
influenced by a few extreme observations.
2. Recognize possible lurking variables that may explain the observed associa-
tion between two variables x and y.
3. Understand that even a strong correlation does not mean that there is a
cause-and-effect relationship between x and y.
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C. RELATIONS IN CATEGORICAL DATA

1. From a two-way table of counts, find the marginal distributions of both vari-
ables by obtaining the row sums and column sums.

2. Express any distribution in percents by dividing the category counts by their
total.

3. Describe the relationship between two categorical variables by computing
and comparing percents. Often this involves comparing the conditional distri-
butions of one variable for the different categories of the other variable.

4. Recognize Simpson’s paradox and be able to explain it.

CHAPTER 4 REVIEW EXERCISES

4.72 LIGHT INTENSITY In physics class, the intensity of a 100-watt light bulb was measured
by a sensing device at various distances from the light source, and the following data
were collected. Note that a candela (cd) is an international unit of luminous intensity.

Distance (meters) Intensity (candelas) 

1.0 0.2965
1.1 0.2522
1.2 0.2055
1.3 0.1746
1.4 0.1534
1.5 0.1352
1.6 0.1145
1.7 0.1024
1.8 0.0923
1.9 0.0832
2.0 0.0734

(a) Plot the data. Based on the pattern of points, propose a model form for the data.
Then use a transformation followed by linear regression and then an inverse transfor-
mation to construct a model.

(b) Report the equation, and plot the original data with the model on the same axes.

(c) Describe the relationship between the intensity and the distance from the light
source.

(d) Consult the physics textbooks used in your school and find the formula for the
intensity of light as a function of distance from the light source. How do your experi-
mental results compare with the theoretical formula?

4.73 PENDULUM An experiment was conducted with a pendulum of variable length.
The period, or length of time to complete one complete oscillation, was recorded for
several lengths. Here are the data:



Length (feet): 1 2 3 4 5 6 7
Period (seconds): 1.10 1.56 1.92 2.20 2.50 2.71 2.93

(a) Make a plot of period against length. Describe the pattern that you see.

(b) Propose a model form. Then use a transformation to construct a model for the
data. Report the equation, and plot the original data with the model on the same axes.

(c) Describe the relationship between the length of a pendulum and its period.

4.74 EXACT EXPONENTIAL GROWTH, I A clever courtier, offered a reward by an ancient king
of Persia, asked for a grain of rice on the first square of a chess board, 2 grains on the
second square, then 4, 8, 16, and so on.

(a) Make a table of the number of grains on each of the first 10 squares of the board.

(b) Plot the number of grains on each square against the number of the square for squares
1 to 10, and connect the points with a smooth curve. This is an exponential curve.

(c) How many grains of rice should the king deliver for the 64th (and final) square?

(d) Take the logarithm of each of your numbers of grains from (a). Plot these loga-
rithms against the number of squares from 1 to 10. You should get a straight line.

(e) From your graph in (d) find the approximate values of the slope b and the intercept
a for the line. Use the equation y = a + bx to predict the logarithm of the amount for the
64th square. Check your result by taking the logarithm of the amount you found in (c).

4.75 800-METER RUN Return to the 800-meter world record times for men and women
of Exercise 3.75 (page 188). Suppose you are uncomfortable with the linear model for
the declinr in winning times that will eventually intersect the horizontal axis.

(a) Construct exponential and power regression models for the men’s record times.
Which do you consider to be a better model?

(b) Based on your answer to (a), construct a similar model for the women’s record
times.

(c) Will either of these curves eventually reach zero? Will the curves intersect each
other? If so, in what year will the curves intersect?

(d) Is this a satisfactory model, or is there a better model tor these data?

4.76 SOCIAL INSURANCE Federal expenditures on social insurance (chiefly social security
and Medicare) increased rapidly after 1960. Here are the amounts spent, in millions
of dollars:

Year: 1960 1965 1970 1975 1980 1985 1990
Spending: 14,307 21,807 45,246 99,715 191,162 310,175 422,257

(a) Plot social insurance expenditures against time. Does the pattern appear closer to
linear growth or to exponential growth?

(b) Take the logarithm of the amounts spent. Plot these logarithms against time. Do
you think that the exponential growth model fits well?

258 Chapter 4 More on Two-Variable Data
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(c) After entering the data into the Minitab statistical system, with year as C1 and
expenditures as C2, we obtain the least-squares line for the logarithms as follows:

MTB> LET C3 = LOGT(C2) 

MTB> REGRESS C3 ON 1, C1

The regression equation is 
C3 = -98.63833 + 0.05244 C1

That is, the least-squares line is

log y = –98.63833 + (0.05244 � year)

Draw this line on your graph from (b).

(d) Use this line to predict the logarithm of social insurance outlays for 1988. Then
compute

y = 10log y

to predict the amount y spent in 1988.

(e) The actual amount (in millions) spent in 1988 was $358,412. Take the logarithm
of this amount and add the 1988 point to your graph in (b). Does it fall close to the
line? When President Reagan took office in 1981, he advocated a policy of slowing
growth in spending on social progams. Did the trend of exponential growth in spending
for social insurance change in a major way during the Reagan years, 1981 to 1988?

4.77 KILLING BACTERIA Expose marine bacteria to X-rays for time periods from 1 to 15
minutes. Here are the number of surviving bacteria (in hundreds) on a culture plate
after each exposure time:37

Time t Count y Time t Count y

1 355 9 56
2 211 10 38
3 197 11 36
4 166 12 32
5 142 13 21
6 106 14 19
7 104 15 15
8 60

Theory suggests an exponential growth or decay model. Do the data appear to conform
to this theory?

4.78 BANK CARDS Electronic fund transfers, from bank automatic teller machines and
the use of debit cards by consumers, have grown rapidly in the United States. Here are
data on the number of such transfers (in millions).38
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Year EFT Year EFT Year EFT

1985 3,579 1991 6,642 1996 11,780
1987 4,108 1992 7,537 1997 12,580
1988 4,581 1993 8,135 1998 13,160
1989 5,274 1994 9,078 1999 13,316
1990 5,942 1995 10,464

Write a clear account of the pattern of growth of electronic transfers over time, sup-
porting your description with plots and calculations as needed. Has the pattern
changed in the most recent years?

4.79 ICE CREAM AND FLU There is a negative correlation between the number of flu cases
reported each week throughout the year and the amount of ice cream sold in that par-
ticular week. It’s unlikely that ice cream prevents flu. What is a more plausible expla-
nation for this observed correlation?

4.80 VOTING FOR PRESIDENT The following table gives the U.S. resident population of
voting age and the votes cast for president, both in thousands, for presidential elections
between 1960 and 2000:

Year Population Votes Year Population Votes 

1960 109,672 68,838 1984 173,995 92,653
1964 114,090 70,645 1988 181,956 91,595
1968 120,285 73,212 1992 189,524 104,425
1972 140,777 77,719 1996 196,511 96,456
1976 152,308 81,556 2000 209,128 105,363
1980 163,945 86,515

(a) For each year compute the percent of people who voted. Make a time plot of the per-
cent who voted. Describe the change over time in participation in presidential elections.

(b) Before proposing political explanations for this change, we should examine possible
lurking variables. The minimum voting age in presidential elections dropped from 21 to
18 years in 1970. Use this fact to propose a partial explanation for the trend you saw in (a).

4.81 WOMEN AND MARITAL STATUS The following two-way table describes the age and mar-
ital status of American women in 2000. The table entries are in thousands of women.

Marital status

Age Single Married Widowed Divorced Total

15–24 16,121 2,694 21 203 19,040
25–39 7,409 19,925 212 2,965 30,510
40–64 3,553 29,687 2,338 6,797 42,373

�65 680 8,223 8,490 1,344 18,735

Total 110,660
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(a) Find the sum of the entries in the 15–24 row. Why does this sum differ from the
“Total” entry for that row?

(b) Give the marginal distribution of marital status for all adult women (use percents).
Draw a bar graph to display this distribution.

(c) Compare the conditional distributions of marital status for women aged 15 to 24
and women aged 40 to 64. Briefly describe the most important differences between the
two groups of women, and back up your description with percents.

(d) You are planning a magazine aimed at single women who have never been mar-
ried. (That’s what “single” means in government data.) Find the conditional distribu-
tion of ages among single women.

4.82 WOMEN SCIENTISTS A study by the National Science Foundation39 found that the
median salary of newly graduated female engineers and scientists was only 73% of
the median salary for males. When the new graduates were broken down by field,
however, the picture changed. Women’s median salaries as a percent of the male
median in the 16 fields studied were

94% 96% 98% 95% 85% 85% 84% 100%
103% 100% 107% 93% 104% 93% 106% 100%

How can women do nearly as well as men in every field yet fall far behind men when
we look at all young engineers and scientists?

4.83 SMOKING AND STAYING ALIVE In the mid-1970s, a medical study contacted randomly
chosen people in a district in England. Here are data on the 1314 women contacted
who were either current smokers or who had never smoked. The table classifies these
women by their smoking status and age at the time of the survey and whether they were
still alive 20 years later.40

Age 18 to 44 Age 45 to 64 Age 65+

Smoker Not Smoker Not Smoker Not

Dead 19 13 Dead 78 52 Dead 42 165
Alive 269 327 Alive 167 147 Alive 7 28

(a) Make a two-way table of smoking (yes or no) by dead or alive. What percent
of the smokers stayed alive for 20 years? What percent of the nonsmokers sur-
vived? It seems surprising that a higher percent of smokers stayed alive.

(b) The age of the women at the time of the study is a lurking variable. Show that
within each of the three age groups in the data, a higher percent of nonsmokers
remained alive 20 years later. This is another example of Simpson’s paradox.

(c) The study authors give this explanation: “Few of the older women (over 65 at
the original survey) were smokers, but many of them had died by the time of follow-
up.” Compare the percent of smokers in the three age groups to verify the expla-
nation.
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1. This activity was described in Elizabeth B. Applebaum, “A simulation to model
exponential growth,” Mathematics Teacher, 93, No.7 (October 2000), pp. 614–615.
2. Data from G. A. Sacher and E. F. Staffelt, “Relation of gestation time to brain
weight for placental mammals: implications for the theory of vertebrate growth,”
American Naturalist, 108 (1974), pp. 593–613. We found these data in F. L. Ramsey
and D. W. Schafer, The Statistical Sleuth: A Course in Methods of Data Analysis,
Duxbury, 1997.
3. There are several mathematical ways to show that log t fits into the power family
at p = 0. Here’s one. For powers p � 0, the indefinite integral ∫ tp–1 dt is a multiple of
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RONALD A. FISHER

The Father of Statistics
The ideas and methods that we study as “statistics” were
invented in the nineteenth and twentieth centuries by peo-
ple working on problems that required analysis of data.
Astronomy, biology, social science, and even surveying can

claim a role in the birth of statistics. But if anyone can claim to
be “the father of statistics,” that honor belongs to Sir Ronald A. Fisher
(1890–1962).

Fisher’s writings helped organize statistics as a distinct field of study whose
methods apply to practical problems across many disciplines. He systematized
the mathematical theory of statistics and invented many new techniques. The
randomized comparative experiment is perhaps Fisher’s greatest contribution.

Like other statistical pioneers, Fisher was driven by the demands of practical
problems. Beginning in 1919, he worked on agricultural field experiments at
Rothamsted in England. How should we arrange the planting of different crop
varieties or the application of different fertilizers to get a fair comparison among
them? Because fertility and other variables change as we move across a field,
experiments used elaborate checkerboard planting arrangements to obtain fair
comparisons. Fisher had a better idea: “arrange the plots deliberately at random.”

This chapter explores statistical design for producing
data to answer specific questions like “Which crop vari-
ety has the highest mean yield?” Fisher’s innovation, the
deliberate use of chance in producing data, is the central
theme of the chapter and one of the most important
ideas in statistics.

Like other statistical pio-
neers, Fisher was driven
by the demands of practi-
cal problems.
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CLASS SURVEY

Your answers to the questions below will help describe your class. DO
NOT PUT YOUR NAME ON THIS PAPER. Your answers are completely
private. They just help us describe the entire class.

1. Are you MALE or FEMALE? (Circle one.)

2. How many brothers and sisters do you have? 

3. How tall are you in inches, to the nearest inch? 

4. Estimate the number of pairs of shoes you own. 

5. How much money in coins are you carrying right now? (Don’t count any
paper money, just coins.) 

6. On a typical school night, how much time do you spend doing home-
work? (Answer in minutes. For example, 2 hours is 120 minutes.) 

7. On a typical school night, how much time do you spend watching tele-
vision? (Answer in minutes.) 

ACTIVITY 5A A Class Survey

A class survey is a quick way to collect interesting data. Certainly there are
things about the class as a group that you would like to know. Your task here
is to construct a draft of a class survey, a questionnaire that would be used
to gather data about the members of your class. Here are the steps to take:

1. As a class, discuss the questions you would like to include on the survey.
In addition to what you want to ask, you should also consider how many
questions you want to ask. Have one student serve as recorder and make a
list on the blackboard or overhead projector of topics to include.

2. Once you have identified the topics, then work on the wording of the
questions. Try to achieve as much consensus as possible. If there is a com-
puter in the room, a student could use a word-processing program to enter
the questions as they are developed.

3. Make one copy of the final draft of the survey for each student, but do not
distribute the surveys at this time. The surveys are to be put aside for the time
being. As you complete this chapter, you will return to take another look at the
survey you have constructed, make final adjustments, and then administer 
the survey to all of the members of your class. This survey should provide some
interesting data that can be analyzed during the remainder of the course.

As a starting point, here is a sample of a short survey:



INTRODUCTION

Exploratory data analysis seeks to discover and describe what data say by
using graphs and numerical summaries. The conclusions we draw from 
data analysis apply to the specific data that we examine. Often, however, we
want to answer questions about some large group of individuals. To get
sound answers, we must produce data in a way that is designed to answer our
questions.

Suppose our question is “What percent of American adults agree that the
United Nations should continue to have its headquarters in the United States?”
To answer the question, we interview American adults. We can’t afford to ask
all adults, so we put the question to a sample chosen to represent the entire
adult population. How shall we choose a sample that truly represents the opin-
ions of the entire population? Statistical designs for choosing samples are the
topic of Section 5.1.

Our goal in choosing a sample is a picture of the population, disturbed
as little as possible by the act of gathering information. Sample surveys are
one kind of observational study. In other settings, we gather data from an
experiment. In doing an experiment, we don’t just observe individuals or ask
them questions. We actively impose some treatment in order to observe the
response. Experiments can answer questions such as “Does aspirin reduce
the chance of a heart attack?” and “Does a majority of college students pre-
fer Pepsi to Coke when they taste both without knowing which they are
drinking?” Experiments, like samples, provide useful data only when prop-
erly designed. We will discuss statistical design of experiments in Section 5.2.
The distinction between experiments and observational studies is one of the
most important ideas in statistics.

Introduction 269

OBSERVATION VERSUS EXPERIMENT

An observational study observes individuals and measures variables of
interest but does not attempt to influence the responses.

An experiment, on the other hand, deliberately imposes some treatment
on individuals in order to observe their responses.

Observational studies are essential sources of data about topics from the
opinions of voters to the behavior of animals in the wild. But an observational
study, even one based on a statistical sample, is a poor way to gauge the effect
of an intervention. To see the response to a change, we must actually impose
the change. When our goal is to understand cause and effect, experiments are
the only source of fully convincing data.

sample
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Most adult recipients of welfare are mothers of young children. Observational studies
of welfare mothers show that many are able to increase their earnings and leave the
welfare system. Some take advantage of voluntary job-training programs to improve
their skills. Should participation in job-training and job-search programs be required
of all able-bodied welfare mothers? Observational studies cannot tell us what the
effects of such a policy would be. Even if the mothers studied are a properly chosen
sample of all welfare recipients, those who seek out training and find jobs may differ
in many ways from those who do not. They are observed to have more education, for
example, but they may also differ in values and motivation, things that cannot be
observed.

To see if a required jobs program will help mothers escape welfare, such a pro-
gram must actually be tried. Choose two similar groups of mothers when they apply for
welfare. Require one group to participate in a job-training program, but do not offer
the program to the other group. This is an experiment. Comparing the income and
work record of the two groups after several years will show whether requiring training
has the desired effect.

EXAMPLE 5.1 HELPING WELFARE MOTHERS FIND JOBS

When we simply observe welfare mothers, the effect of job-training pro-
grams on success in finding work is confounded with (mixed up with) the
characteristics of mothers who seek out training on their own. Recall that two
variables (explanatory variables or lurking variables) are said to be confounded
when their effects on a response variable cannot be distinguished from each
other.

Observational studies of the effect of one variable on another often fail because
the explanatory variable is confounded with lurking variables. We will see that well-
designed experiments take steps to defeat confounding. Because experiments allow
us to pin down the effects of specific variables of interest to us, they are the pre-
ferred method of gaining knowledge in science, medicine, and industry.

In some situations, it may not be possible to observe individuals directly or
to perform an experiment. In other cases, it may be logistically difficult or sim-
ply inconvenient to obtain a sample or to impose a treatment. Simulations
provide an alternative method for producing data in such circumstances.
Section 5.3 introduces techniques for simulating experiments.

Statistical techniques for producing data open the door to formal statistical
inference, which answers specific questions with a known degree of confidence.
The later chapters of this book are devoted to inference. We will see that care-
ful design of data production is the most important prerequisite for trustworthy
inference.

5.1 DESIGNING SAMPLES
A political scientist wants to know what percent of the voting-age population
consider themselves conservatives. An automaker hires a market research firm
to learn what percent of adults aged 18 to 35 recall seeing television advertise-

simulation

statistical inference



ments for a new sport utility vehicle. Government economists inquire about
average household income. In all these cases, we want to gather information
about a large group of individuals. We will not, as in an experiment, impose a
treatment in order to observe the response. Time, cost, and inconvenience for-
bid contacting every individual. In such cases, we gather information about
only part of the group in order to draw conclusions about the whole.
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POPULATION AND SAMPLE

The entire group of individuals that we want information about is called
the population.

A sample is a part of the population that we actually examine in order to
gather information.

SAMPLING VERSUS A CENSUS 

Sampling involves studying a part in order to gain information about the
whole. 

A census attempts to contact every individual in the entire population.

Notice that “population” is defined in terms of our desire for knowl-
edge. If we wish to draw conclusions about all U.S. college students, that
group is our population even if only local students are available for ques-
tioning. The sample is the part from which we draw conclusions about the
whole. Sampling and conducting a census are two distinct ways of collect-
ing data.

We want information on current unemployment and public opinion next
week, not next year. Moreover, a carefully conducted sample is often more
accurate than a census. Accountants, for example, sample a firm’s inventory to
verify the accuracy of the records. Attempting to count every last item in the
warehouse would be not only expensive but inaccurate. Bored people do not
count carefully. 

If conclusions based on a sample are to be valid for the entire population, a
sound design for selecting the sample is required. The design of a sample refers to
the method used to choose the sample from the population. Poor sample designs
can produce misleading conclusions, as the following examples illustrate.

sample design



Call-in opinion polls are an example of voluntary response sampling. A vol-
untary response sample can easily produce 67% “No” when the truth about the
population is close to 72% “Yes.”
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Television news programs like to conduct call-in polls of public opinion. The program
announces a question and asks viewers to call one telephone number to respond “Yes”
and another for “No.” Telephone companies charge for these calls. The ABC network
program Nightline once asked whether the United Nations should continue to have its
headquarters in the United States. More than 186,000 callers responded, and 67% said
“No.”

People who spend the time and money to respond to call-in polls are not repre-
sentative of the entire adult population. In fact, they tend to be the same people who
call radio talk shows. People who feel strongly, especially those with strong negative
opinions, are more likely to call. It is not surprising that a properly designed sample
showed that 72% of adults want the UN to stay.1

EXAMPLE 5.2 CALL-IN OPINION POLLS

VOLUNTARY RESPONSE SAMPLE

A voluntary response sample consists of people who choose themselves 
by responding to a general appeal. Voluntary response samples are biased
because people with strong opinions, especially negative opinions, are
most likely to respond.

Voluntary response is one common type of bad sample design. Another
is convenience sampling, which chooses the individuals easiest to reach.
Here is an example of convenience sampling.

Manufacturers and advertising agencies often use interviews at shopping malls to gather
information about the habits of consumers and the effectiveness of ads. A sample of mall
shoppers is fast and cheap. “Mall interviewing is being propelled primarily as a budget
issue,” one expert told the New York Times. But people contacted at shopping malls are
not representative of the entire U.S. population. They are richer, for example, and more
likely to be teenagers or retired. Moreover, mall interviewers tend to select neat, safe-
looking individuals from the stream of customers. Decisions based on mall interviews
may not reflect the preferences of all consumers.2

EXAMPLE 5.3 INTERVIEWING AT THE MALL

Both voluntary response samples and convenience samples choose a sam-
ple that is almost guaranteed not to represent the entire population. These
sampling methods display bias, or systematic error, in favoring some parts of
the population over others.

convenience sampling



EXERCISES
5.1 FUNDING FOR DAY CARE A sociologist wants to know the opinions of employed adult
women about government funding for day care. She obtains a list of the 520 members
of a local business and professional women’s club and mails a questionnaire to 100 of
these women selected at random. Only 48 questionnaires are returned. What is the
population in this study? What is the sample?

5.2 WHAT IS THE POPULATION? For each of the following sampling situations, identify the
population as exactly as possible. That is, say what kind of individuals the population
consists of and say exactly which individuals fall in the population. If the information
given is not complete, complete the description of the population in a reasonable way.

(a) Each week, the Gallup Poll questions a sample of about 1500 adult U.S. residents
to determine national opinion on a wide variety of issues. 

(b) The 2000 census tried to gather basic information from every household in the
United States. But a “long form” requesting much additional information was sent to
a sample of about 17% of households.

(c) A machinery manufacturer purchases voltage regulators from a supplier. There are
reports that variation in the output voltage of the regulators is affecting the perfor-
mance of the finished products. To assess the quality of the supplier’s production, the
manufacturer sends a sample of 5 regulators from the last shipment to a laboratory for
study.

5.3 TEACHING READING An educator wants to compare the effectiveness of computer
software that teaches reading with that of a standard reading curriculum. He tests the
reading ability of each student in a class of fourth graders, then divides them into two
groups. One group uses the computer regularly, while the other studies a standard cur-
riculum. At the end of the year, he retests all the students and compares the increase
in reading ability in the two groups. Is this an experiment? Why or why not? What are
the explanatory and response variables?

5.4 THE EFFECTS OF PROPAGANDA In 1940, a psychologist conducted an experiment to
study the effect of propaganda on attitude toward a foreign government. He adminis-
tered a test of attitude toward the German government to a group of American stu-
dents. After the students read German propaganda for several months, he tested them
again to see if their attitudes had changed.

Unfortunately, Germany attacked and conquered France while the experiment
was in progress. Explain clearly why confounding makes it impossible to determine the
effect of reading the propaganda.

5.5 ALCOHOL AND HEART ATTACKS Many studies have found that people who drink alco-
hol in moderation have lower risk of heart attacks than either nondrinkers or heavy
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BIAS

The design of a study is biased if it systematically favors certain outcomes.



drinkers. Does alcohol consumption also improve survival after a heart attack? One
study followed 1913 people who were hospitalized after severe heart attacks. In the
year before their heart attack, 47% of these people did not drink, 36% drank moder-
ately, and 17% drank heavily. After four years, fewer of the moderate drinkers had
died.3 Is this an observational study or an experiment? Why? What are the explanatory
and response variables?

5.6 ARE ANESTHETICS SAFE? The National Halothane Study was a major investigation of
the safety of anesthetics used in surgery. Records of over 850,000 operations performed
in 34 major hospitals showed the following death rates for four common anesthetics:4

Anesthetic: A B C D 
Death rate: 1.7% 1.7% 3.4% 1.9% 

There is a clear association between the anesthetic used and the death rate of patients.
Anesthetic C appears to be dangerous.

(a) Explain why we call the National Halothane Study an observational study rather
than an experiment, even though it compared the results of using different anesthetics
in actual surgery.

(b) When the study looked at other variables that are confounded with a doctor’s
choice of anesthetic, it found that Anesthetic C was not causing extra deaths. Suggest
several variables that are mixed up with what anesthetic a patient receives.

5.7 CALL THE SHOTS A newspaper advertisement for USA Today: The Television Show
once said:

Should handgun control be tougher? You call the shots in a special call-in poll tonight.
If yes, call 1-900-720-6181. If no, call 1-900-720-6182. Charge is 50 cents for the first
minute.

Explain why this opinion poll is almost certainly biased.

5.8 EXPLAIN IT TO THE CONGRESSWOMAN You are on the staff of a member of Congress
who is considering a bill that would provide government-sponsored insurance for nurs-
ing home care. You report that 1128 letters have been received on the issue, of which
871 oppose the legislation. “I’m surprised that most of my constituents oppose the bill.
I thought it would be quite popular,” says the congresswoman. Are you convinced that
a majority of the voters oppose the bill? How would you explain the statistical issue to
the congresswoman?

Simple random samples
In a voluntary response sample, people choose whether to respond. In a con-
venience sample, the interviewer makes the choice. In both cases, personal
choice produces bias. The statistician’s remedy is to allow impersonal chance
to choose the sample. A sample chosen by chance allows neither favoritism by
the sampler nor self-selection by respondents. Choosing a sample by chance
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attacks bias by giving all individuals an equal chance to be chosen. Rich and
poor, young and old, black and white, all have the same chance to be in the
sample.

The simplest way to use chance to select a sample is to place names in a
hat (the population) and draw out a handful (the sample). This is the idea of
simple random sampling.
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SIMPLE RANDOM SAMPLE

A simple random sample (SRS) of size n consists of n individuals from
the population chosen in such a way that every set of n individuals has an
equal chance to be the sample actually selected.

An SRS not only gives each individual an equal chance to be chosen (thus
avoiding bias in the choice) but also gives every possible sample an equal
chance to be chosen. There are other random sampling designs that give each
individual, but not each sample, an equal chance. Exercise 5.30 describes one
such design, called systematic random sampling.

The idea of an SRS is to choose our sample by drawing names from a hat.
In practice, computer software can choose an SRS almost instantly from a list
of the individuals in the population. If you don’t use software, you can ran-
domize by using a table of random digits.

RANDOM DIGITS

A table of random digits is a long string of the digits 0, 1, 2, 3, 4, 5, 6, 7,
8, 9 with these two properties:

1. Each entry in the table is equally likely to be any of the 10 digits 0
through 9.

2. The entries are independent of each other. That is, knowledge of one
part of the table gives no information about any other part.

Table B at the back of the book is a table of random digits. You can think of
Table B as the result of asking an assistant (or a computer) to mix the digits 0 to 9
in a hat, draw one, then replace the digit drawn, mix again, draw a second digit,
and so on. The assistant’s mixing and drawing save us the work of mixing and
drawing when we need to randomize. Table B begins with the digits
19223950340575628713. To make the table easier to read, the digits appear in
groups of five and in numbered rows. The groups and rows have no meaning—
the table is just a long list of randomly chosen digits. Because the digits in Table
B are random:



• Each entry is equally likely to be any of the 10 possibilities 0, 1, . . . , 9.

• Each pair of entries is equally likely to be any of the 100 possible pairs 00,
01, . . . , 99.

• Each triple of entries is equally likely to be any of the 1000 possibilities 000,
001, . . . , 999, and so on.

These “equally likely” facts make it easy to use Table B to choose an SRS. Here
is an example that shows how.
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Joan’s small accounting firm serves 30 business clients. Joan wants to interview a sam-
ple of 5 clients in detail to find ways to improve client satisfaction. To avoid bias, she
chooses an SRS of size 5.

Step 1: Label. Give each client a numerical label, using as few digits as possible. Two
digits are needed to label 30 clients, so we use labels 

01, 02, 03, . . . , 29, 30

It is also correct to use labels 00 to 29 or even another choice of 30 two-digit labels.
Here is the list of clients, with labels attached:

01 A-1 Plumbing 16 JL Records
02 Accent Printing 17 Johnson Commodities
03 Action Sport Shop 18 Keiser Construction
04 Anderson Construction 19 Liu’s Chinese Restaurant
05 Bailey Trucking 20 MagicTan
06 Balloons Inc. 21 Peerless Machine
07 Bennett Hardware 22 Photo Arts
08 Best’s Camera Shop 23 River City Books
09 Blue Print Specialties 24 Riverside Tavern
10 Central Tree Service 25 Rustic Boutique
11 Classic Flowers 26 Satellite Services
12 Computer Answers 27 Scotch Wash
13 Darlene’s Dolls 28 Sewer’s Center
14 Fleisch Realty 29 Tire Specialties
15 Hernandez Electronics 30 Von’s Video Store

Step 2: Table. Enter Table B anywhere and read two-digit groups. Suppose we enter
at line 130, which is

69051 64817 87174 09517 84534 06489 87201 97245

The first 10 two-digit groups in this line are

69 05 16 48 17 87 17 40 95 17

EXAMPLE 5.4 HOW TO CHOOSE AN SRS



You can assign labels in any convenient manner, such as alphabetical
order for names of people. Be certain that all labels have the same number of
digits. Only then will all individuals have the same chance to be chosen. Use
the shortest possible labels: one digit for a population of up to 10 members, 2
digits for 11 to 100 members, three digits for 101 to 1000 members, and so on.
As standard practice, we recommend that you begin with label 1 (or 01 or 001,
as needed). You can read digits from Table B in any order—across a row, down
a column, and so on—because the table has no order. As standard practice, we
recommend reading across rows.

Other sampling designs
The general framework for designs that use chance to choose a sample is a
probability sample.
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Each successive two-digit group is a label. The labels 00 and 31 to 99 are not used in
this example, so we ignore them. The first 5 labels between 01 and 30 that we
encounter in the table choose our sample. Of the first 10 labels in line 130, we ignore
5 because they are too high (over 30). The others are 05, 16, 17, 17, and 17. The clients
labeled 05, 16, and 17 go into the sample. Ignore the second and third 17s because
that client is already in the sample. Now run your finger across line 130 (and contin-
ue to line 131 if needed) until 5 clients are chosen.

The sample is the clients labeled 05, 16, 17, 20, 19. These are Bailey Trucking, JL
Records, Johnson Commodities, MagicTan, and Liu’s Chinese Restaurant.

CHOOSING AN SRS

Choose an SRS in two steps:

Step 1: Label. Assign a numerical label to every individual in the popula-
tion.

Step 2: Table. Use Table B to select labels at random.

PROBABILITY SAMPLE

A probability sample is a sample chosen by chance. We must know what 
samples are possible and what chance, or probability, each possible sample has.

Some probability sampling designs (such as an SRS) give each member of
the population an equal chance to be selected. This may not be true in more
elaborate sampling designs. In every case, however, the use of chance to select
the sample is the essential principle of statistical sampling.



Designs for sampling from large populations spread out over a wide area
are usually more complex than an SRS. For example, it is common to sample
important groups within the population separately, then combine these sam-
ples. This is the idea of a stratified sample.
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multistage sample

STRATIFIED RANDOM SAMPLE

To select a stratified random sample, first divide the population into
groups of similar individuals, called strata. Then choose a separate SRS in
each stratum and combine these SRSs to form the full sample.

Choose the strata based on facts known before the sample is taken. For
example, a population of election districts might be divided into urban, subur-
ban, and rural strata. A stratified design can produce more exact information
than an SRS of the same size by taking advantage of the fact that individuals
in the same stratum are similar to one another. If all individuals in each stra-
tum are identical, for example, just one individual from each stratum is
enough to completely describe the population.

A radio station that broadcasts a piece of music owes a royalty to the composer. The
organization of composers (called ASCAP) collects these royalties for all its members
by charging stations a license fee for the right to play members’ songs. ASCAP has
four million songs in its catalog and collects $435 million in fees each year. How
should ASCAP distribute this income among its members? By sampling: ASCAP
tapes about 60,000 hours from the 53 million hours of local radio programs across the
country each year.

Radio stations are stratified by type of community (metropolitan, rural), geo-
graphic location (New England, Pacific, etc.), and the size of the license fee paid to
ASCAP, which reflects the size of the audience. In all, there are 432 strata. Tapes are
made at random hours for randomly selected members of each stratum. The tapes 
are reviewed by experts who can recognize almost every piece of music ever written,
and the composers are then paid according to their popularity.5

EXAMPLE 5.5 WHO WROTE THAT SONG?

Another common means of restricting random selection is to choose
the sample in stages. This is usual practice for national samples of house-
holds or people. For example, data on employment and unemployment are
gathered by the government’s Current Population Survey, which conducts
interviews in about 55,000 households each month. It is not practical to
maintain a list of all U.S. households from which to select an SRS.
Moreover, the cost of sending interviewers to the widely scattered households
in an SRS would be too high. The Current Population Survey therefore uses
a multistage sampling design. The final sample consists of clusters of near-



by households that an interviewer can easily visit. Most opinion polls and
other national samples are also multistage, though interviewing in most
national samples today is done by telephone rather than in person, elimi-
nating the economic need for clustering. The Current Population Survey
sampling design is roughly as follows:6

Stage 1: Divide the United States into 2007 geographical areas called Primary
Sampling Units, or PSUs. Select a sample of 756 PSUs. This sample includes
the 428 PSUs with the largest population and a stratified sample of 328 of the
others.

Stage 2: Divide each PSU selected into smaller areas called “neighborhoods.”
Stratify the neighborhoods using ethnic and other information and take a strat-
ified sample of the neighborhoods in each PSU.

Stage 3: Sort the housing units in each neighborhood into clusters of four
nearby units. Interview the households in a random sample of these clusters.

Analysis of data from sampling designs more complex than an SRS takes
us beyond basic statistics. But the SRS is the building block of more elaborate
designs, and analysis of other designs differs more in complexity of detail than
in fundamental concepts.

EXERCISES
5.9 CHOOSE YOUR SAMPLE You must choose an SRS of 10 of the 440 retail outlets in New
York that sell your company’s products. How would you label this population? Use
Table B, starting at line 105, to choose your sample.

5.10 WHO SHOULD BE INTERVIEWED? A firm wants to understand the attitudes of its
minority managers toward its system for assessing management performance. Below
is a list of all the firm’s managers who are members of minority groups. Use Table B
at line 139 to choose 6 to be interviewed in detail about the performance appraisal
system.

Agarwal Gates Peters
Anderson Goel Pliego
Baxter Gomez Puri
Bonds Hernandez Richards
Bowman Huang Rodriguez
Castillo Kim Santiago
Cross Liao Shen
Dewald Mourning Vega
Fernandez Naber Wang
Fleming

5.11 WHO GOES TO THE CONVENTION? A club has 30 student members and 10 faculty
members. The students are
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Abel Fisher Huber Miranda Reinmann
Carson Ghosh Jimenez Moskowitz Santos
Chen Griswold Jones Neyman Shaw
David Hein Kim O’Brien Thompson
Deming Hernandez Klotz Pearl Utts
Elashoff Holland Liu Potter Varga

The faculty members are

Andrews Fernandez Kim Moore West
Besicovitch Gupta Lightman Phillips Yang

The club can send 4 students and 2 faculty members to a convention. It decides to
choose those who will go by random selection. Use Table B, beginning at line 106, to
choose a stratified random sample of 4 students and 2 faculty members.

5.12 SAMPLING BY ACCOUNTANTS Accountants often use stratified samples during audits
to verify a company’s records of such things as accounts receivable. The stratification
is based on the dollar amount of the item and often includes 100% sampling of the
largest items. One company reports 5000 accounts receivable. Of these, 100 are in
amounts over $50,000; 500 are in amounts between $1000 and $50,000; and the
remaining 4400 are in amounts under $1000. Using these groups as strata, you decide
to verify all of the largest accounts and to sample 5% of the midsize accounts and 1%
of the small accounts. How would you label the two strata from which you will sam-
ple? Use Table B, starting at line 115, to select only the first 5 accounts from each of
these strata.

Cautions about sample surveys
Random selection eliminates bias in the choice of a sample from a list of the
population. When the population consists of human beings, however, accurate
information from a sample requires much more than a good sampling design.7
To begin, we need an accurate and complete list of the population. Because
such a list is rarely available, most samples suffer from some degree of under-
coverage. A sample survey of households, for example, will miss not only home-
less people but prison inmates and students in dormitories. An opinion poll
conducted by telephone will miss the 7% to 8% of American households with-
out residential phones. The results of national sample surveys therefore have
some bias if the people not covered—who most often are poor people—differ
from the rest of the population.

A more serious source of bias in most sample surveys is nonresponse, which
occurs when a selected individual cannot be contacted or refuses to cooperate.
Nonresponse to sample surveys often reaches 30% or more, even with careful
planning and several callbacks. Because nonresponse is higher in urban areas,
most sample surveys substitute other people in the same area to avoid favoring
rural areas in the final sample. If the people contacted differ from those who
are rarely at home or who refuse to answer questions, some bias remains.
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In addition, the behavior of the respondent or of the interviewer can cause
response bias in sample results. Respondents may lie, especially if asked about
illegal or unpopular behavior. The sample then underestimates the presence
of such behavior in the population. An interviewer whose attitude suggests
that some answers are more desirable than others will get these answers more
often. The race or sex of the interviewer can influence responses to questions
about race relations or attitudes toward feminism. Answers to questions that
ask respondents to recall past events are often inaccurate because of faulty
memory. For example, many people “telescope” events in the past, bringing
them forward in memory to more recent time periods. “Have you visited a
dentist in the last 6 months?” will often draw a “Yes” from someone who last
visited a dentist 8 months ago.9 Careful training of interviewers and careful
supervision to avoid variation among the interviewers can greatly reduce
response bias. Good interviewing technique is another aspect of a well-done
sample survey.
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UNDERCOVERAGE AND NONRESPONSE

Undercoverage occurs when some groups in the population are left out of
the process of choosing the sample.

Nonresponse occurs when an individual chosen for the sample can’t be
contacted or does not cooperate.

Even the U.S. census, backed by the resources of the federal government, suffers from
undercoverage and nonresponse. The census begins by mailing forms to every house-
hold in the country. The Census Bureau’s list of addresses is incomplete, resulting in
undercoverage. Despite special efforts to count homeless people (who can’t be reached
at any address), homelessness causes more undercoverage.

In 1990, about 35% of households that were mailed census forms did not mail
them back. In New York City, 47% did not return the form. That’s nonresponse. The
Census Bureau sent interviewers to these households. In inner-city areas, the inter-
viewers could not contact about one in five of the nonresponders, even after six tries.

The Census Bureau estimates that the 1990 census missed about 1.8% of the total
population due to undercoverage and nonresponse. Because the undercount was
greater in the poorer sections of large cities, the Census Bureau estimates that it failed
to count 4.4% of blacks and 5.0% of Hispanics.8

For the 2000 census, the Bureau planned to replace follow-up of all nonrespon-
ders with more intense pursuit of a probability sample of nonresponding households
plus a national sample of 750,000 households. The final counts would be based on
comparing the national sample with the original responses. This idea was politically
controversial. The Supreme Court ruled that the sampling could be used for most
purposes, but not for dividing seats in Congress among the states.

EXAMPLE 5.6 THE CENSUS UNDERCOUNT

response bias



The wording of questions is the most important influence on the answers
given to a sample survey. Confusing or leading questions can introduce strong
bias, and even minor changes in wording can change a survey’s outcome. Here
are two examples.
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wording effects

A survey paid for by makers of disposable diapers found that 84% of the sample
opposed banning disposable diapers. Here is the actual question:

It is estimated that disposable diapers account for less than 2% of the trash in
today’s landfills. In contrast, beverage containers, third-class mail and yard wastes
are estimated to account for about 21% of the trash in landfills. Given this, in your
opinion, would it be fair to ban disposable diapers?10

This question gives information on only one side of an issue, then asks an opin-
ion. That’s a sure way to bias the responses. A different question that described how
long disposable diapers take to decay and how many tons they contribute to landfills
each year would draw a quite different response. 

EXAMPLE 5.7 SHOULD WE BAN DISPOSABLE DIAPERS?

An opinion poll conducted in 1992 for the American Jewish Committee asked: “Does
it seem possible or does it seem impossible to you that the Nazi extermination of the
Jews never happened?” When 22% of the sample said “possible,” the news media
wondered how so many Americans could be uncertain that the Holocaust happened.
Then a second poll asked the question in different words: “Does it seem possible to you
that the Nazi extermination of the Jews never happened, or do you feel certain that it
happened?” Now only 1% of the sample said “possible.” The complicated wording of
the first question confused many respondents.11

EXAMPLE 5.8 DOUBTING THE HOLOCAUST

Never trust the results of a sample survey until you have read the exact
questions posed. The sampling design, the amount of nonresponse, and the
date of the survey are also important. Good statistical design is a part, but only
a part, of a trustworthy survey.

Inference about the population
Despite the many practical difficulties in carrying out a sample survey, using
chance to choose a sample does eliminate bias in the actual selection of the
sample from the list of available individuals. But it is unlikely that results from
a sample are exactly the same as for the entire population. Sample results, like
the official unemployment rate obtained from the monthly Current
Population Survey, are only estimates of the truth about the population. If we
select two samples at random from the same population, we will draw different
individuals. So the sample results will almost certainly differ somewhat. Two



runs of the Current Population Survey would produce somewhat different
unemployment rates. Properly designed samples avoid systematic bias, but
their results are rarely exactly correct and they vary from sample to sample.

How accurate is a sample result like the monthly unemployment rate? We
can’t say for sure, because the result would be different if we took another sam-
ple. But the results of random sampling don’t change haphazardly from sample
to sample. Because we deliberately use chance, the results obey the laws of
probability that govern chance behavior. We can say how large an error we are
likely to make in drawing conclusions about the population from a sample.
Results from a sample survey usually come with a margin of error that sets
bounds on the size of the likely error. How to do this is part of the business of
statistical inference. We will describe the reasoning in Chapter 10.

One point is worth making now: larger random samples give more accu-
rate results than smaller samples. By taking a very large sample, you can be
confident that the sample result is very close to the truth about the population.
The Current Population Survey’s sample of 50,000 households estimates the
national unemployment rate very accurately. Of course, only probability sam-
ples carry this guarantee. Nightline’s voluntary response sample is worthless
even though 186,000 people called in. Using a probability sampling design
and taking care to deal with practical difficulties reduce bias in a sample. The
size of the sample then determines how close to the population truth the sam-
ple result is likely to fall.

EXERCISES
5.13 SAMPLING FRAME The list of individuals from which a sample is actually selected
is called the sampling frame. Ideally, the frame should list every individual in the pop-
ulation, but in practice this is often difficult. A frame that leaves out part of the popu-
lation is a common source of undercoverage.

(a) Suppose that a sample of households in a community is selected at random from
the telephone directory. What households are omitted from this frame? What types of
people do you think are likely to live in these households? These people will probably
be underrepresented in the sample.

(b) It is more common in telephone surveys to use random digit dialing equipment
that selects the last four digits of a telephone number at random after being given the
exchange (the first three digits). Which of the households you mentioned in your
answer to (a) will be included in the sampling frame by random digit dialing?

5.14 RING-NO-ANSWER A common form of nonresponse in telephone surveys is “ring-
no-answer.” That is, a call is made to an active number but no one answers. The Italian
National Statistical Institute looked at nonresponse to a government survey of house-
holds in Italy during the periods January 1 to Easter and July 1 to August 31. All calls
were made between 7 and 10 p.m., but 21.4% gave “ring-no-answer” in one period ver-
sus 41.5% “ring-no-answer” in the other period.12 Which period do you think had the
higher rate of no answers? Why? Explain why a high rate of nonresponse makes sam-
ple results less reliable.
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5.15 QUESTION WORDING During the 2000 presidential campaign, the candidates debated
what to do with the large government surplus. The Pew Research Center asked two ques-
tions of random samples of adults. Both questions stated that social security would be
“fixed.” Here are the uses suggested for the remaining surplus:

Should the money be used for a tax cut, or should it be used to fund new 
government programs?

Should the money be used for a tax cut, or should it be spent on programs for
education, the environment, health care, crime-fighting and military defense?

One of these questions drew 60% favoring a tax cut; the other, only 22%. Which word-
ing pulls respondents toward a tax cut? Why?

5.16 GRADING THE PRESIDENT A newspaper article about an opinion poll says that “43%
of Americans approve of the president’s overall job performance.” Toward the end of
the article, you read: “The poll is based on telephone interviews with 1210 adults from
around the United States, excluding Alaska and Hawaii.” What variable did this poll
measure? What population do you think the newspaper wants information about?
What was the sample? Are there any sources of bias in the sampling method used?

5.17 EQUAL PAY FOR MALE AND FEMALE ATHLETES? The Excite Poll can be found online
at http://lite.excite.com. The question appears on the screen, and you simply click
buttons to vote “Yes,” “No,” or “Not sure.” On January 25, 2000, the question was
“Should female athletes be paid the same as men for the work they do?” In all,
13,147 (44%) said “Yes,” another 15,182 (50%) said “No,” and the remaining 1448
said “Not sure.”

(a) What is the sample size for this poll?

(b) That’s a much larger sample than standard sample surveys. In spite of this, we can’t
trust the result to give good information about any clearly defined population. Why?

(c) More men than women use the Web. How might this fact affect the poll results?

5.18 WORDING BIAS Comment on each of the following as a potential sample survey
question. Is the question clear? Is it slanted toward a desired response?

(a) “Some cell phone users have developed brain cancer. Should all cell phones
come with a warning label explaining the danger of using cell phones?”

(b) “Do you agree that a national system of health insurance should be favored because
it would provide health insurance for everyone and would reduce administrative costs?”

(c) “In view of escalating environmental degradation and incipient resource depletion,
would you favor economic incentives for recycling of resource-intensive consumer goods?”
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SUMMARY
Data analysis is sometimes exploratory in nature. Exploratory analysis asks
what the data tell us about the variables and their relations to each other. The



conclusions of an exploratory analysis may not generalize beyond the specific
data studied.

Statistical inference produces answers to specific questions, along with a
statement of how confident we can be that the answer is correct. The conclu-
sions of statistical inference are usually intended to apply beyond the individuals
actually studied. Successful statistical inference usually requires production of
data intended to answer the specific questions posed.

We can produce data intended to answer specific questions by sampling or
experimentation. Sampling selects a part of a population of interest to repre-
sent the whole. Experiments are distinguished from observational studies
such as sample surveys by the active imposition of some treatment on the sub-
jects of the experiment.

A sample survey selects a sample from the population of all individuals
about which we desire information. We base conclusions about the population
on data about the sample. 

The design of a sample refers to the method used to select the sample from
the population. Probability sampling designs use impersonal chance to select
a sample.

The basic probability sample is a simple random sample (SRS). An SRS
gives every possible sample of a given size the same chance to be chosen.

Choose an SRS by labeling the members of the population and using
a table of random digits to select the sample. Software can automate this
process.

To choose a stratified random sample, divide the population into strata,
groups of individuals that are similar in some way that is important to the
response. Then choose a separate SRS from each stratum and combine them
to form the full sample. 

Multistage samples select successively smaller groups within the popula-
tion in stages, resulting in a sample consisting of clusters of individuals. Each
stage may employ an SRS, a stratified sample, or another type of sample.

Failure to use probability sampling often results in bias, or systematic
errors in the way the sample represents the population. Voluntary response
samples, in which the respondents choose themselves, are particularly prone
to large bias.

In human populations, even probability samples can suffer from bias due
to undercoverage or nonresponse, from response bias due to the behavior of
the interviewer or the respondent, or from misleading results due to poorly
worded questions.

Larger samples give more accurate results than smaller samples.
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SECTION 5.1 EXERCISES
5.19 DESCRIBE THE POPULATION For each of the following sampling situations, iden-
tify the population as exactly as possible. That is, say what kind of individuals the



population consists of and say exactly which individuals fall in the population. If
the information given is not complete, complete the description of the population
in a reasonable way.

(a) An opinion poll contacts 1161 adults and then asks them “Which political party
do you think has better ideas for leading the country in the twenty-first century?”

(b) A sociologist wants to know the opinions of employed adult women about govern-
ment funding for day care. She obtains a list of the 520 members of a local business and
professional women’s club and mails a questionnaire to 100 of these women selected at
random.

(c) The American Community Survey will contact 3 million households, including
some in every county in the United States. This new Census Bureau survey will ask
each household questions about their housing, economic, and social status.

5.20 THE REAGAN-CARTER ELECTION DEBATE Some television stations take quick polls
of public opinion by announcing a question on the air and asking viewers to call
one of two telephone numbers to register their opinion as “Yes” or “No.”
Telephone companies make available “900” numbers for this purpose. Dialing a
900 number results in a small charge to your telephone bill. The first major use of
call-in polling was by the ABC television network in October 1980. At the end of
the first Reagan-Carter presidential election debate, ABC asked its viewers which
candidate won. The call-in poll proclaimed that Reagan had won the debate by a
2 to 1 margin. But a random survey by CBS News showed only a 44% to 36% mar-
gin for Reagan, with the rest undecided. Why are call-in polls likely to be biased?
Can you suggest why this bias might have favored the Republican Reagan over the
Democrat Carter?

5.21 TESTING CHEMICALS A manufacturer of chemicals chooses 3 from each lot of 25
containers of a reagent to test for purity and potency. Below are the control numbers
stamped on the bottles in the current lot. Use Table B at line 111 to choose an SRS of
3 of these bottles.

A1096 A1097 A1098 A1101 A1108
A1112 A1113 A1117 A2109 A2211
A2220 B0986 B1011 B1096 B1101
B1102 B1103 B1110 B1119 B1137
B1189 B1223 B1277 B1286 B1299

5.22 INCREASING SAMPLE SIZE Just before a presidential election, a national opinion
polling firm increases the size of its weekly sample from the usual 1500 people to 4000
people. Why do you think the firm does this?

5.23 CENSUS TRACT Figure 5.1 is a map of a census tract in a fictitious town. Census
tracts are small, homogeneous areas averaging 4000 in population. On the map, each
block is marked with a Census Bureau identification number. An SRS of blocks from
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FIGURE 5.1 Map of a census tract.

a census tract is often the next-to-last stage in a multistage sample. Use Table B, begin-
ning at line 125, to choose an SRS of 5 blocks from this census tract.

5.24 RANDOM DIGITS Which of the following statements are true of a table of random
digits, and which are false? Briefly explain your answers.

(a) There are exactly four 0s in each row of 40 digits.

(b) Each pair of digits has chance 1/100 of being 00.

(c) The digits 0000 can never appear as a group, because this pattern is not random.

5.25 IS IT AN SRS? A corporation employs 2000 male and 500 female engineers. A
stratified random sample of 200 male and 50 female engineers gives each engineer
1 chance in 10 to be chosen. This sample design gives every individual in the 



population the same chance to be chosen for the sample. Is it an SRS? Explain
your answer.

5.26 CHECKING FOR BIAS Comment on each of the following as a potential sample sur-
vey question. Is the question clear? Is it slanted toward a desired response?

(a) Which of the following best represents your opinion on gun control?

1. The government should confiscate our guns.

2. We have the right to keep and bear arms.

(b) A freeze in nuclear weapons should be favored because it would begin a much-
needed process to stop everyone in the world from building nuclear weapons now and
reduce the possibility of nuclear war in the future. Do you agree or disagree? 

(c) In view of escalating environmental degradation and incipient resource depletion,
would you favor economic incentives for recycling of resource-intensive consumer
goods?

5.27 SAMPLING ERROR A New York Times opinion poll on women’s issues contacted a
sample of 1025 women and 472 men by randomly selecting telephone numbers. The
Times publishes complete descriptions of its polling methods. Here is part of the
description for this poll:13

In theory, in 19 cases out of 20 the results based on the entire sample will differ by
no more than three percentage points in either direction from what would have been
obtained by seeking out all adult Americans. 

The potential sampling error for smaller subgroups is larger. For example, for
men it is plus or minus five percentage points. 

Explain why the margin of error is larger for conclusions about men alone than for
conclusions about all adults.

5.28 ATTITUDES TOWARD ALCOHOL At a party there are 30 students over age 21 and 20 stu-
dents under age 21. You choose at random 3 of those over 21 and separately choose at
random 2 of those under 21 to interview about attitudes toward alcohol. You have
given every student at the party the same chance to be interviewed: what is the chance?
Why is your sample not an SRS?

5.29 WHAT DO SCHOOLKIDS WANT? What are the most important goals of schoolchildren?
Do girls and boys have different goals? Are goals different in urban, suburban, and
rural areas? To find out, researchers wanted to ask children in the fourth, fifth, and
sixth grades this question: 

What would you most like to do at school?

A. Make good grades.

B. Be good at sports.

C. Be popular.

Because most children live in heavily populated urban and suburban areas, an
SRS might contain few rural children. Moreover, it is too expensive to choose children

288 Chapter 5 Producing Data



at random from a large region---we must start by choosing schools rather than children.
Describe a suitable sample design for this study and explain the reasoning behind your
choice of design.

5.30 SYSTEMATIC RANDOM SAMPLE Sample surveys often use a systematic random
sample to choose a sample of apartments in a large building or dwelling units in a
block at the last stage of a multistage sample. An example will illustrate the idea of
a systematic sample.

Suppose that we must choose 4 addresses out of 100. Because 100/4 = 25, we can
think of the list as four lists of 25 addresses. Choose 1 of the first 25 addresses at ran-
dom using Table B. The sample contains this address and the addresses 25, 50, and 75
places down the list from it. If the table gives 13, for example, then the systematic ran-
dom sample consists of the addresses numbered 13, 38, 63, and 88.

(a) Use Table B to choose a systematic random sample of 5 addresses from a list of
200. Enter the table at line 120.

(b) Like an SRS, a systematic random sample gives all individuals the same chance to
be chosen. Explain why this is true. Then explain carefully why a systematic sample is
nonetheless not an SRS.
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systematic random 
sample

Activity 5B The Class Survey Revisited

Each student should have a copy of the survey that the class constructed in
Activity 5A at the beginning of the chapter. Now that you are experts on
good and bad characteristics of survey questions, do the following:

1. Consider the questions in order. As you look at each item, see if the ques-
tion contains bias. Does it advocate a position? Does the question contain
any complicated words or phrasing that might be misinterpreted? Will any
questions evoke response bias?

2. Make any changes that the group feels are needed. Remember that the
survey should be anonymous (no names on the papers) so that students are
assured that the class as a whole rather than themselves as individuals will
be described.

3. Print the final version of the survey. Make one copy for each member of
the class and an extra copy on which to tally the results.

4. Each student should complete the survey.

5. Place the completed surveys, upside down, in a pile. The last student fin-
ished should shuffle the pile of surveys to ensure anonymity.

6. Designate someone (the teacher?) to tally the responses as homework
and prepare a cumulative summary. Give a copy of the results to each stu-
dent in the class for later analysis.



5.2 DESIGNING EXPERIMENTS
A study is an experiment when we actually do something to people, animals,
or objects in order to observe the response. Here is the basic vocabulary of
experiments.
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EXPERIMENTAL UNITS, SUBJECTS, TREATMENT

The individuals on which the experiment is done are the experimental
units. When the units are human beings, they are called subjects. A spe-
cific experimental condition applied to the units is called a treatment.

Because the purpose of an experiment is to reveal the response of one vari-
able to changes in other variables, the distinction between explanatory and
response variables is important. The explanatory variables in an experiment are
often called factors. Many experiments study the joint effects of several factors.
In such an experiment, each treatment is formed by combining a specific value
(often called a level) of each of the factors.

Does regularly taking aspirin help protect people against heart attacks? The Physicians’
Health Study was a medical experiment that helped answer this question. In fact, the
Physicians’ Health Study looked at the effects of two drugs: aspirin and beta carotene.
The body converts beta carotene into vitamin A, which may help prevent some forms
of cancer. The subjects were 21,996 male physicians. There were two factors, each having
two levels: aspirin (yes or no) and beta carotene (yes or no). Combinations of the levels of
these factors form the four treatments shown in Figure 5.2. One-fourth of the subjects
were assigned to each of these treatments.

EXAMPLE 5.9 THE PHYSICIANS’ HEALTH STUDY

Factor 2: Beta carotene

Factor 1:
Aspirin

Yes

No

No

Yes

Aspirin Beta carotene Aspirin Placebo

Placebo Beta carotene Placebo Placebo

FIGURE 5.2 The treatments in the Physicians’ Health Study.

factor

level



Examples 5.9 and 5.10 illustrate the big advantage of experiments over
observational studies. In principle, experiments can give good evidence for
causation. All the doctors in the Physicians’ Health Study took a pill every
other day, and all got the same schedule of checkups and information. The
only difference was the content of the pill. When one group had many fewer
heart attacks, we conclude that it was the content of the pill that made the dif-
ference. Julie’s observational study—a census of all seniors in her high
school—does a good job of describing differences between seniors who have
studied foreign languages and those who have not. But she can say nothing
about cause and effect.

Another advantage of experiments is that they allow us to study the specific
factors we are interested in, while controlling the effects of lurking variables.
The subjects in the Physicians’ Health Study were all middle-aged male doctors
and all followed the same schedule of medical checkups. These similarities
reduce variation among the subjects and make any effects of aspirin or beta
carotene easier to see. Experiments also allow us to study the combined effects
of several factors. The interaction of several factors can produce effects that
could not be predicted from looking at the effects of each factor alone. The
Physicians’ Health Study tells us that aspirin helps prevent heart attacks, at least
in middle-aged men, and that beta carotene taken with the aspirin neither helps
nor hinders aspirin’s protective powers.
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On odd-numbered days, the subjects took a white tablet that contained either
aspirin or a placebo, a dummy pill that looked and tasted like the aspirin but had no
active ingredient. On even-numbered days, they took a red capsule containing either
beta carotene or a placebo. There were several response variables---the study looked for
heart attacks, several kinds of cancer, and other medical outcomes. After several years,
239 of the placebo group but only 139 of the aspirin group had suffered heart attacks.
This difference is large enough to give good evidence that taking aspirin does reduce
heart attacks.14 It did not appear, however, that beta carotene had any effect.

Julie obtains lists of all seniors in her high school who did and did not study a foreign
language. Then she compares their scores on a standard test of English reading and
grammar given to all seniors. The average score of the students who studied a foreign
language is much higher than the average score of those who did not.

This observational study gives no evidence that studying another language builds
skill in English. Students decide for themselves whether or not to elect a foreign lan-
guage. Those who choose to study a language are mostly students who are already
better at English than most students who avoid foreign languages. The difference in
average test scores just shows that students who choose to study a language differ (on
the average) from those who do not. We can’t say whether studying languages causes
this difference.

EXAMPLE 5.10 DOES STUDYING A FOREIGN LANGUAGE IN HIGH SCHOOL
INCREASE VERBAL ABILITY IN ENGLISH?

placebo



Comparative experiments
Laboratory experiments in science and engineering often have a simple design
with only a single treatment, which is applied to all of the experimental units.
The design of such an experiment can be outlined as

Units → Treatment → Observe response

For example, we may subject a beam to a load (treatment) and measure its
deflection (observation). We rely on the controlled environment of the labora-
tory to protect us from lurking variables. When experiments are conducted in
the field or with living subjects, such simple designs often yield invalid data.
That is, we cannot tell whether the response was due to the treatment or to
lurking variables. Another medical example will show what can go wrong.
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“Gastric freezing” is a clever treatment for ulcers in the upper intestine. The patient
swallows a deflated balloon with tubes attached, then a refrigerated liquid is pumped
through the balloon for an hour. The idea is that cooling the stomach will reduce its
production of acid and so relieve ulcers. An experiment reported in the Journal of the
American Medical Association showed that gastric freezing did reduce acid production
and relieve ulcer pain. The treatment was safe and easy and was widely used for sev-
eral years. The design of the experiment was

Subjects → Gastric freezing → Observe pain relief

The gastric freezing experiment was poorly designed. The patients’ response may
have been due to the placebo effect. A placebo is a dummy treatment. Many patients
respond favorably to any treatment, even a placebo. This may be due to trust in the
doctor and expectations of a cure, or simply to the fact that medical conditions often
improve without treatment. The response to a dummy treatment is the placebo effect.

A later experiment divided ulcer patients into two groups. One group was treated
by gastric freezing as before. The other group received a placebo treatment in which
the liquid in the balloon was at body temperature rather than freezing. The results:
34% of the 82 patients in the treatment group improved, but so did 38% of the 78
patients in the placebo group. This and other properly designed experiments showed
that gastric freezing was no better than a placebo, and its use was abandoned.15

EXAMPLE 5.11 TREATING ULCERS

The first gastric freezing experiment gave misleading results because the
effects of the explanatory variable were confounded with (mixed up with) 
the placebo effect. We can defeat confounding by comparing two groups of
patients, as in the second gastric freezing experiment. The placebo effect and
other lurking variables now operate on both groups. The only difference
between the groups is the actual effect of gastric freezing. The group of
patients who received a sham treatment is called a control group, because it
enables us to control the effects of outside variables on the outcome. Control
is the first basic principle of statistical design of experiments. Comparison
of several treatments in the same environment is the simplest form of control.

control group

placebo effect



Without control, experimental results in medicine and the behavioral sci-
ences can be dominated by such influences as the details of the experimental
arrangement, the selection of subjects, and the placebo effect. The result is
often bias, systematic favoritism toward one outcome. An uncontrolled study of
a new medical therapy, for example, is biased in favor of finding the treatment
effective because of the placebo effect. It should not surprise you to learn that
uncontrolled studies in medicine give new therapies a much higher success rate
than proper comparative experiments. Well-designed experiments, like the
Physicians’ Health Study and the second gastric freezing study, usually compare
several treatments.

EXERCISES
For each of the experimental situations described in Exercises 5.31 to 5.34, identify
the experimental units or subjects, the factors, the treatments, and the response
variables.

5.31 RESISTING DROUGHT The ability to grow in shade may help pines found in the dry
forests of Arizona to resist drought. How well do these pines grow in shade? Investigators
planted pine seedlings in a greenhouse in either full light or light reduced to 5% of nor-
mal by shade cloth. At the end of the study, they dried the young trees and weighed them.

5.32 PACKAGE LINERS A manufacturer of food products uses package liners that are
sealed at the top by applying heated jaws after the package is filled. The customer
peels the sealed pieces apart to open the package. What effect does the temperature
of the jaws have on the force required to peel the liner? To answer this question, the
engineers prepare 20 pairs of pieces of package liner. They seal five pairs at each of
250° F, 275° F, 300° F, and 325° F. Then they measure the strength needed to peel
each seal.

5.33 IMPROVING RESPONSE RATE How can we reduce the rate of refusals in telephone sur-
veys? Most people who answer at all listen to the interviewer’s introductory remarks and
then decide whether to continue. One study made telephone calls to randomly selected
households to ask opinions about the next election. In some calls, the interviewer gave
her name, in others she identified the university she was representing, and in still others
she identified both herself and the university. For each type of call, the interviewer either
did or did not offer to send a copy of the final survey results to the person interviewed.
Do these differences in the introduction affect whether the interview is completed?

5.34 SICKLE-CELL DISEASE Sickle-cell disease is an inherited disorder of the red blood cells
that in the United States affects mostly blacks. It can cause severe pain and many com-
plications. Can the drug hydroxyurea reduce the severe pain caused by sickle-cell disease?
A study by the National Institutes of Health gave the drug to 150 sickle-cell sufferers and
a placebo (a dummy medication) to another 150. The researchers then counted the
episodes of pain reported by each subject.

5.35 COMPARING LEARNING METHODS An educator wants to compare the effectiveness of
computer software that teaches reading with that of a standard reading curriculum.
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She tests the reading ability of each student in a class of fourth graders, then divides
them into two groups. One group uses the computer regularly, while the other studies
a standard curriculum. At the end of the year, she retests all the students and compares
the increase in reading ability in the two groups. 

(a) Is this an experiment? Why or why not? 

(b) What are the explanatory and response variables?

5.36 OPTIMIZING A PRODUCTION PROCESS A chemical engineer is designing the production
process for a new product. The chemical reaction that produces the product may have
higher or lower yield, depending on the temperature and the stirring rate in the vessel
in which the reaction takes place. The engineer decides to investigate the effects of
combinations of two temperatures (50° C and 60° C) and three stirring rates (60 rpm,
90 rpm, and 120 rpm) on the yield of the process. She will process two batches of the
product at each combination of temperature and stirring rate.

(a) What are the experimental units and the response variable in this experiment?

(b) How many factors are there? How many treatments? Use a diagram like that in
Figure 5.2 (page 290) to lay out the treatments.

(c) How many experimental units are required for the experiment?

Randomization
The design of an experiment first describes the response variable or variables, the
factors (explanatory variables), and the layout of the treatments, with comparison
as the leading principle. Figure 5.2 illustrates this aspect of the design of the
Physicians’ Health Study. The second aspect of design is the rule used to assign
the experimental units to the treatments. Comparison of the effects of several
treatments is valid only when all treatments are applied to similar groups of exper-
imental units. If one corn variety is planted on more fertile ground, or if one can-
cer drug is given to more seriously ill patients, comparisons among treatments are
meaningless. Systematic differences among the groups of experimental units in a
comparative experiment cause bias. How can we assign experimental units to
treatments in a way that is fair to all of the treatments?

Experimenters often attempt to match groups by elaborate balancing acts.
Medical researchers, for example, try to match the patients in a “new drug”
experimental group and a “standard drug” control group by age, sex, physical
condition, smoker or not, and so on. Matching is helpful but not adequate—
there are too many lurking variables that might affect the outcome. The
experimenter is unable to measure some of these variables and will not think
of others until after the experiment. Some important variables, such as how
advanced a cancer patient’s disease is, are so subjective that an experimenter
might bias the study by, for example, assigning more advanced cancer cases to
a promising new treatment in the unconscious hope that it will help them.

The statistician’s remedy is to rely on chance to make an assignment that
does not depend on any characteristic of the experimental units and that does
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not rely on the judgment of the experimenter in any way. The use of chance
can be combined with matching, but the simplest design creates groups by
chance alone. Here is an example. 
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A food company assesses the nutritional quality of a new “instant breakfast” product by
feeding it to newly weaned male white rats. The response variable is a rat’s weight gain
over a 28-day period. A control group of rats eats a standard diet but otherwise receives
exactly the same treatment as the experimental group.

This experiment has one factor (the diet) with two levels. The researchers use 30
rats for the experiment and so must divide them into two groups of 15. To do this in an
unbiased fashion, put the cage numbers of the 30 rats in a hat, mix them up, and draw
15. These rats form the experimental group and the remaining 15 make up the con-
trol group. That is, each group is an SRS of the available rats. Figure 5.3 outlines the
design of this experiment.

EXAMPLE 5.12 TESTING A BREAKFAST FOOD

Random
assignment

Compare
weight gain

Group 1
15 rats

Group 2
15 rats

Treatment 1
New diet

Treatment 2
Standard diet

FIGURE 5.3 Outline of a randomized comparative experiment.

Randomization, the use of chance to divide experimental units into
groups, is an essential ingredient for a good experimental design. The design
in Figure 5.3 combines comparison and randomization to arrive at the sim-
plest randomized comparative design. This “flowchart” outline presents all the
essentials: randomization, the sizes of the groups and which treatment they
receive, and the response variable. There are, as we will see later, statistical rea-
sons for generally using treatment groups about equal in size.

Randomized comparative experiments
The logic behind the randomized comparative design in Figure 5.3 is as fol-
lows:

• Randomization produces groups of rats that should be similar in all respects
before the treatments are applied.

We can use software or the table of random digits to randomize. Label the rats 01
to 30. Enter Table B at (say) line 130. Run your finger along this line (and continue
to lines 131 and 132 as needed) until 15 rats are chosen. They are the rats labeled

05, 16, 17, 20, 19, 04, 25, 29, 18, 07, 13, 02, 23, 27, 21

These rats form the experimental group; the remaining 15 are the control group.



• Comparative design ensures that influences other than the diets operate
equally on both groups.

• Therefore, differences in average weight gain must be due either to the diets
or to the play of chance in the random assignment of rats to the two diets.

That “either-or” deserves more thought. We cannot say that any difference
in the average weight gains of rats fed the two diets must be caused by a differ-
ence between the diets. There would be some difference even if both groups
received the same diet, because the natural variability among rats means that
some grow faster than others. Chance assigns the faster-growing rats to one
group or the other, and this creates a chance difference between the groups.
We would not trust an experiment with just one rat in each group, for exam-
ple. The results would depend too much on which group got lucky and
received the faster-growing rat. If we assign many rats to each diet, however, the
effects of chance will average out and there will be little difference in the aver-
age weight gains in the two groups unless the diets themselves cause a differ-
ence. “Use enough experimental units to reduce chance variation” is the
third big idea of statistical design of experiments.
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PRINCIPLES OF EXPERIMENTAL DESIGN

The basic principles of statistical design of experiments are 

1. Control the effects of lurking variables on the response, most simply by
comparing two or more treatments.

2. Randomize—use impersonal chance to assign experimental units to
treatments.

3. Replicate each treatment on many units to reduce chance variation in
the results.

We hope to see a difference in the responses so large that it is unlikely to
happen just because of chance variation. We can use the laws of probability,
which give a mathematical description of chance behavior, to learn if the treat-
ment effects are larger than we would expect to see if only chance were oper-
ating. If they are, we call them statistically significant.

STATISTICAL SIGNIFICANCE

An observed effect so large that it would rarely occur by chance is called
statistically significant.



You will often see the phrase “statistically significant” in reports of investiga-
tions in many fields of study. It tells you that the investigators found good evidence
for the effect they were seeking. The Physicians’ Health Study, for example,
reported statistically significant evidence that aspirin reduces the number of heart
attacks compared with a placebo.
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Many utility companies have programs to encourage their customers to conserve energy.
An electric company is considering placing electronic meters in households to show what
the cost would be if the electricity use at that moment continued for a month. Will meters
reduce electricity use? Would cheaper methods work almost as well? The company
decides to design an experiment.

One cheaper approach is to give customers a chart and information about moni-
toring their electricity use. The experiment compares these two approaches (meter,
chart) with each other and also with a control group of customers who receive no help
in monitoring electricity use. The response variable is total electricity used in a year.
The company finds 60 single-family residences in the same city willing to participate,
so it assigns 20 residences at random to each of the three treatments. The outline of
the design appears in Figure 5.4.

EXAMPLE 5.13 ENCOURAGING ENERGY CONSERVATION

Random
assignment

Compare
electricity

use

Group 1
20 houses

Group 2
20 houses

Group 3
20 houses

Treatment 1
Meter

Treatment 2
Chart

Treatment 3
Control

FIGURE 5.4 Outline of a completely randomized design comparing three treatments.

To carry out the random assignment, label the 60 houses 01 to 60. Then enter
Table B and read two-digit groups until you have selected 20 houses to receive the
meters. Continue in Table B to select 20 more to receive charts. The remaining 20
form the control group. The process is simple but tedious.

When all experimental units are allocated at random among all treat-
ments, the experimental design is completely randomized. The designs in
Figures 5.3 (page 295) and 5.4 are both completely randomized. Com-
pletely randomized designs can compare any number of treatments. In
Example 5.13, we compared the three levels of a single factor: the method
used to encourage energy conservation. The treatments can be formed by
more than one factor. The Physicians’ Health Study had two factors, which
combine to form the four treatments shown in Figure 5.2 (page 290). The study

completely randomized
design



used a completely randomized design that assigned 5499 of the 21,996 subjects
to each of the four treatments.

EXERCISES
5.37 TREATING PROSTATE DISEASE A large study used records from Canada’s national
health care system to compare the effectiveness of two ways to treat prostate disease. The
two treatments are traditional surgery and a new method that does not require surgery.
The records described many patients whose doctors had chosen each method. The
study found that patients treated by the new method were significantly more likely to
die within 8 years.16

(a) Further study of the data showed that this conclusion was wrong. The extra deaths
among patients who got the new method could be explained by lurking variables.
What lurking variables might be confounded with a doctor’s choice of surgical or non-
surgical treatment?

(b) You have 300 prostate patients who are willing to serve as subjects in an exper-
iment to compare the two methods. Use a diagram to outline the design of a ran-
domized comparative experiment. (When using a diagram to outline the design of
an experiment, be sure to indicate the size of the treatment groups and the
response variable. The diagrams in Examples 5.12 (page 295) and 5.13 (page 297)
are models.)

5.38 PACKAGE LINERS

(a) Use a diagram to describe a completely randomized experimental design for
the package liner experiment of Exercise 5.32. (When using a diagram to outline
the design of an experiment, be sure to indicate the size of the treatment groups
and the response variable. The diagrams in Examples 5.12 (page 295) and 5.13 (page
297) are models.)

(b) Use Table B, starting at line 120, to do the randomization required by your design.

5.39 RECRUITING FEMALE EMPLOYEES Will providing child care for employees make a
company more attractive to women, even those who are unmarried? You are designing
an experiment to answer this question. You prepare recruiting material for two ficti-
tious companies, both in similar businesses in the same location. Company A’s
brochure does not mention child care. There are two versions of Company B’s mate-
rial, identical except that one describes the company’s on-site child-care facility. Your
subjects are 40 unmarried women who are college seniors seeking employment. Each
subject will read recruiting material for both companies and choose the one she would
prefer to work for. You will give each version of Company B’s brochure to half the
women. You expect that a higher percentage of those who read the description that
includes child care will choose Company B.

(a) Outline an appropriate design for the experiment.

(b) The names of the subjects appear below. Use Table B, beginning at line 131, to
do the randomization required by your design. List the subjects who will read the ver-
sion that mentions child care.
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Abrams Danielson Gutierrez Lippman Rosen
Adamson Durr Howard Martinez Sugiwara
Afifi Edwards Hwang McNeill Thompson
Brown Fluharty Iselin Morse Travers
Cansico Garcia Janle Ng Turing
Chen Gerson Kaplan Quinones Ullmann
Cortez Green Kim Rivera Williams
Curzakis Gupta Lattimore Roberts Wong

5.40 ENCOURAGING ENERGY CONSERVATION Example 5.13 (page 297) describes an experi-
ment to learn whether providing households with electronic indicators or charts will
reduce their electricity consumption. An executive of the electric company objects to
including a control group. He says, “It would be simpler to just compare electricity use
last year (before the indicator or chart was provided) with consumption in the same
period this year. If households use less electricity this year, the indicator or chart must
be working.” Explain clearly why this design is inferior to that in Example 5.13.

5.41 EXERCISE AND HEART ATTACKS Does regular exercise reduce the risk of a heart attack?
Here are two ways to study this question. Explain clearly why the second design will
produce more trustworthy data.

1. A researcher finds 2000 men over 40 who exercise regularly and have not had heart
attacks. She matches each with a similar man who does not exercise regularly, and she
follows both groups for 5 years.

2. Another researcher finds 4000 men over 40 who have not had heart attacks and are
willing to participate in a study. She assigns 2000 of the men to a regular program of
supervised exercise. The other 2000 continue their usual habits. The researcher fol-
lows both groups for 5 years.

5.42 STOCKS DECLINE ON MONDAYS Puzzling but true: stocks tend to go down on
Mondays. There is no convincing explanation for this fact. A recent study looked at this
“Monday effect’’ in more detail, using data of the daily returns of stocks on several U.S.
exchanges over a 30-year period. Here are some of the findings:

To summarize, our results indicate that the well-known Monday effect is caused
largely by the Mondays of the last two weeks of the month. The mean Monday
return of the first three weeks of the month is, in general, not significantly different
from zero and is generally significantly higher than the mean Monday return of the
last two weeks. Our finding seems to make it more difficult to explain the Monday
effect.17

A friend thinks that “significantly’’ in this article has its plain English meaning, roughly
“I think this is important.’’ Explain in simple language what “significantly higher’’ and
“not significantly different from zero’’ actually tell us here.

Cautions about experimentation
The logic of a randomized comparative experiment depends on our ability to
treat all the experimental units identically in every way except for the actual
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treatments being compared. Good experiments therefore require careful atten-
tion to details. For example, the subjects in both the Physicians’ Health Study
(Example 5.9, page 290) and the second gastric freezing experiment (Example
5.11, page 292) all got the same medical attention over the several years the
studies continued. Moreover, these studies were double-blind—neither the
subjects themselves nor the medical personnel who worked with them knew
which treatment any subject had received. The double-blind method avoids
unconscious bias by, for example, a doctor who doesn’t think that “just a placebo’’
can benefit a patient.
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DOUBLE-BLIND EXPERIMENT

In a double-blind experiment, neither the subjects nor the people who
have contact with them know which treatment a subject received.

The most serious potential weakness of experiments is lack of realism. The
subjects or treatments or setting of an experiment may not realistically dupli-
cate the conditions we really want to study. Here are some examples.

A study compares two television advertisements by showing TV programs to student sub-
jects. The students know it’s “just an experiment.’’ We can’t be sure that the results apply
to everyday television viewers. Many behavioral science experiments use as subjects stu-
dents who know they are subjects in an experiment. That’s not a realistic setting.

EXAMPLE 5.14 RESPONSE TO ADVERTISING

Do those high center brake lights, required on all cars sold in the United States since
1986, really reduce rear-end collisions? Randomized comparative experiments with
fleets of rental and business cars, done before the lights were required, showed that the
third brake light reduced rear-end collisions by as much as 50%. Alas, requiring the
third light in all cars led to only a 5% drop. 

What happened? Most cars did not have the extra brake light when the experi-
ments were carried out, so it caught the eye of following drivers. Now that almost all
cars have the third light, they no longer capture attention.

EXAMPLE 5.15 CENTER BRAKE LIGHTS

Lack of realism can limit our ability to apply the conclusions of an exper-
iment to the settings of greatest interest. Most experimenters want to general-
ize their conclusions to some setting wider than that of the actual experiment.
Statistical analysis of the original experiment cannot tell us how far the results
will generalize. Nonetheless, the randomized comparative experiment,

lack of realism

double-blind



because of its ability to give convincing evidence for causation, is one of the
most important ideas in statistics.

Matched pairs designs
Completely randomized designs are the simplest statistical designs for experi-
ments. They illustrate clearly the principles of control, randomization, and
replication. However, completely randomized designs are often inferior to
more elaborate statistical designs. In particular, matching the subjects in vari-
ous ways can produce more precise results than simple randomization.
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Are cereal leaf beetles more strongly attracted by the color yellow or by the color
green? Agriculture researchers want to know, because they detect the presence of the
pests in farm fields by mounting sticky boards to trap insects that land on them. The
board color should attract beetles as strongly as possible. We must design an experi-
ment to compare yellow and green by mounting boards on poles in a large field of oats.

The experimental units are locations within the field far enough apart to represent
independent observations. We erect a pole at each location to hold the boards. We might
employ a completely randomized design in which we randomly select half the poles to
receive a yellow board while the remaining poles receive green. The locations vary widely
in the number of beetles present. For example, the alfalfa that borders the oats on one side
is a natural host of the beetles, so locations near the alfalfa will have extra beetles. This
variation among experimental units can hide the systematic effect of the board color.

It is more efficient to use a matched pairs design in which we mount boards of
both colors on each pole. The observations (numbers of beetles trapped) are matched
in pairs from the same poles. We compare the number of trapped beetles on a yellow
board with the number trapped by the green board on the same pole. Because the
boards are mounted one above the other, we select the color of the top board at ran-
dom. Just toss a coin for each board---if the coin falls heads, the yellow board is
mounted above the green board.

EXAMPLE 5.16 CEREAL LEAF BEETLES

matched pairs design

Matched pairs designs compare just two treatments. We choose blocks of
two units that are as closely matched as possible. In Example 5.16, two boards
on the same pole form a block. We assign one of the treatments to each unit
by tossing a coin or reading odd and even digits from Table B. Alternatively,
each block in a matched pairs design may consist of just one subject, who gets
both treatments one after the other. Each subject serves as his or her own con-
trol. The order of the treatments can influence the subject’s response, so we
randomize the order for each subject, again by a coin toss.

Block designs
The matched pairs design of Example 5.16 uses the principles of comparison
of treatments, randomization, and replication on several experimental units.
However, the randomization is not complete (all locations randomly assigned
to treatment groups) but restricted to assigning the order of the boards at each



location. The matched pairs design reduces the effect of variation among loca-
tions in the field by comparing the pair of boards at each location. Matched
pairs are an example of block designs.

302 Chapter 5 Producing Data

BLOCK DESIGN

A block is a group of experimental units or subjects that are known before
the experiment to be similar in some way that is expected to affect the
response to the treatments. In a block design, the random assignment of
units to treatments is carried out separately within each block.

Block designs can have blocks of any size. A block design combines the idea
of creating equivalent treatment groups by matching with the principle of form-
ing treatment groups at random. Blocks are another form of control. They con-
trol the effects of some outside variables by bringing those variables into the
experiment to form the blocks. Here are some typical examples of block designs.

The progress of a type of cancer differs in women and men. A clinical experiment to com-
pare three therapies for this cancer therefore treats sex as a blocking variable. Two separate
randomizations are done, one assigning the female subjects to the treatments and the other
assigning the male subjects. Figure 5.5 outlines the design of this experiment. Note that
there is no randomization involved in making up the blocks. They are groups of subjects
who differ in some way (sex in this case) that is apparent before the experiment begins.

EXAMPLE 5.17 COMPARING CANCER THERAPIES

Subjects

Men Group 2

Group 3

Group 1

Therapy 2

Therapy 3

Therapy 1

Random
assignment

Compare
survival

Women Group 2

Group 3

Group 1

Therapy 2

Therapy 3

Therapy 1

Random
assignment

Compare
survival

FIGURE 5.5 Outline of a block design. The blocks consist of male and female subjects. The treat-
ments are three therapies for cancer.



Blocks allow us to draw separate conclusions about each block, for exam-
ple, about men and women in the cancer study in Example 5.17. Blocking
also allows more precise overall conclusions, because the systematic differ-
ences between men and women can be removed when we study the over-
all effects of the three therapies. The idea of blocking is an important
additional principle of statistical design of experiments. A wise experimenter
will form blocks based on the most important unavoidable sources of vari-
ability among the experimental units. Randomization will then average out
the effects of the remaining variation and allow an unbiased comparison
of the treatments.

EXERCISES
5.43 MEDITATION FOR ANXIETY An experiment that claimed to show that meditation low-
ers anxiety proceeded as follows. The experimenter interviewed the subjects and rated
their level of anxiety. Then the subjects were randomly assigned to two groups. The
experimenter taught one group how to meditate and they meditated daily for a month.
The other group was simply told to relax more. At the end of the month, the experi-
menter interviewed all the subjects again and rated their anxiety level. The meditation
group now had less anxiety. Psychologists said that the results were suspect because the
ratings were not blind. Explain what this means and how lack of blindness could bias
the reported results.

5.44 PAIN RELIEF STUDY Fizz Laboratories, a pharmaceutical company, has developed a
new pain-relief medication. Sixty patients suffering from arthritis and needing pain
relief are available. Each patient will be treated and asked an hour later, “About what
percentage of pain relief did you experience?”

(a) Why should Fizz not simply administer the new drug and record the patients’
responses?

(b) Outline the design of an experiment to compare the drug’s effectiveness with that
of aspirin and of a placebo.
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The soil type and fertility of farmland differ by location. Because of this, a test of the
effect of tillage type (two types) and pesticide application (three application schedules)
on soybean yields uses small fields as blocks. Each block is divided into six plots, and
the six treatments are randomly assigned to plots separately within each block.

EXAMPLE 5.18 SOYBEANS

A social policy experiment will assess the effect on family income of several proposed
new welfare systems and compare them with the present welfare system. Because the
income of a family under any welfare system is strongly related to its present income,
the families who agree to participate are divided into blocks of similar income levels.
The families in each block are then allocated at random among the welfare systems.

EXAMPLE 5.19 STUDYING WELFARE SYSTEMS



(c) Should patients be told which drug they are receiving? How would this knowledge
probably affect their reactions?

(d) If patients are not told which treatment they are receiving, the experiment is single-
blind. Should this experiment be double-blind also? Explain.

5.45 COMPARING WEIGHT-LOSS TREATMENTS Twenty overweight females have agreed to
participate in a study of the effectiveness of four weight-loss treatments: A, B, C, and
D. The researcher first calculates how overweight each subject is by comparing the
subject’s actual weight with her “ideal” weight. The subjects and their excess weights
in pounds are 

Birnbaum 35 Hernandez 25 Moses 25 Smith 29
Brown 34 Jackson 33 Nevesky 39 Stall 33
Brunk 30 Kendall 28 Obrach 30 Tran 35
Cruz 34 Loren 32 Rodriguez 30 Wilansky 42
Deng 24 Mann 28 Santiago 27 Williams 22

The response variable is the weight lost after 8 weeks of treatment. Because a subject’s
excess weight will influence the response, a block design is appropriate.

(a) Arrange the subjects in order of increasing excess weight. Form 5 blocks of 4 sub-
jects each by grouping the 4 least overweight, then the next 4, and so on.

(b) Use Table B to randomly assign the 4 subjects in each block to the 4 weight-loss
treatments. Be sure to explain exactly how you used the table.

5.46 CARBON DIOXIDE AND TREE GROWTH The concentration of carbon dioxide (CO2) in
the atmosphere is increasing rapidly due to our use of fossil fuels. Because plants use
CO2 to fuel photosynthesis, more CO2 may cause trees and other plants to grow faster.
An elaborate apparatus allows researchers to pipe extra CO2 to a 30-meter circle of for-
est. We want to compare the growth in base area of trees in treated and untreated areas
to see if extra CO2 does in fact increase growth. We can afford to treat three circular
areas.18

(a) Describe the design of a completely randomized experiment using 6 well-separated
30-meter circular areas in a pine forest. Sketch the circles and carry out the random-
ization your design calls for.

(b) Areas within the forest may differ in soil fertility. Describe a matched pairs design
using three pairs of circles that will reduce the extra variation due to different fertility.
Sketch the circles and carry out the randomization your design calls for.

5.47 DOES ROOM TEMPERATURE AFFECT MANUAL DEXTERITY? An expert on worker perfor-
mance is interested in the effect of room temperature on the performance of tasks
requiring manual dexterity. She chooses temperatures of 70° F and 90° F as treat-
ments. The response variable is the number of correct insertions, during a 30-minute
period, in a peg-and-hole apparatus that requires the use of both hands simultane-
ously. Each subject is trained on the apparatus and then asked to make as many
insertions as possible in 30 minutes of continuous effort.

304 Chapter 5 Producing Data



(a) Outline a completely randomized design to compare dexterity at 70° and 90°.
Twenty subjects are available.

(b) Because individuals differ greatly in dexterity, the wide variation in individual
scores may hide the systematic effect of temperature unless there are many subjects in
each group. Describe in detail the design of a matched pairs experiment in which each
subject serves as his or her own control.

5.48 CHARTING AS AN INVESTMENT STRATEGY Some investment advisors believe that charts
of past trends in the prices of securities can help predict future prices. Most economists
disagree. In an experiment to examine the effects of using charts, business students
trade (hypothetically) a foreign currency at computer screens. There are 20 student
subjects available, named for convenience A, B, C, . . . , T. Their goal is to make as
much money as possible, and the best performances are rewarded with small prizes.
The student traders have the price history of the foreign currency in dollars in their
computers. They may or may not also have software that highlights trends. Describe
two designs for this experiment, a completely randomized design and a matched pairs
design in which each student serves as his or her own control. In both cases, carry out
the randomization required by the design.
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SUMMARY
In an experiment, one or more treatments are imposed on the experimental
units or subjects. Each treatment is a combination of levels of the explanatory
variables, which we call factors.

The design of an experiment refers to the choice of treatments and the
manner in which the experimental units or subjects are assigned to the treat-
ments.

The basic principles of statistical design of experiments are control, ran-
domization, and replication.

The simplest form of control is comparison. Experiments should compare
two or more treatments in order to prevent confounding the effect of a treat-
ment with other influences, such as lurking variables.

Randomization uses chance to assign subjects to the treatments.
Randomization creates treatment groups that are similar (except for chance
variation) before the treatments are applied. Randomization and comparison
together prevent bias, or systematic favoritism, in experiments.

You can carry out randomization by giving numerical labels to the experi-
mental units and using a table of random digits to choose treatment groups.

Replication of the treatments on many units reduces the role of chance
variation and makes the experiment more sensitive to differences among the
treatments.

Good experiments require attention to detail as well as good statistical
design. Many behavioral and medical experiments are double-blind. Lack of
realism in an experiment can prevent us from generalizing its results.

In addition to comparison, a second form of control is to restrict random-
ization by forming blocks of experimental units that are similar in some way



that is important to the response. Randomization is then carried out separately
within each block.

Matched pairs are a common form of blocking for comparing just two treat-
ments. In some matched pairs designs, each subject receives both treatments 
in a random order. In others, the subjects are matched in pairs as closely as
possible, and one subject in each pair receives each treatment.
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SECTION 5.2 EXERCISES
5.49 DOES SAINT-JOHN’S-WORT RELIEVE MAJOR DEPRESSION? Here are some excerpts from
the report of a study of this issue.19 The study concluded that the herb is no more effec-
tive than a placebo.

(a) “Design: Randomized, double-blind, placebo-controlled clinical trial. . . .” Explain
the meaning of each of the terms in this description.

(b) “Participants . . . were randomly assigned to receive either Saint-John’s-wort extract
(n = 98) or placebo (n = 102). . . . The primary outcome measure was the rate of
change in the Hamilton Rating Scale for Depression over the treatment period.” Based
on this information, use a diagram to outline the design of this clinical trial.

5.50 MARKETING TO CHILDREN, I If children are given more choices within a class of prod-
ucts, will they tend to prefer that product to a competing product that offers fewer
choices? Marketers want to know. An experiment prepared three “choice sets” of bev-
erages. The first contained two milk drinks and two fruit drinks. The second had the
same two fruit drinks but four milk drinks. The third contained four fruit drinks but
only the original two milk drinks. The researchers divided 210 children aged 4 to 
12 years into 3 groups at random. They offered each group one of the choice sets. As
each child chose a beverage to drink from the choice set presented, the researchers
noted whether the choice was a milk drink or a fruit drink.

(a) What are the experimental units or subjects?

(b) What is the factor, and what are its levels?

(c) What is the response variable?

5.51 BODY TEMPERATURE AND SURGERY Surgery patients are often cold because the oper-
ating room is kept cool and the body’s temperature regulation is disturbed by anes-
thetics. Will warming patients to maintain normal body temperature reduce infections
after surgery? In one experiment, patients undergoing colon surgery received intra-
venous fluids from a warming machine and were covered with a blanket through
which air circulated. For some patients, the fluid and the air were warmed; for others,
they were not. The patients received identical treatment in all other respects.20

(a) Identify the experimental subjects, the factor and its levels, and the response vari-
ables.

(b) Draw a diagram to outline the design of a randomized comparative experiment for
this study.



(c) The following subjects have given consent to participate in this study. Do the ran-
dom assignment required by your design. (If you use Table B, begin at line 121.)

Abbott Decker Gutierrez Lucero Rosen
Adamson Devlin Howard Masters Sugiwara
Afifi Engel Hwang McNeill Thompson
Brown Fluharty Iselin Morse Travers
Cansico Garcia Janle Ng Turing
Chen Gerson Kaplan Quinones Ullmann
Cordoba Green Kim Rivera Williams
Curzakis Gupta Lattimore Roberts Wong 

(d) To simplify the setup of the study, we might warm the fluids and air blanket for
one operating team and not for another doing the same kind of surgery. Why might
this design result in bias?

(e) The operating team did not know whether fluids and air blanket were heated, nor
did the doctors who followed the patients after surgery. What is this practice called?
Why was it used here?

5.52 MARKETING TO CHILDREN, II Use a diagram to outline a completely randomized
design for the children’s choice study of Exercise 5.50.

5.53 DOES CALCIUM REDUCE BLOOD PRESSURE? You are participating in the design of 
a medical experiment to investigate whether a calcium supplement in the diet 
will reduce the blood pressure of middle-aged men. Preliminary work suggests that cal-
cium may be effective and that the effect may be greater for black men than for white
men. You have available 40 men with high blood pressure who are willing to serve as
subjects.

(a) Outline an appropriate design for the experiment.

(b) The names of the subjects appear below. Use Table B, beginning at line 119, to
do the randomization required by your design, and list the subjects to whom you will
give the drug.

Alomar Denman Han Liang Rosen
Asihiro Durr Howard Maldonado Solomon
Bennett Edwards Hruska Marsden Tompkins
Bikalis Farouk Imrani Moore Townsend
Chen Fratianna James O’Brian Tullock
Clemente George Kaplan Ogle Underwood
Cranston Green Krushchev Plochman Willis
Curtis Guillen Lawless Rodriguez Zhang

(c) Choosing the sizes of the treatment groups requires more statistical expertise. We
will learn more about this aspect of design in later chapters. Explain in plain language
the advantage of using larger groups of subjects.

5.2 Designing Experiments 307



5.54 MARKETING TO CHILDREN, III The children’s choice experiment in Exercise 5.50 has
210 subjects. Explain how you would assign labels to the 210 children in the actual
experiment. Then use Table B at line 125 to choose only the first 5 children assigned
to the first treatment.

5.55 PLACEBO EFFECT A survey of physicians found that some doctors give a placebo to
a patient who complains of pain for which the physician can find no cause. If the
patient’s pain improves, these doctors conclude that it had no physical basis. The med-
ical school researchers who conducted the survey claimed that these doctors do not
understand the placebo effect. Why?

5.56 WILL TAKING ANTIOXIDANTS HELP PREVENT COLON CANCER? People who eat lots of fruits
and vegetables have lower rates of colon cancer than those who eat little of these foods.
Fruits and vegetables are rich in “antioxidants’’ such as vitamins A, C, and E. Will
taking antioxidants help prevent colon cancer? A clinical trial studied 864 people who
were at risk of colon cancer. The subjects were divided into four groups: daily beta
carotene, daily vitamins C and E, all three vitamins every day, and daily placebo. After
four years, the researchers were surprised to find no significant difference in colon can-
cer among the groups.21

(a) What are the explanatory and response variables in this experiment?

(b) Outline the design of the experiment. Use your judgment in choosing the group
sizes.

(c) Assign labels to the 864 subjects and use Table B, starting at line 118, to choose
the first 5 subjects for the beta carotene group.

(d) The study was double-blind. What does this mean?

(e) What does “no significant difference’’ mean in describing the outcome of the
study?

(f) Suggest some lurking variables that could explain why people who eat lots of fruits
and vegetables have lower rates of colon cancer. The experiment suggests that these
variables, rather than the antioxidants, may be responsible for the observed benefits of
fruits and vegetables.

5.57 TREATING DRUNK DRIVERS Once a person has been convicted of drunk driving, one
purpose of court-mandated treatment or punishment is to prevent future offenses of
the same kind. Suggest three different treatments that a court might require. Then out-
line the design of an experiment to compare their effectiveness. Be sure to specify the
response variables you will measure.

5.58 ACCULTURATION RATING There are several psychological tests that measure the
extent to which Mexican Americans are oriented toward Mexican/Spanish or
Anglo/English culture. Two such tests are the Bicultural Inventory (BI) and the
Acculturation Rating Scale for Mexican Americans (ARSMA). To study the correlation
between the scores on these two tests, researchers will give both tests to a group of 22
Mexican Americans.

(a) Briefly describe a matched pairs design for this study. In particular, how will you
use randomization in your design?
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(b) You have an alphabetized list of the subjects (numbered 1 to 22). Carry out the
randomization required by your design and report the result.

5.3 SIMULATING EXPERIMENTS
Toss a coin 10 times. What is the likelihood of a run of 3 or more consecutive
heads or tails? A couple plans to have children until they have a girl or until
they have four children, whichever comes first. What are the chances that they
will have a girl among their children? An airline knows from past experience
that a certain percentage of customers who have purchased tickets will not
show up to board the airplane. If the airline “overbooks” a particular flight (i.e.,
sells more tickets than they have seats), what are the chances that the airline
will encounter more ticketed passengers than they have seats for? There are
three methods we can use to answer questions involving chance like these: 

1. Try to estimate the likelihood of a result of interest by actually carrying out
the experiment many times and calculating the result’s relative frequency.
That’s slow, sometimes costly, and often impractical or logistically difficult. 

2. Develop a probability model and use it to calculate a theoretical answer.
This requires that we know something about the rules of probability and there-
fore may not be feasible. (We will develop a probability model in the next
chapter.)

3. Start with a model that, in some fashion, reflects the truth about the experi-
ment, and then develop a procedure for imitating—or simulating—a number
of repetitions of the experiment. This is quicker than repeating the real experi-
ment, especially if we can use the TI-83/89 or a computer, and it allows us to
do problems that are hard when done with formal mathematical analysis.

Here is an example of a simulation.
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probability model

Suppose we are interested in estimating the likelihood of a couple’s having a girl
among their first four children. Let a flip of a fair coin represent a birth, with heads cor-
responding to a girl and tails a boy. Since girls and boys are equally likely to occur on
any birth, the coin flip is an accurate imitation of the situation. Flip the coin until a
head appears or until the coin has been flipped 4 times, whichever comes first. The
appearance of a head within the first 4 flips corresponds to the couple’s having a girl
among their first four children.

If this coin-flipping procedure is repeated many times, to represent the births in a
large number of families, then the proportion of times that a head appears within the
first 4 flips should be a good estimate of the true likelihood of the couple’s having a girl. 

A single die (one of a pair of dice) could also be used to simulate the birth of a son
or daughter. Let an even number of spots (called pips) represent a girl, and let an odd
number of spots represent a boy. 

EXAMPLE 5.20 A GIRL IN THE FAMILY



Simulation is an effective tool for finding likelihoods of complex results once
we have a trustworthy model. In particular, we can use random digits from a
table, graphing calculator, or computer software to simulate many repetitions
quickly. The proportion of repetitions on which a result occurs will eventually be
close to its true likelihood, so simulation can give good estimates of probabilities.
The art of random digit simulation can be illustrated by a series of examples.
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SIMULATION

The imitation of chance behavior, based on a model that accurately
reflects the experiment under consideration, is called a simulation.

Step 1: State the problem or describe the experiment. Toss a coin 10 times. What is
the likelihood of a run of at least 3 consecutive heads or 3 consecutive tails?

Step 2: State the assumptions. There are two: 

• A head or a tail is equally likely to occur on each toss. 

• Tosses are independent of each other (i.e., what happens on one toss will not influ-
ence the next toss).

Step 3: Assign digits to represent outcomes. In a random number table, such as
Table B in the back of the book, the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 occur with the
same long-term relative frequency (1/10). We also know that the successive digits in the
table are independent. It follows that even digits and odd digits occur with the same
long-term relative frequency, 50%. Here is one assignment of digits for coin tossing: 

• One digit simulates one toss of the coin. 

• Odd digits represent heads; even digits represent tails. 

Successive digits in the table simulate independent tosses. 

Step 4: Simulate many repetitions. Looking at 10 consecutive digits in Table B sim-
ulates one repetition. Read many groups of 10 digits from the table to simulate many
repetitions. Be sure to keep track of whether or not the event we want (a run of 3 heads
or 3 tails) occurs on each repetition.

Here are the first three repetitions, starting at line 101 in Table B. Runs of 3 or
more heads or tails have been underlined.

Digits 1 9 2 2 3 9 5 0 3 4 0 5 7 5 6 2 8 7 1 3 9 6 4 0 9 1 2 5 3 1
Heads/tails H H T T H H H T H T T H H H T T T H H H H T T T H H T H H H
Run of 3 YES YES YES

Twenty-two additional repetitions were done for a total of 25 repetitions; 23 of them
did have a run of 3 or more heads or tails.

EXAMPLE 5.21 SIMULATION STEPS



Once you have gained some experience in simulation, establishing a cor-
respondence between random numbers and outcomes in the experiment is
usually the hardest part, and must be done carefully. Although coin tossing
may not fascinate you, the model in Example 5.21 is typical of many proba-
bility problems because it consists of independent trials (the tosses) all having
the same possible outcomes and probabilities. The coin tosses are said to be
independent because the result of one toss has no effect or influence over the
next coin toss. Shooting 10 free throws and observing the sexes of 10 children
have similar models and are simulated in much the same way. 

The idea is to state the basic structure of the random phenomenon and
then use simulation to move from this model to the probabilities of more com-
plicated events. The model is based on opinion and past experience. If it does
not correctly describe the random phenomenon, the probabilities derived
from it by simulation will also be incorrect.

Step 3 (assigning digits) can usually be done in several different ways, but some
assignments are more efficient than others. Here are some examples of this step.
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Step 5: State your conclusions. We estimate the probability of a run by the proportion 

Of course, 25 repetitions are not enough to be confident that our estimate is accu-
rate. Now that we understand how to do the simulation, we can tell a computer to do
many thousands of repetitions. A long simulation (or mathematical analysis) finds that
the true probability is about 0.826.

estimated probability =
23
25

= 0 92.

independent

(a) Choose a person at random from a group of which 70% are employed. One digit
simulates one person:

0, 1, 2, 3, 4, 5, 6 = employed
7, 8, 9 = not employed

The following correspondence is also satisfactory:

00, 01, . . . , 69 = employed
70, 71, . . . , 99 = not employed

This assignment is less efficient, however, because it requires twice as many digits and
ten times as many numbers.

(b) Choose one person at random from a group of which 73% are employed. Now two
digits simulate one person:

00, 01, 02, . . . , 72 = employed
73, 74, 75, . . . , 99 = not employed

EXAMPLE 5.22 ASSIGNING DIGITS



As the last example shows, simulation methods work just as easily when
outcomes are not equally likely. Consider the following slightly more compli-
cated example.
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We assigned 73 of the 100 two-digit pairs to “employed” to get probability 0.73.
Representing “employed” by 01, 02, . . . , 73 would also be correct.

(c) Choose one person at random from a group of which 50% are employed, 20% are
unemployed, and 30% are not in the labor force. There are now three possible out-
comes, but the principle is the same. One digit simulates one person:

0, 1, 2, 3, 4 = employed
5, 6 = unemployed

7, 8, 9 = not in the labor force

Another valid assignment of digits might be

0, 1 = unemployed
2, 3, 4 = not in the labor force

5, 6, 7, 8, 9 = employed

What is important is the number of digits assigned to each outcome, not the order of
the digits. 

Orders of frozen yogurt flavors (based on sales) have the following relative frequencies:
38% chocolate, 42% vanilla, and 20% strawberry. The experiment consists of cus-
tomers entering the store and ordering yogurt. The task is to simulate 10 frozen yogurt
sales based on this recent history. Instead of considering the random number table to
be made up of single digits, we now consider it to be made up of pairs of digits. This is
because the relative frequencies of interest have a maximum of two significant digits.
The range of the pairs of digits is 00 to 99, and since all the pairs are equally likely to
occur, the pairs 00, 01, 02, . . . , 99 all have relative frequency 0.01.

Thus we may assign the numbers in the random number table as follows:

• 00 to 37 to correspond to the outcome chocolate (C)

• 38 to 79 to correspond to the outcome vanilla (V)

• 80 to 99 to correspond to the outcome strawberry (S)

The sequence of random numbers (starting at the 21st column of row 112 in Table B)
is as follows:

19352 73089 84898 45785

This yields the following two-digit numbers:

19 35 27 30 89 84 89 84 57 85

EXAMPLE 5.23 FROZEN YOGURT SALES



EXERCISES
5.59 ESTABLISHING A CORRESPONDENCE State how you would use the following aids to
establish a correspondence in a simulation that involves a 75% chance:

(a) a coin

(b) a six-sided die
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which correspond to the outcomes

C C C C S S S S V S

A couple plans to have children until they have a girl or until they have four children,
whichever comes first. We will show how to use random digits to estimate the likeli-
hood that they will have a girl. 

The model is the same as for coin tossing. We will assume that each child has
probability 0.5 of being a girl and 0.5 of being a boy, and the sexes of successive chil-
dren are independent. 

Assigning digits is also easy. One digit simulates the sex of one child:

0, 1, 2, 3, 4 = girl
5, 6, 7, 8, 9 = boy

To simulate one repetition of this child-bearing strategy, read digits from
Table B until the couple has either a girl or four children. Notice that the num-
ber of digits needed to simulate one repetition depends on how quickly the cou-
ple gets a girl. Here is the simulation, using line 130 of Table B. To interpret the
digits, G for girl and B for boy are written under them, space separates repetitions,
and under each repetition “+” indicates if a girl was born and “–” indicates one
was not.

690 51 64 81 7871 74 0
BBG BG BG BG BBBG BG G

+ + + + + + +
951 784 53 4 0 64 8987

BBG BBG BG G G BG BBBB
+ + + + + + –

In these 14 repetitions, a girl was born 13 times. Our estimate of the probability that
this strategy will produce a girl is therefore 

Some mathematics shows that if our probability model is correct, the true likelihood
of having a girl is 0.938. Our simulated answer came quite close. Unless the couple is
unlucky, they will succeed in having a girl.

estimated probability =
13
14

= 0 93.

EXAMPLE 5.24 A GIRL OR FOUR



(c) a random digit table (Table B)

(d) a standard deck of playing cards

5.60 THE CLEVER COINS Suppose you left your statistics textbook and calculator in
your locker, and you need to simulate a random phenomenon that has a 25%
chance of a desired outcome. You discover two nickels in your pocket that are left
over from your lunch money. Describe how you could use the two coins to set up
your simulation.

5.61 ABOLISH EVENING EXAMS? Suppose that 84% of a university’s students favor abol-
ishing evening exams. You ask 10 students chosen at random. What is the likelihood
that all 10 favor abolishing evening exams?

(a) Describe how you would pose this question to 10 students independently of each
other. How would you model the procedure?

(b) Assign digits to represent the answers “Yes” and “No.” 

(c) Simulate 5 repetitions, starting at line 129 of Table B. Then combine your results
with those of the rest of your class. What is your estimate of the likelihood of the
desired result?

5.62 SHOOTING FREE THROWS A basketball player makes 70% of her free throws in a long
season. In a tournament game she shoots 5 free throws late in the game and misses 3
of them. The fans think she was nervous, but the misses may simply be chance. You
will shed some light by estimating a probability.

(a) Describe how to simulate a single shot if the probability of making each shot is 0.7.
Then describe how to simulate 5 independent shots.

(b) Simulate 50 repetitions of the 5 shots and record the number missed on each rep-
etition. Use Table B starting at line 125. What is the approximate likelihood that the
player will miss 3 or more of the 5 shots?

5.63 A POLITICAL POLL, I An opinion poll selects adult Americans at random and asks
them, “Which political party, Democratic or Republican, do you think is better able
to manage the economy?” Explain carefully how you would assign digits from Table B
to simulate the response of one person in each of the following situations.

(a) Of all adult Americans, 50% would choose the Democrats and 50% the Republicans.

(b) Of all adult Americans, 60% would choose the Democrats and 40% the Republicans.

(c) Of all adult Americans, 40% would choose the Democrats, 40% would choose the
Republicans, and 20% would be undecided.

(d) Of all adult Americans, 53% would choose the Democrats and 47% the Republicans.

5.64 A POLITICAL POLL, II Use Table B to simulate the responses of 10 independently
chosen adults in each of the four situations of Exercise 5.63.

(a) For situation (a), use line 110.

(b) For situation (b), use line 111.
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(c) For situation (c), use line 112.

(d) For situation (d), use line 113.
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Simulations with the calculator or computer
The calculator and computer can be extremely useful in conducting simula-
tions because they can be easily programmed to quickly perform a large num-
ber of repetitions. Study the reasoning and the steps involved in the following
example so that you may become adept at using the capabilities of the TI-83/89
to design and carry out simulations. 

The command randInt (found under MATH/PRB/5:randInt on the TI-83, and
under CATALOG  F3 (Flash Apps) on the TI-89) can be used to generate random digits
between any two specified values. Here are three applications.

The command randInt(0,9,5) generates 5 random integers between 0 and
9. This could serve as a block of 5 random digits in the random number table. The
command randInt(1,6,7) could be used to simulate rolling a die 7 times.
Generating 10 two-digit numbers between 00 and 99 from Example 5.23 could be
done with the command randInt(0,99,10).

EXAMPLE 5.25 RANDOMIZING WITH THE CALCULATOR

Using the statistical software package Minitab, the following set of commands will
generate a set of 10 random numbers in the range 00 to 99 and store these numbers in
column C1.

MTB > random 10 c1;
SUBC> integer 0 99.
MTB > Print C1

C1
38 93 14 30 50 92 16 18 84 20

When you combine the power and simplicity of simulations with the power of
technology, you have formidable tools for answering questions involving chance
behavior. 

randInt(0,9,5)
     {5 6 5 7 1}
randInt(1,6,7)
   {5 6 5 5 3 4 1}
randInt(0,99,10)

{81 23 86 2 40...

F1
 Tools

F2
Algebra

F3
Ca1c

F4
Other

F5
PrgmID

F6
Clean Up

MAIN RAD AUTO FUNC
TIStat.randInt(0,99,10)

tistat.randint(0,9,5)
        {6. 2. 2. 4. 7.}
tistat.randint(1,6,7)
        {3. 3. 4. 1. 5. 4.
tistat.randint(0,99,10)
        {96. 87. 52. 34. 63



EXERCISES
5.65 A GIRL OR FOUR Use your calculator to simulate a couple’s having children until
they have a girl or until they have four children, whichever comes first. (See Example
5.24.) Use the simulation to estimate the probability that they will have a girl among
their children. Compare your calculator results with those of Example 5.24.

5.66 WORLD SERIES Suppose that in a particular year the American League baseball
team is considered to have a 60% chance of beating the National League team in any
given World Series game. (This assumption ignores any possible home-field advan-
tage, which is probably not very realistic.) To win the World Series, a team must win 4
out of 7 games in the series. Further assume that the outcome of each game is not
influenced by the outcome of any other game (that is, who wins one game is inde-
pendent of who wins any other game).

(a) Use simulation methods to approximate the number of games that would have to
be played in order to determine the world champion.

(b) The so-called home-field advantage is one factor that might be an explanatory vari-
able in determining the winner of a game. What are some other possible factors?

5.67 TENNIS RACQUETS Professional tennis players bring multiple racquets to each
match. They know that high string tension, the force with which they hit the ball,
and  occasional “racquet abuse” are all reasons why racquets break during a match.
Brian Lob’s coach tells him that he has a 15% chance of breaking a racquet in any
given match. How many matches, on average, can Brian expect to play until he
breaks a racquet and needs to use a backup? Use simulation methods to answer this
question.
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SUMMARY

There are times when actually carrying out an experiment is too costly, too
slow, or simply impractical. In situations like these, a carefully designed sim-
ulation can provide approximate answers to our questions.

A simulation is an imitation of chance behavior, most often carried out
with random numbers. The steps of a simulation are:

1. State the problem or describe the experiment.

2. State the assumptions.

3. Assign digits to represent outcomes.

4. Simulate many repetitions.

5. State your conclusions.

Programmable calculators, like the TI-83/89, and computers are particularly
useful for conducting simulations because they can perform many repetitions
quickly.



5.68 GAME OF CHANCE, I Amarillo Slim is a cardsharp who likes to play the following
game. Draw 2 cards from the deck of 52 cards. If at least one of the cards is a heart,
then you win $1. If neither card is a heart, then you lose $1.

(a) Describe a correspondence between random numbers and possible outcomes in
this game.

(b) Simulate playing the game for 25 rounds. Shuffle the cards after each round. See
if you can beat Amarillo Slim at his own game. Remember to write down the results
of each game. When you finish, combine your results with those of 3 other students to
obtain a total of 100 trials. Report your cumulative proportion of wins. Do you think
this is a “fair” game? That is, do both you and Slim have an equal chance of winning?

5.69 GAME OF CHANCE, II A certain game of chance is based on randomly selecting three
numbers from 00 to 99, inclusive (allowing repetitions), and adding the numbers. A
person wins the game if the resulting sum is a multiple of 5.

(a) Describe your scheme for assigning random numbers to outcomes in this game. 

(b) Use simulation to estimate the proportion of times a person wins the game.

5.70 THE BIRTHDAY PROBLEM Use your calculator and the simulation method to show that in
a class of 23 unrelated students, the chances of at least 2 students with the same birthday
are about 50%. Show that in a room of 41 people, the chances of at least 2 people having
the same birthday are about 90%. What assumptions are you using in your simulations?

5.71 BATTER UP! Suppose a major league baseball player has a current batting average
of .320. Note that the batting average = (number of hits)/(number of at-bats).

(a) Describe an assignment of random numbers to possible results in order to simu-
late the player’s next 20 at-bats.

(b) Carry out the simulation for 20 repetitions, and report your results. What is the rel-
ative frequency of at-bats in which the player gets a hit?

(c) Compare your simulated experimental results with the player’s actual batting aver-
age of .320.

5.72 NUCLEAR SAFTEY A nuclear reactor is equipped with two independent automatic
shutdown systems to shut down the reactor when the core temperature reaches the
danger level. Neither system is perfect. System A shuts down the reactor 90% of the
time when the danger level is reached. System B does so 80% of the time. The reactor
is shut down if either system works.

(a) Explain how to simulate the response of System A to a dangerous temperature level.

(b) Explain how to simulate the response of System B to a dangerous temperature level.

(c) Both systems are in operation simultaneously. Combine your answers to (a) and
(b) to simulate the response of both systems to a dangerous temperature level. Explain
why you cannot use the same entry in Table B to simulate both responses.
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(d) Now simulate 100 trials of the reactor’s response to an emergency of this kind.
Estimate the probability that it will shut down. This probability is higher than the prob-
ability that either system working alone will shut down the reactor.

5.73 SPREADING A RUMOR On a small island there are 25 inhabitants. One of these inhab-
itants, named Jack, starts a rumor which spreads around the isle. Any person who hears
the rumor continues spreading it until he or she meets someone who has heard the story
before. At that point, the person stops spreading it, since nobody likes to spread stale news.

(a) Do you think that all 25 inhabitants will eventually hear the rumor or will the
rumor die out before that happens? Estimate the proportion of inhabitants who will
hear the rumor.
(b) In the first time increment, Jack randomly selects one of the other inhabitants,
named Jill, to tell the rumor to. In the second time increment, both Jack and Jill each
randomly select one of the remaining 24 inhabitants to tell the rumor to. (Note: They
could conceivably pick each other again.) In the next time increment, there are 4
rumor spreaders, and so on. If a randomly selected person has already heard the rumor,
that rumor teller stops spreading the rumor. Design a record-keeping chart, and simu-
late this procedure. Use your TI-83/89 to help with the random selection. Continue
until all 25 inhabitants hear the rumor or the rumor dies out. How many inhabitants
out of 25 eventually heard the rumor?
(c) Combine your results with those of other students in the class. What is the mean
number of inhabitants who hear the rumor?

CHAPTER REVIEW
Designs for producing data are essential parts of statistics in practice. Random
sampling and randomized comparative experiments are perhaps the most impor-
tant statistical inventions in this century. Both were slow to gain acceptance, and
you will still see many voluntary response samples and uncontrolled experiments.
This chapter has explained good techniques for producing data and has also
explained why bad techniques often produce worthless data.The deliberate use of
chance in producing data is a central idea in statistics. It allows use of the laws of
probability to analyze data, as we will see in the following chapters. Here are the
major skills you should have now that you have studied this chapter.

A. SAMPLING

1. Identify the population in a sampling situation.
2. Recognize bias due to voluntary response samples and other inferior sam-
pling methods.
3. Use Table B of random digits to select a simple random sample (SRS) from a
population.
4. Recognize the presence of undercoverage and nonresponse as sources of error in
a sample survey. Recognize the effect of the wording of questions on the response.
5. Use random digits to select a stratified random sample from a population
when the strata are identified.
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B. EXPERIMENTS

1. Recognize whether a study is an observational study or an experiment. 

2. Recognize bias due to confounding of explanatory variables with lurking
variables in either an observational study or an experiment.

3. Identify the factors (explanatory variables), treatments, response variables,
and experimental units or subjects in an experiment.

4. Outline the design of a completely randomized experiment using a diagram
like those in Examples 5.12 and 5.13. The diagram in a specific case should
show the sizes of the groups, the specific treatments, and the response variable.

5. Use Table B of random digits to carry out the random assignment of subjects
to groups in a completely randomized experiment.

6. Recognize the placebo effect. Recognize when the double-blind technique
should be used. 

7. Recognize a block design when it would be appropriate. Know when a matched
pairs design would be appropriate and how to design a matched pairs experiment.

8. Explain why a randomized comparative experiment can give good evidence
for cause-and-effect relationships.

C. SIMULATIONS

1. Recognize that many random phenomena can be investigated by means of
a carefully designed simulation.

2. Use the following steps to construct and run a simulation:

a. State the problem or describe the experiment.
b. State the assumptions.
c. Assign digits to represent outcomes.
d. Simulate many repetitions.
e. Calculate relative frequencies and state your conclusions.

3. Use a random number table, the TI-83/89, or a computer utility such as
Minitab, Data Desk, or a spreadsheet to conduct simulations.
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5.74 ONTARIO HEALTH SURVEY The Ministry of Health in the Province of Ontario,
Canada, wants to know whether the national health care system is achieving its goals
in the province. Much information about health care comes from patient records, but
that source doesn’t allow us to compare people who use health services with those who
don’t. So the Ministry of Health conducted the Ontario Health Survey, which inter-
viewed a random sample of 61,239 people who live in the Province of Ontario.22

(a) What is the population for this sample survey? What is the sample? 



(b) The survey found that 76% of males and 86% of females in the sample had visited
a general practitioner at least once in the past year. Do you think these estimates are
close to the truth about the entire population? Why?

5.75 TREATING BREAST CANCER What is the preferred treatment for breast cancer that is
detected in its early stages? The most common treatment was once removal of the
breast. It is now usual to remove only the tumor and nearby lymph nodes, followed by
radiation. To study whether these treatments differ in their effectiveness, a medical
team examines the records of 25 large hospitals and compares the survival times after
surgery of all women who have had either treatment.

(a) What are the explanatory and response variables?
(b) Explain carefully why this study is not an experiment. 
(c) Explain why confounding will prevent this study from discovering which treat-
ment is more effective. (The current treatment was in fact recommended after a large
randomized comparative experiment.)

5.76 WHICH DESIGN? What is the best way to answer each of the questions below: an
experiment, a sample survey, or an observational study that is not a sample survey?
Explain your choices.

(a) Are people generally satisfied with how things are going in the country right now?
(b) Do college students learn basic accounting better in the classroom or using an
online course?
(c) How long do your teachers wait on the average after they ask their class a question?

5.77 COACH, I NEED OXYGEN! We often see players on the sidelines of a football game
inhaling oxygen. Their coaches think it will speed their recovery. We might measure
recovery from intense exercise as follows: Have a football player run 100 yards three
times in quick succession. Then allow three minutes to rest before running 100 yards
again. Time the final run. Because players vary greatly in speed, you plan a matched
pairs experiment using 25 football players as subjects. Discuss the design of such an
experiment to investigate the effect of inhaling oxygen during the rest period.

5.78 POLLING THE FACULTY A labor organization wants to study the attitudes of college
faculty members toward collective bargaining. These attitudes appear to be different
depending on the type of college. The American Association of University Professors
classifies colleges as follows: 

Class I. Offer doctorate degrees and award at least 15 per year.
Class IIA. Award degrees above the bachelor’s but are not in Class I.
Class IIB. Award no degrees beyond the bachelor’s.
Class III. Two-year colleges.

Discuss the design of a sample of faculty from colleges in your state, with total sample
size about 200.

5.79 FOOD FOR CHICKS New varieties of corn with altered amino acid content may have
higher nutritional value than standard corn, which is low in the amino acid lysine. An
experiment compares two new varieties, called opaque-2 and floury-2, with normal
corn. The researchers mix corn-soybean meal diets using each type of corn at each of

320 Chapter 5 Producing Data



three protein levels, 12% protein, 16% protein, and 20% protein. They feed each diet
to 10 one-day-old male chicks and record their weight gains after 21 days. The weight
gain of the chicks is a measure of the nutritional value of their diet. 

(a) What are the experimental units and the response variable in this experiment?

(b) How many factors are there? How many treatments? Use a diagram like Figure 5.2
to describe the treatments. How many experimental units does the experiment require? 

(c) Use a diagram to describe a completely randomized design for this experiment.
(You do not need to actually do the randomization.)

5.80 VITAMIN C FOR MARATHON RUNNERS An ultramarathon, as you might guess, is a
footrace longer than the 26.2 miles of a marathon. Runners commonly develop respi-
ratory infections after an ultramarathon. Will taking 600 milligrams of vitamin C daily
reduce those infections? Researchers randomly assigned ultramarathon runners to
receive either vitamin C or a placebo. Separately, they also randomly assigned these
treatments to a group of nonrunners the same age as the runners. All subjects were
watched for 14 days after the big race to see if infections developed.23

(a) What is the name for this experimental design?

(b) Use a diagram to outline the design.

(c) The report of the study said:

Sixty-eight percent of the runners in the placebo group reported the development of
symptoms of upper respiratory tract infection after the race; this was significantly
more than that reported by the vitamin C–supplemented group (33%).

Explain to someone who knows no statistics why “significantly more” means there is
good reason to think that vitamin C works.

5.81 DELIVERING THE MAIL Is the number of days a letter takes to reach another city
affected by the time of day it is mailed and whether or not the zip code is used?
Describe briefly the design of a two-factor experiment to investigate this question. Be
sure to specify the treatments exactly and to tell how you will handle lurking variables
such as the day of the week on which the letter is mailed.

5.82 MCDONALD’S VERSUS WENDY’S Do consumers prefer the taste of a cheeseburger
from McDonald’s or from Wendy’s in a blind test in which neither burger is identified?
Describe briefly the design of a matched pairs experiment to investigate this question.

5.83 REPAIRING KNEES IN COMFORT Knee injurys are routinely repaired by arthroscopic
surgery that does not require opening up the knee. Can we reduce patient discomfort
by giving them a nonsteroidal anti-inflammatory drug (NSAID)? Eighty-three patients
were placed in three groups. Group A received the NSAID both before and after the
surgery. Group B was given a placebo before and the NSAID after. Group C received
a placebo both before and after surgery. The patients recorded a pain score by answer-
ing questions one day after the surgery.24

(a) Outline the design of this experiment. You do not need to do the randomization
that your design requires.

(b) You read that “the patients, physicians and physical therapists were blinded” dur-
ing the study. What does this mean?
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(c) You also read that “the pain scores for Group A were significanly lower than Group
C but not significantly lower than Group B.” What does this mean? What does this
finding lead you to conclude about the use of NSAIDs?

5.84 A SPINNER GAME OF CHANCE A game of chance is based on spinning a 1–10 spinner
like the one shown in the illustration two times in succession. The player wins if the
larger of the two numbers is greater than 5.

(a) What constitutes a single run of this experiment? What are the possible outcomes
resulting in win or lose?

(b) Describe a correspondence between random digits from a random number table
and outcomes in the game.

(c) Describe a technique using the randInt command on the TI-83/89 to simulate
the result of a single run of the experiment.

(d) Use either the random number table or your calculator to simulate 20 trials.
Report the proportion of times you win the game. Then combine your results with
those of other students to obtain results for a large number of trials.

5.85 GAUGING THE DEMAND FOR CHEESECAKE The owner of a bakery knows that the daily
demand for a highly perishable cheesecake is as follows:

Number/day: 0 1 2 3 4 5
Relative frequency: 0.05 0.15 0.25 0.25 0.20 0.10

(a) Use simulation to find the demand for the cheesecake on 30 consecutive business
days.

(b) Suppose that it cost the baker $5 to produce a cheesecake, and that the unused
cheesecakes must be discarded at the end of the business day. Suppose also that the
selling price of a cheesecake is $13. Use simulation to estimate the number of cheese-
cakes that he should produce each day in order to maximize his profit.

5.86 HOT STREAKS IN FOUL SHOOTING Joey is interested in investigating so-called hot streaks
in foul shooting among basketball players. He’s a fan of Carla, who has been making
approximately 80% of her free throws. Specifically, Joey wants to use simulation methods
to determine Carla’s longest run of baskets on average, for 20 consecutive free throws.

(a) Describe a correspondence between random numbers and outcomes.

(b) What will constitute one repetition in this simulation? Carry out 20 repetitions
and record the longest run for each repetition. Combine your results with those of 4
other students to obtain at least 100 replications.

1
2

3

4

5
6

7

8

9

0
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(c) What is the mean run length? Are you surprised? Determine the five-number sum-
mary for the data.

(d) Construct a histogram of the results.

5.87 SELF-PACED LEARNING, I Elaine is enrolled in a self-paced course that allows three
attempts to pass an examination on the material. She does not study and has 2 out of
10 chances of passing on any one attempt by luck. What is Elaine’s likelihood of pass-
ing on at least one of the three attempts? (Assume the attempts are independent
because she takes a different examination on each attempt.) 

(a) Explain how you would use random digits to simulate one attempt at the exam.
Elaine will of course stop taking the exam as soon as she passes.

(b) Simulate 50 repetitions. What is your estimate of Elaine’s likelihood of passing the
course?

(c) Do you think the assumption that Elaine’s likelihood of passing the exam is the
same on each trial is realistic? Why?

5.88 SELF-PACED LEARNING, II A more realistic model for Elaine’s attempts to pass an
exam in the previous exercise is as follows: On the first try she has probability 0.2 of
passing. If she fails on the first try, her probability on the second try increases to 0.3
because she learned something from her first attempt. If she fails on two attempts, the
probability of passing on a third attempt is 0.4. She will stop as soon as she passes. The
course rules force her to stop after three attempts in any case.

(a) Explain how to simulate one repetition of Elaine’s tries at the exam. Notice that
she has different probabilities of passing on each successive try.

(b) Simulate 50 repetitions and estimate the probability that Elaine eventually passes
the exam.
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A.N. KOLMOGOROV

General Laws of Probability
There are national styles in science as well as in cuisine.
Statistics, the science of data, was created mainly by British 
and Americans. Probability, the mathematics of chance,
was long led by French and Russians. Andrei Nikolaevich

Kolmogorov (1903–1987) was the greatest of the Russian probabilists and one
of the most influential mathematicians of the twentieth century. His more
than 500 mathematical publications shaped several areas of modern mathe-
matics and applied mathematical ideas to areas as far afield as the rhythms and
meters of poetry.

Kolmogorov entered Moscow State University as a student in 1920 and
remained there until his death. He was named a Hero of Socialist Labor in 1963,
a rare honor for someone whose career was devoted entirely to scholarship.

Kolmogorov’s first work in probability concerned
the behavior of strings of random observations. The
law of large numbers is the starting point for these
studies, and Kolmogorov discovered many extensions
of that law. Kolmogorov effectively established proba-
bility as a field of mathematics in 1933, when he
placed it on a firm mathematical foundation by start-
ing with a few general laws from which all else fol-
lows. The general laws of probability in this chapter
are in the spirit of Kolmogorov.

Statistics, the science of
data, was created 
mainly by British and
Americans. Probability,
the mathematics of
chance, was long led by
French and Russians.
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ACTIVITY 6 The Spinning Wheel

Materials: Margarine tub spinner or graphing calculator or table of random
numbers
Imagine a spinner with three sectors, all the same size, marked 1, 2, and 3
as shown.

1 2

3

The experiment consists of spinning the spinner three times and recording
the numbers as they occur (e.g., 123). We want to determine the proportion
of times that at least one digit occurs in its correct position. For example, in
the number 123, all of the digits are in their proper positions, but in the
number 331, none are. For this activity, use a spinner like the one in the
illustration, a table of random digits, or your calculator.

1. Guess the proportion of times at least one digit will occur in its proper
place.

2. To use your calculator to randomly generate the three-digit number,
enter the command randInt(1,3,3). Continue to press ENTER to gen-
erate more three-digit numbers. Use a tally mark to record the results in a
table like the one below. Do 20 trials and then calculate the relative fre-
quency for the event “at least one digit in the correct position.”

At least one digit 
in the correct position

Not

To use a random number table, select a row, and discarding digits 4 to 9 and
0, record digits in the 1 to 3 range in groups of three.
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ACTIVITY 6 The Spinning Wheel (continued)

3. Combine your results with those of your classmates to obtain as many tri-
als as possible (at least 100 randomly generated three-digit numbers; 200
would be better).

4. Count the number of times at least one digit occurred in its correct posi-
tion, and calculate the proportion.

5. The program SPIN123 implements the experiment for the TI-83/89. The
key step uses the calculator’s Boolean logic to count the number of “hits.”
Enter the program or link it from a classmate or your teacher.

TI-83
PROGRAM:SPIN123
:ClrHome
:ClrList L1,L2
:Disp “HOW MANY TRIALS”
:Prompt N
:1→C
:While C≤N
:randInt(1,3,3)→L1
:(L1(1)=1 or L1(2)=2 or
L1(3)=3)→L2(C)
:1+C→C
:End
:Disp “REL FREQ=”
:Disp sum(L2=1)/N

TI-89
spin123()
Prgm
ClrHome
tistat.clrlist(list1,
list2)
Disp “how many trials”
Prompt n
1→c
While c≤n
tistat.randint(1,3,3)→
list1
list1[1]=1 or list1[2]=2
or list1[3]=3→list2[c]
1+c→c
EndWhile
Disp “rel freq=”
0→s
For i,1,n
If list2[i]=true
s+1→s
EndFor
Disp s/n

Execute the program for 25, 50, and 100 repetitions. Compare the calcula-
tor results with the results you obtained in steps 2 to 4.

Later in the chapter we will calculate the theoretical probability of this
event happening, so keep your data at hand so that you can compare the
theoretical probability with your experimental results.



INTRODUCTION
Chance is all around us. Sometimes chance results from human design, as in
the casino’s games of chance and the statistician’s random samples. Sometimes
nature uses chance, as in choosing the sex of a child. Sometimes the reasons
for chance behavior are mysterious, as when the number of deaths each year
in a large population is as regular as the number of heads in many tosses of a
coin. Probability is the branch of mathematics that describes the pattern of
chance outcomes.

The reasoning of statistical inference rests on asking, “How often would this
method give a correct answer if I used it very many times?” When we produce
data by random sampling or randomized comparative experiments, the laws of
probability answer the question “What would happen if we did this many
times?” This chapter presents the fundamental concepts of probability.
Probability calculations are the basis for inference. The tools you acquire in this
chapter will help you describe the behavior of statistics from random samples
and randomized comparative experiments in later chapters. Even our brief
acquaintance with probability will enable us to answer questions like these:

• If we know the blood types of a man and a woman, what can we say about
the blood types of their future children?

• Give a test for the AIDS virus to the employees of a small company. What is
the chance of at least one positive test if all the people tested are free of the
virus?

• An opinion poll asks a sample of 1500 adults what they consider the most
serious problem facing our schools. How often will the poll percent who
answer “drugs” come within two percentage points of the truth about the entire
population?

6.1 THE IDEA OF PROBABILITY
The mathematics of probability begins with the observed fact that some phe-
nomena are random—that is, the relative frequencies of their outcomes seem
to settle down to fixed values in the long run. Consider tossing a single coin.
The relative frequency of heads is quite erratic in 2 or 5 or 10 tosses. But after
several thousand tosses it remains stable, changing very little over further thou-
sands of tosses. The big idea is this: chance behavior is unpredictable in the
short run but has a regular and predictable pattern in the long run.

Toss a coin, or choose an SRS. The result can’t be predicted in advance,
because the result will vary when you toss the coin or choose the sample
repeatedly. But there is still a regular pattern in the results, a pattern that
emerges clearly only after many repetitions. This remarkable fact is the basis
for the idea of probability.
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When you toss a coin, there are only two possible outcomes, heads or tails. Figure 6.1
shows the results of tossing a coin 1000 times. For each number of tosses from 1 to
1000, we have plotted the proportion of those tosses that gave a head. The first toss was
a head, so the proportion of heads starts at 1. The second toss was a tail, reducing the
proportion of heads to 0.5 after two tosses. The next three tosses gave a tail followed by
two heads, so the proportion of heads after five tosses is 3/5, or 0.6.

EXAMPLE 6.1 COIN TOSSING
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FIGURE 6.1 The behavior of the proportion of coin tosses that give a head, from 1 to 1000 tosses
of a coin. In the long run, the proportion of heads approaches 0.5, the probability of a head.

“Random” in statistics is not a synonym for “haphazard” but a description
of a kind of order that emerges only in the long run. We often encounter the
unpredictable side of randomness in our everyday experience, but we rarely
see enough repetitions of the same random phenomenon to observe the long-
term regularity that probability describes. You can see that regularity emerging
in Figure 6.1. In the very long run, the proportion of tosses that give a head is
0.5. This is the intuitive idea of probability. Probability 0.5 means “occurs half
the time in a very large number of trials.”

We might suspect that a coin has probability 0.5 of coming up heads just
because the coin has two sides. As Exercise 6.1 illustrates, such suspicions are
not always correct. The idea of probability is empirical. That is, it is based on
observation rather than theorizing. Probability describes what happens in very

The proportion of tosses that produce heads is quite variable at first, but it settles
down as we make more and more tosses. Eventually this proportion gets close to 0.5
and stays there. We say that 0.5 is the probability of a head. The probability 0.5 appears
as a horizontal line on the graph.
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The French naturalist Count Buffon (1707–1788) tossed a coin 4040 times. Result:
2048 heads, or proportion 2048/4040 = 0.5069 for heads.

Around 1900, the English statistician Karl Pearson heroically tossed a coin 24,000
times. Result: 12,012 heads, a proportion of 0.5005.

While imprisoned by the Germans during World War II, the South African math-
ematician John Kerrich tossed a coin 10,000 times. Result: 5067 heads, a proportion
of 0.5067.

EXAMPLE 6.2 SOME COIN TOSSERS

Thinking about randomness
That some things are random is an observed fact about the world. The out-
come of a coin toss, the time between emissions of particles by a radioactive
source, and the sexes of the next litter of lab rats are all random. So is the out-
come of a random sample or a randomized experiment. Probability theory is
the branch of mathematics that describes random behavior. Of course, we can
never observe a probability exactly. We could always continue tossing the coin,
for example. Mathematical probability is an idealization based on imagining
what would happen in an indefinitely long series of trials.

The best way to understand randomness is to observe random behavior—
not only the long-run regularity but the unpredictable results of short runs.
You can do this with physical devices, as in Exercises 6.1, 6.2, 6.6, and 6.7, but
computer simulations (imitations) of random behavior allow faster explo-
ration. Exercises 6.3 and 6.10 suggest some simulations of random behavior.
As you explore randomness, remember:

• You must have a long series of independent trials. That is, the outcome of
one trial must not influence the outcome of any other. Imagine a crooked gam-

RANDOMNESS AND PROBABILITY

We call a phenomenon random if individual outcomes are uncertain but
there is nonetheless a regular distribution of outcomes in a large number
of repetitions.

The probability of any outcome of a random phenomenon is the proportion
of times the outcome would occur in a very long series of repetitions. That is,
probability is long-term relative frequency.

many trials, and we must actually observe many trials to pin down a probabil-
ity. In the case of tossing a coin, some diligent people have in fact made thou-
sands of tosses.

independence



bling house where the operator of a roulette wheel can stop it where she
chooses—she can prevent the proportion of “red” from settling down to a fixed
number. These trials are not independent.

• The idea of probability is empirical. Computer simulations start with given
probabilities and imitate random behavior, but we can estimate a real-world
probability only by actually observing many trials.

• Nonetheless, computer simulations are very useful because we need long
runs of trials. In situations such as coin tossing, the proportion of an outcome
often requires several hundred trials to settle down to the probability of that
outcome. The kinds of physical random devices suggested in the exercises are
too slow for this. Short runs give only rough estimates of a probability.

The uses of probability
Probability theory originated in the study of games of chance. Tossing dice,
dealing shuffled cards, and spinning a roulette wheel are examples of deliberate
randomization that are similar to random sampling. Although games of chance
are ancient, they were not studied by mathematicians until the sixteenth and
seventeenth centuries. It is only a mild simplification to say that probability as a
branch of mathematics arose when seventeenth-century French gamblers asked
the mathematicians Blaise Pascal and Pierre de Fermat for help. Gambling is
still with us, in casinos and state lotteries. We will make use of games of chance
as simple examples that illustrate the principles of probability.

Careful measurements in astronomy and surveying led to further
advances in probability in the eighteenth and nineteenth centuries because
the results of repeated measurements are random and can be described by dis-
tributions much like those arising from random sampling. Similar distribu-
tions appear in data on human life span (mortality tables) and in data on
lengths or weights in a population of skulls, leaves, or cockroaches.1 In the
twentieth century, we employ the mathematics of probability to describe the
flow of traffic through a highway system, a telephone interchange, or a com-
puter processor; the genetic makeup of individuals or populations; the energy
states of subatomic particles; the spread of epidemics or rumors; and the rate
of return on risky investments. Although we are interested in probability
because of its usefulness in statistics, the mathematics of chance is important
in many fields of study.
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SECTION 6.1 EXERCISES
6.1 PENNIES SPINNING Hold a penny upright on its edge under your forefinger on a hard
surface, then snap it with your other forefinger so that it spins for some time before
falling. Based on 50 spins, estimate the probability of heads.



6.2 A GAME OF CHANCE In the game of Heads or Tails, Betty and Bob toss a coin four
times. Betty wins a dollar from Bob for each head and pays Bob a dollar for each tail—
that is, she wins or loses the difference between the number of heads and the number
of tails. For example, if there are one head and three tails, Betty loses $2. You can
check that Betty’s possible outcomes are

{–4, –2, 0, 2, 4}

Assign probabilities to these outcomes by playing the game 20 times and using the pro-
portions of the outcomes as estimates of the probabilities. If possible, combine your tri-
als with those of other students to obtain long-run proportions that are closer to the
probabilities.

6.3 SHAQ The basketball player Shaquille O’Neal makes about half of his free throws
over an entire season. We will use the calculator to simulate 100 free throws shot inde-
pendently by a player who has probability 0.5 of making each shot. We let the number
1 represent the outcome “Hit” and 0 represent a “Miss.”

(a) Enter the command randInt(0,1,100)→SHAQ. (randInt is found in the
CATALOG under Flash Apps on the TI-89.) This tells the calculator to randomly
select a hit (1) or a miss (0), do this 100 times in succession, and store the results in the
list named SHAQ.

(b) What percent of the 100 shots are hits?

(c) Examine the sequence of hits and misses. How long was the longest run of shots
made? Of shots missed? (Sequences of random outcomes often show runs longer than
our intuition thinks likely.)

6.4 MATCHING PROBABILITIES Probability is a measure of how likely an event is to occur.
Match one of the probabilities that follow with each statement about an event. (The
probability is usually a much more exact measure of likelihood than is the verbal
statement.)

0, 0.01, 0.3, 0.6, 0.99, 1

(a) This event is impossible. It can never occur.

(b) This event is certain. It will occur on every trial of the random phenomenon.

(c) This event is very unlikely, but it will occur once in a while in a long sequence of trials.

(d) This event will occur more often than not.

6.5 RANDOM DIGITS The table of random digits (Table B) was produced by a random
mechanism that gives each digit probability 0.1 of being a 0. What proportion of the
first 200 digits in the table are 0s? This proportion is an estimate, based on 200 repeti-
tions, of the true probability, which in this case is known to be 0.1.

6.6 HOW MANY TOSSES TO GET A HEAD? When we toss a penny, experience shows that the
probability (long-term proportion) of a head is close to 1/2. Suppose now that we toss
the penny repeatedly until we get a head. What is the probability that the first head
comes up in an odd number of tosses (1, 3, 5, and so on)? To find out, repeat this exper-
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iment 50 times, and keep a record of the number of tosses needed to get a head on
each of your 50 trials.

(a) From your experiment, estimate the probability of a head on the first toss. What
value should we expect this probability to have?

(b) Use your results to estimate the probability that the first head appears on an odd-
numbered toss.

6.7 TOSSING A THUMBTACK Toss a thumbtack on a hard surface 100 times. How many
times did it land with the point up? What is the approximate probability of landing
point up?

6.8 THREE OF A KIND You read in a book on poker that the probability of being dealt three
of a kind in a five-card poker hand is 1/50. Explain in simple language what this means.

6.9 WINNING A BASEBALL GAME A study of the home-field advantage in baseball found
that over the period from 1969 to 1989 the league champions won 63% of their home
games.2 The two league champions meet in the baseball World Series. Would you use
the study results to assign probability 0.63 to the event that the home team wins in a
World Series game? Explain your answer.

6.10 SIMULATING AN OPINION POLL A recent opinion poll showed that about 73% of mar-
ried women agree that their husbands do at least their fair share of household chores.
Suppose that this is exactly true. Choosing a married woman at random then has
probability 0.73 of getting one who agrees that her husband does his share. Use soft-
ware or your calculator to simulate choosing many women independently. (In most
software, the key phrase to look for is “Bernoulli trials.” This is the technical term for
independent trials with Yes/No outcomes. Our outcomes here are “Agree” or not.)

(a) Simulate drawing 20 women, then 80 women, then 320 women. What proportion
agree in each case? We expect (but because of chance variation we can’t be sure) that
the proportion will be closer to 0.73 in longer runs of trials.

(b) Simulate drawing 20 women 10 times and record the percents in each trial who
agree. Then simulate drawing 320 women 10 times and again record the 10 percents.
Which set of 10 results is less variable? We expect the results of 320 trials to be more
predictable (less variable) than the results of 20 trials. That is “long-run regularity”
showing itself.

6.2 PROBABILITY MODELS
Earlier chapters gave mathematical models for linear relationships (in the
form of the equation of a line) and for some distributions of data (in the form
of normal density curves). Now we must give a mathematical description or
model for randomness. To see how to proceed, think first about a very simple
random phenomenon, tossing a coin once. When we toss a coin, we cannot
know the outcome in advance. What do we know? We are willing to say that the
outcome will be either heads or tails. We believe that each of these outcomes
has probability 1/2. This description of coin tossing has two parts:
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• A list of possible outcomes.

• A probability for each outcome.

Such a description is the basis for all probability models. Here is the basic
vocabulary we use.
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PROBABILITY MODELS

The sample space S of a random phenomenon is the set of all possible
outcomes.

An event is any outcome or a set of outcomes of a random phenomenon.
That is, an event is a subset of the sample space.

A probability model is a mathematical description of a random 
phenomenon consisting of two parts: a sample space S and a way of
assigning probabilities to events.

The sample space S can be very simple or very complex. When we toss a
coin once, there are only two outcomes, heads and tails. The sample space is
S = {H, T}. If we draw a random sample of 50,000 U.S. households, as the
Current Population Survey does, the sample space contains all possible
choices of 50,000 of the 103 million households in the country. This S is
extremely large. Each member of S is a possible sample, which explains the
term sample space.

Rolling two dice is a common way to lose money in casinos. There are 36 possible out-
comes when we roll two dice and record the up-faces in order (first die, second die).
Figure 6.2 displays these outcomes. They make up the sample space S.

EXAMPLE 6.3 ROLLING DICE

FIGURE 6.2 The 36 possible outcomes in rolling two dice.



The name “sample space” is natural in random sampling, where each pos-
sible outcome is a sample and the sample space contains all possible samples.

To specify S, we must state what constitutes an individual outcome and
then state which outcomes can occur. We often have some freedom in defin-
ing the sample space, so the choice of S is a matter of convenience as well as
correctness. The idea of a sample space, and the freedom we may have in spec-
ifying it, are best illustrated by examples.
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“Roll a 5” is an event, call it A, that contains four of these 36 outcomes:

A = { }

Gamblers care only about the number of pips on the up-faces of the dice. The
sample space for rolling two dice and counting the pips is

S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Comparing this S with Figure 6.2 reminds us that we can change S by changing the
detailed description of the random phenomenon we are describing.

Let your pencil point fall blindly into Table B of random digits; record the value of
the digit it lands on. The possible outcomes are

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

EXAMPLE 6.4 RANDOM DIGIT

An experiment consists of flipping a coin and rolling a die. Possible outcomes are a
head (H) followed by any of the digits 1 to 6, or a tail (T) followed by any of the digits
1 to 6. The sample space contains 12 outcomes:

S = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}

Being able to properly enumerate the outcomes in a sample space will be
critical to determining probabilities. Two techniques are very helpful in making
sure you don’t accidentally overlook any outcomes. The first is called a tree
diagram because it resembles the branches of a tree. The first action in
Example 6.5 is to toss a coin. To construct the tree diagram, begin with a point
and draw a line from the point to H and a second line from the point to T.
The second action is to roll a die; there are six possible faces that can come
up on the die. So draw a line from each of H and T to these six outcomes. See
Figure 6.3.

EXAMPLE 6.5 FLIP A COIN AND ROLL A DIE

tree diagram



To determine the number of outcomes in the sample space for Example
6.5, there are 2 ways the coin can come up, and there are 6 ways the die can
come up, so there are 2 � 6 possible outcomes in the sample space. To see why
this is true, just sketch a tree diagram.

The second technique is to make use of the following rule.
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FIGURE 6.3 Tree diagram.

MULTIPLICATION PRINCIPLE

If you can do one task in a number of ways and a second task in b number
of ways, then both tasks can be done in a � b number of ways.

An experiment consists of flipping four coins. You can think of either tossing four
coins onto the table all at once or flipping a coin four times in succession and record-
ing the four outcomes. One possible outcome is HHTH. Because there are two ways
each coin can come up, the multiplication principle says that the total number of out-
comes is 2 � 2 � 2 � 2 = 16. This is the easy part. Listing all 16 outcomes requires
a scheme or systematic method so that you don’t leave out any possibilities. One way
is to list all the ways you can obtain 0 heads, then list all the ways you can get 1 head,
2 heads, 3 heads, and finally all 4 heads. Here is an enumeration:

EXAMPLE 6.6 FLIP FOUR COINS



6.2 Probability Models 339

Suppose that our only interest is the number of heads in four tosses. Now
we can be exact in a simpler fashion. The random phenomenon is to toss a
coin four times and count the number of heads. The sample space contains
only five outcomes:

S = {0, 1, 2, 3, 4}

This example also illustrates the importance of carefully specifying what con-
stitutes an individual outcome.

Although these examples seem remote from the practice of statistics, the
connection is surprisingly close. Suppose that in the course of conducting
an opinion poll you select four people at random from a large population
and ask each if he or she favors reducing federal spending on low-interest
student loans. The possible outcomes—the sample space—are the answers
“Yes” or “No.” Similarly, the possible outcomes of an SRS of 1500 people are
the same in principle as the possible outcomes of tossing a coin 1500 times.
One of the great advantages of mathematics is that the essential features of
quite different phenomena can be described by the same mathematical
model.

Of course, some sample spaces are simply too large to allow all of the pos-
sible outcomes to be listed, as the next example shows.

0 heads 1 head 2 heads 3 heads 4 heads

TTTT HTTT HHTT HHHT HHHH
THTT HTHT HHTH
TTHT HTTH HTHH
TTTH THHT THHH

THTH
TTHH

Many computing systems have a function that will generate a random number
between 0 and 1. The sample space is

S = {all numbers between 0 and 1}

This S is a mathematical idealization. Any specific random number generator pro-
duces numbers with some limited number of decimal places so that, strictly speaking,
not all numbers between 0 and 1 are possible outcomes. The entire interval from 0 to
1 is easier to think about. It also has the advantage of being a suitable sample space for
different computers that produce random numbers with different numbers of signifi-
cant digits.

EXAMPLE 6.7 GENERATE A RANDOM DECIMAL NUMBER



If you are selecting objects from a collection of distinct choices, such as
drawing playing cards from a standard deck of 52 cards, then much depends
on whether each choice is exactly like the previous choice. If you are select-
ing random digits by drawing numbered slips of paper from a hat, and you
want all ten digits to be equally likely to be selected each draw, then after
you draw a digit and record it, you must put it back into the hat. Then the
second draw will be exactly like the first. This is referred to as sampling with
replacement. If you do not replace the slips you draw, however, there are
only nine choices for the second slip picked, and eight for the third. This is
called sampling without replacement. So if the question is “How many
three-digit numbers can you make?” the answer is, by the multiplication
principle, 10 � 10 � 10 = 1000, providing all ten numbers are eligible for
each of the three positions in the number. On the other had, there are 10 �
9 � 8 = 720 different ways to construct a three-digit number without replace-
ment. You should be able to determine from the context of the problem
whether the selection is with or without replacement, and this will help you
properly identify the sample space.

EXERCISES
6.11 DESCRIBE THE SAMPLE SPACE In each of the following situations, describe a sample
space S for the random phenomenon. In some cases, you have some freedom in your
choice of S.

(a) A seed is planted in the ground. It either germinates or fails to grow.

(b) A patient with a usually fatal form of cancer is given a new treatment. The
response variable is the length of time that the patient lives after treatment.

(c) A student enrolls in a statistics course and at the end of the semester receives a
letter grade.

(d) A basketball player shoots four free throws. You record the sequence of hits and
misses.

(e) A basketball player shoots four free throws. You record the number of baskets she
makes.

6.12 DESCRIBE THE SAMPLE SPACE In each of the following situations, describe 
a sample space S for the random phenomenon. In some cases you have some 
freedom in specifying S, especially in setting the largest and the smallest value
in S.

(a) Choose a student in your class at random. Ask how much time that student spent
studying during the past 24 hours.

(b) The Physicians’ Health Study asked 11,000 physicians to take an aspirin every
other day and observed how many of them had a heart attack in a five-year period.

(c) In a test of a new package design, you drop a carton of a dozen eggs from a height
of 1 foot and count the number of broken eggs.

340 Chapter 6 Probability: The Study of Randomness

replacement



(d) Choose a student in your class at random. Ask how much cash that student is
carrying.

(e) A nutrition researcher feeds a new diet to a young male white rat. The response
variable is the weight (in grams) that the rat gains in 8 weeks.

6.13 CALORIES IN HOT DOGS Give a reasonable sample space for the number of calories
in a hot dog. (Table 1.10 on page 59 contains some typical values to guide you.)

6.14 LISTING OUTCOMES, I For each of the following, use a tree diagram or the multipli-
cation principle to determine the number of outcomes in the sample space. Then
write the sample space using set notation.

(a) Toss 2 coins.

(b) Toss 3 coins.

(c) Toss 4 coins.

6.15 LISTING OUTCOMES, II For each of the following, use a tree diagram or the multi-
plication principle to determine the number of outcomes in the sample space.

(a) Suppose a county license tag has a four-digit number for identification. If any
digit can occupy any of the four positions, how many county license tags can you
have?

(b) If the county license tags described in (a) do not allow duplicate digits, how many
county license tags can you have?

(c) Suppose the county license tags described in (a) can have up to four digits. How
many county license tags will this scheme allow?

6.16 SPIN 123 Refer to the experiment described in Activity 6.

(a) Determine the number of outcomes in the sample space.

(b) List the outcomes in the sample space.

6.17 ROLLING TWO DICE Example 6.3 (page 336) showed the 36 outcomes when we roll
two dice. Another way to sumarize these results is to make a table like this:

Number of ways Sum Outcomes

1 2 1,1
2 3 1,2 2,1
... ... ...

(a) Complete the table.

(b) In how many ways can you get an even sum?

(c) In how many ways can you get a sum of 5? A sum of 8?

(d) Describe any patterns that you see in the table.
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6.18 PICK A CARD Suppose you select a card from a standard deck of 52 playing cards.
In how many ways can the selected card be

(a) a red card?

(b) a heart?

(c) a queen and a heart?

(d) a queen or a heart?

(e) a queen that is not a heart?

Probability rules
The true probability of any outcome—say, “roll a 5 when we toss two dice”—
can be found only by actually tossing two dice many times, and then only
approximately. How then can we describe probability mathematically? Rather
than try to give “correct” probabilities, we start by laying down facts that must
be true for any assignment of probabilities. These facts follow from the idea of
probability as “the long-run proportion of repetitions on which an event
occurs.”

1. Any probability is a number between 0 and 1. Any proportion is a number
between 0 and 1, so any probability is also a number between 0 and 1. An
event with probability 0 never occurs, and an event with probability 
1 occurs on every trial. An event with probability 0.5 occurs in half the trials
in the long run.

2. All possible outcomes together must have probability 1. Because some
outcome must occur on every trial, the sum of the probabilities for all possible
outcomes must be exactly 1.

3. The probability that an event does not occur is 1 minus the probability
that the event does occur. If an event occurs in (say) 70% of all trials, it fails
to occur in the other 30%. The probability that an event occurs and the prob-
ability that it does not occur always add to 100%, or 1.

4. If two events have no outcomes in common, the probability that one or
the other occurs is the sum of their individual probabilities. If one event
occurs in 40% of all trials, a different event occurs in 25% of all trials, and the
two can never occur together, then one or the other occurs on 65% of all trials
because 40% + 25% = 65%.

We can use mathematical notation to state Facts 1 to 4 more concisely.
Capital letters near the beginning of the alphabet denote events. If A is any
event, we write its probability as P(A). Here are our probability facts in formal
language. As you apply these rules, remember that they are just another form
of intuitively true facts about long-run proportions.
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PROBABILITY RULES

Rule 1. The probability P(A) of any event A satisfies 0 ≤ P(A) ≤ 1.

Rule 2. If S is the sample space in a probability model, then P(S) = 1.

Rule 3. The complement of any event A is the event that A does not
occur, written as Ac. The complement rule states that

P(Ac) = 1 – P(A)

Rule 4. Two events A and B are disjoint (also called mutually exclusive) if
they have no outcomes in common and so can never occur simultaneously.
If A and B are disjoint,

P(A or B) = P(A) + P(B)

This is the addition rule for disjoint events.

Sometime we use set notation to describe events. The event {A ∪ B}, read “A
union B,” is the set of all outcomes that are either in A or in B. So {A ∪ B} is just
another way to indicate the event {A or B}. We will use these two notations inter-
changeably. The symbol ∅ is used for the empty event, that is, the event that has
no outcomes in it. If two events A and B are disjoint (mutually exclusive), we can
write A ∩ B = ∅ , read “A intersect B is empty.” Sometimes we emphasize that
we are describing a compound event by enclosing it within braces.

You may find it helpful to draw a picture to remind yourself of the mean-
ing of complements and disjoint events. A picture like Figure 6.4 that shows
the sample space S as a rectangular area and events as areas within S is called
a Venn diagram. The events A and B in Figure 6.4 are disjoint because they
do not overlap; that is, they have no outcomes in common. Their intersection
is the empty event, ∅ . Their union consists of the two shaded regions.

union

empty event

intersect

Venn diagram

S

BA

FIGURE 6.4 Venn diagram showing disjoint (mutually exclusive) events A and B.
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A Ac

The complement Ac in Figure 6.5 contains exactly the outcomes that are
not in A. Note that we could write A ∪ Ac = S and A ∩ Ac = ∅ .

FIGURE 6.5 Venn diagram showing the complement Ac of an event A.

Draw a woman aged 25 to 34 years old at random and record her marital status. “At
random” means that we give every such woman the same chance to be the one we
choose. That is, we choose an SRS of size 1. The probability of any marital status is
just the proportion of all women aged 25 to 34 who have that status—if we drew many
women, this is the proportion we would get. Here is the probability model:

Marital status: Never married Married Widowed Divorced
Probability: 0.298 0.622 0.005 0.075

Each probability is between 0 and 1. The probabilities add to 1 because these out-
comes together make up the sample space S.

The probability that the woman we draw is not married is, by the complement rule,

P(not married) = 1 – P(married)
= 1 – 0.622 = 0.378

That is, if 62.2% are married, then the remaining 37.8% are not married.
“Never married” and “divorced” are disjoint events, because no woman can be

both never married and divorced. So the addition rule says that

P(never married or divorced) = P(never married) + P(divorced)
= 0.298 + 0.075 = 0.373

That is, 37.3% of women in this age group are either never married or divorced.

EXAMPLE 6.8 MARITAL STATUS OF YOUNG WOMEN

Figure 6.2 (page 336) displays the 36 possible outcomes of rolling two dice. What prob-
abilities should we assign to these outcomes?

EXAMPLE 6.9 PROBABILITIES FOR ROLLING DICE
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Casino dice are carefully made. Their spots are not hollowed out, which would
give the faces different weights, but are filled with white plastic of the same density as
the colored plastic of the body. For casino dice it is reasonable to assign the same prob-
ability to each of the 36 outcomes in Figure 6.2. Because all 36 outcomes together
must have probability 1 (Rule 2), each outcome must have probability 1/36.

Gamblers are often interested in the sum of the pips on the up-faces. What is the
probability of rolling a 5? Because the event “roll a 5” contains the four outcomes dis-
played in Example 6.3, the addition rule (Rule 4) says that its probability is

P(roll a 5) = P( ) + P( ) + P( ) + P( )

What about the probability of rolling a 7? In Figure 6.2 you will find six outcomes
for which the sum of the pips is 7. The probability is 6/36, or about 0.167.
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Assigning probabilities: finite number of outcomes
Examples 6.8 and 6.9 illustrate one way to assign probabilities to events: assign
a probability to every individual outcome, then add these probabilities to find
the probability of any event. If such an assignment is to satisfy the rules of prob-
ability, the probabilities of all the individual outcomes must sum to exactly 1.

PROBABILITIES IN A FINITE SAMPLE SPACE

Assign a probability to each individual outcome. These probabilities must
be numbers between 0 and 1 and must have sum 1.

The probability of any event is the sum of the probabilities of the 
outcomes making up the event.

Faked numbers in tax returns, payment records, invoices, expense account claims, and
many other settings often display patterns that aren’t present in legitimate records.
Some patterns, like too many round numbers, are obvious and easily avoided by a
clever crook. Others are more subtle. It is a striking fact that the first digits of numbers
in legitimate records often follow a distribution known as Benford’s Law. Here it is
(note that a first digit can’t be 0):3

First digit: 1 2 3 4 5 6 7 8 9
Probability: 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

EXAMPLE 6.10 BENFORD’S LAW
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Benford’s Law usually applies to the first digits of the sizes of similar quantities,
such as invoices, expense account claims, and county populations. Investigators can
detect fraud by comparing these probabilities with the first digits in records such as
invoices paid by a business.

Consider the events

A = {first digit is 1}
B = {first digit is 6 or greater}

From the table of probabilities,

P(A) = P(1) = 0.301
P(B) = P(6) + P(7) + P(8) + P(9)

= 0.067 + 0.058 + 0.051 + 0.046 = 0.222

Note that P(B) is not the same as the probability that a random digit is greater than 6.
The probability P(6) that a first digit is 6 is included in “6 or greater” but not in “greater
than 6.”

The probability that a first digit is anything other than a 1 is, by the complement
rule,

P(Ac) = 1 – P(A)
= 1 – 0.301 = 0.699

The events A and B are disjoint, so the probability that a first digit either is 1 or is 6 or
greater is, by the addition rule,

P(A or B) = P(A) + P(B)
= 0.301 + 0.222 = 0.523

Be careful to apply the addition rule only to disjoint events. Check that the probability
of the event C that a first digit is odd is

P(C) = P(1) + P(3) + P(5) + P(7) + P(9) = 0.609

The probability

P(B or C) = P(1) + P(3) + P(5) + P(6) + P(7) + P(8) + P(9) = 0.727

is not the sum of P(B) and P(C), because events B and C are not disjoint. Outcomes 7
and 9 are common to both events.

Assigning probabilities: equally likely outcomes
Assigning correct probabilities to individual outcomes often requires long
observation of the random phenomenon. In some special circumstances, how-
ever, we are willing to assume that individual outcomes are equally likely
because of some balance in the phenomenon. Ordinary coins have a physical
balance that should make heads and tails equally likely, for example, and the
table of random digits comes from a deliberate randomization.
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You might think that first digits are distributed “at random” among the digits 1 to 9.
The 9 possible outcomes would then be equally likely. The sample space for a single
digit is

S = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Because the total probability must be 1, the probability of each of the 9 outcomes must
be 1/9. That is, the assignment of probabilities to outcomes is

First digit: 1 2 3 4 5 6 7 8 9
Probability: 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

The probability of the event B that a randomly chosen first digit is 6 or greater is

Compare this with the Benford’s Law probability in Example 6.10. A crook who fakes
data by using “random” digits will end up with too many first digits 6 or greater and too
few 1s and 2s.

P B P P P P( )   ( )   ( )   ( )   ( )

           .

= + + +

= + + + = =

6 7 8 9
1
9

1
9

1
9

1
9
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EXAMPLE 6.11 RANDOM DIGITS

In Example 6.11 all outcomes have the same probability. Because there
are 9 equally likely outcomes, each must have probability 1/9. Because exactly
4 of the 9 equally likely outcomes are 6 or greater, the probability of this event
is 4/9. In the special situation where all outcomes are equally likely, we have a
simple rule for assigning probabilities to events.

EQUALLY LIKELY OUTCOMES

If a random phenomenon has k possible outcomes, all equally likely, then
each individual outcome has probability 1/k. The probability of any event
A is

P A
A
S
A

k

( )  

  

=

=

count of outcomes in 
count of outcomes in 
count of outcomes in 

Most random phenomena do not have equally likely outcomes, so the
general rule for finite sample spaces is more important than the special rule
for equally likely outcomes.
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EXERCISES
6.19 BLOOD TYPES All human blood can be typed as one of O, A, B, or AB, but the dis-
tribution of the types varies a bit with race. Here is the distribution of the blood type
of a randomly chosen black American:

Blood type: O A B AB
Probability: 0.49 0.27 0.20 ?

(a) What is the probability of type AB blood? Why?

(b) Maria has type B blood. She can safely receive blood transfusions from people
with blood types O and B. What is the probability that a randomly chosen black
American can donate blood to Maria?

6.20 DISTRIBUTION OF M&M COLORS If you draw an M&M candy at random from a bag
of the candies, the candy you draw will have one of six colors. The probability of
drawing each color depends on the proportion of each color among all candies
made.

(a) The table below gives the probability of each color for a randomly chosen plain
M&M:

Color: Brown Red Yellow Green Orange Blue
Probability: 0.3 0.2 0.2 0.1 0.1 ?

What must be the probability of drawing a blue candy?

(b) The probabilities for peanut M&Ms are a bit different. Here they are:

Color: Brown Red Yellow Green Orange Blue
Probability: 0.2 0.1 0.2 0.1 0.1 ?

What is the probability that a peanut M&M chosen at random is blue?

(c) What is the probability that a plain M&M is any of red, yellow, or orange? What
is the probability that a peanut M&M has one of these colors?

6.21 HEART DISEASE AND CANCER Government data assign a single cause for each death
that occurs in the United States. The data show that the probability is 0.45 that a ran-
domly chosen death was due to cardiovascular (mainly heart) disease, and 0.22 that it
was due to cancer. What is the probability that a death was due either to cardiovascu-
lar disease or to cancer? What is the probability that the death was due to some other
cause?

6.22 DO HUSBANDS DO THEIR SHARE? The New York Times (August 21, 1989) reported a
poll that interviewed a random sample of 1025 women. The married women in the
sample were asked whether their husbands did their fair share of household chores.
Here are the results:
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Outcome Probability

Does more than his fair share 0.12
Does his fair share 0.61
Does less than his fair share ?

These proportions are probabilities for the random phenomenon of choosing a mar-
ried woman at random and asking her opinion.

(a) What must be the probability that the woman chosen says that her husband does
less than his fair share? Why?

(b) The event “I think my husband does at least his fair share” contains the first two
outcomes. What is its probability?

6.23 ACADEMIC RANK Select a first-year college student at random and ask what his or
her academic rank was in high school. Here are the probabilities, based on proportions
from a large sample survey of first-year students:

Rank: Top 20% Second 20% Third 20% Fourth 20% Lowest 20%
Probability: 0.41 0.23 0.29 0.06 0.01

(a) What is the sum of these probabilities? Why do you expect the sum to have this value?

(b) What is the probability that a randomly chosen first-year college student was not
in the top 20% of his or her high school class?

(c) What is the probability that a first-year student was in the top 40% in high school?

6.24 SPIN 123 Refer to the experiment described in Activity 6 and Exercise 6.16
(page 341).

(a) Determine the theoretical probability that at least one digit will occur in its cor-
rect place.

(b) Compare the theoretical probability with your experimental (empirical) results.

6.25 TETRAHEDRAL DICE Psychologists sometimes use tetrahedral dice to study our intu-
ition about chance behavior. A tetrahedron is a pyramid (think of Egypt) with four
identical faces, each a triangle with all sides equal in length. Label the four faces of a
tetrahedral die with 1, 2, 3, and 4 spots.

(a) Give a probability model for rolling such a die and recording the number of spots
on the down-face. Explain why you think your model is at least close to correct.

(b) Give a probability model for rolling two such dice. That is, write down all possible
outcomes and give a probability to each. What is the probability that the sum of the
down-faces is 5?

6.26 BENFORD’S LAW Example 6.10 (page 345) states that the first digits of numbers in legit-
imate records often follow a distribution known as Benford’s Law. Here is the distribution:



First digit: 1 2 3 4 5 6 7 8 9
Probability: 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

It was shown in Example 6.10 that

P(A) = P(first digit is 1) = 0.301
P(B) = P(first digit is 6 or greater) = 0.222
P(C) = P(first digit is odd) = 0.609

We will define event D to be {first digit is less than 4}. Using the union and intersec-
tion notation, find the following probabilities.

(a) P(D)

(b) P(B ∪ D)

(c) P(Dc)

(d) P(C ∩ D)

(e) P(B ∩ C)

Independence and the multiplication rule
Rule 4, the addition rule for disjoint events, describes the probability that one
or the other of two events A and B will occur in the special situation when A
and B cannot occur together because they are disjoint. Now we will describe
the probability that both events A and B occur, again only in a special situation.
More general rules appear in Section 6.3.

Suppose that you toss a balanced coin twice. You are counting heads, so
two events of interest are

A = first toss is a head
B = second toss is a head

The events A and B are not disjoint. They occur together whenever both tosses
give heads. We want to compute the probability of the event {A and B} that both
tosses are heads. The Venn diagram in Figure 6.6 illustrates the event {A and
B} as the overlapping area that is common to both A and B.
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A and B
S

BA

FIGURE 6.6 Venn diagram showing the event {A and B}.
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The coin tossing of Buffon, Pearson, and Kerrich described at the begin-
ning of this chapter makes us willing to assign probability 1/2 to a head when
we toss a coin. So

P(A) = 0.5

P(B) = 0.5

What is P(A and B)? Our common sense says that it is 1/4. The first toss will
give a head half the time and then the second will give a head on half of those
trials, so both tosses will give heads on 1/2 � 1/2 = 1/4 of all trials in the long
run. This reasoning assumes that the second toss still has probability 1/2 of a
head after the first has given a head. This is true—we can verify it by perform-
ing many trials of two tosses and observing the proportion of heads on the sec-
ond toss after the first toss has produced a head. We say that the events “head
on the first toss” and “head on the second toss” are independent. Here is our
next probability rule.

Our definition of independence is rather informal. A more precise defini-
tion appears in Section 6.3. In practice, though, we rarely need a precise def-
inition of independence, because independence is usually assumed as part of
a probability model when we want to describe random phenomena that seem
to be physically unrelated to each other.

THE MULTIPLICATION RULE FOR INDEPENDENT EVENTS

Rule 5. Two events A and B are independent if knowing that one occurs
does not change the probability that the other occurs. If A and B are
independent,

P(A and B) = P(A)P(B)

This is the multiplication rule for independent events.

Because a coin has no memory and most coin tossers cannot influence the fall of the
coin, it is safe to assume that successive coin tosses are independent. For a balanced
coin this means that after we see the outcome of the first toss, we still assign probabil-
ity 1/2 to heads on the second toss.

On the other hand, the colors of successive cards dealt from the same deck are not
independent. A standard 52-card deck contains 26 red and 26 black cards. For the first
card dealt from a shuffled deck, the probability of a red card is 26/52 = 0.50 because
the 52 possible cards are equally likely. Once we see that the first card is red, we know
that there are only 25 reds among the remaining 51 cards. The probability that the sec-
ond card is red is therefore only 25/51 = 0.49. Knowing the outcome of the first deal
changes the probability for the second.

EXAMPLE 6.12 INDEPENDENT OR NOT INDEPENDENT?

independent
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When independence is part of a probability model, the multiplication rule
applies. Here is an example.

If a doctor measures your blood pressure twice, it is reasonable to assume that the
two results are independent because the first result does not influence the instrument
that makes the second reading. But if you take an IQ test or other mental test twice in
succession, the two test scores are not independent. The learning that occurs on the
first attempt influences your second attempt.

The multiplication rule P(A and B) = P(A)P(B) holds if A and B are inde-
pendent but not otherwise. The addition rule P(A or B) = P(A) + P(B) holds
if A and B are disjoint but not otherwise. Resist the temptation to use these
simple formulas when the circumstances that justify them are not present. You
must also be certain not to confuse disjointness and independence. If A and B
are disjoint, then the fact that A occurs tells us that B cannot occur—look again
at Figure 6.4. So disjoint events are not independent. Unlike disjointness or
complements, independence cannot be pictured by a Venn diagram, because
it involves the probabilities of the events rather than just the outcomes that
make up the events.

Applying the probability rules
If two events A and B are independent, then their complements Ac and Bc are
also independent and Ac is independent of B. Suppose, for example, that 75%
of all registered voters in a suburban district are Republicans. If an opinion poll

Gregor Mendel used garden peas in some of the experiments that revealed that inher-
itance operates randomly. The seed color of Mendel’s peas can be either green or yel-
low. Two parent plants are “crossed” (one pollinates the other) to produce seeds. Each
parent plant carries two genes for seed color, and each of these genes has probability
1/2 of being passed to a seed. The two genes that the seed receives, one from each par-
ent, determine its color. The parents contribute their genes independently of each
other.

Suppose that both parents carry the G and the Y genes. The seed will be green if
both parents contribute a G gene; otherwise it will be yellow. If M is the event that the
male contributes a G gene and F is the event that the female contributes a G gene,
then the probability of a green seed is

P(M and F) = P(M)P(F)

= (0.5)(0.5) = 0.25

In the long run, 1/4 of all seeds produced by crossing these plants will be green.

EXAMPLE 6.13 MENDEL’S PEAS
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interviews two voters chosen independently, the probability that the first is a
Republican and the second is not a Republican is (0.75)(0.25) = 0.1875. The
multiplication rule also extends to collections of more than two events, pro-
vided that all are independent. Independence of events A, B, and C means
that no information about any one or any two can change the probability of
the remaining events. The formal definition is a bit messy. Fortunately, inde-
pendence is usually assumed in setting up a probability model. We can then
use the multiplication rule freely, as in this example.

By combining the rules we have learned, we can compute probabilities for
rather complex events. Here is an example.

The first successful transatlantic telegraph cable was laid in 1866. The first telephone
cable across the Atlantic did not appear until 1956—the barrier was designing
“repeaters,” amplifiers needed to boost the signal, that could operate for years on the
sea bottom. This first cable had 52 repeaters. The copper cable, laid in 1983 and
retired in 1994, had 662 repeaters. The first fiber optic cable was laid in 1988 and has
109 repeaters. There are now more than 400,000 miles of undersea cable, with more
being laid every year to handle the flood of Internet traffic.

Repeaters in undersea cables must be very reliable. To see why, suppose that
each repeater has probability 0.999 of functioning without failure for 25 years.
Repeaters fail independently of each other. (This assumption means that there are
no “common causes” such as earthquakes that would affect several repeaters at
once.) Denote by Ai the event that the ith repeater operates successfu1ly for 25
years.

The probability that two repeaters both last 25 years is

P(A1 and A2) = P(A1)P(A2)
= 0.999 � 0.999 = 0.998

For a cable with 10 repeaters the probability of no failures in 25 years is

P(A1 and A2 and . . . and A10) = P(A1)P(A2) 
. . . P(A10)

= 0.999 � 0.999 � . . . � 0.999
= 0.99910 = 0.990

Cables with 2 or 10 repeaters would be quite reliable. Unfortunately, the last copper
transatlantic cable had 662 repeaters. The probability that all 662 work for 25 years is

P(A1 and A2 and . . . and A662) = 0.999662 = 0.516

This cable will fail to reach its 25-year design life about half the time if each repeater
is 99.9% reliable over that period. The multiplication rule for probabilities shows that
repeaters must be much more than 99.9% reliable.

EXAMPLE 6.14 ATLANTIC TELEPHONE CABLE
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EXERCISES
6.27 A BATTLE PLAN A general can plan a campaign to fight one major battle or three small
battles. He believes that he has probability 0.6 of winning the large battle and probabil-
ity 0.8 of winning each of the small battles. Victories or defeats in the small battles are
independent. The general must win either the large battle or all three small battles to win
the campaign. Which strategy should he choose?

6.28 DEFECTIVE CHIPS An automobile manufacturer buys computer chips from a sup-
plier. The supplier sends a shipment containing 5% defective chips. Each chip chosen
from this shipment has probability 0.05 of being defective, and each automobile uses
12 chips selected independently. What is the probability that all 12 chips in a car will
work properly?

6.29 COLLEGE-EDUCATED LABORERS? Government data show that 26% of the civilian labor
force have at least 4 years of college and that 16% of the labor force work as laborers or
operators of machines or vehicles. Can you conclude that because (0.26)(0.16) =
0.0416, about 4% of the labor force are college-educated laborers or operators? Explain
your answer.

6.30 Choose at random a U.S. resident at least 25 years of age. We are interested in the
events

A = {The person chosen completed 4 years of college}
B = {The person chosen is 55 years old or older}

Government data recorded in Table 4.6 on page 241 allow us to assign probabilities to
these events.

Screening large numbers of blood samples for HIV, the virus that causes AIDS, uses
an enzyme immunoassay (EIA) test that detects antibodies to the virus. Samples that
test positive are retested using a more accurate “western blots” test. Applied to people
who have no HIV antibodies, EIA has probability about 0.006 of producing a false pos-
itive. If the 140 employees of a medical clinic are tested and all 140 are free of HIV
antibodies, what is the probability that at least one false positive will occur?

It is reasonable to assume as part of the probability model that the test results for
different individuals are independent. The probability that the test is positive for a sin-
gle person is 0.006, so the probability of a negative result is 1 – 0.006 = 0.994 by the
complement rule. The probability of at least one false positive among the 140 people
tested is therefore

P(at least one positive) = 1 – P(no positives)
= 1 – P (140 negatives)
= 1 – 0.994140

= 1 – 0.431 = 0.569

The probability is greater than 1/2 that at least one of the 140 people will test positive
for HIV even though no one has the virus.

EXAMPLE 6.15 AIDS TESTING
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(a) Explain why P(A) = 0.230.

(b) Find P(B).

(c) Find the probability that the person chosen is at least 55 years old and has 4 years
of college education, P(A and B). Are the events A and B independent?

6.31 BRIGHT LIGHTS? A string of Christmas lights contains 20 lights. The lights are
wired in series, so that if any light fails the whole string will go dark. Each light has
probability 0.02 of failing during a 3-year period. The lights fail independently of
each other. What is the probability that the string of lights will remain bright for 3
years?

6.32 DETECTING STEROIDS An athlete suspected of having used steroids is given two tests
that operate independently of each other. Test A has probability 0.9 of being positive if
steroids have been used. Test B has probability 0.8 of being positive if steroids have
been used. What is the probability that neither test is positive if steroids have been
used?

6.33 TELEPHONE SUCCESS Most sample surveys use random digit dialing equipment to
call residential telephone numbers at random. The telephone polling firm Zogby
International reports that the probability that a call reaches a live person is 0.2.4 Calls
are independent.

(a) A polling firm places 5 calls. What is the probability that none of them reaches a
person?

(b) When calls are made to New York City, the probability of reaching a person is only
0.08. What is the probability that none of 5 calls made to New York City reaches a person?

SUMMARY
A random phenomenon has outcomes that we cannot predict but that
nonetheless have a regular distribution in very many repetitions.

The probability of an event is the proportion of times the event occurs in
many repeated trials of a random phenomenon.

A probability model for a random phenomenon consists of a sample
space S and an assignment of probabilities P.

The sample space S is the set of all possible outcomes of the random phe-
nomenon. Sets of outcomes are called events. P assigns a number P(A) to an
event A as its probability.

The complement Ac of an event A consists of exactly the outcomes that are
not in A. Events A and B are disjoint (mutually exclusive) if they have no out-
comes in common. Events A and B are independent if knowing that one event
occurs does not change the probability we would assign to the other event.

Any assignment of probability must obey the rules that state the basic prop-
erties of probability:

1. 0 ≤ P(A) ≤ 1 for any event A.

2. P(S) = 1.
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3. Complement rule: For any event A, P(Ac) = 1 – P(A).

4. Addition rule: If events A and B are disjoint, then P(A or B) = P(A ∪ B) =
P(A) + P(B).

5. Multiplication rule: If events A and B are independent, then P(A and B) =
P(A ∩ B) = P(A)P(B).

SECTION 6.2 EXERCISES
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FIGURE 6.7 Four assignments of probabilities to the six faces of a die.

6.35 LEGITIMATE ASSIGNMENT OF PROBABILITIES? In each of the following situations, state
whether or not the given assignment of probabilities to individual outcomes is legiti-
mate, that is, satisfies the rules of probability. If not, give specific reasons for your
answer.

(a) When a coin is spun, P(H) = 0.55 and P(T) = 0.45.

(b) When two coins are tossed, P(HH) = 0.4, P(HT) = 0.4, P(TH) = 0.4, and P(TT) = 0.4.

(c) When a die is rolled, the number of spots on the up-face has P(1) = 1/2, P(4) =
1/6, P(5) = 1/6, and P(6) = 1/6.

6.34 LEGITIMATE PROBABILITY MODEL? Figure 6.7 displays several assignments of proba-
bilities to the six faces of a die. We can learn which assignment is actually accurate for
a particular die only by rolling the die many times. However, some of the assignments
are not legitimate assignments of probability. That is, they do not obey the rules.
Which are legitimate and which are not? In the case of the illegitimate models,
explain what is wrong.
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6.36 CAR COLORS Choose a new car or light truck at random and note its color. Here
are the probabilities of the most popular colors for vehicles made in North America in
2000:5

Color: Silver White Black Dark green Dark blue Medium red
Probability: 0.176 0.172 0.113 0.089 0.088 0.067

(a) What is the probability that the vehicle you choose has any color other than the
six listed?

(b) What is the probability that a randomly chosen vehicle is either silver or white?

(c) Choose two vehicles at random. What is the probability that both are silver or
white?

6.37 NEW CENSUS CATEGORIES The 2000 census allowed each person to choose one or
more from a long list of races. That is, in the eyes of the Census Bureau, you belong
to whatever race or races you say you belong to. “Hispanic/Latino” is a separate cate-
gory; Hispanics may be of any race. If we choose a resident of the United States at ran-
dom, the 2000 census gives these probabilities:

Hispanic Not Hispanic

Asian 0.000 0.036
Black 0.003 0.121
White 0.060 0.691
Other 0.062 0.027

Let A be the event that a randomly chosen American is Hispanic, and let B be the
event that the person chosen is white.

(a) Verify that the table gives a legitimate assignment of probabilities.

(b) What is P(A)?

(c) Describe Bc in words and find P(Bc) by the complement rule.

(d) Express “the person chosen is a non-Hispanic white” in terms of events A and B.
What is the probability of this event?

6.38 BEING HISPANIC Exercise 6.37 assigns probabilities for the ethnic background of a
randomly chosen resident of the United States. Let A be the event that the person
chosen is Hispanic, and let B be the event that he or she is white. Are events A and B
independent? How do you know?

6.39 PREPARING FOR THE GMAT A company that offers courses to prepare would-be
M.B.A. students for the GMAT examination finds that 40% of its customers are cur-
rently undergraduate students and 60% are college graduates. After completing the
course, 50% of the undergraduates and 70% of the graduates achieve scores of at least
600 on the GMAT.



358 Chapter 6 Probability: The Study of Randomness

(a) What percent of customers are undergraduates and score at least 600? What per-
cent of customers are graduates and score at least 600?

(b) What percent of all customers score at least 600 on the GMAT?

6.40 THE RISE AND FALL OF PORTFOLIO VALUES The “random walk” theory of securities
prices holds that price movements in disjoint time periods are independent of each
other. Suppose that we record only whether the price is up or down each year, and that
the probability that our portfolio rises in price in any one year is 0.65. (This probabil-
ity is approximately correct for a portfolio containing equal dollar amounts of all com-
mon stocks listed on the New York Stock Exchange.)

(a) What is the probability that our portfolio goes up for 3 consecutive years?

(b) If you know that the portfolio has risen in price 2 years in a row, what probability
do you assign to the event that it will go down next year?

(c) What is the probability that the portfolio’s value moves in the same direction in
both of the next 2 years?

6.41 USING A TABLE TO FIND PROBABILITIES The type of medical care a patient receives
may vary with the age of the patient. A large study of women who had a breast lump
investigated whether or not each woman received a mammogram and a biopsy
when the lump was discovered. Here are some probabilities estimated by the study.
The entries in the table are the probabilities that both of two events occur; for exam-
ple, 0.321 is the probability that a patient is under 65 years of age and the tests were
done. The four probabilities in the table have sum 1 because the table lists all pos-
sible outcomes.

Tests done?
Yes No

Age under 65: 0.321 0.124
Age 65 or over: 0.365 0.190

(a) What is the probability that a patient in this study is under 65? That a patient is 65
or over?

(b) What is the probability that the tests were done for a patient? That they were not
done?

(c) Are the events A = {patient was 65 or older} and B = {the tests were done} inde-
pendent? Were the tests omitted on older patients more or less frequently than would
be the case if testing were independent of age?

6.42 ROULETTE A roulette wheel has 38 slots, numbered 0, 00, and 1 to 36. The slots 0
and 00 are colored green, 18 of the others are red, and 18 are black. The dealer spins
the wheel and at the same time rolls a small ball along the wheel in the opposite
direction. The wheel is carefully balanced so that the ball is equally likely to land in
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any slot when the wheel slows. Gamblers can bet on various combinations of num-
bers and colors.

(a) What is the probability that the ball will land in any one slot?

(b) If you bet on “red,” you win if the ball lands in a red slot. What is the probability
of winning?

(c) The slot numbers are laid out on a board on which gamblers place their bets. One
column of numbers on the board contains all multiples of 3, that is, 3, 6, 9, . . . , 36.
You place a “column bet” that wins if any of these numbers comes up. What is your
probability of winning?

6.43 WHICH IS MOST LIKELY? A six-sided die has four green and two red faces and is bal-
anced so that each face is equally likely to come up. The die will be rolled several
times. You must choose one of the following three sequences of colors; you will win
$25 if the first rolls of the die give the sequence that you have chosen.

RGRRR
RGRRRG
GRRRRR

Which sequence do you choose? Explain your choice.6

6.44 ALBINISM IN GENETICS The gene for albinism in humans is recessive. That is,
carriers of this gene have probability 1/2 of passing it to a child, and the child is
albino only if both parents pass the albinism gene. Parents pass their genes inde-
pendently of each other. If both parents carry the albinism gene, what is the probability
that their first child is albino? If they have two children (who inherit indepen-
dently of each other), what is the probability that both are albino? That neither
is albino?

6.45 DISJOINT VERSUS INDEPENDENT EVENTS This exercise explores the relationship
between mutually exclusive and independent events.

(a) Assume that events A and B are non-empty, independent events. Show that A and
B must intersect (i.e., that A ∩ B ≠ ∅ ).

(b) Use the results of (a) to argue that if A and B are disjoint, then they cannot be
independent.

(c) Find an example of two events that are neither disjoint nor independent.

6.3 GENERAL PROBABILITY RULES
In this section we will consider some additional laws that govern any assign-
ment of probabilities. The purpose of learning more laws of probability is to be
able to give probability models for more complex random phenomena. We
have already met and used five rules.
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General addition rules
Probability has the property that if A and B are disjoint events, then P(A or B) = 
P(A) + P(B). What if there are more than two events, or if the events are not disjoint?
These circumstances are covered by more general addition rules for probability.

RULES OF PROBABILITY

Rule 1. 0 ≤ P(A) ≤ 1 for any event A.

Rule 2. P(S) = 1.

Rule 3. Complement rule: For any event A,

P(Ac) = 1 – P(A)

Rule 4. Addition rule: If A and B are disjoint events, then

P(A or B) = P(A) + P(B)

Rule 5. Multiplication rule: If A and B are independent events, then

P(A and B) = P(A)P(B)

UNION

The union of any collection of events is the event that at least one of the
collection occurs.

For two events A and B, the union is the event {A or B} that A or B or both
occur. From the addition rule for two disjoint events, we can obtain rules for
more general unions. Suppose first that we have several events—say A, B, and
C—that are disjoint in pairs. That is, no two can occur simultaneously. The
Venn diagram in Figure 6.8 illustrates three disjoint events.

S

A

B

C

FIGURE 6.8 The addition rule for disjoint events: P(A or B or C) = P(A) + P(B) + P(C)
when events A, B, and C are disjoint.

The addition rule for two disjoint events extends to the following law.
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ADDITION RULE FOR DISJOINT EVENTS

If events A, B, and C are disjoint in the sense that no two have any 
outcomes in common, then

P(one or more of A, B, C) = P(A) + P(B) + P(C)

This rule extends to any number of disjoint events.

Generate a random number X between 0 and 1. What is the probability that the first
digit will be odd? We will learn in Chapter 7 that the variable X has the density curve
of a uniform distribution (see Exercise 2.2, page 83.). This density curve has constant
height 1 between 0 and 1 and is 0 elsewhere. The event that the first digit of X is odd
is the union of five disjoint events. These events are

0.10  ≤  X <  0.20
0.30  ≤  X <  0.40
0.50  ≤  X <  0.60
0.70  ≤  X <  0.80
0.90  ≤  X <  1.00

Figure 6.9 illustrates the probabilities of these events as areas under the density curve.
Each has probability 0.1 equal to its length. The union of the five therefore has proba-
bility equal to the sum, or 0.5. As we should expect, a random number is equally likely
to begin with an odd or an even digit.

EXAMPLE 6.16 UNIFORM DISTRIBUTION

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 6.9 The probability that the first digit of a random number is odd is the sum of the proba-
bilities of the 5 disjoint events shown.
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If events A and B are not disjoint, they can occur simultaneously. The
probability of their union is then less than the sum of their probabilities. As
Figure 6.10 suggests, the outcomes common to both are counted twice when
we add probabilities, so we must subtract this probability once.

Here is the addition rule for the union of any two events, disjoint or not.

A and B
S

BA

FIGURE 6.10 The general addition rule for the union of two events: P(A or B) = P(A) + P(B) -
P(A and B) for any events A and B.

GENERAL ADDITION RULE FOR UNIONS OF TWO EVENTS

For any two events A and B,

P(A or B) = P(A) + P(B) – P(A and B)

Equivalently,

P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

If A and B are disjoint, the event {A and B} that both occur has no out-
comes in it. This empty event ∅ is the complement of the sample space S and
must have probability 0. So the general addition rule includes Rule 4, the addi-
tion rule for disjoint events.

Deborah and Matthew are anxiously awaiting word on whether they have been made
partners of their law firm. Deborah guesses that her probability of making partner is
0.7 and that Matthew’s is 0.5. (These are personal probabilities reflecting Deborah’s
assessment of chance.) This assignment of probabilities does not give us enough infor-
mation to compute the probability that at least one of the two is promoted. In partic-
ular, adding the individual probabilities of promotion gives the impossible result 1.2.
If Deborah also guesses that the probability that both she and Matthew are made part-
ners is 0.3, then by the addition rule for unions

P(at least one is promoted) = 0.7 + 0.5 – 0.3 = 0.9

The probability that neither is promoted is then 0.1 by the complement rule.

EXAMPLE 6.17 PROBABILITY OF PROMOTION
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Venn diagrams are a great help in finding probabilities for unions, because
you can just think of adding and subtracting areas. Figure 6.11 shows some events
and their probabilities for Example 6.17. What is the probability that Deborah is
promoted and Matthew is not? The Venn diagram shows that this is the probabil-
ity that Deborah is promoted minus the probability that both are promoted, 0.7 –
0.3 = 0.4. Similarly, the probability that Matthew is promoted and Deborah is not
is 0.5 – 0.3 = 0.2. The four probabilities that appear in the figure add to 1 because
they refer to four disjoint events whose union is the entire sample space.

DC and MC

0.1

D and MC

0.4

D and M
0.3

DC and M
0.2

D = Deborah is made partner
M = Matthew is made partner

FIGURE 6.11 Venn diagram and probabilities.

The simultaneous occurrence of two events, such as A = Deborah is promoted
and B = Matthew is promoted, is called a joint event. The probability of a joint
event, such as P(Deborah is promoted and Matthew is promoted) = P(A and B), is
called a joint probability. Determining joint probabilities when you have equally
likely outcomes can be as easy as counting outcomes. For most situations, however,
we will need more powerful methods, which will be developed later in this section.

Here’s another way to work with joint events. We have two variables. One
variable is employee, which has two values: Deborah and Matthew. The other
variable is promotion, which also has two values: promoted and not promoted.

D = {Deborah promoted}

Dc = {Deborah not promoted}

M = {Matthew promoted}

Mc = {Matthew not promoted}

We can construct a table and write in the probabilities that Deborah assumes:

Matthew
Promoted Not promoted Total

Deborah Promoted 0.3 0.7
Not promoted

Total 0.5 1



The rows and columns have to add to the totals shown, so we can fill in the rest
of the table to produce the completed table:

Matthew
Promoted Not promoted Total

Deborah Promoted 0.3 0.4 0.7
Not promoted 0.2 0.1 0.3

Total 0.5 0.5 1

The four entries in the body of the table are the probabilities of the joint events
of interest:

P(D and M) = P(Deborah and Matthew are both promoted) = 0.3

P(D and Mc) = P(Deborah is promoted and Matthew is not promoted) = 0.4

P(Dc and M) = P(Deborah is not promoted and Matthew is promoted) = 0.2

P(Dc and Mc) = P(Deborah is not promoted and Matthew is not promoted) = 0.1

Note that these joint probabilities add to 1.
We will continue our discussion of tables and joint events in the next section.

EXERCISES
6.46 PROSPERITY AND EDUCATION Call a household prosperous if its income exceeds
$100,000. Call the household educated if the householder completed college. Select an
American household at random, and let A be the event that the selected household is
prosperous and B the event that it is educated. According to the Census Bureau, P(A) =
0.134, P(B) = 0.254, and the joint probability that a household is both prosperous and
educated is P(A and B) = 0.080. What is the probability P(A or B) that the household
selected is either prosperous or educated?

6.47 Draw a Venn diagram that shows the relation between events A and B in Exercise
6.46. Indicate each of the following events on your diagram and use the information
in Exercise 6.46 to calculate the probability of each event. Finally, describe in words
what each event is.

(a) {A and B}

(b) {A and Bc}

(c) {Ac and B}

(d) {Ac and Bc}

6.48 WINNING CONTRACTS Consolidated Builders has bid on two large construction proj-
ects. The company president believes that the probability of winning the first contract
(event A) is 0.6, that the probability of winning the second (event B) is 0.5, and that
the joint probability of winning both jobs (event {A and B}) is 0.3. What is the proba-
bility of the event {A or B} that Consolidated will win at least one of the jobs?

364 Chapter 6 Probability: The Study of Randomness
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6.49 In the setting of the previous exercise, are events A and B independent? Do a cal-
culation that proves your answer.

6.50 Draw a Venn diagram that illustrates the relation between events A and B in
Exercise 6.48. Write each of the following events in terms of A, B, Ac, and Bc. Indicate
the events on your diagram and use the information in Exercise 6.48 to calculate the
probability of each.

(a) Consolidated wins both jobs.

(b) Consolidated wins the first job but not the second.

(c) Consolidated does not win the first job but does win the second.

(d) Consolidated does not win either job.

6.51 CAFFEINE IN THE DIET Common sources of caffeine are coffee, tea, and cola drinks.
Suppose that

55% of adults drink coffee
25% of adults drink tea
45% of adults drink cola

and also that

15% drink both coffee and tea
5% drink all three beverages
25% drink both coffee and cola
5% drink only tea

Draw a Venn diagram marked with this information. Use it along with the addition
rules to answer the following questions.

(a) What percent of adults drink only cola?

(b) What percent drink none of these beverages?

6.52 TASTES IN MUSIC Musical styles other than rock and pop are becoming more pop-
ular. A survey of college students finds that 40% like country music, 30% like gospel
music, and 10% like both.

(a) Make a Venn diagram with these results.

(b) What percent of college students like country but not gospel?

(c) What percent like neither country nor gospel?

6.53 GETTING INTO COLLEGE Ramon has applied to both Princeton and Stanford. He
thinks the probability that Princeton will admit him is 0.4, the probability that Stanford
will admit him is 0.5, and the probability that both will admit him is 0.2.

(a) Make a Venn diagram with the probabilities given marked.

(b) What is the probability that neither university admits Ramon?

(c) What is the probability that he gets into Stanford but not Princeton?



Conditional probability
The probability we assign to an event can change if we know that some other
event has occurred. This idea is the key to many applications of probability.
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Slim is a professional poker player. He stares at the dealer, who prepares to deal. What
is the probability that the card dealt to Slim is an ace? There are 52 cards in the deck.
Because the deck was carefully shuffled, the next card dealt is equally likely to be any
of the cards. Four of the 52 cards are aces. So

This calculation assumes that Slim knows nothing about any cards already dealt.
Suppose now that he is looking at 4 cards already in his hand, and that 1 of them is an
ace. He knows nothing about the other 48 cards except that exactly 3 aces are among
them. Slim’s probability of being dealt an ace, given what he knows, is now

Knowing that there is one ace among the four cards Slim can see changes the proba-
bility that the next card dealt is an ace.

P( )     ace |  1 ace in 4 visible cards = =
3
48

1
16

P( )     ace = =
4

52
1

13

EXAMPLE 6.18 AMARILLO SLIM WANTS AN ACE

The new notation P(A | B) is a conditional probability. That is, it gives the
probability of one event (the next card dealt is an ace) under the condition that
we know another event (exactly one of the four visible cards is an ace). You can
read the bar | as “given the information that.”

In Example 6.18 we could find probabilities because we were willing to
use an equally likely probability model for a shuffled deck of cards. Here is an
example based on data.

conditional probability

Table 6.1 shows the marital status of adult women broken down by age group.

TABLE 6.1 Age and marital status of women (thousands of women)

Age

18–29 30–64 65 and over Total

Married 7,842 43,808 8,270 59,920
Never married 13,930 7,184 751 21,865
Widowed 36 2,523 8,385 10,944
Divorced 704 9,174 1,263 11,141

Total 22,512 62,689 18,669 103,870

Source: Data for 1999 from the 2000 Statistical Abstract of the United States.

EXAMPLE 6.19 MARITAL STATUS OF WOMEN
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We are interested in the probability that a randomly chosen woman is married. It
is common sense that knowing her age group will change the probability: many
young women have not married, most middle-aged women are married, and older
women are more likely to be widows. To help us think carefully, let’s define two
events:

A = the woman chosen is young, ages 18 to 29
B = the woman chosen is married

There are (in thousands) 103,870 adult women in the United States. Of these women,
22,512 are aged 18 to 29. Choosing at random gives each woman an equal chance, so
the probability of choosing a young woman is

The table shows that there are 7842 thousand young married women. So the proba-
bility that we choose a woman who is both young and married is

To find the conditional probability that a woman is married given the information that
she is young, look only at the “18–29” column. The young women are all in this col-
umn, so the information given says that only this column is relevant. The conditional
probability is

As we expected, the conditional probability that a woman is married when we know
she is under age 30 is much higher than the probability for a randomly chosen
woman.

  
P B A( | )   

,
  .= =

7842
22 512

0 348

  
P A B( )   

,
  . and = =

7842
103 870

0 075

P A( )   
,
,

  .= =
22 512

103 870
0 217

It is easy to confuse the three probabilities in Example 6.19. Look carefully
at Table 6.1 and be sure you understand the example. There is a relationship
among these three probabilities. The probability that a woman is both young
and married is the product of the probabilities that she is young and that she is
married given that she is young. That is,

Try to think your way through this in words: First, the woman is young; then,
given that she is young, she is married. We have just discovered the funda-
mental multiplication rule of probability.

  

P A B P A P B A( )  ( )  ( | )

         
,
,

  
,

 
,

  .

 and 

(as before)

= ×

= ×

= =

22 512
103 870

7842
22 512

7842
103 870

0 075
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GENERAL MULTIPLICATION RULE FOR ANY TWO EVENTS

The probability that both of two events A and B happen together can be
found by

P(A and B) = P(A)P(B | A)

Here P(B | A) is the conditional probability that B occurs given the 
information that A occurs.

In words, this rule says that for both of two events to occur, first one must
occur and then, given that the first event has occurred, the second must occur.
In our example, the joint probability that a randomly chosen woman is both
age 18 to 29 (event A) and married (event B) is

P(A and B) = P(A)P(B | A)

= (0.217)(0.348) = 0.076

Slim is still at the poker table. At the moment, he wants very much to draw 2 dia-
monds in a row. As he looks at his hand and at the upturned cards on the table, Slim
sees 11 cards. Of these, 4 are diamonds. The full deck contains 13 diamonds among
its 52 cards, so 9 of the 41 unseen cards are diamonds. To find Slim’s probability of
drawing two diamonds, first calculate

Slim finds both probabilities by counting cards. The probability that the first card
drawn is a diamond is 9/41 because 9 of the 41 unseen cards are diamonds. If the
first card is a diamond, that leaves 8 diamonds among the 40 remaining cards. So
the conditional probability of another diamond is 8/40. The multiplication rule now
says that

Slim will need luck to draw his diamonds.

  
P(both cards diamonds) = × =     .

9
41

8
40

0 044

  

P

P

(first card diamond) 

(second card diamond |  first card diamond) 

=

=

 

 

9
41
8
40

EXAMPLE 6.20 SLIM WANTS DIAMONDS

If we know P(A) and P(A and B), we can rearrange the general multiplica-
tion rule to produce a definition of the conditional probability P(B | A) in terms
of unconditional probabilities.
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DEFINITION OF CONDITIONAL PROBABILITY

When P(A) > 0, the conditional probability of B given A is

  
P B A

P A B
P A

( | )  
( )

( )
=  and 

Be sure to keep in mind the distinct roles in P(B | A) of the event B
whose probability we are computing and the event A that represents the
information we are given. The conditional probability P(B | A) makes no
sense if the event A can never occur, so we require that P(A) > 0 whenever
we talk about P(B | A).

What is the conditional probability that a woman is a widow, given that she is at least
65 years old? We see from Table 6.1 that

The conditional probability is therefore

Check that this agrees (up to roundoff error) with the result obtained from the “65 and
over” column of Table 6.1:

  
P(widowed |  at least 65) = = 

,
  .

8385
18 669

0 449

  

P
P

(widowed |  at least 65) 
(widowed  at least 65)

(at least 65)
=

= =

 

 
.
.

  .

and
P

0 081
0 180

0 450

  

P

P

(at least 65) 

(widowed  at least 65) =  
8385

103,870

= =

=

 
,
,

  .

  .

18 669
103 870

0 180

0 081and

EXAMPLE 6.21 FINDING CONDITIONAL PROBABILITIES

EXERCISES
6.54 AMERICAN WOMEN, I Choose an adult American woman at random. Table 6.1
describes the population from which we draw. Use the information in that table to
answer the following questions.

(a) What is the probability that the woman chosen is 65 years old or older?

(b) What is the conditional probability that the woman chosen is married, given that
she is 65 or over?
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(c) How many women are both married and in the over-65 age group? What is the
probability that the woman we choose is a married woman at least 65 years old?

(d) Verify that the three probabilities you found in (a), (b), and (c) satisfy the multi-
plication rule.

6.55 AMERICAN WOMEN, II Choose an adult American woman at random. Table 6.1
describes the population from which we draw.

(a) What is the conditional probability that the woman chosen is 18 to 29 years old,
given that she is married?

(b) In Example 6.19 we found that P(married | age 18 to 29) = 0.348. Complete this
sentence: 0.348 is the proportion of women who are _____ among those women who
are _____.

(c) In (a), you found P(age 18 to 29 | married). Write a sentence of the form given in
(b) that describes the meaning of this result. The two conditional probabilities give us
very different information.

6.56 WOMAN MANAGERS Choose an employed person at random. Let A be the event that
the person chosen is a woman, and B the event that the person holds a managerial or
professional job. Government data tell us that P(A) = 0.46 and the probability of man-
agerial and professional jobs among women is P(B | A) = 0.32. Find the probability that
a randomly chosen employed person is a woman holding a managerial or professional
position.

6.57 BUYING FROM JAPAN Functional Robotics Corporation buys electrical controllers
from a Japanese supplier. The company’s treasurer thinks that there is probability 0.4
that the dollar will fall in value against the Japanese yen in the next month. The trea-
surer also believes that if the dollar falls there is probability 0.8 that the supplier will
demand renegotiation of the contract. What probability has the treasurer assigned to
the event that the dollar falls and the supplier demands renegotiation?

6.58 THE PROBABILITY OF A FLUSH A poker player holds a flush when all 5 cards in the
hand belong to the same suit. We will find the probability of a flush when 5 cards are
dealt. Remember that a deck contains 52 cards, 13 of each suit, and that when the deck
is well shuffled, each card dealt is equally likely to be any of those that remain in the
deck.

(a) We will concentrate on spades. What is the probability that the first card dealt is a
spade? What is the conditional probability that the second card is a spade, given that
the first is a spade?

(b) Continue to count the remaining cards to find the conditional probabilities of a
spade on the third, the fourth, and the fifth card, given in each case that all previous
cards are spades.

(c) The probability of being dealt 5 spades is the product of the five probabilities you
have found. Why? What is this probability?

(d) The probability of being dealt 5 hearts or 5 diamonds or 5 clubs is the same as the
probability of being dealt 5 spades. What is the probability of being dealt a flush?
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6.59 THE PROBABILITY OF A ROYAL FLUSH A royal flush is the highest hand possible in
poker. It consists of the ace, king, queen, jack, and ten of the same suit. Modify the out-
line given in Exercise 6.58 to find the probability of being dealt a royal flush in a five-
card deal.

6.60 INCOME TAX RETURNS Here is the distribution of the adjusted gross income (in thou-
sands of dollars) reported on individual federal income tax returns in 1994:

Income: <10 10–29 30–49 50–99 ≥100
Probability: 0.12 0.39 0.24 0.20 0.05

(a) What is the probability that a randomly chosen return shows an adjusted gross
income of $50,000 or more?

(b) Given that a return shows an income of at least $50,000, what is the conditional
probability that the income is at least $100,000?

6.61 TASTES IN MUSIC Musical styles other than rock and pop are becoming more popu-
lar. A survey of college students finds that 40% like country music, 30% like gospel
music, and 10% like both.

(a) What is the conditional probability that a student likes gospel music if we know
that he or she likes country music?

(b) What is the conditional probability that a student who does not like country music
likes gospel music? (A Venn diagram may help you.)

Extended multiplication rules
The definition of conditional probability reminds us that in principle all
probabilities, including conditional probabilities, can be found from the
assignment of probabilities to events that describe a random phenomenon.
More often, however, conditional probabilities are part of the information
given to us in a probability model, and the multiplication rule is used to
compute P(A and B).

The union of a collection of events is the event that any of them occur.
Here is the corresponding term for the event that all of them occur.

INTERSECTION

The intersection of any collection of events is the event that all of the
events occur.

To extend the multiplication rule to the probability that all of several
events occur, the key is to condition each event on the occurrence of all of the



372 Chapter 6 Probability: The Study of Randomness

preceding events. For example, the intersection of three events A, B, and C has
probability

P(A and B and C) = P(A)P(B | A)P(C | A and B)

Only 5% of male high school basketball, baseball, and football players go on to play at
the college level. Of these, only 1.7% enter major league professional sports. About
40% of the athletes who compete in college and then reach the pros have a career of
more than 3 years.7 Define these events:

A = {competes in college}
B = {competes professionally}
C = {pro career longer than 3 years}

What is the probability that a high school athlete competes in college and then goes
on to have a pro career of more than 3 years? We know that

P(A) = 0.05
P(B | A) = 0.017

P(C | A and B) = 0.4

The probability we want is therefore

P(A and B and C) = P(A)P(B | A)P(C | A and B)
= 0.05 × 0.017 × 0.40 = 0.00034

Only about 3 of every 10,000 high school athletes can expect to compete in college
and have a professional career of more than 3 years. High school students would be
wise to concentrate on studies rather than on unrealistic hopes of fortune from pro
sports.

EXAMPLE 6.22 THE FUTURE OF HIGH SCHOOL ATHLETES

What is the probability that a male high school athlete will go on to professional
sports? In the notation of Example 6.22, this is P(B). To find P(B) from the infor-
mation in Example 6.22, use the tree diagram in Figure 6.12 to organize your
thinking.

EXAMPLE 6.23 A FUTURE IN PROFESSIONAL SPORTS?

Tree diagrams revisited
Probability problems often require us to combine several of the basic rules into
a more elaborate calculation. Here is an example that illustrates how to solve
problems that have several stages.
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College

A
0.017

0.983

0.0001

Professional

Male high 
school athlete

0.95

0.05

Ac

Bc

Bc

B

B

0.9999

FIGURE 6.12 Tree diagram. The probability P(B) is the sum of the probabilities of the two
branches ending at B.

Each segment in the tree is one stage of the problem. Each complete branch
shows a path that an athlete can take. The probability written on each segment is the
conditional probability that an athlete follows that segment given that he has reached
the point from which it branches. Starting at the left, high school athletes either do or
do not compete in college. We know that the probability of competing in college is
P(A) = 0.05, so the probability of not competing is P(Ac) = 0.95. These probabilities
mark the leftmost branches in the tree.

Conditional on competing in college, the probability of playing professionally is
P(B | A) = 0.017. So the conditional probability of not playing professionally is

P(Bc | A) = 1 – P(B | A) = 1 – 0.017 = 0.983

These conditional probabilities mark the paths branching out from A in Figure 6.12.
The lower half of the tree diagram describes athletes who do not compete in col-

lege (Ac). It is unusual for these athletes to play professionally, but a few go straight
from high school to professional leagues. Suppose that the conditional probability that
a high school athlete reaches professional play given that he does not compete in col-
lege is P(B | Ac) = 0.0001. We can now mark the two paths branching from Ac in
Figure 6.12.

There are two disjoint paths to B (professional play). By the addition rule, P(B) is
the sum of their probabilities. The probability of reaching B through college (top half
of the tree) is

P(B and A) = P(A)P(B | A)
= 0.05 × 0.017 = 0.00085

The probability of reaching B without college is

P(B and Ac) = P(Ac)P(B | Ac)
= 0.95 × 0.0001 = 0.000095
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The final result is

P(B) = 0.00085 + 0.000095 = 0.000945

About 9 high school athletes out of 10,000 will play professional sports.

Tree diagrams combine the addition and multiplication rules. The multi-
plication rule says that the probability of reaching the end of any complete
branch is the product of the probabilities written on its segments. The prob-
ability of any outcome, such as the event B that an athlete reaches professional
sports, is then found by adding the probabilities of all branches that are part of
that event.

Bayes’s rule
There is another kind of probability question that we might ask in the context
of studies of athletes. Our earlier ca1culations look forward toward professional
sports as the final stage of an athlete’s career. Now let’s concentrate on profes-
sional athletes and look back at their earlier careers.

What proportion of professional athletes competed in college? In the notation of
Examples 6.22 and 6.23 this is the conditional probability P(A | B). We start from the
definition of conditional probability and then apply the results of Example 6.23:

Almost 90% of professional athletes competed in college.

  

P A B
P A B
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EXAMPLE 6.24 LOOKING BACK

We know the probabilities P(A) and P(Ac) that a high school athlete does
and does not compete in college. We also know the conditional probabilities
P(B | A) and P(B | Ac) that an athlete from each group reaches professional
sports. Example 6.23 shows how to use this information to calculate P(B). The
method can be summarized in a single expression that adds the probabilities
of the two paths to B in the tree diagram:

P(B) = P(A)P(B | A) + P(Ac)P(B | Ac)

In Example 6.24 we calculated the “reverse” conditional probability P(A | B).
The denominator 0.000945 in that example came from the expression just
above. Put in this general notation, we have another probability law.
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BAYES’S RULE

If A and B are any events whose probabilities are not 0 or 1,

  
P A B

P B A P A
P B A P A P B A P Ac c( | )

( | ) ( )
( | ) ( ) ( | ) ( )

=
+

Bayes’s rule is named after Thomas Bayes, who wrestled with arguing from
outcomes like B back to antecedents like A in a book published in 1763. It is
far better to think your way through problems like Examples 6.23 and 6.24
rather than memorize these formal expressions.

Independence again
The conditional probability P(B | A) is generally not equal to the uncondi-
tional probability P(B). That is because the occurrence of event A generally
gives us some additional information about whether or not event B occurs. If
knowing that A occurs gives no additional information about B, then A and B
are independent events. The formal definition of independence is expressed
in terms of conditional probability.

INDEPENDENT EVENTS

Two events A and B that both have positive probability are independent if

P(B | A) = P(B)

This definition makes precise the informal description of independence
given in Section 6.2. We now see that the multiplication rule for independent
events, P(A and B) = P(A)P(B), is a special case of the general multiplication
rule, P(A and B) = P(A)P(B | A), just as the addition rule for disjoint events is
a special case of the general addition rule.

Decision analysis
One kind of decision making in the presence of uncertainty seeks to make the
probability of a favorable outcome as large as possible. Here is an example that
illustrates how the multiplication and addition rules, organized with the help
of a tree diagram, apply to a decision problem.
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Lynn has end-stage kidney disease: her kidneys have fai1ed so that she cannot survive
unaided. Only about 52% of patients survive for 3 years with kidney dialysis.
Fortunately, a kidney is available for transplant. Lynn’s doctor gives her the following
information for patients in her condition.

Transplant operations usually succeed. After 1 month, 96% of the transplanted kid-
neys are functioning. Three percent fail to function, and the patient must return to dialysis.
The remaining 1% of the patients die within a month. Patients who return to dialysis have
the same chance (52%) of surviving 3 years as if they had not attempted a transplant.

Of the successful transplants, however, only 82% continue to function for 3 years.
Another 8% of these patients must return to dialysis, and 70% of these survive to the 3-year
mark. The remaining l0% of “successful” patients die without returning to dialysis.8

EXAMPLE 6.25 TRANSPLANT OR DIALYSIS?

There is too much information here to sort through without a tree diagram.
The key is to realize that most of the percentages that Lynn’s doctor gives her are
conditional probabilities given that a patient has some specific prior history.
Figure 6.13 is a tree diagram that organizes the information.

Success

Success

Survive
Dialysis

Die

Die

Die

Dialysis

0.82ONE MONTH

THREE YEARS

0.10
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0.48
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0.48
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C
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FIGURE 6.13 Tree diagram for the kidney failure decision problem.

Each path through the tree represents a possible outcome of Lynn’s case.
The probability written beside each branch after the first stage is the condi-
tional probability of the next step given that Lynn has reached this point. For
example, 0.82 is the conditional probability that a patient whose transplant
succeeded survives 3 years with the transplant still functioning. The condi-
tional probabilities of the other 3-year outcomes for a successful transplant are
0.08 and 0.10. They appear on the other branches from the “Success” node.



These three conditional probabilities add to 1 because these are all the possi-
ble outcomes following a successful transplant. Study the tree to convince
yourself that it organizes all the information available.

The multiplication rule says that the probability of reaching the end of any
path is the product of all the probabilities along that path. For example, look
at the path marked A. The probability that a transplant succeeds and endures
for 3 years is

P(succeeds and lasts 3 years) = P(succeeds)P(lasts 3 years | succeeds)

= (0.96)(0.82) = 0.787

Similarly, the path marked B is the event that a patient’s transplant succeeds at
the 1-month stage, fails before 3 years, and the patient nonetheless survives to
3 years after returning to dialysis. The probability of this is

P(B) = (0.96)(0.08)(0.70) = 0.054

The probabilities at the end of all the paths in Figure 6.13 add to 1 because
these are all the possible 3-year outcomes.

What is the probability that Lynn will survive for 3 years if she has a trans-
plant? This is the union of the three disjoint events marked A, B, and C in
Figure 6.13. By the addition rule,

P(survive) = P(A) + P(B) + P(C)

= 0.787 + 0.054 + 0.016 = 0.857

Lynn’s decision is easy: 0.857 is much higher than the probability 0.52 of sur-
viving 3 years on dialysis. She will elect the transplant.

Where do the conditional probabilities in Example 6.25 come from? They
are based in part on data—that is, on studies of many patients with kidney dis-
ease. But an individual’s chances of survival depend on her age, general health,
and other factors. Lynn’s doctor considered her individual situation before giv-
ing her these particular probabilities. It is characteristic of most decision anal-
ysis problems that personal probabilities are used to describe the uncertainty of
an informed decision maker.

EXERCISES
6.62 IRS RETURNS In 1999, the Internal Revenue Service received 127,075,145 indi-
vidual tax returns. Of these, 9,534,653 reported an adjusted gross income of at least
$100,000 and 205,124 reported at least $1 million.

(a) What is the probability that a randomly chosen individual tax return reports an
income of at least $100,000? At least $1 million?

(b) If you know that the return chosen shows an income of $100,000 or more, what is
the conditional probability that the income is at least $1 million?
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6.63 SURGERY RISKS You have torn a tendon and are facing surgery to repair it. The
orthopedic surgeon explains the risks to you. Infection occurs in 3% of such operations,
the repair fails in 14%, and both infection and failure occur together in 1%. What per-
cent of these operations succeed and are free from infection?

6.64 HIV TESTING Enzyme immunoassay (EIA) tests are used to screen blood specimens
for the presence of antibodies to HIV, the virus that causes AIDS. Antibodies indicate
the presence of the virus. The test is quite accurate but is not always correct. Here are
approximate probabilities of positive and negative EIA outcomes when the blood tested
does and does not actually contain antibodies to HIV.9

Test result
+ –

Antibodies present: 0.9985 0.0015
Antibodies absent: 0.006 0.994

Suppose that 1% of a large population carries antibodies to HIV in their blood.

(a) Draw a tree diagram for selecting a person from this population (outcomes: anti-
bodies present or absent) and for testing his or her blood (outcomes: EIA positive or
negative).

(b) What is the probability that the EIA is positive for a randomly chosen person from
this population?

(c) What is the probability that a person has the antibody given that the EIA test is
positive?

(This exercise illustrates a fact that is important when considering proposals for
widespread testing for HIV, illegal drugs, or agents of biological warfare: if the con-
dition being tested is uncommon in the population, many positives will be false
positives.)

6.65 The previous exercise gives data on the results of EIA tests for the presence of
antibodies to HIV. Repeat part (c) of that exercise for two different populations:

(a) Blood donors are prescreened for HIV risk factors, so perhaps only 0.1% (0.001) of
this population carries HIV antibodies.

(b) Clients of a drug rehab clinic are a high-risk group, so perhaps 10% of this popu-
lation carries HIV antibodies.

(c) What general lesson do your calculations illustrate?
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SUMMARY

The complement Ac of an event A contains all outcomes that are not in A. The
union {A or B} of events A and B contains all outcomes in A, in B, or in both
A and B. The intersection {A and B} contains all outcomes that are in both A
and B, but not outcomes in A alone or B alone.



The essential general rules of elementary probability are

Legitimate values: 0 ≤ P(A) ≤ 1 for any event A

Total probability 1: P(S) = 1

Complement rule: P(Ac) = 1 – P(A)

Addition rule: P(A or B) = P(A) + P(B) – P(A and B)

Multiplication rule: P(A and B) = P(A)P(B | A)

The conditional probability P(B | A) of an event B given an event A is
defined by

when P(A) > 0 but in practice is most often found from directly available
information.

If A and B are disjoint (mutually exclusive), then P(A and B) = 0. The
general addition rule for unions then becomes the special addition rule, P(A or
B) = P(A) + P(B).

A and B are independent when P(B | A) = P(B). The multiplication rule
for intersections then becomes P(A and B) = P(A)P(B).

A Venn diagram, together with the general addition rule, can be helpful in
finding probabilities of the union of two events P(A or B) or the joint proba-
bility P(A and B). The joint probability P(A and B) can also be found using the
general multiplication rule: P(A and B) = P(A)P(B | A) = P(B)P(A | B).

Constructing a table is a good approach for determining a conditional
probability.

In problems with several stages, draw a tree diagram to organize use of the
multiplication and addition rules.

  
P B A

P A B
P A

( | )  
( )

( )
=  and 
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SECTION 6.3 EXERCISES

6.66 NOBEL PRIZE WINNERS The numbers of Nobel Prize laureates in selected sciences,
1901 to 1998, are shown in the following table by location of award-winning research:10

Country Physics Chemistry Physiology/medicine

United States 70 46 82
United Kingdom 21 26 24
Germany 61 17 29
France 25 11 7
Soviet Union 10 7 1
Japan 4 3 1
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If a laureate is selected at random, what is the probability that

(a) his or her award was in chemistry?

(b) the award was won by someone from the United States?

(c) the awardee was from the United States, given that the award was for physiology/
medicine?

(d) the award was for physiology/medicine, given that the awardee was from the
United States?

(e) Interpret each of your results in parts (a) through (d) in terms of percents.

6.67 ACADEMIC DEGREES Here are the counts (in thousands) of earned degrees in the
United States in a recent year, classified by level and by the sex of the degree recipient:

Bachelor’s Master’s Professional Doctorate Total

Female 616 194 30 16 856
Male 529 171 44 26 770

Total 1145 365 74 42 1626

(a) If you choose a degree recipient at random, what is the probability that the per-
son you choose is a woman?

(b) What is the conditional probability that you choose a woman, given that the per-
son chosen received a professional degree?

(c) Are the events “choose a woman” and “choose a professional degree recipient”
independent? How do you know?

6.68 PICK A CARD The suit of 13 hearts (A, 2 to 10, J, Q, K) from a standard deck of
cards is placed in a hat. The cards are thoroughly mixed and a student reaches into
the hat and selects two cards without replacement.

(a) What is the probability that the first card selected is the jack?

(b) Given that the first card selected is the jack, what is the probability that the sec-
ond card is the 5?

(c) What is the probability of selecting the jack on the first draw and then the 5?

(d) What is the probability that both cards selected are greater than 5 (when the ace
is considered “low”)?

6.69 ACADEMIC DEGREES, II Exercise 6.67 gives the counts (in thousands) of earned
degrees in the United States in a recent year. Use these data to answer the following
questions.

(a) What is the probability that a randomly chosen degree recipient is a man?

(b) What is the conditional probability that the person chosen received a bachelor’s
degree, given that he is a man?

(c) Use the multiplication rule to find the joint probability of choosing a male bach-
elor’s degree recipient. Check your result by finding this probability directly from the
table of counts.



6.70 TEENAGE DRIVERS An insurance company has the following information about
drivers aged 16 to 18 years: 20% are involved in accidents each year; 10% in this age
group are A students; among those involved in an accident, 5% are A students.

(a) Let A be the event that a young driver is an A student and C the event that a young
driver is involved in an accident this year. State the information given in terms of prob-
abilities and conditional probabilities for the events A and C.

(b) What is the probability that a randomly chosen young driver is an A student and
is involved in an accident?

6.71 MORE ON TEENAGE DRIVERS Use your work from Exercise 6.70 to find the percent of
A students who are involved in accidents. (Start by expressing this as a conditional
probability.)

6.72 Suppose that in Exercise 6.57 (page 370) the treasurer also feels that if the dollar does
not fall, there is probability 0.2 that the Japanese supplier will demand that the contract
be renegotiated. What is the probability that the supplier will demand renegotiation?

6.73 MULTIPLE-CHOICE EXAM STRATEGIES An examination consists of multiple-choice
questions, each having five possible answers. Linda estimates that she has probability
0.75 of knowing the answer to any question that may be asked. If she does not know
the answer, she will guess, with conditional probability 1/5 of being correct. What is
the probability that Linda gives the correct answer to a question? (Draw a tree diagram
to guide the calculation.)

6.74 ELECTION MATH The voters in a large city are 40% white, 40% black, and 20%
Hispanic. (Hispanics may be of any race in official statistics, but in this case we are
speaking of political blocks.) A black mayoral candidate anticipates attracting 30% of
the white vote, 90% of the black vote, and 50% of the Hispanic vote. Draw a tree dia-
gram with probabilities for the race (white, black, or Hispanic) and vote (for or against
the candidate) of a randomly chosen voter. What percent of the overall vote does the
candidate expect to get?

6.75 In the setting of Exercise 6.73, find the conditional probability that Linda knows
the answer, given that she supplies the correct answer. (Hint: Use the result of Exercise
6.73 and the definition of conditional probability.)

6.76 GEOMETRIC PROBABILITY Choose a point at random in the square with sides 0 ≤
x ≤ 1 and 0 ≤ y ≤ 1. This means that the probability that the point falls in any region
within the square is the area of that region. Let X be the x coordinate and Y the y coor-
dinate of the point chosen. Find the conditional probability P(Y < 1/2 | Y > X). (Hint:
Draw a diagram of the square and the events Y < 1/2 and Y > X.)

6.77 INSPECTING SWITCHES A shipment contains 10,000 switches. Of these, 1000 are bad. An
inspector draws switches at random, so that each switch has the same chance to be drawn.

(a) Draw one switch. What is the probability that the switch you draw is bad? What is
the probability that it is not bad?

(b) Suppose the first switch drawn is bad. How many switches remain? How many of
them are bad? Draw a second switch at random. What is the conditional probability
that this switch is bad?

(c) Answer the questions in (b) again, but now suppose that the first switch drawn is
not bad.
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Comment: Knowing the result of the first trial changes the conditional probability for
the second trial, so the trials are not independent. But because the shipment is large,
the probabilities change very little. The trials are almost independent.

CHAPTER REVIEW
Probability describes the pattern of chance outcomes. Probability calculations
provide the basis for inference. When data are produced by random sampling
or randomized comparative experiments, the laws of probability answer the
question, “What would happen if we did this very many times?” Probability is
used to describe the long-term regularity that results from many repetitions of
the same random phenomenon. The reasoning of statistical inference rests on
asking “How often would this method give a correct answer if I used it very
many times?” This chapter developed a probability model, including rules and
tools that will help you describe the behavior of statistics from random samples
in later chapters. Here are the most important things you should be able to do
after studying this chapter.

PROBABILITY RULES

1. Describe the sample space of a random phenomenon. For a finite number
of outcomes, use the multiplication principle to determine the number of out-
comes, and use counting techniques, Venn diagrams, and tree diagrams to
determine simple probabilities. For the continuous case, use geometric areas
to find probabilities (areas under simple density curves) of events (intervals on
the horizontal axis).

2. Know the probability rules and be able to apply them to determine proba-
bilities of defined events. In particular, determine if a given assignment of
probabilities is valid.

3. Determine if two events are disjoint, complementary, or independent.
Find unions and intersections of two or more events.

4. Use Venn diagrams to picture relationships among several events.

5. Use the general addition rule to find probabilities that involve overlapping
events.

6. Understand the idea of independence. Judge when it is reasonable to
assume independence as part of a probability model.

7. Use the multiplication rule for independent events to find the probability
that all of several independent events occur.

8. Use the multiplication rule for independent events in combination with
other probability rules to find the probabilities of complex events.
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9. Understand the idea of conditional probability. Find conditional probabilities
for individuals chosen at random from a table of counts of possible outcomes.

10. Use the general multiplication rule to find the joint probability P(A and B)
from P(A) and the conditional probability P(B | A).

11. Construct tree diagrams to organize the use of the multiplication and addi-
tion rules to solve problems with several stages.
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CHAPTER 6 REVIEW EXERCISES
6.78 WHO GETS TO GO? Abby, Deborah, Julie, Sam, and Roberto work in a firm’s public
relations office. Their employer must choose two of them to attend a conference in
Paris. To avoid unfairness, the choice will be made by drawing two names from a hat.
(This is an SRS of size 2.)

(a) Write down all possible choices of two of the five names. This is the sample space.

(b) The random drawing makes all choices equally likely. What is the probability of
each choice?

(c) What is the probability that Julie is chosen?

(d) What is the probability that neither of the two men (Sam and Roberto) is chosen?

6.79 ARE YOU MY (BLOOD) TYPE? All human blood can be “ABO-typed” as one of O, A,
B, or AB, but the distribution of the types varies a bit among groups of people. Here is
the distribution of blood types for a randomly chosen person in the United States:

Blood type: O A B AB
U.S. probability: 0.45 0.40 0.11 ?

(a) What is the probability of type AB blood in the United States?

(b) An individual with type B blood can safely receive transfusions only from persons
with type B or type O blood. What is the probability that the husband of a woman with
type B blood is an acceptable blood donor for her?

(c) What is the probability that in a randomly chosen couple the wife has type B
blood and the husband has type A?

(d) What is the probability that one of a randomly chosen couple has type A blood
and the other has type B?

(e) What is the probability that at least one of a randomly chosen couple has type O
blood?

6.80 The distribution of blood types in China differs from the U.S. distribution given
in the previous exercise:

Blood type: O A B AB
China probability: 0.35 0.27 0.26 0.12
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Choose an American and a Chinese at random, independently of each other.

(a) What is the probability that both have type O blood? 

(b) What is the probability that both have the same blood type?

6.81 INCOME AND SAVINGS A sample survey chooses a sample of households and mea-
sures their annual income and their savings. Some events of interest are

A = the household chosen has income at least $100,000

C = the household chosen has at least $50,000 in savings

Based on this sample survey, we estimate that P(A) = 0.07 and P(C) = 0.2.

(a) We want to find the probability that a household either has income at least
$100,000 or savings at least $50,000. Explain why we do not have enough information
to find this probability. What additional information is needed?

(b) We want to find the probability that a household has income at least $100,000 and
savings at least $50,000. Explain why we do not have enough information to find this
probability. What additional information is needed?

6.82 SCREENING JOB APPLICANTS A company retains a psychologist to assess whether job
applicants are suited for assembly-line work. The psychologist classifies applicants as
A (well suited), B (marginal), or C (not suited). The company is concerned about
event D: an employee leaves the company within a year of being hired. Data on all
people hired in the past 5 years give these probabilities:

P(A) = 0.4 P(B) = 0.3 P(C) = 0.3

P(A and D) = 0.1 P(B and D) = 0.1 P(C and D) = 0.2

Sketch a Venn diagram of the events A, B, C, and D and mark on your diagram the
probabilities of all combinations of psychological assessment and leaving (or not)
within a year. What is P(D), the probability that an employee leaves within a year?

6.83 SUICIDES Here is a two-way table of suicides committed in a recent year, classi-
fied by the gender of the victim and whether or not a firearm was used:

Male Female Total

Firearm 16,381 2,559 18,940
Other 9,034 3,536 12,570

Total 25,415 6,095 31,510

Choose a suicide at random. Find the following probabilities.

(a) P(a firearm was used)

(b) P(firearm | female)



(c) P(female and firearm)

(d) P(firearm | male)

(e) P(male | firearm)

6.84 AT THE GYM Many conditional probability calculations are just common sense
made automatic. For example, 10% of adults belong to health clubs, and 40% of these
health club members go to the club at least twice a week. What percent of all adults
go to a health club at least twice a week? Write the information in terms of probabili-
ties and use the general multiplication rule.

6.85 TOSS TWO COINS Independence of events is not always obvious. Toss two balanced
coins independently. The four possible combinations of heads and tails in order each
have probability 0.25. The events

A = head on the first toss
B = both tosses have the same outcome

may seem intuitively related. Show that P(B | A) = P(B), so that A and B are in fact
independent.

6.86 BYPASS SURGERY John has coronary artery disease. He and his doctor must decide
between medical management of the disease and coronary bypass surgery. Because
John has been quite active, he is concerned about his quality of life as well as length
of life. He wants to make the decision that will maximize the probability of the event
A that he survives for 5 years and is able to carry on moderate activity during that time.
The doctor makes the following probability estimates for patients of John’s age and
condition:

• Under medical management, P(A) = 0.7.

• There is probability 0.05 that John will not survive bypass surgery, probability 0.10
that he will survive with serious complications, and probability 0.85 that he will sur-
vive the surgery without complications.

• If he survives with complications, the conditional probability of the desired out-
come A is 0.73. If there are no serious complications, the conditional probability of
A is 0.76.

Draw a tree diagram that summarizes this information. Then calculate P(A) assuming
that John chooses the surgery. Does surgery or medical management offer him a bet-
ter chance of achieving his goal?

6.87 POLL ON SENSITIVE ISSUES It is difficult to conduct sample surveys on sensitive
issues because many people will not answer questions if the answers might embarrass
them. “Randomized response” is an effective way to guarantee anonymity while col-
lecting information on topics such as student cheating or sexual behavior. Here is the
idea. To ask a sample of students whether they have plagiarized a term paper while in
college, have each student toss a coin in private. If the coin lands “heads” and they
have not plagiarized, they are to answer “No.” Otherwise they are to give “Yes” as their
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NOTES AND DATA SOURCES

answer. Only the student knows whether the answer reflects the truth or just the coin
toss, but the researchers can use a proper random sample with follow-up for nonre-
sponse and other good sampling practices.

Suppose that in fact the probability is 0.3 that a randomly chosen student has pla-
giarized a paper. Draw a tree diagram in which the first stage is tossing the coin and
the second is the truth about plagiarism. The outcome at the end of each branch is the
answer given to the randomized-response question. What is the probability of a “No”
answer in the randomized-response poll? If the probability of plagiarism were 0.2, what
would be the probability of a “No” response on the poll? Now suppose that you get
39% “No” answers in a randomized-response poll of a large sample of students at your
college. What do you estimate to be the percent of the population who have plagia-
rized a paper?
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1. An informative and entertaining account of the origins of probability theory 
is Florence N. David, Games, Gods and Gambling, Charles Griffin, London, 
1962.
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3. You can find a mathematical explanation of Benford’s Law in Ted Hill, “The
first-digit phenomenon,” American Scientist, 86 (1996), pp. 358–363, and Ted Hill,
“The difficulty of faking data,” Chance, 12, No. 3 (l999), pp. 27–3l. Applications to
fraud detection are discussed in the second paper by Hill and in Mark A. Nigrini,
“I’ve got your number,” Journal of Accountancy, May 1999, available online at
www.aicpa.org/pubs/jofa/joaiss.htm.
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November 7, 1999.
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at www.dupont.com/automotive/.
6. This and similar psychology experiments are reported by A. Tversky and 
D. Kahneman, “Extensional versus intuitive reasoning: the conjunction fallacy in
probability judgement,” Psychological Review, 90 (1983), pp. 293–315.
7. These probabilities come from studies by the sociologist Harry Edwards, reported
in the New York Times, February 25, 1986.
8. This example is modeled on Benjamin A. Barnes, “An overview of the treatment
of end-stage renal disease and a consideration of some of the consequences,” in J. P.
Bunker, B. A. Barnes, and F. W. Mosteller (eds.), Costs, Risks and Benefits of
Surgery, Oxford University Press, New York, 1977, pp. 325–341. The probabilities
are recent estimates based on data from the United Network for Organ Sharing
(www.unos.org) and Rebecca D. Williams, “Living day-to-day with kidney dialysis,”
Food and Drug Administration, www.fda.gov.
9. Probabilities from trials with 2897 people known to be free of HIV antibodies and
673 people known to be infected are reported in J. Richard George, “Alternative
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specimen sources: methods for confirming positives,” 1998 Conference on the
Laboratory Science of HIV, found online at the Centers for Disease Control and
Prevention, www.cdc.gov.
10. Data from the National Science Foundation, as reported in the Statistical
Abstract of the United States, 2000.





































































































Guided Notes for 8.1 
 

8.1    The Binomial Distributions  

1.      What are the four conditions for the binomial setting? 

2.      In the binomial distribution, what do parameters n and p represent? 

3.      What is meant by B(n, p) ? 

4.      What is the difference between a probability distribution function and 

a cumulative distribution function? 

5.      In the formula , what does n represent?  What 

does k represent?  What does the value of  represent? 

6.      Complete the following table of values: 

1! 1 1 

2! 2 x 1 2 

3! 3 x 2 x 1 6 

4! 4 x 3 x 2 x 1 24 

5!   

6!   

 7.      What is the value of  ? 

8.      What are the mean and standard deviation of a binomial random variable? 

 



Guided Notes for 8.2 
 

8.2    The Geometric Distributions 

1.      What are the four conditions for the geometric setting? 

  

2.      Explain the difference between the binomial setting and 

the geometric setting. 

  

3.      If X has a geometric distribution, what does (1 – p 
n – 

1
p represent? 

  

4.      What is the expected value of a geometric random variable? 
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INTRODUCTION

The reasoning of statistical inference rests on asking, "How often would this
method give a correct answer if I used it very many times?" If it doesn't make
sense to imagine repeatedly producing your data in the same circumstances,
statistical inference is not possible. 1 Exploratory data analysis makes sense for
any data, but formal inference ooes not. Even experts can disagree about how
widely statistical inference should be used. But all agree that inference is most
secure when we produce data by random sampling or randomized compara­
tive experiments. The reason is that when we use chance to choose respon­
dents or assign subjects, the laws of probability answer the question "What

Introduction 48:1
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would happen if we did this many times?" The purpose of this chapter is to pre­
pare for the study of statistical inference by looking at the probability distribu­
tions of some very common statistics: sample proportions and sample means.

9.1 SAMPLING DISTRIBUTIONS

What is the mean income of households in the United States? The govern­
ment's Current Population Survey contacted a sample of 50,000 households in
2000. Their mean income was x= $57,045.2 That $57,045 describes the sam­
ple, but we use it to estimate the mean income ofall households. We must now
take care to keep straight whether a number describes a sample or a popula­
tion. Here is the vocabulary we use.

PARAMETER, STATISTIC

A parameter is a number that describes the population. A parameter is a
fixed number, but in practice we do not know its value because we cannot
examine the entire population.

A statistic is a number that describes a sample. The value of a statistic is
known when we have taken a sample, but it can change from sample to
sample. We often use a statistic to estimate an unknown parameter.

EXAMPLE 9.1 MAKING MONEY

.A.Av-.....u..~~~~»,.~".'J.A.A.A .... of the sample of households contacted by the Current Population
Survey was x $57,045. The number $57,045 is a statistic because it describes this one
Current Population Survey sample. The population that the poll wants to draw con­
clusions about is all I06 million U.S. households. The parameter of interest is the
mean income of all of these households. We don't know the value of this parameter.

sampling variability

Remember: statistics come from samples, and parameters come from populations.

As long as we were just doing data analysis, th:~i~g~~~i~n ~,~hv~e~ p?pulation and
sa~pl~~a~~~~i~p()~~pt.NmY2h0"Y~ver,itis,~'"~,~§eilf1aI.TIe notation we use must
reflect this distinction."We write ~(th'ectwG're'ek"Ietter mu) for the mean of a popula-
tion. TIis is a fixed parameter that is unknown when we use a sample for inference.
The mean ofthe sample is the familiar x, the average ofthe observations in the sam­
ple. This is a statistic that would almost certainly take a different value if we chose
another sample from the same population. The sample mean x from a sample or
an experiment is an estimate of the mean J.L of the underlying population.

How can x, b,!,s.e~()J1Cl. ..sample.of,.Q!!~y a few of the 100 million American
households, be an~cc~r~te~stif!l(;l~~,.Q.f..P:?) After all, a second random sample
taken at the same ti~e-wo~~1~~h"o~~~~if~L~DJ~Qllseholdsandllodo\J1>tP£~­
duce a di~:~:?~~~!tl~_.£f ~. ISbaSic fact is called sampling variability: th~

of a statistic 'varies in repeated random sampling. }
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EXAMPLE 9.2 DO YOU BELIEVE IN GHOSTS?

The Gallup Poll asked a random sample of 515 U.S. adults whether they believe
ghosts. Of the respondents, 160 said "Yes."3 So the proportion of the sample who
they believe in ghosts is

A 160
P = m = 0.31

The number 0.31 is a statistic. We can use it to estimate the proportion of all
adults who believe in ghosts. This is our parameter of interest.

We use p to represent a population proportion. The sample proportion pesti­
mates the unknown parameter p. Based on the sample survey of Example 9.2,
we might conclude that the proportion of all U.S. adults who believe in ghosts
is 0.31. That would be a mistake. After all, a second random sample of 515
adults would probably yield a different value of p. Sampling variability strikes
again!

EXERCISES
For each boldface number in Exercises 9. '1 to 9.4, (a) state whether it is a param­
eter or a statistic and (b) use appropriate notation to describe each number; for
example, p = 0.65.

9.1 MAKING BALL BEARINGS A carload lot of ball bearings has mean diameter 2.5003 cen­
timeters (cm). This is within the specifications for acceptance of the lot by the purchaser.
By chance, an inspector chooses 100 bearings from the lot that have mean diameter
2.5009 cm. Because this is outside the specified limits, the lot is mistakenly rejected.

9.2 UNEMPLOYMENT The Bureau of Labor Statistics last month interviewed 60,000
members of the U.S. labor force, of whom 7.2% were unemployed.

9.3 TELEMARKETING A telemarketing finn in Los Angeles uses a device that dials residential
telephone numbers in that city at random. Ofthe first 100 numbers dialed, 48% are unlisted.
This is not surprising because 52% of all Los Angeles residential phones are unlisted.

9.4 WELL-FED RATS A researcher carries out a randomized comparative experiment with
young rats to investigate the effects of a toxic compound in food. She feeds the control
group a normal diet. The experimental group receives a diet with 2500 parts per mil­
lion of the toxic material. After 8 weeks, the mean weight gain is 335 grams for the con­
trol group and 289 grams for the experimental group.

Sampling variability
To understand why sampling variability is not fatal, we ask, "What would hap­
pen if we took many samples?" Here's how to answer that question:



• Take a large number of samples from the same population.

• Calculate the sample mean x or sample proportionp for each sample.

• Make a histogram of the values ofx orp.

• Examine the distribution displayed in the histogram for shape, center, and
spread, as well as outliers or other deviations.

In practice it is too expensive to take many samples from a population like all
adult u.s. residents. But we can imitate many samples by using simulation.

EXAMPLE 9.3 BAGGAGE CHECKI

Thousands of travelers pass through Guadalajara airport each day. Before leaving the
airport, each passenger must pass through the Customs inspection area. Customs offi­
cials want to be sure that passengers do not bring illegal items into the country. But
they do not have time to search every traveler's luggage. Instead, they require each per­
son to press a button that activates a modified "stoplight." When the button is pressed,
either a red or a green bulb lights up. If the red light shows, the passenger will be
searched by Customs agents. A green light means "go ahead." Customs officers claim
that the probability that the light turns green on any press of the button is 0.70.

We will simulate drawing simple random samples (SRSs) of size 100 from the pop­
ulation of travelers passing through Guadalajara airport. The parameter of interest is
the proportion of travelers who get a green light at the Customs station. Assuming the
Customs officials are telling the truth, we know that p 0.70.

We can imitate the population by a huge table of random digits, such as Table B
at the back of the book, with each entry standing for a traveler. Seven of the ten digits
(say 0 to 6) stand for passengers who get a green light at Customs. The remaining three
digits, 7 to 9, stand for those who get a red light and are searched. Because all digits in
a random number table are equally likely, this assignment produces a population pro­
portion of passengers who get the green light equal to p 0.7. We then imitate an SRS
of 100 travelers from the population by taking 100 consecutive digits from Table B.
The statistic pis the proportion of Os to 6s in the sample.

For example, if we begin at line 101 in Table B:

GRGGG
19223

RGGGG
95034

GGRGG
o5 7 5 6

GRRGG
287 I 3

71 of the first 100 entries are between 0 and 6, so P 71/100 = 0.71. A second SRS
based on the second 100 entries in Table B gives a different result, p= 0.62. The two
sample results are different, and neither is equal to the true population value p 0.7.
That's sampling variability.

Simulation is a powerful tool for studying chance. 'It is much faster to use
rra'ble B than to actually draw repeated SRSs, and much faster yet to use a com­
puter programmed to produce random digits. Figure 9.1 is the histogram of
values of pfrom 1000 separate SRSs of size 100 drawn from a population with
p = 0.7. This histogram shows what would happen if we drew many samples.
It approximates the sampling distribution of p.
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FIGURE 9.1 The distribution of the sample proportion ,6 from SRSs of size 100 drawn from apop­
ulation with population proportion p= 0.7. The histogram shows the results of drawing 1000 SRSs.

SAMPLING DISTRIBUTION

The sampling distribution of a statistic is the distribution of values taken by
the statistic in all possible samples of the same size from the same population.

Strictly speaking, the sampling distribution is the ideal pattern that would
emerge ifwe looked at all possible samples ofsize 100 from our population. A dis­
tribution obtained from a fixed number of trials, like the 1000 trials in Figure 9.1,
is ()111y an approximation to .tl1esal11pliI1K.~~.giQl::!.t!9JJ~Dne of the uses ofproba­
bility :,:t.f.i~gry"'i1r"stafisties-is"""fo'"obtaIn (~xa'ct sampling distributions without simula~,

''''~~f::iHrl/the,jDt~~p~etat~2!!9.fg",s.aIDplingdistribution is the same, however, whether'
we obtain it by simulation or by the mathematics of probability.

EXAMPLE 9.4 RANDOM DIGITS

The population used to construct the random digits table (Table B) can be described
by the probability distribution shown in Figure 9.2.

FIGURE 9.2 Probability distribution used to construct Table B.



492 Chapter 9 Sampling Distributi9ns

Consider the process of taking an SRS of size 2 from this population and computing x
for the sample. We could perform a simulation to get a rough picture of the sampling
distribution of x. But in this case, we can construct the actual sampling distribution.
Figure 9.3 displays the values ofx for all 100 possible samples of two random digits.

Second digit

0 2 3 4 5 6 7 8 9

0 x=O x= 0.5 x=1 x= 1.5 x=2 x= 2.5 x=3 x= 3.5 x 4 x=4.5
1 x= 0.5 x=1 x= 1.5 x=2 x= 2.5 x=3 x= 3.5 x=4 x= 4.5 x=5
2 x=1 x= 1.5 x=2 x= 2.5 x=3 x= 3.5 x=4 x= 4.5 x=5 x= 5.5

+-' 3 x= 1.5 x=2 x= 2.5 x=3 x 3.5 x 4 x 4.5 x=5 x= 5.5 x=6
'0,

4 x=2 x= 2.5 x=3 x= 3.5 x=4 x= 4.5 x=5 x= 5.5 x=6 x= 6.5:.c
+-'

5 x= 2.5 x=3 x= 3.5 x=4 x= 4.5 x=5 x= 5.5 x=6 x= 6.5 x=7~
u:::

6 x=3 x= 3.5 x=4 x= 4.5 x=5 x= 5.5 x=6 x= 6.5 7 x= 7.5x

7 x= 3.5 x=4 x= 4.5 x=5 x= 5.5 x=6 x= 6.5 x=7 x= 7.5 x=8
8 x=4 x= 4.5 x=5 x= 5.5 x=6 x= 6.5 x=7 x= 7.5 x=8 x= 8.5

9 x= 4.5 x=5 x= 5.5 x=6 x 6.5 x 7 x= 7.5 x=8 x= 8.5 x=9

FIGURE 9.3 Values of xin all possible samples of two random digits.

The distribution ofx can be summarized by the histogram shown in Figure 9.4.
Since this graph displays all possible values ofx from SRSs of size n = 2 from the pop­
ulation, it is the sampling distribution of x.

fiGURE 9.4 The sampling distribution of xfor samples of size n = 2.

EXERCISES
9.5 MURPHY'S LAW AND TUMBLING TOAST If a piece of toast falls off your breakfast plate, is

5 it more likely to land with the buttered side down? According to Murphy's Law-the
assumption that if anything can go wrong, it will-the answer is "Yes." Most scientists
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would argue that by the laws of probability, the toast is equally likely to land butter-side
up or butter-side down. Robert Matthews, science correspondent of the Sunday
Telegraph, disagrees. He claims that when toast falls off a plate that is being carried at
a utypical height," the toast has just enough time to rotate once (landing butter-side
down) before it lands. To test his claim, Mr. Matthews has arranged for 150,000 stu­
dents in Great Britain to carry out an experiment with tumbling toast.4

Assuming scientists are correct, the proportion of times that the toast will land butter­
side down is p=0.5. We can use a coin toss to simulate the experiment. Let heads repre­
sent the toast landing butter-side down.

(a) Toss a coin 20 times and record the proportion of heads obtai~ed, p= (number of
heads)/20. Explain how your result relates to the tumbling-toast experiment.

(b) Repeat this sampling process 10 times. Make a histogram of the 10 values of p. Is
the center of this distribution close to 0.5?

(c) Ten repetitions give a very crude approximation to the sampling distribution. Pool
your work with that of other students to obtain several hundred repetitions. Make a his­
togram of all the values of p. Is the center close to D.5? Is the shape approximately
normal?

(d) How much sampling variability is present? That is, how much do your values of p
based on samples of size 20 differ from the actual population proportion, p= 0.5?

(e) Why do you think Mr. Matthews is asking so many students to participate in his
experiment?

9.6 MORE TUMBLING TOAST Use your calculator to replicate Exercise 9.5 as follows. The
command randBin (2 a I • 5) simulates tossing a coin 20 times. The output is the
number of heads in 20 tosses. The command randBin (2 a I • 5 I 10) /20 simulates
10 repetitions of tossing a coin 20 times and finding the proportions of heads. Go into
your Statistics/List Editor and place your cursor on the top of L1llistl. Execute the
command randBin (2 a I • 5 I 10) /20 as follows:

.. TI-83: Press IMATHI, choose PRB, choose 7:randBin( . Complete the command and
press IE NTE RL

G TI-89: Press IHI, choose 4:Probability, choose 7:randBin( . Complete the command
and press IENTER!.

(a) Plot a histogram of the 10 values of p. Set WINDOW parameters to
X[-.05,1.05].l and Y[-2,6] 1 and then TRACE. Is the center of the histogram close to
0.5? Do this several timesto see if you get similar results each time.

(b) Increase the number of repetitions to 100. The command should read
randBin (2 a I • 5 I 100 ) /2 o. Execute the command (be patient!) and then plot a
histogram using these 100 values. Don't change the XMIN and XMAX values, but do
adjust the Y-values to Y[-20, 50ho to accommodate the taller bars. Is the center close
to 0.5? Describe the shape of the distribution.

(c) Define PLOT 2 to be a boxplotusing L1llistl, and TRACE again. How close is the
median (in the boxplot) to the mean (balance point) of the histogram?

(d) Note that we didn't increase the sample size, only the number of repetitions. Did
the spread of the distribution change? What would you change to decrease the spread
of the distribution?
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9.7 SAMPLING TEST SCORES Let us illustrate the idea of a sampling distribution ofx in the
case of a very small sample from a very small population. The population is the scores
of 10 students on an exam:

Student:
Score:

o 1 234 5 6
82 62 80 58 72 73 65

789
66 74 62

The parameter of interest is the mean score in this population, which is 69.4. The
sample is an SRS drawn from the population. Because the students are labeled 0 to 9,
a single random digit from Table B chooses one student for the sample.

(a) Use Table B to draw an SRS of size n = 4 from this population. Write the four
scores in your sample and calculate the mean x of the sample scores. This statistic is
an estimate of the population parameter.

(b) Repeat this process 10 times. Make a histogram of the 10 values ofx. You are con­
structing the sampling distribution ofx. Is the center of your histogram close to 69.4?

(c) Ten repetitions give a very crude approximation to the sampling distribution. Pool
your work with that of other students-using different parts of Table B-to obtain sev­
eral hundred repetitions. Make a histogram of all the values of x. Is the center close to
69.4? Describe the shape of the distribution. This histogram is a better approximation
to the sampling distribution.

(d) It is possible to construct the actual sampling distribution ofx for samples of size n =
2 taken from this population. (Refer to Example 9.4.) Draw this sampling distribution.

(e) Compare the sampling distributions ofx for samples of size 2 and size 4. Are the
shapes, centers, and spreads similar or different?

Describing sampling distributions
We can use the tools of data analysis to describe any distribution. Let's apply
these tools in the world of television.

EXAMPLE 965 ARE YOU ASURVIVOR FAN?

Television executives and companies who advertise on TV are interested in how many
viewers watch particular television shows. According to 2001 Nielsen ratings, Survivor II
was one of the most-watched television shows in the United States during every week
that it aired. Suppose that the true proportion of U.S. adults who watched Survivor II
is p = 0.37. Figure 9.5 shows the results of drawing 1000 SRSs of size n = 100 from a
population with p = 0.37.

From the figure, we can see that:

.. The overall shape of the distribution is symmetric and approximately normal.

• The center of the distribution is very close to the true value p = 0.37 for the popula­
tion from which the samples were drawn. In fact, the mean of the 1000 p's is 0.372
and their median is exactly 0.370.
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FIGURE 9.5 Proportion of sample who watched Survivor /I in samples of size n=100.

• The values of phave a large spread. They range from 0.22 to 0.54. Because the dis­
tribution is close to normal, we can use the standard deviation to describe its spread.
The standard deviation is about 0.05.

.. There are no outliers or other important deviations from the overall pattern.

Figure 9.5 shows that a sample of 100 people often gave a pquite far from
the population parameter p = 0.37. That is, a sample of 100 people does not
produce a trustworthy estimate of the population proportion. That is why a
March 11, 2001, Gallup Poll asked, not 100, but 1000 people whether they
had watched Survivor 11. 5 Let's repeat our simulation, this time taking 1000
SRSs of size 1000 from a population with proportion p = 0.37 who have
watched Survivor II.

Figure 9.6 displays the distribution of the 1000 values of pfrom these new
samples. Figure 9.6 uses the same horizontal scale as Figure 9.5 to make com­
parison easy. Here's what we see:

o The center of the distribution is again close to 0.37. In fact, the mean is
0.3697 and the median is exactly 0.37.

ft The spread of Figure 9.6 is much less than that of Figure 9.5. The range of
the values of pfrom 1000 samples is only 0.321 to 0.421. The standard devia­
tion is about 0.0 16. Almost all samples of 1000 people give a pthat is close to
the population parameter p = 0.37.

o Because the values of pcluster so tightly about 0.37, it is hard to see the
shape of the distribution in Figuft; 9.6. Figure 9.7 displays the same 1000 val­
ues of pon an expanded scale that makes the shape clearer. The distribution
is again approximately normal in shape.
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FIGURE 9.6 The approximate sampling distribution of the sample proportion pfrom SRSs
of size 1000 drawn from apopulation with population proportion p =0.37. The histogram
shows the results of 1000 SRSs. The scale is the same as in Figure 9. s.

FIGURE 9.7 The approximate sampHng distribution from Figure 9.6, for samples of size
1000, redrawn on an expanded scale to better display the shape.

The appearance of the approximate sampling distributions in Figures 9.5 to 9.7 is
a consequence of random sampling. Haphazard sampling does not give such reg­
ular and predictable results. When randomization is used in a design for produc­
ing data, statistics computed from the data have a definite pattern of behavior over
many repetitions, even though the result of a single repetition is uncertain.
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The bias of a statistic
The fact that statistics from random samples have definite sampling distribu­
tions allows a more careful answer to the question of how trustworthy a statis­
tic is as an estimate of a parameter. Figure 9.8 shows the two sampling distri­
butions of pfor samples of 100 people and samples of 1000 people, side by side
and drawn to the same scale. Both distributions are approximately normal, so
we have also drawn normal curves for both. How trustworthy is the sample pro­
portion pas an estimator of the population proportion p in each case?

FIGURE 9.8 The approximate sampllng distributions for sample proportions pfor SRSs of
two sizes drawn from apopulation wlth p = 0.37. (a) Sample size 100. (b) Sample size
1000. Both statistics are unbiased because the means of their distributions equal the true
population value p =0.37. The statistic from the larger sample is less variable.

Sampling distributions allow us to describe bias more precisely by speak­
ing of the bias of a statistic rather than bias in a sampling method. Bias con­
cerns the center of the sampling distribution. The centers of the sampling dis­
tributions in Figure 9.8 are very close to the true value of the population
parameter. Those distributions show the results of 1000 samples. In fact, the
mean of the sampling distribution (think of taking all possible samples, not just
1000 samples) is exactly equal to 0.37, the parameter in the population.

UNBIASED STATISTIC

A statistic used to estimate a parameter is unbiased if the mean of its sampling
distribution is equal to the true value of the parameter being estimated.

An unbiased statistic will sometimes fall above the true value of the
parameter and sometimes below if we take many samples. Because its sam­
pling distribution is centered at the true value, however, there is no system­
atic tendency to overestimate or underestimate the parameter. This makes
the idea of lack of bias in the sense of "no favoritism" more precise. The

bias
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sample proportion pfrom an SRS is an unbiased estimator of the population
proportion p. If we draw an SRS from a population in which 37% have
watched Survivor II, the mean of the sampling distribution of pis 0.37. If we
draw an SRS from a population in which 50% have seen Survivor II, the
mean of the sampling distribution of pis then 0.5.

The variability of a statistic
The statistics whose sampling distributions appear in Figure 9.8 are both
unbiased. That is, both distributions are centered at 0.37, the true population
proportion. The sample proportion pfrom a random sample of any size is an
unbiased estimate of the parameter p. Larger samples have a clear advantage,
however. They are much more likely to produce an estimate close to the true
value of the parameter because there is much less variability among large
samples than among small samples.

EXAMPLE 906 THE STATISTICS HAVE SPOKEN

The approximate sampling distribution of pfor samples ofsize 100, shown in Figure 9.8(a),
is close to the normal distribution with mean 0.37 and standard deviation 0.05. Recall the
68-95-99.7 rule for normal distributions. It says that 95% of values of pwill fall within two
standard deviations of the mean of the distribution, p=0.37. So 95% of all samples give an
estimate pbetween

mean ± (2 X standard deviation) = 0.37 ± (2 X 0.05) = 0.37 ± 0.1

If in fact 37% of U.S. adults have seen Survivor II, the estimates from repeated SRSs of
size 100 will usually fall between 27% and 47%. That's not very satisfactory.

For samples of size 1000, Figure 9.8(b) shows that the standard deviation is only
about 0.0 I. So 95% of these samples will give an estimate within about 0.02 of the true
parameter, that is, between 0.35 and 0.39. An SRS of size 1000 can be trusted to give
sample estimates that are very close to the truth about the entire population.

In Section 9.2 we will give the standard deviation of pfor any size sample.
We will then see Example 9.6 as part of a general rule that shows exactly how
the variability of sample results decreases for larger samples. One important
and surprising fact is that the spread of the sampling distribution does not
depend very much on the size of the population.

Why does the size of the population have little influence on the behavior
of statistics from random samples? To see that this is plausible, imagine sam­
pling harvested corn by thrusting a scoop into a lot of corn kernels. The scoop
doesn't know whether it is surrounded by a bag of corn or by an entire truck­
load. As long as the corn is well mixed (so that the scoop selects a random sam­
ple), the variability of the result depends only on the size of the scoop.

The fact that the variability of sample results is controlled by the size of
the sample has important consequences for sampling design. A statistic from
an SRS of size 2500 from the more than 280,000,000 residents of the United



VARIABILITY OF ASTATISTIC

The variability of a statistic is described by the spread of its sampling
distribution. This spread is determined by the sampling design and the
size of the sample. Larger samples give smaller spread.

As long as the population is much larger than the sample (say, at least 10
times as large), the spread of the sampling distribution is approximately
the same for any population size.

States is just as precise as an SRS of size 2500 from the 775,000 inhabitants
of San Francisco. This is good news for designers of national samples but bad
news for those who want accurate information about the citiz~ns of San
Francisco. If both use an SRS, both must use the same size sample to obtain
equally trustworthy results.

Bias and variability
We can think of the true value of the population parameter as the bull's-eye on
a target and of the sample statistic as an arrow fired at the target. Both bias and
variability describe what happens when we take many shots at the target. Bias
means that our aim is off and we consistently miss the bull's-eye in the same
direction. Our sample values do not center on the population value. High vari­
ability means that repeated shots are widely scattered on the target. Repeated
samples do not give very similar results. Figure 9.9 (page 500) shows this target
illustration of the two types of error.

Notice that low variability (shots are close together) can accompany high
bias (shots are consistently away from the bull's-eye in one direction). And low
bias (shots center on the bull's-eye) can accompany high variability (shots are
widely scattered). Properly chosen statistics computed from random samples of
sufficient size will have low bias and low variability.

EXERCISES
9.8 BEARING DOWN The table below contains the results of simulating on a computer
100 repetitions of the drawing of an SRS of size 200 from a large lot of ball bearings.
Ten percent of the bearings in the lot do not conform to the specifications. That is,
p = 0.10 for this population. The numbers in the table are the counts of noncon­
forming bearings in each sample of 200.

17 23 18 27
20 18 18 17
30 24 17 14
20 18 20 25
25 24 20 15

15 17 18 13 16 18 20 15 18 16 21 17 18 19 16 23
19 13 27 22 23 26 17 13 16 14 24 22 16 21 24 21
16 16 17 24 21 16 17 23 18 23 22 24 23 23 20 19
16 24 24 24 15 22 22 16 28 15 22 9 19 16 19 19
21 25 24 19 19 20 28 18 17 17 25 17 17 18 19 18
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High bias, low variability

(a)

High bias, high variability

(c)

•

•

(b)

The ideal: low bias, low variability

(d)

FIGURE 9.9 Bias and variability. (a) High bias, low variability. (b) Low bias, high
variability. (c) High bias, high variability. (d) The ideal: low bias, low variability.

(a) Make a table that shows how often each count occurs. For each count in your
table, give the corresponding value of the sample proportion p=count/200. Then draw
a histogram for the values of the statistic p.
(b) Describe the shape of the distribution.

(c) Find the mean of the 100 observations of p. Mark the mean on your histogram to
show its center. Does the statistic pappear to have large or small bias as an estimate of
the population proportion p?
(d) The sampling distribution of p is the distribution of the values of pfrom all
possible samples of size 200 from this population. What is the mean of this distri­
bution?

(e) If we repeatedly selected SRSs of size 1000 instead of 200 from this same popula­
tiof1, what would be the mean of the salupling distribution of the sample proportion p?
Would the spread be larger, smaller, or about the same when compared with the spread
of your histogram in (a)?

9.9 GUINEA PIGS Table 9.1 gives the survival times of 72 guinea pigs in a medical exper­
iment. Consider these 72 animals to be the population of interest.
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TABLE 9.1 Survival time (days) of guinea pigs in a medical experiment

43 45 53 56 56 57 58 66 67 73 74 79
80 80 81 81 81 82 83 83 84 88 89 91
91 92 92 97 99 99 100 100 101 102 102 102

103 104 107 108 109 113 114 118 121 123 126 128
137 138 139 144 145 147 156 162 174 178 179 184
191 198 211 214 243 249 329 380 403 511 522 598

Source: T. Bjerkedal, "Acquisition of resistance in guinea pigs infected with different doses of virulent tuber-
cle bacilli," American Journal of Hygiene, 72 (1960), pp. 130-148.

(a) Make a histogram of the 72 survival times. This is the population distribution. It is
strongly skewed to the right.

(b) Find the mean of the 72 survival times. This is the population mean J.L. Mark J.L
on the x axis of your histogram.

(c) Label the members of the population 01 to 72 and use Table B to choose an SRS
of size n = 12. What is the mean survival time x for your sample? Mark the value of x
with a point on the axis of your histogram from (a).

(d) Choose four more SRSs of size 12, using different parts of Table B. Find x for each
sample and mark the values on the axis of your histogram from (a). Would you be sur­
prised if all five x's fell on the same side of J.L? Why?

(e) If you chose all possible SRSs of size 12 from this population and made a histogram
of the x-values, where would you expect the center of this sampling distribution to lie?

(f) Pool your results with those of your classmates to construct a histogram of the x­
values you obtained. Describe the shape, center, and spread of this distribution. Is the
histogram approximately normal?

9.10 BIAS AND YARIABILITY Figure 9.10 shows histograms of four sampling distributions
of statistics intended to estimate the same parameter. Label each distribution relative
to the others as having large or small bias and as having large or small variability.

(b)

Cd)

FIGURE 9.10 Which of these sampling distributions displays large or small bias and large or small
variability?
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9.11 IRS AUDITS The Internal Revenue Service plans to examine an SRS of individual
federal income tax returns from each state. One variable of interest is the proportion
of returns claiming itemized deductions. The total number of tax returns in each state
varies from almost 14 million in California to fewer than 210,000 in Wyoming.

(a) Will the sampling variability of the sample proportion change from state to state if
an SRS of 2000 tax returns is selected in each state? Explain your answer.

(b) Will the sampling variability of the sample proportion change from state to state if
an SRS of 1% of all tax returns is selected in each state? Explain your answer.

A number that describes a population is called a parameter. A number that
can be computed from the sample data is called a statistic. The purpose of
sampling or experimentation is usually to use statistics to make statements
about unknown parameters.

A statistic from a probability sample or randomized experiment has a sam­
pling distribution that describes how the statistic varies in repeated data pro­
duction. The sampling distr~bution answers the question, "What would hap­
pen if we repeated the sample or experiment many times?" Formal statistical
inference is based on the sampling distributions of statistics.

A statistic as an estimator of a parameter may suffer from 'bias or from high
variability. Bias means that the center of the sampling distribution is not equal
to the true value of the parameter. The variability of the statistic is described
by the spread of its sampling distribution.

Properly chosen statistics from randomized data production designs have
no bias resulting from the way the sample is selected or the way the experi­
mental units are assigned to treatments. The variability of the statistic is deter­
mined by the size of the sample or by the size of the experimental groups.
Statistics from larger samples have less variability.

In Exercises 9.12 and 9.13, (a) state whether each boldface number is a param­
eter or a statistic, and (b) use appropriate notation to describe each number.

9.12 HOW TALL? A random sample of female college students has a mean height of 64.5
inches, which is greater than the 63-inch mean height of all adult American women.

9.13 MEASURING UNEMPLOYMENT The Bureau of Labor Statistics announces that last
month it interviewed all members of the labor force in a sample of 50,000 households;
4~$% of the people interviewed were unemployed.

9.14 BAD EGGS An entomologist samples a field for egg masses of a harmful insect by
5 3 placing a yard-square frame at random locations and examining the ground within the

frame carefully. He wants to estimate the proportion of square yards in which egg
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masses are present. Suppose that in a large field egg masses are present in 20% of all
possible yard-square areas. That is, p= 0.2 in this population.

(a) Use Table B to simulate the presence or absence of egg masses in each square yard
of an SRS of 10 square yards from the field. Be sure to explain clearly which digits you
used to represent the presence and the absence of egg masses.. What proportion of your
10 sample areas had egg masses? This is the statistic p.
(b) Repeat (a) with different lines from Table B, until you have simulated the results
of 20 SRSs of size 10. What proportion of the square yards in each of your 20 samples
had egg masses? Make a stemplot from these 20 values to display the distribution of
your 20 observations on p. What is the mean of this distribution? What is its shape?

(c) If you looked at all possible SRSs of size 10, rather than just 20 SRSs, what would
be the mean of the values of p? This is the mean of the sampling distribution of p.
(d) In another field, 40% of all square-yard areas contain egg masses. What is the
mean of the sampling distribution of pin samples from this field?

9.15 ROLLING THE DICE, I Consider the population of all rolls of a fair, six-sided die.

(a) Draw a histogram that shows the population distribution. Find the mean JL and
standard deviation u of this population.

(b) Ifyou took an SRS ofsize n 2 from this population, what would you actually be doing?

(c) List all'possible SRSs of size 2 from this population, and compute x for each sample.

(d) Draw the sampling distribution of x for samples of size n = 2. Describe its shape,
center, and spread. How do these characteristics compare with those of the population
distribution?

9.16 ROLLING THE DICE, II In Exercise 9.15, you constructed the sampling distribution of
x in samples of size n = 2 from the population of rolls of a fair, six-sided die. What 5 3

would happen if we increased the sample size to n 3? For starters, it would take you
a long time to list all possible SRSs for n = 3. Instead, you can use your calculator to
simulate rolling the die three times.

(a) Generate L1llistl using the command randlnt (1,6,100) +randlnt
(1,6, 100) +randlnt (1, 6, 100) . This will run 100 simulations of rolling the die
three times and calculating the sum of the three rolls.

(b) Define Lz/list2 as L1/3 (list1/3). Now Lz/list2 contains the values of x for the
100 simulations.

(c) Plot a histogram of the x-values.

9.17 SCHOOL VOUCHERS A national opinion poll recently estimated that 44% (p 0.44)
of all adults agree that parents of school-age children should be given vouchers good
for education at any public or private school of their choice. The polling organization
used a probability sampling metl10d for which the sample proportion phas a normal
distribution with standard deviation about 0.015. If a sample were drawn by the same
method from the state of New Jersey (population 7.8 million) instead of from the
entire United States (population 280 million), would this standard deviation be larger,
about the same, or smaller? Explain your answer.
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9.18 SIMULATING SURVIVOR Suppose the true proportion of U.S. adults who have watched
.Survivor II is 0.41. Here is a short program that simulates sampling from this population.

TI-83

PROGRAM: SURVIVOR
ClrHome
ClrList L1
Disp "HOW MANY TRIALS?"
Prompt N
randInt(l,lOO,N)~Ll

O~M

For(X,l,N,l)
If (L1 (X) 2:::1 and L

1
(X) :541)

M+l~M

End
Disp "SAMP PROPORTION="
Disp MIN

TI-89

survivor ()
Prgrn
ClrHome
tistat.clrlist(listl)
Disp "How many trials"
Prompt n
tistat.randint(l,lOO,n)~list1

O~m

For x,l,n,l
If list1[x] 2:::1 and
listl [x] :541
m+l~m

EndFor
Disp "samp proportion="
Disp approx(m/n)
EndPrgrn

Enter this program or link it from your teacher or a classmate.

(a) In the program, what digits are assigned to U.S. adults? What digits are assigned to
U.S. adults who say they have watched Survivor II? Does the program output a count
of adults who answer uYes," a percent, or a proportion?

(b) Execute the program and specify 5 trials (sample size = 5). Do this 10 times, and
record the I0 numbers.

(c) Execute the program I0 more times, specifying a sample size of 25. Record the 10
results for sample size = 25.

(d) Execute the program 10 more times, specifying a sample size of 100. Record the
10 results for sample size = 100.

(e) Enter the 10 outputs for sample size = 5 in L1llistI, the 10 results for sample
size 25 in Lzllist2, and the 10 results for sample size = 100 in L3llist3. Then do
I-Var Stats for L1llist I, Lz/list2, and L3llist3, and record the means and sample
standard deviations Sx for each sample size. Complete the sentence uAs the sample
size increases, the variability "

9.2 SAMPLE PROPORTIONS

What proportion of u.s. teens know that 1492 was the year in which
Columbus udiscovered" America? A Gallup Poll found that 210 out of a ran­
dom sample of 50 I American teens aged 13 to 17 knew this historically impor­
tant date.6 The sample proportion

A 210
P = 501 = 0.42
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is the statistic that we use to gain information about the unknown population
parameter p. We may say that "42% of u.s. teenagers know that Columbus
discovered America in 1492." Statistical recipes work with proportions
expressed as decimals, so 42% becomes 0.42.

The sampling distribution of p
How good is the statistic pas an estimate of the parameter p? To find out, we
ask, "What would happen if we took many samples?" The sampling distribu­
tion of panswers this question. How do we determine the center, shape, and
spread of the sampling distribution of p? By making an important connection
between proportions and counts. We want to estimate the proportion of "suc­
cesses" in the population. We take an SRS from the population of interest.
Our estimator is the sample proportion of successes:

A count of "successes" in sample X
p = size of sample = -;;

Since values of X and pwill vary in repeated samples, both X and pare ran­
dom variables. Provided that the population is much larger than the sample
(say at least 10 times), the count X will follow a binomial distribution. The
proportion pdoes not have a binomial distribution.

From Chapter 8, we know that

ILx = np and U x = ~np(l-p)

give the mean and standard deviation of the random variable X. Since p= Xln =
(l/n)X, we can use the rules from Chapter 7 to find the mean and standard devi­
ation of t,he random var~able p. Recall that ifY = a + bX, then JLy = a + bJLx and
ay = bax . In this case, p 0 + (l/n)X, so

1
JLp = 0 + -np = p

n

Up = ~~np(l _ p) = ~np(ln; p) = ~P(l : p)

SAMPLING DISTRIBUTION OF ASAMPLE PROPORTION

Choose an SRS of size n from a large population with population proportion
phaving some characteristic of interest. Let pbe the proportion of the
sample having that characteristic. Then:

• The mean of the sampling di~stribution is exactly p.



SAMPLING DISTRIBUTION OF ASAMPLE PROPORTION (continued)

• The standard deviation of the sampling distribution is

~P(l :p)

l/ Because the mean of the sampling distribution of pis always equal to
·_...._··_·'-~j;\i the parameter p, the sample proportion p is an unbiased estimator of p.

?-The standard deviation of pgets smaller as the sample size n increases
'''''-'''·'<:''''·\",.pecause n appears in the denominator of the formula for the standard

CI:~ia!i~!1-~.J~hat is, p. is les.~~!E~9J~jlLlarg~.L~~.!!}pL~s. What is more, the
formula shows"'Tlist~<liow"<"quickly the standard deviation decreases as n

increases. The sample size n is under the~9,!:J.§J..I,~"..IQ,Qt...,.~jggJso to cut the
._?: ~",."", """ .. ,_~..~ st.?,l}9~r99~\T~et~(?~}~hC!lf, '.', \\'~, TI1l-1St..t?~e .. Cl("~~JJ1 pIe four ti tlle"s)as large, not

.~'" j~st t~ice as lar'g'e~"':) "' ...
Tne formula for the standard deviation of pdoesn't apply when the sam­

ple is a.largepartof.!~~p~p.~1Cl.!!.9!1-JYou can't use this reCipe if you choose
·an:.,~:B.~,:.,,~,f~,2.,Q ..~f,,!h,~100 people in a class, for example. In practice, we usu-
~~~Y.,!~~~ ..,..~ ....sa!!?pl~.<?,~I.Y ...,~~~~" ...tb~~..",P9P~~~!~?~,.",~,.~,.",,~,~~~e . Otherwise" we could
~examine the entire population. Here is a practical'guide.7

RULE OF THUMB 1

Use the recipe for the standard deviation of ponly when the population is
at least 10 times as large as the sample.

Using the normal approximation for p
What about the shape of the sampling distribution of p? In the simulation
examples in Section 9.1, we found that the sampling distribution of p is
approximately normal and is closer to a normal distribution when the sample
size n is large. For\~x~f!lpl~,if~~.~ClJJ1P~e 100 individuals, the only possible
values of pare 0, l/fOD, 2/100, an~~.~~9D.'M1e statistic has only 101 possible val­
ties,'s'oils"'oisffioiItioncantlbtbe exactly normal. The accuracy of the normal
approximation improves as the sample size n increases. For a fixe4<~~,J:!!pJ~_~!~<~ ..,,_

~, ..~~~..~.?,~f!lal~.ppr?~,.~.JJ1~!i. ~~ ...,"~,~." ...~~.~.~." ..~,~..~,.~~~!~< ..~h~ILP"i$~].Qi~~',IQ·~1l2""and, least
~§~~!~!e~~~~~ i~ I1e~r0 or}:I~p~ 1, for example, then p= 1 in every sample
be'c,ause"'e'very'iriaividual in fne 'population has the characteristic we are counting.
The normal approximation is no good at all when p= 1 or p=O. Here is a rule
of thumb that ensures that normal calculations are accurate enough for, most
statistical purposes. Unlike the firsfrule of thumb, this one rules out some set­
tings of practical interest.
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RULEOF THUMB 2

We will use the normal approximation to the .sampling distribution of p
for values of nand p that satisfy np ~ 10 and n(l - p) ~ 10.

Using what we have learned about the sampling distribution of p, we can
determine the likelihood of obtaining an SRS in which pis close to p. This is
especially useful to college admissions officers, as the following example shows.

EXAMPLE 9.7 APPLYING TO COLLEGE

A polling organization asks an SRS of 1500 first-year college students whether they
applied for admission to any other college. In fact, 35% of all first-year students applied
to colleges besides the one they are attending. What is the probability that the random
sample of 1500 students will give a result within 2 percentage points of this true value?

We have an SRS of size n 1500 drawn from a population in which the proportion p
0.35 applied to other colleges. The sampling distribution of phas mean J-Lp 0.35. What about
its standard deviation? By the first "rule of thumb," the population must contain at least
10(1500) 15,000 people for us to use the standard deviation formula we derived. There
are over 1.7 million first-year college students, so

~p(1-P)
a" = =

P n
(0.35)(0.65) = 0.0123

1500

Can we use a normal distribution to approximate the sampling distribution of p? Checking
the second "rule of thumb": np 1500(0.35) =525 and n(l-p) 1500(0.65) 975. Both
are much larger than 10, so the normal approximation will be quite accurate.

We want to find the probability thatp falls between 0.33 and 0.37 (within 2 per­
centage points, or 0.02, of 0.35). This is a normal distribution calculation. Figure 9.11
shows the normal distribution that approximates the sampling distribution of p. The
area of the shaded region corresponds to the probability that 0.33 :::; p:::; 0.37.

FIGURE 9.11 The normal approximation to the sampling distribution of p.
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Step 1: Standardizep by subtracting its mean 0.35 and dividing by its standard devia­
tion 0.0123. That produces a new statistic that has the standard normal distribution. It
is usual to call such a statistic z:

Step 2: Find the standardized values (z-scores) of p=0.33 and p 0.37. For p=0.33:

For p 0.37:

z = 0.33-0.35 = -1.63
0.0123

z =
0.37 -0.35

0.0123
1.63

Step 3: Draw a picture of the area under the standard normal curve corresponding to
these standardized values (Figure 9.12). Then use Table A to find the shaded area.
Here is the calculation:

P(0.33 ~ P~ 0.37) = P(-1.63 ~ z ~ 1.63) = 0.9484 - 0.0516 = 0.8968

FIGURE 9.12 Probabilities as areas under the standard normal curve.

We see that almost 90% of all samples will give a result within 2 percentage points of
the truth about the population.

The outline of the calculation in Example 9.7 is familiar from Chapter 2,
but the language of probability is new. The sampling distribution of pgives
probabilities for its values, so the entries in Table A are now probabilities.
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We used a brief notation that is common in statistics. The capital P in
P(0.33 ~ P~ 0.37) stands for ~~probability." The expression inside the parenthe­
ses tells us what event we are finding the probability of. This entire expression
is a short way of writing "the probability that plies between 0.33 and 0.37."

EXAMPLE 9.8 SURVEY UNDERCOVERAGE?

One way of checking the effect of undercoverage, nonresponse, and other sources of
error in a sample survey is to compare the sample with known facts about the popula­
tion. About 11 % of American adults are black. The proportion pof blacks in an SRS
of 1500 adults should therefore be close to 0.11. It is unlikely to be exactly 0.11
because of sampling variability. If a national sample contains only 9.2% blacks, should
we suspect that the sampling procedure is somehow underrepresenting blacks? We will
find the probability that a sample contains no more than 9.2% blacks when the popu­
lation is 11 % black.

The mean of the sampling distribution of pis P= 0.11. Since the population
of all black American adults is larger than 1O( 1500) = 15,000, the standard devia­
tion of pis

(0.11)(0.89) = 0.00808
1500

(by rule of thumb 1). Next, we check to see that np = (1500)(0.11) 165 and n(1 p) =
(1500)(0.89) = 1335. So rule of thumb 2 tells us that we can use the normal approximation
to the sampling distribution ofp. Figure 9.13(a) shows the normal distribution with the area
corresponding to p~ 0.092 shaded.

FIGURE 9.13(a) The normal approximation to the sampling distribution of p.

Step 1: Standardize p.

z =

has the standard normal distribution.

p- 0.11

0.00808
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Step 2: Find the standardized value (z-score) of p= 0.092.

= 0.092-0.11 = -2.23
z 0.00808

Step 3: Draw a picture of the area under the standard normal curve corresponding
to the standardized value (Figure 9.13(b)). Then use Table A to find the shaded
area.

p(p $; 0.092) = p(z $; -2.23) = 0.0129

Only 1.29% of all samples would have so few blacks. Because it is unlikely that a sam­
ple would include so few blacks, we have good reason to suspect that the sampling pro­
cedure underrepresents blacks.

fiGURE 9.13(b) The probablllty as an area under the standard normal curve.

Figure 9.14 summarizes the facts that we have learned about the sampling
distribution of pin a form that helps you remember the big idea of a sampling
distribution.

FIGURE 9.14 Select alarge SRS from apopulation of which the proportion pare successes.
The sampling distribution of the proportion pof successes in the sam le is approxi-
mately normal. The mean is p and the standard deviation is p(l- p) / n.



EXERCISES

9.19 DO YOU DRINK THE CEREAL MILK? A USA Today poll asked a random sample of
1012 U.S. adults what they do with the milk in the bowl after they have eaten the
cereal. Of the respondents, 67% said that they drink it. Suppose that 70% of U.S.
adults actually drink the cereal milk.

(a) Find the mean and standard deviation of the proportion pof the sample that say
they drink the cereal milk.

(b) Explain why you can use the formula for the standard deviation of pin this setting
(rule of thumb 1).

(c) Check that you can use the normal approximation for the distribution of p(rule
of thumb 2).

(d) Find the probability of obtaining a sample of 1012 adults in which 67% or
fewer say they drink the cereal milk. Do you have any doubts about the result of
this poll?

(e) What sample size would be required to reduce the standard deviation of the sam­
ple proportion to one-half the value you found in (a)?

(f) If the pollsters had surveyed 1012 teenagers instead of 1012 adults, do you think
the sample proportion pwould h.ave been greater than, equal to, or less than 0.67?
Explain.

9.20 DO YOU GO TO CHURCH? The Gallup Poll asked a probability sample of 1785
adults whether they attended church or synagogue during the past week. Suppose
that 40% of the adult population did attend. We would like to know the probability
that an SRS of size 1785 would come within plus or minus 3 percentage points of
this true value.

(a) If Pis the proportion of the sample who did attend church or synagogue, what is
the mean of the sampling distribution of p? What is its standard deviation?

(b) Explain why you can use the formula for the standard deviation of pin this setting
(rule of thumb 1).

(c) Check that you can use the normal approximation for the distribution of p(rule
of thumb 2).

(d) Find the probability that ptakes a value between 0.37 and 0.43. Will an SRS of
size 1785 usually give a result pwithin plus or minus 3 percentage points of the true
population proportion? Explain.

9.21 DO YOU GO TO CHURCH? Suppose that 40% of the adult population attended church
or synagogue last week. Exercise 9.20 asks the probability that pfrom an SRS estimates
p 0.4 within 3 percentage points. Find this probability for SRSs of sizes 300, 1200,
and 4800. What general fact do your results illustrate?

9.22 HARLEY MOTORCYCLES Harley~Davidson motorcycles make up 14% of all the motor­
cycles registered in the United States. You plan to interview an SRS of 500 motorcycle
owners.
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(a) What is the approximate distribution· of your sample who own Harleys?

(b) How likely is your sample to contain 20% or more who own Harleys? Do a normal
probability calculation to answer this question.

(c) How likely is your sample to contain at least 15% who own Harleys? Do a normal
probability calculation to answer this question.

9.23 ON-TIME SHIPPING Your mail-order company advertises that it ships 90% of its
orders within three working days. You select an SRS of 100 of the 5000 orders
received in the past week for an audit. The audit reveals that 86 of these orders were
shipped on time.

(a) What is the sample proportion of orders shipped on time?

(b) If the company really ships 90% of its orders on time, what is the probability that
the proportion in an SRS of 100 orders is as small as the proportion in your sample or
smaller?

(c) Compare your answer to (b) with your results in Exercise 8.33 (page 462) where you
used a normal approximation to the binomial to solve this problem.

9.24 Exercise 9.22 asks for probability calculations about Harley-Davidson motorcycle
ownership. Exercise 9.23 asks for a similar calculation about a random sample of mail
orders. For which calculation does the normal approximation to the sanlpling distri­
bution of pgive a more accurate answer? Why? (You need not actually do either
calculation. )

When we want information about the population proportion pof individuals with
some special characteristic, we often take an SRS and use the sample proportion p
to estimate the unknown parameter p.

The sampling distribution ofpdescribes how the statistic varies in all pos­
sible samples from the population.

The mean of the sampling distribution is equal to the population propor­
tion p. That is, pis an unbiased estimator of p.

The standard deviation of the sampling distribution is ~p(l- p) / n for an

SRS of size n. This recipe can be used if the population is at least 10 times as
large as the sample.

The standard deviation of pgets smaller as the sample size n gets larger.
Because of the square root, a sample four times larger is needed to cut the stan­
dard deviation in half.

When the sample size n is large, the sampling distribution of pis close

to a normal distribution with mean p and standard deviation ~p(l-p)/n. In

practice, use this nonnal approximation when both np 2:: 10 and n(1 - p) 2:: 10.
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SECTION 9.2 EXERCISES I

i

9.25 DO YOU JOG? The Gallup Poll once asked a random sample of 1540 adults, "Do
you happen to jog?" Suppose that in fact 15% of all adults jog.

(a) Find the mean and standard deviation of the proportion pof the sample who jog.
(Assume the sample is an SRS.)

(b) Explain why you can use the formula for the standard deviation of pin this setting.

(c) Check that you can use the normal approximation for the distribution of p.
(d) Find the probability that between 13% and 17% of the sample jog.

(e) What sample size would be required to reduce the standard deviation of the sam­
ple proportion to one-third the value you found in (a)?

9.26 MORE JOGGING! Suppose that 15% of all adults jog. Exercise 9.25 asks the proba­
bility that the sample proportion pfrom an SRS estimates p = 0.15 within 2 percent­
age points. Find this probability for SRSs of sizes 200, 800, and 3200. What general
conclusion can you draw from your calculations?

9.27 LET'S GO SHOPPING Are attitudes toward shopping changing? Sample surveys show
that fewer people enjoy shopping than in the past. A recent survey asked a nationwide
random sample of 2500 adults if they agreed or disagreed that "I like buying new
clothes, but shopping is often frustrating and time-consuming."8 The population that
the poll wants to draw conclusions about is all U.S. residents aged 18 and over.
Suppose that in fact 60% of all adult U.S. residents would say "Agree" if asked the same
question. What is the probability that 1520 or more of the sample agree?

9.28 UNLISTED NUMBERS According to a market research firm, 52% of all residential
telephone numbers in Los Angeles are unlisted. A telephone sales firm uses random
digit dialing equipment that dials residential numbers at random, whether or not they
are listed in the telephone directory. The firm calls 500 numbers in Los Angeles.

(a) What are the mean and standard deviation of the proportion of unlisted numbers
in the sample?

(b) What is the probability that at least half the numbers dialed are unlisted?
(Remember to check that you can use the normal approximation.)

9.29 MULTIPLE-CHOICE TESTS Here is a simple probability model for multiple-choice
tests. Suppose that a student has probability pof correctly answering a question chosen
at random from a universe of possible questions. (A good student has a higher p than
a poor student.) The correctness of an answer to any specific question doesn't depend
on other questions. A test contains n questions. Then the proportion of correct answers
that a student gives is a sample proportion pfrom an SRS of size n drawn from a pop­
ulation with population proportiQP ..p.

(a) Julie is a good student for whom p 0.75. Find the probability that Julie scores
70% or lower on a 100-question test.
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(b) If the test contains 250 questions, what is the probability that Julie will score 70%
or lower?

(c) How many questions must the test contain in order to reduce the standard devia­
tion of Julie's proportion of correct answers to one-fourth its value for a IOO-item test?

(d) Laura is a weaker student for whom p = 0.6. Does the answer you gave in (c) for
the standard deviation ofJulie's score apply to Laura's standard deviation also? Explain.

9.30 RULES OF THUMB Explain why you cannot use the methods of this section to find
the following probabilities.

(a) A factory employs 3000 unionized workers, of whom 30% are Hispanic. The I5-mem­
ber union executive committee contains 3 Hispanics. What would be the probability of 3 or
fewer Hispanics if the executive committee were chosen at random from all the workers?

(b) A university is concerned about the academic standing of its intercollegiate athletes. A
study committee chooses an SRS of 50 of the 316 athletes to interview in detail. Suppose
that in fact 40% of the athletes have been told by coaches to neglect their studies on at least
one occasion. What is the probability that at least 15 in the sample are among this group?

(c) Use what you learned in Chapter 8 to find the probability described in part (a).

9.3 SAMPLE MEANS

Sample proportions arise most often when we are interested in categorical variables.
We then ask questions like "What proportion ofU.S. adults have watched SU1Vivor II?"
or ~~What percent of the adult population attended church last week?" When we
record quantitative variables-the income of a household, the lifetime of a car
brake pad, the blood pressure ofa patient- we are interested in other statistics, such
as the median or mean or standard deviation of the variable. Because sample means
are just averages of observations, they are among the most common statistics. This
section describes the sampling distribution of the mean of the responses in an SRS.

EXAMPLE 9$9 BULL MARKET OR BEAR MARKET?

A basic principle of investment is that diversification reduces risk. That is, buying sev­
eral securities rather than just one reduces the variability of the return on an invest­
ment. Figure 9.15 illustrates this principle in the case of common stocks listed on the
New York Stock Exchange. Figure 9.I5(a) shows the distribution of returns for all 1815
stocks listed on the Exchange for the entire year 1987.9 This was a year of extreme
swings in stock prices, including a record loss of over 20% in a single day. The mean
return for all 1815 stocks was J.L = -3.5% and the distribution shows a very wide spread.

Figure 9.I5(b) shows the distribution of returns for all possible portfolios that
invested equal amounts in each of 5 stocks. A portfolio is just a sample of 5 stocks and
its return is the average return for the 5 stocks chosen. The mean return for all portfo­
lios is still -3.5%, but the variation alnong portfolios is much less than the variation
among individual stocks. For example, II % of all individual stocks had a loss of more
than 40%, but only I% of the portfolios had a loss that large.



FIGU RE 9.15(a) The distribution of returns for New York Stock Exchange common stocks in 1987.

FIGURE 9.15(b) The distributions of returns for portfolios of five stocks in 1987. Figure 9.15 is
taken with permission from John K. Ford, "A method for grading 1987 stock recommendations,"
American Association of Individual Investors Journal, March 1988, pp. 16-17.

The histograms in Figure 9.15 emphasize a principle that we will make
precise in this section:

CD Averages are less variable than individual observations.

More detailed examination of the distributions would point to a second principle:

CD Averages are more normal than individual observations.

These two facts contribute to· the popularity of sample means in statistical
inference.

The mean and the standard deviation of x
The sampling distribution of x is' the distribution of the values of x in all possible
samples of the same size from the population. Figure 9.15(a) shows the distribution
of a population, with mean JL = -3.5%. Figure 9.15(b) is the sampling distribu­
tion of the sample mean xfrom all samples of size n = 5 from this population. The

9.3 Sample Means""",::, :515
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mean ofall the values ofx is again -3.5%, but the values ofx are less spread out than
the individual values in the population. This is an example of a general fact.

MEAN AND STANDARD DEVIATION OF ASAMPLE MEAN

Suppose that x is the mean of an SRS of size n drawn from a large population
with mean JL and standard deviation u. Then the mean of the sampling

distribution ofx is J.Lx = /L and its standard deviation is (J"x = (J" / .r;;.

The pehavior ofx in repeated samples is much like that of the sample pro­
portion p:

4& The sample mean x is an unbiased estimator of the population mean JL.

• The values ofx are less spread out for larger samples. Their standard devi­
ation decreases at the rate :r;;, so you must take a sample four times as large
to cut the standard deviation of x in half.

• You should only use the recipe u /.r;; for the standard deviation ofx when
the population is at least 10 times as large as the sample. This is almost always
the case in practice.

Notice that these facts about the mean and standard deviation ofx are true no
matter what the shape of the population distribution is.

EXAMPLE 9.10 YOUNG WOMEN'S HEIGHTS

The height of young women varies approximately according to the N(64.5, 2.5) distri­
bution. This is a population distribution with /-L 64.5 and (J" = 2.5. If we choose one
young woman at random, the heights we get in repeated choices follow this distribu­
tion. That is, the distribution of the population is also the distribution of one observa­
tion chosen at random. So we can think of the population distribution as a distribution
of probabilities, just like a sampling distribution.

Now measure the height ofan SRS of 10 young women. The sampling distribution of
their sample mean height xwill have mean /-Lx = /-L = 64.5 inches and standard deviation

(Ti = ~ = ~ = 0.79 inch
~ ~

The heights of individual women vary widely about the population mean, but the aver­
age height of a sample of 10 women is less variable.

In Activity 9A, you plotted the distribution ofx for samples of size n 100, so the

stahdard deviation ofx is (J"/~100 2.5/10 = 0.25. How close did your class come to
this number?
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We have described the mean and standard deviation of the sampling distri­
bution of a sample mean x, but not its shape. The shape of the distribution ofx
depends on the shape of the population distribution. In particular, if the popu­
lation distribution is normal, then so is the distribution of the sample mean.

SAMPLING DISTRIBUTION Of ASAMPLE MEAN FROM ANORMAL POPULATION

Draw an SRS of size n from a population that has the normal distribution with
mean J.L and standard deviation o'. Then the sample mean x has the normal

distribution N(,u, (j /.J;;) with mean ,u and standard deviation (j / .J;;.

We already knew the mean and standard deviation of the sampling distri­
bution. All that we have added now is the normal shape. In Activity 9A, we
began with a normal distribution, N(64.5, 2.5). The center (mean) of the
approximate sampling distribution ofx should have been very close to the mean
of the population: 64.5 inches. Was it? The spread of the distribution ofx should
have been very close to 0' / .J;;. Was it? The reason that you don't observe exact
agreement is sampling variability.

EXAMPLE 9.11 MORE ON YOUNG WOMEN'S HEIGHTS

What is the probability that a randomly selected young woman is taller than 66.5 inches?
What is the probability that the mean height ofan SRS of 10 young women is greater than
66.5 inches? We can answer both of these questions using normal calculations.

If we let X = the height of a randomly selected young woman, then the random
variable X follows a normal distribution with JL = 64.5 inches and (j = 2.5 inches. To
find P(X > 66.5), we first standardize the values of X by setting

X JL
Z= --

(j

The random variable z follows the standard normal distribution. When X = 66.5,

From Table A,

z = 66.5-64.5 = 0.80
2.5

P(X>66.5) = P(z>0.80) = 1-0.7881 = 0.2119

The probability of choosing a young WOlnan at random whose height exceeds 66.5 inches
is about 0.21.

Now let's take an SRS of 10 young women from this population and compute
for the sample. In Example 9.10, we saw that in repeated samples of size n = 10, the
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values ofxwill follow a N(64.5, 0.79) distribution. To find the probability that x > 66.5
inches, we start by standardizing:

x- J.L-z=-_x
u-x

A sample mean of 66.5 inches yields a z-score of

z =66.5 - 64.5 =2.53
0.79

Finally,

P(x> 66.5) = P(z > 2.53) = 1- 0.9943 = 0.0057

It is very unlikely (less than a 1% chance) that we would draw an SRS of 10 young
women whose average height exceeds 66.5 inches.

Figure 9.16 compares the population distribution and the sampling distribution of
x. It also shows the areas corresponding to the probabilities that we just computed.

FIGURE 9.16 The sampling distribution of the mean height xfor samples of 10 young women com­
pared with the distribution of the height of asingle woman chosen at random.

The fact that averages of several observations are less variable than individual
observations is important in many settings. For example, it is common practice to
repeat a careful measurement several times and report the average of the results.
Think of the results of n repeated measurements as an SRS from the population
of outcomes we would get if we repeated the measurement forever. The average
of the n results (the sample mean x) is less variable than a single measurement.

EXERCISES
9.31 BULL MARKET OR BEAR MARKET? Investors remember 1987 as the year stocks lost
20% of their value in a single day. For 1987 as a whole, the mean return of all com­
mon stocks on the New York Stock Exchange was J.L =-3.5%. (That is, these stocks
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lost an average of 3.5% of their value in 1987.) The standard deviation of the
returns was about u = 26%. Figure 9.15 (a) on page 515 shows the distribution of
returns. Figure 9.15(b) is the sampling distribution of the mean returns x for all
possible samples of 5 stocks.

(a) What are the mean and the standard deviation of the distribution in Figure 9.15(b)?

(b) Assuming that the population distribution of returns on individual common stocks
is normal, what is the probability that a randomly chosen stock showed a return of at
least 5% in 1987?

(c) Assuming that the population distribution of returns on individual common stocks
is normal, what is the probability that a randomly chosen portfolio of 5 stocks showed
a return of at least 5% in 1987?

(d) What percentage of 5-stock portfolios lost money in 1987?

9.32 ACT SCORES The scores of individual students on the American College Testing
(ACT) composite college entrance examination have a normal distribution with mean
18.6 and standard deviation 5.9.

(a) What is the probability that a single student randomly chosen from all those tak­
ing the test scores 21 or higher?

(b) Now take an SRS of 50 students who took the test. What are the mean and stan­
dard deviation of the average (sample mean) score for the 50 students? Do your results
depend on the fact that individual scores have a normal distribution?

(c) What is the probability that the mean score x of these students is 21 or higher?

9.33 MEASUREMENTS IN THE LAB Juan makes a measurement in a chemistry laboratory
and records the result in his lab report. The standard deviation of students' lab mea­
surements is u 10 milligrams. Juan repeats the measurement 3 times and records the
mean xof his 3 measurements.

(a) What is the standard deviation of Juan's mean result? (That is, if Juan kept on making
3 measurements and averaging them, what would be the standard deviation of all his x's?)

(b) How many times must Juan repeat the measurement to reduce the standard devi­
ation of x to 3 milligrams? Explain to someone who knows no statistics the advantage
of reporting the average of several measurements rather than the result of a single
measurement.

9.34 MEASURING BLOOD CHOLESTEROL A study of the health of teenagers plans to measure
the blood cholesterol level of an SRS of youth of ages 13 to 16 years. The researchers
will report the mean x from their sample as an estimate of the mean cholesterol level
JJv in this population.

(a) Explain to someone who knows no statistics what it means to say that x is an
uunbiased" estimator of JJv.

(b) The sample result x is an unbiased estimator of the population parameter JJv no
matter what size SRS the study chooses. Explain to someone who knows no statistics
why a large sample gives more trustworthy results than a small sample.
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The central limit theorem
Although many populations have roughly normal distributions, very few indeed
are exactly normal. What happens to x when the population distribution is not
normal? In Activity 9B, the distribution of ages of pennies should have been
right-skewed, but as the sample size increased from 1 to 5 to 10 and then to 25,
the distribution should have gotten closer and closer to a normal distribution.
This is true no matter what shape the population distribution has, as long as the
population has a finite standard deviation (j. This famous fact of probability is
called the central limit theorem. It is much more useful than the fact that the
distribution ofx is exactly normal if the population is exactly normal.

CENTRAL LIMIT THEOREM

Draw an SRS of size n from any population whatsoever with mean IL and
finite standard deviation (j. When n is large, the sampling distribution of
the sample mean x is close to the normal distribution N(J.L,CT / -r;; )with
mean IL and standard deviation (j / -r;; .

How large a sample size n is needed for x to be close to normal depends
on the population distribution. More observations are required if the shape of
the population distribution is far from normal.

EXAMPLE 9.12 EXPONENTIAL DISTRIBUTION

Figure 9.17 shows the central limit theorem in action for a very nonnormal population.
Figure 9.17(a) displays the density curve for the distribution of the population. The dis­
tribution is strongly right-skewed, and the most probable outcomes are near 0 at one end
of the range of possible values. The mean J.L of this distribution is 1 and its standard devi-
ation a is also 1. This particular distribution is called an exponential distribution from exponential distribution
the shape of its density curve. Exponential distributions are used to describe the lifetime
in service of electronic components and the time required to serve a customer or repair
a machine.
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Figures 9.17(b), (c), and (d) are the density curves of the sample means of 2,10,
and 25 observations from this population. As n increases, the shape becomes more
normal. The mean remains at J.L = 1 and the standard deviation decreases, taking the

value 1/ .r;; .The density curve for 10 observations is still somewhat skewed to the right

but already resembles a normal curve with J.L =1and u =1/.JlO =0.32. The density· curve
for n = 25 is yet more normal. The contrast between the shape of the population distribu­
tion and the shape of the distribution of the mean of 10 or 25 observations is striking.

FIGURE 9.17 The central limit theorem in action: the distribution of sample means xfrom astrongly
nonnormal population becomes more normal as the sample size increases. (a) The distribution of 1
observation. (b) The distribution of xfor 2observations. (c) The distribution of xfor 10 observations.
(d) The distribution of xfor 25 observations.

The central limit theorem allows us to use normal probability calculations
to answer questions about sample means from many observations even when
the population distribution is not normal.

EXAMPLE 9.13 SERVICING AIR CONDITIONERS

The time that a technician requires to perform preventive maintenance on an air­
conditioning unit is governed by the exponential distribution whose density curve
appears in Figure 9.17(a). The mean time is J.L = 1 hour and the standard deviation
is u = 1 hour. Your company operates 70 of these units. What is the probability that
their average maintenance time exceeds 50 minutes?
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The central limit theorem says that the sample mean time x(in hours) spent work­
ing on 70 units has approximately the normal distribution with mean equal to the pop­
ulation mean J.L = 1 hour and standard deviation

1
r::::; = 0.120 hour

'\j70

The distribution of x is therefore approximately N(l, 0.120). Figure 9.18 shows this
normal curve (solid) and also the actual density curve of x (dashed).

Because 50 minutes is 50/60 of an hour, or 0.833 hour, the probability we want is
P(x> 0.83). Since

z = x- J.Lx 0.83 -1 = -1.42
(Tx 0.120

P(x>0.83) = P(z>-1.42) = 1-0.0778 = 0.9222

This is the area to the right of 0.83 under the solid normal curve in Figure 9.18.
The exactly correct probability is the area under the dashed density curve in the fig­
ure. It is 0.9294. The central limit theorem normal approximation is off by only
about 0.007.
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fiGURE 9.18 The exact distribution (dashed) and the normal approximation from the central limit
theorem (solid) for the average time needed to maintain an air conditioner.

Figure 9.19 summarizes the facts about the sampling distribution of x. It
reminds us of the big idea of a sampling distribution. Keep taking random sam­
ples of size n from a population ,with mean J-L. Find the sample mean x for each
sample. Collect all the x's and display their distribution. That's the sampling
distribution ofx. Sampling distributions are the key to understanding statistical
inference. Keep this figure in mind as you go forward.
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FIGURE 9.19 The sampling distribution of asample mean xhas mean fl and standard
deviation CF / .[;z. The distribution is normal if the population distribution is normal; it is
approximately normal for large samples in any- case.

EXERCISES
9.35 BAD CARPET The number of flaws per square yard in a type of carpet material varies
with mean 1.6 flaws per square yard and standard deviation 1.2 flaws per square yard. The
population distribution cannot be normal, because a count takes only whole-number val­
ues. An inspector studies 200 square yards of the material, records the number of flaws
found in each square yard, and calculates x, the mean number of flaws per square yard
inspected. Use the central limit theorem to find the approximate probability that the
mean number of flaws exceeds 2 per square yard.

9.36 INVESTING FOR RETIREMENT The distribution of annual returns on common
stocks is roughly symmetric, but extreme observations are more frequent than in a
normal distribution. Because the distribution is not strongly nonnormal, the mean
return over even a moderate number of years is close to normal. In the long run,
annual real returns on common stocks have varied with mean about 9% and stan­
dard deviation about 28%. Andrew plans to retire in 45 years and is considering
investing in stocks. What is the probability (assuming that the past pattern of vari­
ation continues) that the mean annual return on common stocks over the next 45
years will exceed 15%? What is the probability that the mean return will be less
than 5%?

9.37 COAL MINER'S DUST A laboratory weighs filters from a coal mine to measure the
amount of dust in the mine atmosphere. Repeated measurements of the weight of dust
on the same filter vary normally with standard deviation (]" = 0.08 milligrams (mg)
because the weighing is not perfectly precise. The dust on a particular filter actually
weighs 123 mg. Repeated weighings will then have the normal distribution with mean
123 mg and standard deviation 0.08 mg.

(a) The laboratory reports the mean of 3 weighings. What is the distribution of this mean?

(b) What is the probability that the laboratory reports a weight of 124 mg or higher for
this filter?



9.3 Sample Means 525

9.38 MAKING AUTO PARTS An automatic grinding machine in an auto parts plant pre­
pares axles with a target diameter J.L = 40.125 millimeters (mm). The machine has
some variability, so the standard deviation of the diameters is (J" = 0.002 mm. The
machine operator inspects a sample of 4 axles each hour for quality control purposes
and records the sample mean diameter.

(a) What will be the mean and standard deviation of the numbers recorded? Do your
results depend on whether or not the axle diameters have a normal distribution?

(b) Can you find the probability that an SRS of 4 axles has a mean diameter greater
than 40.127 mm? If so, do it. If not, explain why not.

When we want information about the population mean JL for some variable,
we often take an SRS and use the sample mean x to estimate the unknown
parameter JL.

The sampling distribution of x describes how the statistic x varies in all
possible samples from the population.

The mean of the sampling distribution is JL, so that x is an unbiased esti­
mator of JL.

The standard deviation of the sampling distribution of x is a / -r;; for an
SRS of size n if the population has standard deviation a. This recipe can be
used if the population is at least 10 times as large as the sample.

If the population has a normal distribution, so does x.
The central limit theorem states that for large n the sampling distribution

of xis approximately normal for any population with finite standard deviation
a. The mean and standard deviation of the normal distribution are the mean
JL and standard deviation a / -r;; of xitself.

_~._'_~~""~ "__~',"",~" ~~~~m'"m_m,~m_,~_~"I
SECTION 9.3 EXERCISES I
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9.39 BOlTliNG COLA A bottling company uses a filling machine to fill plastic bottles with
cola. The bottles are supposed to contain 300 milliliters (ml). In fact, the contents vary
according to a normal distribution with mean J.L =298 ml and standard deviation (J" 3 ml.

(a) What is the probability that an individual bottle contains less than 295 ml?

(b) What is the probability that the mean contents of the bottles in a six-pack is less
than 295 ml?

9.40 STOP THE CAR! A company that owns and services a fleet of cars for its sales force has
found that the service lifetime of disc brake pads varies from car to car according to a nor­
mal distribution with mean J.L = 55,000 miles and standard deviation (J" =4500 miles. The
company installs a new brand of brake pads on 8 cars.

(a) If the new brand has the same lifetime distribution as the previous type, what is
the distribution of the sample mean lifetime for the 8 cars?



(b) The average life of the pads on these 8· cars turns out to be x= 51,800 miles. What
is the probability that the sample mean lifetime is 51,800 miles or less if the lifetime
distribution is unchanged? (The company takes this probability as evidence that the
average lifetime of the new brand of pads is less than 55,000 miles.)

9.41 WHAT AWRECK! The number of traffic accidents per week at an intersection varies
with mean 2.2 and standard deviation 1.4. The number of accidents in a week must be
a whole number, so the population distribution is not normal.

(a) Let xbe the mean number of accidents per week at the intersection during a year
(52 weeks). What is the approximate distribution of x according to the central limit
theorem?

(b) What is the approximate pr,obability that x is less than 2?

(c) What is the approximate probability that there are fewer than 100 accidents at the
intersection in a year? (Hint: Restate this event in terms of x.)

9.42 TESTING KINDERGARTEN CHILDREN Children in kindergarten are sometimes given
the Ravin Progressive Matrices Test (RPMT) to assess their r~adiness for learning.
Experience at Southwark Elementary School suggests that the RPMT scores for its
kindergarten pupils have mean 13.6 and standard deviation 3.1. The distribution is
close to normal. Mr. Lavin has 22 children in his kindergarten class this year. He sus­
pects that their RPMT scores will be unusually low because the test was interrupted by
a fire drill. To check this suspicion, he wants to find the level·L such that there is prob­
ability only 0.05 that the mean score of 22 children falls below L when the usual
Southwark distribution remains true. What is the value of L? (Hint: This requires a
backward normal calculation. See Chapter 2 if you need to review.)

CHAPTER REVIEW

This chapter lays the foundations for the study of statistical inference.
Statistical inference uses data to draw 'conclusions about the population or pro­
cess from which the data come. What is special about inference is that the con­
clusions include a statement, in the language of probability, about how reliable
they are. The statement gives a probability that answers the question "What
would happen if I used this method very many times?"

This chapter introduced sampling distributions' of statistics. A sampling dis­
tribution describes the values a statistic would take in very many repetitions of
a sample or an experiment under the same conditions. Understanding that idea
is the key to understanding statistical inference. The chapter gave details about
the sampling distributions of two important statistics: a sample proportion pand
a sample mean x. These statistics behave much the same. In particular, their
sampling distributions are approximately normal if the sample is large. This is a
ffiqin reason why normal distributions are so important in statistics. We can use
everything we know about nornla} distributions to study the sampling distribu­
tions of proportions and means.

Here is a review list of the most important things you should be able to do
after studying this chapter.



A. SAMPLING DISTRIBUTIONS

1. Identify parameters and statistics in a sample or experiment.

2. Recognize the fact of sampling variability: a statistic will take different val­
ues when you repeat a sample or experiment.

3. Interpret a sampling distribution as describing the values taken by a statistic
in all possible repetitions of a sample or experiment under the same conditions.

4. Describe the bias and variability of a statistic in terms of the mean and
spread of its sampling distribution.

5. Understand that the variability of a statistic is controlled by the size of the
sample. Statistics from larger samples are less variable.

B. SAMPLE PROPORTIONS

1. Recognize when a problem involves a sample proportionp.

2. Find the mean and standard deviation of the sampling distribution of a
sample proportion pfor an SRS of size n from a population having population
proportion p.
3. Know that the standard deviation (spread) of the sampling distribution ofp
gets smaller at the rate .r;; as the sample size n gets larger.

4. Recognize when you can use the normal approximation to the sampling dis­
tribution of p. Use the normal approximation to calculate probabilities that
concernp.

c. SAMPLE MEANS

1. Recognize when a problem involves the mean x of a sample.

2. Find the mean and standard deviation of the sampling distribution of a sam­
ple mean x from an SRS of size n when the mean I-t and standard deviation 0­

of the population are known.

3. Know that the standard deviation (spread) of the sampling distribution ofx
gets smaller at the rate.r;; as the sample size n gets larger.

4. Understand that x has approximately a normal distribution when the sam­
ple is large (central limit theorem). Use this normal distribution to calculate
probabilities that concern x.

CHAPTER 9 REVIEW EXERCISES

9.43 REPUBLICAN VOTERS Voter registration records show that 68% of all voters in
Indianapolis are registered as Republicans. To test whether the numbers dialed by a ran­
dom digit dialing device really are random, you use the device to call 150 randomly
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chosen residential telephones in Indianapolis. Of the registered voters contacted, 73%
are registered Republicans.

(a) Is each of the boldface numbers a parameter or a statistic? Give the appropriate
notation for each.

(b) What are the mean and the standard deviation of the sample proportion of regis­
tered Republicans in samples of size 150 from Indianapolis?

(c) Find the probability of obtaining an SRS of size 150 from the population of
Indianapolis voters in which 73% or more are registered Republicans. How well is your
random digit device working?

9.44 BAGGAGE CHECK! In Example 9.3, we performed a simulation to determine what pro-
s 3 portion ofa sample of 100 travelers would get the "green light" in Customs at Guadalajara

airport. Suppose the Customs agents say that the probability that the light shows green is
0.7 on each push of the button. You observe 100 passengers at the Customs "stoplight."
Only 65 get a green light. Does this give you reason to doubt the Customs officials?

(a) Use your calculator to simulate 50 groups of 100 passengers activating the Customs
stoplight. Generate L1llistl with the command randBin (100 1 0 . 7 1 50) /100 . L1llistl
will contain 50 values ofp, the proportion of the 100 passengers who got a green light.

(b) Sort L1llistl in descending order. In how many of the 50 simulations did you obtain a
value of pthat is less than or equal to 0.65? Do you believe the Customs agents?

(c) Describe the shape, center, and spread of the sampling distribution ofpfor sam­
ples of n 100 passengers.

(d) Use the sampling distribution from part (c) to find the probability of getting a sam­
ple proportion of 0.65 or less if p = 0.7 is actually true. How does this compare with
the results of your simulation in part (b)?

(e) Repeat parts (c) and (d) for samples of size n = 1000 passengers.

9.45 THIS WINE STINKS! Sulfur compounds such as dimethyl sulfide (DMS) are some­
times present in wine. DMS causes "off-odors" in wine, so winemakers want to know
the odor threshold, the lowest concentration of DMS that the human nose can detect.
Different people have different thresholds, so we start by asking about the DMS thresh­
old in the population of all adults. Extensive studies have found that the DMS odor
threshold of adults follows roughly a normal distribution with mean JL = 25 micro­
grams per liter and standard deviation a = 7 micrograms per liter.

In an experiment, we present tasters with both natural wine and the same wine
spiked with DMS at different concentrations to find the lowest concentration at which
they identify the spiked wine. Here are the odor thresholds (measured in micrograms
of DMS per liter of wine) for 10 randomly chosen subjects:

28 40 28 33 20 31 29 27 17 21

The mean threshold for these subjects is x=27.4. Find the probability of getting a sam­
ple mean even farther away from J.L = 25 than x= 27.4.

9.46 POLLING WOMEN Suppose that 47% of all adult women think they do not get enough
time for themselves. An opinion poll interviews 1025 randomly chosen women and
records the sample proportion who feel they don't get enough time for themselves.
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(a) Describe the sampling distribution of p.
(b) The truth about the population is p= 0.47. In what range will the middle 95% of
all sample results fall?

(c) What is the probability that the poll gets a sample in which fewer than 45% say
they do not get enough time for themselves?

9.47 INSURANCE The idea of insurance is that we all face risks that are unlikely but
carry high cost. Think of a fire destroying your home. So we form a group to share the
risk: we all pay a small amount, and the insurance policy pays a large amount to those
few of us whose homes burn down. An insurance company looks at the records for mil­
liops of homeowners and sees that the mean loss from fire in a year is J.L $250 per
person. (Most of us have no loss, but a few lose their homes. The $250 is the average
loss.) The company plans to sell fire insurance for $250 plus enough to cover its costs
and profit. Explain clearly why it would be a poor practice to sell only 12 policies.
Then explain why selling thousands of such policies is a safe business practice.

9.48 MORE ON INSURANCE The insurance company sees that in the entire population of
homeowners, the mean loss from fire is J.L =$250 and the standard deviation of the loss
is (j = $300. The distribution of losses is strongly right-skewed: many policies have $0
loss, but a few have large losses. If the company sells 10,000 policies, what is the
approximate probability that the average loss will be greater than $260?

9.49 IQ TESTS The Wechsler Adult Intelligence Scale (WAIS) is a common uIQ test"
for adults. The distribution of WAIS scores for persons over 16 years of age is approxi­
mately normal with mean 100 and standard deviation 15.

(a) What is the probability that a randomly chosen individual has a WAIS score of 105
or higher?

(b) What are the mean and standard deviation of the sampling distribution of the aver­
age WAIS score xfor an SRS of 60 people?

(c) What is the probability that the average WAIS score of an SRS of 60 people is 105
or higher?

(d) Would your answers to any of (a), (b), or (c) be affected if the distribution ofWAIS
scores in the adult population were distinctly nonnormal?

l 5

9.50 AUTO ACCIDENTS A study of rush-hour traffic in San Francisco counts the number e -1
of people in each car entering a freeway at a suburban interchange. Suppose that this
count has mean 1.5 and standard deviation 0.75 in the population of all cars that enter
at this interchange during rush hours.

(a) Could the exact·distribution of the count be normal? Why or why not?

(b) Traffic engineers estimate that the capacity of the interchange is 700 cars per hour.
According to the central limit theorem, what. is the approximate distribution of the
mean number of persons x in 700· randomly selected cars at this interchange?

(c) What is the probability that 700 cars will carry more than 1075 people? (Hint:
Restate this event in terms of the mean number of people xper car.)

9.51 POLLUTANTS IN AUTO EXHAUST The level of nitrogen oxide (NOX) in the exhaust of a
particular car model varies with mean 1.4 grams per mile (g/mi) and standard deviation
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0.3 g/mi. A company has 125 cars of this model in its fleet. If:x is the mean NOX emis­
sion level for these cars, what is the level L such that the probability that:X is greater than
L is only 0.01? (Hint: This requires a backward normal calculation. See Chapter 2 if
you need to review.)

9.52 HIGH SCHOOL DROPOUTS High school dropouts make up 14.1 % of all Americans
aged 18 to 24. A vocational school that wants to attract dropouts mails an advertising
flyer to 25,000 persons between the ages of 18 and 24.

(a) If the mailing list can be considered a random sample of the population, what is
the mean number of high school dropouts who will receive the flyer?

(b) What is the probability that at least 3500 dropouts will receive the flyer?

9.53 WEIGHT OF EGGS The weight of the eggs produced by a certain breed of hen is nor­
mally distributed with mean 65 grams (g) and standard deviation 5 g. Think of cartons
of such eggs as SRSs of size 12 from the population of all eggs. What is the probabili­
ty that the weight of a carton falls between 750 g and 825 g?

II NOTES AND DATA SOURCES

1. In this book we discuss only the most widely used kind of statistical inference.
This is sometimes called frequentist because it is based on answering the question
"What would happen in many repetitions?" Another approach to inference, called
Bayesian, can be used even for one-time situations. Bayesian inference is important
but is conceptually complex and much less widely used in practice.
2. From the Current Population Survey Web site: www.bls.census.gov/cps.
3. Data from October 25-28, 2000, Gallup Poll Surveys from www.gallup.com.
4. "Pupils to judge Murphy's Law with toast test," Sunday Telegraph (UK), March 4, 2001.
5. From the Gallup Poll Web site: www.gallup.com.
6. Results from a poll taken January-April 2000 and reported at www.gallup.com.
7. Strictly speaking, the recipes we give for the standard deviations ofxand passume
that an SRS of size n is drawn from an infinite population. If the population has finite

size N, the standard deviations in the recipes are multiplied by ~l- (n / N) . This

"finite population correction" approaches 1 as N increases. When n/N ~ 0.1, it is ~ 0.948.
8. 'The survey question and result are reported in Trish Hall, "Shop? Many say 'Only
if I must,'" New York Times, November 28, 1990.
9. From John K. Ford, "A method for grading 1987 stock recommendations,"
Alnerican Association of Individual Investors Journal, March 1988, pp. 16-17.
10. This activity is suggested in Richard L. Schaeffer, Ann Watkins, Mrudulla
Gnanadeskian, and Jeffrey A. Witmer, Activity-Based Statistics, Springer, New York,
1996.
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ACTMlY14

Material$: Fabric tafJe measure; calculator
The architectVitruvius said that "ifyou open your legs so
much as to decrease your height by 1/14 and spread and
raise your arms til your middle fingers touch the level of
the top of your head, you must know that the center of
the outspread limbs will be in the navel and the space

between the legs will be an equilateral triangle. · · . The !,;,..;to:)~~~4~~~~~~~~!~~~~:;{~T{
length of a man's outspread arms is equal to his height."

Leonardo da Vinci, the renowned painter, drew Scala/Art Resource

the illustration above for a.book on the works ofVitruvius. Da Vinci believed
that the. human body conformed. to a set of geometric proportions as shown
by the lines and circles in this drawing

In this activity, we want to determine if artn span can predict height. You
will need a fabric measuring tape, and you should work in teams of three: the
person to be measured and two people to hold the ends of the tape. You should
collect at least 18 to 20 pairs of measurements. If your class has fewer students,
recruit some volunteers from other classes. Remember: the more, the better.

1. Take turns taking these two measurements and recording them. First
measure your arm span: the distance between the tips of the fingers when
you stretch your arms out to the sides (the x-values). Then measure your
height (the y-values). Unlike Vitruvius's man, who made an equilateral tri­
angle with his legs, you will keep your heels together and stand tall.
Combine your results with those of the other groups.

2. Make a scatterplot of the data. Clearly, the association should be posi­
tive. Is it? Would you describe the association as strong, moderate, or weak?

3. Use your calculator to perform least-squares regression and find the val­
ues of rand r2• Plot the least-squares line on your scatterplot. Write a state­
ment that interprets the meaning, in context, of the least-squares line and
value of r2 that you found.

4. Construct a residual plot to assess whether a line is an appropriate model
for these data. Write a sentence that interprets your residual plot.

Keep your data; we will use them later in the chapter.

14.1 INFERENCE ABOUT THE MODEL

\\Then a scatterplot shows a linear relationship between a quantitative explanatory
variable x and a quantitative response variable y, \ve can use the least-squares line
fitted to the data to predict y for a given value of x. Now we want to do tests and
confidence intervals in this setting.
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EXAMPLE 14.1 CRYING AND IQ

Infants who cry easily may be more easily stimulated than others and this may be a sign
of higher IQ. Child development researchers explored the relationship between the
crying of infants four to ten days old and their later IQ test scores. A snap of a rubber
band on the sole of the foot caused the infants to cry. The researchers recorded the cry­
ing and nleasured its intensity by the number of peaks in the most active 20 seconds.
They later Ineasured the children's IQ at age three years using the Stanford-Binet IQ
test. Table 14.1 contains data on 38 infants.

TABLE 14.1 Infants' crying and IQ scores

Crying IQ Crying IQ Crying IQ Crying IQ

10 87 20 90 17 94 12 94
12 97 16 100 19 103 12 103
9 103 23 103 13 104 14 106

16 106 27 108 18 109 10 109
18 109 15 112 18 112 23 113
15 114 21 114 16 118 9 119
12 119 12 120 19 120 16 124
20 132 15 133 22 135 31 135
16 136 17 141 30 155 22 157
33 159 13 162

Source: Samuel Karelitz et aI., "Relation of crying activity in early infancy to
speech and intellectual development at age three years," Child Development,
35 (1964), pp. 769-777.

Plot and interpret. As always, we first exanline the data. Figure 14.1 is a
scatterplot of the crying data. Plot the explanatory variable (count of crying
peaks) horizontally and the response variable (IQ) vertically. Look for the
form, direction, and strength of the relationship as well as for outliers or other
deviations. There is a moderate positive linear relationship, with no extreme
outliers or potentially influential observations.

Numerical summary. Because the scatterplot shows a roughly linear
(straight-line) pattern, the correlation describes the direction and strength of
the relationship. The correlation between crying and IQ is r = 0.455.

Mathematical model. We are interested in predicting the response from
information about the explanatory variable. So we find the least-squares regres­
sion line for predicting IQ from crying. This line lies as close as possible to the
points (in the sense of least squares) in the vertical (y) direction. The equation
of the least-squares regression line is

y= a + bx

= 91.27 + 1.493x
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FIGURE 14.1 Scatterplot of the IQ score of infants at age three years against the intensity
of their crying soon after birth, for Example 14.1.

Here are the relevant TI-83 screens. The TI-89 results are similar.

a a

a
aa

aa a
B a a

aaa ~ a a a

):( 8 a c

X=lO......... Y=87 .

Pl:Ll,L2
aLinReg

y=a+bx
a=91.26829865
b=1.492896598
r 2=.2069999897
r=.4549725153

a aa

Pl:Ll,L2
a

We use the notationyto remind ourselves that the regression line gives pre­
dictions of IQ. The predictions usually won't agree exactly with the actual val­
ues of the IQ measured several years later. Drawing the least-squares line on
the scatterplot helps us see the overall pattern. Because r2 = 0.207, only about
21 % of the variation in IQ scores is explained by crying intensity. Prediction of
IQ will not be very accurate. It is nonetheless impressive that behavior soon
after birth can even partly predict IQ several years later.

The regression model
The slope b and intercept a of the least-squares line are statistics. That is, we cal­
culated thenl from the sanlple data. These statistics would take somewhat
different values ifwe repeated the study with different infants. To do formal infer­
ence, we think of a and b as estinlates of unknown paran1eters. The parameters
appear in a mathenlatical model of the process that produces our data. Here are
the required conditions for performing inference about the regression nlodel.
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CONDITIONS FOR REGRESSION INFERENCE

We have n observations on an explanatory variable x and a response variable
y. Our goal is to study or predict the behavior of y for given values of x.

• For any fixed value of x, the response y varies according to a normal dis-
tribution. Repeated responses yare independent of each other.

• The mean response J.Ly has a straight-line relationship with x:

J.Ly = a + f3x

The slope {3 and intercept a are unknown parameters.

• The standard deviation of y (call it u) is the same for all values of x. The
value of u is unknown.

The heart of this model is that there is an "on the average" straight-line
relationship between y and x: The true regression line /Ly = a + f3x says that
the mean response J.Ly moves along a straight line as the explanatory variable x
changes. We can't observe the true regression line. The values of y that we do
observe vary about their means according to a normal distribution. If we hold
x fixed and take many observations on y, the normal pattern will eventually
appear in a stemplot or histogram. In practice, we observe y for nlany different
values of x, so that we see an overall linear pattern formed by points scattered
about the true line. The standard deviation u detennines whether the points
fall close to the true regression line (small u) or are widely scattered (large u).

Figure 14.2 shows the regression model in picture fonn. The line in the figure
is the true regression line. The nlean of the response y moves along this line as the
explanatory variable x takes different values. The normal curves show how y will vary
when x is held fixed at different values. All of the curves have the same u, so the vari­
ability ofy is the same for all values ofx. You should check the conditions for infer­
ence when you do inference about regression. We will see later how to do tllat.

FIGURE 14.2 The regression model. The line is the true regression line, which shows how
the mean response J.Ly changes as the explanatory variable xchanges. For any fixed value
of x, the observed response y varies according to anormal distribution having mean J.Ly.

true regression line
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Inference
The first step in inference is to estimate the unknown paranleters a, {3, and u.
When the regression model describes our data and we calculate the least­
squares line y= a + bx, the slope b of the least-squares line is an unbiased
estimator of the true slope {3, and the intercept a of the least-squares line is
an unbiased estimator of the true intercept a.

EXAMPLE 14.2 SLOPE AND INTERCEPT

The data in Figure 14.1 fit the regression model of scatter about an invisible true
regression line reasonably well. The least-squares line is y=91.27 + 1.493x. The slope
is particularly important. A slope is a rate ofchange. The true slope f3 says how much
higher average IQ is for children with one more peak in their crying measurelnent.
Because b = 1.493 estimates the unknown {3, we estimate that on the average IQ is
about 1.5 points higher for each added crying peak.

We need the intercept a =91.27 to draw the line, but it has no statistical meaning
in this example. No child had fewer than 9 crying peaks, so we have no data near x =
O. We suspect that all normal children would cry when snapped with a rubber band,
so that we will never observe x = O.

The remaining parameter of the model is the standard deviation (J", \\Jhich
describes the variability of the response y about the true regression line. The
least-squares line estimates the true regression line. So the residuals estimate
how much y varies about the true line. Recall that the residuals are the verti­
cal deviations of the data points from the least-squares line:

residual = observed y - predicted y
A

= y-y

There are n residuals, one for each data point. Because (J" is the standard devi­
ation of responses about the true regression line, we estimate it by a sample
standard deviation of the residuals..We call this sample standard deviation a
standard error to emphasize that it is estimated from data. The residuals frol11
a least-squares line always have mean zero. That simplifies their standard error.

STANDARD ERROR ABOUT THE LEAST-SQUARES LINE

The standard error about the line is

II 'd 12s= n _ 2 reSl ua

=~_II(y-yl
11-2

Use s to estimate the unknown (J" in the regression nlodel.

.'
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Because we use the standard error about the line so often in regression
inference, we just call it s. Notice that s2 is an average of the squared deviations
of the data points from the line, so it qualifies as a variance. We average the
squared deviations by dividing by 11 - 2, the number of data points less 2. It
hlrns out that if we know 11 - 2 of the 11 residuals, the other two are deternlined.
That is, 11 - 2 is the degrees of freedom of s. We first met the idea of degrees of
freedom in the case of the ordinary sample standard deviation of 11 observa­
tions, which has 11 - 1 degrees of freedoln. Now we observe hvo variables rather
than one, and the proper degrees of freedom is 11 - 2 rather than 11 - 1.

Calculating s begins with finding the predicted response for each x in your
data set, then the residuals, and then s. In practice you will use technology that
does this arithlnetic instantly. The next example shows how to use the calcu­
lator to help calculate s.

EXAMPLE 14.3 RESIDUALS AND STANDARD ERROR

Table 14.1 shows that the first infant studied had 10 crying peaks and a later IQ of 87.
The predicted IQ for x = lOis

y=91.27 + I.493x

= 91.27 + 1.493(10) = 106.2

The residual for this observation is

residual = y - y
=87 - 106.2 =-19.2

That is, the observed IQ for this infant lies 19.2 points below the least-squares line on
the scatterplot.

Repeat this calculation 37 more tinles, once for each subject. The 38 residuals are
-
-19.20 -31.13 -22.65 -15.18 -12.18 -15.15 -16.63 -6.18
-1.70 -22.60 -6.68 -6.17 -9.15 -23.58 -9.14 2.80
-9.14 -1.66 -6.14 -12.60 0.34 -8.62 2.85 14.30
9.82 10.82 0.37 8.85 10.87 19.34 10.89 -2.55

-. 24.35 18.94 32.89 18.47 51.32

If you haven't entered the crying and IQ data into your calculator, do that now as
L}llisti and Lzllist2. Then on the TI-83, define list L3 to be the observed minus the pre­
dicted values of y: Lz- Yl (L}). On the TI-89, define list3 to be list2 - Y1 (list1). Verify
that the 38 residuals are as sho\vn and that the sum of the residuals is zero:

Ll L2 nm 3 L1 L2 L3 3 1-Var Stats
10 87 ---- 10 87 IIIIn x=3.157895E-12
12 97 12 97 -12.18 LX=1.2E-10
9 103 9 103 -1.704 Lx2=11023 .3888
16 106 16 106 -9.155 Sx=17.2606322918 109 18 109 -9.14

I
15 114 15 114 .33825 crx=17.03200455
12 119 12 119 9.8169 ,J,n=38

L3=L2-Yl (Ll) L3 (1)=-19.1972646...

degrees of freedom
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Notice that the. sum of the residuals is shown in the calculator screen as 1.2E-I0,
which is zero, up to roundoff error. Another reason to use technology in doing regres­
sion is that roundoff errors in hand calculation can accun1ulate and Inake the results
inaccurate.

The variance about the line is

8 2 =_I-Lresiduaf
n-2

= 38~2[(-19.20)2 +(-31.13)2 + ... +51.322]

1
= 36 (1l,023.3) =306.20

Finally, the standard error about the line is

s = ~306.20 = 17.50

Software gives 17.4987 to four decimal places, so the error resulting froITI rounding in
this hand calculation is small.

Technology tip: Here's a quick way to calculate s. With x-values in L1llistl and
the y-values in Lz/list2, perform least-squares regression. The calculator creates
or updates a list named RESID. Specify l-Var Stats LRESID and look at
the value Lxz. That's the sum of the squares of the residuals. Divide this num­
ber by (n - 2) to get sZ. Take the square root to obtain s.

We will study several kinds of inference in the regression setting. The stan­
dard error s about the line is the key measure of the variability of the responses
in regression. It is part of the standard error of all the statistics we will use for
inference.

EXERCISES
14.1 AN EXTINCT BEAST, I Archaeopteryx is an extinct beast having feathers like a bird but
teeth and a long bony tail like a reptile. Here are the lengths in centimeters of the
femur (a leg bone) and the humerus (a bone in the upper arn1) for the five fossil spec­
imens that preserve both bones:

Femur:
Humerus:

38 56 59 64 74
41 63 70 72 84

The strong linear relationship between the lengths of the two bones helped persuade
scientists that all five specimens belong to the same species.

(a) Examine the data. Make a scatterplot \vith femur length as the explanatory variable.
Use your calculator to obtain the correlation r and the equation of the least-squares
regression line. Do you think that femur length \viII allo\v good prediction of hunlerus
length?
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(b) Explain in \vords what the slope {3 of the true regression line says about
Archaeopteryx. What is the estimate of f3 from the data? What is your estimate of the
intercept a of the true regression line?

(e) Calculate the residuals for the five data points. Check that their sum is 0 (up to
roundoff error). Use the residuals to estimate the standard deviation u in the regression
model. You have now estimated all three paranleters in the model.

14.2 SARAH'S GROWTH Sarah's growth from age 3 years to 5 years was measured as follows:

Age (months):
Height (enl):

36 48 51
86 90 91

54 57 60
93 94 95

These data were entered into a statistics package and least-squares regression of height
on age was requested. Here are the results:

Predictor Coef Stdev t-ratio p
Constant 71.950 1.053 68.33 0.000
Age 0.38333 0.02041 18.78 0.000

s = 0.3873 R-sq = 98.9% R-sq(adj) = 98.6%

(a) What is the equation of the least-squares line? (Hint: Look for the colulnn "Coef."
What is the intercept? What is the slope?) .

(b) The model for regression inference has three parameters, which we call a, {3, and
u. Can you determine the estimates for a and f3 from the computer printout? What
are they?

(e) The computer output reports that s =0.3873. This is an estilnate of the parameter
u. Use the fonnula for s to verify the computer's value of s.

14.3 IDEAL PROPORTIONS, I Mr. Starnes's students measured their arnl spans and heights
(see Activity 14), entered their results into a Minitab worksheet, requested least-squares
regression of height on arm span (both in inches), and obtained the follo\ving output:

Predictor Coef Stdev t-ratio p
Constant 11.547 5.600 2.06 0.056
armspan 0.84042 0.08091 10.39 0.000

s = 1.613- R-sq = 87.1% R-sq(adj) = 86.3%

A residual plot for the data is shown in Figure 14.3.

(a) Deternline the equation of the least-squares regression line frolll the "Coef" col­
umn in the printout.

(b) In your opinion, is the least-squares line an appropriate model for the data? Would you
be willing to predict a student's height, ifyou knew that his arnl span is 76 inches? Explain.

(e) Estimate the parameters of a and f3.
(d) Use an appropriate formula to verify that the estimate for a is 1.613.
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0
0 0

0

0

0 0

M 0
H
CIl 0.0 0riI 0
~ 0

0

0 0

0

0
0

0

-3.0

64.0 68.0 72.0 76 • 0 armspan

FIGURE 14.3 Residual plot for Exercise 14.3.

14.4 COMPETITIVE RUNNERS Exercise 3.71 on page 187 provided data on the speed of
cOInpetitive runners and the number of steps they took per second. Good runners take
more steps per second as they speed up. Here are the data again:

Speed(ft/s):
Steps per second:

15.86
3.05

16.88
3.12

17.50
3.17

18.62
3.25

19.97
3.36

21.06
3.46

22.11
3.55

(a) Enter the data into your calculator, perfonn least-squares regression, and plot the
scatterplot w·ith the least-squares line. What is the strength of the association behveen
speed and steps per second?

(b) Find the residuals for all 7 data points. Check that their sunl is 0 (up to roundoff
error).

(c) The model for regression inference has three para111eters, a, {3, and a. Estinlate
these parameters fro111 the data.

14.5 IDEAL PROPORTIONS, II Estilnate the paranleters a, {3, and a froln the ann span and
height data you collected froll1 Activity 14. For which class does the least-squares line
provide a better Inodel, your class or the class described in Exercise 14.3? Explain.

Confidence intervals for the regression slope
The slope {3 of the true regression line is usually the nlost important paranle­
ter in a regression problenl. The slope is the rate of change of the mean
response as the explanatory variable increases. We often \vant to estinlate {3.
The slope b of the least-squares line is an unbiased estinlator of {3. A confi-
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dence interval is more useful because it shows how accurate the estimate b is
likely to be. The confidence interval for f3 has the familiar form

estimate ± t*SEestimate

Because b is our estimate, the confidence interval becomes

b ± t*SEb

Here are the details.

CONFIDENCE INTERVAL FOR REGRESSION SLOPE

A level C confidence interval for the slope f3 of the true regression line is

b ± t*SEb

In this recipe, the standard error of the least-squares slope b is

S
SEb =

~r(x-x)2

and t* is the upper (I - C)/2 critical value from the t distribution with n - 2
degrees of freedom.

As advertised, the standard error of b is a multiple of s. Although we give
the recipe for this standard error, you should rarely have to calculate it by
hand. Regression software gives the standard error SEb along with b itself.

EXAMPLE 14.4 REGRESSION OUTPUT: CRYING AND IQ

Figure 14.4 shows the basic output for the crying study from the regression cOInmand
in the Minitab software package. Most statistical software provides sinlilar output.
(Minitab, like other software, produces more than this basic output. When you use
software, just ignore the parts you don't need.)

The first line gives the equation of the least-squares regression line. The slope and
intercept are rounded off there, so look in the "Coe£" column of the table that follows
for more accurate values. The intercept a =91.268 appears in the "Constant" row. The
slope b = 1.4929 appears in the "Crycount" ro\\' because we named the x variable
"Crycount" when we entered the data.

The next column of output, headed "StDev," gives standard errors. In particular,
SEb =0.4870. The standard error about the line, S = 17.50, appears below the table.

There are 38 data points, so the degrees of freedom are n - 2 =36. For a 95% con­
fidence interval for the true slope {3, we will use the critical value t* =2.042 froln the
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Regression Analysis
The regression equation is
IQ = 91.3 + 1.49 Crycount

Predictor
Constant
Crycount

Coef
'91.268
1.4929

T

10.22
3.07

P

0.000
0.004

~17.50)

estimates
(J'

R-Sq = 20.7%

We usually
ignore
this part.

FIGURE 14.4 Minitab regression output for the crying and IQ data.

df =30 row of Table C. This is the table degrees of freedolll next smaller than 36. The
interval is

b ± t*SEb = 1.4929 ± (2.042)(0.4870)

= 1.4929 ± 0.9944

= 0.4985 to 2.4873

We are 95% confident that 1l1ean IQ increases by between about 0.5 and 2.5 points for
each additional peak in crying.

You can find a confidence interval for the intercept a of the true regression
line in the same way, using a and SEa from the "Constant" line of the print­
out. We rarely need to estilnate a.

Testing the hypothesis of no linear relationship
We can also test hypotheses about the slope {3. The Inost conlInon hypothesis is

A regression line with slope 0 is horizontal. That is, the mean of y does not
change at all when x changes. So this Hosays that there is 110 true linear rela­
tionship behveen x and y. Put another "vay, Ho says that straight-line depen­
dence on x is ofno value for predicting y. Put yet another w'ay, Hosays that there
is no correlation between x and y in the population fron1 \vhich V\le drew our
data. You can use the test for zero slope to test the hypothesis of zero correla­
tion between any two quantitative variables. That's a useful trick. Do notice
that testing correlation lnakes sense only if the observations are a randoiTI sam­
ple. That is often not the case in regression settings, where researchers Inay fix
the values of x they vvant to study.

The test statistic is just the standardized version of the least-squares slope
'b. It is another t statistic. Here are the details.
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SIGNIFICANCE TESTS FOR REGRESSION SLOPE

To test the hypothesis Ho:f3 = 0, compute the t statistic

b
t= SE

b

In terms of a random variable T having the t(n - 2) distribution, the P­
value for a test of Hoagainst

t

t

ItI

This test is also a test of the hypothesis that the correlation is 0 in the population.

Regression output from statistical software usually gives t and its two-sided
P-value. For a one-sided test, divide the P-value in the output by 2.

EXAMPLE 14.5 TESTING REGRESSION SLOPE

The hypothesis Ho: f3 = 0 says that crying has no straight-line relationship '-"ith IQ.
Figure 14.1 shows that there is a relationship, so it is not surprising that the con1puter
output in Figure 14.4 gives t = 3.07 with hvo-sided P-value p.004. There is very strong
evidence that IQ is correlated with crying.

EXAMPLE 14.6 BEER AND BLOOD ALCOHOL

Ho\v \vell does the nun1ber of beers a student drinks predict his or her blood alcohol
content? Sixteen student volunteers at Ohio State University drank a randon1ly
assigned number of cans of beer. Thirty minutes later, a police officer measured their
blood alcohol content (BAC). Here are the data:}



792 Chapter 14 Inference for Regression

Student: 2 3 4 5 6 7 8

Beers: 5 2 9 8 3 7 3 5
BAC: 0.10 0.03 0.19 0.12 0.04 0.095 0.07 0.06

Student: 9 10 II 12 13 14 15 16

Beers: 3 5 4 6 5 7 I 4
BAC: 0.02 0.05 0.07 0.10 0.085 0.09 0.01 0.05

The students were equally divided between n1en and wonlen and differed in weight
and usual drinking habits. Because of this variation, many students don't believe that
number of drinks predicts blood alcohol well. What do the data say?

The scatterplot in Figure 14.5 shows a clear linear relationship. Figure 14.6 gives
part of the Minitab regression output. The solid line on the scatterplot is the least­
squares line

y= -0.0127 + 0.0180x

0.25

0.20

•
15 0.15..s:
()
Co)

'"i
-.:s
()
() 0.10iii

0.05

0.0

o 2 3 4 5 6 7 8 9 10
Number of beers

FIGURE 14.5 Scatterplot of students' blood alcohol content against the numbers of cans of beer
consumed.

Because r2 = 0.800, number of drinks accounts for 80% of the observed variation in
BAC. That is, the data say that student opinion is wrong: the nunlber of beers you
drink predicts blood alcohol level quite \veU. Five beers produce an average BAC of

y=-0.0127 + 0.0 180( 5) =0.077

perilously close to the legal driving lin1it of 0.08 in many states.
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The regression equation is
BAC = - 0.0127 +0.0180 Beers

Predictor
Constant
Beers

Coef
-0.·01270
0.017964

StDev
0.01264

0.002402

T
-1.00

7.48

P

0.332
0.000

s= 0.02044 R-Sq = 80.0%

FIGURE 14.6 Minitab output for the blood alcohol content data.

We can test the hypothesis that the number of beers has no effect on blood alcohol
versus the one-sided alternative that nlore beers increases BAC. The hypotheses are

It is no surprise that the t statistic is t =7.48 with two-sided P-value P =0.000 to three
decinlal places. The one-sided P-value is half this value, so it is also close to O. Check
that t is the slope b =0.01796 divided by its standard error, SEb =0.0024.

The scatterplot sho\vs one unusual point: student nunlber 3, who drank 9 beers. You
can see from Figure 14.5 that this observation lies farthest from the fitted line in the y
direction. That is, this point has the largest residual. Student nunlber 3 Inay also be influ­
ential, though the point is not extreme in the x direction. To verify that our results are not
too dependent on this one observation, do the regression again oInitting student 3. The
new regression line is the dashed line in Figure 14.5. Omitting student 3 decreases r2

from 80% to 77%, and it changes the predicted BAC after 5 beers fron1 0.077 to 0.073.
These sInall changes sho\v that this observation is not very influential.

SUMMARY
--.,--H------··---li

I
Least-squares regression fits a straigllt line to data in order to predict a response
variable y from the explanatory variable x. Inference about regression requires
more assumptions.

The regression model says that there is a true regression line ILl' = ex + {3x
that describes how the nlean response varies as x changes. The observed response
y for any x has a nornla} distribution with nlean given by the true regression line
and with the same standard deviation 0' for any value of x. The parameters of the
regression model are the intercept a, the slope {3, and the standard deviation 0'.

The slope a and intercept b of the least-squares line estinlate the slope ex
and intercept {3 of the true regression line. To estinlate 0', use the standard
error about the line s.

The standard error s has 11 - 2 degrees of freedom. All t procedures in
regression inference have 11 - 2 degrees of freedonl.
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Confidence intervals for the slope of the true regression line have the
form b ± t* SEb. In practice, use software to find the slope b of the least-squares
line and its standard error SEb.

To test the hypothesis that the true slope is zero, use the t statistic t = blSEb,

also given by software. This null hypothesis says that straight-line dependence
on x has no value for predicting y. It also says that the population correlation
between x and y is zero.

'I SECTION 14.1 EXERCISES
14.6 AN EXTINCT BEAST, II Exercise 14.1 presents data on the lengths of two bones in five fos­
sil specimens of the extinct beast Archaeopteryx. Here is part of the output from the S-PLUS
statistical software when we regress the length y of the hUlllerus on the length x of the
femur.

Coefficients:

(Intercept)
Femur

Value
-3.6596

1.1969

Std. Error
4.4590
0.0751

t value
-0.8207

Pr(>ltl)
0.4719

(a) What is the equation of the least-squares regression line?

(b) We left out the t statistic for testing Ho: f3 = 0 and its P-value. Use the output to find t.

(c) How lllany degrees offreedom does t have? Use Table C to approximate the P-value
of t against the one-sided alternative Ha: f3 > o.
(d) Write a sentence to describe your conclusions about the slope of the true regres­
sion line.

(e) Determine a 99% confidence interval for the true slope of the regression line.

14.7 JET SKIS, I Data for the number of jet skis in use and number of fatalities for the
years 1987 to 2000 are given in Exercise 3.7 (page 125).

(a) Fornlulate null and alternative hypotheses about the slope of the true regression
line. State a one-sided alternative hypothesis.

(b) \\That conditions or assumptions are necessary in order to perform a linear regres­
sion test of significance? Are these reasonable assulllptions in this situation?

(c) Perfornl a linear regression t test. Report the t statistic, the degrees of freedom, and
the P-value. Write your conclusion in plain language.

(d) Determine a 98% confidence interval for the true slope of the regression line.

14.8 IS WINE GOOD FOR YOUR HEART? There is some evidence that drinking_ moderate
amounts of \vine helps prevent heart attacks. Exercise 3.63 (page 183) gives data on
yearly \vine consumption (liters of alcohol from drinking wine, per person) and yearly
deaths frOlll heart disease (deaths per 100,000 people) in 19 developed nations.

(a) Is there statistically significant evidence of a negative association behveen ""ine
consumption and heart disease deaths? Carry out the appropriate test of significance
and \vrite a summary statelllent about your conclusions.

(b) Find a 95% confidence interval for the true slope.
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14.9 DOES FAST DRIVING WASTE FUEL? Exercise 3.11 (page 129) gives data on the fuel con­
sumption of a small car at various speeds from 10 to 150 kilometers per hour. Is there
evidence of straight-line dependence between speed and fuel use? Make a scatterplot
and use it to explain the result of your test.

14.10 Exercise 14.4 (page 788) presents data on the relationship between the speed of
runners (x, in feet per second) and the number of steps y that they take in a second.
Here is part of the Data Desk regression output for these data:

R squared = 99.8%
s = 0.0091 with 7 - 2 = 5 degrees of freedom

Variable
Constant
Speed

Coefficient
1.76608
0.080284

s.e. of Coeff
0.0307
0.0016

t-ratio
57.6
49.7

prob
<0.0001
<0.0001

(a) How can you tell fronl this output, even without the scatterplot, that there is a very
strong straight-line relationship between running speed and steps per second?

(b) What parameter in the regression model gives the rate at which steps per sec­
ond increase as running speed increases? Give a 99% confidence interval for this
rate.

14.11 THE LEANING TOWER OF PISA The Leaning Tower of Pisa leans more as time passes.
Here are measurements of the lean of the tower for the years 1975 to 1987.2 The lean
is the distance between where a point on the tower would be if the tower were straight
and where it actually is. The distances are tenths of a millimeter in excess of 2.9 meters.
For example, the 1975 lean, which was 2.9642 meters, appears in the table as 642. We
use only the last two digits of the year as our time variable.

Year: 75 76 77 78 79 80 81 82 83 84 85 86 87
Lean: 642 644 656 667 673 688 696 698 713 717 725 742 757

Here is part of the output from the Data Desk regression procedure with year as the
explanatory variable and lean as the response variable:

Variable
Constant
year

Coefficient
-61.1209

9.31868

s.e. of Coeff
25.13

0.3099

t-ratio
-2.43
30.1

prob
0.0333

<0.0001

(a) Plot the data. Briefly describe the shape, strength, and direction of the relation­
ship. The tower is tilting at a steady rate.

(b) The main purpose of the study is to estimate how fast the tower is tilting. What
parameter in the regression model gives the rate at which the tilt is increasing, in
tenths of a millimeter per year?

(c) \\'e want a 95% confidence interval for this rate. How many degrees of freedom
does t have? Find the critical value t* and the confidence interval.
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14.2 PREDICTIONS AND CONDITIONS

One of the most conlmon reasons to fit a line to data is to predict the response
to a particular value of the explanatory variable. The Inethod is siInple: just
substitute the value of x into the equation of the line. We saw in Example 14.6
that drinking 5 beers produces an average BAC of

y=-0.0127 + 0.0180(5) =0.077

We would like to give a confidence interval that describes how accurate
this prediction is. To do that, you must answer these questions: Do you wallt to
predict the mean blood alcohol level for all students who drink 5 beers? Or do
you want to predict the BAC of one individual student who drinks 5 beers?
Both of these predictions Inay be interesting, but they are two different prob­
lems. The actual prediction is the sanle, y= 0.077. But the margin of error is
different for the two kinds of prediction. Individual students who drink 5 beers
don't all have the same BAC. So we need a larger margin of error to pin down
one student's result than to estimate the mean BAC for all students who have
5 beers.

Write the given value of the explanatory variable x as x*. In the exanl­
pIe, x* = 5. The distinction between predicting a single outconle and pre­
dicting the mean of all outcomes when x = x* determines what margin of
error is correct. To emphasize the distinction, we use different ternlS for the
two intervals.

• To estimate the mean response, we use a confidence interval. It is an ordinary
confidence interval for the parameter

JLy = a + {3x*

prediction intenlal

The regression model says that JL J is the lllean of responses y when x has the
value x*. It is a fixed number wh6se value we don't know.

• To estimate an individual response y, we use a prediction il1tetval. A pre­
diction interval estimates a single randolll response y rather than a paranleter
like JLy• The response y is not a fixed number. If vve took nlore observations
with x = x*, we would get different responses.

Fortunately, the meaning of a prediction interval is very nluch like the
meaning of a confidence interval. A 95% prediction interval, like a 95% confi­
dence interval, is right 95% of the tinle in repeated use. "Repeated use" now
means that we take an observation on y for each of the n values ofx in the orig­
inal data, and then take one nlore observation y "vith x = x*. Fornl the predic­
tion interval from the n observations, then see if it covers tIle one more y. It \vill
in 95% of all repetitions.
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The interpretation of prediction intervals is a minor point. The main point
is that it is harder to predict one response than to predict a mean response.
Both interyals have the usual form

y± t*SE

but the prediction interval is wider than the confidence interval. Here are the
details.

CONFIDENCE AND PREDICTION INTERVALS FOR REGRESSION RESPONSE

A level C confidence interval for the mean response J.Ly when x takes the
value x* is

y± t*SEp.

The standard error SEA is

1
SE,,=s -

JL

The sum runs over all the observations on the explanatory variable x.

A level C prediction interval for a single observation on y when x takes
the value x* is

Y~ + t*SE"- y

The standard error for prediction SEyis3

In both recipes, t* is the upper (1 - C)/2 critical value of the t distribution
with 11 - 2 degrees of freedom.

There are hvo standard errors: SE" for estimating the mean response J.L and
SEy for predicting an individual resrtonse y. The only difference betwee~ the
two standard errors is the extra 1 under the square root sign in the standard error
for prediction. The extra 1 makes the prediction interval wider. Both standard
errors are multiples of s. The degrees of freedom are again n - 2, the degrees of
freedoITI of s. Calculating these standard errors by hand is a nuisance, which
technology spares us.
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EXAMPLE 14.7 PREDICTING BLOOD ALCOHOL

Steve thinks he can drive legally 30 minutes after he finishes drinking 5 beers. We want
to predict Steve's blood alcohol content, using no information except that he drinks 5
beers. Here is the output from the prediction option in the Minitab regression com­
mand for x* = 5 when we ask for 95% intervals:

Predicted Values

Fit
0.07712

StDev Fit 95.0% CI 95.0% PI
0.00513 (0.06612, 0.08812) (0.03192, 0.12232)

The "Fit" entry gives the predicted BAC, 0.07712. This agrees with our result in Exalnple
14.6. Minitab gives both 95% intervals. You must choose which one you want. We are pre­
dicting a single response, so the prediction interval "95.0% PI" is the right choice. We are
95% confident that Steve's blood alcohol content will fall between about 0.032 and 0.122.
The upper part of that range ,viII get him arrested if he drives. The 95% confidence inter­
val for the mean BAC of all students after 5 beers, given as "95.0% CI," is nluch narrower.

Checking the regression conditions
You can fit a least-squares line to any set of explanatory-response data when
both variables are quantitative. If the scatterplot doesn't show a roughly linear
pattern, the fitted line may be alInost useless. But it is still the line that fits the
data best in the least-squares sense. To use regression inference, however, the
data must satisfy the regression model conditions. Before we do inference, we
must check these conditions one by one.

The observations are independent. In particular, repeated observations on the
saIne individual are not allowed. So we can't use ordinary regression to make
inferences about the growth of a single child over time, for example.

The true relationship is linear. We can't observe the true regression line, so
we will almost never see a perfect straight-line relationship in our dat.a. Look
at the scatterplot to check that the overall pattern is roughly linear. A plot of
the residuals against x magnifies any unusual pattern. Draw a horizontal line
at zero on the residual plot to orient your eye. Because the SUlTI of the residu­
als is always zero, zero is also the mean of the residuals.

The standard deviation of the response about the true line is the same every­
where. Look at the scatterplot again. The scatter of the data points about the line
should be roughly the same over the entire range of the data. A plot of the residuals
against x, with a horizontal line at zero, makes this easier to check. It is quite com­
mon to find that as the response y gets larger, so does the scatter of the points about
the fitted line. Rather than remaining fixed, the standard deviation (]' about the line
is changing \vith x as the mean response changes with x. You cannot safely use our
inference recipes ,,\Then this happens. There is no fixed (]' for s to estimate.

The response varies normally about the true regression line. We can't observe
the true regression line. We can observe the least-squares line and the residuals,
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which show the variation of the response about the fitted line. The residuals esti­
mate the deviations of the response from the true regression line, so they should
follow a normal distribution. Make a histogram or stemplot of the residuals and
check for clear skewness or other major departures from normality. Like other t
procedures, inference for regression is (with one exception) not very sensitive to
minor lack of normality, especially when we have many observations. Do beware
of influential observations, which move the regression line and can greatly affect
the results of inference.

The exception is the prediction interval for a single response y. This inter­
val relies on normality of individual observations, not just on the approximate
normality of statistics like the slope a and intercept b of the least-squares line.
The statistics a and b become more normal as we take more observations. This
contributes to the robustness of regression inference, but it isn't enough for the
prediction interval. We will not study methods that carefully check normality of
the residuals, so you should regard prediction intervals as rough approximations.

The conditions for regression inference are a bit elaborate. Fortunately, it
is not hard to check for gross violations. There are ways to deal with violations
of any of the regression model conditions. If your data don't fit the regression
model, get expert advice. Checking conditions uses the residuals. Most regres­
sion software will calculate and save the residuals for you.

EXAMPLE 14.8 BLOOD ALCOHOL RESIDUALS

Example 14.6 sho\vs the regression of the blood alcohol content of 16 students on the
number of beers they drink. The statistical software that did the regression calculations
also calculates the 16 residuals. Here they are:

0.0229 0.0068
-0.0212 -0.0271

0.0410 -0.0110 -0.0012 -0.0180
0.0108 0.0049 0.0079 -0.0230

0.0288 -0.0171
0.0047 -0.0092

A residual plot appears in Figure 14.7. The values of x are on the horizontal axis. The
residuals are on the vertical axis, with a horizontal line at zero.

Exanline the residual plot to check that the relationship is roughly linear and that
the scatter about the line is about the same from end to end. Overall, there is no clear
deviation from the even scatter about the line that should occur (except for chance
variation) when the regression assumptions hold.

Now examine the distribution of the residuals for signs of strong nonnornlality.
Here is a stemplot of the residuals after rounding to three decimal places:

-2 731
-I 871
-0 9 I
o 5 578
I I
2 39
3
4
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FIGURE 14.7 Plot of the regression residuals for the blood alcohol data against the explanatory
variable, number of beers consumed. The mean of the residuals is always o.

Student number 3 is a mild outlier. We saw in Example 14.6 that omitting this obser­
vation has little effect on r2 or the fitted line. It also has little effect on inference. For
example, t =7.58 for the slope becomes t = 6.57, a change of no practical importance.

EXAMPLE 14.9 USING RESIDUAL PLOTS

l11ttltiple regression

The residual plots in Figure 14.8 illustrate violations of the regression assulTIptions that
require corrective action before using regression. Both plots conle from a study of the
salaries of major-league baseball players.4 Salary is the response variable.

There are several explanatory variables that Ineasure the players' past perfornlance.
Regression with more than one explanatory variable is caIled nlultiple regression.
Although interpreting the fitted model is more cOlnplex in multiple regression, \ve
check conditions by examining residuals as usual.

Figure 14.8(a) is a plot of the residuals against the predicted salary)~, produced by
the SAS statistical software. When points on the plot overlap, SAS uses letters to sho\v
how many observations each point represents. A is one observation, B stands for two
observations, and so on. The plot shows a clear violation of the condition that the
spread of responses about the model is everywhere the same. There is more variation
among players \\lith high salaries than among players with IO\\Ter salaries.

Although we don't show a histogram, the distribution of salaries is strongly ske\ved
to the right. Using the logantll171 of the salary as the response variable gives a nlore nor­
mal distribution and also fixes the unequal-spread problenl. It is COmlTIOn to \\lork with
sonle transfornlation of data in order to satisfy the regression conditions. But all is not yet
well. Figure 14.8(b) plots the new residuals against years in the nlajor leagues. There is
a clear curved pattern. The relationship behveen logarithm of salary and years in the

i 1l1ajors is not linear but curved. The statistician must take more corrective action.
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FIGURE 14.8 Two residual plots that illustrate violations of the regression conditions. (a) The variation
of the residuals is not constant. (b) There is acurved relationship between the response variable and
the explanatory variable.
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SUMMARY I
Confidence intervals for the mean response \vhen x has value xt,t have the
form y± tt,tSEjL. Prediction intervals for an individual future response y have
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a similar form with a larger standard error, y± t*SE". Software often gives these
. I Ylnterva s.

To use regression inference, data must satisfy the following conditions:

• The observations must be independent.

• The true relationship is linear.

• The standard deviation of the response about the true line is the same every­
where.

• The response varies normally about the true regression line.

Verifying conditions uses the residuals.

Ir---·_·_X_.__~~__M<~_~._~O>. ~ " '"'_'__. O>.

I SECTION 14.2 EXERCISES
~

14.12 INFANTS' CRYING AND IQ SCORES

(a) The residuals for the crying and IQ data appear in Example 14.3. Make a stem­
plot to display the distribution of the residuals. Are there outliers or signs of strong
departures from normality?

(b) What other assumptions or conditions are required for using inference for regres­
sion on these data? Check that these conditions are satisfied and then describe your
findings.

(c) Would a 95% prediction interval for x = 25 be narrower, the same size, or wider
than a 95% confidence interval? Explain your reasoning.

(d) A computer package reports that the 95% prediction interval for x = 25 is
(91 . 85 , 165. 33) . Explain what this interval means in simple language.

14.13 THE GENTLE MANATEE The relationship between the number of powerboats regis­
tered and the number of manatees killed each year was explored in Chapter 3. The
data are found in Exercises 3.6 (page 125) and 3.41 (page 157). Use the data for the
years 1977 through 1994.

(a) We conducted inference on the manatee data earlier, but was this prudent? Check
the conditions, and report your interpretations.

(b) Mer entering the data into Minitab, you specify 716,000 powerboat registrations
(coded as 716) and ask for a 95% confidence interval and a prediction interval for this
value. Minitab reports that the two intervals are (41.43, 49. 59) and (33.35,
57 . 66) . Which is which, and how do you know?

14.14 PISA, PISAI In Exercise 14.11 (page 795) we regressed the lean of the Leaning
Tower of Pisa on year to estimate the rate at which the tower is tilting. Here are the
residuals from that regression, in order by years across the rows:

4.220 -3.099 -0.418 1.264 -2.055 3.626 2.308
-5.011 0.670 -4.648 -5.967 1.714 7.396
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Use the residuals to check the regression conditions, and describe your findings. Is the
regression in Exercise 14.11 trustworthy?

14.15 DO HEAVIER PEOPLE BURN MORE ENERGY? Metabolic rate, the rate at which the
body consumes energy, is important in studies of weight gain, dieting, and exercise.
Lean body mass is an important influence on metabolic rate. Table 3.2 (page 132)
gives data for 19 people. Because men and women showed a similar pattern, we will
now ignore gender. Here are the data on mass (in kilograms) and metabolic rate (in
calories):

Mass:
Rate:

Mass:
Rate:

62.0 62.9
1792 1666

40.3 33.1
1189 913

36.1 54.6 48.5 42.0 47.4 50.6 42.0 48.7
995 1425 1396 1418 1362 1502 1256 1614

51.9 42.4 34.5 51.1 41.2 51.9 46.9
1460 1124 1052 1347 1204 1867 1439

Use your calculator or software to analyze these data. Make a scatterplot and find the
least-squares line. Give a 90% confidence interval for the slope (3 and explain clearly
what your interval says about the relationship between lean body mass and metabolic
rate. Find the residuals and examine them. Are the conditions for regression infer­
ence met?

14.16 MANATEES The 95% prediction interval in part (b) of Exercise 14.13 is quite
wide. Changing to 90% confidence will give a smaller margin of error. Use the
computer output in the previous exercise, along with Table C, to give a 90% inter­
val for the mean number of manatees killed when there are 700,000 powerboats
registered.

14.17 IDEAL PROPORTIONS, III Eighteen students in Mr. Starnes's class measured their
arm spans and heights. Here are their measurements, in inches:

Arm span Height Arm span Height Arm span Height

74 76 61.5 64.5 68.75 .68.25
72 74 72 69.5 70 68
72 71 68 70.5 63 66.5
66 68 68.5 68.5 69 70
78 77 62.5 64 66 65.5
67.5 68 65.5 64.5 78.75 75.75

We want to predict height from arm span.

(a) Test the conditions for using inference for regression for these data. Describe your
findings.

(b) When the value x = 75 is specified, Minitab reports that the 95% P. I. is
(7 a.921 , 78. 238) . Interpret this interval.

(c) Explain \vhat a 95% confidence interval for x =75 inches tells us. How is this dif­
ferent from the 95% prediction interval for x = 75 inches? Which interval is more pre­
cise (that is, shorter) and why?



804 Chapter 14 Inference for Regression

The TI-83/89 can perform a linear regression t test. use the crying versus IQ
data from Example 14.1 (page 781) to illustrate the process.

Enter the x-values (crying) into L1llist1 and the y-values (IQ) into Lzllist2.

TI-83

• Press ISTATI/~IE:LinRegTest.

TI-89

• Press 12ndlrnl (F6:Tests). Then select
A:LinRegTTest.

1/7FUNC

.-.
MAIN RAD AUTO
list1[1]=10

list1 Ii 3t2-SampZTest .
, 87 4: 2-SampTTest .

12 97 5:1-PropZTest_
9 10 6: 2-PropZTest...
16 10 7 :Chi2 GOF...
18 10 8 :Chi2 2-way...

15 11.

EDIT CALC~
Ot2-SampTInt .
A: 1-PropZInt .
B:2-PropZInt .
c:x2-Test ...
D:2-SampFTest .

EIILinRegTTes t .
F:ANOVA(

• In the LinRegITest screen, specify L1 for Xlist,
Lz for Ylist, and i 0 for the hypothesized slope {3.
You can leave the RegEQ space blank. Highlight
the command "Calculate" and press IENTERI.

• Specify list1 for X List, list2 for Y List, and 1 for
Frequency. You have .. three choices for Alternate
Hyp: we will choose f3 i O. For results, choose
"Calculate." (The other choice is "Draw.") Press
IENTERI.

LinRegTTest
Xlist:1IJ.
Ylist:L2
Freq:1
fJ & p:. <0 >0
RegEQ:
Calculate

I(T~ Linear Regression T Test )
J:..: X List: Ilist1 I I--

1( Y List: 11ist2 I -
~ Freq: 11 I
1E Alternate Hyp: fJ & P ¢ O~

1~ Store RegEqn to: y1(x)~

~ Results: (":01,... ,1 :01-0.

lie Enter-OK::> « ,~ -
USE RAD AUTO FUNC

The linear regression t test results take two screens to present.

I( F1T JToo Linear Regression T Test

..li y=a+bx .L
10 fJ & P ¢o -
12 t =3.06549
Q P Value =.004105

( F1T JToo Linear Regression T Test

.1i i p Value =.004105 .L
10 df =36. -
12 a =91.2683
9 b =1.4929

s =17.498716 SE Slope =.487001
18 r 2 =.207

..l.5. r =.454973
Ii (' Entp-r=OK ::> -
USE RAD AUTO FUNC 3/7

LinRegTTest
y=a+bx
fJ*0 and P*O

i b=l. 492896598
s=17.49872122
r 2=.2069999897
r=.4549725153

LinRegTTest
y=a+bx
fJ*O and P*O
t=3.065489379
p=.0041053001
df=36

!a=91.26829865
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The .first scre~n.rep0rts tl1attheiti statistic<i~ 3.07
with df =.36. TheP-value is 0.004. Scrollingdown,

you ••••find.i.the •.i~tercept .a~91..~~83~nd .....sl~peb .•. =
1••.4929 ••·.ofthe least-squares line, as well as the .cor-
relation r.=<O.455, the coefficient ofdetermination
r2 = 0.207,and<thestandarderror aboutthe line
s = 17.50.

CHAPTER REVIEW

Note that the TI-83 does not have a provision for
calculating a confidence interval for the regression
slope, but the list feature can be helpful in calcu­
latil1gthe standard error of the slope, SEb. Usually,
determining confidence intervals is provided by
software.

When a scatterplot shows a straight-line relationship between an explanatory
variable x and a response variable y, we often fit a least-squares regression line
to describe the relationship. Use this line to predict y from x. Statistical infer­
ence in the regression setting, however, requires more than just an overall lin­
ear pattern on a scatterplot.

The regression model says that there is a true straight-line relationship
between x and the mean response JLy' We can't observe this true regression
line. The responses y that we do observe vary if we take several observations at
the same x. The regression model says that for any fixed x, the responses have
a normal distribution. Moreover, the standard deviation u of this distribution
is the same for all values of x.

The standard deviation u describes how much variation there is in responses
y when x is held fixed. Estimating u is tile key to inference about regression. Use
the standard error s (roughly, the sample standard deviation of the residuals) to
estimate u. We can then do these types of inference:

• Give confidence intervals for the slope of the true regression line.

• Test the null hypothesis that this slope is zero. This hypothesis says that a
straight-line relation between x and y is of no value for predicting y. It is the sanle
as saying that the correlation between x and y in the entire population is zero.

• Give confidence intervals for the Inean response for any fixed value of x.

• Give prediction intervals for an individual response y for a fixed value of x.

A. PRELIMINARIES

1. Make a scatterplot to show the relationship between an explanatory and a
response variable.

2. Use a calculator or software to find the correlation and the least-squares
regression line.
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B. RECOGNITION

1. Recognize the regression setting: a straight-line relationship between an
explanatory variable x and a response variable y.

2. Recognize which type of inference you need in a particular regression
setting.

3. Inspect the data to recognize situations in which inference isn't safe: a non­
linear relationship, influential observations, strol1gly skewed residuals in a
small san1ple, or nonconstant variation of the data points about the regression
line.

C. DOING INFERENCE USING SOFTWARE AND CALCULATOR OUTPUT

1. Explain in any specific regression setting the meaning of the slope {3 of the
true regression line.

2. Understand computer output for regression. Find in the output the slope
and intercept of the least-squares line, their standard errors, and the standard
error about the line.

3. Use that information to carry out tests and calculate confidence intervals for {3.

4. Explain the distinction between a confidence interval for the mean response
and a prediction interval for an individual response.

S. If software gives output for prediction, use that output to give either confi­
dence or prediction intervals.

I; '_~_uu_n__~._~~'~_~ <~.-_._'.~ <_. ~_. ~<_,=~_~_<_,~< ~.__.~·.,__u._,

i CHAPTER 14 REVIEW EXERCISES
\

14.18 TIME AT THE TABLE Does how long young chil~ren remain at the lunch table help
predict ho\\' much they eat? Here are data on 20 toddlers observed over several n10nths
at a nursery schooL5 "Time" is the average number of minutes a child spent at the table
\vhen lunch was served. "Calories" is the average nun1ber ofcalories the child consulned
during lunch, calculated fron1 careful observation of \vhat the child ate each day.

Time: 21.4 30.8 37.7 33.5 32.8 39.5 22.8 34.1 33.9 43.8
Calories: 472 498 465 456 423 437 508 431 479 454

Time: 42.4 43.1 29.2 31.3 28.6 32.9 30.6 35.1 33.0 43.7
Calories: 450 410 504 437 489 436 480 439 444 408

Make a scatterplot of the data and find the equation of the least-squares line for pre­
dicting calories consun1ed fron1 tin1e at the table. Describe briefly \vhat the data sho\\'
about the behavior of children. Then give a 95% confidence interval for the slope of
the true regression line.



14.19 BEAVERS AND BEETLES Ecologists sometimes find rather strange relationships in our
environment. One shIdy seems to show that beavers benefit beetles. The researchers laid
out 23 circular plots, each four meters in dialneter, in an area where beavers were cut­
ting down cottonwood trees. In each plot, they measured the number of stumps from
trees cut by beavers and the nU111ber of clusters of beetle larvae. Here are the data:6
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Stumps:
Beetle larvae:

Stumps:
Beetle larvae:

221 334 3
10 30 12 24 36 40 43

2 1 2 2 1 1 4
25 8 21 14 16 6 54

12513
11 27 56 18 40

1 214
9 13 14 50

(a) Make a scatterplot that shows how the nUll1ber of beaver-caused stunlps influences
the number of beetle larvae clusters. What does your plot show?

(b) Here is part of the Minitab regression output for these data:

Predictor Coef StDev T P

Constant -1.286 2.853 -0.45 0.657
Stumps 11.894 1.136 10.47 0.000

S = 6.419 R-Sq = 83.9%

Find the least-squares regression line and draw it on your plot. What percent of the
observed variation in beetle larvae counts can be explained by straight-line depen­
dence on beaver stump counts?

(c) Is there strong evidence that beaver stlunps help explain beetle larvae counts?
Give appropriate statistical evidence to support you conclusion.

14.20 BEAVER AND BEETLE RESIDUALS Software often calculates standardized residuals
as "veIl as the actual residuals froln regression. Because the standardized residuals
have the standard z-score scale, it is easier to judge whether any are extreme. Here
are the standardized residuals fronl the previous exercise, rounded to 2 decimal
places:

standardized residuals

-1.99 1.20 0.23 -1.67 0.26 -1.06
0.40 -0.43 -0.24 -1.36 0.88 -0.75

1.38 0.06 0.72 -0.40 1.21 0.90
1.30 -0.26 -1.51 0.55 0.62

(a) Find the mean and standard deviation of the standardized residuals. Why do you
expect values close to those you obtain?

(b) lVIake a stemplot of the standardized residuals. Are there any striking devia­
tions from normality? The most extrellle residual is z = -1.99. \iVould this be sur­
prisingly large if the 23 observations had a normal distribution? Explain you"r
ans\ver.

(c) Plot the standardized residuals against the explanatory variable. Are there any sus­
picious patterns?

14.21 INVESTING AT HOME AND OVERSEAS Investors ask about the relationship behveen
returns on investments in the United States and investments overseas. Exercise 3.56
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(page 179) gives the percent returns on U.S. and overseas common stocks over a 27­
year period.

(a) Make a scatterplot suitable for predicting overseas returns from u.S. returns.

(b) Here is part of the output fronl the Minitab regression command:

Predictor Coef StDev T P
Constant 5.683 5.144 1.10 0.280
USreturn 0.6181 0.2369 * *

S = 19.90 R-Sq = 21.4%

We have omitted the t statistic for (3 and its P-value. What is the value of t? What are
its degrees of freedom? From Table C, how strong is the evidence for a linear rela­
tionship between U.S. and overseas returns?

(c) Here is the output for prediction of overseas returns when u.s. stocks return 15%:

Fit
14.95

StDev Fit
3.83

90.0% CI
8.41, 21.50)

90.0% PI
-19.65, 49.56)

Verify the "Fit" by using the least-squares line froln the output in (b). You think U.S.
stocks will return 15% next year. Give a 90% interval for the return on foreign stocks
next year if you are right about U.S. stocks.

(d) Is the regression prediction useful in practice? Use the r2-value for this regression
to help explain your finding.

14.22 STOCK RETURN RESIDUALS Exercise 14.21 presents a regression of overseas stock
returns on U.S. stock returns based on 27 years' data. The residuals for this regression
(in order by years across the rows) are

14.89 18.93 -11.44 -12.57
-3.05 -4.89 -20.87 4.17

-14.78 -27.17 -12.04 -22.18

6.72 -17.77 16.99 22.96 -12.13
-2.05 30.98 52.22 15.76 12.36
20.97 -0.29 -17.72 -13.80 -24.23

(a) Plot the residuals against x, the U.s. return. The plot suggests a mild violation of
one of the regression conditions. Which one?

(b) Display the distribution of the residuals in a graph. In what way is the shape sOlne­
what nonnornlal? There is one possible outlier. Circle that point on the residual plot
in (a). What year is this? This point is not very influential: redoing the regression with­
out it does not greatly change the results. With 27 observations, we are willing to do
regression inference for these data.

14.23 WEEDS AMONG THE CORN Lamb's-quarter is a conlnlon weed that interferes with the
gro\vth of corn. An agriculture researcher planted corn at the sanle rate in 16 small plots
of ground, then weeded the plots by hand to alIa,"' a fixed nUl1lber of lanlb's-quarter
plants to grow in each meter of corn row. No other weeds ,"rere allowed to grow. Here
are the yields of corn (bushels per acre) in each of the plots: i
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Weeds Corn Weeds Corn Weeds Corn Weeds Corn
per meter yield per meter yield per meter yield per meter yield

0 166.7 1 166.2 3 158.6 9 162.8
0 172.2 1 157.3 3 176.4 9 142.4
0 165.0 1 166.7 3 153.1 9 162.8
0 176.9 1 161.1 3 156.0 9 162.4

Use your calculator or software to analyze these data.

(a) Make a scatterplot and find the least-squares line. What percent of the observed
variation in corn yield can be explained by a linear relationship between yield and
weeds per meter?

(b) Is there good evidence that more weeds reduce corn yield?

(c) Explain from your findings in (a) and (b) why you expect predictions based on this
regression to be quite imprecise. Predict the mean corn yield under these experimen­
tal conditions when there are 6 weeds per meter of row. Give a 95% confidence inter­
val for this mean.

14.24 THE PROFESSOR SWIMS, I Here are data on the time (in minutes) Professor Moore
takes to swim 2000 yards and his pulse rate (beats per n1inute) after swimming:

Tin1e: 34.12 35.72 34.72 34.05 34.13 35.72 36.17 35.57
Pulse: 152 124 140 152 146 128 136 144

Time: 35.37 35.57 35.43 36.05 34.85 34.70 34.75 33.93
Pulse: 148 144 136 124 148 144 140 156

Time: 34.60 34.00 34.35 35.62 35.68 35.28 35.97
Pulse: 136 148 148 132 124 132 139

A scatterplot sho\vs a negative linear relationship: a faster time (fewer minutes) is asso­
ciated \vith a higher heart rate. Here is part of the output from the regression function
in the Excel spreadsheet:

Intercept
X Variable

Coefficients
479.9341457

-9.694903394

Standard Error t Stat
66.22779275 7.246718119
1.888664503 -5.1332057

P-value
3.87075E-07
4.37908E-05

Give a 90% confidence interval for the slope of the true regression line. Explain what
your result tells us about the relationship between the professor's swimming time and
heart rate.

14.25 THE PROFESSOR SWIMS, II Exercise 14.24 gives data on a swimmer's time and heart
rate. One day the swilnmer completes his laps in 34.3 minutes but forgets to take his
pulse. Minitab gives this prediction for heart rate when x* = 34.3:

Fit
147.40

StDev Fit
1.97

90.0% CI
144.02, 150.78)

90.0% PI
135.79, 159.01}
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(a) Verify that "Fit" is the predicted heart rate from the least-squares line found in
Exercise 14.24. Then choose one of the intervals from the output to estimate the
swimmer's heart rate that day and explain why you chose this interval.

(b) Minitab gives only one of the two standard errors used in prediction. It is SE~, the
standard error for estimating the mean response. Use this fact and a critical value from
Table C to verify Minitab's 90% confidence interval for the mean heart rate on days
when the swimming time is 34.3 minutes.

14.26 FISH SIZES Table 14.2 contains data on the size of perch caught in a lake in
Finland. Statistical software will help you analyze these data.

TABLE 14.2 Measurements on 56 perch

Obs. Weight Length Width Obs. Weight Length Width
number (grams) (em) (em) number (grams) (em) (em)

104 5.9 8.8 1.4 132 197.0 27.0 4.2
105 32.0 14.7 2.0 133 218.0 28.0 4.1
106 40.0 16.0 2.4 134 300.0 28.7 5.1
107 51.5 17.2 2.6 135 260.0 28.9 4.3
108 70.0 18.5 2.9 136 265.0 28.9 4.3
109 100.0 19.2 3.3 137 250.0 28.9 4.6
110 78.0 19.4 3.1 138 250.0 29.4 4.2
III 80.0 20.2 3.1 139 300.0 30.1 4.6
112 85.0 20.8 3.0 140 320.0 31.6 4.8
113 85.0 21.0 2.8 141 514.0 34.0 6.0
114 110.0 22.5 3.6 142 556.0 36.5 6.4
115 115.0 22.5 3.3 143 840.0 37.3 7.8
116 125.0 22.5 3.7 144 685.0 39.0 6.9
117 130.0 22.8 3.5 145 700.0 38.3 6.7
118 120.0 23.5 3.4 146 700.0 39.4 6.3
119 120.0 23.5 3.5 147 690.0 39.3 6.4
120 130.0 23.5 3.5 148 900.0 41.4 7.5
121 135.0 23.5 3.5 149 650.0 41.4 6.0
122 110.0 23.5 4.0 150 820.0 41.3 7.4
123 130.0 24.0 3.6 151 850.0 42.3 7.1
124 150.0 24.0 3.6 152 900.0 42.5 7.2
125 145.0 24.2 3.6 153 1015.0 42.4 7.5
126 150.0 24.5 3.6 154 820.0 42.5 6.6
127 170.0 25.0 3.7 155 1100.0 44.6 6.9
128 225.0 25.5 3.7 156 1000.0 45.2 7.3
129 145.0 25.5 3.8 157 1100.0 45.5 7.4
130 188.0 26.2 4.2 158 1000.0 46.0 8.1
131 180.0 26.5 3.7 159 1000.0 46.6 7.6

Source: The data in Table 14.2 are part of a larger data set in the Journal of Statistics Education archive,
accessible via the Internet. The original source is Pekka Brofeldt, "Bidrag till kaennedolTI on fiskbestondet i
vaara sjoear. Laengelmaevesi," in T. H. Jaervi, Finlands Fiskeriet, Band 4, Meddelanden utgivna av {iskeri-
foereningen i Finland, Helsinki, 1917. The data were contributed to the archive (with information in
English) by Juha Puranen of the University of Helsinki.



(a) We want to know how well we can predict the width of a perch from its length.
Make a scatterplot of width against length. There is a strong linear pattern, as
expected. Perch number 143 had six newly eaten fish in its stomach. Find this fish
on your scatterplot and circle the point. Is this fish an outlier in your plot of width
against length?

(b) Find the least-squares regression line to predict width from length.

(c) The length ofa typical perch is about x* =27 centimeters. Predict the mean width
of such fish and give a 95% confidence interval.

(d) Examine the residuals. Is there any reason to mistrust inference? Does fish num­
ber 143 have an unusually large residual?

14.27 FISH WEIGHTS We can also use the data from Table 14.2 to study the prediction
of the weight of a perch from its length.

(a) Make a scatterplot of weight versus length, with length as the explanatory variable.
Describe the pattern of the data and any clear outliers.

(b) It is more reasonable to expect the one-third power of the weight to have a straight­
line relationship with the length than to expect weight itself to have a straight-line rela­
tionship with length. Explain why this is true. (Hint: What happens to weight if length,
width, and height all double?)

(c) Use your calculator or software to create a new variable that is the one-third power
of weight. Make a scatterplot of this new response variable against length. Describe the
pattern and any clear outliers.

(d) Is the straight-line pattern in (c) stronger or weaker than that in (a)? Compare the
plots and also the values of r2.

(e) Find the least-squares regression line to predict the new weight variable from
length. Predict the mean of the new variable for perch 27 centimeters long, and give
a 95% confidence interval.

(f) Examine the residuals from your regressions. Does it appear that any of the regres­
sion conditions are not met?

1. These are part of the data from the EESEE story "Blood Alcohol Content."
2. Data froIn G. Geri and B. Palla, "Considerazioni sulle pili recenti osservazioni
ottiche alla Torre Pendente di Pisa," Estratto dal Bollettino della Societa I taNana di
Topografia e Fotogrammetria, 2 (1988), pp. 121-135. Professor Julia Mortera of the
University of Ronle provided atranslation.
3. Strictly speaking, this quantity is the estimated standard deviation of y- y, where
y is the additional observation taken at x =x* .
4. The data are for 1987 salaries and measures of past performance. They were col­
lected and distributed by the Statistical Graphics Section of the American Statistical
Association for an annual data analysis contest. The analysis here was done by
Crystal Richard of Purdue University.
5. Based on Marion E. Dunshee, "A study of factors affecting the anlount and kind of
food eaten by nursery school children," Child Developn1ent, 2 (1931), pp. 163-183.
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This article gives the means, standard deviations, and correlation for 37 children but
does not give the actual data.
6. Based on a plot in G. D. Martinsen, E. M. Driebe, and T. G. Whitham, "Indirect
interactions mediated by changing plant chelnistry: beaver browsing benefits beetles,"
Ecology, 79 (1998), pp. 192-200.
7. Data provided by Sanluel Phillips, Purdue University.
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